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Abstract

This thesis is dedicated to the methods of quantum noise reduction in composite quantum systems. The
quantum noise is a major limitation for the sensitivity of future generations of laser interferometric Gravitational
Wave Detectors (GWDs), whose mirrors can be regarded as free test masses. One of the most promising directions
in quantum noise suppression for such GWDs is the application of non-classical states of light. In order to boost
the sensitivity of GWD in broadband spectral range, it has been proposed to use frequency dependent single-mode
squeezed states or conditional two-mode squeezed states. Theoretically, the performance of these protocols will be
only restricted by the quality of the non-classical states of light. However, the practical implementation of such
schemes involves the utilization of so-called filter optical cavities. An external resonator with extremely narrow
bandwidth can be used to set the desired dependence of squeezing angle on the Fourier frequency for the single-
mode squeezing. If two-mode squeezed states are exploited, the GWD itself can play a role of the filtering cavity.
In turn, it imposes strict requirements on tuning the multiple interlinked parameters of the optical interferometer.
Both approaches are complicated by experimental challenges related to the control of filtering resonators and/or
changes in the established configuration of GWDs.

The main focus of this thesis is the investigation of the alternative strategy, where quantum noise reduction
will be achieved by using an auxiliary harmonic oscillator that is the ensemble of spin polarized cesium atoms.
Analogous to GWD, the spin oscillator is also exposed to quantum noise. However, the total noise in the hybrid
system, composed of an atomic ensemble and a GWD, can be partially or completely eliminated. It has been
previously demonstrated that the reference spin oscillator facilitates mitigation of the quantum noise in a dielectric
membrane in MHz spectral range. At the same time, the atomic oscillator is highly tunable and can in principle
be adjusted to match the GWD, making a joint measurement of two disparate systems feasible. From an experi-
mental point of view, the spin oscillator might be added to the GWD as an external module without necessity to
substantially modify the current design of the detection schemes. On the other hand, the spin ensembles compare
favorably with filtering cavities in terms of complexity of control.

The dynamics of a spin oscillator, suitable for broadband sensitivity enhancement of GWDs in the spectral
range of interest, should be predominantly driven by quantum noise at acoustic spectral frequencies. Moreover, in
order to set the link between the GWD and the atomic ensemble, an Einstein–Podolsky–Rosen (EPR)-entangled
state of light resilient to low-frequency technical noise is needed. In this thesis we report the preparation and
characterization of each subsystem, performed separately. First, we present the entanglement source of two optical
modes, having the wavelengths of 852 nm and 1064 nm that match the frequencies of lasers used to probe the
atomic spin ensemble and GWD, respectively. We observe EPR correlations spanning down to audioband (Ω ≳ 10
kHz). The entanglement is verified by EPR-steering and Duan criteria. The recorded level of two mode squeezing
(−7.1 dB) is one of the highest (to our knowledge) to date for such large wavelength separation. Secondly, we
prove the strong contribution of quantum back action (QBA) noise to the dynamics of the spin oscillator, using
ponderomotive squeezing as a benchmark. In particular, we measure −3 dB and −0.7 dB of light noise reduction
below shot noise level caused by interaction with the atomic ensemble, whose resonance frequency is set to 20
kHz and 6 kHz, respectively. The factors compromising the spin oscillator in quantum regime at near-DC spectral
frequencies are explored and discussed. It has also been shown that QBA-dominated motion can be obtained for
the atomic ensemble initialized in a state with an effective negative mass, which is a key feature for quantum noise
cancellation in the joint measurement. The dissertation is complemented by theoretical analysis of the scheme
under realistic experimental conditions.

The achieved performance of two quantum systems makes them ready for proof-of-principle experiment ad-
dressing the upper part of audio frequency range. In a long term prospective, presented results can serve as
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a foundation for quantum noise reduction in sensitivity band of contemporary state-of-the-art interferometric
GWDs. The comprehensive mathematical model of the experiment accounts for various imperfections and yields
the set of parameters to optimize the efficiency of the protocol.
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Resumé

Denne afhandling omhandler metoder til reduktion af kvantestøj i m̊alinger udført p̊a sammensatte kvan-
tesystemer. Kvantestøj forventes at blive en større begrænsning for følsomheden af fremtidige generationer af
laserinterferometriske gravitationsbølgedetektorer (GWD’er), hvis testspejle kan betragtes som frie masser. En
af de mest lovende retninger inden for kvantestøjsreduktion for s̊adanne GWD’er er anvendelsen af ikke-klassiske
lystilstande. For at forbedre GWD’ens sensitivitet i et bredt spektrum er det blevet foresl̊aet at bruge frekven-
safhængige enkelt-mode-klemte tilstande eller betingede to-mode-klemte tilstande. Teoretisk vil disse protokollers
ydeevne kun være begrænset af kvaliteten af de ikke-klassiske lystilstande. Implementeringen af s̊adanne pro-
tokoller vil i praksis indebære brugen af s̊akaldte optiske filterkaviteter. En ekstern resonator med ekstremt smal
b̊andbredde kan bevirke den ønskede afhængighed af klemningsvinkel p̊a Fourier-frekvensen for en enkelt-mode-
klemt tilstand. Hvis to-mode-klemte tilstande benyttes, kan GWD selv spille rollen som filterkavitet. Dette
indebærer strenge krav til indstillingen af de mange sammenkoblede parametre for det optiske interferometer.
Begge tilgange bliver besværliggjort af eksperimentelle udfordringer relateret til kontrol af filterresonatorer og/eller
ændringer i GWD’ernes etablerede konfiguration.

Hovedfokus i denne afhandling er undersøgelsen af en alternativ strategi, hvor kvantestøjsreduktion opn̊as ved
brug af en harmonisk referenceoscillator, der best̊ar af et ensemble af spinpolariserede cæsiumatomer. Analogt
med GWD er denne spinoscillator ogs̊a udsat for kvantestøj. Dog kan den samlede støj i det hybride system, der er
sammensat af et atomart ensemble og en GWD, delvist eller fuldstændigt elimineres. Det er blevet eksperimentelt
vist, at referencespinoscillatoren faciliterer reduktionen af kvantestøj i en dielektrisk membran i MHz-omr̊adet.
Samtidig er den atomare oscillator meget justerbar og kan i princippet tilpasses til at matche GWDen, hvilket
gør en fælles måling af to forskelligartede systemer mulig. Fra et eksperimentelt synspunkt kan spinoscillatoren
kombineres med GWDen som et eksternt modul, hvorved markante ændringer af det nuværende design af detek-
teringsprotokoller kan undg̊as. Derudover er spinensemblerne, sammenlignet med filterkaviteter, lovende systemer
med hensyn til kompleksiteten af styringen.

Responset for en spin-oscillator som er kompatibelt med følsomhedsforøgelse af GWD over et bredt b̊and i det
spektrale interesseomr̊ade, bør være domineret af kvantestøj ved akustiske frekvenser. Desuden er der behov for
en stærk Einstein–Podolsky–Rosen (EPR)-sammenfiltret tilstand af lys, der er robust over for lavfrekvent teknisk
støj, for at etablere forbindelsen mellem GWD og atomensemblet. I denne afhandling rapporterer vi forberedelsen
og karakteriseringen af hvert delsystem, udført separat. Først præsenterer vi kilden til sammenfiltring af to optiske
tilstande med bølgelængderne 852 nm og 1064 nm, der matcher frekvenserne af lasere til at m̊ale p̊a atomspin-
ensemblet og GWD, henholdsvis. Vi observerer EPR-korrelationer, der spænder ned til akustiske frekvenser (Ω ≳
10 kHz), og sammenfiltringen verificeres ved hjælp af EPR-styring og Duan-kriterierne. Det registrerede niveau af
to-mode-klemning (−7, 1 dB) er et af de højeste hidtil (efter vores vidende) for s̊a stor en bølgelængdeseparation.
For det andet p̊aviser vi det stærke bidrag af kvantetilbagevirkningsstøj (QBA) til dynamikken i spin-oscillatoren,
ved hjælp af ponderomotiv klemning som benchmark. Vi m̊aler specifikt −3 dB og −0, 7 dB lysstøjsreduktion
under haglstøjsniveauet, for̊arsaget af interaktion med atomensemblet, hvis resonansfrekvens er sat til 20 kHz og
6 kHz, henholdsvis. Faktorer, der kompromitterer spin-oscillatoren i kvanteregimet tæt p̊a DC-frekvensomr̊adet,
udforskes og diskuteres. Det er ogs̊a blevet p̊avist, at QBA-domineret dynamik kan opn̊as n̊ar atomensemblet
initieret i en tilstand med en effektiv negativ masse, hvilket er en central egenskab ved kvantestøjannullering i
en fælles m̊aling af de to systemer. Afhandlingen suppleres med teoretisk analyse af protokollen under realistiske
eksperimentelle betingelser.

Den opn̊aede ydeevne for de to kvantesystemer gør dem klar til et proof-of-principle-eksperiment, der adresserer
den øvre del af lydfrekvensomr̊adet. P̊a lang sigt kan de præsenterede resultater udgøre fundamentet for reduktion
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af kvantestøj i frekvensb̊andet af relevans for nutidige state-of-the-art interferometriske GWD’er. Den omfattende
matematiske model for eksperimentet tager højde for forskellige mangler og giver et sæt parametre for at optimere
effektiviteten af protokollen.
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Thesis structure

The manuscript contains five chapters. The structure is as follows:

Chapter 1: This chapter gives the introduction to the detection of gravitational waves by means of laser
interferometers. We discuss the most essential features of such GWDs, define the problem of quantum noise and
analyze its spectral properties. Next, we give an overview of methods that can potentially lead to the sensitivity
improvement beyond the limit set by the quantum noise. The emphasis is made on techniques manipulating the
vacuum state of light entering the GWD interferometers through the dark port.

