Exploring the Semiconducting Josephson Junction of Nanowire-based Superconducting Qubits

Publikation: Bog/antologi/afhandling/rapportPh.d.-afhandlingForskning

Standard

Exploring the Semiconducting Josephson Junction of Nanowire-based Superconducting Qubits. / Kringhøj, Anders.

Niels Bohr Institute, Faculty of Science, University of Copenhagen, 2020. 165 s.

Publikation: Bog/antologi/afhandling/rapportPh.d.-afhandlingForskning

Harvard

Kringhøj, A 2020, Exploring the Semiconducting Josephson Junction of Nanowire-based Superconducting Qubits. Niels Bohr Institute, Faculty of Science, University of Copenhagen. <https://soeg.kb.dk/permalink/45KBDK_KGL/1pioq0f/alma99123805034605763>

APA

Kringhøj, A. (2020). Exploring the Semiconducting Josephson Junction of Nanowire-based Superconducting Qubits. Niels Bohr Institute, Faculty of Science, University of Copenhagen. https://soeg.kb.dk/permalink/45KBDK_KGL/1pioq0f/alma99123805034605763

Vancouver

Kringhøj A. Exploring the Semiconducting Josephson Junction of Nanowire-based Superconducting Qubits. Niels Bohr Institute, Faculty of Science, University of Copenhagen, 2020. 165 s.

Author

Kringhøj, Anders. / Exploring the Semiconducting Josephson Junction of Nanowire-based Superconducting Qubits. Niels Bohr Institute, Faculty of Science, University of Copenhagen, 2020. 165 s.

Bibtex

@phdthesis{2630fa73cdf54922ab5d418a178f9f44,
title = "Exploring the Semiconducting Josephson Junction of Nanowire-based Superconducting Qubits",
abstract = "This thesis investigates superconducting qubits based on proximitized InAs/Al nanowires. These qubits consist of semiconducting Josephson junctions, and present a gatetunable derivative of the transmon qubit. Beyond the gateable nature, this new qubit (the gatemon) exhibits fundamentally different characteristics depending on operating regime, which is the main focus of this thesis. First, a systematic investigation of gatemon anharmonicity is presented. Here, we observe a deviation from the traditional transmon result. To explain this, we derive a simple model yielding information about the transmission properties of the semiconducting Josephson junction. In conclusion we find that the junction is dominated by 1–3 conduction channels with at least one channel reaching transmission probabilities greater than 0.9 certain gate voltages, in clear contrast to the sinusoidal energy phase relations that describe conventional transmon junctions. Next, we present a new gatemon design, where a semiconducting regionis operated as a field-effect-transistor to allow transport through the gatemon device without introducing a new dominant relaxation source. In addition, we demonstrate clear correlation between transport and transitional circuit quantum electrodynamics qubit measurements. In this geometry, for certain gate voltage, we observe resonant features in the qubit spectrum, both in transport and qubit measurements. Across the resonances, we carefully map the charge dispersion, which, at resonance, shows clear suppression orders of magnitude beyond what is traditionally expected. We explain this by an almost perfectly transmitting conduction channel, which renormalizes the charge of the superconducting island. This is in quantitative agreement with a developed resonant tunneling model, where the large transmission is achieved by a resonant level with nearly symmetric tunnel barriers. Finally, we demonstrate compatibility with operation in large magnetic fields and the destructive Little-Parks regime. As we enter the first lobe of the oscillating qubit spectrum, we observe the emergence of additional coherent energy transitions. We explain these as transitions between Andreev states, which experience a path-dependent phase difference across the Josephson junction due to the phase twists associated with the Little-Parks effect. These observations are in qualitative agreement with numerical junction model. iii",
author = "Anders Kringh{\o}j",
year = "2020",
language = "English",
publisher = "Niels Bohr Institute, Faculty of Science, University of Copenhagen",

}

RIS

TY - BOOK

T1 - Exploring the Semiconducting Josephson Junction of Nanowire-based Superconducting Qubits

