® CrossMark
THE JOURNAL OF CHEMICAL PHYSICS 139, 125101 (2013) ¢

Fluctuations of systems in finite heat reservoirs with applications
to phase transitions in lipid membranes
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In an adiabatically shielded system, the total enthalpy is conserved. Enthalpy fluctuations of an ar-
bitrarily chosen subsystem must be buffered by the remainder of the total system which serves as a
heat reservoir. The magnitude of these fluctuations depends on the size of the reservoir. This leads
to various interesting consequences for the physical behavior of the subsystem. As an example, we
treat a lipid membrane with a phase transition that is embedded in an aqueous reservoir. We find
that large fluctuations are attenuated when the reservoir has finite size. This has consequences for the
compressibility of the membrane since volume and area fluctuations are also attenuated. We com-
pare the equilibrium fluctuations of subsystems in finite reservoirs with those in periodically driven
systems. In such systems, the subsystem has only finite time available to exchange heat with the sur-
rounding medium. A larger frequency therefore reduces the volume of the accessible heat reservoir.
Consequently, the fluctuations of the subsystem display a frequency dependence. While this work is
of particular interest for a subsystem displaying a transition such as a lipid membrane, some of the
results are of a generic nature and may contribute to a better understanding of relaxation processes
in general. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821837]

INTRODUCTION at constant temperature the heat capacity is proportional to the
enthalpy fluctuations of the membrane and closely related to
the fluctuation time-scales.

Heat capacity is typically measured in a differential scan-
ning calorimeter (DSC). A DSC controls the temperature very
precisely and records the heat absorbed by the sample when
the temperature is changed. Therefore, the temperature of the
reservoir is fixed by the instrumental setup, which is intended
to behave like an infinite reservoir with constant temperature.
In finite adiabatic systems (with constant total enthalpy), how-
ever, the temperature of the reservoir is not constant because it
exchanges heat with the subsystem due to fluctuations. Conse-
quently, there are fluctuations of the reservoir temperature that
are completely correlated with the enthalpy fluctuations of the
subsystem (here, the membrane). Thus, the temperature of the
reservoir is only constant on average with fluctuations that can
be either large or small depending on the size of the reservoir.
In this publication, we show that the size of the (water) reser-
voir has a significant effect on the magnitude of the fluctua-
tions and the relaxation time scales of the subsystem (the lipid
membrane).

There have been very few attempts to model systems in
a finite reservoir,>? and these are of limited generality and
not applicable to the lipid membrane system. The lipid mem-
brane is distinct from many other systems due to its pseudo
two-dimensional nature. While the membrane is effectively
two-dimensional, it is embedded in a three-dimensional reser-
voir with which it can exchange heat. The overall system thus
consists of two coupled systems with a total enthalpy that
is constant but fluctuating for each of the two sub-systems.
Here, we present a statistical mechanics framework for mod-
eling the lipid melting transition in a finite heat reservoir, i.e.,

The enthalpy fluctuations of an adiabatically shielded
system are zero by definition. The enthalpy of arbitrary sub-
systems contained within the total system can only fluctuate
by the exchange of heat with the rest of the system which
we call “the reservoir.” In a simple homogeneous system, this
leads to temperature fluctuations in both the subsystem and
the “reservoir” that are trivially related and that depend only
on the size of the two parts of the system. An example would
be enthalpy and temperature fluctuations in a small water vol-
ume that is embedded into a larger water reservoir of finite
size. One can also consider cases where the subsystem is of
different physical nature than the reservoir. Such a subsystem
could be a particular vibrational mode in a macromolecule
that couples to the rest of the molecule that serves as a reser-
voir. One may also consider subsystems that are spatially sep-
arated from the reservoir, e.g., macromolecules or membranes
dissolved in an aqueous buffer. The purpose of this paper is to
treat this problem in all generality and apply it to the par-
ticularly interesting case of a subsystem that can undergo a
phase transition while embedded in a homogeneous medium
that displays no transition. In particular, we discuss the case
of a lipid membrane with a melting transition when the mem-
brane is in contact with a finite aqueous volume that serves as
a heat reservoir.

When varying temperature, lipid membranes display co-
operative melting transitions in which both enthalpy and en-
tropy of the individual molecules change at a melting tem-
perature, T,,.! At this temperature, the heat capacity has a
maximum. According to the fluctuation-dissipation theorem,
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a membrane in a very small water volume. This problem is of
more than academic interest.