Chapter 2: The purpose of this chapter is to familiarize the reader with the concept of quantum noise reduction,
which takes the center stage of presented work. The idea of quantum back action (QBA) evasion for an arbitrary
optomechanical object in the reference frame of a second oscillator with an effective negative mass is presented and
applied to the specific case of the GWD. The atomic spin ensemble is used as a platform to construct the auxiliary
oscillator. We investigate the parallel scheme where the atomic system and GWD are measured simultaneously,
being connected by means of entangled state of light. The virtual rigidity method is proposed and analyzed to
resolve the difficulties, when matching the spectral responses of the spin oscillator and the GWD. The limitations
of this technique along with the detrimental impact of optical losses and the finite degree of correlations between
entangled optical modes are covered.

Chapter 3: This part reports the first achievement of the thesis, giving an overview of the experiment, in which
the source of EPR-entanglement was built and characterized. First, the criteria of the entanglement are detailed.
Then we explore the equations of motion for an optical cavity with a non-linear medium inside and arrive at a
mathematical expression that predicts the level of interbeam correlations in the presence of optical losses and
phase noise. Next, we give the description of the experimental setup and explain the motivation behind the choice
of the optical parametric oscillator (OPO) design and the detection scheme used in the protocol. Calibrations
of pump threshold power and escape efficiency are demonstrated. We then discuss the low-frequency homodyne
detection setup. The special attention is paid to the phase locking scheme for the two-mode entangled state of
light, which is more sophisticated compared to the control of a single-mode squeezing. Finally, the two-mode
squeezing in amplitude and phase light quadratures is measured. It is used to verify EPR-steering and Duan
criteria and confirm the entanglement. We also outline the upgrade of the phase locking scheme and stabilization
of the cavity length using optical fields detuned from fundamental frequencies of the OPO. After having the new
scheme implemented and applied to the OPO, we envision the extension of EPR correlation further down into the
acoustic frequency range.

Chapter 4: This chapter describes the second main experimental result of this thesis that is the preparation of
the spin oscillator. We review the mathematical model and start with the spin polarized ensemble of atoms in an
external magnetic field, followed by the interplay with a probe optical field in a reference framework of Faraday
interaction. The impact of alignment spin operators due to the tensor interaction is also addressed. Next,
we perform the experimental characterization. In particular, we focus on coherently induced Faraday rotation
(CIFAR) and magneto-optical resonance spectroscopy (MORS) techniques to estimate the atomic readout rate
and the quality of the coherent spin state, respectively. The mitigation and characterization of broadband noise
was carried out as well. Thus, we address each source of noise contributing to the total noise budget. We proceed
to explore the spin noise spectra, scanning the atomic resonance frequency from MHz range towards audioband.
We witness a significant impact of the quantum back action noise on the atomic response across the whole spectral
range. However, when acoustic frequencies are approached, quantum noise contributions cease to be dominant,
as manifested in the decline of the probe light squeezing induced by the spin oscillator. This is attributed to the
technical noise or/and the dynamics of the spin alignment operators. Finally, the downshift of the effective spin
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resonance frequency arising from the virtual rigidity phenomenon is experimentally demonstrated.
Chapter 5: We continue discussing the performance of the hybrid system consisting of the atomic spin ensemble

coupled to the EPR-entangled state of light from the theoretical point of view. In particular, we envision that
the experimental setup presented in this thesis is suitable for the reduction of quantum noise of light in the kHz
range. Instead of calculating the sensitivity improvement of a ’fictitious’ GWD interferometer combined with spin
oscillator as done in chapter 2, we now consider the conditional two-mode squeezed state of light, where the phase
of one quadrature is rotated due to the interaction with the atomic ensemble. Such a language allows for building
an analogy with the frequency-dependent single-(two-) mode squeezing generated by means of a filtering cavity,
presented in chapter 1.
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Chapter 1

Detection of gravitational waves using laser
interferometry

1.1 Introduction. Operating principles of contemporary GWDs

General relativity predicts that energy-mass density fluctuations generate gravitational radiation. This phe-
nomenon manifests as a perturbation of the space-time itself [1]. Consequently, the gauging of such space modula-
tion provides an opportunity to detect gravitational waves. The amplitudes of gravitational waves arising due to
the most powerful astrophysical events when reaching the vicinity of our solar system are expected to be extremely
small [2]. Direct detection of gravitational waves requires measurements with unprecedented precision, implying
complex scientific and engineering challenges.

Laser

ITM ETM

BS

(a) Simple Interferometer.

Laser

ITM ETM

BS

PRM

SRM

(b) Advanced LIGO (simplified).

Figure 1.1: Simplified schematics of GWDs in laser Michelson interferometer configuration. (a): The end test
mass (ETM) mirror together with the input test mass (ITM) mirror form a Fabri-Perot cavity in each arm of the
interferometer. (b): Dual-recycled Fabry-Perot Michelson Inteferometer used in Advanced LIGO [3]. Inclusion of
the power recycling mirror (PRM) allows for increasing the intensity of circulating laser radiation. The bandwidth
of the interferometer is controlled by the signal recycling mirror (SRM).

Ground-based Gravitational Wave Detectors (GWDs) in laser Michelson interferometer configuration were
shown to be one of the most promising candidates for that task [4]. This type of GWDs has significant advantages
over other types: their scalability allows for an increase in signal-to-noise ratio, and they have wide operational
bandwidth in comparison to Weber bar detector type that relies upon resonant detection [5]. When passing some
localized area, gravitational waves modulate the relative motion of free falling bodies. The underlying idea of
interferometric GWDs is to record the impact of such perturbation onto interference pattern change that can
be directly measured. The laser radiation serves as a probing instrument for test mirrors that play the role of
free mass objects. The approximation of free mass motion is valid since the mechanical resonance frequency of
suspended mirrors ΩM ≈ 1 Hz and their decay rate γM are significantly smaller than the lower edge of the spectral
range of interest [6].
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The simplified scheme of an interferometric GWD is presented in Figure 1.1(a). Upon entering the interferom-
eter, a strong laser light is spatially split on a symmetric beamsplitter (BS). The two parts travel in orthogonal
directions and reflect from two end test mass (ETM) mirrors. The interferometer is adjusted in such a way that
the reflected fields interfere destructively at the output port (referred to as ’dark port’). The arrival of gravita-
tional waves creates a space strain, leading to the relative change of arm lengths. Therefore, the condition for
the destructive interference on the dark port is not fulfilled anymore, which allows the detection of gravitational
waves.

Here we briefly summarize the basic operational principles of interferometric GWDs. First, we specify that
setting the ’dark fringe’ configuration is a crucial point of the scheme because the signal-to-(shot) noise ratio is
maximized when the phase difference between the two arms is π [7]. In addition, the destructive interference at
the output port allows to remove the classical noise from the laser. Next, the large length of the arms enhances
the gravitational wave tidal force acting on the ETM mirrors. The inclusion of the input test mass (ITM) mirrors,
as displayed in Figure 1.1(a), forms a Fabry-Perot cavity in each arm. It leads to an increased storage time of
light in the arms and enables the accumulation of a higher signal phase shift. Figure 1.1(b) shows an ’advanced’
interferometer design [3]. The circulating optical power is boosted by adding a power recycling mirror (PRM) into
the input interferometer port. Signal recycling mirror (SRM) in combination with ITM forms a signal recycling
cavity (SRC) and improves the extraction of the gravitational wave signal.

Advances in developments of the Michelson type laser GWD design resulted in the emergence of detectors
whose peak strain sensitivity exceeds 10−23

√
Hz [8, 9]. Such progress has made it possible to directly detect

gravitational waves due to the merging of a pair of black holes [10], and the collision of two neutron stars [11].
However, the sensitivity must be enhanced even further in order to get access to a wider range of cosmic events.
It implies that various sources of noise must be eliminated. Within the last decades, significant progress has
been made toward the reduction of thermal noise, Newton noise, and seismic noise. On the other hand, further
development in this direction brings us to the level where the quantum noise is becoming a bottleneck in the next
generations of GWDs. Quantum noise in the Michelson laser interferometer configuration of GWDs is the main
subject of this chapter and this thesis in general.

1.2 Quantum noise in GWDs

We investigate the Fabry-Perot Michelson (FPM) configuration of interferometers, where the ITM mirrors
together with the ETM mirrors constitute cavities with bandwidth γL. Since interferometric GWDs operate in
the dark fringe configuration, the quantum noise originates from the quantum vacuum penetrating through the
dark port [7, 12]. The following system of quantum Langevin equations describes the interaction1 between the
intracavity optical mode {x̂L, p̂L} and the differential mechanical mode of the test mass mirrors {x̂M , p̂M} [13]

d

dt
x̂L = −γL

2
x̂L +

√
γLx̂L,in, (1.1a)

d

dt
p̂L = −γL

2
p̂L +

√
γLp̂L,in − µx̂M , (1.1b)

d

dt
x̂M = −γM x̂M +ΩM p̂M +

√
γM x̂M,in, (1.1c)

d

dt
p̂M = −γM p̂M − ΩM x̂M +

√
γM p̂M,in − µx̂L − k

d2h

dt2
, (1.1d)

where µ = (α0/L)
√
ω0/(2MΩM ) determines an opto-mechanical interaction strength, α0 =

√
I and ω0 is the

(coherent state) amplitude and the frequency of the optical field circulating in the interferometer, I is the intensity,
L is the length of arms cavities, M is the mass of ETM mirrors. The set {x̂L,in, p̂L,in} describes the optical mode
on the input of the interferometer, whereas {x̂M,in, p̂M,in} correspond to the intrinsic thermal noise attributed to
the mechanical mode. The last term on the right-hand side of eq.(1.1d) represents the acceleration of the mirror

