A cold accretion flow onto one component of a multiple protostellar system

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

A cold accretion flow onto one component of a multiple protostellar system. / Murillo, N. M.; Van Dishoeck, E. F.; Hacar, A.; Harsono, D.; Jørgensen, J. K.

In: Astronomy and Astrophysics, Vol. 658, A53, 01.02.2022.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Murillo, NM, Van Dishoeck, EF, Hacar, A, Harsono, D & Jørgensen, JK 2022, 'A cold accretion flow onto one component of a multiple protostellar system', Astronomy and Astrophysics, vol. 658, A53. https://doi.org/10.1051/0004-6361/202141250

APA

Murillo, N. M., Van Dishoeck, E. F., Hacar, A., Harsono, D., & Jørgensen, J. K. (2022). A cold accretion flow onto one component of a multiple protostellar system. Astronomy and Astrophysics, 658, [A53]. https://doi.org/10.1051/0004-6361/202141250

Vancouver

Murillo NM, Van Dishoeck EF, Hacar A, Harsono D, Jørgensen JK. A cold accretion flow onto one component of a multiple protostellar system. Astronomy and Astrophysics. 2022 Feb 1;658. A53. https://doi.org/10.1051/0004-6361/202141250

Author

Murillo, N. M. ; Van Dishoeck, E. F. ; Hacar, A. ; Harsono, D. ; Jørgensen, J. K. / A cold accretion flow onto one component of a multiple protostellar system. In: Astronomy and Astrophysics. 2022 ; Vol. 658.

Bibtex

@article{d51717b8027646ea9bda5959ebea009d,
title = "A cold accretion flow onto one component of a multiple protostellar system",
abstract = "Context. Gas accretion flows transport material from the cloud core onto the protostar. In multiple protostellar systems, it is not clear if the delivery mechanism is preferential or more evenly distributed among the components. Aims. The distribution of gas accretion flows within the cloud core of the deeply embedded, chemically rich, low-mass multiple protostellar system IRAS 16293-2422 is explored out to 6000 AU. Methods. Atacama Large Millimeter/submillimeter Array Band 3 observations of low-J transitions of various molecules, such as HNC, cyanopolyynes (HC3N, HC5N), and N2H+, are used to probe the cloud core structure of IRAS 16293-2422 at ~100 AU resolution. Additional Band 3 archival data provide low-J HCN and SiO lines. These data are compared with the corresponding higher-J lines from the PILS Band 7 data for excitation analysis. The HNC/HCN ratio is used as a temperature tracer. Results. The low-J transitions of HC3N, HC5N, HNC, and N2H+ trace extended and elongated structures from 6000 AU down to ~100 AU, without any accompanying dust continuum emission. Two structures are identified: one traces a flow that is likely accreting toward the most luminous component of the IRAS 16293-2422 A system. Temperatures inferred from the HCN/HNC ratio suggest that the gas in this flow is cold, between 10 and 30 K. The other structure is part of an uv-irradiated cavity wall entrained by one of the outflows driven by the source. The two outflows driven by IRAS 16293-2422 A present different molecular gas distributions. Conclusions. Accretion of cold gas is seen from 6000 AU scales onto IRAS 16293-2422 A but not onto source B, indicating that cloud core material accretion is competitive due to feedback onto a dominant component in an embedded multiple protostellar system. The preferential delivery of material could explain the higher luminosity and multiplicity of source A compared to source B. The results of this work demonstrate that several different molecular species, and multiple transitions of each species, are needed to confirm and characterize accretion flows in protostellar cloud cores. ",
keywords = "Astrochemistry, ISM: individual objects: IRAS 16293-2422, ISM: kinematics and dynamics, Methods: observational, Stars: low-mass, Stars: protostars",
author = "Murillo, {N. M.} and {Van Dishoeck}, {E. F.} and A. Hacar and D. Harsono and J{\o}rgensen, {J. K.}",
note = "Publisher Copyright: {\textcopyright} ESO 2022.",
year = "2022",
month = feb,
day = "1",
doi = "10.1051/0004-6361/202141250",
language = "English",
volume = "658",
journal = "Astronomy & Astrophysics",
issn = "0004-6361",
publisher = "E D P Sciences",

}

RIS

TY - JOUR

T1 - A cold accretion flow onto one component of a multiple protostellar system

AU - Murillo, N. M.

AU - Van Dishoeck, E. F.

AU - Hacar, A.

AU - Harsono, D.

