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Abstract

In the recent years, we have shown that cylindrical biological membranes such as nerve
axons under physiological conditions are able to support stable electromechanical pulses
called solitons. These pulses share many similarities with the nervous impulse, for example,
the propagation velocity as well as the measured reversible heat production and changesin
thickness and length that cannot be explained with traditional nerve models. A necessary
condition for solitary pulse propagation is the simultaneous existence of nonlinearity and
dispersion, that is, the dependence of the speed of sound on density and frequency. A pre-
requisite for the nonlinearity is the presence of a chain-melting transition close to physio-
logical temperatures. The transition causes a density dependence of the elastic constants
which can easily be determined by an experiment. The frequency dependence is more
difficult to determine. The typical timescale of a nerve pulse is 1 ms, corresponding to a
characteristic frequency in the range up to 1 kHz. Dispersion in the sub-kilohertz regime
is difficult to measure due to the very long wave lengths involved. In this contribution,
we address theoretically the dispersion of the speed of sound in lipid membranesand relate
it to experimentally accessible relaxation times by using linear response theory. This
ultimately leads to an extension of the differential equation for soliton propagation.
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ABBREVIATIONS

DPPC dipalmitoyl phosphatidylcholine
DSC differential scanning calorimetry

1. INTRODUCTION

Biological membranes are ubiquitous in the living world. Despite
their diversity in composition, membranes of different cells or organelles
are remarkably similar in structure and exhibit similar thermodynamic
properties. They exist as thin, almost two-dimensional lipid bilayers whose
primary function is to separate the interior of cells and organelles (subcellular
compartment) from their external environments. This separation leads in
turn to the creation of chemical and biological gradients which play a pivotal
role in many cellular and subcellular processes, for example, adenosine
triphosphate production. A particularly important feature of biomembranes
is the propagation of voltage signals in the axons of neurons, which allows
cells to communicate quickly over long distances, an ability that is vital for
higher lifeforms such as animals [1,2].

Biological membranes exhibit a phase transition between an ordered and
a disordered lipid phase near physiological conditions [3]. It has been shown
that organisms alter their detailed lipid composition in order to maintain the
temperature of this phase transition despite difterent growth conditions [4—6].
The biological implications of membrane phase transitions continue to be an
area of active research. Near a phase transition, the behavior of the
membrane changes quite drastically: The thermodynamic susceptibilities,
such as heat capacity and compressibility, display a maximum, and the
characteristic relaxation times of the membrane show a drastic slowing
down [7-11].

The melting transition in lipid membrane is accompanied by a significant
change of the lateral density by about —20%. Thus, the elastic constants are
not only temperature dependent, but they are also sensitive functions of
density. Together with the observed frequency dependence of the elastic
constants (dispersion), this leads to the possibility of localized solitary pulse
(or soliton) propagation in biomembrane cylinders such as nerve axons.
With the emergence of the soliton theory for nerve pulse propagation,
the investigation of sound propagation in lipid membranes close to the lipid
melting transition has become an important issue [2]. The soliton model
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describes nerve signals as the propagation of adiabatic localized density pulses
in the nerve axon membrane. This view is based on macroscopic thermo-
dynamics arguments in contrast to the well-known Hodgkin—Huxley model
for the action potential that is based on the nonadiabatic electrical properties
of single protein molecules (ion channels).' Using this alternative model, we
have been able to make correct predictions regarding the propagation veloc-
ity of the nerve signal in myelinated nerves, along with a number of new
predictions regarding the excitation of nerves and the role of general anes-
thetics [12]. In addition, the soliton model explains a number of observations
about nerve signal propagation, which are not included in the Hodgkin and
Huxley model, such as changes in the thickness of the membrane, changes in
the length of the nerve, and the existence of phase-transition phenomena
[13]. The solitary wave is a sound phenomenon which can take place in me-
dia displaying dispersion and nonlinearity in the density. Both of these
criteria are met close to the main lipid transition. However, the magnitude
of dispersion in the frequency regime of interest for nerve pulses (up to
1 kHz) is unknown [2]. Exploring sound propagation in lipid membranes
is thus an important task for improving our understanding of mechanical
pulse propagation in nerves. All previous attempts to explore sound prop-
agation in lipid membranes have focused on the ultrasonic regime
[9,14-16], and it has clearly been demonstrated that dispersion exists in
this frequency regime. Furthermore, the low-frequency limit of the
adiabatic compressibility of membranes (which determines the sound
velocity) 1s equal to the isothermal compressibility, which is significantly
larger than the compressibility in the megahertz regime. With the
additional knowledge that relaxation times in biomembranes are of the
order of milliseconds to seconds, it is quite plausible to expect significant
dispersion effects in the frequent regime up to 1 kHz.

Theoretical efforts to describe sound propagation in lipid membranes
near the lipid melting transition in the ultrasonic regime have been based on
scaling theory, which assumes critical relaxation behavior during the transition
[16,17]. However, a number low-frequency experiments, pressure jump
experiments [10,18], and stationary perturbation techniques [11,19] all show
noncritical relaxation dynamics. These findings have led us to propose a
noncritical thermodynamical description of sound propagation in lipid
membranes near the lipid melting transition for low frequencies based on
linear response theory.

