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Onsager's phenomenological equations successfully describe irreversible thermodynamic processes. They
assume a symmetric coupling matrix between thermodynamic fluxes and forces. It is easily shown that the
antisymmetric part of a coupling matrix does not contribute to dissipation. Therefore, entropy production is
exclusively governed by the symmetric matrix even in the presence of antisymmetric terms. In this paper we
focus on the antisymmetric contributions which describe isentropic oscillations with well-defined equations
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of motion. The formalism contains variables that are equivalent to momenta and coefficients that are
analogous to inertial mass. We apply this formalism to simple problems with known answers such as an
DOI: 10.1039/c7cp02189e oscillating piston containing an ideal gas, and oscillations in an LC-circuit. One can extend this formalism to
other pairs of variables, including chemical systems with oscillations. In isentropic thermodynamic systems all

rsc.li/pccp extensive and intensive variables including temperature can display oscillations reminiscent of adiabatic waves.

Introduction

Thermodynamics is usually applied to describe the state of
ensembles in equilibrium as a function of the extensive and
intensive variables independent of time. Linear nonequili-
brium thermodynamics is an extension of equilibrium thermo-
dynamics that is used to describe the coupling of equilibration
processes of the extensive variables in environments with large
viscosity. It is characterized by a formalism first introduced by
Onsager™” based on a linear coupling of fluxes of extensive
quantities and forces related to intensive quantities. These
forces are given as derivatives of the entropy. Onsager’s method
introduces time in terms the rates of change of extensive
quantities on their path towards equilibrium. Thermodynamics
and linear nonequilibrium thermodynamics are related through
the fluctuations of the extensive variables® and the concept
of microscopic reversibility.> Fluctuations are proportional to
thermodynamic susceptibilities.” E.g., the heat capacity is
proportional to fluctuations in energy, the compressibility
to fluctuations in volume® and the capacitive susceptibility to
fluctuations in charge.” Fluctuation lifetimes are related to
equilibration rates.”> Nonequilibrium thermodynamics is not
typically applied to processes with inertia, which is rather
the realm of mechanics. Among many other applications,
mechanics is used to describe problems where point masses
move in time within a potential without any friction, ie.,
systems that are not obviously ensembles. Such systems are
characterized by Hamilton’s equations of motion. However,
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one can construct examples where both thermodynamics and
mechanics lead to equivalent descriptions.

Coupled gas containers

As an example, let us consider two identical containers, each
filled with an adiabatically shielded ideal gas. They are coupled
by a piston with mass m (Fig. 1A). We further assume that the
motion of the piston is frictionless and that no heat conduction
occurs along the piston. The two gas volumes are thermo-
dynamic ensembles, and their states are characterized by their
volume, pressure and temperature. At the resting position of
the system the entropy of the total gas is at maximum, and
volume, pressure, and temperature of the two containers
are given by Vy = V, = Vo, p1 = p2 = po, and Ty = Ty = Ty. On
can define a force F = p-A, and a position x = V/A,, where 4, is
the constant cross-section of the gas container. If the position
of the piston is brought out of equilibrium, the pressure of
the two gases will be different and one obtains a force in the
direction towards the equilibrium position. If the deviation
from equilibrium, Ax, is small, the force in the piston is propor-
tional to Ax. This is reminiscent of two coupled springs as
shown in Fig. 1B.

The change in entropy of a mono-atomic gas due to changes
in temperature and the position of the piston is given by

AS =¢yIn (Tlo) +kln (x%) 1)

where ¢, = (3/2)k. The first term on the right hand side
corresponds to a distribution of motional degrees of freedom,
while the second part is the well-known entropy change of an
isothermal compression that is solely of a configurational
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Fig.1 (A) Two reservoirs 1 and 2 containing an ideal gas, which are
coupled by a piston with mass m. (B) Two springs with spring constant
K attached to a mass m.

nature. During the adiabatic compression of an ideal gas
the entropy stays constant, i.e. AS = 0. This leads to the fact
that T-x*®, T°2.F 23, and Fx°"°, are all time-independent
constants.

Since there are two forces, F; and F,, from the two springs
acting in opposite directions on the mass m, the total force is
given by AF = F; — F,. From the equations of state one obtains

10 F,
ar = 10

-Ax+ O(Ax)’ ~ —K - Ax, @
3 X0

with a spring modulus K = (10/3)-Fy/x, for the two springs
combined, which is a constant with units [N m™']. In the ideal
gas, Fo-x = NkT, and

K= %NkTO, (3)
where N is the number of gas atoms in each container and Ty is
the temperature of the two containers in equilibrium (identical
in both containers). This implies that the spring constant is
proportional to temperature.

The force acting on the piston given by AF = —K-Ax is
equivalent to the notation in classical mechanics. The integral
V(Ax) = —[Fdx=1/2-K-Ax* is the mechanical potential
which is proportional to Ax®. It is in a minimum for Ax = 0
(equilibrium) and equivalent to the maximum entropy.

