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Abstract

In the recent years, we have shown that cylindrical biological membranes such as nerve
axons under physiological conditions are able to support stable electromechanical pulses
called solitons. These pulses sharemany similarities with the nervous impulse, for example,
thepropagationvelocityaswell as themeasured reversibleheatproductionandchanges in
thickness and length that cannot be explained with traditional nerve models. A necessary
condition for solitary pulse propagation is the simultaneous existence of nonlinearity and
dispersion, that is, the dependence of the speed of sound on density and frequency. A pre-
requisite for the nonlinearity is the presence of a chain-melting transition close to physio-
logical temperatures. The transition causes a density dependence of the elastic constants
which can easily be determined by an experiment. The frequency dependence is more
difficult to determine. The typical timescale of a nerve pulse is 1 ms, corresponding to a
characteristic frequency in the range up to 1 kHz. Dispersion in the sub-kilohertz regime
is difficult to measure due to the very long wave lengths involved. In this contribution,
weaddress theoretically thedispersionof thespeedof sound in lipidmembranesand relate
it to experimentally accessible relaxation times by using linear response theory. This
ultimately leads to an extension of the differential equation for soliton propagation.

Advances in Planar Lipid Bilayers and Liposomes, Volume 16 # 2012 Elsevier Inc.
ISSN 1554-4516 All rights reserved.
http://dx.doi.org/10.1016/B978-0-12-396534-9.00002-7

51



ABBREVIATIONS
DPPC dipalmitoyl phosphatidylcholine

DSC differential scanning calorimetry

1. INTRODUCTION

Biological membranes are ubiquitous in the living world. Despite

their diversity in composition, membranes of different cells or organelles

are remarkably similar in structure and exhibit similar thermodynamic

properties. They exist as thin, almost two-dimensional lipid bilayers whose

primary function is to separate the interior of cells and organelles (subcellular

compartment) from their external environments. This separation leads in

turn to the creation of chemical and biological gradients which play a pivotal

role in many cellular and subcellular processes, for example, adenosine

triphosphate production. A particularly important feature of biomembranes

is the propagation of voltage signals in the axons of neurons, which allows

cells to communicate quickly over long distances, an ability that is vital for

higher lifeforms such as animals [1,2].

Biological membranes exhibit a phase transition between an ordered and

a disordered lipid phase near physiological conditions [3]. It has been shown

that organisms alter their detailed lipid composition in order to maintain the

temperature of this phase transition despite different growth conditions [4–6].

The biological implications of membrane phase transitions continue to be an

area of active research. Near a phase transition, the behavior of the

membrane changes quite drastically: The thermodynamic susceptibilities,

such as heat capacity and compressibility, display a maximum, and the

characteristic relaxation times of the membrane show a drastic slowing

down [7–11].

The melting transition in lipid membrane is accompanied by a significant

change of the lateral density by about !20%. Thus, the elastic constants are

not only temperature dependent, but they are also sensitive functions of

density. Together with the observed frequency dependence of the elastic

constants (dispersion), this leads to the possibility of localized solitary pulse

(or soliton) propagation in biomembrane cylinders such as nerve axons.

With the emergence of the soliton theory for nerve pulse propagation,

the investigation of sound propagation in lipid membranes close to the lipid

melting transition has become an important issue [2]. The soliton model
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describes nerve signals as the propagation of adiabatic localized density pulses

in the nerve axon membrane. This view is based on macroscopic thermo-

dynamics arguments in contrast to the well-knownHodgkin–Huxleymodel

for the action potential that is based on the nonadiabatic electrical properties

of single protein molecules (ion channels).1 Using this alternative model, we

have been able to make correct predictions regarding the propagation veloc-

ity of the nerve signal in myelinated nerves, along with a number of new

predictions regarding the excitation of nerves and the role of general anes-

thetics [12]. In addition, the solitonmodel explains a number of observations

about nerve signal propagation, which are not included in the Hodgkin and

Huxley model, such as changes in the thickness of the membrane, changes in

the length of the nerve, and the existence of phase-transition phenomena

[13]. The solitary wave is a sound phenomenon which can take place in me-

dia displaying dispersion and nonlinearity in the density. Both of these

criteria are met close to the main lipid transition. However, the magnitude

of dispersion in the frequency regime of interest for nerve pulses (up to

1 kHz) is unknown [2]. Exploring sound propagation in lipid membranes

is thus an important task for improving our understanding of mechanical

pulse propagation in nerves. All previous attempts to explore sound prop-

agation in lipid membranes have focused on the ultrasonic regime

[9,14–16], and it has clearly been demonstrated that dispersion exists in

this frequency regime. Furthermore, the low-frequency limit of the

adiabatic compressibility of membranes (which determines the sound

velocity) is equal to the isothermal compressibility, which is significantly

larger than the compressibility in the megahertz regime. With the

additional knowledge that relaxation times in biomembranes are of the

order of milliseconds to seconds, it is quite plausible to expect significant

dispersion effects in the frequent regime up to 1 kHz.

