Climate variability and physical forcing of the food webs and the carbon budget on panarctic shelves

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Eddy Carmack, David Barber, Jens Christensen, Robie Macdonald, Bert Rudels, Egil Sakshaug

Brief overviews of the Arctic's atmosphere, ice cover, circulation, primary production and sediment regime are given to provide a conceptual framework for considering panarctic shelves under scenarios of climate variability. We draw on past 'regional' studies to scale-up to the panarctic perspective. Within each discipline a synthesis of salient distributions and processes is given, and then functions are noted that are critically poised and/or near transition and thereby sensitive to climate variability and change. The various shelf regions are described and distinguished among three types: inflow shelves, interior shelves and outflow shelves. Emphasis is on projected climate changes that will likely have the greatest impact on shelf-basin exchange, productivity and sediment processes including (a) changes in wind fields (e.g. currents, ice drift, upwelling and downwelling); (b) changes in sea ice distribution (e.g. radiation and wind regimes, enhanced upwelling and mixing, ice transport and scour resuspension, primary production); and (c) changes in hydrology (e.g. sediment and organic carbon delivery, nutrient supplies). A discussion is given of the key rate-controlling processes, which differ for different properties and shelf types, as do the likely responses; that is, the distributions of nutrients, organic carbon, freshwater, sediments, and trace minerals will all respond differently to climate forcing. A fundamental conclusion is that the changes associated with light, nutrients, productivity and ice cover likely will be greatest at the shelf-break and margins, and that this forms a natural focus for a coordinated international effort. Recognizing that the real value of climate research is to prepare society for possible futures, and that such research must be based both on an understanding of the past (e.g. the palaeo-record) as well as an ability to reliably predict future scenarios (e.g. validated models), two recommendations emerge: firstly, a comprehensive survey of circumpolar shelf-break and slope sediments would provide long-term synchronous records of shelf-interior ocean exchange and primary production at the shelf edge; secondly, a synoptic panarctic ice and ocean survey using heavy icebreakers, aircraft, moorings and satellites would provide the validation data and knowledge required to properly model key forcing processes at the margins.

OriginalsprogEngelsk
TidsskriftProgress in Oceanography
Vol/bind71
Udgave nummer2-4
Sider (fra-til)145-181
Antal sider37
ISSN0079-6611
DOI
StatusUdgivet - 1 okt. 2006

ID: 186942052