The heat capacity ¢, is an equilibrium property of a
system and therefore does not possess a timescale. When
a system is probed for finite times (or when the system is
driven by an external periodic force), it may not be possi-
ble to establish equilibrium with the entire reservoir. Such
non-equilibrium systems can be approximated by an equi-
librated adiabatic system consisting of the membrane and a
reservoir of finite size. Adiabaticity ensures that the total en-
thalpy fluctuations of this combined system are precisely zero.
The fluctuation-dissipation theorem cannot be used to calcu-
late the heat capacity, and other methods must be used. It is,
however, possible to calculate the enthalpy fluctuations for the
membrane alone. In the limit of large reservoirs, these fluctua-
tions describe the usual equilibrium heat capacity. For smaller
reservoirs unable to support large enthalpy fluctuations, the
fluctuations in the enthalpy of the membrane will necessarily
be reduced. Such effects should be most pronounced near the
maximum of the equilibrium heat capacity. It is very impor-
tant to point out that this argument holds for all fluctuations
of extensive quantities such as volume and area of the sub-
system, which are closely related to the enthalpy fluctuations.
Therefore, our considerations can be extended to the elastic
properties of the subsystem that are determined by the volume
and area fluctuations. Our analysis contains a reinterpretation
of the adiabatic compressibility.

We note that some authors* have performed calculations
in systems driven externally at a well-defined frequency to
determine a “dynamic heat capacity” or “frequency depen-
dent heat capacity.” The authors (Nielsen and Dyre*) suggest
that the frequency dependent heat capacity can be understood
as an equilibrium property of the system. In the limit of an
arbitrarily small frequency, which corresponds to an infinite
reservoir, this dynamic heat capacity is identical to the usual
equilibrium heat capacity. For finite frequencies, it is closely
related to the enthalpy fluctuations of membranes in finite
size reservoirs studied here using Monte Carlo simulations.
We discuss our finding of reservoir-size dependent membrane
fluctuations in the context of the frequency dependence of
the heat capacity of membranes determined in periodic per-
turbation experiments>® and with the frequency dependence
of sound.”® Our findings suggest a close connection between
the frequency dependence of both the compressibility and the
sound velocity of membranes and the size of the available wa-
ter reservoir.

THEORY
Fluctuations in finite reservoirs

Enthalpy is strictly conserved in an adiabatically insu-
lated system. Any heat released or absorbed by a subsystem
must be exchanged with the surrounding system which we
call the reservoir. Consequently, the properties of the reser-
voir will also fluctuate. Typically, one considers the fluctua-
tions of a small system in an infinite heat reservoir (for the
example of a membrane embedded into an aqueous reservoir,
see Fig. 1, left) that effectively keeps the temperature of the
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FIG. 1. Three scenarios for a lipid membrane subsystem in an aqueous reser-
voir: (Left) The membrane is embedded in an infinite water reservoir with
constant temperature. (Center and right) The membrane is embedded in a fi-
nite size water reservoir. The total system consisting of membrane and water
is adiabatically shielded. Thus, enthalpy fluctuations of the membrane now
are coupled to both fluctuations in enthalpy and temperature of the water
Ieservoir.

reservoir constant. This is also the situation in calorimetric ex-
periments. In such an infinite system, temperature fluctuations
of the reservoir vanish. This is not the case for a finite system
(Fig. 1, right), where care is required to guarantee that the en-
thalpy is strictly conserved. As shown below, this implies that
the temperature of the reservoir fluctuates in correlation with
fluctuations of the subsystem.

The Gibbs free energy change associated with a state
change in the subsystem is

AG, = AH, — TAS,, (1)

where the index “s” denotes the subsystem. During this
change in state, heat is transferred from the subsystem to the
reservoir.

The free energy change of the reservoir AG, (the index
“r” denoting the reservoir) upon the absorption of the heat
AH, = —AH; is given by

AG, = AH, — TAS,, 2)

where AH, is the change in enthalpy of the reservoir and AS,
is the associated entropy change in the reservoir. 7 is the tem-
perature, and AG = AG, + AG, the free energy change of the
total system. If the reservoir absorbs heat from a fluctuation
of the subsystem, the change in the enthalpy of the reservoir
is naturally fixed to exactly this amount since the total system
conserves enthalpy.

