Proximity Effect Transfer from NbTi into a Semiconductor Heterostructure via Epitaxial Aluminum

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Proximity Effect Transfer from NbTi into a Semiconductor Heterostructure via Epitaxial Aluminum. / Drachmann, A C C; Suominen, H J; Kjærgaard, Morten; Shojaei, B; Palmstrøm, C J; Marcus, C M; Nichele, F.

I: Nano Letters, Bind 17, Nr. 2, 08.02.2017, s. 1200-1203.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Drachmann, ACC, Suominen, HJ, Kjærgaard, M, Shojaei, B, Palmstrøm, CJ, Marcus, CM & Nichele, F 2017, 'Proximity Effect Transfer from NbTi into a Semiconductor Heterostructure via Epitaxial Aluminum', Nano Letters, bind 17, nr. 2, s. 1200-1203. https://doi.org/10.1021/acs.nanolett.6b04964

APA

Drachmann, A. C. C., Suominen, H. J., Kjærgaard, M., Shojaei, B., Palmstrøm, C. J., Marcus, C. M., & Nichele, F. (2017). Proximity Effect Transfer from NbTi into a Semiconductor Heterostructure via Epitaxial Aluminum. Nano Letters, 17(2), 1200-1203. https://doi.org/10.1021/acs.nanolett.6b04964

Vancouver

Drachmann ACC, Suominen HJ, Kjærgaard M, Shojaei B, Palmstrøm CJ, Marcus CM o.a. Proximity Effect Transfer from NbTi into a Semiconductor Heterostructure via Epitaxial Aluminum. Nano Letters. 2017 feb. 8;17(2):1200-1203. https://doi.org/10.1021/acs.nanolett.6b04964

Author

Drachmann, A C C ; Suominen, H J ; Kjærgaard, Morten ; Shojaei, B ; Palmstrøm, C J ; Marcus, C M ; Nichele, F. / Proximity Effect Transfer from NbTi into a Semiconductor Heterostructure via Epitaxial Aluminum. I: Nano Letters. 2017 ; Bind 17, Nr. 2. s. 1200-1203.

Bibtex

@article{2656aee47cca46d98aabea1123e9efb4,
title = "Proximity Effect Transfer from NbTi into a Semiconductor Heterostructure via Epitaxial Aluminum",
abstract = "We demonstrate the transfer of the superconducting properties of NbTi, a large-gap high-critical-field superconductor, into an InAs heterostructure via a thin intermediate layer of epitaxial Al. Two device geometries, a Josephson junction and a gate-defined quantum point contact, are used to characterize interface transparency and the two-step proximity effect. In the Josephson junction, multiple Andreev reflections reveal near-unity transparency with an induced gap Δ* = 0.50 meV and a critical temperature of 7.8 K. Tunneling spectroscopy yields a hard induced gap in the InAs adjacent to the superconductor of Δ* = 0.43 meV with substructure characteristic of both Al and NbTi.",
keywords = "Journal Article",
author = "Drachmann, {A C C} and Suominen, {H J} and Morten Kj{\ae}rgaard and B Shojaei and Palmstr{\o}m, {C J} and Marcus, {C M} and F Nichele",
note = "[Qdev]",
year = "2017",
month = feb,
day = "8",
doi = "10.1021/acs.nanolett.6b04964",
language = "English",
volume = "17",
pages = "1200--1203",
journal = "Nano Letters",
issn = "1530-6984",
publisher = "American Chemical Society",
number = "2",

}

RIS

TY - JOUR

T1 - Proximity Effect Transfer from NbTi into a Semiconductor Heterostructure via Epitaxial Aluminum

AU - Drachmann, A C C

AU - Suominen, H J

AU - Kjærgaard, Morten

AU - Shojaei, B

AU - Palmstrøm, C J

AU - Marcus, C M

AU - Nichele, F

N1 - [Qdev]

PY - 2017/2/8

Y1 - 2017/2/8

N2 - We demonstrate the transfer of the superconducting properties of NbTi, a large-gap high-critical-field superconductor, into an InAs heterostructure via a thin intermediate layer of epitaxial Al. Two device geometries, a Josephson junction and a gate-defined quantum point contact, are used to characterize interface transparency and the two-step proximity effect. In the Josephson junction, multiple Andreev reflections reveal near-unity transparency with an induced gap Δ* = 0.50 meV and a critical temperature of 7.8 K. Tunneling spectroscopy yields a hard induced gap in the InAs adjacent to the superconductor of Δ* = 0.43 meV with substructure characteristic of both Al and NbTi.

AB - We demonstrate the transfer of the superconducting properties of NbTi, a large-gap high-critical-field superconductor, into an InAs heterostructure via a thin intermediate layer of epitaxial Al. Two device geometries, a Josephson junction and a gate-defined quantum point contact, are used to characterize interface transparency and the two-step proximity effect. In the Josephson junction, multiple Andreev reflections reveal near-unity transparency with an induced gap Δ* = 0.50 meV and a critical temperature of 7.8 K. Tunneling spectroscopy yields a hard induced gap in the InAs adjacent to the superconductor of Δ* = 0.43 meV with substructure characteristic of both Al and NbTi.

KW - Journal Article

U2 - 10.1021/acs.nanolett.6b04964

DO - 10.1021/acs.nanolett.6b04964

M3 - Journal article

C2 - 28072541

VL - 17

SP - 1200

EP - 1203

JO - Nano Letters

JF - Nano Letters

SN - 1530-6984

IS - 2

ER -

ID: 180970006