1Operators x̂M and p̂M correspond to XM

√
(2ℏ)/(MΩM ) and PM/

√
1/(2ℏMΩM ), where XM and PM are position and momentum

of the mirror. Observables x̂L and p̂L represent the quadratures of the optical field defined according to two-photon formalism (see
section 1.3.1). Indices ’L’ and ’M’ denote ’light’ and ’mechanics’ (test mass mirror) respectively.
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produced by the transient gravitational wave, where h is the fractional change of the interferometer arms. The
gravitational ’tidal’ force thus couples to the mechanical motion via the coefficient k = L

√
M/(2ℏΩM ). The

solution of eqs.(1.1c),(1.1d) in the Fourier domain can be written in the form

x̂M = χM (Ω)

(
−µx̂L +Ω2kh(Ω) +

√
γM

(
iΩ+ γM

ΩM
x̂M,in + p̂M,in

))
. (1.2)

The Fourier frequency Ω and the susceptibility function

χM (Ω) =
ΩM

Ω2
M − Ω2 − iγMΩ+ (γM/2)

2 (1.3)

were introduced in eq.(1.2). Later, we will be using the approximation χM (Ω) ≈ −ΩM/Ω
2, which works well

in the limit Ω ≫ ΩM , γM . We will also neglect the intrinsic thermal fluctuations (terms ∝ x̂M,in, p̂M,in) in the
mechanical mode in eq.(1.2) for simplicity since they can be reduced to such extent that they become negligible in
comparison to the contribution from other terms2. Substituting eq.(1.2) into eq.(1.1b), one obtains the following
expression for the optical mode p̂L,out = p̂L,in −

√
γLp̂L exiting the interferometer

p̂L,out =
γL + iΩ

γL − iΩ
p̂L,in +

µ2χM(
γL − iΩ

)2 x̂L,in + kµΩ2χM
γL − iΩ

h(Ω). (1.4)

As can be seen from eq.(1.4), p̂L,out consists of three terms. The first term ∝ p̂L,in describes fundamental phase
fluctuations shot noise (SN - also referred to as imprecision noise) translated from the out-of-phase quadrature of
the incoming vacuum state of light. The second term ∝ x̂L,in is the source of quantum radiation pressure noise
(QRPN), also known as Quantum Back Action Noise (QBAN), arising due to the opto-mechanical interaction.
The last term ∝ h(Ω) is the modulation caused by gravitational waves and is considered as the signal of interest.
The input-output relations eq.(1.4) can be rewritten in a more convenient form (more familiar for the GWD
community) [7]

p̂L,out = e2iβph (p̂L,in −KFPM x̂L,in) + eiβph
√

2KFPM
h(Ω)

hSQL
, (1.5)

where βph = arctan (Ω/γL) is the phase acquired by the component of light at the sideband frequency Ω relative
to the carrier. The optomechanical coupling factor KFPM and the expression hSQL are defined as

hSQL =

√
8ℏ
ML2

1

Ω
; KFPM = KI

2γL

Ω2
(
Ω2 + γ2L

) =
KI

Ω2
K0I , K0I =

2γL
Ω2 + γ2L

, KI =
4I0Ω0

MγLL2
, (1.6)

where the index ’FPM’ signifies that we study the case of the Fabry-Perot Michelson interferometer. Both
frequency independent (KI) and frequency dependent parts of the coupling factor may vary for different config-
urations of GWDs [7, 9]. However, the term 1/Ω2 in KFPM is always present, referring to the approximation of
free mass motion, which is valid under the conditions ΩM ,γM ≪ Ω. For the Fourier frequencies well within the
cavity linewidth Ω ≪ γL we obtain K0I → 2/γL = const, and the coupling factor KFPM ∝ 1/Ω2 looks similar to
the coupling factor in the case of a simple Michelson interferometer. Normalizing quantum noise eq.(1.5) by the
signal, we introduce the strain equivalent noise operator ĥ for the phase quadrature

ĥn(Ω) ≡ ĥn|p̂L,out
=

hSQL√
2KFPM

(
p̂L,in −KFPM x̂L,in

)
(1.7)

and calculate3 its power spectral density (PSD) using Sh = ⟨in| ĥ†nĥn |in⟩. The quantum state at the dark port is
the vacuum |in⟩ = |0⟩, therefore

Sh|p̂L,out
=
h2SQL
2

·
(

1

KFPM
+KFPM

)
. (1.8)

The result obtained above is valid when the measurement is performed on the phase quadrature of the output
light p̂L,out.

2It is the relevant assumption for ”quantum noise limited GWD interferometers”
3Here and further in the thesis the expressions for the PSD of the strain sensitivity are obtained after implementing the symmetriza-

tion of the operator expectations [7].
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Figure 1.2: The spectra of strain sensitivity
√
Sh|p̂L,out

for the GWD (Fabry-Perot Michelson interferometer). The

standard quantum limit (SQL) is shown as a black curve.

The total strain-equivalent quantum noise spectrum is presented in Figure 1.2(a). We now consider the
behavior of QRPN and SN as a function of Fourier frequency. While shot noise itself is flat, the amplitude of
the signal degrades beyond the operational bandwidth γL of the arm cavities as follows from the term KOI in
the optomechanical coupling factor KFPM . Hence, Sh|p̂L,out

rolls up at high frequencies Ω. In contrast, QRPN
dominates at low frequencies, being driven by the dependence of KFPM on the frequency.

Eq.(1.7) indicates the limit of maximum achievable sensitivity arising from the Heisenberg uncertainty prin-
ciple. This limit, also known as the Standard Quantum Limit (SQL), is expressed by the term hSQL in eq.(1.6).
The sensitivity reaches the SQL at a certain Fourier frequency, which yields KFPM = 1, corresponding to equal
contributions from SN and QRPN. Thus, the optimal Fourier frequency for the reduction of the total quantum
noise is determined by the selected set of the parameters of a GWD (for example, the effect of variation of an
injected optical power is shown in Figure 1.2(b)). Ultimately, the reduction of SN inevitably enhances the contri-
bution from QRPN and vice versa. Therefore, for a given interferometer geometry and magnitude of test masses,
the SQL can not be surpassed by simply adjusting the laser power.

1.3 Overcoming quantum noise

There exist several strategies that can reduce the quantum noise in the detection of gravitational waves below
the SQL. One class of such strategies relies on amplitude-phase correlations introduced between the quadratures
of light before or after the interforometer. Another approach is to modify the susceptibility function (frequency
response) of interferometer. These techniques will be reviewed in the next subsections.

1.3.1 Non-classical states of light

Non-classical squeezed states of light play an important role in the schemes of sensitivity improvement of
interferometric GWDs. We describe this type of quantum states using two-photon formalism [14]. We define
the quadrature operators x̂L, p̂L of an optical mode (they were used in eq.(1.1) to describe an optomechanical
interaction) by means of the creation/annihilation operators of photons âL,+ and âL,− on a sideband frequencies
Ω with respect to the carrier frequency ω0:

x̂L =
âL,+ + â†L,−√

2
, p̂L =

âL,+ − â†L,−√
2i

, (1.9)
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where âL,± are introduced as

âL,+ =

√
ω0 +Ω

ω0
âL,ω0+Ω, âL,− =

√
ω0 − Ω

ω0
âL,ω0−Ω. (1.10)

An arbitrary quadrature in the phase space is now determined as q̂L(ζ) = cos (ζ)p̂L+sin (ζ)x̂L. The input-output
relations for an interferometer may be obtained in a form eq.(1.5) using quadratures defined according to eq.(1.9)
(see, for example, [7]).

Single mode squeezed states of light

The parametric interaction ωP = 2ω0 ↔ ω0 + ω0, which corresponds to creation of photon pair at frequency
ω0 while pump photon is absorbed and vice versa, is described by Hamiltonian:

Ĥint ∝ iℏg
(
âL,P â

†
L,+â

†
L,− − â†L,P âL,+âL,−

)
, (1.11)

where âL,P is the annihilation operator of the field at the pump frequency ωP and âL,± are defined in eq.(1.10).
Assuming that the drive field is in a strong coherent state that is not getting depleted, one can use the approx-
imation, where the operator âL,P is substituted with it’s coherent amplitude αL,P . Such parametric interaction
transforms the fields âL,+,in, âL,−,in according to:

âL,+ = cosh (r)âL,+,in + sinh (r)â†L,−,in, (1.12a)

âL,− = cosh (r)âL,−,in + sinh (r)â†L,+,in, (1.12b)

leading to the reduction of noise in amplitude quadrature x̂L and the enhancement of the noise in the orthogonal
quadrature p̂L:

x̂L = e−rx̂L,in (1.13a)

p̂L = e+rp̂L,in (1.13b)

A squeezed state of vacuum can be described as as an initial vacuum state transformed by the (single mode)
squeezing operator Ŝ(r, ϕ):

|sq⟩ = Ŝ(r, ϕ) |0⟩ (1.14)

where Ŝ(r, ϕ) is given by

Ŝ(r, ϕ) = exp
[
r(âL,+âL,−e

−2iϕ − â†L,+â
†
L,−e

2iϕ)
]
, (1.15)

where r > 0 and ϕ are the amplitude and the phase of squeezing. The case ϕ = 0 corresponds to amplitude
squeezed vacuum with squeezed canonical position x̂L and excessive noise in the canonical momentum as considered
in eq.(1.13). If ϕ = π/2, then the phase quadrature p̂L becomes maximally squeezed such that p̂L = e−rp̂L,in,
x̂L = erx̂L,in.

Two-mode squeezed vacuum

We next consider the parametric interaction in the form of eq.(1.11), but created/annihilated pairs of photons
have now different frequencies. In particular, the pump photon ωP = 2ω0 + ∆ is split onto ’signal’ (ωs = ω0)
and ’idler’ (ωi = ω0 +∆) photons4, fulfilling the condition of energy conservation ωP = ωs + ωi. The interaction
Hamiltonian is given by

Ĥint ∝ iℏg
[(
αL,P â

†
L,s+â

†
L,i− − α∗

L,P âL,s+âL,i−

)
+
(
αL,P â

†
L,s−â

†
L,i+ − α∗

L,P âL,s−âL,i+

)]
, (1.16)

4signal and idler optical modes will be later interacting with test mass mirror ’M’ and atomic spin system ’S’ respectively
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(example of amplitude
squeezing).
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(b) A two-mode squeezed state of vacuum.