From the local fluctuations of temperature, the change in
the reservoir’s entropy associated with the transfer of enthalpy
internally between the two sub-ensembles can be calculated
as follows:

35, e
=T ( ) = AS, = / £dT, ()
P e T

where ¢/, is the heat capacity of the reservoir and AS, is the
corresponding change in entropy. The heat capacity of the
reservoir is assumed to be constant. The reservoir temperature
T, before the change in the state of the subsystem is defined as
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T and after the change as Trb (with (T%) = (T,b y =T, aver-
aged over time, 7 is the constant temperature of the total sys-
tem that enters the Boltzmann factors). The entropy change of
the reservoir is then given by

po 1Y
AS, =c), In Ta’ @

4

where (T” — T%) is the temperature change of the reservoir
associated to absorbing a given amount of heat, AH,. Since
c;(Tr” — T¥) = AH, for constant ¢),, the temperature T? of
the reservoir after absorbing AH, is given by

_ AH,

.
p

Tb

+ T 5)

Using Eq. (4), Eq. (2) can be rewritten as

Th
AG, = AH, — T In -
Ta
AH, /e, + T,.“)

= AH, —Tc,In < Ta (6)
Note that in the limit ¢j, — oo the free energy AG, — 0 in-

dependently of the magnitude of AH,.

The probability of a state change in a finite reservoir

We can now determine the acceptance probability of a
change in the state of the subsystem in a finite adiabatic sys-
tem. It is given by

K o AG, + AG, -
= =exp| ——— |,
P=1%«k P RT

which obeys detailed balance. If it is decided to allow a
change of state of the subsystem during a Monte Carlo simu-
lation, the enthalpy associated with this change is absorbed or
supplied by the reservoir. 7, of the reservoir is updated to the
value of T”.

Since AH; + AH, = 0, the equilibrium is completely
governed by entropy differences

AG = —T(AS, + AS,) = —T (ASS +cIn (1 -

®)

In the limit of c; — 00, AG — AGs;, as expected. In this
limit, the fluctuations of the subsystem are independent of the
nature of the reservoir. It is also obvious that for finite ¢}, there
is a maximum fluctuation that can be carried by the system:
AG — oo for AH;, — c’,‘, - T2, For vanishing reservoir size,
no enthalpy fluctuations in the subsystem are possible.

It is important to point out that the results of these con-
siderations are general. In any physical system, the probability

[T}

of heat transfer from any arbitrarily chosen subsystem “s” to

a reservoir “r”’ consisting of the rest of the total system is a
function of the heat capacity of the reservoir.

AH,
aTe))’
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MODELING LIPID MEMBRANE FLUCTUATIONS IN A
FINITE AQUEOUS RESERVOIR

Below, we apply these concepts to the fluctuations in
lipid membranes embedded into an aqueous reservoir. In par-
ticular, we consider the case of the cooperative melting tran-
sition from an ordered gel to a disordered fluid membrane.

Monte Carlo simulations have frequently been used to
analyze the cooperative behavior of membranes. Some early
applications can be found in Refs. 9-12. Enthalpy fluctuations
are the central element in such simulations. The parameters
for the simulation are the melting enthalpies and entropies of
the lipid components and the nearest neighbor interactions.
The overall temperature is assumed to be constant and iden-
tical to that of the aqueous reservoir. The enthalpy fluctuates
during the simulation. The heat capacity at constant pressure
can be calculated from the enthalpy fluctuations and yields c,
=((H?) — ( H)®)/RT?, where {(...) denotes the statistical av-
erage and 7 is the (constant) temperature of the reservoir. The
fluctuation relation can easily be calculated from a canonical
ensemble of N identical systems that are allowed to exchange
heat. Due to ergodicity, the time evolution of a single sys-
tem at absolutely constant temperature leads to the same dis-
tribution of states. The latter can be studied in Monte Carlo
simulations, and it is meaningful to determine the heat ca-
pacity of a membrane from the fluctuations observed in such
simulations.

The assumption of constant reservoir temperature and the
resultant neglect of reservoir temperature fluctuations are only
permissible if the size of the reservoir is infinite. In a finite
reservoir, the separation of the membrane from its surround-
ings is not permissible because the enthalpy fluctuations of
the membrane and of the reservoir are correlated. Neverthe-
less, considering the fluctuations of the membrane alone can
provide meaningful insights into the behavior of a membrane.
The Gibbs free energy of each configuration of the lipid sub-
system consisting of N lipids is given by

Gs =Gy + Np(AH — TAS) + Nypwys, )]

where G, denotes the Gibbs free energy of the ground state
(with all lipids in the ordered gel state). AH and AS are the
molar excess enthalpy and entropy of the melting transition,
which can be obtained from the calorimetric experiment. Ny
is the number of lipids in the fluid state, N, is the number
of unlike nearest neighbor contacts associated with an inter-
facial enthalpy contribution. The parameter w,s describes un-
like nearest-neighbor interactions and is typically positive. It
is responsible for the cooperativity of the transition, i.e., the
half width of the melting transition and the size of domains in
the transition regime.