' For a comparison of the Hodgkin—Huxley model and the soliton theory, see Chapter 9.



54 Lars D. Mosgaard et al.

In this chapter, we present a theoretical derivation of the magnitude of
dispersion for membranes close to lipid melting transitions. The goal is to
modify the wave equation for solitons in biomembranes. This will ultimately
lead to a natural timescale for the pulse length, which we will explore in
future work.

2. THE PROPAGATING SOLITON IN NERVE MEMBRANES

In the following, we present the hydrodynamic equations that govern
the propagation of density waves in cylindrical membranes, in general, and
in nerve membranes close to the chain-melting transition, in particular.

In it simplest formulation, the wave equation for compressible fluids
assumes the form™:
2
%: V(cVp), (2.1)

where

Op 1

)
Op S,0 Ksp

is the speed of sound for low-amplitude waves (Ap < py), K is the adiabatic
compressibility, and p(x, f) is the density. If the speed of sound is roughly

(2.2)

independent of density, this equation simplifies to

P _ o
The wave equation in one dimension is then given by
Pp 9,0
P2 (2=p). 2.4
orr  Ox <C Ox (24)

For low-amplitude sound, we further assume that there is dispersion of
the form

E =+ how* + -+, (2.5)

% A derivation of the equation of sound, based on fluid dynamics, can be found in Ref. [20]. There are
two basic assumptions in the derivation of the equation of sound: Perturbations are small, and sound
propagation is an adiabatic process.



Low-Frequency Sound Propagation 55

which corresponds to a Taylor expansion of the sound velocity with respect
to frequency. The parameter / indicates the magnitude of the dispersion.
Due to symmetry arguments, only even power terms appear in this expan-
sion. One way to generate this frequency dependence is to add a dispersion
term to the wave equation

?p 0 (

) o*
- = 2_ —
o2 ox\ axp> el (2:6)

The density of a small amplitude plane wave can be written as

p(x,t)=p,+Ap with Ap = Asin(kx — wt)

= Asin(k(x — ct)). (2.7)

The amplitude of this plane wave is A, and its velocity is c=w/k.
Inserting this into Eq. (2.4) yields the dispersion relation in Eq. (2.5) with
ho="h/c;. We have shown experimentally that the sound velocity close to
melting transitions in lipid membranes is a sensitive nonlinear function of
density. Thus, we expand

=g +pAp+q(Ap)’+---. (2:8)

The parameters p and ¢ describe the nonlinear elastic properties of mem-
branes. At temperatures slightly above the melting transition, lipid mem-
branes have negative values for the parameter p and positive values for
the parameter ¢. The final wave equation is given by

#p 0 9 o
So= (@ rso a0 o) b (29)

We have shown that this equation possesses analytical solitary solutions
that in many aspects resemble the nerve pulse (see Fig. 2.1).

While the above equation makes use of the fact that the speed of sound is
a known function of density, the dispersion constant # must be regarded as an
adjustable parameter due to the absence of quantitative empirical data
regarding dispersion in the low-frequency regime. The magnitude of / sets
the width and the timescale of the mechanical pulse. In previous publica-
tions, it was adjusted to h=2m"/s” in order to match the observed width
of the nerve pulse, which is about 10 cm. However, we will argue below
that h is expected to be density dependent and that its functional form
can be approximated using experimental knowledge about relaxation time-
scales and elastic constants. This will ultimately lead to a wave equation for
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Figure 2.1 The propagating soliton using parameters appropriate for unilamellar DPPC
vesicles and a dispersion constant h=2m*/s (from Ref. [21]). The soliton has a width of
about 10 cm and a duration of about 1 ms, which is very similar to action potentials in
myelinated nerves.

the mechanical pulse in nerve axons that is free of adjustable parameters and
has a timescale that is fixed by the thermodynamics of the system.

3. BRIEF OVERVIEW OF SOUND

Sound is a propagating low-amplitude density wave in compressible
medium which, due to its adiabatic nature, isaccompanied by a corresponding
temperature wave. The equation governing sound propagation is universal.
This generality implies that sound propagation is determined solely by the
macroscopic thermodynamical properties of the system.

As mentioned above, the equation of sound for low-amplitude waves has
the following form:

Pp_
or

The general solution has the following form:

p=Aexp(io(t—x/¢)), (2.10)

V3.
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which 1s merely Eq. (2.7) in complex notation. Due to dispersion and the
absorption of sound in a real medium, the effective speed of sound, ¢, is a
complex quantity. The real part of the speed of sound will cause a phase shift
(as a result of dispersion), and the imaginary part will lead to a decrease in the
amplitude or intensity of the sound as it propagates (attenuation). This can be
seen by inserting the complex speed of sound into Eq. (2.10).

p = Aexp(io(t— xRe(8) /) exp(—xwIm(?) /|2[), (2.11)
where
y= Rﬁ(f) \ (2.12)

1s the eftective speed of sound which would be measured in an experiment.