Figure 1.3: Squeezed states of light in the phase space.
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Figure 1.4: Single-mode and two-mode squeezed states (left and right parts, respectively) are viewed as entangle-
ment between sidebands in two-photon formalism.

where, according to eq.(1.9), âL,s± ∝ âL,ω0±Ω and âL,i± ∝ âL,ω0+∆±Ω respectively. Thus, we introduced four
sidebands around ±Ω both for signal and idler central frequencies. Following the same procedure outlined in
the previous section for single mode squeezed states, we define âL,s±,in and âL,i±,in that are associated with
signal/idler modes before parametric interaction. The evolution driven by the Hamiltonian eq(1.16) leads to the
transformation:

âL,s+ = cosh (r)âL,s+,in + sinh (r)â†L,i−,in, (1.17a)

âL,s− = cosh (r)âL,s−,in + sinh (r)â†L,i+,in, (1.17b)

âL,i+ = cosh (r)âL,i+,in + sinh (r)â†L,s−,in, (1.17c)

âL,i− = cosh (r)âL,i−,in + sinh (r)â†L,s+,in. (1.17d)

In a result, the lower sideband of the signal field at the frequency ωs −Ω is now correlated with higher sideband
of the idler field at the frequency ωi+Ω and vice versa. In general, it applies to any pair of frequencies symmetric
relative to ωP /2 = ω0+∆/2. Next, we introduce the canonical position and momentum operators for signal/idler
modes before/after parametric interaction x̂L,s(i), p̂L,s(i), x̂L,s(i),in and p̂L,s(i),in as it was done in eq.(1.9). One
can see that while input optical fields are completely independent, the amplitude quadratures x̂L,s, x̂L,i become
correlated, whereas the phase quadratures p̂L,s, p̂L,i are anticorrelated:

x̂L,s ∓ x̂L,i = e∓r
(
x̂L,s,in ∓ x̂L,i,in

)
, (1.18a)

p̂L,s ± p̂L,i = e∓r
(
p̂L,s,in ± p̂L,i,in

)
. (1.18b)

In terms of PSD this might be written as:
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S 1√
2
(x̂L,s,in∓x̂L,i,in),

1√
2
(x̂L,s,in∓x̂L,i,in)

= 1, S 1√
2
(x̂L,s∓x̂L,i),

1√
2
(x̂L,s∓x̂L,i)

= e∓2r, (1.19a)

S 1√
2
(p̂L,s,in±p̂L,i,in),

1√
2
(p̂L,s,in±p̂L,i,in)

= 1, S 1√
2
(p̂L,s±p̂L,i),

1√
2
(p̂L,s±p̂L,i)

= e∓2r, (1.19b)

where, for example, Sx̂L,sx̂L,s
=< ∆(x̂L,s)

2 >. Measuring the difference of the amplitude quadratures and the sum
of the phase quadratures, we would observe the reduction of the fluctuations in comparison to independent vacuum
fields, at the cost of increased noise in sum of amplitude/difference of phase quadratures due to the Heizenberg
uncertainty principle. This feature can be seen if one compares the wave functions of two mode vacuum state in
position and momentum representations:

ψ00(xL,s, xL,i) =
1√
π
exp

[
−x2L,s
2

]
exp

[
−x2L,i
2

]
=

1√
π
exp

[
− (xL,s − xL,i)

2

4

]
exp

[
− (xL,s + xL,i)

2

4

]
, (1.20a)

ψ̃00(pL,s, pL,i) =
1√
π
exp

[
−p2L,s
2

]
exp

[
−p2L,i
2

]
=

1√
π
exp

[
− (pL,s − pL,i)

2

4

]
exp

[
− (pL,s + pL,i)

2

4

]
(1.20b)

with the wave functions of two mode squeezed state

ψR(xL,s, xL,i) =
1√
π
exp

[
−
(
e2r

4

)
(xL,s − xL,i)

2

]
exp

[
−
(
e−2r

4

)
(xL,s + xL,i)

2

]
, (1.21a)

ψ̃R(pL,s, pL,i) =
1√
π
exp

[
−
(
e2r

4

)
(pL,s + pL,i)

2

]
exp

[
−
(
e−2r

4

)
(pL,s − pL,i)

2

]
. (1.21b)

Such states are named as two mode squeezed vacuum (TMSV) or the twin-beam state [15]. Any observable of
single mode of TMSV has the variance

Sx̂L,s,x̂L,s
= Sx̂L,i,x̂L,i

= Sp̂L,s,p̂L,s
= Sp̂L,i,p̂L,i

=
1 + e4r

2e2r
> 1, (1.22)

corresponding to the thermal state where the noise exceeds the vacuum noise and grows up with increase of r.
The Wigner function of TMSV is given by the expression:

W (xL,s, xL,i, pL,s, pL,i) =
1

π
exp

[
−
(
e2r

4

)(
xL,s − xL,i)

2 + (pL,s + pL,i)
2
)]
+

× exp

[
−
(
e−2r

4

)(
(xL,s + xL,i)

2 + (pL,s − pL,i)
2
)]
. (1.23a)

By analogy with eq.(1.14) and eq.(1.15) one can define a two-mode squeezing operator

ŜTMSV (r, ϕ) = exp
[
(r∗âL,s+âL,i− − râ†L,s+â

†
L,i−)

]
(1.24)

that converts a two-mode vacuum state into squeezed:

|TMSV ⟩si = ŜTMSV (r, ϕ) |00⟩si . (1.25)

Since the noise is partially cancelled in the observables x̂L,s−x̂L,i and p̂L,s+p̂L,i, we introduce the linear combination
q̂gL of the quadratures q̂L,s(i)(ζ) = cos (ζs(i))p̂L,s(i) + sin (ζs(i))x̂L,s(i):

q̂gL(ζ) = q̂L,s(ζ) + gq̂L,i(−ζ) =
(
p̂L,s + gp̂L,i

)
cos (ζ) +

(
x̂L,s − gx̂L,i

)
sin (ζ). (1.26)
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Considering the correlations between output fields according to eq.(1.17) we get a new equation for q̂g(ζ):

q̂gL(ζ) = (cosh (r)− g sinh (r)) q̂L,s,in(ζ) + (sinh (r)− g cosh (r)) q̂L,i,in(ζ). (1.27)

We take into account that Sq̂L,i,in(ζ),q̂L,i,in(ζ)
= Sq̂L,s,in(ζ),q̂L,s,in(ζ)

= 1, Sq̂L,s,in(ζ),q̂L,i,in(ζ)
= 0, obtain the PSD for

q̂gL(ζ):

Sq̂gL(ζ)q̂
g
L(ζ)

= (cosh (r)− g sinh (r))2 + (sinh (r)− g cosh (r))2 (1.28)

and perform the optimization of the relative weight g:

gopt = tanh (2r), Sq̂gL(ζ)q̂
g
L(ζ)

|g=gopt =
1

cosh (2r)
. (1.29)

Thus, the optimal relative weight depends on the amplitude of the squeezing (the strength of parametric interac-
tion). In contrast, one can explore the following combination:

q̂g,NL (ζ) = N
[
q̂L,s(ζ) + gq̂L,i(−ζ)

]
, N =

(
1 + g2

)−0.5
, S

q̂g,NL (ζ)q̂g,NL (ζ)
=
Sq̂gL(ζ)q̂

g
L(ζ)

1 + g2
. (1.30)

In such a case the optimal value for relative weight g is always equal to 1 that yields:

S
q̂g,NL (ζ)q̂g,NL (ζ)

|(gopt=1) = e−2r, (1.31)

which is a direct consequence of eq.(1.19).

1.3.2 Variational readout

We consider the situation when the arbitrary light quadrature q̂L,out(ζ) is recorded in order to measure the
modulation caused by the passage of gravitational waves. The strain equivalent noise operator of GWD is now
given by:

ĥn|q̂L,out(ζ) =
hSQL√
2KFPM

(p̂L,in − [KFPM − cot (ζ)] x̂L,in) . (1.32)

The PSD of the strain sensitivity eq.(1.32) is now a generalized case of eq.(1.8), being written as

Sh|q̂L,out(ζ) =
h2SQL

2KFPM

·
(
1 + [KFPM − cot(ζ)]2

)
. (1.33)

Figure 1.5 demonstrates that the measurement of the output light quadrature other than p̂L,out(ζ) can lead to the
suppression of quantum noise below the SQL in a narrow band of the frequency spectrum. Moreover, it is possible
to totally cancel QRPN by setting KFPM ≡ KFPM (Ω) = cot(ζ) at any Fourier frequency. However, this would
require implementing in some way a frequency-dependent detection angle ζ.

This approach can be understood better by invoking the concept of pondermotive squeezing [16]. The initial
vacuum state (with no correlations between its quadratures) after interaction with a mechanical oscillator takes
the form

|out⟩ = R̂(θ1,pond)Ŝ(rpond, 0)R̂(θ2,pond) |in⟩ , (1.34)

where R̂(θ) determines the rotation in the phase space and Ŝ(r, ϕ) is defined in eq.(1.15). Therefore, one can see
that the initial vacuum state becomes squeezed and experiences a rotation in the phase space. The squeezing
factor rpond and angles θ1(2),pond depend on the optomechanical coupling factor KFPM (Ω) :

rpond = ln

KFPM (Ω)

2
+

√
1 +

(
KFPM (Ω)

2

)2
 , θ1,pond = −1

2
arctan

[
KFPM (Ω)

2

]
+
π

4
, θ2,pond = θ1,pond −

π

2

(1.35)
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Fulfilling the requirement KFPM (Ω) = cot(ζ) results in the projection of the observed optical output field onto
the axis that corresponds to the maximally squeezed quadrature. Thus, the amplitude-phase correlations ∝〈
x̂Lp̂

+
L

〉
caused by the pondermotive squeezing are utilized to completely cancel QRPN term, leaving only shot

noise (as displayed on Figure 1.5). However, apart from the challenge of implement the required frequency
dependence of the homodyne detection angle ζ(Ω), such a strategy entails losing the part of the signal h(Ω) that
carries the information about gravitational waves. This happens because the modulation caused by the arrival of
gravitational waves is always stored in p̂L,out, while the projection onto the axes with minimal quantum noise does
not correspond to the detection of the phase optical quadrature. Nevertheless, since a QBAN-free measurement
can be accomplished, the signal-to-noise ratio can be improved by increase of the circulating optical power in the
interferometer.