We further assume that each lipid is associated with
Nyarer water molecules with which the membrane exchanges
heat during the simulation. Further, the lipid chains possess
a heat capacity, c;"“i”, which is due to vibration within the
molecular bonds. This heat capacity is also part of the heat
reservoir. Thus, the total heat capacity per lipid of the reser-
Voir, c;, is given by

r water chain
Cp = Nwater : C[, + C[, . (10)
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This number has to be multiplied by the total number of lipids
to obtain the total heat capacity of the reservoir. For more de-
tails and parameter values, see Appendix A.

RESULTS

Simulations of a lipid membrane in a finite
heat reservoir

We first consider the effect of the finite heat reservoir on
the lipid melting transition. In order to illustrate the coupling
between the membrane enthalpy H; and the reservoir temper-
ature T,, we performed a Monte Carlo simulation at the melt-
ing temperature (314.05 K) with 1000 water molecules per
lipid. This is shown in Fig. 2. Due to Eq. (5), Hy and AT, are
exactly proportional functions.

Subsequently, we calculated the fluctuations of the
enthalpy of the membrane and determined the function
Acs = ((AHSZ) — (AH)?)/RT?, which we call the fluctua-
tion strength of the membrane. In Fig. 3, it is shown close to
the transition temperature. We show the c,-profiles for five
different sizes of the aqueous reservoir: 500, 1000, 2000,
4000, and an infinite number of H,O molecules per lipid. The
latter case corresponds to the isothermal limit, i.e., to the heat
capacity Ac, of the membrane. It can be seen that a reduc-
tion of the size of the available heat reservoir also reduces the
fluctuation strength Ac, of the lipid membrane. This lower-
ing is due to the suppression of large enthalpy fluctuations in
the lipid membrane. In the limit of infinite reservoirs, the ex-
cess heat integrated over the melting transition is given by AH
= [¢,dT. For finite reservoirs, however, [¢,dT < AH. For
this reason, we do not call ¢, a heat capacity.

The dependence of the fluctuation strength on reservoir
size is also shown in Fig. 5 for 4 different temperatures close
to the transition temperature. Fig. 3 shows that the position
and width of the fluctuation function profile in the melting
transition are unaltered, meaning that the depletion of the
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FIG. 2. Traces of membrane enthalpy, Hy, and reservoir temperature, T,
from Monte Carlo simulations (100 x 100 matrix). (Top) Fluctuations in
enthalpy H; of a lipid membrane with 1000 water molecules associated to
each lipid. The enthalpy is given for the total lipid matrix (molar units). (Bot-
tom) Temperature fluctuations in the aqueous reservoir. The water molecules
serve as a reservoir for the heat released from the membrane. The membrane
enthalpy and the temperature are correlated due to the adiabatic boundary
conditions. AHg and AT, are exactly proportional functions.
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FIG. 3. Fluctuation strength, Ac;, of the lipid membrane for five different
sizes of associated water reservoirs. The isothermal limit corresponds to an
infinite number of water molecules per lipid. The curves have been smoothed
by cubic spline fitting. Error bars have been omitted for clarity (cf. error bars
in Figs. 6 and 5). The inset shows frequency dependent heat capacities, c,(w),
measured by van Osdol et al. Adapted from Ref. 6.

fluctuation strength with smaller heat reservoirs occurs with-
out broadening the transition. For comparison, the inset of
Fig. 3 shows experimental data for frequency-dependent heat
capacities from van Osdol and collaborators adapted from
Ref. 6. The relation between finite size systems and frequency
dependence is considered in the Discussion section.

In order to demonstrate the robustness of our approach,
we show in Appendix B that these results are independent
of the overall system size as long as the number of water
molecules per lipid is constant.

Fluctuation timescales in finite systems

Fig. 4 shows the probability distribution of enthalpy
fluctuations close to the transition temperature for vari-
ous reservoir sizes. It can be seen that the distributions

0.04 ‘
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FIG. 4. Probability distribution of enthalpy states close to the transition max-
imum for different reservoir sizes. The simulated distribution (symbols) is
well described by a Gaussian distribution (solid gray lines) with a half width
that is closely related to the fluctuation strength.
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are Gaussian,

P(Hy) =

. 2
_(H, — (H,)) ) i

1
V2mo? exp( 202

where the variance of the fluctuations, o = (H?) — (H,)?, is
directly related to the fluctuation strength (¢, = o>/RT?). Fol-
lowing Einstein,'? this implies that entropy fluctuations of the
system are harmonic with