Theoretical efforts to describe sound propagation in lipid membranes

near the lipid melting transition in the ultrasonic regime have been based on

scaling theory, which assumes critical relaxation behavior during the transition

[16,17]. However, a number low-frequency experiments, pressure jump

experiments [10,18], and stationary perturbation techniques [11,19] all show

noncritical relaxation dynamics. These findings have led us to propose a

noncritical thermodynamical description of sound propagation in lipid

membranes near the lipid melting transition for low frequencies based on

linear response theory.

1 For a comparison of the Hodgkin–Huxley model and the soliton theory, see Chapter 9.
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In this chapter, we present a theoretical derivation of the magnitude of

dispersion for membranes close to lipid melting transitions. The goal is to

modify the wave equation for solitons in biomembranes. This will ultimately

lead to a natural timescale for the pulse length, which we will explore in

future work.

2. THE PROPAGATING SOLITON IN NERVE MEMBRANES

In the following, we present the hydrodynamic equations that govern

the propagation of density waves in cylindrical membranes, in general, and

in nerve membranes close to the chain-melting transition, in particular.

In it simplest formulation, the wave equation for compressible fluids

assumes the form2:

@2r
@t2

¼rðc2rrÞ; ð2:1Þ

where

c¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
@p

@r

" #s

S,0
¼ 1

ffiffiffiffiffiffiffiffi
kSr

p ð2:2Þ

is the speed of sound for low-amplitude waves (Dr%r0), kS is the adiabatic
compressibility, and r(x, t) is the density. If the speed of sound is roughly

independent of density, this equation simplifies to

@2r
@t2

¼ c2r2r: ð2:3Þ

The wave equation in one dimension is then given by

@2r
@t2

¼ @

@x
c2

@

@x
r

" #
: ð2:4Þ

For low-amplitude sound, we further assume that there is dispersion of

the form

c2¼ c20 þh0o2þ'' '; ð2:5Þ

2 A derivation of the equation of sound, based on fluid dynamics, can be found in Ref. [20]. There are

two basic assumptions in the derivation of the equation of sound: Perturbations are small, and sound

propagation is an adiabatic process.
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which corresponds to a Taylor expansion of the sound velocity with respect

to frequency. The parameter h0 indicates the magnitude of the dispersion.

Due to symmetry arguments, only even power terms appear in this expan-

sion. One way to generate this frequency dependence is to add a dispersion

term to the wave equation

@2r
@t2

¼ @

@x
c2

@

@x
r

" #
!h

@4

@x4
r: ð2:6Þ

The density of a small amplitude plane wave can be written as

rðx, tÞ¼ r0þDr with Dr¼A sinðkx!otÞ
(A sinðkðx! ctÞÞ: ð2:7Þ

The amplitude of this plane wave is A, and its velocity is c¼o/k.
Inserting this into Eq. (2.4) yields the dispersion relation in Eq. (2.5) with

h0¼h/c20. We have shown experimentally that the sound velocity close to

melting transitions in lipid membranes is a sensitive nonlinear function of

density. Thus, we expand

c2¼ c20 þpDrþ qðDrÞ2þ''': ð2:8Þ

The parameters p and q describe the nonlinear elastic properties of mem-

branes. At temperatures slightly above the melting transition, lipid mem-

branes have negative values for the parameter p and positive values for

the parameter q. The final wave equation is given by

@2r
@t2

¼ @

@x
ðc20 þpDrþ qðDrÞ2Þ @

@x
r

" #
!h

@4

@x4
r: ð2:9Þ

We have shown that this equation possesses analytical solitary solutions

that in many aspects resemble the nerve pulse (see Fig. 2.1).

While the above equation makes use of the fact that the speed of sound is

a known function of density, the dispersion constant hmust be regarded as an

adjustable parameter due to the absence of quantitative empirical data

regarding dispersion in the low-frequency regime. The magnitude of h sets

the width and the timescale of the mechanical pulse. In previous publica-

tions, it was adjusted to h¼2m4/s2 in order to match the observed width

of the nerve pulse, which is about 10 cm. However, we will argue below

that h is expected to be density dependent and that its functional form

can be approximated using experimental knowledge about relaxation time-

scales and elastic constants. This will ultimately lead to a wave equation for
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the mechanical pulse in nerve axons that is free of adjustable parameters and

has a timescale that is fixed by the thermodynamics of the system.

3. BRIEF OVERVIEW OF SOUND

Sound is a propagating low-amplitude density wave in compressible

mediumwhich,due to its adiabaticnature, is accompaniedbyacorresponding

temperature wave. The equation governing sound propagation is universal.

This generality implies that sound propagation is determined solely by the

macroscopic thermodynamical properties of the system.