The strategy of such variational readout was initially conceived in [17] and explored in [16], where a post
filtering of the signal was proposed by means of external cavities positioned at the output of the interferometer. In
order to practically achieve a reasonable cancellation of QRPN, the homodyne phase angle needs to be controlled
with a high precision, meaning stringent requirements for the optoelectronic control of the filter cavities [16].
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Figure 1.5: Quantum noise spectra at different homodyne detection angle ζ. Once a frequency-dependent homo-
dyne detection angle ζ(Ω) =arccot[KFPM (Ω)] is set, QBAN-free measurement (purple dashed line) is possible.

1.3.3 Injection of frequency-independent squeezing

Instead of changing the quantum state of light, which exits the interferometer (section1.3.2), one can modify it
before it enters the GWD. In particular, a vacuum state of light, entering from the dark port of the interferometer,
is replaced by a squeezed state. The PSD of of the quantum noise is calculated using expression

Shsq(R,ξ)
|q̂L,out(ζ) = ⟨in|h+n hn |in⟩ (1.36)

where |in⟩ = Ŝ(R, ξ) |0⟩ is squeezed state, see eq.(1.14), eq.(1.15). Therefore, the spectrum of Shsq(R,ξ)
|q̂L,out

is
given by:

Shsq(R,ξ)
=
h2SQL

(
e−2R + (1− cos [2(ξ +Φ)] sinh (2R)

)
2KFPM sin2 (Φ)

, (1.37)

where

cot (Φ) = KFPM − cot ζ. (1.38)
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Figure 1.6: Configurations of GWDs enhanced by squeezed states of light.
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Figure 1.7: The rotation of the quadrature of a single-mode squeezed vacuum state as a function of the frequency
Ω required to achieve the broadband quantum noise reduction in GWDs.

Measuring phase quadrature (ζ = 0) and injecting phase squeezed vacuum state ξ = π/2 gives a particular
case of formula eq.(1.37):

Shsq(R,π/2)
|p̂L,out

=
h2SQL
2

·
(

1

KFPMe
2R

+KFPMe
2R

)
. (1.39)

Since optomechanical factor KFPM is proportional to the circulating power, the injection of squeezing changes
effective value K ′

FPM = KFPMe
2R and hence, effective intensity I ′ = Ie2R. In the case of phase squeezed vacuum,

the effective intensity increases. This can be used to minimize the negative influence of SN without boosting
the actual optical power. However, the reduction of the shot noise is accompanied by an amplification of QRPN
contribution at the same time, as can be also seen from eq.(1.39). Opposite effect is observed when amplitude
squeezed vacuum enters the dark port of the interferometer. QRPN term is decreased at the price of amplified
SN. Ultimately, in both cases the SQL can be only reached, but can not be surpassed, as demonstrated in Figure
1.8. However, sending a squeezed state of light with squeezed quadrature set by the phase ξ = π/4 allows to beat
the SQL in a narrrow frequency range, paying the price of the deteriorated sensitivity beyond this range. Such
effect appears due to inducing of amplitude-phase cross-correlations.

To the best of knowledge of the author, the QRPN is not yet the main limitation for the sensitivity of
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Figure 1.8: Comparison of quantum noise spectra without and with injected squeezed vacuum with different
squeezing angles, when the phase quadrature p̂L,out is detected. While the injection of pure phase-(amplitude-)
squeezed vacuum leads to effective increase (reduction) of power, the squeezing with ξ = π/4 allows for beating of
the SQL within a narrow spectral range at the cost of a sensitivity reduction in the high and low frequency limits.
The sensitivity performance when using the squeezing with the optimal frequency-dependent angle is shown by
the dashed purple line.

contemporary GWDs, since the ubiquitous technical noise dominates in low spectral range. The calibration
of QRPN was reported in [18], where (frequency independent) squeezed vacuum state has been injected. The
reduction of SN by means of squeezed light was performed in [19], [20] and [21]. Micromechanical resonators were
utilized to measure [22] and manipulate QRPN in MHz [23] and audio-frequency range [24].

1.3.4 Injection of frequency-dependent squeezing

Unlike the squeezed light with fixed squeezing quadrature, the injection of frequency dependent squeezed states
of vacuum can help to reach the broadband sensitivity improvement beyond the SQL. If the the phase of squeezing
ξrot = ξrot(Ω) is a function of Fourier frequency such that cot [ξrot(Ω)] = −KFPM (Ω) is fulfilled, the expression
eq.(1.37) for the strain referenced sensitivity takes the form

Shsq(R,ξrot)
|p̂L,out

=
h2SQL
2

·
(

1

KFPM

+KFPM

)
e−2R. (1.40)

As a result, both SN and QRPN are suppressed simultaneously, and the quantum noise reduction is constrained
only by factor of squeezing R, as shown in Figure 1.8.

One proposal to impart the frequency dependent rotation in phase space relies on the interaction of squeezed
state with a filter cavity prior to injecting it into the interferometer [16]. As shown in [6], the reflection from a
detuned resonator changes quadrature phase angle ζf of the optical field according to

ξf (Ω) = Arccot

[
2δfγf

γ2f − δ2f +Ω2

]
, (1.41)

where γf is the bandwidth of filter cavity and δf is the detuning of the optical carrier frequency from the cavity
resonance. If the detuning δf = γf is selected, the dependences of ξf and coupling factor KFPM (given by eq.(1.6))
in the limit Ω ≪ γL on the frequency Ω match each other. The role of the filter cavity is to produce such a rotation
of squeezing that cancels the effect of pondermotive squeezing caused by an optomechanical interaction with the
test mass mirror. Post-filtering resonators in sec.1.3.2 operate on a similar principle. In general case, a cascade
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of N cavities is required to set the dependence of quadrature phase angle ζf on the Fourier frequency, where the
highest power of Ω in numerator and denominator is 2N [6]. Therefore, to rigorously counterbalance the effect of
the pondermotive squeezing for FPM configuration, at least two resonators will be needed.

The experimental demonstration of a frequency dependent rotation of the squeezing angle in the frequency
range Ω ≈ 1 kHz using a 2-meter rigid filtering resonator was reported in [25]. The exploitation of a 300-m
suspended filter cavity allowed to generate the frequency dependent squeezing suitable for a broadband quantum
noise reduction below 100 Hz in KAGRA, advanced LIGO and advanced VIRGO [26]. Experimental challenges
for implementation of the frequency dependent squeezing injection are similar to the complications related to
variational readout proposal [27], mainly caused by necessity to operate a long baseline optical resonator with
extremely low losses in order to provide a narrow linewidth. The performance of frequency dependent squeezing
in [26, 25] is also limited by phase noise and mode mismatching.

1.3.5 Conditional squeezing using EPR entanglement

The strategy reviewed in this subsection is an alternative interpretation of the previous approach. Namely, the
frequency dependent phase rotation of the probe optical field due to quantum back action is now compensated
without involving an external cavity. The interferometer itself serves as such a pre-filtering resonator, and injected
single mode squeezing is replaced by the Enstein-Podolsky-Rosen (EPR) entangled state of light, which amounts
to a conditional squeezing. In the proposed scheme [28] two entangled optical modes (that are frequency non-
degenerated) are sent onto the dark port of the interferometer. The signal mode is resonant with arm cavities
and with a signal recycling cavity, coinciding with the frequency mode of the interferometer pumped by the probe
laser. Hence, the modulation caused by the passage of GWs as well as back action due to the interaction with the
mirror are imprinted onto the signal quadrature. At the same time, the idler field is detuned from arm cavities
and doesn’t read out the signal produced by GWs together with QRPN. However, the appropriate selection of the
detuning from SRC can lead to the frequency dependent quadrature rotation of reflected idler field. As shown in
[28], this rotation in the phase space might completely counterbalance the undesired accumulation of back action
in the signal mode without affecting signal term (modulation of mirror due to GWs). This could be achieved by
proper tuning of the idler frequency and a delicate adjustment of SRC. The protocol is completed by independent
homodyne detections of both signal and idler modes. The noise cancellation occurs as two photocurrents from
each homodyne detector are appropriately combined.