(Hs - (Hs>)2

S(Hy) ~ —R
(Hy) 752

+ const. (12)
with an entropy maximum at H; = (H,). The use of linear
response theory allows us to conclude that, for a fixed reser-
voir size, the relaxation behavior of enthalpy fluctuations is
described by a single exponential with a relaxation time con-
stant, 7, given by Refs. 14 and 15
TZ

T = TACS, (13)
where L is a phenomenological coefficient setting the abso-
lute time scale of the cooperative processes. This relation im-
plies that the relaxation times in our simulations are directly
proportional to the magnitude of the fluctuations. We also find
this in a direct correlation analysis of the cooperative enthalpy
fluctuations in the simulation (not shown, see Ref. 14, for
examples). Smaller reservoir sizes result in a reduced fluc-
tuation strength with a smaller fluctuation time constant, i.e.,
fluctuations are faster. We will discuss this feature in the con-
text of frequency dependent heat capacities in the Discussion
section.

Linking the effective heat capacity to the adiabatic
compressibility

We now consider some consequences of the above re-
sults concerning the magnitude of volume or area fluctua-
tions of the membrane in finite reservoirs, and their relation
to the adiabatic compressibility. The results are especially in-
structive if the reservoir is a nearly incompressible medium
such as water while the subsystem displays large volume or
area fluctuations such as those shown by membranes close to
transitions.

The specific isothermal area compressibility (i.e., infinite
reservoir) is given by

1 /0A
h=—— (=) , (14)
A\am),

where I is the lateral pressure and A is the membrane area.
Close to the melting transition, the isothermal compressibility
can be approximated by

2

T
kg + = Acy, (15)

where Ac, is the excess heat capacity.'®!” In Eq. (15), we
used the experimentally found relation AA = y4AH, with y 4
= 0.89 m?/J for a lipid bilayer of dipalmitoyl phosphatidyl-
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choline (DPPC).!%!® The adiabatic area compressibility is re-
lated to the isothermal compressibility and is given by Ref. 19

1 /0A T A\
Kd ——<—> =f<$—m<—) . (16)
A\an /g Ac) AT )

This relation has been derived for equilibrium systems using
the Maxwell relations.'” Here, c¢,”*'*" is assumed to be the
heat capacity of the total thermodynamic system, i.e., the ex-
cess heat capacity of the lipid membrane, Ac, plus the heat
capacity of the reservoir, ¢/, (lipid chains and aqueous buffer),

c;}’”em = Acp +c),. a7

Assuming that (0A/dT) in the lipid melting transition region
is completely dominated by the change in area associated with

the transition, we obtain2’
2 2 2
T T Ac
K? ~ Kf{o + _7/2 Ac, — _yj‘4 —Syslfm
Cp
2
A viT Ac,
=Kkro+ A Acy, - (1 - —Syslem> . (18)
Cp

It is easily seen that the term in brackets approaches unity
when the heat capacity of the total system is much larger
than the excess heat capacity of the lipid membrane. This im-
plies that the adiabatic and isothermal compressibilities of the
membrane are equal for a very large reservoir.

Following Halstenberg et al.,”” we postulate that the ef-
fective heat capacity of the lipid membrane in a finite size

reservoir is given by
. Ac
ff p
A = Ac), - (1 - Csyst;m> (19)
p

with an associated adiabatic compressibility of

2
T
k= ity + LA (20)

which is formally similar to Eq. (15). The treatment for the
isothermal and adiabatic volume compressibilities is abso-
lutely analogous.

In order to test whether this is a reasonable definition
of the membrane heat capacity, it is therefore interesting to
compare the above heat capacity with the fluctuation strength
of the membrane, Acy, obtained from the Monte Carlo sim-
ulations (Fig. 3). In the Monte Carlo simulation, the heat
capacity of the total heat reservoir, ¢, is an input parame-
ter. The excess heat capacity of the lipid melting transition
in the isothermal case is known, because it corresponds to
the standard Monte Carlo simulation with constant reservoir
temperature.'! We can therefore calculate the effective heat
capacity analytically from Eq. (19) and compare it with the
simulation results. Fig. 5 shows the fluctuation strength of
the membrane from Monte Carlo simulation as a function of
reservoir size (symbols) at four different temperatures. Due to
the linear relation between fluctuation strength and fluctuation
time scales discussed above, the time scales display the same
dependence on reservoir size. The solid lines show the ana-
lytical calculation from Eq. (19). Within the estimated error,
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FIG. 5. Verification of the analytical ansatz. The effective heat capacity cal-
culated as a function of reservoir size calculated from Eq. (19) (solid lines)
and the fluctuation strength, Ac;, from the simulations (symbols) at four dif-
ferent temperatures. The analytical formalism yields a very good approxima-
tion of the simulated data.

perfect agreement between Eq. (19) and the simulated fluc-
tuation strength was found, indicating that these are identical
functions: Ac;ff = Ac;.

