JWST Peers into the Class I Protostar TMC1A: Atomic Jet and Spatially Resolved Dissociative Shock Region

Research output: Contribution to journalLetterResearchpeer-review

Documents

Outflows and winds launched from young stars play a crucial role in the evolution of protostars and the early stages of planet formation. However, the specific details of the mechanism behind these phenomena, including how they affect the protoplanetary disk structure, are still debated. We present JWST NIRSpec integral field unit observations of atomic and H2 lines from 1 to 5.1 μm toward the low-mass protostar TMC1A. For the first time, a collimated atomic jet is detected from TMC1A in the [Fe ii] line at 1.644 μm along with corresponding extended H2 2.12 μm emission. Toward the protostar, we detected spectrally broad H i and He i emissions with velocities up to 300 km s−1 that can be explained by a combination of protostellar accretion and a wide-angle wind. The 2 μm continuum dust emission, H i, He i, and O i all show emission from the illuminated outflow cavity wall and scattered line emission. These observations demonstrate the potential of JWST to characterize and reveal new information about the hot inner regions of nearby protostars; in this case, a previously undetected atomic wind and ionized jet in a well-known outflow.

Original languageEnglish
Article numberL32
JournalAstrophysical Journal Letters
Volume951
Issue number2
Number of pages7
ISSN2041-8205
DOIs
Publication statusPublished - 10 Jul 2023

Bibliographical note

Publisher Copyright:
© 2023. The Author(s). Published by the American Astronomical Society.

ID: 360813560