We introduce the signal {x̂L,s,in, p̂L,s,in} and the idler {x̂L,i,in, p̂L,i,in} optical modes, assuming their correlations
according to eq.(1.18), eq.(1.19). The signal phase quadrature p̂L,s passes interferometer, records the modulation
h(Ω) induced by the arrival of GWs and accumulates QRPN as described in eq.(1.5). One can treat the latter
fact as the rotation in the phase space and write the noise part of phase signal quadrature p̂L,s,out after exiting
the interferometer in the form:

p̂L,s,out = x̂L,s,in cos (Φs)− p̂L,s,in sin (Φs), Φs(Ω) =
π

2
+ arccos

 KFPM√
1 +K2

FPM

. (1.42)

If idler phase quadrature p̂L,i after interaction with SRC experiences the effective rotation in phase space that is
opposite to the rotation of signal quadrature

p̂L,i,out = x̂L,i,in cos (Φi)− p̂L,i,in sin (Φi), Φi(Ω) = −Φs(Ω), (1.43)

then the noise suppression associated with the observable p̂gL,out = p̂L,s,out − gp̂L,i,out is achieved as dictated by
eq.(1.29): g = tanh 2r, Sb̂g2 b̂

g
2
= 1/ cosh (2r). The expression for the strain equivalent noise is given by:

Shcond.sq.
=

h2SQL
2KFPM cosh (2r)

(
1 +K2

FPM

)
. (1.44)

This limit for the sensitivity is higher than the limit of the protocol using the injection of light with frequency-
dependent squeezing (see eq.(1.40)). The reason is that the idler mode adds extra quantum noise to the measure-
ment error. Compared to the injection of single-mode squeezing, the EPR-entanglement-based strategy performs
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worse by factor of e2r/ cosh (2r) ∼ 2 in the limit of big r, when the most beneficial choice is to measure the signal
and the idler modes with equal weights.

In the experimental demonstrations [29, 30] both optical modes were sent onto a ∼1-meter filter resonator.
Such cavities had adjustable detuning for both signal and idler wavelengths. Hence, quadrature rotation could be
imprinted onto both frequency modes. Thus, accumulation of QRPN and, subsequently, pondermotive squeezing
was simulated for the signal optical mode. As a result, conditional squeezing with the desired frequency dependence
imposed onto signal, being compensated by idler afterwards, was successfully shown with the quantum noise
reduction 2-3 dB relative to SN, addressing sub-MHz spectral range.

1.3.6 Quantum speed-meter
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Figure 1.9: Spectra of quantum noise for GWD in speed-meter (SM) configuration (using Sagnac interferometer),
no squeezing is injected to the dark port. As a reference, an ordinary ’position-like’ measurement noise spectrum
is shown with the gray line. In order to produce sensitivity curves demonstrated above, eqs.(459-460) from [6]
were used.

Approaches of pre-filtering (frequency-dependent squeezing injection) and post-filtering (variational readout)
have one common feature which might be attributed to ’position-like’ measurement. Namely, the detrimental
effect of the frequency dependence of the optomechanical coupling is counteracted using a specially tailored
modification to the quantum state either entering or exiting the dark port of the interferometer. As mentioned
above, the reduction of the total quantum noise can be established by inducing correlations between QRPN and
SN.

One of the possible alternative strategies that has been suggested is the concept of speed meter, when the
momentum of a mechanical object is effectively measured. In order to implement the speed meter (GWD)
interferometer, one will need to arrange a scheme such that the probe light interacts with test mass mirror twice.
A properly chosen phase shift of the light quadrature between the first and the second measurements allows to
acquire the information about the speed of the mirror. As a result, the effective response function of a mechanical
system itself changes, comparing favorably [6] to KFPM for an ’ordinary’ GWD interferometer (given by eq.(1.6)).

The speed measurement of test mass mirror might be implemented by establishing the coupling between GWD
interferometer and another optomechanical system called a sloshing cavity. In this scheme, the optical quadrature
after reading out the mechanical motion and exiting interferometer interacts with a external cavity. The transfer
function of the sloshing cavity is adjusted in such a way, that reflected quadrature re-enters dark port of the
interferometer with accrued π-phase shift in the spectral range within the bandwidth of the sloshing cavity. After
the second reflection from the free-mass mirror, the momentum of mechanical object is eventually imprinted onto
optical quadrature.
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The need for an external sloshing cavity for GWD might be obviated according to proposal [31]. The light
quadrature after the first interaction undergoes the rotation of polarization inside interferometer by 90◦, being
redirected to test mass mirror. The perpendicular polarization is effectively decoupled from the mechanical
motion. Therefore, during the second interaction the light quadrature doesn’t record the modulation induced
by GW signal, while cancellation of noise associated with position measurement does occurs. In that case, an
orthogonal polarization mode of Michelson arms replaces the sloshing cavity. The approach implies utilization of
polarization optics that can rotate the polarization and provide required phase delay [7].

An alternative way to exclude the sloshing cavity [6] is to convert the interferometer to Sagnac configuration
[32], in which the light travels sequentially through the two Michelson arms. Specifically, Sagnac interferometer
with ring-shaped Fabry-Perot cavities has optomechanical coupling factor

KSM (Ω) ∝ 1/
((

Ω2 − Ω2
SM

)2
+ δ2SMΩ2

)
, (1.45)

where ΩSM is sloshing rate and δSM is extraction rate [33]. In contrast to eq.(1.6), the coupling factor is roughly
constant for spectral frequencies approaching 0. It opens up the opportunity to cancel QRPN in a broad spectral
range of interest by adjusting the homodyne detection phase ζ [6], as shown in Figure 1.9. Similarly, frequency-
independent squeezing with optimal squeezing angle leads to sensitivity enhancement (this case is not explored
on Figure 1.9).
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Chapter 2

Proposal for quantum noise evasion in
GWDs using an auxiliary spin ensemble

2.1 Concept of quantum back action free measurement

Eq.(1.1) for a single mechanical oscillator reveals that the readout of x̂M happens together with recording
of light noise onto the orthogonal quadrature p̂M (see eq.(1.1b) and eq.(1.1d), respectively). This implies that
improving the measurement precision of the position of an object, an observer is losing information about its
momentum. More generally, the measurement of any quadrature for a quantum system perturbs the canonically
conjugate variable due to the quantum back action effect.

These remarks assume the situation where the measurement is performed much faster than a coherent evolution
of the quantum system characterized by time tcoh = 2π/ΩM where ΩM is the oscillation frequency. Turning to
a different scenario, we now consider that the measurement time is comparable or exceeds tcoh. The motion of a
quantum mechanical oscillator in the phase space can be expressed by the following set of equations

x̂M (t) = cos (ΩM t)x̂M (0) + sin (ΩM t)p̂M (0), (2.1a)

p̂M (t) = − sin (ΩM t)x̂M (0) + cos (ΩM t)p̂M (0), (2.1b)

in which the harmonic evolution is made explicit. Reading x̂M (t) entails the accumulation of quantum back action
noise (QBAN) in p̂M (t). As a result, the continuous measurement contaminates the trajectory of the oscillator
since the uncertainty in the momentum causes the disturbance of the position at later times as the evolution of
the system is described by eqs.(2.1).

Here we start to investigate a ’trick’ that allows to counteract the effect of quantum back action. The approach
described below relies on the concepts of trajectories without quantum uncertainties [34] and quantum mechanics
free subsystems [35]. We consider the measurement performed on a mechanical object that acts as a quantum
harmonic oscillator with Hamiltonian ĤM encoded in variables {x̂M , p̂M}. Instead of directly probing this object
(as shown, for example, in eq.(1.1)), we now measure its motion relative to another reference quantum oscillator
{x̂S , p̂S}. Hamiltonians of two systems have the same structure given by:

Ĥi =
Ωi
2

(
x̂2i + p̂2i

)
+
√

Γix̂ix̂L, i =M,S. (2.2)

The first term of Hamiltonian describes the harmonic motion while the second term determines the interaction
between the oscillators and the probe light {x̂L, p̂L} characterized by readout rate Γi. Using eq.(2.2), we write
down the equation describing the evolution of each oscillator (for simplicity we neglect the damping and intrinsic
noise associated with the objects):

˙̂xi = Ωip̂i, (2.3a)

˙̂pi = −Ωix̂i +
√

Γix̂L,in. (2.3b)
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Eqs.(2.3) describe a rotation in the phase space disturbed by quantum back action ∝ x̂L,in. The velocity of
rotation is determined by the resonance frequency Ωi, and the direction of the rotation can be either counter-
clockwise (if Ωi > 0) or clockwise (if Ωi < 0). We now suppose that the frequency of reference oscillator ΩS is
negative and opposite to frequency of the first oscillator: ΩM = −ΩS = ΩR > 0. The next assumption is that
the two systems have the same readout rates ΓM = ΓS = Γ and are probed with the same input light x̂L,in. The
system consisting of two oscillators is described by

d (x̂M + x̂S)

dt
=ΩR (p̂M − p̂S) , (2.4a)

d (p̂M − p̂S)

dt
=(−ΩR) (x̂M + x̂S) , (2.4b)

which can be considered as a motion of a single oscillator encoded in x̂+, p̂− where x̂± ≡ (x̂1 ± x̂2) /
√
2, p̂± ≡

(p̂1 ± p̂2) /
√
2. Solving eqs.(2.3) in the frequency domain for each of oscillator, we arrive at:

x̂i(Ω) =
Ωi

Ω2
i − Ω2

√
Γix̂L,in, p̂i(Ω) =

iΩ

Ω2
i − Ω2

√
Γix̂L,in. (2.5)

As follows from eq.(2.5), the term ∝ x̂L,in vanishes completely from the variables {x̂+, p̂−} if ΓM = ΓS and
ΩM = −ΩS . It is tantamount to the total cancellation of quantum back action due to the destructive interference
of QBAN from each oscillator. Thus, eq.(2.4) describes the dynamics of the composite system, whose trajectory
in the phase space is quantum back action free. Imperfect matching of probed and reference systems leads to
partial cancellation of QBAN in EPR variables {x̂+, p̂−} and, in particular, renders two oscillators entangled [36]
provided fulfilled condition [37]:

∆

(
x̂M + x̂S√

2

)2

+∆

(
p̂M − p̂S√

2

)2

< 2. (2.6)

The negative mass1 of the of reference oscillator is the crucial condition that makes establishing quantum
correlations between two subsystems possible - otherwise, coupling of EPR variables x̂+ and p̂− is not set. If
ΩM = ΩS , the relative position x̂− is coupled to relative momentum p̂− (as well as x̂+ couples to p̂+), but in those
variables the cancellation of QBAN is not feasible.