For Ax # 0, the temperatures in the two containers can be
determined from T-x*” = const.

4. To Ax

ooy (4)

AT=T,—T) =—

and

Ax
X0

5 2
AE = AE| + AE, = gNkTo( ) + O(Ax)* (5)
where temperature differences and positional differences are
intrinsically coupled if both variables are free to change.

If we do not fix the position of the piston, the above system
will oscillate. The spring modulus can be determined from
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purely thermodynamic considerations given the assumption
that each of the two gas containers are in equilibrium. This
implies that the typical time scale of changes in position of the
piston must be much smaller than the characteristic collision
time of the gas particles at the given temperature and pressure.
For instance, the mean velocity of Helium at room temperature
is (v) =1245 m s~ . At 1 bar pressure, the mean free path length
is 12 pm, the mean collision time is 9 ns, and the collision
frequency is on the order of 100 MHz. For this reason, one can
safely assume that in any practical realization of the above
experiment each of the two gas volumes contains an equilibrated

gas. The frequency of oscillation is given by w = /(K /m), where
m is the mass of the piston. (The total mass of the gas is assumed
to be much smaller than m and has been neglected). The above
considerations fail when the mass of the piston is comparable to
the mass of the gas or the characteristic collision frequency of
the gas is smaller than the frequency of the piston. Due to the
equations of state, the gas containers will not only display oscilla-
tions in position but also display oscillations in temperature,
pressure and internal energy of the gas (Fig. 2). Any adiabatic
system with springs that are characterized by equations of state
can be considered in complete analogy.

In the presence of dissipation, macroscopic motion will
disappear after some time and the internal energy of the gas
will be distributed equally in the two containers. This could
for example be realized when the piston conducts heat. This
equilibration is not an isentropic process because the tem-
perature increases in comparison to the zero-position of the
oscillating piston by

AE 10 (Axmax

AT max = = —NkT)

3/2-Nk 9 Xo

2
) + O(Ax)* (6)

where Axp.x is the maximum deviation of the piston from
the equilibrium position. We see that dissipation leads to an
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Fig. 2 Oscillations of temperature, internal energy of the gas, volume and
position in two coupled containers filled with an ideal gas. The frequency
of the oscillation will depend on the mass of the piston, and the precise
temperature and pressure of the ideal gas in equilibrium. The top panel
shows the total internal energy of both containers. The amplitude of the
oscillation is assumed being 1% of the total gas volume.
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increase in the overall temperature while in the absence of

dissipation the temperature oscillates.
According to eqn (1), the entropy increases by

AT, AXmax \ >
AS=cy- ln(l + m“) = éNk( xm‘”‘) +0(Ax)*  (7)

T() 3 X0

The entropy is in its maximum when the amplitude of the
oscillation is zero. It is interesting to note that except for a
temperature-dependent prefactor, the change of entropy has a
similar dependence on position as the mechanical potential
V(Ax). This seems natural considering that entropy carries
the units [J] K™'] and the work displays units of [J]. We will
therefore assume in the following that the entropy is the
potential from which the forces can be derived - an assump-
tion commonly made in non-equilibrium thermodynamics.
Thermodynamics describes the physics of the springs rather
than that of the moving body and thus provides the origin of
the potential energy.

A seemingly different class of oscillations are chemical
oscillations such as the Belousov-Zhabotinsky (BZ) bromate
reaction,® the iodine clock,”'° or yeast populations under stress
conditions.'" Such systems are also of a thermodynamic nature,
and the variables that oscillate include the chemical potentials
and the number of particles, respectively. The BZ-reaction is a
chemical clock containing HBrO,, Br~, Ce**/Ce*’, or O, as
intermediates that oscillate in time.'>™™* Such reactions are
thought to originate from far-from-equilibrium processes."®
Typically, one describes them with a set of coupled non-linear
rate equations containing auto-catalytic intermediate products
as free variables. They are exemplified by well-known reaction
1516 or the Oregonator.'” What
such reaction schemes have in common is that temperature,
pressure, the electrical potential and other thermodynamic
variables not directly related to the concentrations, are not
considered.

schemes such as the Brusselator

Interestingly, it is known that in some chemical systems
such as the BZ-reaction the temperature oscillates in phase with
the concentrations of the intermediates (Fig. 3(A-C),">"*79).
This is reminiscent of adiabatic oscillations such as the coupled
gas containers in Fig. 1. Similar oscillations in temperature or
heat production rate have been reported in the Briggs-Rauscher
reaction.”® There are also biological systems with similar
responses, e.g. yeast cells'' or the action potential in
nerves,?>?* which that can produce periodic pulse trains and
also display periodic temperature signatures. In the past, we
have argued that the reversible changes in temperature found
in nerves indicate that the nerve pulse is an adiabatic pulse
reminiscent of sound rather than a dissipative wave.”>> The
BZ-reaction shares similarities with the temperature response
of nerves, i.e., it shares features of adiabatic processes.