Our results also indicate that the isothermal and the adi-
abatic compressibility are not fundamentally different func-
tions. They merely reflect different sizes of the available heat
reservoir. They are equally related as the heat capacity and the
fluctuation strength in finite reservoirs as seen from Eqgs. (18)

and (19).

DISCUSSION

Here, we have shown that the enthalpy fluctuations of an
arbitrary part (subsystem) of an adiabatically insulated total
system (total enthalpy is constant) depends on the entropy of
the total system, i.e., it depends on the combined entropy of
the subsystem and the reservoir. This entropy can be regarded
as a harmonic potential which depends on the relative size
of subsystem and reservoir (i.e., the rest of the total system).
Linear response theory then leads to interesting connections
between enthalpy fluctuations of the subsystem, its fluctua-
tion lifetimes, and its adiabatic compressibility. While many
of our considerations are general, we have applied them to
the special case of lipid membranes surrounded by an aque-
ous reservoir. The fact that enthalpy, volume, and area fluctu-
ations of lipid membranes are proportional functions'® allows
us to find very simple relations between seemingly different
thermodynamic response functions.

In calorimetric experiments, membranes (in the form of
a dispersion of vesicles) are coupled to an aqueous reser-
voir and the calorimeter itself. It is generally assumed that
the calorimeter serves as an infinite heat bath guaranteeing
a constant temperature of the reservoir. If the temperature
of the reservoir is absolutely constant, it is meaningful to
assign a heat capacity ¢, to a subsystem, and the integral

TTf ¢,dT = AH yields the enthalpy change of the subsys-
tem upon a variation of the temperature. We have shown that
this is not the case for a finite reservoir that necessarily has
temperature fluctuations that are intimately coupled to the en-
thalpy fluctuations of the subsystem.

J. Chem. Phys. 139, 125101 (2013)

The mean square fluctuations of two systems cannot be
added when they are correlated, and it is not meaningful to
assign heat capacities to individual parts of the total system.
However, one can consider enthalpy fluctuations of subsys-
tems that we called the “fluctuation strength” Ac, of the mem-
brane. For finite size reservoirs, it is generally true that Ac;
< Ac,. The integral of ¢, over temperature does not yield the
enthalpy difference of the system at different temperatures.
For this reason, we do not call ¢, a heat capacity.

Frequency dependent heat capacity and the relation
to the finite reservoir

Experimentally, it is hard to test the dependence of the
membrane fluctuations on the aqueous volume directly be-
cause at very low water content the phase diagrams of lipid
membrane dispersions change. However, one can consider
frequency-dependent processes where only a short time is
available for the membrane system to exchange heat with the
buffer. Under such circumstances, only a small volume of the
aqueous buffer can contribute as a reservoir. As a result, the
size of the volume that communicates with the membrane is
frequency-dependent.

In periodic perturbation experiments, one can determine
the amplitude of the periodic heat uptake. This function has
often been called the “frequency-dependent” or “dynamic
heat capacity,” c,(w). This term has been coined in analogy
with the definition of the equilibrium heat capacity dQ/dT.
However, in periodic perturbation experiments both dQ and
dT display a dependence on frequency. c¢,(w) is a complex
function with an amplitude and a phase shift between dQ(w)
and dT(w). This phase shift is absent at zero frequency. There
are basically two ways of determining the frequency depen-
dent heat capacity. The first consists of a periodic temperature
variation imposed on the system from the outside, which is
linked to a periodic uptake and release of heat, such as de-
scribed by Ref. 21. The second method consists of a periodic
variation of pressure of an adiabatically shielded volume. The
observable is the periodic variation in reservoir temperature.>?
The frequency dependent heat capacity is determined indi-
rectly using the Clausius-Clapeyron equation. What is actu-
ally observed in the case of lipid membranes is the transfer
of heat from the membrane to the reservoir.>® This situation
is in fact comparable to our case that considers temperature
fluctuations in the reservoir generated by enthalpy fluctua-
tions in the membrane. For this reason, we compared the fre-
quency dependent heat capacity by Ref. 6 with the fluctuation
strength in finite reservoirs (Fig. 3). The inset of Fig. 3 shows
the results of these experiments on DPPC vesicles for four
frequencies between 0.01 and 10 Hz. They display a strik-
ing similarity to our simulations when varying reservoir size
in two respects: 1. The half width of the excess heat capac-
ity profile is unchanged but its amplitude decreases when in-
creasing frequency or decreasing reservoir size. 2. The effect
on amplitude is most pronounced in the transition, because the
fluctuation time scales are much larger due to critical slowing-
down.