As mentioned above, the equation of sound for low-amplitude waves has

the following form:

@2p

@t2
¼ c2r2r:

The general solution has the following form:

r¼Aexpðioðt!x=ĉÞÞ; ð2:10Þ
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Figure 2.1 The propagating soliton using parameters appropriate for unilamellar DPPC
vesicles and a dispersion constant h¼2m4/s2 (from Ref. [21]). The soliton has a width of
about 10 cm and a duration of about 1 ms, which is very similar to action potentials in
myelinated nerves.
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which is merely Eq. (2.7) in complex notation. Due to dispersion and the

absorption of sound in a real medium, the effective speed of sound, ĉ, is a

complex quantity. The real part of the speed of sound will cause a phase shift

(as a result of dispersion), and the imaginary part will lead to a decrease in the

amplitude or intensity of the sound as it propagates (attenuation). This can be

seen by inserting the complex speed of sound into Eq. (2.10).

r¼Aexpðioðt!xReðĉÞ=ĵcj2ÞÞexpð!xoImð̂cÞ=ĵcj2Þ; ð2:11Þ

where

u¼ Reð̂cÞ
ĵcj2

 !!1

ð2:12Þ

is the effective speed of sound which would be measured in an experiment.

In 1928, Herzfeld andRice extended the theory of sound by arguing that

internal vibrational modes of polyatomic molecules require time to ap-

proach thermal equilibrium with translational degrees of freedom [22]. If

the timescale of the density (or pressure) perturbation is similar to or less than

the timescale of these internal relaxation times, the temperature response of

the system will lag behind that of the perturbation. This will prevent the in-

ternal degrees of freedom from taking up all the heat and will result in a de-

crease in the effective heat capacity.3 This decrease in the effective heat

capacity results in hysteresis and in dissipation of heat.

In 1962, Fixman applied the basic ideas of Herzfeld and Rice to describe

the viscosity of critical mixtures [23]. He was motivated by the intimate

relation between viscosity and attenuation. Critical mixtures of fluids display

a second-order transition which is indicated by a critical slowdown of the

relaxation rates of the order parameters. In contrast to Herzfeld and Rice,

Fixman did not limit his attention to the rates of translational and internal

degrees of freedom but rather considered a continuum of long-wavelength

fluctuations in the order parameter. With this change of perspective, he

made the connection between the transfer rates and relaxation rates of order

parameters in viscous systems. The slowdown during a transition means

large changes in the dynamic heat capacity of the system and thereby in

the speed of sound.

Following the argument of Fixman, the slowing down of the character-

istic relaxation rate during the lipid melting transition will cause hysteresis

3 Note that the effective heat capacity will be referred to as the dynamic heat capacity.
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and dissipation of heat. Even in the absence of critical phenomena, internal

friction and heat conduction as introduced by Stokes [24] and Kirchhoff

[25], respectively, can cause hysteresis and dissipation. However, within

cooperative transitions, these are secondary effects and we will disregard

them for low frequencies.

4. SYSTEM RESPONSE TO ADIABATIC PRESSURE
PERTURBATIONS

Sound is the propagation of a pressure wave that is followed by a

temperature wave as a consequence of its adiabatic nature. Thermodynam-

ically, changes in pressure (dP) and temperature (dT) couple to a change in

the entropy (dS) of the system:

dS¼ @S

@T

" #

p

dT þ @S

@p

" #

T

dp; ð2:13Þ

where cp¼T(@S/@T)p is the heat capacity at constant pressure. Using

a well-known Maxwell relation, (@S/@p)T can be rewritten as (@S/
@p)T¼! (@V/@T)p,

@S

@p

 !

T

¼! @V

@T

 !

p

¼! @S

@T

 !

p

@V

@S

 !

p

¼!
cp

T

@V

@S

 !

p

:

ð2:14Þ

Another Maxwell relation, (@V/@S)p¼ (@T/@p)S, allows us to write

Eq. (2.14) as

@S

@p

" #

T

¼!
cp

T

@T

@p

" #

S

: ð2:15Þ

Constant entropy implies that no heat is dissipated into the environment

but only moved between different degrees of freedom within a closed

system. At transitions, the Clausius–Clapeyron relation4 can be used:

4 The use of the Clausius–Clapeyron relation can be justified by the weak first-order nature of the lipid

melting transition [26].
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@p

@T

" #

S

¼ DH
TDV

; ð2:16Þ

where DH and DV are the enthalpy (or excess heat) and volume changes

(excess volume) associated with the transition [11]. Note that these are con-

stant system properties for a given transition that can be determined

experimentally.

The change in entropy (Eq. 2.13) can now be written as

dS¼ cpðT ,pÞ dT

T
! DV

DH

" #
dp

" #
: ð2:17Þ

It is clear from Eq. (2.17) that the heat capacity acts as a transfer function

that couples adiabatic changes in pressure to changes in entropy.

