Matter-Driven Change of Spacetime Topology

Publikation: Bidrag til tidsskriftLetterForskningfagfællebedømt

Standard

Matter-Driven Change of Spacetime Topology. / Ambjorn, J.; Drogosz, Z.; Gizbert-Studnicki, J.; Gorlich, A.; Jurkiewicz, J.; Nemeth, D.

I: Physical Review Letters, Bind 127, Nr. 16, 161301, 12.10.2021.

Publikation: Bidrag til tidsskriftLetterForskningfagfællebedømt

Harvard

Ambjorn, J, Drogosz, Z, Gizbert-Studnicki, J, Gorlich, A, Jurkiewicz, J & Nemeth, D 2021, 'Matter-Driven Change of Spacetime Topology', Physical Review Letters, bind 127, nr. 16, 161301. https://doi.org/10.1103/PhysRevLett.127.161301

APA

Ambjorn, J., Drogosz, Z., Gizbert-Studnicki, J., Gorlich, A., Jurkiewicz, J., & Nemeth, D. (2021). Matter-Driven Change of Spacetime Topology. Physical Review Letters, 127(16), [161301]. https://doi.org/10.1103/PhysRevLett.127.161301

Vancouver

Ambjorn J, Drogosz Z, Gizbert-Studnicki J, Gorlich A, Jurkiewicz J, Nemeth D. Matter-Driven Change of Spacetime Topology. Physical Review Letters. 2021 okt. 12;127(16). 161301. https://doi.org/10.1103/PhysRevLett.127.161301

Author

Ambjorn, J. ; Drogosz, Z. ; Gizbert-Studnicki, J. ; Gorlich, A. ; Jurkiewicz, J. ; Nemeth, D. / Matter-Driven Change of Spacetime Topology. I: Physical Review Letters. 2021 ; Bind 127, Nr. 16.

Bibtex

@article{cf7181cf18df412991659a5761c05a0c,
title = "Matter-Driven Change of Spacetime Topology",
abstract = "Using Monte Carlo computer simulations, we study the impact of matter fields on the geometry of a typical quantum universe in the causal dynamical triangulations (CDT) model of lattice quantum gravity. The quantum universe has the size of a few Planck lengths and the spatial topology of a three-torus. The matter fields are multicomponent scalar fields taking values in a torus with circumference delta in each spatial direction, which acts as a new parameter in the CDT model. Changing d, we observe a phase transition caused by the scalar field. This discovery may have important consequences for quantum universes with nontrivial topology, since the phase transition can change the topology to a simply connected one.",
author = "J. Ambjorn and Z. Drogosz and J. Gizbert-Studnicki and A. Gorlich and J. Jurkiewicz and D. Nemeth",
year = "2021",
month = oct,
day = "12",
doi = "10.1103/PhysRevLett.127.161301",
language = "English",
volume = "127",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "16",

}

RIS

TY - JOUR

T1 - Matter-Driven Change of Spacetime Topology

AU - Ambjorn, J.

AU - Drogosz, Z.

AU - Gizbert-Studnicki, J.

AU - Gorlich, A.

AU - Jurkiewicz, J.

AU - Nemeth, D.

PY - 2021/10/12

Y1 - 2021/10/12

N2 - Using Monte Carlo computer simulations, we study the impact of matter fields on the geometry of a typical quantum universe in the causal dynamical triangulations (CDT) model of lattice quantum gravity. The quantum universe has the size of a few Planck lengths and the spatial topology of a three-torus. The matter fields are multicomponent scalar fields taking values in a torus with circumference delta in each spatial direction, which acts as a new parameter in the CDT model. Changing d, we observe a phase transition caused by the scalar field. This discovery may have important consequences for quantum universes with nontrivial topology, since the phase transition can change the topology to a simply connected one.

AB - Using Monte Carlo computer simulations, we study the impact of matter fields on the geometry of a typical quantum universe in the causal dynamical triangulations (CDT) model of lattice quantum gravity. The quantum universe has the size of a few Planck lengths and the spatial topology of a three-torus. The matter fields are multicomponent scalar fields taking values in a torus with circumference delta in each spatial direction, which acts as a new parameter in the CDT model. Changing d, we observe a phase transition caused by the scalar field. This discovery may have important consequences for quantum universes with nontrivial topology, since the phase transition can change the topology to a simply connected one.

U2 - 10.1103/PhysRevLett.127.161301

DO - 10.1103/PhysRevLett.127.161301

M3 - Letter

C2 - 34723576

VL - 127

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 16

M1 - 161301

ER -

ID: 282678396