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General introduction

In the design of cells and subcellular organelles, nature has developed a highly specialized

technology based on membrane encapsulation. Biological membranes are essential to living

organisms as they provide a selective permeability barrier and also the environment for a

multitude of functional processes. The biomembranes are complex and well-organized

multimolecular assemblies composed of a wide variety of protein and lipid molecular

species.

Lipids are amphiphilic molecules with a polar part (hydrophilic head) and a hydrocarbon

part (hydrophobic tail). Figure 1 gives a representative structure of a lipid.
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Figure 1. Chemical structure of a phospholipid (dipalmytoyl

phosphatidylcholine, DPPC).

In aqueous environment lipids self-assemble spontaneously in order to protect their

hydrophobic tails from contact with the water molecules. The macroscopic structure of

these molecular aggregates depends on the chemical structure of the lipid as well as on the

water content. Some of the variety of such molecular assemblies are shown in Figure 2.

a ) m ice lle b )  b i lay e r c ) in v erse  h e x a g o n a l p h a se

Figure 2. Examples of phospholipid structures.
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The lipid aggregates are stabilized primarily by the hydrophobic interaction resulting from

the unfavorable contact of the hydrocarbon tails with water. The hydrophobic effect arises

from the ordering of water as it packs around a non-polar hydrocarbon [19]. Other

stabilizing forces are van der Waal’s interactions between the hydrocarbon chains,

electrostatic interactions and hydrogen bonds between the polar heads. In relation to

biological systems the most important structure is the lipid bilayer (Figure 2b).

Most of the current view on biological membranes is governed by the fluid-mosaic model

proposed by Singer and Nicolson [18]. Within this model the lipids form a fully

homogeneous bilayer to which various species of proteins are associated. A scheme of a

biomembrane according to the fluid-mosaic model is shown in Figure 3. Some of the

proteins are only attached to the surface of the lipid bilayer. These are called peripheral

proteins. Others, the integral and the transmembrane proteins, are largely buried within the

lipid matrix. The latter are exposed to both sides of the membrane.

lip id  b ila y er

pe rip he ra l p ro te in

in te g ra l  p ro te in

tran s m e m b ran e  p ro te in

Figure 3. Scheme of a biomembrane according to the fluid-mosaic model.

The crucial property of this molecular assembly is the bilayer fluidity which assures

sufficient lateral mobility of the membrane components to support biological functions.

This picture is, however, an oversimplified presentation of the role of the lipids and

proteins for the function of the biomembrane. For instance, the model does not account for

the variety of lipids normally present in the biological systems. The reason for this diversity

is not at all clear, although there is an increasing awareness of the multiple role of lipids in

membranes [6]. For example, it has been observed that bacteria grown at different

temperatures have different lipid composition [1]. Also a significant dependence of the
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activity of the membrane proteins (Ca2+, Mg2+)ATPase and (Na+, K+)ATPase on the chain

length of those lipids building the bilayer has been reported [3].

The biomembrane is a very complex structure with many components. Therefore, to

understand the basic physical principles underlying its function, much research has been

performed on model systems. A model membrane is a system which carries the essential

characteristics of a biomembrane, but has less components. Such systems have been the

subject of investigation in the present study.

An important feature of the single lipid membrane systems is that they undergo transitions

at well defined temperatures. The most investigated is the main transition, or melting. This

transition is due to the following: There is free rotation about each C-C bond in the

hydrocarbon chains with preferred energy minima at given angles - one being the absolute

energy minimum (trans - conformation) and the other two having equal excitation energies

(gauche+ and gauche- conformations). When all the C-C bonds are in trans-conformation

(all-trans), the two chains are parallel and are maximally extended. However, the

probability for the occurrence of a gauche-bond increases with increasing temperature. At

high temperatures, the chains are not correlated and are fully disordered. The membrane

fluidity - a measure of the bilayer lateral viscosity - drops by about two orders of magnitude

upon membrane melting [6]. Therefore, the ordered low-temperature lipid phase is called

gel phase, and the highly disordered phase is called fluid phase. Figure 4 illustrates the

bilayer melting transition.

Figure 4. Scheme of the melting transition in a lipid bilayer.

The chain-melting (or gel-to-fluid) transition is an endothermic process with a relatively

large heat (8700 cal/mol)*. The entropy changes by about 26 cal/mol·K*, the membrane

volume increases (4%)* and the bilayer thickness decreases (-16%)*. The heat capacity is

defined as the amount of heat required to raise the temperature of the system by a given

                                                
* Data for DPPC, from [8]

ΔH, ΔS

    Tm
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temperature increment ( C Q Tp = Δ Δ ). A typical heat capacity profile of a lipid system

undergoing melting transition is given in Figure 5.
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Figure 5. Heat capacity profile of a DPPC aqueous dispersion.

It is evident that the transition half-width is very small (less than 0.1 deg). Supposing that

each lipid in the system melts independently, the calorimetric heat in a two-state transition

is equal to the van’t Hoff heat, and the transition half-width should be about 60 deg. [6].

This is the reason for calling the melting transition cooperative. The cooperativity implies

that the lipid molecules do not undergo a melting transition independently but in a

correlated manner. However, the lipid melting cannot generally be classified as a first-order

phase transition. All thermodynamic properties, like membrane area, volume and thickness,

vary in a continuous though dramatic fashion during transition [11]. This has led to the

proposal that the lipid melting transition is pseudo-critical, i.e., in principle of first order

but very close to a critical point and consequently strongly dominated by thermal

fluctuations [11]. These thermal fluctuations may induce states of dynamic lateral

heterogeneity in the membrane plane [11,12,14]. The formation of clusters composed of

lipids in a single state can partially be related [14] to the difference of the hydrophobic

thickness of the gel and the fluid bilayer. The disordered fluid chains are thus effectively

shorter than the fully ordered chains in the gel phase. Hence, in order to protect its

hydrophobic parts from the water molecules each lipid tends to surround itself with lipid

chains of a similar length [13]. Membrane heterogeneity has been detected experimentally



 5

in model systems [3,10,16] as well as in biomembranes [17,4]. It is important to stress at

this point that for a pure one-component system in thermal equilibrium, Gibbs’s phase rule

forbids coexistence of phases over a finite temperature range. Such phenomena are,

therefore, strictly non-equilibrium effects.

In addition, the increased thermal fluctuations in the melting transition region and the

resulting membrane heterogeneity have been related to an enhanced compressibility and

elasticity of the bilayer [8] as well as to an increased permeability of water and small ions

[2,11].

The equilibrium lipid fluctuations are dynamic phenomena and an important aspect of their

character is the time scale over which they occur and how various membrane components

affect these times. The lipid melting transition is associated with some interesting and

unusual kinetics. It has been reported [20] that close to the gel-to-fluid transition the lipid

relaxation following an external distortion becomes very slow and the characteristic times

of this kinetics are in the range of seconds. These long relaxation times have been suggested

as being cooperative processes involving a large number of molecules via cluster formation

and cluster melting rather than due to single-molecule effects [20].

In mixed lipid-protein systems it turns out that the function of some incorporated integral

proteins is significantly influenced by the bilayer thickness [2-4,9,12,14,21]. One of the

important elements of the lipid-protein interaction hence involve hydrophobic matching

[13] leading to lipid sorting and lipid selectivity at the protein-lipid interface. This

theoretical concept is illustrated in Figure 6.

Thus, the lipid conformational structure and the lateral organization of the different lipid

components are likely to adjust to the presence of the protein. On the other hand, the lateral

membrane organization (in terms of fluctuating lipid clusters) will be affected by the

presence of proteins and will influence the lateral organization and distribution of proteins

[7]. However, these theoretical considerations need to be tested in experiments.
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pro tein

flu id  lipid s
gel lip ids

Figure 6. Schematic illustration of the principle of protein/lipid hydrophobic

matching. The protein is surrounded by lipids with a similar hydrophobic length.

The thermodynamics of the melting transition can be described approximately in terms of

individual lipid molecules existing in two distinct states [5], gel and fluid. This does not

imply, however, that a membrane exists in only two states. The membrane can exist in a

series of intermediate states which consist of mixtures of phospholipid molecules in the two

different conformations. The membrane melting is a very cooperative process and the large

number of molecules involved implies a principle difficulty for a theoretical description of

such phenomena based on molecular microscopic interaction models. Even in the simple

two-state model there are 2N possible micro-states, where N is the number of lipid

molecules in the system (N ≈ 11). Only for very simplified models it is possible to perform

any analytically exact calculations [15]. The phenomenological Landau-type models have

implicitly built in that they are solved using a self-consistent mean-filed-type calculation.

By nature this type of calculation is very approximate by its suppression of thermal

fluctuations and thus gives at best only qualitative description of the properties of the

membrane in the transition region. The second type of calculations are based on modern

computer simulation techniques which are used to solve the statistical mechanical problems

of systems consisting of many particles. These techniques include Monte Carlo simulation

methods which exploit various types of stochastics sampling methods and  Molecular

Dynamics simulation methods which solve the dynamical equations of motion in a way

which is numerically exact. In the present thesis the Monte Carlo simulation approach was

applied. This numeric technique although time consuming allows to account for the thermal



 7

fluctuations in the lipid membrane at equilibrium and may be considered an experiment on

a well-defined system carried out under completely controlled conditions.

The aim of the present thesis is to investigate both theoretically and experimentally the

interactions of integral proteins with lipid membranes. Since from the heat capacity profile

the whole thermodynamic information about the investigated (homogeneous) system, can,

in principle, be deduced, we performed very precise calorimetric measurements on pure

lipid and mixed lipid-peptide systems. The theoretical analysis is based on the two-state

Ising model, adopted for the lipid melting transition. In order to account properly for the

enthalpy and volume fluctuations which accompany the gel-to-fluid transition we applied

the Monte Carlo simulation method. Within this approach, the heat capacity is calculated

from the enthalpy fluctuations generated during a Monte Carlo simulation. However, the

main disadvantage of the Monte Carlo technique are the very time-consuming calculations.

Therefore, we used a method called histogram method, with which we were able to perform

a fast quantitative comparison between calculated and experimentally measured heat

capacity profiles. This histogram technique allows a quasi-analytical determination of the

heat capacity traces of pure lipid systems and lipid-peptide mixtures. Thus, the unusual

shapes of experimentally measured heat capacity profiles of lipid bilayers incorporating

peptides are analyzed with the aim of resolving peptide aggregation properties. The

predictions of the heat capacity analysis are compared to experimental data obtained with

atomic force microscopy technique.

The thesis is organized as follows:

In Chapter 1, the basic experimental methods used are described in some detail.

Information is given about the model systems and the sample preparation.

Chapter 2 presents a Monte Carlo simulation study on a single-component lipid system. The

two-state Ising model adopted for the lipid melting transition and the MC simulations as

well as the histogram technique for MC data analysis are described here. Since only a small

part of the phase space is explored by a single MC simulation, histograms produced at

different sets of parameters have to be combined to construct a broad histogram of
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degeneracy of states. In this chapter we describe the matching procedure used for this

purpose. Further, the broad histogram was used in order to fit experimental heat capacity

profiles.

In Chapter 3, the two-state Ising model is extended in order to describe a lipid membrane

containing small integral peptides. Considering the case of a constant peptide fraction, the

energy of the system depends on four variables - the number of fluid lipids and the number

of the unlike nearest neighbor contacts, i.e., gel-fluid, gel-peptide and fluid-peptide.

Therefore, a broad four-dimensional histogram has to be constructed for a mixed lipid-

peptide system. This problem is computationally more demanding than that described in

Chapter 2. The four-dimensional histogram is then used for quasi-analytical calculation of

heat capacity profiles in order to compare with DSC traces measured on some model

systems. As a consequence, the peptide aggregation properties in gel and fluid lipid phase

are predicted. These predictions are tested in atomic force microscopy measurements.

Additionally, the simulations demonstrate how the different mixing of peptides in both lipid

phases can induce fluctuations in the membrane plane.

Chapter 4 is devoted to the investigation of the lipid kinetics close to chain-melting

transition. From the decay of the enthalpy fluctuations generated in Monte Carlo

simulations, we calculated relaxation times which display very close relation to the heat

capacity. In order to justify this finding we developed a theory on deriving the rate

constants from the broad histogram of distribution of states. The experimental study of the

lipid relaxation involves specific heat spectroscopy measurements and pressure-calorimetry

measurements. While the first allow only an estimation of the characteristic time-scale of

the decay of the enthalpy fluctuations in lipid dispersions, the latter provide very precise

data which are in very good agreement with the theoretical predictions.

The last part of the present thesis is a general conclusion which summarizes the principal

results and presents some prospects for future work.
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1. Materials and methods

1.1. Differential scanning calorimetry

Differential scanning calorimetry (DSC) is a technique of primary importance for obtaining

information about the thermodynamics of model membranes and biomembranes. It is used

to monitor and characterize changes in physical state in lipid membranes and also to

characterize the perturbations of pure lipids by the interactions with other materials, such as

other lipids, proteins, ions or small hydrophobic molecules. Highly sensitive instruments

allow one to use samples of dilute aqueous suspensions of lipids (e.g. < 1 mg/ml, 1 ml

sample volume). DSC reports the following parameters:

1. Transition midpoint, Tm: where the transition is 50% complete.

2. Transition enthalpy, ΔH: the actual heat required for the entire transition normalized

per mole or per unit weight.

3. Heat capacity, Cp: the amount of heat (per gram or per mole) required to raise the

temperature of the sample by a given temperature increment.

adiabatic shield

reference cell

sample cell

Figure 1.1. Basic construction of a differential scanning calorimeter (DSC).

A differential scanning calorimeter consists of two cells, one containing sample and the

other: an inert reference material, which can be heated at a programmed rate by heaters

controlled to maintain the temperature difference between the cells at zero. If the sample is

a solution or a suspension, the reference material is the corresponding solvent. When a

thermally initiated process takes place in the sample cell, the control system responds by
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increasing or reducing the heat supply to the sample cell so that its temperature is equal to

that of the reference cell. The data output of the calorimeter is the corresponding excess

power, presented as function of the temperature. It is worth noting that a heat evolution in

the sample can only be observed if the thermally induced reaction is kinetically limited as

compared to the heating rate of the scan [11], because a temperature increase shifts the

thermodynamic equilibrium in an endothermic direction.

For our measurements a very sensitive differential scanning calorimeter VP-DSC from

MicroCal (Northhampton/MA, USA) was used. The device records the excess power ΔP,

the time t and the temperature T . Then the excess heat, ΔQ, required for the temperature

change and the heat capacity difference, ΔCP, (at constant pressure p) between the sample

and the reference are computed.

( )Δ Δ Δ Δ
Δ

Q P t dt P t
t

t t

= ′ ′ ≅ ⋅
+

∫ (1.1)

Δ
Δ

Δ

Δ

Δ

Δ

C
Q
T

Q
T

P
T
t

p
p

:=








 ≅ =











∂
∂

(1.2)

where ( )Δ ΔT t  is the scan rate. The two cells are made of tantalum. The calorimeter used

has a wide spectrum of scan rates (0..60 deg/h), a large signal-to-noise ratio and a very

stable base line. The two latter features allowed, in 1997 measurements which were about

ten times better than the published data obtained with other DSCs [12].

The very sensitive and at the same time robust controlling technique has allowed the

construction of a pressure cell, as described in the next section.

1.2. Pressure calorimetry

The pressure cell for our calorimeter was built for studying the pressure dependence of the

phase transition in lipid membranes. Figure 2.1 shows a scheme of the experimental set-up.

High pressure acts on the lipid phase transition only as a temperature shift, e.g. a pressure

of 200 bar shifts the lipid phase transition by about 5 deg. [3]. From the proportionality

relation between volume and enthalpy changes close to the chain-melting transition it can
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be shown that Δ ΔV Hi vol i= γ  for each micro-state i of the membranous system [8]. Then for

the heat capacity measured at pressure p  and temperature T , it follows that

( ) ( )C T C Tp p=
0

* , where ( )T T p vol
* = + ⋅1 Δ γ  and ( )Δp p p= − 0  [3].

N itro g e n  
2 0 0  b a r

P re ssu re  v alv e 1  

P re ssu re  d isp la y
P re ssu re  v alv e 2

sa m p le c a p illa ry

fle x ib le  c a p illa ry

Figure 1.2. Scheme of the pressure cell set-up for the differential scanning

calorimeter VP-DSC. The sample is filled into a capillary, which is then put into the

sample cell of the calorimeter. The pressure valves 1 and 2 serve for rough and fine

pressure adjustment, respectively. Details about the construction are given in [3, 7].

Thus, using the calorimeter as a thermostat, one can drive the sample into or out of the

transition region by the pressure control alone. Then the time dependence of the excess

power, which is required for keeping a constant temperature in the sample cell by heating

or cooling it, was recorded and analyzed. The decay profiles were fitted with one- or two-

exponential functions in order to obtain relaxation rates.

1.3. Atomic Force Microscopy

A scheme of an atomic force microscope is shown in Figure 1.3. The sample is mounted on

a piezo ceramic which can be moved extremely accurately in the x, y and z directions. The

sample is then rastered in the x and y directions under a sharp tip. This tip is mounted at the

free end of a cantilever (as shown in Figure 1.3) onto which a laser beam is focused. The

pressure reducer
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beam is reflected from the back of the cantilever to a set of  photosensitive diodes. These

act to detect any deflection of the laser beam arising from the cantilever moving as the

sample is rastered. A feedback loop then makes the piezo move in the z direction taking the

laser beam back to its original position. In this way the sample is scanned with a constant

force and the resulting z motion of the piezo produces a topographical map of the region

scanned.

Figure 1.3. Scheme of an AFM set-up.