In this paper, we describe a formalism reminiscent of Onsager’s
phenomenological equations.””*'® In Onsager’s formalism,
only dissipative processes are considered, and the time scales
are related to the fluctuation lifetimes. No inertia or momenta
are taken into account. This is a good assumption for many
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Fig. 3 Temperature oscillations as a function of time in the Belousov—
Zhabotinsky reaction and in nerves. (A) Adapted from ref. 18 yielding up to
0.08 K in temperature variations. (B) Adapted from ref. 12 and (C) adapted
from ref. 19.

processes with large friction, and Onsager chose to focus on
such phenomena. The consequence is a symmetry in the
coupling constants between fluxes and forces known as the
reciprocal relations. However, the formalism cannot be applied
to the motion of the two coupled gas pistons even though this is
also a thermodynamic process that occurs in time. In this
article we explore the possibility that mechanical oscillations
and chemical oscillations are both related to adiabatic processes,
and that they can be described with the methods of linear non-
equilibrium thermodynamics that are modified such that they
contain inertia. We show that in such oscillations, the system is
both adiabatic and isentropic.

Theory

Einstein proposed to treat the entropy as a potential.® In
harmonic approximation, the entropy can be expanded around
that of the equilibrium state as

1 9”S 1
S=So+33 (roor ) &&+ -~ So—=> @it (8
0+2 g (06,85/)0€l§/+ 0 7L g]é f/ ()
ij , v

—&ij

where the g; are the coefficients of a positive definite matrix
with g;; = g;; and det(g) > 0 (all eigenvalues are positive). The

variables are given by &; = («;
quantity (e.g., internal energy, volume, the number of particles

— o,), where o, is an extensive

of a particular species, charge, etc.), and o, is the value of this
variable in equilibrium. The consideration of the entropy as a
potential led to the development of fluctuation-dissipation
theorems pioneered by Greene and Callen*® and Kubo.?*
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Entropy production in a closed system evolving from a
nonequilibrium state can be described by

ds

oS ¢,
—_— = = _— — = Xl‘ is 9
a ¢ Zaci 5 = DX )
’v\,]/ J
=X, =Ji

where the X; = 0S/0¢; are the thermodynamic forces and the
Ji = 0&/0t are the conjugate thermodynamic fluxes of the
variables ¢&;.

Onsager’s phenomenological equations™” expand the fluxes
as linear combinations of the forces:

Ji :L‘lel +L‘192X2+~~-

Jr= L5 X1+ L Xy + (10)

or J = L5X, where L is a symmetric matrix. The symmetry is
know as the ‘reciprocal relations’. Using eqn (10), the entropy
production is given by

ds
o= ZL;;X,—X_,— = Z L,‘;gikgj/fkf/,

ij ijkl

(11)

where X; = — Y g;& and J; = ZL;X, =— ZL;?gjkfk.
J ) Jko

Dissipation

Onsager’s decision not to consider the antisymmetric terms is
based on the assumption that equilibrium fluctuations do not
display a preferred direction in time, i.e., that detailed balance
is obeyed.” Onsager then postulated that a fluctuation and a
macroscopic perturbation possess similar time evolutions and
are both described by the phenomenological equation. This is
plausible for over-damped systems where inertial forces are
small compared to the forces created by thermal collisions.
However, one can imagine nonequilibrium states of thermo-
dynamic systems prepared such that they display a preferred

$1

dissipation

isentropic oscillation

PCCP

direction in time. The example in Fig. 1 is of this nature.
In such systems, inertia is not generally small, and Onsager’s
argument may not apply.

Any quadratic matrix L can be written as a sum of a
symmetric and an antisymmetric part, L = LS + L, with

Lij+ L Lij— L

S _ 4 _
L; = and Lj = B (12)
The matrix L* describes isentropic processes because it can

easily be seen that

> LiXX;=0. (13)
ij

It is therefore a natural consequence which does not require

any further justification that only the symmetric matrix L®

contributes to dissipation (shown in Fig. 4, left), which was

already discussed by Coleman and Truesdell*” or Martyushev

and Seleznev.”® Entropy production can be written more gen-

erally as dS/dr =) L;X;X; without making particular refer-
i

ence to the symmetry of the matrix L. As we will show, it is not
generally justified to omit the antisymmetric terms. The terms
associated with the antisymmetric matrix describe processes
that conserve entropy (i.e., oscillations, shown in Fig. 4, center)
while the combination of the two leads to damped oscillations
as schematically described by Fig. 4 (right).

Oscillations

In the following we explore the consequences of retaining only
the antisymmetric terms. We will consider simple oscillations
in a harmonic entropy potential.

We assume systems with two variables, &; and ¢&,, with
associated fluxes, J; and J,, and two conjugated forces, X; and X,.