Equation (2.17) governs the equilibrium properties of the thermodynam-

ical system. However, here we consider the propagation of sound, which is a

nonequilibrium process. The theory of sound considers the limit of small

changes in pressure and temperature for which close-to-equilibrium dynamics

can be assumed. This implies linear relations between perturbations and sys-

tem responses. For this reason, it is also called linear response theory.

In any real system, transfer rates are finite and changes happen in finite

time. Thus, the changes in pressure and temperature can be represented as

rates, and Eq. (2.17) can be rewritten as

DS¼
ð
dS¼

ð
cpðtÞ

_TðtÞ
T0

! DV
DH

" #
_pðtÞ

" #

dt; ð2:18Þ

where _T ¼ @T=@t and _p¼ @p=@t are rates. Note that T0¼Tequilibrium,

which holds if absolute changes in temperature upon pressure changes are

very small.

If changes in pressure or temperature happen faster than the transfer rate

(or relaxation rate), the energy transferred during this change will be only a

part of the amount otherwise transferred. Considering Eq. (2.17), the finite

transfer rate will lower the effective transfer function, in this case the heat

capacity. This means that also the heat capacity must contain a relaxation

term, (1!Ccp
), with 0)Ccp

)1. This function describes the equilibration

of the system. As the system approaches equilibrium, (1!Ccp
) approaches

unity. Below, we will assume that the function Ccp
is an exponentially

decaying function of time. Equation (2.18) must then be written as a

convolution:
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DSðtÞ¼
ðt

!1
cpð1ÞþDcpð1!Ccpðt! t0ÞÞ
% & _Tðt0Þ

T0
!DV
DH

_pðt0Þ

 !

dt0;

ð2:19Þ

whereDS(t) is the time-dependent change in entropy, cp(1) is the part of the

heat capacity that relaxes more rapidly than the changes in the pressure and

temperature considered. In the lipid bilayer system, cp(1) is the heat capacity

contribution from lipid chains, which we consider as a background contri-

bution. Dcp is the part of the heat capacity which relaxes on timescales of a

similar order or longer than the perturbation timescale. In the lipid mem-

brane system this is the excess heat capacity. In Eq. (2.19), it has been

assumed that the mechanisms of relaxation are the same for pressure

and temperature. This assumption has been justified experimentally and

numerically in the literature [10,14,27,28].

After partial integration of Eq. (2.19), subsequent Fourier transformation

and the use of the convolution theorem, Eq. (2.19) can be transformed into

(see Appendix)

DSðoÞ¼ cpðoÞ
TðoÞ
T0

!DV
DH

pðoÞ
" #

: ð2:20Þ

T(o) and p(o) can be regarded as periodic variations of temperature and

pressure, respectively. We have also now introduced the frequency-

dependent heat capacity,

cpðoÞ¼ cpð1Þ!Dcp
ð1

0

e!iotC_ cpðtÞdt: ð2:21Þ

From Eq. (2.21), the frequency-dependent transfer function (dynamic

heat capacity)5 can be found, giving a full description of how a lipid bilayer

responds to adiabatic pressure perturbations. Both cp(1) and Dcp are exper-
imentally available using differential scanning calorimetry (DSC). The only

unknown is the relaxation function, Ccp
.

5 It is important note to the difference between the dynamic heat capacity (frequency dependent) and the

normally known equilibrium heat capacity. The equilibrium heat capacity is a constant system prop-

erty, whereas the dynamic heat capacity is an effective heat capacity that can be less than or equal to the

equilibrium heat capacity as a consequence of the finite transfer rates in real systems.
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4.1. Relaxation function
The relaxation function of the heat capacity is related to the rate of energy

transfer from the membrane to the environment. The fluctuation–dissipation

theorem ensures that the rate of energy transfer is equivalent to the relaxation

behavior of energy fluctuations. Since the heat capacity is a measure of en-

thalpy fluctuations, the relaxation function of the heat capacity must be the

relaxation function of the enthalpy fluctuations [11].

The relaxation behavior of the fluctuations of enthalpy in pure lipid

vesicles has been considered theoretically, numerically, and experimentally,

showing that the relaxation of enthalpy is well described by a single expo-

nential function [10,18]:

ðH! Hh iÞðtÞ¼ ðH! Hh iÞð0Þexp ! t

t

' (
; ð2:22Þ

where (H! hH i)(0) serves only as a proportionality constant and t is the

relaxation time. For various pure lipid membranes close to melting transi-

tions, it was further found that relaxation times are proportional to the excess

heat capacity,

t¼T2

L
Dcp; ð2:23Þ

whereL is aphenomenologicalcoefficient.For largeunilamellarvesicles (LUV)

of dipalmitoyl phosphatidylcholine (DPPC), L¼13.9*108 JK/(s mol) [10].