Our samples were imaged in water with a Nanoscope III atomic force microscope (Digital

Instruments, Santa Barbara, CA). Cantilevers with nominal spring constants between 0.06

and 0.32 N/m and oxide-sharpened silicon nitride tips (Digital Instruments) were used in

contact mode. Line scan frequencies were between 2 and 8 Hz. The images are unfiltered

except for slope removal along each scan line to level the image, i.e., since there is always a

drift during an AFM scan, each scanning line has a certain slope which is subtracted in the

image analysis. This is a standard procedure and, in the case of a relatively homogenous

scanning plane, does not have significant influence on the measured heights.
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1.4. Frequency-dependent calorimetry

With the common differential scanning calorimetry method (see Section 1.1) the

temperature of the sample is changed over time t  at a constant rate dT dt  while the

required power ( )dQ t dt  is recorded. This experiment measures the specific heat of the

sample: ( ) ( )dQ t dt C dT dtp= . In many cases, Cp  is time-independent and the experiment

provides the true thermodynamic specific heat. However, structural transitions such as lipid

melting or folding-unfolding processes in proteins involve slow relaxation processes. Thus,

if the scanning rate is too fast, the system no longer adjusts adiabatically to the temperature

changes and the specific heat becomes time dependent. This nonstationary specific heat

describes the enthalpy relaxation of the system and contains information on the mechanism

of structural transitions and intermediate states. In order to study slow relaxation processes

in liquids Birge and Nagel [1,2] proposed the specific heat spectroscopy method (or

frequency-dependent calorimetry method). This technique allows to derive the product of

thermal conductivity and a frequency-dependent specific heat ( )Cp ω , which characterizes

the enthalpy relaxation of the liquid. Figure 1.4 shows the experimental set-up scheme [9].

g las s subs tra te
sa m ple  d ispers ion

p las tic  cuve tte

N i-film

Figure 1.4. Scheme of the frequency-dependent calorimeter. An alternating current

is passed through a thin nickel film (500 Å) evaporated onto a glass substrate. The

film heats the sample at a defined frequency and simultaneously serves as a

thermometer recording the temperature oscillations at the film-sample interface.

Details about the detection electronics are given in [10,13].

In frequency-dependent calorimetry a thin rectangular film is evaporated onto a substrate of

window glass and is immersed into the liquid to be examined. When a sinusoidal current is
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passed through the film, ( )I t I t= 0

1
2

cos ω , a Joulean heat proportional to the square of the

current is produced, which has a component which is time-constant and one that oscillates

with currency ω :

( ) ( )Q t RI t= +
1
2

10
2 cosω (1.3)

This heat flows into both the window glass substrate and the sample. While the constant

source leads to a static temperature gradient across the two bulks, the harmonic one creates

an exponentially damped temperature wave in each of them (real part solution). This result

is obtained by solving the one-dimensional heat diffusion equation with the heat source at

x = 0  and the glass substrate (index 1) and sample (index 2) at x < 0 and x > 0,

respectively:

( ) ( ){ }Δ ΔT x t T e ex
i t k xj, = ℜ =

−
0

4ω π (1.4)

with

( )k i
c

j
pj j

j
= ± +1

2
ω ρ

κ
(1.5)

Here ρ j pjc,  and κ j  denote the mass density, the specific heat and the thermal conductivity,

respectively. The wavelength is given by λ j jk= 1  and varies as 1 ω . The one

dimensional treatment of the problem is justified, if this wavelength is considerably smaller

than the lateral dimensions of the film.

For the temperature oscillations at the nickel film, i.e., x = 0 , one obtains [13]:

( )ΔT
Q

tx t= =
+

⋅ −






0

0

1 2

1
2

1
4, cos

ω ε ε
ω π (1.6)

where ε ρ κj p j j jc=  is the so-called effusivity and Q RI0 0
2=  is the amplitude of the

oscillating heat source. The experiment thus yields the product of specific heat and thermal

conductivity. The heat source can simultaneously serve as a thermometer as the resistance

of the Ni-film depends on the temperature according to ( )R R T= +0 1 α . The latter holds

for small temperature changes. The temperature oscillations thus induce a time-dependent

component in the resistance:
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( )Δ ΔR t R Tx t= =α 0 0, (1.7)

According to Ohm’s law the initial current experiences an additional voltage drop across

the oscillating resistance:

( ) ( ) ( )
( )

Δ ΔU t I t R t
I Q R

t t= ⋅ =
+

⋅ ⋅ −






 + −



















α

ω ε ε
ω

π
ω

π0 0 0

1 2

1
4

3
2 4

1
2 4

cos cos (1.8)

 The latter consists of two components – one oscillating with frequency 3 2ω  and the other

- with ω 2 . Since the ω 2 -component is present even in the absence of temperature

oscillations ( ) ( )I t I t= +








1
2

10 cosω , it is the 3 2ω -component which is measured to get

information about the heat diffusion properties of the substrate and the sample.

The thermal effusivity, ε1 , of the glass substrate is determined in a measurement without

sample, i.e. the heating film is in contact with air. In this case ε2 0≈ , because the density of

air is much smaller than the density of the glass substrate. Thus, for ε1  one obtains

ε
α

ω ω
1

0 0 0

3
2

4
=

⋅ ⋅

















I Q R
U emptyΔ ( ) (1.9)

where ΔU empty
3
2
ω

( )  is the amplitude of the 3 2ω -signal in the measurement without sample.

Generally, ε1  depends on the temperature, but in a small temperature interval it can be

considered as a constant. Then, for the effusivity of the sample one has

ε ε
ω

ω
2 1

3
2

3
2

2

=

















Δ

Δ

U

U

empty( )

(1.10)
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1.5. Sample Preparation

Lipids

The lipids used are described briefly in the table below.

DMPC

677.94 g/mol

1,2-dimyristoyl-sn-glycero-3-phosphocholine

dimyristoylphosphatidylcholine

DPPC

734.05 g/mol

1,2-dipalmitoyl-sn-glycero-3-phosphocholine

dipalmitoylphosphatidylcholine

Table 1.1 Abbreviation, systematic name, molar mass and a common synonym of

the lipids used. Molecular structure of DPPC is given in Figure 1. in the general

introduction. The hydrophobic chains of DMPC are two CH2-groups shorter than

those of DPPC.

The lipids were purchased as powder from Avanti Polar Lipids (Birmingham, AL) and used

without further purification. Vesicles were prepared in a buffer (5 mM Hepes, 1 mM

EDTA, pH 7.5) with lipid concentration of about 10 mM. For the kinetic measurements,

however, dispersions with lipid concentration of about 100 mM were used, to get better

signal-to-noise ratio

Vesicle dispersions

Multilamellar vesicles (MLV) form spontaneously by dispersing the lipid in buffer and

gentle shaking above melting temperature. Small unilamellar vesicles (SUV) were prepared

by ultrasonication with 50 Watts for several minutes using a Model W185 sonifier from

Heat System-Ultrasonics (Plainview, N.Y.). Since SUVs are unstable below melting

temperature, the respective calorimetric scans were performed in the down scan mode

(cooling from high to low temperatures). Gradually, small vesicles spontaneously fuse into

large unilamellar vesicles (LUVs). The size-distribution of SUVs obtained in light-

scattering measurements is given in Figure 1.5. To prepare LUVs, SUVs were stored in a

refrigerator at 4°C for about two weeks.
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Another way to prepare large unilamellar vesicles is the extrusion method. In this case a

dispersion of MLVs is pressed several times through a filter with a pore size of about 100

nm. Since the MLVs are too large to go through (diameter about 500 nm), they are

destroyed and form LUVs.

0 50 100 150 200

0,0

0,1

0,2

0,3

nu
m

be
r [

%
]

vesicle diamter [nm]

Figure 1.5. Normalized size-distribution of small unilamellar vesicles of DPPC as

obtained in dynamic light-scattering experiments♣. The measurements are

performed at temperature ( )mTCT >°= 50  immediately after sonification. Mean

diameter of SUV 25 nm. The second peak (with intensity < 2%) is due to LUV –

mean diameter 140 nm.

Gramicidin A

The peptide antibiotic gramicidin A is one of the best characterized and most extensively

studied membrane-associated peptides. It is a linear hydrophobic polypeptide with the

following structure

HCO-L-Val1-Gly2-L-Ala3-D-Leu4-Ala5-D-Val6-L-Val7-D-Val8-L-Trp9-

D-Leu10-L-Trp11-D-Leu12-L-Trp13-D-Leu14-L-Trp15-NHCH2CH2OH

Gramicidin can adopt a variety of conformations. For us, the channel forming conformation

- single-stranded N-N terminal helical dimmer (see the scheme) - is important as it is

                                                          
♣ The measurements were performed with the friendly help of Dr. Gerold Endert, Dept. “Phospholipids”.
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assumed to be stable in lipid bilayers [4,9]. In X-ray diffraction studies, the inner and the

outer diameter of the channel were determined as approximately 5 Å and 15 Å,

respectively; the total length as ~ 30 Å  [6]. (Different studies show, however, slightly

varying channel dimensions.)

All hydrophobic side chains are on the outside of the helix, and

hydrophilic peptide backbone carbonyls line the pore. Because

of its availability, gramicidin A has frequently been used as a

„model membrane protein“ for studying the perturbing

influence of membrane proteins on lipids. Because of its lipid

structure modulating activity, the peptide induces membrane

fusion, causes packing defects in membranes and enhances

lipid transbilayer movement [9].

Alamethicin

Alamethicin is a 20-residue peptide antibiotic produced by the fungus Trichoderma viride,

that forms voltage-gated channels in membranes [5]. The alamethicin sequence given below

includes unusual residues, α-aminobutyric acid (Aib) and L-phenylalaninol (Phl).

Ac-Aib-Pro-Aib-Ala-Gln-Aib-Val-Aib-

Gly-Leu-Aib-Pro-Val-Aib-Aib-Glu-Glu-Phl

The dependence of the conductance of planar bilayers modified

by alamethicin on the peptide concentration suggests that each

channel contains at least 6-11 molecules. The channel length is

about 32 Å [6], which is sufficient to extend across the nonpolar

parts of the bilayer. The cartoon on the left presents a schematic

structure of the alamethicin pore, as modeled by [5].
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Lipid - Peptide Mixtures

Gramicidin A was obtained as powder from Sigma (St. Luis, MO). Alamethicin (as

powder) was provided by ICN Biochemicals Inc. (Aurora, OH).

For preparing lipid-peptide mixtures, appropriate amounts of both substances were

weighted and dissolved in a 2:1 chloroform/methanol mixture [9]. The solvent was

evaporated by nitrogen gas flow. To ensure complete removal of the solvent the sample was

dried under vacuum overnight. The mixed powder was then resuspended in buffer, and the

desired vesicle dispersion was prepared as described above.

Samples required for the Atomic Force Microscopy measurements were prepared as

follows [14]: Mixed lipid-peptide multilamellar vesicles were sonicated as described above

to form small unilamellar vesicles. A small droplet of the vesicle solution was applied to a

freshly cleaved mica surface at room temperature. Since the small unilamellar vesicles are

not stable, they fuse and form a flat bilayer segment on the mica surface. Then, the excess

vesicles were washed away from the membrane surface using a moderate salt solution like

150 mM NaCl. The latter is said to be very effective in removing excess vesicles [14]. With

non-charged membranes (like DPPC and DMPC), however, no significant difference in

effectiveness was noticed between the use of buffer, water or salt solution. The AFM

experiments were performed in water.
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2. Ising model of the lipid membrane and Monte Carlo

simulations

2.1 Introduction

Besides the use of mean field theories for describing lipid melting [29,18,36] a common

approach consists of the application of statistical thermodynamics models [30]. These

models usually reduce the wealth of states of individual lipids into subensembles with given

average energies and entropies. The distribution of states is then explored with Monte Carlo

(MC) simulations. The advantage of these models over mean-field approaches is that they

provide insight into the magnitude of enthalpy or volume fluctuations [19], and into domain

formation [32,1,5] within the lipid membrane plane. The obvious disadvantage is that the

Monte Carlo like simulations used to evaluate the models produce no analytical solutions

and are partially time-consuming.

A widely used lattice model is the Pink’s multi-state model of the chain-melting phase

transition [35,4]. This model is formulated in terms of ten conformational states, of which

one is the fully ordered all-trans conformation and one is a highly excited liquid crystalline

state. The eight remaining states are intermediate chain states which may be viewed as low-

energy excitation of the all-trans state. These eight states and the all-trans state are

characteristic of the gel phase. In the Pink model one considers van der Waals interactions

as well as membrane lateral pressure and interfacial energy. This description therefore

requires a number of parameters and makes some important predictions on the molecular

level [33,31]. However, the physics that lead to domain formation and that is necessary to

rationalize the heat capacity profiles is already contained in the much simpler two-state

model with only gel and fluid states, also referred as a Doniach-model [7]. It was shown

that this model is able to describe the lipid phase transition  adequately [38,39,20,21],

using one single interfacial energy term, which is the only parameter required for the

calculation that is not directly given by the experiment.

The main motivation for employing Monte Carlo simulations is that in complex systems the

degeneracy of isoenergetic states cannot be calculated analytically and hence has to be

explored numerically. A more efficient way for using the information from Monte Carlo
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simulations presents the histogram method [8]. Within this approach, the degeneracy of

states is sampled instead of time averages during the simulation. The degeneracy does not

depend on the parameters of the simulation and thus can be used to calculate quasi-

analytically mean values of various physical observables. This concept was widely applied

to reduce computer time, for example to describe transitions in two-dimensional systems.

One problem with this kind of analysis is that usually in a single Monte Carlo simulation

only a small part of the phase space is explored. This limitation of the histogram method

however can be overcome by combining histograms produced by simulations, which were

performed at different sets of parameters [9]. Another way is to sample histograms close to

the critical point where the fluctuations are especially large [22].

In this chapter, we describe in some detail the two-state model adopted for the lipid melting

transition and the MC simulations performed. The matching procedure used to combine

histograms produced by simulations at different sets of parameter is explained. Further, the

constructed broad histogram was used to fit experimental heat capacity profiles. The

heterogeneities in the membrane plane resulting from the large thermal fluctuations near the

chain-melting transition are also discussed.

2.2. Two-state model for the gel-to-fluid transition

The lipid transition shell be described assuming that only two states, gel and fluid, are

available for each individual lipid molecule. The lipids form a triangular lattice in which

each molecule is surrounded by six nearest neighbors, that is, the coordination number is

z = 6 .

In our computer model the lipid monolayer is represented by a 31 31×  square matrix of

n = 961 elements. Each matrix element refers to a lattice site (lipid molecule) of the

monolayer. In order to minimize the edge effects, periodic boundary conditions have been

gel fluid
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utilized. Thus the lipid matrix corresponds to a torus (or donut) instead of a sphere. Since

the model membrane systems are mostly vesicles (spheres), spherical boundary conditions

[16] would be more appropriate. In this case, the two-dimensional membrane would be

embedded in the surface of a sphere without introducing any physical boundaries. When

spherical boundary conditions are applied, however, one must use a continuum model of

the membrane because, in general, regular lattices (with a given coordination number)

cannot be defined on the surface of a sphere.

Lipid-lipid interactions are taken into account through a nearest neighbor interaction free

energy, ε . The free energy of each individual lipid molecule consists of two components,

which are the intrinsic free energy Gi (the index i stands for g (gel) or f (fluid)) of the chain

configuration and the sum over the nearest neighbor interaction free energies εij . As long as

the half-width of the gel-to-fluid transition is small, it is a reasonable simplification to

assume that the nearest neighbor interactions εij are purely enthalpic [21], i.e. temperature

independent. Then the total free energy of the lipid matrix is the sum over all n  lipids:

G n G n G n n ng g f f gg gg ff ff gf gf= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ε ε ε (2.1)

where in  is the number of lipids in state i and nij  is the number of nearest neighbor

interactions of lipids in states i and j.

In the case of periodic boundary conditions the following two relationships exist between

ni  and nij  values for any matrix configuration:

( )
( )

n z n n

n z n n

ff f gf

gg g gf

= ⋅ −

= ⋅ −

2

2
(2.2)

where z ( )= 6  is the coordination number. Then the free energy of the system can be

rewritten as

( )G n G n H T S ng f gf gf= ⋅ + ⋅ − ⋅ + ⋅Δ Δ ω (2.3)

where ( ) ( )ΔH H z H zf ff g gg= + ⋅ − + ⋅ε ε2 2 ,  ( )ΔS S Sf g= −  and  ( )ω ε ε εgf gf gg ff= − + 2.

The system reaches its energy minimum when all the lipids are in the gel state. Then the

excess free energy of the lipid system is given by

( )Δ Δ ΔG G n G n H T S ng f gf gf= − ⋅ = ⋅ − ⋅ + ⋅ω (2.4)
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Formally, the model described in Equation (2.4) resembles an Ising model in a field, where

( )Δ ΔH T S− ⋅  acts as the temperature dependent field. Therefore, we will refer further to

the model as to a two-state Ising model.

The magnitude of ωgf  defines the cooperativity of the transition. The critical point for an

infinitely large triangular lattice is given by [10]

( )
k N T
z
B A c

c

⋅ ⋅

⋅
=

ω 2
0 6068256. (2.5)

where Tc  is the critical temperature, ωc  is the critical cooperativity (in [ ]cal mol/ ) and

( )z = 6  is the coordination number. If we choose T T Kc m= = 310 3. , which is the melting

temperature in the case of small unilamellar vesicles of DPPC, as the (bulk) critical value of

the cooperativity parameter we obtain ωc cal mol= 338 / .

When ωgf = 0 , the transition is non-cooperative; each lipid melts independently, producing

a very broad transition. If ω ωgf c≥ , the melting is an all-or-none transition.