0 L
J= X,
-L{E 0

(14)

é1

dissipative oscillation

Fig. 4 Schematic representation of dissipation (left), isentropic oscillations (center) and real processes with both oscillations and dissipation (right) in a

harmonic entropy potential with two variables, & and &,.
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There is only one coefficient, L?,, and the phenomenological
equations read

d¢
d_tl =Ji = LiyXs = —Lih(gaé) + gnb)
N (15)
Ef—nb —LHX = +L (g1 ¢ + g126).
L, may be positive or negative. The time derivatives of eqn (15)
lead to
d26| - A fl diZ an
- (glwmw ) (g
16
dzéz él déZ d ( )
T =+L glld—+g12 T (le) et< >f2v

which displays periodic solutions with &; = &; o cos(wt + ¢4) and
& = &cos(wt + ¢p) with a frequency, w, given by

o? = (Lf‘z)zdet (g) Thus, the antisymmetric part of the coupling

matrix leads to oscillations.

The forces are linear functions of the fluxes of the extensive
variables. Since the extensive variables oscillate, the conjugated
thermodynamic forces also oscillate. This implies that in the
isentropic case one also expects oscillations of the intensive
variables such as temperature, pressure, electrical field and
chemical potential.

Equations of motion for the isentropic case

The entropy is given by
1 2 1 2
§= S0 — 581" — 8126162 — 5824y = const. (17)

By using eqn (15) we obtain for the two forces X; and X,

ﬁ, —g11&) — gné eqn (15) _Lg
a¢, = —81161 — 81262 = sz.z
(18)
ﬁ_ —gppé) — ¢ eqn (15) 1 f
8527 81261 —&2c2 = sz 1

where & = dé;/dr. We will call eqn (18) the thermodynamic
equations of motion.
For an arbitrary even number of variables, we find that

E=-rtogi= (L g) (19)

with oscillatory solutions. The thermodynamic equations of
motion are given by

X = g‘z (L)' (20)

Simplification. For simplicity we assume in the following
that is a diagonal matrix meaning that the principal axes of the
entropy potential align with the variables under consideration.
In the case of two forces and fluxes, eqn (15) yields

L g
L/142g22 dr’

& =-— (21)

This journal is © the Owner Societies 2017
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Therefore, the second variable is proportional to the tem-
poral variation of the first variable, i.e., it is reminiscent of a
momentum. Eqn (16) becomes

d*¢

P 7(Lf2)2(g1 1822)¢1

(22)

with oscillations of frequency w” = (L%,)*(g1122)- The thermo-
dynamic equations of motion (eqn (18)) are given by

aS 1.
0751— —gné = _fﬁéz
(23)
a_Sf_ é 7+L£
oz, 82282 Lf‘g 1

Eqn (18), (19) and (23) display a formal similarity to Hamil-
ton’s equations of motion, which for one spatial variable x with
an associated momentum p, are given by

oH

Ox S

dp

=—p and (24)

where 2 is the Hamiltonian.
If dissipation is included, the phenomenological equations

Ly
J= X,
L3

where Lf1~g11 = L§2~g22. This situation is shown in Fig. 4, right.

are given by

L},
(25)
—Li

Examples

The above can be used to describe some very simple examples
where the result is known.

Oscillating piston (or spring)

Let us consider two coupled pistons with an associated mass,
m, as given in Fig. 1(A). We assume that the position of the
mass in equilibrium is given by x, and the deviation from
equilibrium is Ax. Further, the pistons possess an adiabatic
compression modulus K that can be calculated from the
adiabatic equations of state of an ideal gas as done in the
introduction (Two metal springs are conceptually equivalent
but would possess different equations of state).

Let us consider two variables, ; = Ax and ¢,, and that g;is a
diagonal matrix.

From eqn (21) it follows that

1 dAx
S , 26
T Lign dr 6)
The entropy potential is therefore given by
1 1 Ax\?
AS = —g | Ax* — —2(d—}"> (27)
2 2gm(Lih)"\ df

In an equilibrium situation, the Ax and Ax fluctuate indepen-
dently of each other, and AS is not constant. For a well-defined

Phys. Chem. Chem. Phys., 2017, 19, 17331-17341 | 17335
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pair Ax and Ax the probability is given by

AS(Ax, Ax))

P:Poexp( B

(28)
If it is integrated over Ax, it yields a Gaussian distribution for the
fluctuations in position of the piston,

_/&n gnAx? _ K Kx?
Pe =\ ok eXp( 2k >_ \ 27kT eXp( wr) @

which is just the positional equilibrium fluctuations of an elastic
spring. Here, g11 = K/T corresponds to the compression modulus
(spring constant K) of the setup in Fig. 1(A). It is well-known from
the fluctuation theorems that the compression modulus is related
to the equilibrium fluctuations in position.