In contrast to the enthalpy fluctuations, the equilibrium
heat capacity does not possess an intrinsic time scale. Nielsen
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and Dyre* have thoroughly analyzed the frequency dependent
heat capacity and its coupling to fluctuation relations. They
define ¢,(w) as the fraction of the equilibrium fluctuations
with time scales shorter than T = 1/2nw. Clearly, c,(w) cap-
tures only those equilibrium fluctuations that are faster than
the characteristic time scale of the oscillation. In other words,
it captures those heat transfer processes that have equilibrated
within the time ¢ < 7. In the limit of w — 0, the frequency de-
pendent heat capacity c,(w) therefore approaches the equilib-
rium heat capacity, c,. Our present simulation considers heat
transfer into a finite reservoir in an equilibrium situation. The
reduction in reservoir size attenuates the large fluctuations.
By demonstrating the Gaussian nature of the fluctuations, we
have also shown that fluctuation relaxation is single expo-
nential with a time scale related to the size of the reservoir
(Fig. 4). Thus, relaxation of heat into a finite reservoir resem-
bles the relaxation of heat in finite time as discussed above.

Consider a membrane embedded in an infinite water
reservoir (Fig. 1, left) that is subject to periodic variation of
the lateral pressure applied to the membrane. It is reasonable
to assume that this will lead to an exchange of heat with an ad-
jacent layer of water that is finite due to the finite time scale
for heat transport in water. In the first phase of the pertur-
bation, heat is released into the aqueous layer; in the second
phase, it is reabsorbed. The volume of the contributing wa-
ter layer is likely to be directly related to the timescale of the
oscillation.

In the past, we have demonstrated for lipid membranes
that the equilibrium volume and area fluctuations are directly
proportional to the enthalpy fluctuations'®?* as are the re-
laxation times following temperature and pressure perturba-
tions. This suggests a proportionality between equilibrium
heat capacity and isothermal volume or area compressibil-
ity. The adiabatic compressibility is also an equilibrium prop-
erty that can be derived from isothermal properties by us-
ing Maxwell relations. It is not intuitive why the concept of
an adiabatic compressibility can successfully be used for de-
scribing dynamic or frequency dependent phenomena. While
the frequency dependent heat capacity is not a thermody-
namic function, we have shown here that one can nevertheless
draw a reasonable analogy between a properly defined “fre-
quency dependent heat capacity” and a “frequency dependent
compressibility” and suggest a proportional relationship for
the two. In analogy to Eq. (19), one can also postulate that
the frequency dependent excess heat capacity of the mem-
brane assumes the following form:

Ac
Syste—m”) : (21)

AT (w)=Ac, - (1 —
r ! ( M (w)

where ¢;""“" (w) is the reservoir size accessible in the finite

time T = 1/2rw. The excess adiabatic compressibility is then
given by

2
T
Aks(@) = YA AcT(). (22)
A p
If c;,ymm — 00, the frequency dependent heat capacity ap-
proaches the equilibrium excess heat capacity, and the adi-
abatic compressibility approaches the isothermal compress-

J. Chem. Phys. 139, 125101 (2013)

ibility. Understanding the timescale of heat transfer from the
membrane subsystem into the aqueous reservoir might help
formulating dispersion relations.

While Eq. (22) expresses a tentative rather than a derived
form of the frequency dependence of the compressibility, it
has been used successfully in describing the ultrasonic fre-
quency dependence of the three-dimensional sound velocity
of lipids in the MHz regime. Halstenberg et al.>’ performed
experiments on DPPC vesicles using a resonator with a fre-
quency of 7.2 MHz, which corresponds to a timescale that is
much faster than that of the cooperative domain size fluctua-
tion in equilibrium. The speed of sound in the volume is given

by
1
c= ] (23)
Kg P
\%4

where kg is the adiabatic volume compressibility and oV
is the mass density. The experimentally measured speed of
sound of lipid dispersions was correctly predicted by assum-
ing that the heat capacity of the lipid chains is dominant at
such high frequencies. Again, the rationale is that there is in-
sufficient time for heat to diffuse into the aqueous volume at
these frequencies.

