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Electromechanical properties of biomembranes and

nerves
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The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen Ø, Denmark

E-mail: theimbu@nbi.dk

Abstract. Lipid membranes are insulators and capacitors, which can be charged by an
external electric field. This phenomenon plays an important role in the field of electrophysiology,
for instance when describing nerve pulse conduction. Membranes are also made of polar
molecules meaning that they contain molecules with permanent electrical dipole moments.
Therefore, the properties of membranes are subject to changes in trans-membrane voltage. Vice
versa, mechanical forces on membranes lead to changes in the membrane potential. Associated
effects are flexoelectricity, piezoelectricity, and electrostriction.

Lipid membranes can melt from an ordered to a disordered state. Due to the change of
membrane dimensions associated with lipid membrane melting, electrical properties are linked
to the melting transition. Melting of the membrane can induce changes in trans-membrane
potential, and application of voltage can lead to a shift of the melting transition. Further, close
to transitions membranes are very susceptible to piezoelectric phenomena.

We discuss these phenomena in relation with the occurrence of lipid ion channels. Close
to melting transitions, lipid membranes display step-wise ion conduction events, which are
indistinguishable from protein ion channels. These channels display a voltage-dependent open
probability. One finds asymmetric current-voltage relations of the pure membrane very similar to
those found for various protein channels. This asymmetry falsely has been considered a criterion
to distinguish lipid channels from protein channels. However, we show that the asymmetry can
arise from the electromechanical properties of the lipid membrane itself.

Finally, we discuss electromechanical behavior in connection with the electromechanical
theory of nerve pulse transduction. It has been found experimentally that nerve pulses are
related to changes in nerve thickness. Thus, during the nerve pulse a solitary mechanical pulse
travels along the nerve. Due to electromechanical coupling it is unavoidable that this pulse
generates a trans-membrane voltage. In the past, we have proposed that this electromechanical
pulse is the origin of the action potential in nerves.

1. Introduction
Biological membranes are thin quasi-twodimensional layers mainly consisting of proteins and
lipids. While research mostly focusses on the properties of individual macromolecules, e.g.,
on ion channel proteins or ion pumps, the total membrane possesses macroscopic cooperative
features such as melting transitions and curvature fluctuations that cannot be understood on
the molecular level. These properties are expressed in susceptibilities such as heat capacity,
lateral compressibility, bending elasticity or capacitive susceptibility. Lipid membranes can
melt from a solid to a liquid phase. In these transitions, the order of the lipids changes.
Thus, the melting is associated to both, enthalpy and entropy changes. Such transitions can
also be found in biological membranes under physiological conditions. As an example, a heat
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Figure 1. Heat capacity pro-
file of E. coli membranes. The
grey-shaded region below growth
temperature represents the mem-
brane melting transition. The
peaks above growth temperature
show protein unfolding. From [5].

capacity profile of E. coli membranes is shown in figure 1. In the melting transition, the spatial
dimensions of the membrane change. For instance, upon melting the synthetic lipid dipalmitoyl
phosphatidylcholine (DPPC) increases its area by about 24% and reduces its thickness by 16%.
The heat absorbed in the transition is about 35 kJ/mol.

Membranes are very thin. They possess a thickness of about 5nm in their solid state. The
core of the membrane is composed of hydrocarbon chains. Therefore, the membrane interior can
be considered an insulator. Consequently, the biomembrane has the properties of a capacitor.
Typically, the capacitance of a membrane is of the order of 1 μF/cm2. In biological cells,
the membrane is exposed to voltage differences of the order of 100 mV. Thus, the biological
membrane is charged under physiological conditions.

The dimensional changes in the melting transitions have a number of consequences. Among
those are [1]:

• both hydrostatic and lateral pressure changes influence the phase state of the membrane
and are intrinsically coupled to heat absorption or release.

• hydrostatic and lateral pressure changes voltage across the membrane, and the charge on
the membrane capacitor can change. Thus, the membrane is piezoelectric.

• voltage changes can induce membrane melting.

These features are important for various properties of biological membranes. For instance, it
was shown that biomembranes slightly above a melting transition can support electromechanical
solitons that resemble nerve pulses [2]. Further, in the transition one finds density fluctuations
that result in the spontaneous formation of pores in the membrane [3]. These pores display
open-close characteristics very similar to those reported for protein ion channels [4].

The thermodynamics of biological membranes putatively explains many properties of
excitatory cells on the level of macroscopic physics rather than on the level of molecular biology.
This review will introduce into some of these phenomena.