4.2. Response function
Using the relaxation function of the enthalpy fluctuation as the relaxation

function of the dynamic heat capacity,

Ccp ¼ exp ! t

t

' (
: ð2:24Þ

Equation (2.21) can be solved and the dynamic heat capacity can be

determined as

cpðoÞ¼ cpð1Þ!Dcp
Ð1
0 e!iot !1

t

 !

e!t=tdt

¼ cpð1ÞþDcp
1! iot
1þðotÞ2

0

@

1

A:

ð2:25Þ
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Note that the above derivations can be carried out with lateral pressure

instead of pressure; the choice of using pressure is entirely for notational

convenience.

5. ADIABATIC COMPRESSIBILITY

In estimating the speed of sound in the plane of a lipid membrane

during the melting transition, the response of the membrane to sound (the

dynamic heat capacity)must be related to the lateral adiabatic compressibility.

The adiabatic lateral compressibility is defined as

kAS ¼! 1

A

@A

@P

" #

S

; ð2:26Þ

where P is the lateral pressure. The adiabatic lateral compressibility can be

rewritten in the following form [29]:

kAS ¼ kAT !
T

Ac
system
p

@A

@T

" #2

P
; ð2:27Þ

where

kAT ¼! 1

A

@A

@P

" #

T

¼ kATð1Þþg2AT
A

Dcp ð2:28Þ

is the isothermal lateral compressibility, kTA(1) is the part of the isothermal

lateral compressibility that relaxes faster than changes in the pressure and

temperature considered, and cp
system is the heat capacity of the total thermo-

dynamical system, that is, the lipid membrane plus the accessible surround-

ing aqueous medium that serves as a buffer for heat transfer. In the last

equality, the empirical proportionality DA¼gADH has been used [2,27],

with gA¼0.893m2/J for a lipid bilayer of DPPC.

In the literature on attenuation and dissipation of sound in critical media,

a different form of Eq. (2.27) is often used to relate the dynamic heat capacity

and the adiabatic compressibility, using the dynamic heat capacity as the heat

capacity of the total system [17,30]. This can be done in a straight forward

manner by employing the Pippard–Buckingham–Fairbank relations [31,32].

The main difference between this approach and the one adopted here is that

their compressible medium is three dimensional, and the system heat

capacity is that of this medium. In contrast, the lipid membrane system is
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a pseudo-two dimensional (the bilayer) embedded in a three-dimensional

aqueous medium that serves as a heat reservoir (see Fig. 2.2). Therefore,

the aqueous medium contributes significantly to the features of the

membrane in a frequency-dependent manner.

Imagine a standing temperature wave in the bilayer. The transfer of

heat from the wave to the surrounding water will be time dependent,

see Fig. 2.2 for visualization. In the limit of o!0, the amount of water

(heat reservoir) participating will effectively go to infinity. In the other

extreme, (o!1), no heat will be transferred to the surrounding heat

reservoir. Evidently, the heat capacity of the total system is frequency

dependent:

csystemp ðoÞ¼ clipidp þ creservoirp ðoÞ ð2:29Þ

where cp
lipid¼Dcpþ cp(1) is the complete heat capacity (in equilibrium) of

the lipid membrane and cp
reservoir(o) is the heat capacity of the participating

heat reservoir. In this approach, it is the size of the contributing heat reservoir

that is frequency dependent.

Using the proportionality relation DA¼gADH in Eq. (2.27) and assum-

ing that (@A/@T)P in the chain-melting transition region is completely

dominated by the transition-associated change in area, the following

approximation can be made [14]:

Figure 2.2 Visualization of temperature wave in the plane of a lipid bilayer. The coloring
indicates heat penetrating into the surrounding water.
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kAS + kATð1Þþg2AT
A

Dcp!
g2AT
A

ðDcpÞ2

c
system
p

¼ kATð1Þþg2AT
A

Dcp!
ðDcpÞ2

c
system
p

 !
:

ð2:30Þ

The parenthesis has the units of a heat capacity and is frequency depen-

dent through the frequency dependence of the size of the associated heat

reservoir. We pose as an ansatz here that this parenthesis is the effective heat

capacity of the lipid membrane in a finite adiabatically isolated heat reservoir,

which is equivalent to the dynamic heat capacity of the lipid membrane

following the above argument:

DcpðoÞ¼Dcp!
ðDcpÞ2

c
system
p

: ð2:31Þ

Numerical justification of this ansatz will be published at a later point.

Using this ansatz, the dynamic heat capacity can be related directly to the

adiabatic lateral compressibility through Eq. (2.30):

kAS ¼ kATð1Þþg2AT
A

DcpðoÞ; ð2:32Þ

where the Dcp(o) is the dynamic heat capacity without background. In this

equation, we use the area of the lipid bilayer.