AU - Jørgensen, J. K.

N1 - Publisher Copyright: © ESO 2022.

PY - 2022/2/1

Y1 - 2022/2/1

N2 - Context. Gas accretion flows transport material from the cloud core onto the protostar. In multiple protostellar systems, it is not clear if the delivery mechanism is preferential or more evenly distributed among the components. Aims. The distribution of gas accretion flows within the cloud core of the deeply embedded, chemically rich, low-mass multiple protostellar system IRAS 16293-2422 is explored out to 6000 AU. Methods. Atacama Large Millimeter/submillimeter Array Band 3 observations of low-J transitions of various molecules, such as HNC, cyanopolyynes (HC3N, HC5N), and N2H+, are used to probe the cloud core structure of IRAS 16293-2422 at ~100 AU resolution. Additional Band 3 archival data provide low-J HCN and SiO lines. These data are compared with the corresponding higher-J lines from the PILS Band 7 data for excitation analysis. The HNC/HCN ratio is used as a temperature tracer. Results. The low-J transitions of HC3N, HC5N, HNC, and N2H+ trace extended and elongated structures from 6000 AU down to ~100 AU, without any accompanying dust continuum emission. Two structures are identified: one traces a flow that is likely accreting toward the most luminous component of the IRAS 16293-2422 A system. Temperatures inferred from the HCN/HNC ratio suggest that the gas in this flow is cold, between 10 and 30 K. The other structure is part of an uv-irradiated cavity wall entrained by one of the outflows driven by the source. The two outflows driven by IRAS 16293-2422 A present different molecular gas distributions. Conclusions. Accretion of cold gas is seen from 6000 AU scales onto IRAS 16293-2422 A but not onto source B, indicating that cloud core material accretion is competitive due to feedback onto a dominant component in an embedded multiple protostellar system. The preferential delivery of material could explain the higher luminosity and multiplicity of source A compared to source B. The results of this work demonstrate that several different molecular species, and multiple transitions of each species, are needed to confirm and characterize accretion flows in protostellar cloud cores.

AB - Context. Gas accretion flows transport material from the cloud core onto the protostar. In multiple protostellar systems, it is not clear if the delivery mechanism is preferential or more evenly distributed among the components. Aims. The distribution of gas accretion flows within the cloud core of the deeply embedded, chemically rich, low-mass multiple protostellar system IRAS 16293-2422 is explored out to 6000 AU. Methods. Atacama Large Millimeter/submillimeter Array Band 3 observations of low-J transitions of various molecules, such as HNC, cyanopolyynes (HC3N, HC5N), and N2H+, are used to probe the cloud core structure of IRAS 16293-2422 at ~100 AU resolution. Additional Band 3 archival data provide low-J HCN and SiO lines. These data are compared with the corresponding higher-J lines from the PILS Band 7 data for excitation analysis. The HNC/HCN ratio is used as a temperature tracer. Results. The low-J transitions of HC3N, HC5N, HNC, and N2H+ trace extended and elongated structures from 6000 AU down to ~100 AU, without any accompanying dust continuum emission. Two structures are identified: one traces a flow that is likely accreting toward the most luminous component of the IRAS 16293-2422 A system. Temperatures inferred from the HCN/HNC ratio suggest that the gas in this flow is cold, between 10 and 30 K. The other structure is part of an uv-irradiated cavity wall entrained by one of the outflows driven by the source. The two outflows driven by IRAS 16293-2422 A present different molecular gas distributions. Conclusions. Accretion of cold gas is seen from 6000 AU scales onto IRAS 16293-2422 A but not onto source B, indicating that cloud core material accretion is competitive due to feedback onto a dominant component in an embedded multiple protostellar system. The preferential delivery of material could explain the higher luminosity and multiplicity of source A compared to source B. The results of this work demonstrate that several different molecular species, and multiple transitions of each species, are needed to confirm and characterize accretion flows in protostellar cloud cores.

KW - Astrochemistry

KW - ISM: individual objects: IRAS 16293-2422

KW - ISM: kinematics and dynamics

KW - Methods: observational

KW - Stars: low-mass

KW - Stars: protostars

U2 - 10.1051/0004-6361/202141250

DO - 10.1051/0004-6361/202141250

M3 - Journal article

AN - SCOPUS:85124243197

VL - 658

JO - Astronomy & Astrophysics

JF - Astronomy & Astrophysics

SN - 0004-6361

M1 - A53

ER -

ID: 307337511