2. Membrane capacitors
The capacitance, Cm, of a planar membrane is given by

Cm = εε0
A

D
, (1)

where ε0 is the vacuum permittivity, ε is the dielectric constant, A is the membrane area and D
is the membrane thickness. The charge, q, on a capacitor is given by

q = Cm · Vm , (2)
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where Vm is the transmembrane voltage. Since in the transition the area changes by about 24%

Figure 2. During the melting
transition of a membrane both its
area and thickness changes. This
implies that the capacitance of the
membrane varies as a function of
phase state. It is higher in the
liquid state.

and the thickness by -16%, one finds an increase in capacitance upon melting from a solid to a
liquid membrane phaseof approximately 50%.

2.1. Capacitive susceptibility
The capacitance solely depends on the dimensions of the membrane, if ε = constant. However,
the opposite charges on the two plates of a capacitor attract each other and generate a force on
the membrane. This effect is called ’electrostriction’. If the voltage across a membrane increases,
the forces on the membrane also increases. Therefore the capacitance changes as well. For a
symmetric membrane, the capacitance always increases upon increasing the voltage. This effect
can be taken into account by considering the capacitive susceptibility, Ĉm:

Ĉm =
dq

dVm
= Cm + Vm

∂Cm

∂Vm
, (3)

where the charge, q, is given by equation (2). The second term in this equation could be
considered an excess capacitance. It assumes a maximum in the melting transition (see figure
3).

3. Fluctuations
Due to the fluctuation-dissipation theorem, all response functions (susceptibilities) are related
to the mean square fluctuations of extensive variables. For instance, the heat capacity,
cp = (∂H/∂T )p, is given by

cp =

〈
H2
〉
− 〈H〉2

kT 2
, (4)

while the isothermal volume compressibility, κVT = −(∂V/∂p)T , is related to volume fluctuations

κVT =

〈
V 2
〉
− 〈V 〉2

kT
, (5)

and the capacitive susceptibility is given by

Ĉm =

〈
q2
〉
− 〈q〉2

kT
. (6)

Similarly, fluctuations in area are related to the isothermal area compressibility and fluctuations
in curvature to the bending elasticity. The heat capacity assumes a maximum in the melting
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Figure 3. Increase in voltage re-
duces thickness and increases area.
As a consequence, membranes can
be moved through their melt-
ing transition by voltage changes.
The capacitive susceptibility, Ĉm,
reaches a maximum at the melting
temperature. The voltage-induced
transition is associated to an excess
charge. From [1].

transition and thus the fluctuations are at maximum. Similarly, compressibility, bending
elasticity and capacitive susceptibility all assume maxima in the transition regime.

It has been shown that in melting transitions, excess volume changes are proportional to
excess enthalpy changes, i.e., ∆V (T ) = γV ∆H(T ). Here, γV is a material constant. This implies
that excess volume and enthalpy fluctuations are also proportional functions. A consequence is
that excess heat capacity and isothermal volume compressibility are proportional functions of
temperature, pressure, etc. I.e.,

∆cp ∝ ∆κVT (7)

Similarly one can directly or indirectly conclude from experiment that the excess heat capacity
is proportional to other response functions of lipid membranes close to transitions [6, 7, 1], f.e.,

∆cp ∝ ∆κAT (area compressibility)

∆cp ∝ ∆κB (bending elasticity) (8)

∆cp ∝ ∆Ĉm (capacitive susceptibility)

These relations are not based on first principles and should be taken as empirical correlations
found to be true for membranes. The proportionality constants depend on the dimensions of the
solid and liquid membrane. The heat capacity is easy to measure in a calorimeter. The other
response functions can readily be calculated from the calorimetric experiment.

4. The nervous impulse
The nerve pulse consists of a propagating voltage pulse with typical velocities of 1-100 m/s that
last about 1 ms. It follows that the typical dimension of a nerve pulse is about 1 mm to 10 cm.
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Figure 4. Thickness change of a squid axon
during the action potential as a function of time
(solid line). The dashed line represents the voltage
change. The two functions are within error
proportional. Adapted from [8].

Thus, it is of macroscopic dimension. In the biological literature, the nerve pulse is considered
a purely electrical phenomenon involving capacitors (the membrane), resistors (ion channel
proteins) and electrical currents (ion flows). However, during the nerve pulse one also finds
changes in nerve dimensions (thickness and length [8, 9], see figure 4) and in temperature [10].
Thus, the nerve pulse should be considered a thermodynamic or hydrodynamic phenomenon.
Below, we show that the nerve pulse can be seen as a localized density pulse related to the
propagation of sound.