As stated in section 1.2, a free mass mirror in a GWD interferometer is in principle the extreme case of a
harmonic oscillator with the resonance frequency2 ΩM → 0, whose motion is disturbed by QBAN. The evasion
of this noise by measurement in a frame of another reference oscillator is the subject matter for this thesis.
The multi-atoms spin ensemble (caesium vapour) [38] in external magnetic field turned out to be a promising
candidate [34] for joint measurement with GWD interferometer. The main advantages of caesium atomic system
are tunability of resonance frequency, low intrinsic losses, high efficiency of interaction with light and the feature
to mimic the dynamics of an oscillator with negative frequency. The suppression of the QBAN using a cesium
atomic spin ensemble was experimentally demonstrated in [39] for a dielectric membrane nanomechanical oscillator.
The hybrid entanglement between two oscillators was shown in [40]. In both works degree of matching between
disparate systems was a limitation factor.

2.2 Joint measurement on GWD interferometer and atomic oscillator. Cas-
cade and parallel approaches. Ideal case

In this section, we begin presenting the general theory of joint measurements on atomic ensembles and GWDs.
The reference spin oscillator with effective negative mass is described by interaction Hamiltonian eq.(2.2). Unlike
the idealized case outlined by eq.(2.5), this oscillator is now driven not only by quantum noise of probe light, but
also by the thermal stochastic force f̂Th:

1Since negative resonance frequency is equivalent to negative mass in terms of the motion in the phase space [34], we will use the
term negative mass oscillator when referring to the object with ΩS < 0.

2Practically, ΩM has a small, but finite value so that the definitions of x̂M and p̂M used in eq.(1.1) further are still valid.
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x̂S(Ω) = χS(Ω)
(√

ΓS x̂L,in +
√
γS f̂Th

)
, (2.7)

where the susceptibility function for the atomic ensemble

χS(Ω) =
ΩS

Ω2
S − Ω2 − iγSΩ+ (γS/2)

2 (2.8)

was used (in accordance with eq.(1.3), which is the particular case for GWDs). The factor γS represents the decay
rate of the atomic oscillator (which was assumed to be 0 earlier for simplicity). The readout of the spin system is
described by [39]

x̂L,out = x̂L,in (2.9a)

p̂L,out = p̂L,in +
√
ΓS x̂S . (2.9b)

One can see from eq.(2.9a) that the amplitude quadrature x̂L remains isolated from other variables, whereas
p̂L contains information about spin motion encoded in x̂S . We finally obtain the input-output relations for the
atomic system:

x̂L,out = x̂L,in (2.10a)

p̂L,out = p̂L,in + ΓSχS x̂L,in +
√
γSΓSχS f̂Th. (2.10b)

The second oscillator is a test mass mirror, it’s interaction with optical field is enhanced by optical cavities and
described by eq.(1.1). First, we introduce the cascade scheme [41], where the light {x̂L, p̂L} sequentially interacts
with the atomic spin ensemble {x̂S , p̂S} and then with the mirror of GWD (being defined by {x̂M , p̂M} in the
phase space). Using input-output relations eq.(1.5), eq.(2.10) for both systems, we obtain for the optical readout
quadrature p̂L,out after probing two systems3:

p̂L,out = p̂L,in + (ΓSχS(Ω)−KFPM ) · x̂L,in +

[√
KFPM

h

hSQL
+
√
ΓSγSχS(Ω)f̂Th

]
. (2.11)

Then the strain sensitivity operator is introduced by normalizing quantum noise on h, analogous to eq.(1.7). It’s
spectrum is given by:

Shcas =
h2SQL

2KFPM

(
1 + (χSΓS −KFPM )2 + ΓSγSχ

2
SσTh

)
(2.12)

where σTh is the spectral density of the thermal force f̂Th. The second term on the right-hand side of eq.(2.11) and
eq.(2.12) represents the total QBAN. It can be completely cancelled by making the adjustment of the parameters
attributed to the oscillators that ensures:

KFPM = ΓSχS(Ω). (2.13)

We re-write eq.(2.13) in a form of two equations, emphasizing the terms that depend and don’t depend on Fourier
frequency. Assuming Ω to be well within the bandwidth of the interferometer Ω ≪ γL, we obtain:

1

Ω2
=

−1

Ω2
S − Ω2 − iγSΩ+ (γS/2)

2 , (2.14a)

KS = K ′
I , (2.14b)

3We denote the optical mode entering the atomic spin ensemble as {x̂L,in, p̂L,in}. The output filed in eq.(2.10) is the input mode
in eq.(1.5) and the field {x̂L,out, p̂L,out} is the output in eq.(1.5)
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where we have introduced the coupling rate ΩqS for atomic ensemble and defined frequency independent part K ′
I

of coupling factor for GWD:

Ω2
qS ≡ KS = ΓS |ΩS | (2.15a)

K ′
I = KIKOI |Ω→0 =

2KI

γL
(2.15b)

The condition eq.(2.14a) may be approximately satisfied in the limit γS , ΩS → 0 (implying γS , |ΩS | ≪ Ω),
meaning that spin ensemble should also approach the limit of free mass motion. Note that the sign on the right
part of eq.(2.14a) signifies that we have chosen the negative resonance frequency for atomic oscillator. At the
same time, eq.(2.14b) demands the adjustment of the rates of interaction with the light for each system. This
condition can be fulfilled, for example, by tuning the optical readout rate of spin oscillator. Removing QBAN,
we add the thermal noise of the atomic ensemble into the hybrid system. However, the impact of the thermal
force might be reduced to the level well below QBAN. The similarity is seen between the approach described
here and the injection of frequency dependent squeezing. In the latter scheme the initial squeezed light interacts
with filter cavity in order to acquire the necessary frequency dependence on squeezing angle. In the approach
presented in this section the role of the filter cavity is played by the spin oscillator. However, the injection of
frequency dependent squeezing results in the suppression of both SN and QBAN. In contrast, the measurement
in a frame of reference oscillator leads to quantum back action free motion. The shot noise might be further
reduced by enhancing the circulating power or injecting (phase) squeezed state instead of vacuum (see section
1.3.3). Alternatively, the order of two oscillators might be changed. The light can pass the GWD first and then
interact with the atomic ensemble. In such a case the protocol will be analogous to variational readout proposal
(presented in section 1.3.2), where the filter cavity is placed at the output of GWD interferometer.
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Figure 2.1: Measurement performed on the GWD, using the atomic spin ensemble as a reference frame.

In order to implement the scheme outlined above, it is necessary that both the GWD and the reference
oscillator are probed by the same optical mode. However, the atomic spin ensembles reported in [38] are operated
at the wavelength 852 nm, which is approximately 200 nm less than the typical wavelength used in contemporary
GWD interferometers. The issue of wavelength mismatching can be solved if the cascade probing is replaced
by a parallel measurement [42, 41]. We introduce two optical modes: the first mode {x̂L,s, p̂L,s} is sent to the
interferometer while the second mode {x̂L,i, p̂L,i} interacts with the atomic spin oscillator. These optical modes,
denoted as ’signal’ and ’idler’ respectively, have different carrier frequencies suitable for each system. We now
assume that probe beams are prepared in a perfect entangled state:

x̂L,s,in = x̂L,i,in, p̂L,s,in = −p̂L,i,in. (2.16)
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Both systems are probed simultaneously by mixing entangled modes with respective coherent fields, and the results
of the measurement on each system are combined. From eq.(2.10) and eq.(1.5) we obtain input-output relations
for the parallel scheme:

p̂L,par.,out ≡ p̂L,s,out+p̂L,i,out = (p̂L,s,in + p̂L,i,in)+(χSΓS x̂L,i,in −KFPM x̂L,s,in)+

(√
KFPM

ĥ

hSQL
+ χS

√
ΓSγsf̂Th

)
.

(2.17)
Having the condition eq.(2.14) satisfied, we can see that the parallel measurement simultaneously cancels SN and
QBAN. Indeed, the first term on the right hand side of eq.(2.17) is zeroed as the phase quadratures of perfect
EPR-entangled modes are anticorrelated (eq.(2.16), right part). In turn, the second term on the right hand side
of eq.(2.17) disappears if the amplitude quadratures are perfectly correlated (eq.(2.16), left part) and the negative
mass of the spin oscillator is set. Consequently, the total quantum noise is suppressed, in contrast to the sequential
scheme. The same result is achieved in the strategy of conditional squeezing using EPR entanglement (section
1.3.4). In fact, these two approaches are based on the same principle: while the signal mode record the modulation
imposed by GW, the idler compensates the QBAN, accrued by the signal optical field. The rotation of the idler
quadrature in the phase space is caused by impact from the atomic spin oscillator in one case and by the signal
recycling cavity in another case.

2.3 Non-perfect matching. Virtual rigidity

Here we explore the feasibility of performing a proper matching of the GWD and the spin ensemble in the
experiment. In order to do that, we return to the conditions given by eqs.(2.14), which remain valid for both
the cascade and the parallel schemes. The term K ′

I defines the strain sensitivity of GWDs, depending on such
crucial parameters as circulating power, the mass of suspended mirrors and the length of interferometer’s arms.
Contemporary configurations of GWDs are operated at such experimental conditions that correspond to the
range 50 − 100 Hz for

√
K ′
I . Therefore, having the condition on the spin resonance frequency ΩS → 0 from

eq.(2.14a) fulfilled, we must select high values of the atomic readout rate ΓS = KS/|ΩS | ≫
√
K ′
I in order to

satisfy eq.(2.14b). However, this inevitably counteracts another part of condition eq.(2.14a) since the linewidth
γS of the atomic ensemble grows with an increase of the readout rate. Namely, γS is decomposed into two parts.
The first part γS,in represents the intrinsic losses, which do not with ΓS . In contrast, the second part scales
linearly with the readout rate, the constant of proportionality is mainly defined by the atomic density. The latter
is interlinked to the atomic cooperativity4 Cs in the paper [43], leading to the expression for the total spin decay
rate:

γS = γS,in +
ΓS
Cs
, (2.18)

where the second term on the right hand side will also be denoted as γS,pb. In principle, realizing a large value Cs
together with small natural linewidth γS,in would bring γS close to 0. However, the maximum value of cooperativity
for such system reported to date [44] doesn’t exceed 10. It is, generally speaking, not enough to counterbalance
the impact of the readout rate on the atomic linewidth. Moreover, to comply with the condition ΩS ≈ 0 is an
experimental challenge in itself for any physical platform, since low spectral frequencies are strongly contaminated
by various sources of classical noise that compromise quantum features of the system.