6. RESULTS—THE SPEED OF SOUND

The goal is to estimate the speed of sound and its frequency depen-

dence in the plane of a lipid membrane. From the estimated dynamic heat

capacity equation (2.25), the adiabatic lateral compressibility can found using

the proposed relation (Eq. 2.32). The lateral speed of sound can then be

estimated using Eq. (2.2) as

cA¼ 1ffiffiffiffiffiffiffiffiffiffiffi
kASrA

p ;

where kS
A is a function of the frequency, o. The effective speed of sound is

given by Eq. (2.12)
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u¼ ReðcAÞ
jcAj2

 !!1

:

Using the previous two equations, one can show that

u2ðoÞ¼ ðrAÞ!1 2

ReðkAS Þþ jkAS j
: ð2:33Þ

Inserting the estimated adiabatic lateral compressibility from Eqs. (2.32)

and (2.25) into Eq. (2.33), the effective speed of sound squared takes the

analytic form:

u2ðoÞ¼ 2

1
c21
þ 1

c22

1
ð1þðotÞ2Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
c21
þ 1

c22

1
ð1þðotÞ2Þ

' (2

þ 1
c22

ot
ð1þðotÞ2Þ

' (2
r ; ð2:34Þ

with the notation

c21 ( rAkAT ð1Þ
* +!1 ð2:35Þ

and

c22ðoÞ( rA
g2AT
A

DcpðoÞ
" #!1

: ð2:36Þ

Here, c1 is the lateral speed of sound of the membrane outside the tran-

sition, and c2 is the component of the lateral speed of sound related to the

lipid melting transition.

All variables in Eq. (2.34) can be found from the excess heat capacity of

the lipid melting transition and the fluid fraction,6 which can be obtained

using DSC. The area, the lateral density, and the background isothermal

compressibility are all directly related to the fluid fraction [28]. The relax-

ation time can be estimated from its phenomenological proportionality

relation to the excess heat capacity, Eq. (2.23). The proposed analytic ex-

pression for the effective speed of sound (Eq. 2.34) is shown in Fig. 2.3,

where the excess heat capacity and the fluid fraction are taken from Monte

Carlo simulations of the lipid melting transition in LUV of DPPC. The

simulation has been carried out in a manner similar to that described in

Ref. [33].

6 The fluid fraction is the fraction of a considered lipid system that is in the fluid phase.
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The frequency dependence of the speed of sound is described by the

function, f(ot) with 0) f(ot))1, defined by

u2ðotÞ¼ u20þðu21!u20Þf ðotÞ ð2:37Þ

where u0(u(ot!0) and u1(u(ot!1). From Eq. (2.34) we see that

u20¼
1

c21
þ 1

c22

 !!1

u21¼ c21 :

ð2:38Þ

See Fig. 2.3 (right). The generic function fwas chosen to be a function of

the dimensionless quantity ot rather than o in order to render it indepen-

dent of the lateral density.

6.1. Dispersion relation
In the soliton model described by Eq. (2.4), dispersion was assumed to be

small and independent of the lateral density due to the lack of detailed in-

formation of the frequency dependence of the speed of sound as a function
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Figure 2.3 Left: The effective lateral speed of sound squared as a function of density at
different angular frequencies alongwith the limiting cases:o!0 ando!1. Right: The
generic function, f(ot), that takes the effective lateral speed of sound squared, at a given
lateral density, from the low-frequency limit (f(ot!0)¼0) to the high-frequency limit
(f(ot!1)¼1).
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of density. Using the considerations of the previous sections, we can now

estimate the dispersion in lipid membranes. In the soliton model, the extent

of dispersion is described by the parameter, h. Assuming that dispersion is

small, h can be related to the lateral speed of sound as

u2+ u20þ
ho2

u20
þ'' ': ð2:39Þ

Equation (2.39) corresponds to a Taylor expansion of the lateral speed of

sound squared to second order.7 Expanding Eq. (2.34) to second order,

u2+ u20þu40
3c21 þ4c22
4c22ðc21 þ c22Þ

o2t2; ð2:40Þ

we see that the dispersion parameter has the following form:

h¼ u60
3c21 þ4c22
4c22ðc21 þ c22Þ

t2: ð2:41Þ

Using the excess heat capacity and the fluid fraction for large unilamellar

vesicles of DPPC as used in Fig. 2.3, we can estimate the density dependence

of the dispersion parameter h(rA) as shown in Fig. 2.4.

Here, the density of the fluid phase is approximately 4*10!3 g/m2, the

maximum of the dispersion parameter corresponds to the chain-melting

rA (g/m2) ! 10-3

! 107
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Figure 2.4 The dispersion parameter, h, as a function of lateral density for LUV of DPPC,
based on the proposed expression for the lateral speed of sound.

7 The first-order term is zero since the speed of sound squared is symmetric around o¼0.
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transition maximum, and the density of the gel phase is 5*10!3 g/m2. It is

clear that the dispersion parameter is strongly dependent on the lateral den-

sity of the membrane.