4.1. Sound velocity
The above relations (equation (8)) help to determine other membrane properties that are related
to the response functions. The lateral sound velocity, c, in membranes is defined as

c2 =

(
∂ρA

∂p

)
S

=
1

κASρ
A

(9)

Thus, it depends both on the lateral density and on the adiabatic compressibility, κAS . The
adiabatic compressibility is a function of frequency because it depends on the translocation
of heat from the membrane to the membrane environment. The smaller the frequency, the
larger is the aqueous volume that contributes as a heat reservoir and the larger is the adiabatic
compressibility [11]. In the limit of zero frequency on obtains the isothermal limit and the
adiabatic compressibility, κAS is equal to the isothermal compressibility, κAT . The frequency
dependence of the sound velocity is called ’dispersion’. The sound velocity in membranes is
generally higher at higher frequencies

Using the above thermodynamic relations between heat capacity and compressibility, on can
calculate the low frequency sound velocity as a function of temperature (or as a function of
density). Since the compressibility displays a maximum in the melting transition, the lateral
sound velocity displays a minimum (shown in figure 5, left. From [2]). In this figure, small density
corresponds to the liquid membrane phase while high density corresponds to the solid membrane
phase. The membrane in the liquid phase is thus a spring with interesting spring properties:
upon compression of the liquid phase the spring first becomes softer (in the transition) and then
becomes stiffer (in the solid phase).

The lateral density of the membrane shall be given by ρA = ρA0 +∆ρA, where ρA0 is the density
of the liquid membrane. The sound velocity is a non-linear function of the lateral density change,
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Figure 5. Left: The sound velocity in a lipid membrane close to a transition is a function of
density [2]. Small density corresponds to a liquid membrane whereas high density corresponds
to a solid membrane. The pronounced minimum is found in the chain melting regime. It is
caused by the maximum of area fluctuations in the membrane at the transition. Right: Density
soliton in a membrane cylinder using the sound velocity profile shown in the left hand panel [2]

Figure 6. Schematic representa-
tion of a density soliton in a cylin-
drical membrane. The pulse con-
sists of a traveling solid segment
(dark shade) traveling in a liquid
membrane environment.

∆ρA, which can be Taylor-expanded into

c2 = c20 + p∆ρA + q(∆ρA)2 + ... (10)

4.2. Solitons in nerve axons
The non-linearity of the sound velocity and the presence of dispersion give rise to the possibility
of soliton propagation. Below, we show as a quasi-one-dimensional example a long cylindrical
membrane comparable to the axon of a nerve. The wave equation for one-dimensional sound
propagation is given by [12]

∂2

∂t2
∆ρ =

∂

∂x

(
c2
∂

∂x
∆ρ

)
. (11)

By inserting equation (10) into this equation, we obtain

∂2

∂t2
∆ρ =

∂

∂x

(
(c20 + p∆ρ+ qρ2 + ...)

∂

∂x
∆ρ

)
− h ∂

4

∂x4
∆ρ (12)

The second term is an ad hoc dispersion term that describes the frequency dependence of the
elastic constants. Its introduction into the wave equation is justified in [2]. When inserting the
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parameters p and q obtained from fitting equation (10) to the experimental sound velocity profile,
one finds that the above equation possesses solitary solution, i.e., localized density pulses that
travel along the membrane cylinder without dissipation and without changing shape. A typical
solution of equation (12) is shown in figure 5 (right). The pulse possesses a maximum amplitude
and a minimum velocity when increasing the overall energy of the pulse. The maximum
amplitude corresponds to the density change between liquid and solid membrane phase. Thus,
the solitary pulse consists of a solid region traveling in a liquid membrane environment. This is
schematically shown in figure 6.

The soliton described above shares many similarities with the nervous impulse:

• It displays a velocity similar to those of myelinated nerves.

• It is associated to transient changes in membrane thickness.

• It is associated to a reversible release and re-uptake of heat.

However, the physical principles underlying soliton propagation are very different from the
mechanisms considered for nerve pulse propagation in the field of electrophysiology.

5. Ion channels
The textbook description for nerve pulse conduction is the Hodgkin-Huxley model [13]. It
suggests that the nerve pulse is generated by ion currents through channel proteins. These
currents charge the membrane capacitor. According to the model, channel proteins conduct ions
in a voltage-dependent manner. Thus, they are considered being ”voltage-gated”. Combined
with cable theory, this generates the possibility of propagating electrical pulses called ’action
potentials’. The opening and closing of channels can be experimentally observed in electrical
recordings [14]. To the contrary, in the soliton theory described above no ion channel proteins
are required.