In a two-state model, the excess free energy Δ Δ ΔG H T Sm= − ⋅   is equal to zero at the

transition mid-point, Tm, and hence Δ ΔS H Tm=  [7]. This means that in our two-state

model we have in fact three parameters to determine - the enthalpy ΔH , the transition

temperature  Tm  and the cooperativity parameter ωgf . The enthalpy ΔH  and the mid-point

of the gel-to-fluid transition Tm  can be determined directly from a calorimetric experiment -

the enthalpy is the integral of the complete heat capacity profile over the temperature, and

the transition temperature is the position of the heat capacity maximum. The cooperativity

parameter ωgf  is obtained by a comparison of the simulated results with the experimental

transition half width. In [38,39] it was shown that the qualitative and the quantitative

behavior of the heat capacity profile of DPPC small unilamellar vesicles (SUVs) can be

described in that simple way.
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2.3. Fluctuations and heat capacity

By applying Monte Carlo methods one can generate thermal fluctuations of the lipid

monolayer. Then, using the fluctuation-dissipation theorem from statistical mechanics [24]

C
H
T

H H
RTp

p

=








 =

−∂
∂

2 2

2 (2.6)

one calculates numerically the heat capacity of the system. The mean values H 2  and

H  are averaged over the time (i.e. over many MC cycles). An MC cycle simulates the

thermal fluctuations of the monolayer within a very short time interval. The points within

the lattice are picked at random and then its state is switched according to the statistical

mechanical probability of such a change. We apply here a standard Galuber algorithm [12]

whose elementary steps are briefly described as follows:

• Pick at random a lattice point.

• Change its state.

• Calculate the Gibbs energy difference between the new and the old matrix configuration

( )δ ωG H T S ngf gf= ± − ⋅ + ⋅Δ Δ Δ

where +/- is for change gel-fluid/fluid-gel and Δngf  is the increase of the unlike nearest

neighbor contacts.

• Calculate the probability for the change

( )
( )P

K T
K T

=
+1

, with statistical weights  ( )K T
G

RT
= −







exp

δ

• Generate a random number RAN and compare it with the calculated probability.

• Make a decision (YES or NO) for the change.

RAN P YES
RAN P NO

≤

>

The scheme below illustrates the change in lipid state during a single MC step. The gel-

state and the fluid-state lipids are depicted by dark and light gray, respectively.
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A representative MC-snapshot of the lipid matrix is shown in Figure 2.1.

 

Figure 2.1. Typical Monte Carlo snapshot of a lipid matrix at the melting point for

ωgf cal mol= 300 / . Dark dots represent gel lipids, light gray dots represent fluid

lipids. A 31· 31 matrix with periodic boundary conditions is shown. The unit cell of

the simulation is indicated by the rhombic box in the center of the picture.

It is evident that at this value of the cooperativity parameter the correlation length may

become very large and even comparable with the size of the computer matrix. Thus, finite-

size effects must be accounted. Nevertheless, it is important to note that a large correlation

length does not necessarily imply that the system is close to a critical point. Our results are

based on calculations on a 31·31 lattice. Calculations on a larger lattice 61·61 for

ωgf cal mol≤ 325 /  were found to give the same results within statistical accuracy, thus

demonstrating that finite-size effects in this regime are negligible.

The Monte Carlo steps are repeated many times and, for each matrix configuration

generated, the enthalpy is computed: ( )H n H T S nf gf gf= ⋅ − ⋅ + ⋅Δ Δ ω . Then the average

values H  and H 2  are calculated in order to determine the heat capacity at given

( )δ ωG H T S gf= − ⋅ + ⋅Δ Δ 2

Δngf = 2
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temperature. Figure 2.2 demonstrates the significant effect of the cooperativity parameter

on the lipid  melting transition.
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Figure 2.2. Calculated heat capacity profiles of a pure lipid membrane at two

different values for the cooperativity parameter ωgf  (ωgf cal mol= 300 /  and

ωgf cal mol= 320 / ), ΔH cal mol= 8700 / , and T Km = 310 3. . Circles: Heat

capacities obtained directly from a MC simulation. Open circles:

ωgf cal mol= 300 / ; Solid circles: ωgf cal mol= 320 / . Lines: Respective

calculations, using the histogram method (Section 2.4). The calculations were

performed using a 31·31 matrix with periodic boundary conditions.

It is evident that increasing the interfacial free energy parameter increases the cooperativity

of the transition, resulting in both a decreasing transition half-width and an increasing heat

capacity maximum. Even small changes in ωgf  influence drastically the phase transition -

in the demonstrated case only 6.7% increase of the cooperativity parameter decreases the

transition half width more than 3 times and increases the heat capacity maximum about 3

times.

This example demonstrates also the disadvantage of the applied method, that means that it

is very time-consuming. One needs to run a long simulation for each T  in order to be able

to calculate accurately the mean values H 2  and H . Since ωgf  is an unknown parameter

in the model and has to be obtained by comparison between the experimental heat capacity

profile and the simulated one, the procedure described above is not very efficient.
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2.4. Histogram method for MC data analysis

A more efficient approach for analysis of the MC data was proposed by [8]. The method

makes use of the fact that for long simulation times the mean values obtained by time and

by  ensemble averaging are equal for ergodic systems [18]. Our main aim is to calculate

heat capacity profiles, in order to compare them with experiment. Therefore, we only

consider physical observables which in a micro-state (matrix configuration) are expressed

as functions of the number of fluid lipids, nf , and the number of unlike nearest-neighbor

contacts, ngf . The latter are also the variables necessary to describe the Gibbs free energy

of the lipid system within the framework of the two-sate Ising model (Equation (2.4)).

Thus, instead of calculating the mean value of a certain physical observable X  over the

time, we will average it over all matrix configurations at a fixed set of parameters

( )gfmTHT ωζ ,,,Δ= , using the statistical thermodynamic expression:

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

X T X n n P n n

X n n n n
n H T S n

RT

n n
n H T S n

RT

f gf f gf
nn

f gf f gf
f gf gf

nn

f gf
f gf gf

nn

gff

gff

gff

= ⋅

=

⋅ ⋅ −
⋅ − ⋅ + ⋅









⋅ −
⋅ − ⋅ + ⋅









∑∑

∑∑

∑∑

, , ,

, , exp

, exp

ζ

ω

ω

Ω
Δ Δ

Ω
Δ Δ

(2.7)

where ( )P n nf gfζ , ,  is the probability for a given set of parameters, ζ , of finding a lipid

matrix  configuration with a number of lipids in the fluid state, n f , and of gel-fluid

contacts, ngf , and ( )Ω n nf gf,  is the number of independent ways of generating such a

configuration (i.e., the degeneracy).  Now, the crucial point is that the degeneracy

( )Ω n nf gf,  does not depend on the set of parameters, ζ , of the MC simulation. It is simply a

function which gives information about the number of matrix configurations with n f   fluid

lipids and number ngf  of the unlike nearest neighbor contacts. Thus, ( )Ω n nf gf,  is strongly

dependent on the size of the computer matrix♣. For large systems (in our case 31 31⋅

elements) the degeneracy cannot be determined analytically. But instead of calculating

                                                          
♣ The matrix size, as a parameter of the degeneracy function, will be omitted for clarity.
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average values of physical observables only, one can use the MC simulation to sample

( )Ω n nf gf, . Once ( )Ω n nf gf,  is known, the mean value of an observable X   can be

derived for any given set of parameters ζ  by using Equation (2.7) above without

performing a new MC simulation (!). This is the essence of the „histogram method of MC

data analysis“ [8].

2.5. Construction of a broad monolayer histogram

Each MC simulation produces a probability distribution of states

( )
( ) ( )( )
( ) ( )( )

P n n
n n G n n R T

n n G n n R T
f gf

f gf f gf

f gf f gf
n nf gf

, ,
, exp , ,

, exp , ,
,

ζ
ζ

ζ
=

⋅ − ⋅

⋅ − ⋅∑

Ω Δ

Ω Δ
(2.8)

which can be rastered into bins, where each bin contains the sum of the probabilities in a

segment of the phase space. Since in the two-dimensional model the distribution function

( )Ω n nf gf,  depends on two variables, fn  and gfn , the information of the probability

distribution is put into a two-dimensional histogram with 100⋅200 bin. Δ Δf ngf= =0 01.  has

been chosen as the size of a single bin, where, for simplicity, we use as variables the

fraction of the fluid lipids, f n nf= , and the mean number of unlike near neighbor

contacts per lipid, n n ngf gf= . The maximum value for ngf  is 2, i.e., 0 2≤ ≤ngf . This

maximum is reached when f =05.  and the matrix places are occupied alternately with gel

and fluid lipids. In practice, such a configuration is generated only when the transition is

not cooperative at all, ωgf = 0 , and in systems of relatively small size. In our simulations,

such a configuration was never generated on a 31⋅31 matrix.

The size of the bin determines the accuracy of the description of the degeneracy function.

But a smaller bin-size leads to a large number of bins. More MC simulations are required

and, accordingly, more CPU time, for exploring the whole phase space. Therefore, the

decision concerning the bin size is a kind of compromise. However, we tested the accuracy

of the raster by comparison between heat capacities calculated directly by running MC

simulation (Equation 2.6) and determined from the collected histogram.
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A histogram obtained by running a MC simulation will be called „measured histogram“.

The measured histogram may be used to determine the probability distribution at any other

set of parameters ζ* :

( )
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( ) ( ) ( )
P n n

P n n
G n n

RT
G n n

RT

P n n
G n n

RT
G n n

RT

f gf

f gf
f gf f gf

f gf
f gf f gf

nn gff

* *

*

*

*

*

, ,

, , exp
, , , ,

, , exp
, , , ,

ζ

ζ
ζ ζ

ζ
ζ ζ

=

⋅ −














⋅ −












∑∑

Δ Δ

Δ Δ
(2.9)

It is evident that the probability distribution ( )P n nf gf
* *, ,ζ  can only be used to calculate

thermodynamic functions if the measured histogram, ( )P n nf gf, ,ζ , covers most of the

available (!) phase space. Because of the finite Monte Carlo sampling it is impossible to

cover the whole configuration space ( )n nf gf,  by a single histogram. Figure 2.3 shows a

representative probability distribution of states for a monolayer at the heat capacity

maximum.
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Figure 2.3. Histogram of the distribution of states of a monolayer at the mid-point

of the gel-to-fluid transition, mTT = , for ωgf cal mol= 310 / . The maximum is at

f =05. .
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The statistics of MC-sampling is good, close to the distribution maximum. However, this is

not the case in the outer wings of the distribution since there are only a small number of

events generated. Thus, the size of the original histogram limits the range to which

Equation (2.9) is applicable. The accuracy of this procedure, however, can be significantly

improved when histograms obtained for various sets of parameters, ζ*, are merged into one

large histogram [9,3]. In the present work this is done in the following manner:

Let us call the normalized histogram ( )P n nf gf, ,ζ  obtained at a set of parameters ζ ,

primary histogram, and the normalized histogram ( )P n nf gf
* *, ,ζ  measured at parameters

ζ * , secondary histogram. For the matching procedure it is necessary that the two

histograms have a good overlap.

The part of the overlapping region, M2d, where the secondary distribution has better

statistics than the primary one, is defined as the part of the phase space where

( ) ( )P n n P n nf gf f gf
* *, , , ,ζ ζ> for { }n n Mf gf

d, ∈ 2

The secondary distribution is then recalculated (Equation 2.9) using the parameters of the

primary one, ζ ζ* → .

( ) ( )P n n P n nf gf f gf
* * *, , ~ , ,ζ ζ→

According to the Equation (2.9), the recalculated histogram is also normalized. A scaling

ratio is determined in the following way:

( )
{ }
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f gf
n n M

f gf
n n M

f gf
d

f gf
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∑
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,
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Then the primary histogram is improved and extended as follows:

1)  if { }n n Mf gf
d, ∈ 2 , then ( ) ( )P n n r P n nf gf f gf, , ~ , ,*ζ ζ= ⋅

2)  if { }n n Mf gf
d, ∉ 2  and
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2.1) if ( ) ( )P n n P n nf gf f gf
* *, , , ,ζ ζ> , then ( ) ( )P n n r P n nf gf f gf, , ~ , ,*ζ ζ= ⋅

2.2) if ( ) ( )P n n P n nf gf f gf
* *, , , ,ζ ζ< , then ( )P n nf gf, ,ζ  does not change.

A normalization of the extended histogram follows.

Step 1) here implies that the tails of the primary histogram are replaced with more accurate

parts from the secondary histogram. Further, the accurate rest of the secondary histogram is

used to extend the primary distribution even outside the overlapping region - step 2.1. This

latter step differs from the matching method proposed in [3] where only 1) and 2.2) were

applied.

The matching method, presented here, is very similar to the „multistage sampling“

technique of Valleau and Card [40], who considered overlapping energy distributions in the

calculation of the free energy of the system of hard spheres with Coulombic forces.

The combination of many histograms into one is shown in Figure 2.4 (left hand panel) for

12 histograms (obtained for a fixed value for ωgf  at different temperatures) and for 84

histograms (obtained for a general set of different temperatures, T , and cooperativity

parameters, ωgf ) in Figure 2.4 (right hand panel). The outer limits of the histograms show

the part of the phase space explored by the respective MC simulation. As will be

demonstrated below, the broad histogram constructed in that way covers all the relevant

phase space necessary to describe the melting transition in lipid dispersions.

The broad histogram was obtained combining the distributions sampled at the following

parameters: { }molcalKTmolcalH gfm /325,310,300,290,280,270,260,3.310,/8700 ∈==Δ ω

and { }T T T T T T T Tm m m m m m m∈ ± ± ± ± ± ±, . , . , . , . , . , .05 15 2 5 35 4 5 55 . At the melting temperature

the histograms were sampled over 3·106 MC cycles and in the remaining cases - over 106

MC cycles (each MC cycle is a complete random walk through the whole matrix, i.e., each

lipid in the matrix was picked once).
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Figure 2.4. Top view of histograms, used for construction of the broad histogram.

Left: Histograms at various temperatures, ωgf cal mol= 300 / . Right: All measured

distributions used for the construction of the broad histogram (gray lines). The lines

enclose the parts of the phase space explored by the respective MC simulations.

Only events are accounted which occur with probability > 10-5. Note the good

overlap between neighboring histograms (on the left). It is essential for the success

of the matching procedure.

From this general histogram the individual histograms for each fixed set of parameters, ζ,

can be obtained. Figure 2.5 shows the effect of the temperature changes close to the melting

point (fixed ωgf ) on the histograms. The distribution maximum moves to larger values of

n f  with increasing temperature because lipids are melting.

Histograms obtained at the heat capacity maximum, but with different values for the

cooperativity parameter, ωgf , are presented in Figure 2.6. Upon increase in ωgf  the

histogram undergoes a change from a profile with Gaussian cross-section to a histogram

with two maxima. While the upper histogram indicates that the transition is continuous, the

lower one corresponds to a first order like behavior where two membrane states may

coexist [28]. The center panel of Figure 2.6 shows a monolayer close to its critical point.
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Figure 2.5. Surface (left) and contour (right) plot of the probability distributions of

states for ωgf cal mol= 310 / . Top: below Tm ; Center: at Tm ; Bottom: above Tm .
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Figure 2.6. Histograms of the distribution of states at different cooperativities

(ωgf cal mol= 300 / ,ωgf cal mol= 325 /  and ωgf cal mol= 340 / ) at the melting

temperature, Tm . The top histogram represents the non-first order transition, the

center histogram corresponds to a situation close to the critical point and the bottom

histogram shows a first order-like behavior. The histogram has been obtained from a

MC simulation performed on a 31·31 matrix.

ωgf cal mol=300 /

ωgf cal mol=325 /

ωgf cal mol=340 /



38

It is important to note that since the degeneracy ( )Ω n nf gf,  depends on the system size, the

calculated histograms are also dependent on the size of the computer matrix. The latter is of

finite size which leads to a finite width of the maxima in the histogram. When the

distribution of states displays two maxima, the heat capacity determined by the MC

simulation becomes size-dependent [28]. According to [28], the simulated system

undergoes a first-order phase transition when the barrier between the two maxima

decreases with system size, for a second-order phase transition it remains constant and if

there is no phase transition, the barrier increases with increasing system size.

2.6. Fit of the measured heat capacity profiles

The constructed broad histogram can be used to calculate heat capacity profiles quasi-

analytically♦. In Figure 2.2 (above) both heat capacity profiles calculated from the broad

histogram and from a direct MC simulation are compared. The good agreement between the

two kinds of calculations suggests that the broad histogram constructed in that way is

accurate enough to be used for determination of heat capacity profiles without running a

MC simulation for each set of parameters. In particular, the histogram method can be

applied to fit experimental DSC profiles in order to determine the value of the cooperativity

parameter.

Neglecting curvature effects, one may assume that the lipid bilayer consists of two

uncoupled monolayers (meaning that each monolayer may explore the phase space without

any correlation with the other monolayer). Under these conditions the monolayer histogram

technique can be used to generate quasi-analytical fits for experimentally obtained heat

capacity profiles (Figure 2.7). The three parameters entering Equation (2.9), ( )ΔH Tm gf, ,ω ,

can be determined from the integrated heat capacity, the melting point and the transition

half width. In Figure 2.7, this has been done for three different preparations of dipalmitoyl

phosphatidylcholine (DPPC) vesicles. When dispersed in water, DPPC spontaneously

forms multilamellar vesicles (MLV) in the size range of up to 1000 nm (Figure 2.7 left).

These vesicles can be transformed into small unilamellar vesicles (SUV) of approximately

                                                          
♦ Meaning that the histogram provides numbers for an analytical function for the heat capacity.
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20 nm* radius by ultrasonification (Figure 2.7 right hand side). Since SUVs are metastable,

they slowly fuse into large unilamellar vesicles (LUVs) of a diameter of approximately 100

nm* (Figure 2.7 - center). The three vesicle preparations display very different transition

cooperativities. MLVs display a transition half-width of less than 0.1 deg, whereas LUVs

show 1 deg and SUVs 2-3 deg half-width. The second peak in the heat capacity profile of

SUVs stems from LUVs formed by some spontaneous fusion events (c.f. center trace). Also

shown in Figure 2.7 are fits to the curves using the histogram technique. The input

parameters into the calculation are the experimental values for the melting enthalpy, ΔH ,

and the transition temperature, Tm .

Figure 2.7. Fits of experimental heat capacity profiles of dipalmitoyl

phosphatidylcholine (DPPC) vesicles from different preparations. Left: MLV,

Center: LUV, Right: SUV. The shaded area represents a residual fraction of LUV in

the SUV-preparation. Note the different scaling in the temperature axes. The MLV

transition is very cooperative with a half-width of less then 0.1 deg. Fitting

parameters are given in the text.

                                                          
* See Figure 1.5 in Chapter 1.

