Epitaxially Driven Phase Selectivity of Sn in Hybrid Quantum Nanowires

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Epitaxially Driven Phase Selectivity of Sn in Hybrid Quantum Nanowires. / Khan, Sabbir A.; Martí-Sánchez, Sara; Olsteins, Dags; Lampadaris, Charalampos; Carrad, Damon James; Liu, Yu; Quiñones, Judith; Chiara Spadaro, Maria; Sand Jespersen, Thomas; Krogstrup, Peter; Arbiol, Jordi.

I: ACS Nano, Bind 17, Nr. 12, 27.06.2023, s. 11794-11804.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Khan, SA, Martí-Sánchez, S, Olsteins, D, Lampadaris, C, Carrad, DJ, Liu, Y, Quiñones, J, Chiara Spadaro, M, Sand Jespersen, T, Krogstrup, P & Arbiol, J 2023, 'Epitaxially Driven Phase Selectivity of Sn in Hybrid Quantum Nanowires', ACS Nano, bind 17, nr. 12, s. 11794-11804. https://doi.org/10.1021/acsnano.3c02733

APA

Khan, S. A., Martí-Sánchez, S., Olsteins, D., Lampadaris, C., Carrad, D. J., Liu, Y., Quiñones, J., Chiara Spadaro, M., Sand Jespersen, T., Krogstrup, P., & Arbiol, J. (2023). Epitaxially Driven Phase Selectivity of Sn in Hybrid Quantum Nanowires. ACS Nano, 17(12), 11794-11804. https://doi.org/10.1021/acsnano.3c02733

Vancouver

Khan SA, Martí-Sánchez S, Olsteins D, Lampadaris C, Carrad DJ, Liu Y o.a. Epitaxially Driven Phase Selectivity of Sn in Hybrid Quantum Nanowires. ACS Nano. 2023 jun. 27;17(12):11794-11804. https://doi.org/10.1021/acsnano.3c02733

Author

Khan, Sabbir A. ; Martí-Sánchez, Sara ; Olsteins, Dags ; Lampadaris, Charalampos ; Carrad, Damon James ; Liu, Yu ; Quiñones, Judith ; Chiara Spadaro, Maria ; Sand Jespersen, Thomas ; Krogstrup, Peter ; Arbiol, Jordi. / Epitaxially Driven Phase Selectivity of Sn in Hybrid Quantum Nanowires. I: ACS Nano. 2023 ; Bind 17, Nr. 12. s. 11794-11804.

Bibtex

@article{6f4ecb353de9441f8aaaecf4908a57ac,
title = "Epitaxially Driven Phase Selectivity of Sn in Hybrid Quantum Nanowires",
abstract = "Hybrid semiconductor-superconductor nanowires constitute a pervasive platform for studying gate-tunable superconductivity and the emergence of topological behavior. Their low dimensionality and crystal structure flexibility facilitate unique heterostructure growth and efficient material optimization, crucial prerequisites for accurately constructing complex multicomponent quantum materials. Here, we present an extensive study of Sn growth on InSb, InAsSb, and InAs nanowires and demonstrate how the crystal structure of the nanowires drives the formation of either semimetallic α-Sn or superconducting β-Sn. For InAs nanowires, we observe phase-pure superconducting β-Sn shells. However, for InSb and InAsSb nanowires, an initial epitaxial α-Sn phase evolves into a polycrystalline shell of coexisting α and β phases, where the β/α volume ratio increases with Sn shell thickness. Whether these nanowires exhibit superconductivity or not critically relies on the β-Sn content. Therefore, this work provides key insights into Sn phases on a variety of semiconductors with consequences for the yield of superconducting hybrids suitable for generating topological systems.",
keywords = "epitaxy, interface, nanowires, quantum computing, semiconductor-superconductor hybrid, Sn, topological materials",
author = "Khan, {Sabbir A.} and Sara Mart{\'i}-S{\'a}nchez and Dags Olsteins and Charalampos Lampadaris and Carrad, {Damon James} and Yu Liu and Judith Qui{\~n}ones and {Chiara Spadaro}, Maria and {Sand Jespersen}, Thomas and Peter Krogstrup and Jordi Arbiol",
note = "Publisher Copyright: {\textcopyright} 2023 The Authors. Published by American Chemical Society.",
year = "2023",
month = jun,
day = "27",
doi = "10.1021/acsnano.3c02733",
language = "English",
volume = "17",
pages = "11794--11804",
journal = "A C S Nano",
issn = "1936-0851",
publisher = "American Chemical Society",
number = "12",