It is an interesting fact that membranes in the complete absence of proteins can form voltage-
gated pores that display properties indistinguishable from protein channels [15, 4]. An example
is given in figure 7 where one can see an increase in channel open-likelihood upon increase in
voltage. These ion channel events result from area fluctuations in the membrane, as described by
equation (8). In the melting transition, the fluctuations are large and the membrane permeability
displays a maximum. Every change in a thermodynamic variable that potentially changes the
membrane state can alter the permeability of the membrane [16, 3].

Figure 7. Quantized current
events through a synthetic lipid
membrane. One finds channel-like
events in the complete absence of
proteins. The open likelihood of of
pore displays a pronounced voltage
dependence. [4].
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Due to the increase in channel open-probability shown in figure 7, the current-voltage relation
is not linear. In particular, if the membrane displays a net polarization, V0, in the absence of
an external field, the current-voltage relation may be asymmetric and different for positive and
negative voltages. A spontaneous membrane polarization could originate from an asymmetric
distribution of lipids on the two sides of the membrane, or from membrane curvature. The
latter effect is called ’flexoelectricity’. Its investigation was pioneered by A. G. Petrov [17].
Flexoelectricity is caused by the different dipole density on the two monolayers in curved
membranes. Membrane curvature could possibly originate from slight pressure difference on
the two sides of the membrane due to suction on the recording pipette. An example for an
asymmetric non-linear current-voltage relation is shown in figure 8.

Figure 8. The current-voltage
relation of the permeability of a
synthetic lipid membrane is not
generally symmetric even though
the composition of the membrane
itself is symmetric [4]. This
could be caused by a permanent
polarization of the membrane due
to flexoelectricity [17, 18] - see
insert.

In the absence of spontaneous polarization V0 of the membrane, the electrostatic force, F ,
exerted on a planar membrane by external voltage is given by

F =
1

2

CmV
2
m

D
(13)

where Cm is the membrane capacitance, Vm is the transmembrane voltage and D is the
membrane thickness [1]. This force potentially reduces the thickness of the membrane [19].
The electrical work performed on the membrane by a change in thickness from D1 to D2 is

Wel =

∫ D2

D1

FdD ≡ αV 2
m (14)

where α is a constant. In the presence of a spontaneous polarization associated to a
transmembrane voltage V0, the electrical work instead assumes the form Wel = α(Vm − V0)2.
Since electrostatic work leads to membrane thinning, it is generally assumed that the work
necessary to form a pore is proportional to the work necessary to reduce membrane thickness
membrane [20, 21].

Therefore, the free energy for pore formation is given by

∆G = ∆G0 + α(Vm − V0)2 , (15)
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where ∆G0 is a constant.
The probability, Popen(Vm), of finding an open pore in the membrane at a fixed voltage is

given by

Popen(Vm) =
K(Vm)

1 +K(Vm)
; K(Vm) = exp

(
−∆G

kT

)
, (16)

where K(Vm) is the voltage-dependent equilibrium constant between open and closed states of
a single pore.

The current-voltage relation for the lipid membrane is proportional to the likelihood of finding
an open channel for a given voltage:

Im = γp · Popen · Vm (17)

where γp is the conductance of a single pore (or N identical pores). Eqs. 15-17 contain the
theoretical description for the I-V curves of lipid channels. The solid line in figure 8 is a fit
using the above description. It fits the experimental data nearly perfectly. Thus, a description
based on the concept of forces induced by charging the membrane capacitor is very well able to
describe experimental data of membrane permeability.

6. Summary
In this review, we summarized the evidence for electromechanical behavior of the biological
membrane. The membrane can be seen as a capacitor with a spontaneous polarization. Due
to forces on the capacitor, changes in transmembrane voltage can change the physical state of
the membrane. E.g., it can induce membrane melting or freezing. Vice versa, lateral pressure
changes in the membrane can alter the voltage on a membrane. Thus, the membrane displays
piezoelectric features.

In a melting transition, the membrane displays a non-linear response to lateral pressure
changes. This fact leads to the possibility of propagating density solitons in cylindrical
membranes that share many similarities with the action potential in nerves. For instance,
thickness and temperature changes in the nerve membrane are correctly described by the
soliton approach. Further, the presence of melting transitions enhances the probability of
area fluctuations in the membrane. These fluctuations lead to ion-channel-like events that are
practically indistinguishable from protein ion channels. These protein channels are believed to be
responsible for the nerve pulse in traditional theories. However, an electromechanical approach
towards the physics of biological membranes intrinsically contains all these phenomena using
the language of thermodynamics.
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