In spite of the fact that the three different vesicle preparations display heat capacity traces

of different shapes, the enthalpies used for the fitting were the same (ΔH cal mol= 8700 / ).

To obtain calculated profiles similar to the experimental curves we mainly adjusted the
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cooperative parameter, ωgf . For MLV we used ωgf cal mol= 377 / , for LUV we used

297 5. /cal mol  and for SUV 272cal mol/ . It can be seen that the unlike nearest neighbor

contributions are relatively small (about 0 5. kT  per interaction) and that relatively small

changes in this parameter may significantly influence the shape of the heat capacity

profiles. The value for MLV (Figure 2.7 – left hand side)  corresponds to a first order like

transition, whereas the values for LUV and SUV rather correspond to a continuous

transition (compare to Figure 2.6). The latter supports the general notion that lipid melting

transitions are generally close to the critical point.

The outer monolayer of the smallest vesicles (SUVs) contains about 2000 molecules, i.e.

more than twice the number of lipid molecules in the simulated system. Thus, if finite-size

effects are significant, how do the fit-values, ωgf , change with increasing system size? We

mentioned already that for ωgf cal mol≤ 325 / , i.e., when the probability distribution of

states displays only one maximum, no finite-size effects on the values of the calculated heat

capacities are expected. In Figure 2.8 the fits calculated form the histogram (generated on a

31·31 matrix) are compared to heat capacity profiles calculated by running MC simulations

for each temperature on a 61·61 matrix.
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Figure 2.8. Heat capacity profiles calculated on an L×L hexagonal lattice. Lines:

L=31 (histogram results); Open triangles: L=61 (results obtained by running a MC

simulation for each temperature). The calculations were performed with the same

parameters used to fit DPPC vesicle dispersions. Left: MLV; Center: LUV; Right:

SUV.
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It is evident that for the fit parameters in the case of SUV (Figure 2.8 - right hand side) and

LUV (Figure 2.8 - center), the 31·31 lattice represents the thermodynamic limit. However,

in the case of MLV the exact number of ωgf  is obviously finite-size dependent. Larger

matrices would yield a more accurate value for this case [39].

2.7. Discussion

Let us concentrate for a while on the importance of cluster formation in the lipid system.

Figure 2.9 shows representative lipid configurations obtained from Monte Carlo

simulations for temperatures below, at, and above the temperature corresponding to the

mid-point of the chain-melting transition.

As shown, the thermal fluctuations give rise to the appearance of clusters of various sizes

which are composed essentially of lipids in a single state (either gel or fluid). As the

temperature changes towards the mid-point of the transition, the clusters composed of

lipids in the minority state grow in size at the expense of the majority state, achieving their

maximum size at the transition mid-point. The tendency to domain# formation results from

the unfavorable interfacial energy between the gel and the fluid lipid states and becomes

increasingly more pronounced as the interfacial energy increases and the transition becomes

more competitive. On the other hand, the domain surface is complex, because the increased

entropy of a more extended interface is energetically favorable. Thus, the unfavorable

interfacial free energy (assumed here to be totally enthalpic, i.e. temperature independent)

and the favorable entropy of an extended interface balance each other in a temperature-

dependent manner. However, the higher the value of the enthalpic parameter ωgf , the larger

the average domain size and the shorter the overall domain interface become.

                                                          
# Should not be confounded with the coexistence of two phases at a first-order phase transition. The
heterogeneities we describe, result from the thermal fluctuations at equilibrium.
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T = Tm - 2 T = Tm T = Tm + 2

   

Figure 2.9. Monte Carlo snapshots at different temperatures for ωgf cal mol= 315 /

(left: below Tm , center: at Tm  and  right: above Tm ). Monte Carlo simulations on a

31·31 matrix. The unit cell of the simulation is indicated by the rhombic box in the

center of each picture.

A question arises: is it possible to detect membrane heterogeneity on a macro-scale? Indeed

strong fluctuations develop on every scale, from molecules to the entire system, close to the

critical point. Figure 2.10 shows domain formation in DMPC and DPPC monolayers  close

to their critical point [34].

Figure 2.10. Images of (a) DMPC (25×25 µm2) and (b) DPPC (20×20 µm2)

monolayers at their respective critical points. The monolayers have been transferred

from an air-water interface to solid mica support and imaged by atomic force

microscopy as a height difference. The height difference between the light and dark

areas is about 5 Å (from [34]).
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In single lipid monolayers domain coexistence has also been shown by fluorescence

microscopy [13,14]. In the case of two-component lipid mixtures the direct visualization of

the existence of coexisting lipid phases was detected by confocal fluorescence microscopy

on giant unilamellar vesicles (GUV) [27] (Figure 2.11).

Figure 2.11. Visualization of phase separation in the binary lipid mixture of

dilauroyl and dipalmitoyl phosphatidylcholine, DLPC/DPPC=0.2/0.8. The dark gel

domains (DiI-C20 fluorescent probe) form a network on the vesicle surface,

enclosing small islands of light fluid phase (Bodipy-PC fluorescent probe) (from

[27]).

The strong thermal fluctuations in lipid membranes near their main phase transition may be

linked to a variety of membrane functions such as passive permeability of small ions [2],

enzyme and protein activity and protein binding [23]. Biological membranes contain many

different lipid species that are probably organized heterogeneously in the form of domains

or „rafts“ [37] in the membrane plane.

Additionally, it should be noted that mechanical properties of the lipid membrane, like

lateral compressibility and bending modulus, can also be obtained from the MC simulations

for the two-state model. Using the experimentally established proportionality between the

enthalpy and volume fluctuations close to the chain melting transition, one can derive

simple relations between volume and area compressibilities and the heat capacity. The

compressibility and elasticity display pronounced maxima at the phase transition, which
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can also be related to pronounced minima of the sound velocity in the lipid transition range

[19,22].

As demonstrated above (Figure 2.2), the cooperativity parameter influences the heat

capacity profile significantly. This, together with the fact that the MC simulations are

basically time-consuming, makes a real quantitative comparison between the MC

simulation results and experimental heat capacities feasible only by applying the histogram

method. However, in [38] the unknown cooperativity parameter is determined without

using the histogram technique, but simply by calculating the average values over the time.

Nevertheless, it is worth noting that such a procedure is very time consuming.

The histogram method of analyzing simulation data has a long history [see e.g. Ref.18 in

28]. This technique saves much CPU time, thus allowing quasi-analytical calculations.

However, these calculations are correct only when the two sets of parameters of both

measured and calculated histograms do not differ too much. For the determination of

observables for a general set of parameters one requires a broad histogram, which covers

most of the available phase space. This can be done by several methods: One can obtain the

basic histogram at a critical point where fluctuations are large [22]. One can also combine

many histograms obtained for different sets of parameters into one broad histogram by

using reweighting and matching techniques [40,3,9]. An alternative approach leading to a

broad histogram using a MC procedure different from the Metropolis algorithm was

described by [6,41]. The multiple histogram method proposed by [15] uses the dynamical

ensemble [11]. In order to construct our broad histogram, we used a histogram technique as

described in [8] and matched the histograms using a method similar to that introduced by

[3,40].

Ising-like models have also been used previously to analyze lipid melting behavior

[38,39,19-22]. In this chapter, we successfully combined the simplicity of the model with

the histogram method and generated fits of the experimental heat capacity profiles of

various vesicular preparations of DPPC. This was done by varying the interfacial

cooperativity parameter ωgf  with constant values for the melting enthalpies for a

monolayer system which is identical to assuming a bilayer with two uncoupled monolayers.

In experimental systems, however, vesicles are usually not freely fluctuating membrane

sheets but are rather located in vesicular systems of predefined geometry. Therefore, the
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fluctuations in the two monolayers are usually not uncoupled [20]. Lipids change their area

by about 25% upon melting. An asymmetry of the areas of the two monolayers

automatically induces a bilayer curvature. If the curvature is fixed, the area fluctuations on

both monolayers are confined such that on average the area difference on both monolayers

is constant. This implicitly results in a coupling of the fluctuations in both monolayers. A

simple approach to account the curvature effects and the coupling of the monolayers was

developed in [25].

2.8. Conclusions

The two-state model adopted for the lipid phase transition is very simple and transparent. It

has only one parameter, which is not directly measured in an experiment. This effective

interfacial energy parameter is obtained indirectly from the half-width of the heat capacity

peak. For the description of the energy of a micro-state only two variables are required - the

number of fluid lipids and the number of unlike near neighbor contacts. The two-sate model

thus allows construction of a broad histogram of states, which is used for quasi-analytical

calculation of heat capacity profiles. The information sampled in the broad monolayer

histogram was first used to generate melting profiles of a bilayer system consisting of two

uncoupled monolayers and to fit experimentally obtained DSC traces of different vesicle

preparations.
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3. Monte Carlo simulations on mixed lipid/peptide systems

3.1. Introduction

Insertion of transmembrane amphiphilic proteins or polypeptides into lipid membranes is

known to have a considerable influence on the phase equilibria of the mixed system [28].

Usually this results in a shift in the heat capacity maximum and a broadening of the melting

profile. Examples are the interaction of the integral band 3 protein of erythrocytes [21], the

transferin receptor [19], and cytochrome b5 with neutral lipids [7]. In particular the lipid-

protein interactions often induce dramatic phase-separation phenomena. Moreover, the

aggregation state of the proteins within the different lipid phases is strongly influenced by

the interactions with the lipid bilayer. Band 3 protein aggregation within lipid domains in

erythrocyte membranes has been reported [32]. The peptides gramicidin A and alamethicin

form channels or pores that consist of dimers or aggregates [9]. Because of its effects on

protein association or clustering the lipid state thus can be considered as a possible basis

for the general control of protein function in biological membranes.

One of the theoretical guidelines proposed to relate protein-induced lipid-bilayer phase

equilibria to basic physical properties of the lipid/protein interfacial contact is the concept

of hydrophobic matching [25,26,4] between the lipid-bilayer and protein hydrophobic

thicknesses. This concept had some success in predicting phase diagrams for lipid bilayers

reconstituted with proteins like bacteriorhodopsin, photosynthetic reaction center proteins,

as well as band 3 protein [28]. In a related study, Zhang et al. [40] calculated the phase

diagram and the heat capacity function for a pure lipid system undergoing a first-order

phase transition at various compositions of an integral polypeptide that was assumed to

occupy a site of the size of one lipid chain. The calculations predicted a closed phase-

coexistence loop and a heat capacity function that develops a broad shoulder on the low

temperature side, and broadens and shifts to lower temperatures with increasing peptide

concentration.

In this chapter we use the two-state Ising model to describe the heat capacity profiles and

the lateral distribution of lipids in the presence of small integral proteins. As in Chapter 2, a

broad histogram of the distribution of states is constructed and used for quasi-analytical
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calculation of heat capacity profiles in order to compare with DSC traces measured on

some model systems. As a consequence, the peptide aggregation properties in gel and fluid

lipid phase are predicted. These predictions were tested in atomic force microscopy

measurements. Additionally, the simulations demonstrate how the different mixing of the

peptide with both lipid phases can induce fluctuations in the membrane plane.

3.2. Energy of the system and distribution of states

Our system is a lipid monolayer containing a small peptide similar in size to a lipid, e.g. an

integral α -helical peptide. Again, as described in Section 2.3, the heat capacity can be

determined from the fluctuations of the enthalpy using the fluctuations-dissipation theorem

(Equation 2.6). To generate such fluctuations Monte Carlo simulations employing two

components, lipids and peptides, have to be performed. As in Equation (2.4), the Gibbs free

energy of a given configuration is

( ) ( )Δ Δ ΔG n n n n n H T S n n nf gf gp fp f gf gf gp gp fp fp, , , = ⋅ − ⋅ + ⋅ + ⋅ + ⋅ω ω ω (3.1)

where ωgp  and ω fp  are effective interaction energies between gel and peptide, and fluid and

peptide, respectively.

( )
( )

ω ε ε ε

ω ε ε ε

gp gp gg pp

fp fp ff pp

= − +

= − +

2

2 (3.2)

The lipids and the peptides form a hexagonal lattice. We consider peptide molecules which

are small enough to occupy only a single lattice site. The interactions and the arrangement

of the molecules is schematically shown in the cartoon below.

ωgp ω fp

gel

fluid

peptide
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Unlike in Chapter 2, in this system we have two further interaction energies, ωgp  and ω fp .

The Monte Carlo algorithm we use can be described briefly as follows:

• Pick a lattice point at random.

• If it is a lipid, change its state (and proceed as described in Section 2.3).

• If it is a peptide:

⇒ Pick a lipid at random.

⇒ Exchange it with the peptide.

⇒ Calculate the Gibbs energy difference between the new and the old matrix

configuration

δ δ δG G Glipid peptide= +

where ( )δ ω ω ωG n n nlipid
gf
lipid

gf gp
lipid

gp fp
lipid

fp= ⋅ + ⋅ + ⋅Δ Δ Δ  and Δngf gp fp
lipid

, ,  denote the

increase of the respective unlike nearest neighbor contacts of the lipid; δG peptide is

given by a similar expression, accounting for the change of the unlike nearest

neighbor contacts of the peptide.

⇒ Calculate the probability for the change

( )
( )P

K T
K T

=
+1

, with statistical weights  ( )K T
G

RT
= −







exp

δ

⇒ Generate a random number RAN and compare it with the calculated probability.

⇒ Make a decision (YES or NO) for the exchange of the lipid and peptide.

RAN P YES
RAN P NO

≤

>

Additionally, the two-component character of the system implies a diffusion of one

component into the other. However, our simulations are intended to be equilibrium

calculations and thus we will not account for the peptide diffusion♣. The unknown

interaction energies have to be determined by comparison with experimental heat capacity

profiles. For this comparison again the histogram method for Monte Carlo data analysis [6]

                                                          
♣ This can be done by exchanging only nearest neighbors [17].
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will be applied. Thus, one needs to construct a broad histogram of the distribution of states

of the system described. As described in Section 2.5, each MC simulation produces a

probability distribution of states

( ) ( ) ( )( )
( ) ( )( )

P n n n n n
n n n n n G n n n n R T

n n n n n G n n n n R T
p f gf fp gp

p f gf fp gp f gf fp gp

p f gf fp gp f gf fp gp
n nf gf

, , , , ,
, , , , exp , , , ,

, , , , exp , , , ,
,

ζ
ζ

ζ
=

⋅ − ⋅

⋅ − ⋅∑

Ω Δ

Ω Δ
(3.3)

where ζ  is the set of simulation parameters ( )n T H Tp m gf fp gp, , , , , ,Δ ω ω ω , nf  is the number

of fluid lipids; ngf , nfp  and ngp  are the respective numbers of gel-fluid, fluid-peptide and

gel-peptide contacts. Here  np  indicates the number of the peptides on the lattice and hence

0 ≤ ≤n np , where n  is the total number of lattice sites.

The degeneracy of the states ( )Ω n n n n np f gf fp gp, , , ,  does not depend on the parameters of

the MC simulation. It depends, however, on np  which determines the fractions of the two

components - lipids and peptides. As will be demonstrated below, the construction of the

broad histogram for the mixed lipid-peptide system is much more time consuming than the

construction of the two-dimensional histogram (Chapter 2). Therefore, we performed MC

simulations at a fixed peptide fraction f n np p= =01. , to slightly reduce the complexity of

the problem. As we will show later (Section 3.6), this value is justified by the fact that in

the experiment the peptide cross-section is somewhat larger than that of a single lipid.

The sampled four-dimensional probability distribution of states of a mixed system with

peptide fraction f p = 01.  was captured into a histogram with N bin, i.e. the whole phase

space was divided into small volumes of a size Δ Δ Δ Δf n n ngf fp gp× × ×  and the number of

events in each bin was counted during the simulation. Here, f denotes the fluid fraction

defined as a fraction of the amount of lipids, i.e. ( )( )f n n ff p= ⋅ −1 ; ngf , n fp  and ngp  are

the fractions of the mean number of unlike nearest neighbor interactions defined per lattice

site. Since pppgpfp nnnn ⋅=⋅++ 62 , where npp  is the number of peptide-peptide contacts, it

turns out that the following inequality for the lipid-peptide contacts is valid:

0 6≤ + ≤ ⋅n n nfp gp p  (3.4)

This implies that at a peptide fraction f p = 01. , the mean number of fluid-peptide and gel-

peptide contacts per lattice site are limited in the interval [0,0.6], i.e. 0 0 6≤ ≤nfp .  and
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0 0 6≤ ≤ngp . . For the fluid fraction we have 0 1≤ ≤f  and, as it was demonstrated in

Section 2.5, for the mean number of gel-fluid contacts per lattice site one has 0 2≤ ≤ngf .

We have chosen bins with the following dimensions: Δ Δ Δf n nfp gp= = = 0 01.  and

Δngf = 0 02. , as a compromise, because: On one hand, a histogram with smaller bins is more

accurate and describes both the distribution of states and the phase transition, more

precisely. On the other hand, the size of the bins is inversely proportional to the histogram

size and hence to the CPU time needed to generate the histogram (more bins have to be

visited during the random walk). In Chapter 2 we have shown, that the two-dimensional

histogram with Δ Δf ngp= = 0 01.  is sufficient to describe the melting transition of a single-

component lipid system. Here, we adopted a compromise and took Δngf = 0 02. , in order to

reduce the number of bins. The values Δ Δn nfp gp= = 0 01.  correspond to Δ Δn nfp gp= ≈ 9  on

31·31 matrix. Thus, the whole phase space is divided in  N=100·50·60·60=18·106 bins. The

inequality (3.4) shows that the available phase space actually contains 9·106 bins. Finally,

the question whether a certain bin size is precise enough or not, is answered by a

comparison between calculated heat capacity profiles from the histogram and obtained

directly by running MC simulations. Such examples will be given below.