When P is integrated over Ax instead, it yields a one-
dimensional Maxwell distribution for the fluctuations in velo-
city of the piston

1 AX?
Py = 3 - exXp 5
2(L’142) Ttgzzk 2g22 (L/142) k
_ m < mx?
=V omkr P\ T2kr

which represents the equilibrium velocity fluctuations of the
spring. Here, 1/g,,(L1,)* = m/T corresponds to the mass attached
to the piston in Fig. 1(A). It is important to point out that the
entropy AS responsible for the equilibrium fluctuations is the
same as the one in which oscillatory motion takes place and that
the elementary constants necessary to describe the oscillatory
motion are already contained in the equilibrium fluctuations.
Entropy conservation leads to

1 (dAx) 2
= const.

(30)

AS = *lgllez —

— (31)
2 2gm (Lf'2)2

dr
Using the abbreviations introduced above, eqn (31) can be
rewritten as

(32)

Ax) 2
—TAS = 1KAx2 +m dAx = const.,
2 dr

which corresponds to the equation for energy conservation in
mechanics. In our examples, the energy in mechanics is
equivalent to —TAS in thermodynamics, ie., a free energy.
Eqn (22) yields

d2 (Ax) B

_(Lflz)z(gngzz)Ax (33)

Thus, the oscillatory frequency is given by
2 K
a)z =g1182 (sz) =—. (34)
m
The thermodynamic forces are given by

KA
X = —g”Ax = —Tx and

17336 | Phys. Chem. Chem. Phys., 2017, 19, 1733117341

PCCP

The first of the thermodynamic equations of motion as given in
eqn (23) yields

1 d>Ax
(Lflz)zgn de2

This is the thermodynamic analogy to Newton’s second law,
which is given by

—glle:—i-

(36)

—KAx = mAX (37)

The thermodynamic formalism is absolutely equivalent to the
analytical mechanical description of the same problem as given
in eqn (24). One obtains oscillations of position and velocity of
the piston, of internal energy and the flux of internal energy
from one container to the other, and of the temperature of the
two containers.

LC circuit

The derivations in the previous paragraph are independent of
the choice of the extensive thermodynamic variable.

Let us again consider two variables, &; and &,. The first
variable ¢; = Aq shall be a charge, e.g. the difference of the
charge on two capacitor plates. The second variable is given by

1 dA 1
62 = A d—q =4 A I, (38)
1h&» dt Lig»
where I = —dAgq/d¢ is an electrical current. The entropy is
conserved
AS 1g A L P const (39)
= —3811 - 2 = :
2 2¢x (L)

The analogous equation for an LC-circuit in electro-
magnetism is
1A4> 1

E=-"4_LI= const.,

T 2Cnm 2 (40)

where Cy, is the capacitance and L is the inductance of the coil
(Fig. 5). In analogy to the mechanical example, we find that
211 = 1/Ciy T and 1/g5,(L1,)> = L/T. The first term in eqn (40) is
the electric energy, while the second term is the magnetic
energy. They correspond to the potential and the kinetic energy
in the previous problem. In the language used here, eqn (40)
translates to

1 A4

1
—TAS = =——+-LI* = const.,

2C, 2 (41)

The probability distribution for the charge fluctuations on the
capacitor in equilibrium is then given by

P, = ! S qu
1=\ amkre, P\ 2c. kT

and the corresponding distribution for the current fluctuations
(i.e., the Maxwell distribution) is

P = /£ ex Lr
=\ 2wk P\ "%

This journal is © the Owner Societies 2017
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Fig. 5 Schematic diagram of an LC circuit with a capacitance C,, and the
inductance of a solenoid coil of L.

Eqn (22) yields

d*(Aq 2
2D (1) (1) (44)
with oscillatory solutions with frequency
2 _ (74?2 _ 1
o’ = (L) gngn = o (45)
The thermodynamic forces are given by
Aq lIlcl
X, =—gnAx=— =— d
1 g11AX CuT T an
. 1 L-1
Xy = —gné = +L_AI = +g22L/14277 (46)
12

where V., is the electrostatic potential of the capacitor. The first
of the thermodynamic equations of motion as given in
eqn (23) yields
1 d?Ag
2 2
(L) g 4

—gulAg =+ (47)

which corresponds to

fCLmAq =LI. (48)
This equation has been derived previously from Kirchhoff’s
loop rule. Eqn (48) is the electrical analogy to Newton’s second
law. LI = —LAj is the equivalent of an inertial force, an L plays
the role of an inertial mass. Thus, the thermodynamic formal-
ism is equivalent to the electrical description of the same
problem.

For a solenoid with N windings and a cross-section of A,
eqn (48) can also be written as

~Py=N- A%
Here, Y. = Aq/Cn, B = (uou:N/)-1, and the inductance is
L = uou:N’4/l. The electrical potential ¥., on the capacitor is
equal to the electromotive force of the solenoid. This well-
known law can also be derived from Faraday’s law.