}

RIS

TY - JOUR

T1 - Epitaxially Driven Phase Selectivity of Sn in Hybrid Quantum Nanowires

AU - Khan, Sabbir A.

AU - Martí-Sánchez, Sara

AU - Olsteins, Dags

AU - Lampadaris, Charalampos

AU - Carrad, Damon James

AU - Liu, Yu

AU - Quiñones, Judith

AU - Chiara Spadaro, Maria

AU - Sand Jespersen, Thomas

AU - Krogstrup, Peter

AU - Arbiol, Jordi

N1 - Publisher Copyright: © 2023 The Authors. Published by American Chemical Society.

PY - 2023/6/27

Y1 - 2023/6/27

N2 - Hybrid semiconductor-superconductor nanowires constitute a pervasive platform for studying gate-tunable superconductivity and the emergence of topological behavior. Their low dimensionality and crystal structure flexibility facilitate unique heterostructure growth and efficient material optimization, crucial prerequisites for accurately constructing complex multicomponent quantum materials. Here, we present an extensive study of Sn growth on InSb, InAsSb, and InAs nanowires and demonstrate how the crystal structure of the nanowires drives the formation of either semimetallic α-Sn or superconducting β-Sn. For InAs nanowires, we observe phase-pure superconducting β-Sn shells. However, for InSb and InAsSb nanowires, an initial epitaxial α-Sn phase evolves into a polycrystalline shell of coexisting α and β phases, where the β/α volume ratio increases with Sn shell thickness. Whether these nanowires exhibit superconductivity or not critically relies on the β-Sn content. Therefore, this work provides key insights into Sn phases on a variety of semiconductors with consequences for the yield of superconducting hybrids suitable for generating topological systems.

AB - Hybrid semiconductor-superconductor nanowires constitute a pervasive platform for studying gate-tunable superconductivity and the emergence of topological behavior. Their low dimensionality and crystal structure flexibility facilitate unique heterostructure growth and efficient material optimization, crucial prerequisites for accurately constructing complex multicomponent quantum materials. Here, we present an extensive study of Sn growth on InSb, InAsSb, and InAs nanowires and demonstrate how the crystal structure of the nanowires drives the formation of either semimetallic α-Sn or superconducting β-Sn. For InAs nanowires, we observe phase-pure superconducting β-Sn shells. However, for InSb and InAsSb nanowires, an initial epitaxial α-Sn phase evolves into a polycrystalline shell of coexisting α and β phases, where the β/α volume ratio increases with Sn shell thickness. Whether these nanowires exhibit superconductivity or not critically relies on the β-Sn content. Therefore, this work provides key insights into Sn phases on a variety of semiconductors with consequences for the yield of superconducting hybrids suitable for generating topological systems.

KW - epitaxy

KW - interface

KW - nanowires

KW - quantum computing

KW - semiconductor-superconductor hybrid

KW - Sn

KW - topological materials

U2 - 10.1021/acsnano.3c02733

DO - 10.1021/acsnano.3c02733

M3 - Journal article

C2 - 37317984

AN - SCOPUS:85163559469

VL - 17

SP - 11794

EP - 11804

JO - A C S Nano

JF - A C S Nano

SN - 1936-0851

IS - 12

ER -

ID: 360814442