A single measured histogram produced by one MC simulation is shown in Figure 3.1. The

histogram is four-dimensional which is difficult to present on a simple picture. However,

the kind of presentation given in Figure 3.1 gives an impression of the complexity of the

problem. The left-hand side of Figure 3.1 shows a projection of the four-dimensional

histogram in the two-dimensional plane ( )f ngf, , i.e., shown are all events of generated

matrix configuration with fluid fraction f  and mean number of gel-fluid contacts per

matrix site ngf  independent on the numbers of fluid-peptide and gel-peptide contacts. Each

point on this plot corresponds to a two-dimensional histogram in the plane ( )n nfp gp, , as

demonstrated in Figure 3.1 (right-hand side). The simulation was performed at a

temperature corresponding approximately to the heat capacity maximum of this lipid-

peptide mixture. In spite of the fact that the thermal fluctuations at this temperature are

large, the phase space explored by the simulation is only about 0.27% of the whole phase

space. For comparison, in the case of a single component lipid system a typical histogram

sampled at Tm explored about 10% of the phase space. Thus, in order to construct a
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practically useful broad four-dimensional histogram, much more distributions at different

sets of parameters have to be sampled, than for the two-dimensional case.
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Figure 3.1. Four-dimensional probability distribution of states, produced by a single

MC simulation on a mixed lipid-peptide monolayer, with the following set of

parameters: np = 01. , T K= 308 3. , ω ωgf fp cal mol= = 300 /  and ωgp cal mol= 600 / .

Left: projection of the histogram in the ( )f ngf, -plane. Right: section in the

( )n nfp gp, -plane. The simulation contained 2·106 MC cycles and was performed on a

31·31 matrix.

3.3. Simple case of a gel-like peptide

The broad two-dimensional histogram presented in Chapter 2 however, allows to calculate

a special case of lipid-peptide system, where the peptide resembles either the gel or the

fluid lipid state. In the following let us assume that the peptide has similar properties to

those of a gel lipid. Such a case was considered in [12]. In fact, the peptides differ from the

gel lipids only in that the peptides can not melt. This implies that the interfacial energy of a

gel lipid with a peptide is similar to the contact between two gel lipids (ωgp =0  – hence, the

energy of the system does not depend on the gel-peptide contacts, ngp), whereas a fluid

lipid-peptide contact contributes to the overall Hamiltonian with ω ωfp gf= . This case is

schematically shown in Figure 3.2.
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Figure 3.2. Scheme of the nearest neighbor interactions in a lipid monolayer

containing gel lipids, fluid lipids and gel-like peptides. Shown are gel-fluid contacts

and gel-peptide contacts.

The Gibbs free energy for a given configuration is then expressed in a simplified manner

by:

( ) ( )Δ Δ ΔG n n n n H T S nf gf fp f gf
fp

gf, , = ⋅ − ⋅ + ⋅ω (3.5)

where n n ngf
fp

gf fp= + . With this expression the partition coefficients for this system can be

derived from the lipid monolayer histogram.

( )
( ) ( ) ( )

( ) ( ) ( )
P n n n

n n
n n
n n

G n n
RT

n n
n n
n n

G n n
RT

f gf
fp

p

f gf
fp g p

g p

f gf
fp

f gf
fp g p

g p

f gf
fp

nn gf
fp

f

, , ,

,
!

! !
exp

, ,

,
!

! !
exp

, ,
ζ

ζ

ζ
=

⋅
+

⋅
−














⋅
+

⋅
−












∑∑

Ω
Δ

Ω
Δ

(3.6)

where n n ngf
fp

gf fp= +  and ζ is the set of parameter [ ]T H Tm gf, , ,Δ ω . Equation (3.6)

resembles Equation (2.8) except for an additional factorial term, ( )n n
n n

g p

g p

+
⋅

!
! ! , which

accounts for the number of ways to arrange np  gel-like peptides on the sites for gel and

peptide in a given configuration. The heat capacities derived from this expression for

different peptide concentrations, np , are given in Figure 3.3. When increasing the peptide

concentration, the Cp-profiles are shifted to higher temperatures and are asymmetrically

broadened, in agreement with previous results [12]. For comparison, the results from a two

component Monte Carlo simulation with identical parameters based on Equation (2.6) are

also given in Figure 3.3 (solid symbols). They are in exact agreement with the solid line

obtained from the histogram (Equation (3.6)). Also shown in Figure 3.3 are some Monte
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Carlo snapshots obtained from simulations on a monolayer containing 10mol% gel-like

peptides at various temperatures. It can be seen that the asymmetry of the heat capacity

profiles corresponds to an aggregation of the gel-like peptides in the fluid lipid membrane

due to unfavorable fluid-peptide contacts. In fact, at high temperatures the presence of gel-

like peptides causes „freezing“ of their lipid neighbors, since the gel-peptide contacts are

energetically favorable. On the other hand, when the temperature increases, more and more

lipids melt, since T S⋅Δ  is large and ( )Δ ΔH T S− ⋅ < 0 . The interplay between these two

factors is the reason for large fluctuations at T Tm> , which causes the shoulder in the heat

capacity profile (Equation 2.6).

The opposite case of fluid-like peptide also can be calculated from the two-dimensional

histogram of a single lipid membrane in analogy to the just presented case. The partition

coefficients are then given by

( )
( ) ( ) ( )

( ) ( ) ( )
P n n n

n n
n n
n n

G n n
RT

n n
n n
n n

G n n
RT

f gf
gp

p

f gf
gp f p

f p

f gf
gp

f gf
gp f p

f p

f gf
gp

nn gf
gp

f

, , ,

,
!

! !
exp

, ,

,
!

! !
exp

, ,
ζ

ζ

ζ
=

⋅
+

⋅
−














⋅
+

⋅
−












∑∑

Ω
Δ

Ω
Δ

(3.7)

where n n ngf
gp

gf gp= +  and ζ is the set of parameter [ ]T H Tm gf, , ,Δ ω .

The heat capacity profiles are given in Figure 3.4. The Cp-traces of this mixture are shifted

to lower temperatures and they develop a shoulder in the low temperature range. The

simulation snapshots show that the peptides aggregate only in the lipid gel phase, but mix

well with the fluid phase.

The two cases of gel- and fluid-like peptide, presented on Figure 3.3 and 3.4 can be easily

distinguished. This allows to resolve qualitatively peptide cluster formation properties in

both lipid phases.
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Figure 3.3. Top: Calculated heat capacity profile of a membrane containing various

fractions of a gel-like peptide. Solid lines: calculated from (3.6). Small squares: calculated

by running two component Monte Carlo simulations at each temperature. Bottom:

Representative Monte Carlo snapshots of the lipid matrix containing 10mol% gel-like

peptides at several temperatures. Blue dots: gel lipids; cyan dots: fluid  lipids; red  dots:

peptides. Simulations on a 31·31  matrix with periodic boundary conditions. Here and

further, the unit cell of the simulation is indicated by the rhombic box in the center of the

picture.
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Figure 3.4. Top: Calculated heat capacity profile of a membrane containing various

fractions of a fluid-like peptide (from Equation (3.7)). Bottom: Representative

Monte Carlo snapshots of the lipid matrix containing 10mol% fluid-like peptides at

several temperatures.
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3.4. Construction of a broad four-dimensional histogram

The density of states ( )Ω n n n nf gf fp gp, , ,  is a symmetrical function by the change

n n nf f→ − , i.e.,

( ) ( )Ω Ωn n n n n n n n nf gf fp gp f gf gp fp, , , , , ,= − (3.8)

Because, the number of the gel-fluid contacts remains unchanged, but the fluid-peptide

contacts become gel-peptide contacts and vice versa when we exchange each gel lipid to a

fluid lipid and each fluid lipid to a gel lipid.

This symmetry was exploited to reduce the number of histograms required for constructing

the broad histogram. We performed MC simulations at conditions ω ωfp gp≤  only, i.e., since

the gel-peptide contacts are unfavorable it is assumed that the peptide will mix

predominantly with the fluid phase so that mostly configurations with large numbers of

fluid-peptide contacts and less gel-peptide contacts are generated. Then, the remaining part

of the (accessible) phase space can be explored using the symmetry of the distribution

function.

To get an idea of reasonable values for the interaction energies, ωgp  and ω fp , we calculated

some heat capacity profiles simply by running MC simulations at each desired temperature

and compared them with measured DSC traces on mixed model systems. After that, we

sampled histograms at different temperatures varying the interaction energies in the interval

which was found suitable. The matching method used to combine the information of all

measured histograms into one is the same as described in Section 2.5. The overlap was

defined as the joint part of the phase explored by both neighboring histograms. The scaling

ratio was then determined from the four-dimensional volumes in the overlapping region.

The details about matching and parameters sets at which the histograms were sampled are

listed in the Appendix.
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3.5. Model simulation results

3.5.1. Limit cases

Once sampled, the broad four-dimensional histogram can be used to calculate heat capacity

profiles without running MC simulations for each set of parameters. Here we demonstrate

some typical situations.

First, let’s consider a case where ω ωfp gp= =0, i.e., the incorporated peptides mix ideally in

both lipid phases. The heat capacity profile of such a system is given in Figure 3.5. The

melting temperature of the mixed system is the same as of the pure lipid system. The heat

capacity profile remains symmetric, but the transition cooperativity decreases. Additionally,

some matrix snapshots are shown, below, at and above the transition temperature, Tm . In

this case, the peptide is predominantly located at the interface between gel and fluid

domains since this is energetically favorable. Thus, the presence of peptides decreases the

cooperativity of the lipid transition - they prevent formation of large domains. This case is

very similar to the case of cholesterol/lipid mixtures at low cholesterol content. The

measured heat capacity traces of mixtures of DMPC with cholesterol at cholesterol

fractions xc < 01.  are simply broadened, but remain symmetric [10]. For the cholesterol

molecule it is known that at such low concentrations no macroscopic phase separation

between phases of different cholesterol content occurs. Rather, cholesterol is enriched in

the interfaces of fluid and gel lipid domains, thus reducing the transition cooperativity

[3,27]. The latter agrees well with our simulation results (see the MC snapshots in Figure

3.5).
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Figure 3.5. Top: Calculated heat capacity profile of a membrane containing

10mol% peptide which mixes well with both lipid phases, ω ωfp gp= =0,

ωgf cal mol= 315 / . Lines: histogram results; blue: pure lipid system; pink: mixture.

Solid circles: calculation from a two-component MC simulation. Bottom:

Representative Monte Carlo snapshots of the lipid-peptide matrix at various

temperatures.
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Another important limit case we would like to consider is a peptide which is very well

soluble in one lipid phase but interacts extremely unfavorably with the other. This case is an

extension of the example of gel- or fluid-like peptide (Section 3.3). The heat capacity

profile of a system, in which the peptide interacts extremely well with the fluid lipid phase

but demixes strongly from the gel phase is shown  in Figure 3.6.
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Figure 3.6. Top left: Calculated heat capacity profile of a membrane containing

10mol% peptide which mixes well with the fluid phase, but demixes strongly from

the gel lipid phase, ω fp =0 , ωgp cal mol= 900 / , ωgf cal mol= 315 / . Top right:

Enlarged heat capacity profile of the mixed system. Lines: histogram results; blue:

pure lipid system; pink: mixture. Solid circles: calculation from a two-component

MC simulation. Bottom: Representative Monte Carlo snapshots of the lipid-peptide

matrix at various temperatures.   
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It is evident that in comparison to the fluid-like peptide (Figure 3.4), there is much stronger

peptide aggregation in the low-temperature gel phase. Accordingly, the suppression of the

phase transition temperature is larger ( T T Km
lipid

m
mixture− ≈5 ). The calculated heat capacity

profile develops a very long shoulder with a certain detail - there is a small „step“ in it at

T K≈304  (Figure 3.4 - right hand side). It seems that such a heat capacity trace is a

superimposition of a sharp component upon a considerably broader underlying component.

Such an analysis of the heat capacity profile was applied in [39]. However, deconvolution

of the heat capacity trace suggests that the system can be divided into one „rich peptide“

component, which causes the broad profile, and one „pure lipid“ component, which should

give the same Cp-profile as obtained in the absence of proteins. The interaction between the

two components is neglected. However, the last assumption seems not to be relevant, since

the „rich peptide“ component, which in our case is the fluid phase (Figure 3.6 - snapshots)

and the gel domains have a permanent interface. Thus, this model calculation demonstrates

that such a complicated heat capacity profile can be analyzed without assuming

subcomponents in the system.

Let’s now consider a peptide, which interacts unfavorably with both lipid phases but has

preference to one of them, i.e. let’s assume ω ωgp fp> >0 . The heat capacity profile of such

a mixture is given in Figure 3.7.

In this case the melting temperature of the system hardly changes. The heat capacity profile

develops a shoulder at low temperatures. The MC simulation snapshots show that large

peptide aggregates form in both the gel and the fluid lipid phase. But in the gel phase, the

peptide aggregate is surrounded by lipids in the fluid phase. This „neighborhood“ causes

fluctuations in the membrane plane, which are the reason for the developed asymmetry in

the Cp - trace.

The latter case is very important, since it seems to be valid for gramicidin A incorporated in

DPPC or DMPC membrane.
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Figure 3.7. Top: Calculated heat capacity profile of a membrane containing 10mol%

peptide which aggregates in both lipid phases, but has a preference to the fluid phase,

ω fp cal mol= 600 / , ωgp cal mol= 900 / , ωgf cal mol= 315 / . Lines: histogram results; blue:

pure lipid system; pink: mixture. Solid circles: calculation from a two-component MC

simulation. Bottom: Representative Monte Carlo snapshots of the lipid-peptide matrix at

various temperatures. The periodicities stem from the periodic boundary conditions.
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3.5.2.  Intermediate cases

The big advantage of the applied histogram method is that the heat capacity profiles of

various lipid/peptide mixtures can be calculated quickly. In the following we will

demonstrate some „intermediate“ cases - we will investigate how the heat capacity profile

changes when the interaction energies, ωgf , ω fp  and ωgp , are comparable to each other.

Heat capacity profiles of mixtures in which the interactions gel-peptide and fluid-peptide

are more favorable than gel-fluid, are given in Figure 3.8. When interpreting these

interaction parameters in terms of hydrophobic length, this means a situation where the

hydrophobic length of the peptide is in between those of the gel and fluid lipids (Figure 3.8

- left-hand side).

It should, however, be noted that the comparison with the hydrophobic length is just a

simple association. In fact, the parameters, ωgf , ω fp  and ωgp , are effective interaction

energies (see Equation (3.2)) which generally include fluid-fluid, gel-gel and peptide-

peptide interactions.

Here, we assume that either the peptide interacts equally with both lipid phases or matches

better with the fluid phase (the opposite case can be calculated by analogy).  Three cases

are demonstrated, in which the peptide displays different solubility in the fluid phase (from

top to bottom). It is evident that equal interactions between gel and peptide and fluid and

peptide lead to a symmetric heat capacity profile (see the black curves in each case), which

sharpens when the demixing between lipids and peptides increases. The phase transition

temperature of the mixture decreases when ω ωgp fp>  and the absolute value of this shift

seems to be dependent only on the difference ( )ω ωgp fp−  (compare for example the blue

lines). The increase of the last difference leads also to a broader shoulder on the low

temperature side of the transition.
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Figure 3.8. Heat capacity profiles, calculated from the histogram, for the case of a

membrane containing 10mol% peptide that has a relatively weak tendency to aggregate in

both lipid phases. The interactions between lipid and peptide are more favorable than

between gel and fluid lipid, ω ω ωfp gp gf cal mol≤ < =315 / . The dotted vertical line shows the

melting temperature of the pure lipid system.
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Figure 3.9. Heat capacity profiles, calculated from the histogram, for the case of a

membrane containing 10mol% peptide that interacts preferentially with the fluid phase,

ω ωfp gp< , ω ωgp gf cal mol> =315 / . The dotted vertical line shows the melting temperature

of the pure lipid system.
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In the next example we would like to demonstrate the case when ω ωgp fp>  and ω ωgp gf> .

Hence, the peptide dissolves better in the fluid phase than in the gel phase and the contacts

gel-fluid are more favorable than the contacts between gel and peptide. The calculated heat

capacity traces of such mixtures are given in Figure 3.9. In the case where the fluid-peptide

interactions are either more favorable (top graph) or unfavorable (bottom graph) in

comparison to the fluid-gel contacts, the shift of the melting transition to lower

temperatures is almost independent from the degree of peptide aggregation in the gel phase.

The situation is, however, more different where the two interaction parameters are

comparable, ω fp  ∼ωgf  (the middle graph). In this case, the temperature shift of the

transition increases with increasing ωgp  up to a certain value (black, blue and red line) and

then slightly decreases (olive line).

The model cases considered in this section give an overview of typical experimental

situations. The heat capacity profiles presented here are helpful for a fast qualitative

analysis of measured DSC traces of lipid-peptide mixtures.

3.6. Comparison with experimental heat capacity profiles

The experimental systems we investigated by differential scanning calorimetry were

various mixtures of DPPC or DMPC membranes with relatively small peptides like

alamethicin and gramicidin A.

The DSC-traces of DPPC/alamethicin mixtures given in Figure 3.10 develop long shoulders

in the low temperature region and there is a small increase of the phase transition

temperature by 0.3 deg. These heat capacity profiles suggest that the peptide aggregates in

the gel DPPC phase (compare e.g. to Figure 3.4). However, we were not able to make a fit

of these profiles, since in our simulations such a large asymmetry in the heat capacity

profile is always connected to a depression of the melting temperature. This point will be

discussed in more details in Section 3.9.
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Figure 3.10. Calorimetric heat capacity traces of DPPC membranes containing

various amounts of alamethicin. Multilamellar vesicle dispersions in buffer (5 mM

Hepes, 1 mM EDTA, pH 7.5). Scan rate 5 deg/hour.

The other type of model systems investigated by means of differential scanning calorimetry

were mixtures of the peptide antibiotic gramicidin A with DPPC and DMPC. Figure 3.11

shows the NMR structure of gramicidin A in a DPPC membrane. It is evident that the

gramicidin A dimer is relatively short in comparison to the thickness of the DPPC bilayer.

This suggests an unfavorable hydrophobic mismatch between the peptide and the lipids.