In 1928, Herzfeld and Rice extended the theory of sound by arguing that
internal vibrational modes of polyatomic molecules require time to ap-
proach thermal equilibrium with translational degrees of freedom [22]. If
the timescale of the density (or pressure) perturbation is similar to or less than
the timescale of these internal relaxation times, the temperature response of
the system will lag behind that of the perturbation. This will prevent the in-
ternal degrees of freedom from taking up all the heat and will result in a de-
crease in the effective heat capacity.” This decrease in the effective heat
capacity results in hysteresis and in dissipation of heat.

In 1962, Fixman applied the basic ideas of Herzfeld and Rice to describe
the viscosity of critical mixtures [23]. He was motivated by the intimate
relation between viscosity and attenuation. Critical mixtures of fluids display
a second-order transition which is indicated by a critical slowdown of the
relaxation rates of the order parameters. In contrast to Herzfeld and Rice,
Fixman did not limit his attention to the rates of translational and internal
degrees of freedom but rather considered a continuum of long-wavelength
fluctuations in the order parameter. With this change of perspective, he
made the connection between the transfer rates and relaxation rates of order
parameters in viscous systems. The slowdown during a transition means
large changes in the dynamic heat capacity of the system and thereby in
the speed of sound.

Following the argument of Fixman, the slowing down of the character-
istic relaxation rate during the lipid melting transition will cause hysteresis

® Note that the effective heat capacity will be referred to as the dynamic heat capacity.
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and dissipation of heat. Even in the absence of critical phenomena, internal
friction and heat conduction as introduced by Stokes [24] and Kirchhoff
[25], respectively, can cause hysteresis and dissipation. However, within
cooperative transitions, these are secondary effects and we will disregard
them for low frequencies.

4. SYSTEM RESPONSE TO ADIABATIC PRESSURE
PERTURBATIONS

Sound is the propagation of a pressure wave that is followed by a
temperature wave as a consequence of its adiabatic nature. Thermodynam-
ically, changes in pressure (dP) and temperature (dT) couple to a change in
the entropy (dS) of the system:

N N
= (=2 )dr+ (2 2.1
4 <3T2d +<5;L¢% (213)

where ¢,=T(0S/0T), is the heat capacity at constant pressure. Using

a well-known Maxwell relation, (0S/0p); can be rewritten as (0S/

8P)T: - (8 V/anpa
os\ __(ov
Op T_ orT
p
oS oV
) e
p p
_ G (9
T \as )’
p

Another Maxwell relation, (017/0S),=(0T/0p)s, allows us to write

Eq. (2.14) as
@ :_C_P<8_T) 215
(@)r T\0pJs (213)

Constant entropy implies that no heat 1s dissipated into the environment
but only moved between different degrees of freedom within a closed
system. At transitions, the Clausius—Clapeyron relation® can be used:

* The use of the Clausius—Clapeyron relation can be justified by the weak first-order nature of the lipid
melting transition [26].
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dp\ AH
<8T>S  TAV’ (2.16)

where AH and AV are the enthalpy (or excess heat) and volume changes

(excess volume) associated with the transition [11]. Note that these are con-
stant system properties for a given transition that can be determined
experimentally.

The change in entropy (Eq. 2.13) can now be written as

dS=c(T,p) <d?T— (i—g dp>. (2.17)

It is clear from Eq. (2.17) that the heat capacity acts as a transfer function
that couples adiabatic changes in pressure to changes in entropy.

Equation (2.17) governs the equilibrium properties of the thermodynam-
ical system. However, here we consider the propagation of sound, which is a
nonequilibrium process. The theory of sound considers the limit of small
changes in pressure and temperature for which close-to-equilibrium dynamics
can be assumed. This implies linear relations between perturbations and sys-
tem responses. For this reason, it is also called linear response theory.

In any real system, transfer rates are finite and changes happen in finite
time. Thus, the changes in pressure and temperature can be represented as
rates, and Eq. (2.17) can be rewritten as

ORI %
AS=|dS= |t — | —= |p(t
[as= a0 [ o ()0
where TzaT/ Ot and p=0p/0t are rates. Note that To= Tequilibriums
which holds if absolute changes in temperature upon pressure changes are

dr, (2.18)

very small.

If changes in pressure or temperature happen faster than the transfer rate
(or relaxation rate), the energy transferred during this change will be only a
part of the amount otherwise transferred. Considering Eq. (2.17), the finite
transfer rate will lower the effective transfer function, in this case the heat
capacity. This means that also the heat capacity must contain a relaxation
term, (1 —‘P[p), with 0 S‘P%S 1. This function describes the equilibration
of the system. As the system approaches equilibrium, (1 —‘Pcp) approaches
unity. Below, we will assume that the function ¥, is an exponentially
decaying function of time. Equation (2.18) must then be written as a
convolution:
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() AV

/ /
T T AH (¢') |df,

AS(1) = J [6,(00) + Ac,(1 =W, (t—1))]

(2.19)

where AS(f) is the time-dependent change in entropy, ¢,(00) is the part of the
heat capacity that relaxes more rapidly than the changes in the pressure and
temperature considered. In the lipid bilayer system, ¢,(00) is the heat capacity
contribution from lipid chains, which we consider as a background contri-
bution. Ag, is the part of the heat capacity which relaxes on timescales of a
similar order or longer than the perturbation timescale. In the lipid mem-
brane system this is the excess heat capacity. In Eq. (2.19), it has been
assumed that the mechanisms of relaxation are the same for pressure
and temperature. This assumption has been justified experimentally and
numerically in the literature [10,14,27,28].