It can be seen that in the above system one obtains oscillations
of charge, electrostatic potential, current, magnetic field and
temperature. The temperature oscillation will for instance be
visible in the dielectric of the capacitor due to the electro-caloric

effect®* ! and in the diamagnetic or paramagnetic material inside

(49)
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of the coil (magneto-caloric effect). The charging of the capacitor
and the magnetization of the coil without exchange of heat
corresponds to the adiabatic compression of the ideal gas in the
previous example.

Oscillating reactions

The previous section suggests that there exist analogues
of inertia also in systems that are not of mechanical nature.
In the electromagnetic case, the inductance plays the role of an
inertial mass. The results of the above calculations are well-
known and therefore are not new. However, they demonstrate
that these relations can be derived from a non-equilibrium
formalism. The elementary constants in the formalism are
already contained in the equilibrium fluctuations in the
absence of any macroscopic motion.

Since the different work terms all play analogous roles in
thermodynamics, it seems plausible that any pair of an exten-
sive variable and its conjugate intensive variable can be treated
in a similar manner. This suggests that similarly meaningful
thermodynamic relations can be obtained for any pair of
variables. In the above examples, the mechanical work on a
capacitor is — [Fdx, and the electrical work is [¥dg.

In chemistry, the intensive and extensive variables of inter-
est are the chemical potentials, y;, and the number of particles
in a chemical reaction, n;, and the work is given by > wdn;.
In a chemical reaction, the extensive quantity is the reaction
variable, {. Let us consider a chemical reaction

v Xi v Xa 4 vy Y+ vy Ya 4o, (50)

where the X; and Y; are chemical reagents, and the v; are
the reaction stoichiometries. We assume that the first variable
&, = { is the reaction variable with the conjugated force A/T.
Here, A = — (Y vy,uy, — Y. vx,y,) is the affinity of the above
reaction, the y; are the chemical potentials of the reagents, and
the chemical work is given by [—Ad¢.

Most reactions are of a purely dissipative nature and do not
display oscillations. However, there are many known chemical
Let us assume a chemical oscillation that is
dominated by antisymmetric terms, i.e., dissipation is small.
Then, the second variable ¢, is given by

oscillations.

1 d¢
=— — 51
§2 L'142g22 dl’ ( )
where (d{/d¢) is the flux in the chemical reaction.
The entropy is conserved
1 1 do\?
AS = ——g1 (> — 7<—) = const., (52)
2 282 (Lflz)2 di

where 1/g,,(L4,)*> = Leo/T and gy, = 1/ChT. We call Ly, a
chemical inductance and C,, a chemical capacitance.
Eqn (22) yields
()
dr

= —(sz)z(gngzz)c (53)
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with oscillatory solutions with frequency

2 AN\2 _ 1
= (L = . 54
o’ = (L) gugx Cola (54)
The thermodynamic forces are given by
. ¢ _4
X =— = — =— d
1 8116 Cal T an
. 1 dg alLen €
Xy =— =4 =+gnl 55
2 82282 +Lf12 a +g»Lli; T (55)

with —{/C., = A, where A is the affinity. The first of the
thermodynamic equations of motion as given in eqn (23) yields
d*¢

& (56)
(Lflz)zg22 de?

—gu{=+

which corresponds to

A= Ly, (57)

which is the chemical equivalent of Newton’s second law.

As argued above, the chemical potentials, the number of
particles of each chemical species, the affinity and the reaction
variable { will oscillate. So will the temperature. The latter effect
could be called a chemo-caloric effect. A shift in the position of
a reaction without exchange of heat corresponds to the adiabatic
compression of the ideal gas in the first example, and to the
adiabatic charging of a capacitor in the second example.
Temperature oscillations as indicator of the presence of adiabatic
processes have been found in various chemical oscillations, most
notably in the Belousov-Zhabotinsky reaction as discussed in the
introduction (Fig. 2). We therefore propose that the oscillatory
part of chemical clocks corresponds to the isentropic contribution
to the chemical process.

Discussion

In equilibrium, ensembles do not display macroscopic motion.
Therefore, any macroscopic oscillatory process necessarily
describes a nonequilibrium situation. However, oscillations are
not considered in the usual nonequilibrium thermodynamics
formalism as given by Onsager,"” Prigogine and collaborators'®
or standard textbooks such as de Groot and Mazur.”> We have
shown here that by a generalization of the methods of linear non-
equilibrium thermodynamics one can understand some simple
oscillatory processes using the language of thermodynamics.
While our considerations are very straight-forward and simple,
they have (to our knowledge) not been made previously. Concep-
tually, however, the very insightful papers by von Helmholtz in his
work on mono-cyclic systems® and on the principle of least
action®® already attempted to generalize the Lagrangian and
Hamiltonian formalism from analytical mechanics to electrical
systems and to thermodynamics. Helmholtz relates functions
such as the Lagrangian to equivalent terms in thermodynamics
such as the free energy. Here, we include the possibility that
chemical oscillations can be understood by using such a
formalism.
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A single oscillating mass as in Fig. 1 is not an ensemble.
The treatment of this problem with thermodynamic means is
nevertheless possible because the springs are ensembles. Thus,
thermodynamics provides the theory for the potential and
the forces. It also provides a natural explanation why the
mechanical spring possesses an equilibrium position. This is
not required in an energy-based formalism. The origin of the
potentials is not addressed in classical mechanics. This also
holds true for the electrical example in Fig. 5.