The heat capacity traces of DPPC/gramicidin A  and DMPC/gramicidin A mixtures are

shown in Figure 3.12 and Figure 3.13, respectively. In the case of DPPC bilayer, the Cp-

profiles of two vesicle preparations with different cooperativity of the melting transition are

given. In all cases, the insertion of gramicidin A into the lipid bilayer induces an extended

shoulder at the low temperature end of the gel-to-fluid transition. This asymmetry suggests

a pronounced peptide aggregation in the gel lipid phase, whereas the demixing in the gel

DPPC bilayer should be stronger than in the gel DMPC membrane. This is a plausible
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conclusion, since the gel DMPC membrane is by about 5Å thinner than the gel DPPC

membrane and thus the hydrophobic mismatch between gramicidin A and the lipids is

likely to be larger in the case of DPPC. Gramicidin A causes a very slight shift of the

melting transition to lower temperatures in both types of lipids.

Figure 3.11. Gramicidin A (NMR) in a DPPC membrane. The gramicidin A dimer

is relatively short, suggesting an unfavorable hydrophobic matching in both lipid

phases.
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Figure 3.12. Calorimetric heat capacity traces of DPPC membranes containing

various amounts of gramicidin A. Top: MLV. Bottom: LUV. Vesicle dispersions in

buffer (5 mM Hepes, 1 mM EDTA, pH 7.5). Scan rate 5 deg/hour.
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Figure 3.13. Calorimetric heat capacity traces of MLV dispersions of mixtures of

DMPC with various amounts of gramicidin A. Vesicle dispersions in buffer (5 mM

Hepes, 1 mM EDTA, pH 7.5). Scan rate 5 deg/hour.

A quantitative comparison between a DSC trace of DPPC membrane containing 2 mol%

gramicidin A and a heat capacity profile obtained from the histogram is given in Figure

3.14. In fact, the peptide gramicidin A is somewhat larger than a single DPPC lipid. Its

cross-section has an area of about 180 Å2 and that of the lipid is about 45 Å2. This should

be accounted in the MC simulations, i.e., one has to perform MC simulations on a mixed

lipid-peptide system where the peptide occupies 4 lattice sites. It would not be correct to

simply perform a calculation with 4-times larger peptide concentration, because in the two

cases both the interfacial energy on the lipid-peptide boundary and the entropy are

different. Four peptides while occupy the lattice sites corresponding to one large peptide

still increase the entropy of the system by 4!, because of the number of different

arrangements. On the other hand, a membrane that contains smaller peptides has a larger

lipid-peptide interface than the corresponding case of large peptides. However, when a

pronounced protein aggregation takes place only the boundary peptides in the cluster are in
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contact with the lipids. This is likely to be the case for gramicidin A, because the heat

capacity profiles of its mixtures with DPPC and DMPC are strongly asymmetrically

broadened.

We neglected the entropic contribution resulting from the size of the single peptide and

performed calculations at peptide fraction f xp p≈ ⋅4 , where xp  is the fraction of the

protein in the experiment, expecting a similar trend.

The calculated profile shows similar properties as the measured one - a slight shift of the

phase transition temperature and an asymmetry at the low-temperature end of the transition.

But there are some significant differences between the two profiles. The possible reasons

for these differences will be discussed in Section 3.9.
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Figure 3.14. Comparison between measured DSC-trace of DPPC/gramicidin A

mixture and calculated heat capacity profile.  Solid circles: Cp- profile of MLV

dispersion of DPPC with incorporated 2 mol% gramicidin A. Solid line: heat

capacity profile, derived from the broad histogram. Parameters of the calculation:

1.0=pf , ΔH cal mol= 8700 / , T Cm = °41 35, , ωgf cal mol= 320 / , ω fp cal mol= 350 /

and ωgp cal mol= 900 / .
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The parameters used for the calculation correspond to a case where the peptide interacts

unfavorably with both lipid phases but its solubility in the fluid phase is better than in the

gel phase. Therefore, we expected, on the basis of the shape of the heat capacity profiles,

that there were large peptide aggregates in the low temperature phase and smaller ones at

high temperatures. In order to test these predictions, we performed atomic force microscopy

measurements, as described in the next section.

3.7. Atomic force microscopy experiments

Since the peptide gramicidin A forms dimers with a length of about 30 Å, thus shorter than

the DPPC or DMPC bilayer (see Figure 3.11), it was possible using the AFM-technique to

resolve the location of the peptide in the membrane plane. Additionally, the different

melting temperatures of DPPC (~ 41°C) and DMPC (~ 24°C) allowed to perform

measurements both in gel and in fluid phase at room temperature.

AFM-images of gel DPPC membrane with and without incorporated peptide gramicidin A

are given in Figure 3.15 and 3.16, respectively. In the absence of peptide, supported DPPC

bilayers have a flat appearance under AFM in solution. There are also some bilayer defects

(dark areas). The thickness of the gel DPPC bilayer, which we measured from the edge of

these defects, is about 7 nm, which is in a good agreement with other values [22]. When   2

mol% gramicidin A was incorporated into a DPPC bilayer, the surface remained largely

planar, but we observed line type depressions of about 0.5nm depth sparsely distributed in

the membrane segment (Figure 3.16). Similar line-shaped defects in gel state DPPC

membranes were found in AFM experiments by Mou et al. [22]. In the case of fluid DMPC

membrane with incorporated 2 mol% gramicidin A (Figure 3.17) we observed again such

depressions, but they were of a round shape.

In both cases, the depressions in the membrane were identified as peptide clusters. We

believe that the different type of protein aggregates in the gel and fluid membrane is caused

by the following: There is an experimental evidence that in the gel phase the lipid molecules

form a hexagonal lattice [15]. Therefore, the total demixing of gramicidin A molecules

from the gel DPPC phase results in forming large line-type defects in this lattice. We

suppose this to be the reason for observing line-shaped peptide aggregates. On the other

hand, in the fluid phase there is no lattice arrangement of the lipid         molecules [15],
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leading to the presence of round-shaped peptide clusters, since in such a configuration the

peptide-lipid interface is minimal.

Figure 3.15. DPPC membrane in the absence of gramicidin A. Occasionally

occurring defects display a thickness which corresponds roughly to the thickness of

the membrane. Top: Original image. Bottom: Height profile across a defect.
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Figure 3.16. DPPC membrane in the presence of 2 mol% gramicidin A. The light

areas display bilayer segments on the mica surface. The peptide is accumulated in

line shaped defects within the membrane plane. Note that the angle between

crossing line depressions is about 120°, which agrees with the assumption that the

peptide aggregates are defects in the hexagonal lipid lattice.
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Figure 3.17. DMPC membrane in the presence of 2 mol% gramicidin A in two

different magnifications. Gramicidin A is accumulated in round defects (100-200 Å

diameter) within the membrane plane. Top: Scanned area 1×1 µm. Bottom: Scanned

area 100×100 nm.
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However, the gramicidin A aggregation in the fluid membrane is not as pronounced as in

the case of gel bilayer. The round clusters have a diameter in the range of 10 nm

corresponding to about 40 protein molecules. In the gel phase we observed no small

aggregates - all the peptide molecules seem to be concentrated in the line defects, thus

totally  demixing from the gel membrane.

Therefore, we conclude that there is a good agreement between the predictions, based only

on the heat capacity profiles of gramicidin A mixtures with DPPC and DMPC, and the

results from the AFM experiments.

3.8. Peptide-induced membrane fluctuations

With interaction parameters corresponding to the case of peptides that aggregate in both

lipid phases but have a preference to the fluid phase (like gramicidin A in DPPC

membranes), we performed Monte Carlo simulations in order to obtain information about

the distribution of the fluctuations in the bilayer plane. During the simulations we sampled

the value

( )
( ) ( )

c x y H
LipidState x y LipidState x y

R Tp ,
, ,

= ⋅
−

⋅
Δ

2 2

2 (3.9)

which can be interpreted as a heat capacity at lattice site ( )x y, . Here the brackets 

denote time averaging, ΔH  is the increase of the enthalpy upon melting of a single lipid, T

is the temperature and ( )LipidState x y,  is a function describing the state of the lipid at

lattice site ( )x y, ; ( )LipidState x y, = 1 for fluid, ( )LipidState x y, = −1 for gel. The peptides

do not move during sampling. Since there is a very pronounced peptide aggregation in both

lipid phases at the chosen set of parameters we assume that the time required for peptide

diffusion is much larger than the characteristic time of the lipid fluctuations. The lateral

distribution of the fluctuations in the membrane plane for this case is illustrated in Figure

3.18.
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Figure 3.18. Spatial distribution of the fluctuations in a membrane containing 10

mol% peptides that aggregate in both lipid phases, but have a preference to the fluid

phase. Left: Averaged lipid state, ( )LipidState x y, ; Right: Amplitude of the

thermal fluctuations, ( )c x yp , . Simulations on a 61·61 matrix with periodic

boundary conditions with the following interaction parameters: ωgf cal mol= 330 / ,

ω fp cal mol= 660 / , ωgp cal mol= 990 / .

In the illustrated case the different peptide solubility in the gel and the fluid phase induces

membrane fluctuations which are spatially non-homogenous. The largest fluctuations are

located at the lipid-peptide interface and their maximum amplitude is at the melting

transition of the mixed system.

In an experiment one determines the heat capacity, which is a measure of the enthalpy

fluctuations, as a macro-observable. These model calculations give insight into the spatial

distribution of the fluctuations and thus allow a kind of interpretation of the heat capacity

as a micro-quantity.

3.9. Discussion

The interaction of lipid membranes with integral proteins has been investigated

theoretically by various groups. Based on the 10-state lipid model of Pink and Chapman

[29] and Pink et al. [30], lipid-protein interactions were modeled assuming parameters

related to attractive van der Waals forces between the lipids and the proteins and repulsive

forces due to hydrophobic mismatch [24,33-35,5]. This results in a net interfacial free

energy difference between the lipids and the proteins and suggests the possibility of

aggregation of integral proteins in the absence of protein-protein interactions. If the length

of the hydrophobic core of the protein differs from the lipid chain length, the interaction

between the two components is unfavorable and they do not mix well. Experimental studies

where the lipid chain length was altered showed that the effect of peptides on the melting

reaction varies significantly [39]. In the melting transition the thickness of bilayers

decreases by about 16% [11], hence the hydrophobic thickness of the membrane differs

between gel and fluid. Therefore, it is likely that the interaction of the proteins with the two

lipid phases is not the same and that good mixing in one phase implies unfavorable mixing
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in the other state. The corresponding phase diagrams have been discussed theoretically in

[40,28].

The change in protein distribution has pronounced effects on the lipid melting behavior

[12]. The heat capacity traces are shifted and asymmetrically broadened. From the shape of

the melting curves one can in principle deduce how the components mix in either phase.

For suitable chain lengths of the lipids there are proteins that mix well with one membrane

state and do not mix with the other membrane state [39].

We applied the two-state Ising model to describe the melting behavior of a lipid membrane

with incorporated small integral protein. The relatively low number of variables, needed to

describe the system energy (number of fluid lipids, f , and the number of three types of

unlike nearest neighbor contacts, n n ngf fp gp, , ), allows construction of a broad histogram of

states. This histogram can be used to calculate quickly mean values of various physical

observables (which are functions of f , fpgf nn ,  and gpn ) of the mixed lipid-peptide

system.

Using the monolayer histogram technique for a two-state Ising model we calculated the heat

capacity profiles of several lipid-peptide mixtures (Figure 3.3-3.9). The results show that

the specific asymmetry of the heat capacity profiles can be non-ambiguously interpreted as

peptide aggregation in the respective lipid phase.

The simple case of a membrane containing peptides that mix well with the gel state and

demix in the fluid state (Figure 3.3)  can even be resolved using the information sampled in

the two-dimensional histogram for a pure lipid bilayer in the absence of peptides (Equation

(3.5)). Depending on the peptide concentration, the heat capacity profiles of such mixed

systems are progressively shifted to higher temperatures and asymmetrically broadened

with a shoulder at the high temperature end. The case of gel-like peptide has previously

been described theoretically by [12] but for larger proteins (occupying 19 lattice places)

and without use of the histogram technique. An experimental example for such a case is the

mixing of the band 3 protein of erytrocytes with phosphatidylcholine membranes [21]. For

lipid chain length where the peptides mix well with the fluid phase the situation is the

opposite: Cp profiles are shifted to lower temperatures with a shoulder on the low

temperature site (Figure 3.4). Similar heat capacity traces are measured on DMPG bilayers

with incorporated gramicidin S [31] (Figure 3.19). The comparison between Figure 3.19
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and Figure 3.4 leads to the conclusion that gramicidin S aggregates in the gel DMPG phase

but is homogeneously distributed in the fluid phase. However, there is by far no

experimental  proof of this theoretical prediction.

Figure 3.19. DSC heating scans illustrating the effect of the addition of gramicidin

S on the main phase transition of 1,2-dimirystoyl-sn-glycero-3-[phospho-rac-(1-

glycerol)]  (DMPG) multilamellar vesicles. The numbers above each curve denote

the lipid-to-peptide molar ratios. The vesicle dispersions were prepared in buffer (10

mM Tris-HCl, 100 mM NaCl and 2 mM EDTA). (Adapted from [31]).

The histogram technique for use of MC simulation data is a very helpful approach in

investigating the melting behavior of mixed lipid-peptide systems. Since in the case of such

mixtures three interaction parameters, ( )ω ω ωgf p gp, , , can be varied in order to generate

different experimental situations, the application of the histogram method saves a lot of

computer time. For instance, to get a good heat capacity profile one needs about 30 points

(see e.g. a profile with a long shoulder in Figure 3.6); each of these points needs about 12

min. (10000 MC cycles on 31⋅31 matrix, Pentium III 700MHz), resulting in a computer

time required of 6 hours. The same profile can be calculated from the broad four-

dimensional histogram within minutes. Applying the histogram technique one can even
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calculate heat capacity traces of a system with temperature-dependent interaction

parameters, ( ) ( ) ( )( )ω ω ωgf fp gpT T T, , .

The hydrophobic interaction, which is an important part of the entire lipid-protein

interaction, is temperature dependent [36]. Moreover, there is some experimental evidence

[20] that in some cases peptides change their conformations to adapt to changes in bilayer

thickness. Since the bilayer thickness changes upon the melting transition, i.e., is a function

of the temperature, it would be reasonable to consider temperature-dependent interaction

parameters.

The histogram method as applied here has, however, some disadvantages. It is possible to

account only for small peptides, occupying only one lattice place. In fact, the peptides in the

experimental systems are often larger than the lipids, which is a general problem in lattice

models. The larger the peptides the larger their interface with the lipid neighbors in the

lattice. This effect however can be accounted by adjusting the interaction energies, ωgp

and ω fp . But the distributional entropy of the peptides is smaller when the protein cross-

section is larger. Therefore, there may be a grater tendency to form aggregates for larger

proteins, because their loss of entropy upon aggregating is smaller than that of small

peptides.

Performing a quantitative comparison between DSC profiles and calculated heat capacity

traces, one should consider the following two effects:

1.  Peptide size: cluster formation in the case of larger peptides, i.e., occupying more than

one lattice site, becomes more pronounced (entropy effect), which results in a larger

asymmetrical broadening of the heat capacity trace.

2.  Matrix size: limits the size of the peptide cluster (naturally, the largest peptide aggregate

contains no more than np  peptides). Hence, the peptides influence the membrane

thermotropic behavior stronger in smaller systems, because the ratio

lipid peptide interface
system volume

−   decreases with increasing the matrix size. This

would decrease the effect of the temperature shift of the phase transition, which

normally accompanies the peptide aggregation.
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Thus, we conclude that in the presented quantitative comparison between the DSC trace of

a DPPC membrane containing gramicidin A and the histogram results (Figure 3.14), the

calculations show a larger suppression of the transition temperature than it was actually

detected in the experiment, which may partially be due to matrix-size effects but also to the

fact, that the protein may not fit well into the lipid matrix. On the other hand, the low-

temperature shoulder of the DSC profile is more pronounced than in the calculated trace,

because of effects related to the peptide size.

We applied the constructed broad histogram to a monolayer with incorporated 10 mol%

peptides to calculate the melting profiles of various systems.  The interplay between the

three interaction parameters produces very different shapes of the heat capacity profiles.

From the simulation results it becomes evident, that an extended shoulder with a certain

detail - the small step - represents very strong peptide aggregation in the respective lipid

phase (see e.g. Figure 3.6 and also Figure 3.13 top, 2 mol% gramicidin A).

The extremely pronounced aggregation of the peptide gramicidin A in the DPPC gel phase,

predicted from the shape of the heat capacity trace, was confirmed by AFM experiments.

X-ray crystallography indicates that lipids are packed into a triangular lattice in the gel

state, whereas they are disordered in the fluid Lα phase [15]. Therefore, the line shaped

gramicidin A aggregates observed in the low-temperature DPPC phase are supposed to be

defects in the lipid lattice.

As the phase transition temperature of DPPC and DMPC membranes containing gramicidin

A hardly changes, we concluded that gramicidin A aggregates also in the fluid phase.

Round-shaped peptide aggregates in the fluid DMPC phase were detected with AFM. Since

there is no lattice order in the fluid phase, the peptide clusters are round-shaped in order to

minimize the interface with the lipid surrounding.

With the simple model proposed here it is impossible to explain many details of an

experimental thermogram, for instance, the measured heat capacity profiles of

DPPC/alamethicin mixtures which develop extended shoulders in the low temperature end

of the transition, but are slightly shifted to higher temperatures. It is known that alamethicin

molecules form a voltage-gated ion channel, which consists of 6-11 peptide molecules

[1,8,38,37,18]. It was suggested that peptide aggregate formation is caused by lateral

diffusion and electrostatic interaction in an antiparallel orientation. Generally, peptide-
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peptide interactions are included in our model (Equation 3.2). However, in the case of

alamethicin there could be a specific type of interactions or conformational changes which

we do not consider using only the effective interaction parameters, ω fp  and ωgp .  On the

other hand, the very extended shoulder in the heat capacity trace suggests a strong peptide

clustering in the DPPC gel phase. There are experimental results which seems to be

consistent with our interpretation of the DSC-trace. Figure 3.20 shows the temperature

dependence of the lifetime of alamethicin ion channels in DPPC membranes. Whatever the

reason for opening and closing of this ion channel, a necessary condition for the membrane

conductance is the presence of peptide aggregates. The graph demonstrates that the channel

lifetime decreases when approaching the phase transition temperature of the DPPC bilayer

(∼ 41°C). Many details of this process are still not clear. However, one possible

interpretation of the observed channel behavior is that simply the degree of peptide

aggregation decreases with the temperature approaching the phase transition temperature of

the DPPC bilayer.