After partial integration of Eq. (2.19), subsequent Fourier transformation
and the use of the convolution theorem, Eq. (2.19) can be transformed into
(see Appendix)

AS(0) = 6, () (TY(;“) - i—g (co)) | (2.20)
T(w) and p(w) can be regarded as periodic variations of temperature and
pressure, respectively. We have also now introduced the frequency-
dependent heat capacity,
©.9]
() = ¢ (00) — Acp[ N (1)dh. (2.21)
0
From Eq. (2.21), the frequency-dependent transfer function (dynamic
heat capacity)® can be found, giving a full description of how a lipid bilayer
responds to adiabatic pressure perturbations. Both ¢,(00) and Ac, are exper-
imentally available using differential scanning calorimetry (DSC). The only
unknown is the relaxation function, ‘P[p.

> Itisimportant note to the difference between the dynamic heat capacity (frequency dependent) and the
normally known equilibrium heat capacity. The equilibrium heat capacity is a constant system prop-
erty, whereas the dynamic heat capacity is an effective heat capacity that can be less than or equal to the
equilibrium heat capacity as a consequence of the finite transfer rates in real systems.
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4.1. Relaxation function

The relaxation function of the heat capacity is related to the rate of energy
transfer from the membrane to the environment. The fluctuation—dissipation
theorem ensures that the rate of energy transfer is equivalent to the relaxation
behavior of energy fluctuations. Since the heat capacity is a measure of en-
thalpy fluctuations, the relaxation function of the heat capacity must be the
relaxation function of the enthalpy fluctuations [11].

The relaxation behavior of the fluctuations of enthalpy in pure lipid
vesicles has been considered theoretically, numerically, and experimentally,
showing that the relaxation of enthalpy is well described by a single expo-
nential function [10,18]:

(H = (H)) () = (H = () (0)exp (=), (2.22)

T

where (H— (H))(0) serves only as a proportionality constant and 7 is the
relaxation time. For various pure lipid membranes close to melting transi-
tions, it was further found that relaxation times are proportional to the excess
heat capacity,

T2
=—Aq, (2.23)

where Lisaphenomenological coefticient. Forlarge unilamellar vesicles (LUV)
of dipalmitoyl phosphatidylcholine (DPPC), L=13.9 x 10® JK/(s mol) [10].

4.2. Response function

Using the relaxation function of the enthalpy fluctuation as the relaxation
function of the dynamic heat capacity,

W, = exp (—%) (2.24)

Equation (2.21) can be solved and the dynamic heat capacity can be
determined as

o (1
() =¢y(00) —Ag, [ e <> e~/ dt

i (2.25)
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Note that the above derivations can be carried out with lateral pressure
instead of pressure; the choice of using pressure is entirely for notational
convenience.

5. ADIABATIC COMPRESSIBILITY

In estimating the speed of sound in the plane of a lipid membrane
during the melting transition, the response of the membrane to sound (the
dynamic heat capacity) must be related to the lateral adiabatic compressibility.
The adiabatic lateral compressibility is defined as

a__1(o4
Kl = A((m)s, (2.26)

where I1 is the lateral pressure. The adiabatic lateral compressibility can be
rewritten in the following form [29]:

T [0A\’
A A
= —— == 2.27
Ks KT AC;ystenl ( o T>]‘[ ( )
where
1 [/0A VAT

is the isothermal lateral compressibility, &7 (00) is the part of the isothermal
lateral compressibility that relaxes faster than changes in the pressure and

: t
temperature considered, and ¢,

is the heat capacity of the total thermo-
dynamical system, that is, the lipid membrane plus the accessible surround-
ing aqueous medium that serves as a bufter for heat transfer. In the last
equality, the empirical proportionality AA=74AH has been used [2,27],
with 74 =0.893m?%/] for a lipid bilayer of DPPC.

In the literature on attenuation and dissipation of sound in critical media,
a difterent form of Eq. (2.27) is often used to relate the dynamic heat capacity
and the adiabatic compressibility, using the dynamic heat capacity as the heat
capacity of the total system [17,30]. This can be done in a straight forward
manner by employing the Pippard—Buckingham—Fairbank relations [31,32].
The main difterence between this approach and the one adopted here is that
their compressible medium is three dimensional, and the system heat
capacity is that of this medium. In contrast, the lipid membrane system 1is
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a pseudo-two dimensional (the bilayer) embedded in a three-dimensional
aqueous medium that serves as a heat reservoir (see Fig. 2.2). Therefore,
the aqueous medium contributes significantly to the features of the
membrane in a frequency-dependent manner.

Imagine a standing temperature wave in the bilayer. The transfer of
heat from the wave to the surrounding water will be time dependent,
see Fig. 2.2 for visualization. In the limit of @ — 0, the amount of water
(heat reservoir) participating will eftectively go to infinity. In the other
extreme, (W —00), no heat will be transferred to the surrounding heat
reservoir. Evidently, the heat capacity of the total system is frequency

dependent:

system lipid reservoir

(@) =P+ (w) (2.29)
where cphpid: Ac,+c,(00) is the complete heat capacity (in equilibrium) of

the lipid membrane and ¢, > () is the heat capacity of the participating
heat reservoir. In this approach, it is the size of the contributing heat reservoir
that is frequency dependent.