The density-dependent dispersion parameter, h(rA), will finally enter the
differential equation (Eq. 2.4) for the propagating nerve pulse. In the original

treatment, hwas considered an adjustable constant that determined the time-

scale of a solitary pulse in nerve axons. In the present extension, h(rA) is fully
determined by the cooperative nature of the membrane system and does not

contain adjustable parameters. Preliminary calculations indicate that this dis-

persion parameter will yield a natural timescale for the propagating soliton in

nerve axons.

7. DISCUSSION

The response of lipid membranes to adiabatic periodic pressure pertur-

bations (sound) is closely related to the relaxation behavior of the system

[22,23]. Using thermodynamics and linear response theory, we have

described the response of the lipid membrane to a perturbation with the

assumption that the relaxation function has a simple exponential dependence

on time. We obtain a form for the dynamic heat capacity which can be

understood as the effective heat capacity when the lipid membrane is subject

to periodic adiabatic pressure perturbations. The dynamic heat capacity was

then related to the adiabatic lateral compressibility using the idea that

the size of the associated water reservoir is frequency dependent [14]. The

adiabatic lateral compressibility was then used to obtain an expression for

the effective speed of sound as a function of frequency.

The major assumption in our approach concerns the nature of the relax-

ation function. We have previously studied the relaxation behavior of the

lipid membrane in the vicinity of the melting transition at low frequencies.8

This means that the lipid melting transition is assumed to be noncritical. The

single exponential relaxation behavior should, however, only be considered

as a low-frequency approximation. In a number of ultrasonic experiments,

it has been shown that a single exponential is insufficient to describe the

dynamics of the cooperative processes involved in lipid melting in the

ultrasonic regime [9,14–16]. In these ultrasonic experiments, some phase-

transition phenomena are even apparent in the megahertz regime. Single

8 The time resolution of experiments from our group is 0.3 s corresponding to 3.3 Hz. Relaxation

profiles on longer time scales are well approximated by a single exponential decay [10,18].
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exponential relaxation behavior, and thereby the validity of the estimated

speed of sound, is thus limited to frequencies comparable to the

relaxation rate or lower.

van Osdol et al. [19] have made adiabatic pressure perturbation experi-

ments on unilaminar and multilaminar vesicles of DPPC. They studied re-

laxation behavior of the lipid membrane by measuring the frequency

dependence of the effective heat capacity and the compressibility as a func-

tion of frequency. Although the data available for unilamellar vesicles are

very limited and have large errors, it can still serve to illustrate qualitative

tendencies of the effective heat capacity, see Fig. 2.5, that are similar to

the theoretical results reported here. The effective frequency dependence

of the speed of sound shown in Fig. 2.3 is dominated by the cooperative

properties of the lipid melting transition of DPPC. In this model system,

the relaxation time during the transition is as slow as seconds. In biological

membranes such as membranes of nerves, realistic characteristic relaxation

times can be assumed to be of the order of 1–100 ms. This change in
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Figure 2.5 Left: The calculated dynamic heat capacity for LUV of DPPC at different
frequencies. Right: The effective heat capacity profiles for LUV of DPPC at different fre-
quencies, measured by van Osdol et al. [19]. The measured effective heat capacities
have not been corrected for contributions from the experimental setup, and a direct
comparison is therefore not possible. The theoretical dynamic heat capacity shows
the same qualitative features as the measurements—a dramatic decrease in the height
of the excess heat capacity with increasing frequency and a relatively constant width.
The difference in frequency scales seen in the two panels is due to an estimated differ-
ence of more than a factor of 10 in the characteristic relaxation time. Frequencies are
given in units of Hz¼ (1/2p) rad/s.
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relaxation times between the model system and biological membrane ex-

pands the upper limit of the frequency range for which our approach is

likely to be valid from the hertz to kilohertz regime, assuming that the gen-

eral behavior of pure lipid and biological membranes is otherwise similar.

Since the duration of a nerve pulse is roughly 1 ms, the relevant frequency

components contained in a nerve pulse can be estimated to be 1 kHz or less.

The relevant frequency range for nerve pulses is thus covered by our

proposed expression for the effective speed of sound. The present results

may thus provide useful insights regarding sound propagation in an other-

wise inaccessible regime and can extend our understanding of the nature of

nerve signals.

In future studies, the linear response theory described in this chapter

will help to define an intrinsic length scale of the electromechanical soliton

proposed by us as an alternative description for the nervous impulse.

APPENDIX A. DERIVATION OF THE DYNAMIC HEAT
CAPACITY USING THE CONVOLUTION
THEOREM

The purpose of this appendix is to provide additional details in the der-

ivation of the frequency-dependent heat capacity given in Eq. (2.25) starting

from Eq. (2.19). The change in entropy is a convolution of the applied

perturbation and the relaxation of the transfer function—the effective heat

capacity. The perturbation is well defined at all times and can safely be as-

sumed to be zero for t!!1. The relaxation function is only defined from

[0,1], where t¼0 is the time at which the system starts to equilibrate. The

relaxation function, C, is chosen such that C(t!0)¼1 and C(t!1)¼0.