Temperature [°C]

Figure 3.20. Opening time (msec) of alamethicin ion channels in planar DPPC

bilayer at different temperatures. (Addapted from [16]).

For a DPPC membrane incorporating peptides that are well soluble in the fluid phase but

demixes strongly from the gel phase we calculated a cluster formation parameter (defined

as the mean number of peptide-peptide contacts per lattice site, i.e. n n npp pp= ). The

change of the cluster parameter with temperature is shown in Figure 3.21. It is evident that

DPPC
+ alamethicin

opening time
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its temperature dependence is very similar to that of the measured opening time of the

alamethicin channel (Figure 3.20).
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Figure 3.21. Calculated temperature profile of the cluster formation parameter, npp ,

for a membrane containing 10 mol% peptide which mixes well with the fluid phase,

but demixes strongly from the gel lipid phase, ω fp =0 , ωgp cal mol= 900 / ,

ωgf cal mol= 315 / .

Another example is alamethicin reconstituted into a planar bilayer membrane of 1-stearoyl-

3-myristoyl phosphatidylcholine. This unusual isomer of an asymmetric-chain phospholipid

is capable of forming stable unsupported bilayers (black lipid membranes) in the gel phase.

The formation of ion conducting pores by oligomerization of alamethicin monomers is very

strongly concentration-dependent: the conductance depends on the 9th to 10th power of the

alamethicin concentration [2]. Therefore, it can be expected that the membrane

conductance changes strongly in the region of the bilayer chain-melting transition, if the

degree of aggregation and hence the local alamethicin concentration depends on the lipid.

This corresponds exactly to the observation by Boheim et al. [2] (Figure 3.22). The current

density increases from a level corresponding to only 1 pore/cm2 in the fluid phase at 34°C

to that corresponding to approximately 106 pores/cm2 in the gel phase at 24°C.
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Figure 3.22. Temperature dependence of the transmembrane current density in

bilayers of 1-stearoyl-3-myristoyl phosphatidylcholine (1,3-SMPC) containing

alamethicin. The vertical line indicates the gel-to-fluid phase transition temperature

of 1,3-SMPC bilayers. (Addapted from [2]).

The Monte Carlo simulations give an insight into the spatial distribution of the fluctuations

within the membrane plane. In the demonstrated case of a lipid membrane containing

peptides that aggregate in both lipid phases but have a preference to the fluid phase (Figure

3.18) it was shown that the fluctuations in the bilayer are not homogenous at all - the largest

fluctuations are located at the lipid-peptide interface and they are extremely pronounced in

the phase transition region. Since large fluctuations are related to high heat capacities

(fluctuation-dissipation theorem) as well as to high compressibilities [11 and the references

therein] and permeabilities [2], one may speculate that the presence of peptide causes local

softening of the bilayer as well as permeability for water molecules and small ions.

It is interesting to note that in the lipid phase in which the peptide is not well soluble (in our

case it is the gel phase), the large amplitude of the fluctuations at the lipid-protein interface

might be important for ensuring the necessary freedom for protein conformations which is

of biological importance.

     Tm
1,3-SMPC
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3.9. Conclusions

We adopted the two-state Ising model in order to describe the melting behavior of a lipid

membrane with incorporated small integral protein. At fixed peptide fraction the model has

only four variables, ( )f n n ngf fp gp, , , , which allows to construct a broad four-dimensional

histogram for the density of states. The histogram technique is then used to calculate the

heat capacity profiles of many model systems and to analyze experimentally measured Cp-

traces of lipid-peptide mixtures.

From the shapes of the heat capacity profiles of DPPC and DMPC membranes containing

gramicidin A we have suggested that the peptides aggregate in both lipid phases whereas

the cluster formation in the gel phase is more pronounced. These predictions, based only on

calorimetry measurements, were confirmed by AFM experiments on gramicidin A mixtures

with DPPC and DMPC.

The model is, however, too simple to allow explaining each detail in the heat capacity

profile of a mixed lipid-peptide system. For instance, it is not clear how to account for

conformational changes of the peptide. One possibility would be to perform calculations

with temperature dependent interaction energies, which is generally possible using the

broad histogram approach. Another restriction of the histogram method is that it cannot

account properly for the real size of a peptide. In fact, this is a general problem in lattice

models. Since in experimental systems it is often observed that the peptide cross-section is

somewhat larger than that of a lipid, this restriction makes the quantitative comparison

between the MC calculations and the measured heat capacity traces difficult. The problem

arises from the different change of the distributional entropy upon aggregation in the case

of large and small peptides. Additionally, the finite size of the simulated matrix limits the

size of the peptide cluster. The ratio between the minimal peptide-lipid interface and the

system volume decreases with increasing size of the system. Thus, in the case of very

pronounced peptide aggregation, larger matrices would provide more accurate heat

capacity profiles.

Finally, the broad histogram technique links theory to experiment thus allowing a better

analysis of measured heat capacity profiles.
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Appendix

We sampled four-dimensional histograms at the following parameters:

f
n

n H cal mol T Kp
p

m= = = =01 8700 310 3. , / , .Δ

{ }ωgf cal mol∈ 300 315 330, , /

{ }ω ωfp gp cal mol, , , , , , , , , , /∈ 0 100 200 300 400 500 600 700 800 900 ,   ω ωgp fp≥

{ }T T T T Km m∈ − + =( ),..., ( ) ,14 5 1Δ

Under these conditions, the peptide interacts predominantly with the fluid lipid phase and

(if an aggregation takes place) aggregates in the gel phase. Then, using the symmetry of the

degeneracy (Equation (3.6)) we explored the part of the phase space, which corresponds

the other case.

Each MC simulation contained 2·106 MC cycles (complete random walk through the whole

matrix) and took about 1 h on a Pentium III (700MHz) personal computer.

The matching method applied was just as the same as used to construct the broad two-

dimensional histogram (Section 2.5). The difficulty in this case results perhaps from the

high dimensionality of the distributions. For instance, one can not draw a simple picture (as

in Figure 2.4) to show the overlap between neighboring histograms. For the success of the

matching procedure a good overlap between neighboring histograms is absolutely

necessary. That is why the sampled probability distributions of states were matched

together following a strict order:

1) T- scan: the histograms sampled at a constant set of  interaction parameters, but different

temperatures.

2) ωgp -scan: the histograms obtained at step 1) at constant ω fp  and ωgf .

3) ω fp -scan: the histograms constructed at step 2) at constant ωgf

4) ωgf -scan: the three histograms constructed at step 3).

For the sake of completeness we list the matching procedure in the four-dimensional case.

Let’s denote (for clarity) the three types of unlike nearest neighbors contacts by a vector n
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and the three interaction energies - by ω , i.e. ( )n n n ngf fp gp= , ,  and ( )ω ω ω ω= gf fp gp, , .

Then, the set of parameters is ( )ζ ω= T H Tm, , ,Δ . The excess free energy of a given

configuration is expressed as

( ) ( )Δ Δ ΔG n n n H T S nf f, ,ζ ω= ⋅ − ⋅ + ⋅

where n n n ngf gf fp fp gp gp⋅ = ⋅ + ⋅ + ⋅ω ω ω ω . The aim is to match the primary histogram

( )P n nf , ,ζ  with the  secondary distribution ( )P n nf
* *, ,ζ . Both histograms are normalized

so that the sum of all probabilities is 1.

The overlap is defined as the part of the phase space where

( )P n nf , ,ζ >0  and ( )P n nf
* *, ,ζ > 0

The part of the overlapping region where the secondary distribution is more accurate than

the primary one is M d4 .

( ) ( )P n n P n nf f
* *, , , ,ζ ζ>   for { }n n Mf

d, ∈ 4

The secondary distribution is then recalculated using the parameters of the primary

histogram, ζ ζ* → .

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
P n n P n n

P n n
G n n

R T
G n n

R T

P n n
G n n

R T
G n n

R T

f f

f
f f

f
f f

n nf

* * *

* *
*

*

* *
*

*
,

, , ~ , ,

, , exp
, , , ,

, , exp
, , , ,

ζ ζ

ζ
ζ ζ

ζ
ζ ζ

→ =

⋅
⋅

−
⋅















⋅
⋅

−
⋅













∑

Δ Δ

Δ Δ

The recalculated distribution ( )~ , ,*P n nf ζ  is thus also normalized. A scaling ratio is

determined in the following way:

( )
{ }

( )
{ }

r

P n n

P n n

f
n n M

f
n n M

f
d

f
d

=
∈

∈

∑

∑

, ,

~ , ,
,

*

,

ζ

ζ

4

4

Then the primary histogram is improved and extended as follows:

1)  if { }n n Mf
d, ∈ 4 , then ( ) ( )P n n r P n nf f, , ~ , ,*ζ ζ= ⋅
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2)  if { }n n Mf
d, ∉ 4  and

2.1)  ( ) ( )P n n P n nf f
* *, , , ,ζ ζ> , then ( ) ( )P n n r P n nf f, , ~ , ,*ζ ζ= ⋅

2.2)  ( ) ( )P n n P n nf f
* *, , , ,ζ ζ< , then ( )P n nf , ,ζ  does not change.

3) normalization of the extended histogram.

Using this procedure and following the order of matching of the histograms described

above, the overlap, M d4 , covered in each case about 10% of the phase space explored by

the single histogram (primary or secondary). It turns out that this is enough to calculate

accurately the scaling ratio (see the comparison between histogram calculations and direct

MC simulation results - Figure 3.5-3.7).
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4. Simulation study of the lipid kinetics

4.1. Introduction

Close to the melting transition the relaxation in the lipid system following an external

distortion becomes very slow. This phenomena has been investigated by various

experimental methods. The transient techniques (e.g. temperature-, pressure-, pH-jump)

apply a stepwise change of the control parameter to drive the system to a new equilibrium.

Then an optical detection [2,4,6,11,17,18] was used to monitor the relaxation of the lipid

dispersion. The stationary methods imply disturbance of the system equilibrium by an

oscillatory change of the perturbation parameter. A classical example of this technique is

the measurement of sound dispersion and absorption [13,7] where compression and

rarefaction pressure waves of sound propagation are responsible for perturbing a pressure-

dependent equilibrium. Using a volume-perturbation calorimeter, van Osdol et al. [19,20]

measured the temperature and pressure responses to the volume perturbations in order to

monitor the relaxation in vesicle dispersions.

The determined rates of the lipid relaxation are strongly temperature-dependent, displaying

narrow maxima at the midpoint of the transition. In general, multilamellar vesicle

dispersions display slower relaxation at the phase transition than unilamellar vesicles [20].

Thus, the relaxation has been found to depend on cooperativity.

In this chapter we present a Monte Carlo simulation study of the lipid kinetics based on the

two-state Ising model. Since the Monte Carlo simulation approach exploits a scheme of

stochastic dynamics, it is, in principle, impossible to obtain quantitative information about

time-dependent processes from such calculations. However, the MC simulations suggest

that the relaxation times and the heat capacity are closely related. To justify this finding we

outline a simple theory thus deriving the relaxation rates from the two-dimensional

histogram of density of states. Additionally, we show results from two type of kinetics

experiments - frequency dependent calorimetry and pressure-calorimetry.
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4.2. Monte Carlo simulations including a temperature-jump

In comparison to the experimental difficulties in performing T-jump measurements, it is

pretty easy to disturb the equilibrium in a MC simulation. One simply induces a sudden

temperature change after a desired equilibration time and observes the response of the

system. Figure 4.1 shows relaxation profiles of the fraction of fluid lipids after a single

temperature-jump.

0 500 1000 1500 2000

0,0

0,2

0,4

0,6

Tm - 2.5           Tm - 1.0

Tm - 1.5           Tm

Tm - 0.5           Tm + 1.0

f -
 <

f>
0

Monte Carlo cycles

Figure 4.1. Relaxation of the fraction of fluid lipids after a temperature-jump in MC

simulation. <f>0 , the fluid fraction before the T-jump, is subtracted in order to

compare the relaxation behavior in the three cases. The  MC simulations were

performed on a 31·31 matrix with periodic boundary conditions with the following

parameters: ΔH cal mol= 8700 / , ωgf cal mol= 310 /  and T Km = 310 3. .

In all these three cases the size of the temperature-jump is 1.5 deg. It is evident that

jumping into the mid-point, Tm, of the gel-to-fluid phase transition is connected with an

extremely slow relaxation (the red line). In principle, one can estimate the relaxation times

of the system by performing MC simulations including a T-jump. However, because of the

large magnitude of the fluctuations, one has to average the profiles obtained from several

T-jumps at the same set of parameters (in Figure 4.1 we have shown non-averaged response

profiles). In order to avoid this problem, we calculated the relaxation times from the decay

of the autocorrelation function of the molar enthalpy of the system.
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 4.3. Calculation of the relaxation times in the two-state Ising model

The fluctuations in the fraction of fluid lipids obtained from Monte Carlo simulations at

three different temperatures are illustrated in Figure 4.2.
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Figure 4.2. Fluctuations in the percentage of fluid lipids about the mean value over

a range of 10000 MC cycles. The initial 1000 simulation steps were discarded in

order to ensure a representative configuration. The simulations were performed on a

31·31 matrix with periodic boundary conditions with the following parameters:

ΔH cal mol= 8700 / , ωgf cal mol= 310 /  and temperatures below (bottom), at

(center) and above (top) T Km = 310 3. , corresponding to the mid-point of the gel-to-

fluid transition.

The thermal fluctuations are small deviations from equilibrium. From Figure 4.2 it becomes

evident that the fluctuations at the transition temperature (the red line) have not only larger

amplitude but also longer „lifetime“ then those at higher or lower temperatures. A measure

for the amplitude of the fluctuations displays the heat capacity (Equation (2.6)).

Quantitative information about the decay of the fluctuations gives their autocorrelation

function. Since enthalpy and volume and to a first approximation the number of fluid lipids

are proportional, it does not matter of which thermodynamic function the fluctuations are

considered. Here we will consider the autocorrelation function of the molar enthalpy,
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( )
( ) ( )

( ) 2

2

HtH

HtHttH
tG

−′

−′+′
= (4.1)

where  denotes time averages.

Three such autocorrelation functions at temperatures below, at and above the phase

transition temperature, Tm, are shown in Figure 4.3.
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Figure 4.3. Autocorrelation function of the molar enthalpy for three temperatures:

below mT  (solid triangles), at mT  (solid circles) and above mT  (solid diamonds). The

dotted lines represent single exponential decay fits in the three cases. Simulations on

a 31·31 matrix with periodic boundary conditions with the following parameters:

ΔH cal mol= 8700 / , ωgf cal mol= 310 /  and T Km = 310 3.  (corresponding to DPPC

large unilamellar vesicles). Each autocorrelation function is calculated over 106 MC

cycles.

According to the point of view developed by Onsager [15], the decay of equilibrium

fluctuations of the enthalpy (as well as other mechanical variables) can be described, on the

average, by a sum of exponential decays. In our case the autocorrelation functions can be

well approximated by a single exponential decay. The calculated relaxation times for

systems with different cooperativities are given in Figure 4.4. The temperature dependence
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of the resolved relaxation rates is very similar to the heat capacity profile calculated at the

same set of parameters from the broad two-dimensional histogram (Equation (2.9)). This

phenomenon will be elucidated by a simple calculation, based on the histogram of the

density of states.
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Figure 4.4. Relaxation times determined from the decay of the autocorrelation

function of the molar enthalpy, and heat capacity profiles for three different

cooperativities. Solid circles: relaxation times; Solid line: heat capacity profile. Left:

ωgf cal mol= 300 / ; Center: ωgf cal mol= 310 / ; Right: ωgf cal mol= 320 / .

4.4. Why are the relaxation times closely related to the heat capacity?

In the following we outline a simple theory [10] in order to justify the finding that the

relaxation times resolved from the decay of the enthalpy fluctuations in a MC simulation

and the heat capacity have closely related temperature dependencies. In this consideration

we do not regard histograms displaying two peaks, i.e. we exclude the cases of high

cooperativity near the melting temperature Tm (see Figure 2.6).

As mentioned above (section 2.4), the partition coefficients in the two-dimensional Ising

model are given by

( )
( ) ( )( )
( ) ( )( )

P n n
n n G n n R T

n n G n n R T
f gf

f gf f gf

f gf f gf
n nf gf

, ,
, exp , ,

, exp , ,
,

ζ
ζ

ζ
=

⋅ − ⋅

⋅ − ⋅∑

Ω Δ

Ω Δ
(4.2)

where n f  is the number of fluid lipid molecules, ngf  is the number of unlike nearest

neighbor contacts and ζ   denotes the set of parameters, ( )T H Tm gf, , ,Δ ω .
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One can recalculate this distribution function in order to obtain the distribution of states

with a given enthalpy, ( )P H . The probability to find a state with a given value of the molar

enthalpy is thus given by

( ) ( )P H P n nf gf
n H n Hn n f gf gff gf

=
+ =

∑ ,
, Δ ω

(4.3)

According to [12], the Gibbs free energy ( )G H  for such a state can be expressed as

( ) ( )G H P H C C const=− + =ln , . (4.4)

and, correspondingly, the entropy ( )S H  is given by

( )
( )

S H
H P H C

T
=

+ −ln
 (4.5)

Since we consider here a histogram which has only one peak, the distribution function of

the enthalpy can well be approximated by a Gaussian distribution (Figure 4.5)

( )
( )

P H P
H H

= −
−











0

0
2

2exp
σ

, (4.6)

where ( )H H− 0  are small fluctuations around the equilibrium value H0 .