Using the proportionality relation AA=74AH in Eq. (2.27) and assum-
ing that (0A/0T)p1 in the chain-melting transition region is completely
dominated by the transition-associated change in area, the following
approximation can be made [14]:

Figure 2.2 Visualization of temperature wave in the plane of a lipid bilayer. The coloring
indicates heat penetrating into the surrounding water.
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2
T
Ky~ K4 (00) +yA7Acp

AT (Ae)

system
A o

) , (2.30)
vaT (Ag)
=4 (00) +-4 <Acp — Csystim .

A P

The parenthesis has the units of a heat capacity and is frequency depen-
dent through the frequency dependence of the size of the associated heat
reservoir. We pose as an ansatz here that this parenthesis is the eftective heat
capacity of the lipid membrane in a finite adiabatically isolated heat reservoir,
which is equivalent to the dynamic heat capacity of the lipid membrane
following the above argument:

Ac,(w) :ACP—M. (2.31)

C;ystem
Numerical justification of this ansatz will be published at a later point.
Using this ansatz, the dynamic heat capacity can be related directly to the
adiabatic lateral compressibility through Eq. (2.30):
2

A A_TAC

= 17 (00) + A Ag (o), (2:32)

where the A¢,(®) is the dynamic heat capacity without background. In this
equation, we use the area of the lipid bilayer.

6. RESULTS—THE SPEED OF SOUND

The goal is to estimate the speed of sound and its frequency depen-
dence in the plane of a lipid membrane. From the estimated dynamic heat
capacity equation (2.25), the adiabatic lateral compressibility can found using
the proposed relation (Eq. 2.32). The lateral speed of sound can then be
estimated using Eq. (2.2) as

where k5™ is a function of the frequency, ®. The effective speed of sound is
given by Eq. (2.12)
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. (Re(cﬂ))1
)

Using the previous two equations, one can show that

2
Re(r§) +[reg]

(@)= (p")" (2.33)

Inserting the estimated adiabatic lateral compressibility from Egs. (2.32)
and (2.25) into Eq. (2.33), the eftective speed of sound squared takes the
analytic form:

2
(o) = - =, (2.34)
1,1 1411 1__or

with the notation

c= (,()A;cg{(oo))_1 (2.35)
and
75T .

G(w)= <,0A—‘;1 Acp(w)> : (2.36)

Here, ¢ is the lateral speed of sound of the membrane outside the tran-
sition, and ¢, 1s the component of the lateral speed of sound related to the
lipid melting transition.

All variables in Eq. (2.34) can be found from the excess heat capacity of
the lipid melting transition and the fluid fraction,” which can be obtained
using DSC. The area, the lateral density, and the background isothermal
compressibility are all directly related to the fluid fraction [28]. The relax-
ation time can be estimated from its phenomenological proportionality
relation to the excess heat capacity, Eq. (2.23). The proposed analytic ex-
pression for the effective speed of sound (Eq. 2.34) is shown in Fig. 2.3,
where the excess heat capacity and the fluid fraction are taken from Monte
Carlo simulations of the lipid melting transition in LUV of DPPC. The
simulation has been carried out in a manner similar to that described in

Ref. [33].

® The fluid fraction is the fraction of a considered lipid system that is in the fluid phase.
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Figure 2.3 Left: The effective lateral speed of sound squared as a function of density at
different angular frequencies along with the limiting cases: ® — 0 and w — oc. Right: The
generic function, flwt), that takes the effective lateral speed of sound squared, at a given
lateral density, from the low-frequency limit (wt — 0)=0) to the high-frequency limit
(ot — 00)=1).

The frequency dependence of the speed of sound is described by the
function, flot) with 0 <flot) <1, defined by

(1) = ué + (uio — ué)f(a)‘c) (2.37)

where 1y =u(wt—0) and 1y, =u(wt— 00). From Eq. (2.34) we see that

-1

(1,1
u-=1=+—=

0=\2T2 (2.38)
wr =cl.

See Fig. 2.3 (right). The generic function fwas chosen to be a function of
the dimensionless quantity @t rather than  in order to render it indepen-
dent of the lateral density.

6.1. Dispersion relation

In the soliton model described by Eq. (2.4), dispersion was assumed to be
small and independent of the lateral density due to the lack of detailed in-
formation of the frequency dependence of the speed of sound as a function
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of density. Using the considerations of the previous sections, we can now
estimate the dispersion in lipid membranes. In the soliton model, the extent
of dispersion is described by the parameter, h. Assuming that dispersion is
small, /i can be related to the lateral speed of sound as

haw
R+ — (2.39)

N

Equation (2.39) corresponds to a Taylor expansion of the lateral speed of
sound squared to second order.” Expanding Eq. (2.34) to second order,

2 >
g dqt4s 5,

2 2
U U+ uy—5—5—5= , 2.40
i@ ) (240
we see that the dispersion parameter has the following form:
he s 204G o (2.41)

~ 32+ )

Using the excess heat capacity and the fluid fraction for large unilamellar
vesicles of DPPC as used in Fig. 2.3, we can estimate the density dependence
of the dispersion parameter h(p 4) as shown in Fig. 2.4.