Here, we focus on the linear regime of nonequilibrium
thermodynamics where entropy production is given by
o =) L;jX;X;. It is usually assumed that Onsager’s reciprocal

i

relations are valid, Ze., the coupling matrix is symmetric (L; = L)
and the processes are purely dissipative. This formulation leads to
interesting extremal laws such as minimum entropy production
for stationary states.'® It can be used to understand the couplings
between different thermodynamic forces, e.g., Seebeck-, Peltier-,
Dufour- and Soret-effect. Another principle is the maximum
entropy production law.>*?>3® Maximum entropy production
has been proposed to be important in the nonlinear physics of the
atmosphere,*”*® of evolution and life in general.”®*° However, the
maximum entropy production principle is not well established
and has been heavily criticized.”® It is thus unclear whether it
represents a generic thermodynamic principle.

There have been many attempts to include nonlinear pro-
cesses to describe chemical oscillations,"””*" complex systems"?
and even the cyclic evolution of macromolecules and life.*?
Since life involves many chemical and biological clocks,*® it is
surprising that the focus in all of the above studies has been
exclusively on the far-from-equilibrium dissipative processes.
In contrast, the metaphor of a clock in physics describes mostly
near-equilibrium reversible phenomena with only minor friction,
which is compensated by the winding of a spring.

We show that the antisymmetric terms in Onsager’s coupling
matrix L; do not contribute to entropy production. Martyushev
and Seleznev?® concluded from this finding that Onsager’s Matrix
must be symmetric and antisymmetric contributions can be
discarded. More radically, Coleman and Truesdell®” questioned
the general validity of the reciprocal relations. This is not the aim
of the present paper. We agree that irreversible thermodynamics
is described by a symmetric matrix. However, antisymmetric
contributions provide additional information about co-existing
reversible processes.

Phenomenological Onsager-type equations yield fluxes that
can be written as J = L X, where L is an arbitrary matrix that
can be uniquely separated into a symmetric and an antisym-
metric matrix, éS and éA, respectively. Any symmetric square
matrix has only real eigenvalues and therefore leads to exponen-
tial relaxation behavior. It describes the irreversible processes. Any
antisymmetric n x n matrix (where 7 is an even number) has only
imaginary eigenvalues and leads to oscillatory solutions which do
not contribute to dissipation. The sum of a symmetric and an
antisymmetric matrix can either have purely real eigenvalues
or complex eigenvalues, depending on the magnitude of the
antisymmetric matrix elements. Onsager’s decision to focus on
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a symmetric coupling matrix” is justified only in systems where
motion is dominated by random thermal collisions, and inertia
can be neglected. Under such conditions the correlation
functions of thermal noise are independent of the arrow of
time. This scenario was used for the derivation of the reciprocal
relations. Even within these constraints the application of
the reciprocal relations is not always trivial.** Onsager himself
discussed heat conduction in anisotropic crystals where heat
flow in spirals may occur and the coupling matrix is not
symmetric." Casimir discussed the example of heat conduction
in asymmetric crystals, but also a case where a capacitor is
discharged in the presence of magnetic fields where antisym-
metric coefficients appear.** A similar case was discussed for
static magnetic fields by Mazur and de Groot.*> Onsager’s
reciprocal relations require microscopic reversibility (detailed
balance). Onsager writes in the abstract of his second 1931
paper:> “(Quote) A general reciprocal relation, applicable to
transport processes such as the conduction of heat and electricity,
and diffusion, is derived from the assumption of microscopic
reversibility.” Thus, the argument that leads to the reciprocal
relations is based on an assumption about the nature of
microscopic subsystems in certain experimental settings. It is
questionable whether this assumption is valid for macroscopic
oscillations that include inertia, and where the arrow of time
matters.