AU - Kringhøj, Anders

PY - 2020

Y1 - 2020

N2 - This thesis investigates superconducting qubits based on proximitized InAs/Al nanowires. These qubits consist of semiconducting Josephson junctions, and present a gatetunable derivative of the transmon qubit. Beyond the gateable nature, this new qubit (the gatemon) exhibits fundamentally different characteristics depending on operating regime, which is the main focus of this thesis. First, a systematic investigation of gatemon anharmonicity is presented. Here, we observe a deviation from the traditional transmon result. To explain this, we derive a simple model yielding information about the transmission properties of the semiconducting Josephson junction. In conclusion we find that the junction is dominated by 1–3 conduction channels with at least one channel reaching transmission probabilities greater than 0.9 certain gate voltages, in clear contrast to the sinusoidal energy phase relations that describe conventional transmon junctions. Next, we present a new gatemon design, where a semiconducting regionis operated as a field-effect-transistor to allow transport through the gatemon device without introducing a new dominant relaxation source. In addition, we demonstrate clear correlation between transport and transitional circuit quantum electrodynamics qubit measurements. In this geometry, for certain gate voltage, we observe resonant features in the qubit spectrum, both in transport and qubit measurements. Across the resonances, we carefully map the charge dispersion, which, at resonance, shows clear suppression orders of magnitude beyond what is traditionally expected. We explain this by an almost perfectly transmitting conduction channel, which renormalizes the charge of the superconducting island. This is in quantitative agreement with a developed resonant tunneling model, where the large transmission is achieved by a resonant level with nearly symmetric tunnel barriers. Finally, we demonstrate compatibility with operation in large magnetic fields and the destructive Little-Parks regime. As we enter the first lobe of the oscillating qubit spectrum, we observe the emergence of additional coherent energy transitions. We explain these as transitions between Andreev states, which experience a path-dependent phase difference across the Josephson junction due to the phase twists associated with the Little-Parks effect. These observations are in qualitative agreement with numerical junction model. iii

AB - This thesis investigates superconducting qubits based on proximitized InAs/Al nanowires. These qubits consist of semiconducting Josephson junctions, and present a gatetunable derivative of the transmon qubit. Beyond the gateable nature, this new qubit (the gatemon) exhibits fundamentally different characteristics depending on operating regime, which is the main focus of this thesis. First, a systematic investigation of gatemon anharmonicity is presented. Here, we observe a deviation from the traditional transmon result. To explain this, we derive a simple model yielding information about the transmission properties of the semiconducting Josephson junction. In conclusion we find that the junction is dominated by 1–3 conduction channels with at least one channel reaching transmission probabilities greater than 0.9 certain gate voltages, in clear contrast to the sinusoidal energy phase relations that describe conventional transmon junctions. Next, we present a new gatemon design, where a semiconducting regionis operated as a field-effect-transistor to allow transport through the gatemon device without introducing a new dominant relaxation source. In addition, we demonstrate clear correlation between transport and transitional circuit quantum electrodynamics qubit measurements. In this geometry, for certain gate voltage, we observe resonant features in the qubit spectrum, both in transport and qubit measurements. Across the resonances, we carefully map the charge dispersion, which, at resonance, shows clear suppression orders of magnitude beyond what is traditionally expected. We explain this by an almost perfectly transmitting conduction channel, which renormalizes the charge of the superconducting island. This is in quantitative agreement with a developed resonant tunneling model, where the large transmission is achieved by a resonant level with nearly symmetric tunnel barriers. Finally, we demonstrate compatibility with operation in large magnetic fields and the destructive Little-Parks regime. As we enter the first lobe of the oscillating qubit spectrum, we observe the emergence of additional coherent energy transitions. We explain these as transitions between Andreev states, which experience a path-dependent phase difference across the Josephson junction due to the phase twists associated with the Little-Parks effect. These observations are in qualitative agreement with numerical junction model. iii

UR - https://soeg.kb.dk/permalink/45KBDK_KGL/1pioq0f/alma99123805034605763

M3 - Ph.D. thesis

BT - Exploring the Semiconducting Josephson Junction of Nanowire-based Superconducting Qubits

PB - Niels Bohr Institute, Faculty of Science, University of Copenhagen

ER -

ID: 238954349