Here, the density of the fluid phase is approximately 4 x 10~ > g/m?, the
maximum of the dispersion parameter corresponds to the chain-melting

x 107

h (m%/s?)

N W~ OO O N

4 4.2 4.4 4.6 4.8 5 52
x 1073
p™ (g/m?)

Figure 2.4 The dispersion parameter, h, as a function of lateral density for LUV of DPPC,
based on the proposed expression for the lateral speed of sound.

7 The first-order term is zero since the speed of sound squared is symmetric around @ =0.
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transition maximum, and the density of the gel phase is 5 X 107> g/m>. It is
clear that the dispersion parameter is strongly dependent on the lateral den-
sity of the membrane.

The density-dependent dispersion parameter, h(p”'), will finally enter the
differential equation (Eq. 2.4) for the propagating nerve pulse. In the original
treatment, i was considered an adjustable constant that determined the time-
scale of a solitary pulse in nerve axons. In the present extension, h(p™) is fully
determined by the cooperative nature of the membrane system and does not
contain adjustable parameters. Preliminary calculations indicate that this dis-
persion parameter will yield a natural timescale for the propagating soliton in

nerve axons.

7. DISCUSSION

The response of lipid membranes to adiabatic periodic pressure pertur-
bations (sound) is closely related to the relaxation behavior of the system
[22,23]. Using thermodynamics and linear response theory, we have
described the response of the lipid membrane to a perturbation with the
assumption that the relaxation function has a simple exponential dependence
on time. We obtain a form for the dynamic heat capacity which can be
understood as the effective heat capacity when the lipid membrane is subject
to periodic adiabatic pressure perturbations. The dynamic heat capacity was
then related to the adiabatic lateral compressibility using the idea that
the size of the associated water reservoir is frequency dependent [14]. The
adiabatic lateral compressibility was then used to obtain an expression for
the effective speed of sound as a function of frequency.

The major assumption in our approach concerns the nature of the relax-
ation function. We have previously studied the relaxation behavior of the
lipid membrane in the vicinity of the melting transition at low frequencies.”
This means that the lipid melting transition is assumed to be noncritical. The
single exponential relaxation behavior should, however, only be considered
as a low-frequency approximation. In a number of ultrasonic experiments,
it has been shown that a single exponential is insufficient to describe the
dynamics of the cooperative processes involved in lipid melting in the
ultrasonic regime [9,14—16]. In these ultrasonic experiments, some phase-
transition phenomena are even apparent in the megahertz regime. Single

¥ The time resolution of experiments from our group is 0.3 s corresponding to 3.3 Hz. Relaxation
profiles on longer time scales are well approximated by a single exponential decay [10,18].
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exponential relaxation behavior, and thereby the validity of the estimated
speed of sound, is thus limited to frequencies comparable to the
relaxation rate or lower.

van Osdol et al. [19] have made adiabatic pressure perturbation experi-
ments on unilaminar and multilaminar vesicles of DPPC. They studied re-
laxation behavior of the lipid membrane by measuring the frequency
dependence of the effective heat capacity and the compressibility as a func-
tion of frequency. Although the data available for unilamellar vesicles are
very limited and have large errors, it can still serve to illustrate qualitative
tendencies of the effective heat capacity, see Fig. 2.5, that are similar to
the theoretical results reported here. The eftective frequency dependence
of the speed of sound shown in Fig. 2.3 is dominated by the cooperative
properties of the lipid melting transition of DPPC. In this model system,
the relaxation time during the transition is as slow as seconds. In biological
membranes such as membranes of nerves, realistic characteristic relaxation
times can be assumed to be of the order of 1-100 ms. This change in
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Figure 2.5 Left: The calculated dynamic heat capacity for LUV of DPPC at different
frequencies. Right: The effective heat capacity profiles for LUV of DPPC at different fre-
qguencies, measured by van Osdol et al. [19]. The measured effective heat capacities
have not been corrected for contributions from the experimental setup, and a direct
comparison is therefore not possible. The theoretical dynamic heat capacity shows
the same qualitative features as the measurements—a dramatic decrease in the height
of the excess heat capacity with increasing frequency and a relatively constant width.
The difference in frequency scales seen in the two panels is due to an estimated differ-
ence of more than a factor of 10 in the characteristic relaxation time. Frequencies are
given in units of Hz=(1/2x)rad/s.
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relaxation times between the model system and biological membrane ex-
pands the upper limit of the frequency range for which our approach is
likely to be valid from the hertz to kilohertz regime, assuming that the gen-
eral behavior of pure lipid and biological membranes is otherwise similar.
Since the duration of a nerve pulse is roughly 1 ms, the relevant frequency
components contained in a nerve pulse can be estimated to be 1 kHz or less.
The relevant frequency range for nerve pulses is thus covered by our
proposed expression for the effective speed of sound. The present results
may thus provide useful insights regarding sound propagation in an other-
wise inaccessible regime and can extend our understanding of the nature of
nerve signals.

In future studies, the linear response theory described in this chapter
will help to define an intrinsic length scale of the electromechanical soliton
proposed by us as an alternative description for the nervous impulse.

