Coupled Crust‐Mantle Evolution for > 2 Gy in Southern Africa from Exceptionally Strong Crustal Anisotropy

Research output: Contribution to journalJournal articleResearchpeer-review

The long-term stability of Precambrian continental lithosphere depends on the rheology of the lithospheric mantle as well as the coupling between crust and mantle lithosphere, which may be inferred by seismic anisotropy. Anisotropy has never been detected in cratonic crust. Anisotropy in southern Africa, detected by the seismological SKS-splitting method, usually is attributed to the mantle due to asthenospheric flow or frozen-in features of the lithosphere. However, SKS-splitting cannot distinguish between anisotropy in the crust and the mantle. We observe strong seismic anisotropy in the crust of southern African cratons by Receiver Function analysis. Fast axes are uniform within tectonic units and parallel to SKS axes, orogenic strike in the Limpopo and Cape fold belts, and the strike of major dyke swarms. Parallel fast axes in the crust and mantle indicate coupled crust-mantle evolution for more than 2 billion years with implications for strong rheology of the lithosphere.
Original languageEnglish
JournalActa Geologica Sinica - English Edition
Volume95
Issue number51
Pages (from-to)44-47
Number of pages4
ISSN1000-9515
DOIs
Publication statusPublished - 27 Nov 2021
Externally publishedYes

ID: 303319885