The frequency dependence of sound is called “disper-
sion” and is of considerable importance for sound propagation
phenomena in matter. We have previously proposed that elec-
tromechanical solitons with strong similarities to the action
potential can propagate in biomembranes and nerves.'® 2427
Such solitons are a consequence of the simultaneous presence
of nonlinear elastic constants and dispersion close to melting
transitions. Although many details remain to be understood,
we have also shown that the dispersion relation is related to
the thermodynamic behavior of membranes.® In particular, the
dispersion relation sets a natural timescale for the propagating
nerve pulse. Similarly, the fluctuation time scales correspond
to the typical open-time of lipid channels.?®?° It seems likely
that the time scale of fluctuations is of significant biological
relevance.

CONCLUSION

We have constructed a framework for modeling the fluc-
tuations of arbitrary subsystems embedded in an adiabatically
shielded reservoir. This method was applied to the lipid melt-
ing transition in a finite adiabatically insulated aqueous reser-
voir. We show that the magnitude of the cooperative fluctua-
tions of the membranes depends on the size of the associated
reservoir. As a consequence, the elastic constants of the mem-
brane also depend on reservoir size. It seems plausible to com-
pare this effect to frequency dependent measurements where
only parts of the environment of a membrane can contribute
as a reservoir for the heat transfer. We believe that the present
considerations may contribute to the better understanding of
relaxation processes in general and the dispersion relation of
lipid membranes that is important for setting the time scale of
dynamic processes such as nerve pulse propagation.
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APPENDIX A: MONTE CARLO SIMULATIONS

We have modeled the melting transition of a single lipid
membrane using the Doniach model,’ which is a modified
version of the Ising model with two lipid states, gel and fluid,
instead of two spins. This differs from the Ising model in that
the two lipid states are not only different in enthalpy but also
in entropy. This is due to the higher degeneracy of states of
each lipid molecule in the fluid phase. We used Monte Carlo
simulations employing the Glauber algorithm for the individ-
ual simulation steps.’® Such simulations are described in de-
tail by Refs. 11 and 12.

Simulations were typically carried out on a triangular
lattice with 100 x 100 sites with periodic boundary condi-
tions. Each lattice point represents one lipid which can either
be in the gel or the fluid state. All simulations were equili-
brated for at least 30 times the correlation time before sam-
pling, effectively meaning more than 6 x 10* Monte Carlo
cycles at the transition maximum. The equilibration was car-
ried out by assuming a constant water bath temperature in
the first step. In a second step, we considered finite reser-
voir size using an algorithm described below. In analogy to
the heat capacity, we defined the excess fluctuation strength
Acg = ((AH?) — (AHS)Z) /RT? that we calculated from the
excess enthalpy fluctuations of the lipid membrane (enthalpy
H;) embedded into the finite reservoir. The statistical error
was estimated using the Jackknife method. We emphasize that
the fluctuation strength Ac; is identical to the equilibrium ex-
cess heat capacity defined as Ac, = (dQ/dT), only in the limit
of infinite reservoirs and constant reservoir temperature.

In the present simulation, we used the following pa-
rameters for modeling the heat capacity profiles of DPPC
large unilamellar vesicles (LUV): AH = 36400 J/mol (melt-
ing enthalpy), AS = 115.9 J/mol K (melting entropy), and
wgr = 1326.0 J/mol’! leading to a melting temperature of
T,» = 314.05 K and a transition half width of about 1 K. The
heat capacity of water was taken to be c?‘”” =75 J/Kmol
which corresponds to the value of 1 cal/g K for free water. The
heat capacity of the chains was set to c;h“i” = 1600 J/K mol
which was determined experimentally by Blume®? for gel
state DPPC. The total heat reservoir is shared by all lipids
in the lipid membrane. The minimum number of water
molecules per lipid considered in any simulation is 100.

The simulated heat capacity profiles and the estimated
statistical errors were smoothed using cubic spline fits.

APPENDIX B: SYSTEM SIZE DEPENDENCE

Fig. 6 shows that the calculated fluctuation strength (per
mole of lipid) is independent of the total number of lipids
assuming a fixed reservoir size per lipid (here, 1000 H,O
molecules per lipid) within statistical error. This behavior was
demanded in the Theory section and demonstrates the robust-
ness of our approach.

J. Chem. Phys. 139, 125101 (2013)
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FIG. 6. Fluctuation strength, Ac;, at the transition temperature 7, of the
lipid membrane in a finite system with 1000 water molecules per lipid. The
simulation was performed for different sizes, n, of the lipid membrane. A
system size of n denotes a n x n matrix. The fluctuation strength per lipid is
independent of system size within the error of the calculation.
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