APPENDIX A. DERIVATION OF THE DYNAMIC HEAT
CAPACITY USING THE CONVOLUTION
THEOREM

The purpose of this appendix is to provide additional details in the der-
vation of the frequency-dependent heat capacity given in Eq. (2.25) starting
from Eq. (2.19). The change in entropy is a convolution of the applied
perturbation and the relaxation of the transfer function—the effective heat
capacity. The perturbation is well defined at all times and can safely be as-
sumed to be zero for t— — 00. The relaxation function is only defined from
[0, 00], where t=0 is the time at which the system starts to equilibrate. The
relaxation function, ¥, is chosen such that W (t— 0)=1 and W (t— o00) =0.
To accommodate the chosen form of the relaxation function, the convolu-
tion can be written as follows:

AS(t) = i (cp(OO)+Acp(1‘P(tt’)))<Tg))iZ'(t’)>dt’, (A.1)

—00

AS(t) =] g(t—£)F(1)dr, (A.2)

J =00

where g(t— ') is the transfer function and f (') is the perturbation. Note that
f(t) =df(¢)/dt, ¢,(00) is the component of the heat capacity not associated
with the melting transition, and Tj is the equilibrium temperature.
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Integration by parts allows us to rewrite Eq. (A.2) to the following form:

AS(t) = [g(t’) Jf(t/)dt/] t_oo —[t (Jf(t//)dt//>g(z—t’)dt’. (A.3)

—0Q

The first term in Eq. (A.3) takes the form:

) O] =) (Ad)

where

(T()~Ty) AV

S === = T ()~ o).

Assuming that the system is in equilibriumas { — — oo and f{f — — 00) =0,

simplifies Eq. (A.4):
8(0)f (1) = g(=00) f(—00) = g (00) f(1). (A.5)

The second term in Eq. (A.3) can be rewritten by changing the variable

to!' =t—1
JI_OO (Jf(t’)dt’>g'(t —f)df =— Joof(t —")g(¢")dr", (A.6)

0
where the integration limits have been changed accordingly.

Since we are interested in sinusoidal perturbations, we consider the Fou-
rier transform of Eq. (A.1) and find:

AS() :ro AS(1)e " dr, (A7)

—00
o0

AS(w) = JOO (cp(oo)f(t) +J flt— t”)g‘(t”)dt”) e dt. (A.8)

—00 0

The Fourier transform of the first term in Eq. (A.8) can be carried out
without complications:

A

cp(oo)J Flt)e ™ di = (00)f (). (A.9)

—00

The second term of Eq. (A.8) can be rewritten as follows:

JOO rof(t—t”)g'(t”)e""*”dt”dt:rog'(t”)JOO Flt—{")e ™ dtde".

—00J0 0 —00

(A.10)
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Changing variables again, { =t—{’, the Fourier transform of the second
term in Eq. (A.8) can be split into two terms:

J" // f oof // _lwtdt//dt—fo / f oof —la) (£ +¢") dt dr’
— J‘O e—m)t dtl/J‘ OOI[ e—ia)t dt/
jo —iot5(1)dt. (A.11)

This is known as the convolution theorem. From Egs. (A.11) and (A.9),
Eq. (A.7) can be written as

A

AS(w) = (cp(oo) + JOO e‘”’”g’(t)dt)f(a)), (A.12)

0

where

) T A
O

The Fourier transform of Eq. (A.2) takes the final form:

AS(w) = (cp(oo)—AcpJOOe_iwt‘i’(t>dt> <@ AV (w)) (A.13)

0 T, AH
AS(0) = o () (T(“) _Av A(w)) | (A.14)

p(w) and () = —Ac, P (1)-

Ty, AH

Using W(f) = exp(— t/7), the dynamic heat capacity, ¢,(w), is found to be

() = ¢,(0) —I—%EO ST (A.15)
1—iwt
() =¢,(00) +Ag, (1+(wr)>’ (A.16)

which has the form of a Debye relaxation term.

REFERENCES

[1] A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its
application to conduction and excitation in nerve, J. Physiol. 117 (1952) 500-544.

[2] T. Heimburg, A.D. Jackson, On soliton propagation in biomembranes and nerves,
Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 9790-9795.

[3] D.L. Melchior, H.J. Morowitz, ].M. Sturtevant, T.Y. Tsong, Characterization of the
plasma membrane of Mycoplasma laidlawii. VII. Phase transitions of membrane liquids,
Biochim. Biophys. Acta 219 (1970) 114-122.



Low-Frequency Sound Propagation 73

[4] J.R. Hazel, Influence of thermal acclimation on membrane lipid composition of
rainbow trout liver, Am. J. Physiol. Regul. Integr. Comp. Physiol. 287 (1979)
R633-R641.

[5] E.F. DeLong, A.A. Yayanos, Adaptation of the membrane lipids of a deep-sea bacterium
to changes in hydrostatic pressure, Science 228 (1985) 1101-1103.

[6] T. Heimburg, Thermal Biophysics of Membranes, Wiley VCH, Berlin, Germany,
2007.

[7] T.Y. Tsong, T.-T. Tsong, E. Kingsley, R. Siliciano, R elaxation phenomena in human
erythrocyte suspensions, Biophys. J. 16 (1976) 1091-1104.