To accommodate the chosen form of the relaxation function, the convolu-

tion can be written as follows:

DSðtÞ¼
ðt

!1
ðcpð1ÞþDcpð1!Cðt! t0ÞÞÞ

_Tðt0Þ
T0

!DV
DH

_pðt0Þ

 !

dt0; ðA:1Þ

DSðtÞ¼
ðt

!1
gðt! t0Þ_f ðt

0Þdt0; ðA:2Þ

where g(t! t0) is the transfer function and _f ðt0Þ is the perturbation. Note that
_f ðtÞ¼ df ðtÞ=dt, cp(1) is the component of the heat capacity not associated

with the melting transition, and T0 is the equilibrium temperature.
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Integration by parts allows us to rewrite Eq. (A.2) to the following form:

DSðtÞ¼ gðt0Þ
ð
_f ðt0Þdt0

, -t

!1
!
ðt

!1

ð
_f ðt00Þdt00

" #
_gðt! t0Þdt0: ðA:3Þ

The first term in Eq. (A.3) takes the form:

gðt0Þ
Ð _f ðt0Þdt0

h it
!1

¼ gðt0Þf ðt0Þ½ -t!1

¼ gðtÞf ðtÞ! gð!1Þf ð!1Þ;
ðA:4Þ

where

f ðt0Þ¼ ðTðt0Þ!T0Þ
T0

!DV
DH

ðpðt0Þ!p0Þ:

Assuming that the system is in equilibriumas t0!!1 and f(t0!!1)¼0,

simplifies Eq. (A.4):

gðtÞ f ðtÞ! gð!1Þ f ð!1Þ¼ cpð1Þ f ðtÞ: ðA:5Þ

The second term in Eq. (A.3) can be rewritten by changing the variable

to t00¼ t! t0

ðt

!1

ð
_f ðt0Þdt0

" #
_gðt! t0Þdt0¼!

ð1

0

f ðt! t00Þ _gðt00Þdt00; ðA:6Þ

where the integration limits have been changed accordingly.

Since we are interested in sinusoidal perturbations, we consider the Fou-

rier transform of Eq. (A.1) and find:

DŜðoÞ¼
ð1

!1
DSðtÞe!iotdt; ðA:7Þ

DŜðoÞ¼
ð1

!1
cpð1Þf ðtÞþ

ð1

0

f ðt! t00Þ _gðt00Þdt00
" #

e!iotdt: ðA:8Þ

The Fourier transform of the first term in Eq. (A.8) can be carried out

without complications:

cpð1Þ
ð1

!1
f ðtÞe!iotdt¼ cpð1Þf̂ ðoÞ: ðA:9Þ

The second term of Eq. (A.8) can be rewritten as follows:
ð1

!1

ð1

0

f ðt! t00Þ _gðt00Þe!iotdt00dt¼
ð1

0

_gðt00Þ
ð1

!1
f ðt! t00Þe!iotdtdt00:

ðA:10Þ
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Changing variables again, t0¼ t! t00, the Fourier transform of the second

term in Eq. (A.8) can be split into two terms:
Ð1
0 _gðt00Þ

Ð1
!1 f ðt! t00Þe!iotdt00dt¼

Ð1
0 _gðt00Þ

Ð1
!1 f ðt0Þe!ioðt0þt00Þdt0dt00

¼
Ð1
0 _gðt00Þe!iot00dt00

Ð1
!1 f ðt0Þe!iot0dt0

¼ f̂ ðoÞ
Ð1
0 e!iot _gðtÞdt: ðA:11Þ

This is known as the convolution theorem. From Eqs. (A.11) and (A.9),

Eq. (A.7) can be written as

DŜðoÞ¼ cpð1Þþ
ð1

0

e!iot _gðtÞdt
" #

f̂ ðoÞ; ðA:12Þ

where

f̂ ðoÞ¼ T̂ðoÞ
T0

!DV
DH

p̂ðoÞ and _gðtÞ¼!Dcp _CðtÞ:

The Fourier transform of Eq. (A.2) takes the final form:

DŜðoÞ¼ cpð1Þ!Dcp
ð1

0

e!iot _CðtÞdt
" #

T̂ðoÞ
T0

!DV
DH

p̂ðoÞ
" #

ðA:13Þ

DŜðoÞ¼ cpðoÞ
T̂ðoÞ
T0

!DV
DH

p̂ðoÞ
" #

: ðA:14Þ

UsingC(t)¼exp(! t/t), the dynamic heat capacity, cp(o), is found to be

cpðoÞ¼ cpð1Þþ
Dcp
t

ð1

0

e!iote!t=tdt ðA:15Þ

cpðoÞ¼ cpð1ÞþDcp
1! iot
1þðotÞ2

 !

; ðA:16Þ

which has the form of a Debye relaxation term.
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