The example of two containers containing an ideal gas
coupled by a piston with mass m (Fig. 1) demonstrates that
one can prepare thermodynamically meaningful nonequilibrium
situations where Onsager’s assumptions do not hold true.
Oscillations represent nonequilibrium situations but they are
not irreversible. We have shown here that one can find oscilla-
tions even close to equilibrium, and the far-from-equilibrium
situations typically assumed for oscillating reactions are not
necessary. For each extensive variable ¢; there is a variable
&H=-(1 /Lf‘zgzz)él that behaves like a momentum. In the
absence of oscillations, this momentum will decay with the
same rate as the value of the extensive variable and no additional
information is gained by considering the momentum. However,
in the presence of inertia this process will include inertial forces
that must be included in the formalism. With the present
formalism, one can find analogies to the oscillation in a spring
and the oscillations in an electrical LC element and find
analogies to Newton’s second law. In particular, one finds
equivalents of the inertial mass. For instance, the mass asso-
ciated with an oscillating spring is analogous to the inductance
in a solenoid coil. Since the formalism is identical for each pair
of extensive and intensive variables, we propose that isentropic
oscillations in chemical reactions can exist in the linear thermo-
dynamic limit, and that such oscillations are connected to
chemical inertia involving the existence of a chemical induc-
tance. In the linear limit, the thermodynamics forces are propor-
tional to the extensive variables. Therefore, not only the extensive
variables but also the intensive variables including the temperature
fluctuate and oscillate. For this reason, the experimental finding
of periodic temperature changes in chemical oscillations'"®° as
well as the reversible temperature changes in nerve pulses®*** are
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interesting and meaningful. It hints at adiabatic contributions to
these oscillations.

In a recent publication we argued that adiabatic processes
are characterized by the reversible translation of energy
between different parts of the system.?” This leads to measurable
changes in temperature in the respective subsystems. Thus, each
adiabatic oscillation requires a reservoir. In the case of the moving
piston, the kinetic energy of the piston is stored in the energy
of the ideal gas in the containers, which depends only on
temperature. This leads to temperature oscillations. Therefore,
including the energy translocation is essential for a complete
understanding of the oscillatory processes. In the classical
description of oscillatory reaction by coupled rate equations,
this aspect is missing. As eqn (1) shows, the entropy of an ideal
gas contains two terms - the first includes the changes in the
motion of the particles and the second term is purely configu-
rational entropy. The second leads to rate equations, because
they are based on statistical arguments about the positional
distribution and the likelihood of collisions. Rates are consid-
ered to be proportional to concentrations only. The first part of
eqn (1) is not included in such rate equations and is therefore
absent in reaction schemes leading to the Brusselator and the
Oregonator."®"” It would be interesting to investigate whether
some terms in these reaction schemes can be reinterpreted
such that they correspond to such energy reservoirs that reflect
the temperature changes in the system.

The Brusselator and the Oregonator lead to stable limit
cycles that are not very dependent on the initial conditions
provided that some thermodynamic forces are kept constant. In
contrast, in the present linear formalism forces are not fixed
and therefore no limit cycles are present. However, depending
on the relative contributions of the Lj; and Lf}, the formalism
can lead to purely dissipative behavior (real eigenvalues) and to
bifurcations leading to dampened oscillations with a number
of eigenfrequencies that depends on the dimension of the
matrix L. In a future publication we will explore this in more
detail.

In statistical mechanics, pairs of a position and its corres-
ponding momentum are considered for each particle. Liouville’s
theorem states that along the trajectories of a mechanical system
the density of states in phase space is constant.*® This is just
another way of stating that entropy is conserved, which is precisely
the assumption made here for oscillatory processes in a macro-
scopic system. Importantly, the constants of the oscillatory
process are already hidden in the equilibrium fluctuations of
position and momentum.

It is tempting to extend the simple examples presented here
to more complex situations. Combining the mechanical and
electrical examples given in this paper, one might find alter-
native formulations for phenomena related to piezoelectric
oscillators. It is clear that the current I couples to the mechanical
motion in a piezoelectric crystal and that this leads to oscillations.
It has been proposed that reversible electromechanical pheno-
mena are at the basis of the action potential in nerves.**** Other
phenomena include Rayleigh-Bénard convection. This phenomenon
occurs when a liquid is homogeneously heated from below.
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Upon increasing the temperature gradients one finds bifurca-
tions in the circular flow of the liquid and the formation of
Bénard cells. In this system heat transfer couples to circular
hydrodynamic motion. However, in the description of such
phenomena the focus has been on entropy production on not
so much on the entropy conserving parts,’ even though
oscillatory and reversible solitary motion has been shown to
be possible in Marangoni-Bénard layers.>°

Conclusions

The postulate made in this work is that any spontaneous thermo-
dynamic process in a harmonic entropy potential is composed of
dissipative parts leading to entropy production and entropy
conserving processes leading to oscillations. The thermodynamic
formalism can be applied to any pair of variables and also to
linear combinations of forces. We describe a simple formalism
that can describe oscillatory processes by using the language of
non-equilibrium thermodynamics. We suggest that any non-
equilibrium process has a dissipative component described by
Onsager’s reciprocal relations and an oscillatory component that
does not produce entropy. These processes are described by an
antisymmetric coupling matrix. They are accompanied by oscilla-
tions in temperature which are characteristic for adiabatic waves.
In fact, such temperature oscillations have been found in some
chemical and biological systems. This suggests that they reflect
isentropic processes contained in the overall reaction scheme.
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