[8] T.Y. Tsong, M.I. Kanehisa, Relaxation phenomena in aqueous dispersions of synthetic
lecithins, Biochemistry 16 (1977) 2674-2680.

[9] S. Mitaku, T. Date, Anomalies of nanosecond ultrasonic relaxation in the lipid bilayer
transition, Biochim. Biophys. Acta 688 (1982) 411-421.

[10] P. Grabitz, V.P. Ivanova, T. Heimburg, Relaxation kinetics of lipid membranes and its
relation to the heat capacity, Biophys. J. 82 (2002) 299-309.

[11] W.W. van Osdol, R.L. Biltonen, M.L. Johnson, Measuring the kinetics of membrane
phase transition, J. Bioener. Biophys. Methods 20 (1989) 1-46.

[12] T. Heimburg, A.D. Jackson, On the action potential as a propagating density pulse and
the role of anesthetics, Biophys. Rev. Lett. 2 (2007) 57-78.

[13] S.S.L. Andersen, A.D. Jackson, T. Heimburg, Towards a thermodynamic theory of
nerve pulse propagation, Prog. Neurobiol. 88 (2009) 104-113.

[14] S. Halstenberg, T. Heimburg, T. Hianik, U. Kaatze, R. Krivanek, Cholesterol-induced
variations in the volume and enthalpy fluctuations of lipid bilayers, Biophys. J. 75 (1998)
264-271.

[15] W. Schrader, H. Ebel, P. Grabitz, E. Hanke, T. Heimburg, M. Hoeckel, M. Kahle,
F. Wente, U. Kaatze, Compressibility of lipid mixtures studied by calorimetry and ul-
trasonic velocity measurements, J. Phys. Chem. B 106 (2002) 6581-6586.

[16] S. Halstenberg, W. Schrader, P. Das, J.K. Bhattacharjee, U. Kaatze, Critical fluctuations
in the domain structure of lipid membranes, J. Chem. Phys. 118 (2003) 5683-5691.

[17] J.K. Bhattacharjee, F.A. Ferrell, Scaling theory of critical ultrasonics near the isotropic-
to-nematic transition, Phys. Rev. E 56 (1997) 5549-5552.

[18] H.M. Seeger, M.L. Gudmundsson, T. Heimburg, How anesthetics, neurotransmitters,
and antibiotics influence the relaxation processes in lipid membranes, J. Phys. Chem. B
111 (2007) 13858-13866.

[19] W.W. van Osdol, M.L. Johnson, Q. Ye, R.L. Biltonen, Relaxation dynamics of the gel
to liquid crystalline transition of phosphatidylcholine bilayers. Effects of chainlength and
vesicle size, Biophys. J. 59 (1991) 775-785.

[20] L.D. Landau, E.M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics, vol. 6,
second ed., Pergamon Press, Oxford, 1987.

[21] T. Heimburg, A.D. Jackson, Thermodynamics of the nervous impulse, in: K. Nag (Ed.),
Structure and Dynamics of Membranous Interfaces, Wiley, Hoboken, NJ, 2008,
pp. 317-339.

[22] K.F. Herzfeld, F.O. Rice, Dispersion and absorption of high frequency sound waves,
Phys. Rev. 31 (1928) 691-695.

[23] M. Fixman, Viscosity of critical mixtures: dependence on viscosity gradient, J. Chem.
Phys. 36 (1962) 310-318.

[24] C.G. Stokes, On the theories of the internal friction of fluids in motion, and of the equi-
librium and motion, Trans. Cambridge Phil. Soc. 8 (1845) 287-305.

[25] G. Kirchhoft, Uber den Einfluss der Wirmeleitung in einem Gase auf die
Schallbewegung, Ann. Phys. 210 (1868) 177-193.

[26] J.F. Nagle, Theory of the main lipid bilayer phase transition, Annu. Rev. Phys. Chem.
31 (1980) 157-196.



74 Lars D. Mosgaard et al.

[27] H. Ebel, P. Grabitz, T. Heimburg, Enthalpy and volume changes in lipid membranes. I.
The proportionality of heat and volume changes in the lipid melting transition and its
implication for the elastic constants, J. Phys. Chem. B 105 (2001) 7353-7360.

[28] T. Heimburg, Mechanical aspects of membrane thermodynamics. Estimation of the
mechanical properties of lipid membranes close to the chain melting transition from
calorimetry, Biochim. Biophys. Acta 1415 (1998) 147-162.

[29] A.H. Wilson, Thermodynamics and Statistical Mechanics, Cambridge University Press,
Cambridge, 1957.

[30] M. Barmatz, I. Rudnick, Velocity and attenuation of first sound near the lambda point
of helium, Phys. Rev. 170 (1968) 224-238.

[31] A.B. Pippard, Thermodynamic relations applicable near lambda-transition, Philos. Mag.
1 (1956) 473—476.

[32] M.J. Buckingham, W.M. Fairbank, Progress in Low Temperature Physics, North-
Holland Publishing Co., Amsterdam, 1961.

[33] T. Heimburg, R.L. Biltonen, A Monte Carlo simulation study of protein-induced heat
capacity changes, Biophys. J. 70 (1996) 84-96.