Then the Gibbs free energy is simply a quadratic polynomial:

( )
( )

G H
H H

P C=
−

− +
0

2

2 0σ
ln (4.7)

and, consequently, the entropy in this case is given by a harmonic potential

( )
( ) ( )

S H
H G H

T
H
T

H H
T

P C
T

=
−

= −
−

⋅
−

+Δ 0
2

2
0

σ

ln
(4.8)
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Figure 4.5. Distribution of states (top) and the corresponding Gibbs free energy

(bottom). The profiles are derived from the broad two-dimensional histogram

(Figure 2.4) and calculated at the following parameters: ΔH cal mol= 8700 / ,

ωgf cal mol= 300 /  and temperatures below (left hand side), at (center) and above

(right hand side) the phase transition temperature T Km = 310 3. .  The thick black

lines are Gaussian (top) and 2nd order polynomial (bottom) fits for small deviation

from equilibrium.

The thermodynamic forces that drive the system to the equilibrium state can be generally

derived from the entropy [15]

X
S

i
i jj

j=








∑

∂
∂α ∂α

α
2

, (4.9)

where α j  denote the fluctuations. In linear non-equilibrium thermodynamics the fluxes are

linear functions of the respective thermodynamic forces, i.e.

J
d
dt

L Xi
i

ij j
j

= =∑
α

(4.10)

where Lij  are phenomenological coefficients. Then, for the thermodynamic force that

drives the lipid systems to the state with maximum enthalpy we have
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( ) ( )
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H H
H H

H H
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2 0

0
2
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and for the corresponding flux

( ) ( )J
d H H

dt
L

T
H HH =

−
= − ⋅ −

0
2 0

2
σ

(4.12)

This expression leads to a single exponential time dependence for the relaxation of the

fluctuation ( )H H− 0

( )( )H t H
L

T
t

t
− = −







 ≡ −







0 2

2
exp exp

σ τ
(4.13)

with a relaxation time given by

τ
σ

=
T

L

2

2
(4.14)

On the other hand, the heat capacity is related to the standard deviation of the enthalpy

fluctuations:

C
H H

RT RTp =
−

=
2 2

2

2

2

σ
(4.15)

and hence

τ = ⋅
RT

L
Cp

3

2
(4.16)

Thus, it turns out that the relaxation time, τ , and the heat capacity multiplied with the third

power of the temperature, C Tp ⋅
3 , are proportional functions. The phenomenological

coefficient here, L , has to be determined by the experiment.

This calculation allows to make two important statements: (i) the distribution of states

contains information about the system relaxation; (ii) the relaxation times of lipid systems

can, in principle, be resolved from calorimetry experiments.
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4.5.  Experimental results and discussion

The close relation between the relaxation times and the heat capacity, estimated in MC

simulations, was tested in two kinds of experiments - frequency-dependent calorimetry and

pressure-calorimetry.

4.5.1. Frequency-dependent calorimetry†

In the frequency-dependent calorimeter [16], the heat provided by the Ni-film has to be

absorbed by the sample. This is a time dependent process. Thus, with periodic heating

( )Q RI t= ⋅ ⋅ +








1
2

10
2 cosω  the system response becomes frequency dependent. The

observable in this experiment was the thermal effusivity (Section 1.4). (We remind that the

effusivity is expressed as ε ρ κ= ⋅ ⋅Cp , where Cp , ρ  and κ  denote the heat capacity, the

mass density and the thermal conductivity, respectively.)

From Eqs. (1.8) and (1.9) one obtains

( )
( )

( )
( )

( )
( )

ε

ε

T f
f

U f
U T f
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empty

empty

, ,

( )
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0

0
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1
=

−

−



















(4.18)

where U  and U empty( )  are the measured amplitudes of the 3 2ω -signal with and without

sample, respectively; T  is the temperature and f =ω π2  is the frequency of the oscillating

heat. The index „0“ denotes the values well outside the transition region, i.e. for

T T Tm m− << 1 (we have used the first data point in each temperature scan).

The results from these kinetics experiments are presented in Figure 4.6. (I am very grateful

to Dr. W. Doster from the Institute for Solid State Physics E13, TU Munich, for letting me

use his frequency-dependent calorimeter and to Dr. H. Leyser for his help in performing the

measurements.)

                                                
† These experiments were performed at the Institute for Solid State Physics E13, TU Munich.
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Figure 4.6. Temperature dependence of the normalized effusivity (Equation (4.18))

at different frequencies. Measurement on  multilamellar vesicle dispersion of 100

mM DPPC in water.

At low frequencies the temperature profile of the effusivity (resp. heat capacity) displays a

maximum. This maximum occurs close to the melting temperature of DPPC (~ 41 deg).

However, since the amplitude of the temperature oscillations in the experiment was about

0.3 deg, i.e., much larger than the transition width (0.1 deg - Figure 2.7 - l.h.s.), the peak in

the effusivity profile appears somewhat broadened. Its maximum decreases with increasing

frequency which suggests that the decay of the enthalpy fluctuations in the system, which

are in fact related to the chain melting, is in the order of seconds. On the other hand, the

measurements demonstrate unambiguously that processes faster than 50 ms time scale (see

the lowest curve) are for the multilamellar vesicle dispersion of adiabatic nature (no heat

absorption).

These measurements are similar in spirit with the volume-perturbation experiments

described in [19,20]. Since the basis of the frequency-dependent calorimetry is the

absorption of heat by the sample, the kinetics studied is truly the kinetics of the lipid chains

near the melting transition. However, the temperature control, as in other studies, remains a

major problem. Therefore, the measurements allow only an estimation of the time scale of

the relaxations in vesicle dispersions.
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4.5.2. Relaxation times resolved from pressure-calorimetry‡

The best experimental data about the lipid membrane relaxation near the chain melting

transition were obtained in pressure-calorimetry measurements. This technique implies a

pressure-jump  whereas the DSC is used as a very good thermostat [1,5].

Operating the calorimeter in an isothermal mode we performed pressure-jumps of +40 bar

or -40 bar in order to alter the system equilibrium. Figure 4.7 shows a typical relaxation

profile of the differential power provided by the calorimeter to the sample to establish the

new equilibrium. In most cases this relaxation was interpreted as a single exponential decay

(details about the technique and the data analysis will be given in [5]).
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Figure 4.7. Relaxation profile (solid circles) after a pressure-jump of -40 bar, at

temperature of 24.6°C. The investigated system was MLV dispersion of 100 mM

DMPC in buffer (5 mM Hepes, 1 mM EDTA, pH 7.7). From the single exponential fit

(solid line) a relaxation rate of 24 s was resolved.

A comparison between the determined relaxation times and the heat capacity profile
measured on the same sample is given in Figure 4.8. (I am very grateful to Peter Grabitz
from our lab for letting me use his data sets for DPPC and DMPC prior detailed
publication.) The relaxation times at temperatures  below and above Tm were measured with
positive and negative pressure-jumps, respectively.

The rate constant in this regime is a convolution of the relaxation rate of the lipid dispersion
with the time constant of the calorimeter. We have not yet determined the response function
of the calorimeter itself. Therefore we show the row numbers with a baseline at about 5 s.

                                                
‡ Here I present detailed view of unpublished data from Peter Grabitz, Göttingen, with permission.
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Figure 4.8. Relaxation times resolved by pressure-calorimetry and heat capacity of a

MLV dispersion of 100 mM DMPC in buffer (5 mM Hepes, 1 mM EDTA, pH 7.7).

Solid triangles: relaxation times, obtained after pressure-jumps of +40 bar; Solid

circles: results from pressure-jumps of -40 bar; Solid line: heat capacity profile

(multiplied with 3T ) measured on the same sample.

The pressure-calorimetry experiments display the same close relation between the relaxation

time and the heat capacity, as predicted from MC simulations and by the histogram

calculations (see the previous section). This vesicle preparation displays a slightly

asymmetric heat capacity profile and it is worth noting that the same asymmetry can be

observed in the temperature dependence of the relaxation time (compare the low- and the

high-temperature end of the transition). Thus, one may conclude that information about the

kinetics of the membrane system can, in principle, be derived from a calorimetric

measurement.

The results from the experiments performed on two other vesicle dispersions are given in

Figure 4.9. The kinetics measurements in this case included only positive pressure-jumps. In

the case of LUV dispersions, the data are somewhat scattered due to the low signal-to-noise

ratio.
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Figure 4.9. Relaxation times resolved by pressure-calorimetry and heat capacity of

vesicle dispersions of 100 mM DPPC. Left: MLV; Right: LUV. The relaxation times

were obtained after pressure-jumps of +40 bar. Solid circles: relaxation times; Solid

line: heat capacity profile (multiplied with 3T ).

We would like to mention that these are by far the best relaxation data on lipid dispersions

available, mainly because of the very stable temperature control during the experiment

(~0.001 deg). This is of crucial importance especially when studying the kinetics of very

cooperative transitions like in the case of multilamellar vesicle dispersions (Figure 4.8 and

Figure 4.9-left hand side). Moreover, since this experimental technique measures the

relaxation of the system enthalpy, the rate constants resolved are truly related to the chain-

melting process.

4.5.3. Discussion

A general finding from the various temperature-jump [18], pressure-jump [2] and volume-

perturbation [20] techniques has been that the main transition is characterized by several

relaxation times (up to five [4]) in the range from nano-seconds to seconds. The processes in

the time regime miliseconds to seconds have been suggested as being cooperative processes

involving a large number of molecules via cluster formation and cluster melting [4]. The

smaller rate constants are generally dependent on the detection technique used to monitor the

lipid relaxation and are related to single-molecule effects like head group orientation [19].

The latter are processes that lead to a very small change of the system energy.

Computer simulations based on the ten-state Pink model demonstrated that the relaxation

towards equilibrium is slowed down by the intermediate chain conformational states which



 107

are found to have a tendency to appear on the surface of the lipid domains formed near the

transition [14]. This so-called softening of the interfaces implies that the interaction between

the domains is screened which effectively slows down the tendency for the domains to fuse

and form a new phase.

In [7] it was shown that the ultrasonic velocities measured in DMPC and DMPC/cholesterol

mixtures display a very good correlation with the heat capacity profiles. This finding was

explained in a thermodynamic theory using the proportionality between enthalpy and volume

changes near the lipid chain-melting transition [8].

We studied the kinetics of the lipid monolayer with the help of Monte Carlo simulations

based on the two-state Ising model. The calculated autocorrelation function of the molar

enthalpy, which gives information about the decay of the thermal fluctuations, can well be

approximated with a single exponential decay function. We found empirically that the

relaxation times calculated by simulations are closely related to the heat capacity. By means

of a simple theory and use of the broad two-dimensional histogram of distribution of states,

this finding was justified. Thus, it turns out that the degeneracy of states sampled in a MC

simulation can be used to obtain information about the kinetics of the melting transition of

the lipid system. From the broad histogram one can derive the distribution of enthalpy states

for a given set of parameters. When this distribution has a Gauss-like shape, the relaxation of

the fluctuations is given by a single exponential decay and the characteristic time is simply

related to the width of the Gauss distribution.

In the pressure-calorimetry experiments we observed a single exponential decay of the

enthalpy fluctuations even at temperatures close to the heat capacity maximum. Indeed

these precise measurements agree very well with our theoretical calculations thus

suggesting that the simple two-state Ising model of the lipid membrane is enough to

describe the cooperative effects at the chain-melting transition. Moreover, from a

calorimetric measurement only one is able, in principle, to deduce information about the

kinetics of the membranous system.

Let’s assume that the phenomenological coefficient L in Eq. (4.16) does not depend on the

type of lipid. Generally, a correct statement on this parameter can only be given when the

relaxation process is separated from the response function of the calorimeter. As mentioned

above, the time constant of the calorimeter is supposed to be in the order of 5 s, thus much

smaller than the maximal relaxation time resolved in the case of multilamellar vesicles.
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Therefore, using the experimental data for MLV dispersion of DPPC at Tm , one calculates

L
cal K
mol

= ⋅
⋅







528 1010

2

2. . Then, using this value the relaxation time (at Tm ) for DMPC can be

estimated. From Equation (4.16) one obtains τ calc. =24.26 sec. which is in the same order of

magnitude as the measured time constant of 33.2 sec. Bearing in mind the simplicity of our

model, the predicative power of the method is pretty good. Thus, we conclude that from a

calorimetric measurement it is, in principle, possible to estimate the time scale of the lipid

membrane relaxation.

In Chapter 2, we applied the histogram technique to generate heat capacity profiles at various

sets of parameters and to fit experimentally measured Cp-traces. Here, it was demonstrated

that the broad monolayer histogram contains the information necessary to resolve relaxation

properties of the chain melting process. The latter is the thermodynamically relevant part of

the lipid main transition since it is connected with the greatest energy change (8700 cal/mol

in the case of DPPC).

4.6. Conclusions

We performed a Monte Carlo simulation study of the lipid kinetics near the gel-to-fluid

transition. Our considerations are based on the two-state Ising model, thus accounting for

the cooperative effects accompanying the chain-melting process, but neglecting the changes

occurring on the level of individual molecules. Therefore, the rate constants determined

from the decay of the enthalpy fluctuations characterize the relaxation of the lipid chains.

These characteristic times are very closely related to the heat capacity, as suggested from

the MC simulations. We developed a theory in order to justify this finding, thus deriving

the relaxation times from the broad distribution of states. The results from the pressure-

calorimetry experiments, which are by far the best relaxation data on lipid dispersions

available, are in very good agreement with the theoretical calculations. Thus, we conclude

that from a heat capacity measurement one can, in principle, deduce information about the

relaxation of the lipid chains near the melting transition.
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General conclusion

The thesis is dedicated to the investigation of the lipid-protein interactions both

experimentally, by means of calorimetry, and theoretically, by means of Monte Carlo

simulations. The main purpose was to link theory and experiment to enable statements on

the thermotropic behavior of mixed lipid-peptide systems.

The theory is based on the two-state Ising model of which the distribution of states was

explored by Monte Carlo simulations. In spite of its simplicity, the model contains the basic

physics underlying the cooperativity of the lipid melting transition and the domain

formation within the membrane plane. The Monte Carlo simulation approach allows to

account properly for the thermal fluctuations in the lipid system. The greatest advantage of

the two-state Ising model is its direct relation to the experiment. All parameters can be

obtained in a calorimetric measurement. The unknown effective interaction parameter, ωgf ,

is derived indirectly from the peak width of the heat capacity. Since the Monte Carlo

technique, as any other computer simulation method, is a very time consuming procedure, a

quantitative comparison between calculations and experiment is largely facilitated by using

the histogram method for analysis of the MC data. The histogram technique thus allows a

quasi-analytical determination of mean values of various physical observables like

enthalpy, volume, heat capacity, compressibility and others.

We sampled in one broad histogram the complete information of the degeneracy of states of

a single-component lipid monolayer system. The histogram method for Monte Carlo data

analysis was first applied to generate fits of experimentally measured heat capacity profiles

of three different vesicle preparations. Thus, we have shown that the two-state model is

good enough to describe the melting process in lipid dispersions with different

cooperativities. The broad two-dimensional histogram even contains the information

necessary to derive the heat capacity traces of a simple mixed lipid-peptide system - the

case of gel-like peptides (section 3.3). The thermotropic behavior of this mixture was first

resolved using the monolayer histogram technique.

In the general case of a lipid membrane incorporating small peptides, two component

Monte Carlo simulations were performed. The peptide aggregation within the membrane

plane results from the different solubility in the gel and the fluid phase. The information
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about the density of states in this case was sampled in a broad four-dimensional histogram.

The construction of the latter is computationally more demanding which is the reason for

considering only the case of a membrane containing 10 mol% peptides. The broad four-

dimensional histogram is used to calculate the heat capacity traces of various model

mixtures. This model results can be used for a fast analysis of measured Cp-traces on lipid-

peptide systems.

From the comparison of the theoretical calculations to the experimentally measured heat

capacity profiles, the aggregation of the peptide gramicidin A in the gel and the fluid phase

of DPPC and DMPC bilayer was predicted. These predictions were tested by means of the

atomic force microscopy technique and a good agreement was found. Thus, we

demonstrated that from calorimetric measurements only it is, in principle, possible to

resolve peptide aggregation properties.

Since the histogram approach permits quasi-analytical Monte Carlo calculations, it opens a

possibility for a theoretical investigation of various model cases with temperature-

dependent interaction parameters. These are important cases since for some peptides it is

said that they change their conformations upon bilayer melting. Without the use of the

histogram technique, the calculation of heat capacity traces with temperature-dependent

interaction energies for comparing them with experimentally measured profiles is virtually

unfeasible.

We, furthermore, used the information sampled in the monolayer histogram to resolve lipid

relaxation properties near the chain-melting transition. Since in our model only two lipid

states, gel and fluid, are considered, the determined rate constants result truly from the

cooperative processes of cluster formation and cluster melting. The relaxation times

resolved characterize the decay of the enthalpy fluctuations. These are the

thermodynamically relevant rate constants, since the chain-melting process is the reason for

the large enthalpy change upon gel-to-fluid transition. Other relaxations related to single-

molecule effects like head group rotation etc., are not included in the two-state model.

Moreover, the latter processes contribute very little to the change of the bilayer energy upon

melting.

The proportionality between relaxation time and heat capacity, τ ∝ ⋅C Tp
3 , estimated

theoretically was tested in pressure-calorimetry experiments. The rate constants resolved by
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means of pressure-calorimetry are by far the best relaxation data available on lipid

dispersions. This experimental technique measures the amount of heat provided to the

sample after a pressure-jump to keep the sample temperature constant. Thus, pressure-

calorimetry resolves the characteristic time of the enthalpy fluctuations. The results from

these very precise measurements agree well with our theoretical calculations.

The relation between relaxation time and heat capacity opens a possibility for the derivation

of information about the membrane kinetics from a simple calorimetric measurement. Thus,

since the heat capacity profiles of lipid-peptide mixtures are often asymmetrically

broadened and shifted, we predict that the relaxation times characterizing the decay of the

enthalpy fluctuations in these systems display similar temperature dependence. Pressure-

calorimetry experiments on mixed systems are under work.
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