The approach of virtual rigidity outlined in [43] allows to circumvent the complications introduced above
and thus offers a more realistic way towards combining atomic oscillators with GWDs. The key idea is to
effectively modify the susceptibility of the spin ensemble and emulate the shift of its resonance frequency. To
implement such a transformation of the atomic response, one needs to induce correlations between SN and QBAN
[6] by varying the phase of homodyne detection ζS . Discarding the contribution of the thermal force in the
input-output relations given by eq.(2.10), we obtain the following expression for arbitrary detection quadrature
q̂L,i(ζS) = p̂L,i cos (ζS) + x̂L,i sin (ζS):

4Note that the spin cooperativity is defined differently in Chapter 4, eq.(4.62), where Cq represents the ratio between QBAN and
thermal noise.
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q̂L,i,out(ζS) = q̂L,i,in(ζS) + χSΓS cos (ζS)x̂L,i,in, (2.19)

which is then re-written in the new basis [q̂L,i(ζS), q̂L,i(ζS⊥)]
T = R(ζS)[x̂L,i, p̂L,i]

T (where R(ζS) is the rotation
matrix):

q̂L,i,out(ζS) = [1 + χSΓS cos (ζS) sin (ζS)] q̂L,i,in(ζS) + χSΓS cos
2 (ζS)q̂L,i,in(ζS⊥). (2.20)

The terms ∝ q̂L,i,in(ζS⊥) and ∝ q̂L,i,in(ζS) represent effective quantum back-action noise and imprecision noise,
respectively. The redefined SN engulfed part of the original QBAN, the two effective sources of quantum light
noise arise from orthogonal light quadratures and remain uncorrelated. We take the ratio of amplitudes of the
back-action noise term and imprecision noise contribution from eq.(2.20):

AmpQBAN,eff.

Ampimp.,eff.

=
χSΓS cos

2 (ζS)

1 + χSΓS cos (ζS) sin (ζS)
=

ΓSΩS cos
2 (ζS)

ΓSΩS sin (ζS) cos (ζS) + Ω2
S − Ω2 − iγSΩ+ (γS/2)

2 (2.21)

and compare it with KFPM (Ω) = K ′
I/Ω

2 as it defines the ratio between QBAN and imprecision noise for GWDs.
One can interpret eq.(2.21) as change of effective Larmor frequency

Ω2
S,eff = Ω2

S + ΓSΩS sin (ζS) cos (ζS). (2.22)

Depending on homodyne detection phase ζS (as well as the sign of ΩS) the resonance frequency is either increased
or reduced. In particular, Ω2

S,eff can be shifted down to 0, if readout rate is significant enough ΓS ≳ |ΩS |. In such

a case we emulate a free mass motion5 for the spin oscillator. At the same time, we need to match the numerator
in eq.(2.21) to K ′

I . The choice of the values for the initial Larmor frequency ΩS and the atomic readout rate ΓS
according to [43]:

ΩS = −
√
K ′
I tan (ζS) (2.23a)

ΓS =

√
K ′
I

sin (ζS) cos3 (ζS)
(2.23b)

for given K ′
I straightforwardly yields ΓS |ΩS | cos2 (ζS) = K ′

I and Ω2
S,eff. = 0. Altogether it means that both

condition eq.(2.14a) (for Larmor frequency only) and condition eq.(2.14b) are fulfilled6 without need to prepare
the spin oscillator with ΩS → 0 and high read-out rate ΓS . It significantly mitigates tough requirements on the
cooperativity Cs. Technical problems related to control of atomic ensemble in the regime of free mass motion are
also evaded.

Eqs.(2.23a)-(2.23b) provide a freedom in selection of parameters ΓS , ΩS . In particular, the initial Larmor
frequency is permitted to be as big as experimentalists desire as soon as ζS approaches π/2. However, one can
reveal the limited performance of the ’virtual rigidity’: the amendment term to the atomic resonance frequency
ΩS is real, therefore the imaginary part of the susceptibility function comprising atomic linewidth γS can not be
compensated. We notice that minimization of the readout rate as function of homodyne phase ζS

ΓS(ζS) −−−−−→
ζS→π/6

min =
4
√
K ′
I

33/4
. (2.24)

minimizes the decoherence rate in accordance to eq.(2.18). However, it comes with the disadvantage of strict

requirement on thr Larmor frequency: ΩS =
√√

3K ′
I .

One may want to keep the detection phase for the spin system fixed ζS = 0, thus measuring the optical
phase quadrature, and at the same time implement the shift of atomic resonance frequency by means of ’virtual

5disregarding γS for now
6one can define the effective atomic coupling rate ΩqS,eff = ΩqS cos (ζS) and hence KS,eff = KS cos2 (ζS). The condition eq.(2.14b)

is then written as KS,eff. ≡ K′
I .
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rigidity’. The strategy outlined in [43] proposes to exploit carrier phase angle ϕS instead. This angle can be
defined as the relative phase between probe field and part of two mode squeezed vacuum sent to atomic ensemble
and was assumed to be set at 0 in all considerations above. But the variation of ϕS has exactly the same effect as
tuning homodyne detection phase [43]: in fact, in all expressions eq.(2.22)-(2.23) we should make a substitution
ζS ↔ ϕS − ζS . For example, the choice ζS = 0 and ϕS = π/6 corresponds to optimal configuration that reduces
the unwanted contribution from imaginary part of susceptibility function as in eq.(2.24).

As another remark, the ’virtual rigidity’ can be also applied to the GWD for the opposite purpose: to convert
the initial free-mass object to the effective harmonic oscillator. The respective homodyne phase angle ζM and
carrier phase ϕM must be tuned, and the logic outlined in eq.(2.19)-(2.23) is in principle valid for the test mass
mirror interacting with probe optical field. However, we will stick to the conventional settings ζM = 0, ϕM = 0
for GWDs throughout this chapter.
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Figure 2.2: The scheme of a parallel measurement, performed on the GWD and the atomic ensemble. The
entangled modes, upon exiting the source of two-mode squeezed vacuum (TMSV), are injected to the GWD
interferometer and the spin oscillator. Adjusting the phase of the coherent probe field ϕS or homodyne detection
phase ζS , one can tune the effective resonance frequency of the atomic oscillator by means of the virtual rigidity in
order to match the spectral responses of two systems. The idea of the protocol is described in the text, for more
details see [43]. The main part of TMSV source is the optical parametric oscillator (OPO), which is pumped by
the field obtained as a result of the sum frequency generation (SFG) process.

2.4 Sensitivity improvement: imperfections included

Having described the idealized case in section 2.2, we now estimate the quantum noise reduction for the
parallel scheme, gradually introducing imperfections of the spin ensemble and the entanglement source. First, we
replace infinite two-mode squeezing eq.(2.16) by realistic quantum state of light. Studying the impact of atomic
decay rate, we will show that imaginary part of χS may be partially counterbalanced by adjusting atomic central
frequency ΩS or/and readout rate ΓS without use of virtual rigidity. Next, we explore the importance of high
cooperativity CS and appropriate choice ϕS = π/6 of carrier phase angle when virtual rigidity is applied. Finally,
we investigate the effect of optical losses.

To begin, we define the strain equivalent noise operator for the measurement of the signal force in the parallel
scheme as

ĥn,atoms =
hSQL√
2KFPM

(
p̂L,s,in −KFPM x̂L,s,in + g(p̂L,i,in + ΓSχS x̂L,i,in +

√
ΓSγSχS f̂Th)

)
. (2.25)
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Here p̂L,par.,out. ≡ p̂L,s,out+ gp̂L,i,out is measured in contrast to the case of equal weights (g = 1) in eq.(2.17) when
combining the measurement outcomes from the GWD and the spin oscillator.

2.4.1 Finite entanglement

We now account for the finite degree of interbeam correlations. Instead of using eq.(2.16), we assume a two-
mode squeezed state by eq.(1.18), where the coefficient r defines the strength of entanglement. Using the features
eq.(1.19) of entangled beams x̂(p̂)L,s and x̂(p̂)L,i, we write the expression for PSD of strain sensitivity given by
eq.(2.25):

Shatoms =
h2SQL

2KFPM

(
σM (ω)− 2gσIS(ω) + g2σS

)
, (2.26)

where the terms σM and σS are spectral densities of interferometer and spin ensemble strain sensitivities respec-
tively, while σIS is their cross-spectral density:

σI =
(
1 +K2

FPM

)
cosh (2r), (2.27a)

σS =
(
1 + (χSΓS)

2
)
cosh (2r) + ΓSγSχ

2
SσT , (2.27b)

σIS = (1 + χSΓSKFPM ) sinh (2r), (2.27c)

where σT is the spectrum of f̂Th. The optimal choice gopt that minimizes Shatoms changes eq.(2.26) to:

Shatoms |gopt. =
h2SQL

2KFPMσS

(
σSσI − |σIS |2

)
. (2.28)

Assume for now that condition eq.(2.13) is fulfilled perfectly. Together with approximation of sufficiently small
contribution from spin thermal noise ΓSγSχ

2
SσT ≪ σS we finally obtain for PSD of strain sensitivity eq.(2.28):

Shatoms |gopt. =
h2SQL

2KFPM cosh (2r)

(
1 +K2

FPM

)
, gopt = tanh (2r). (2.29)

The total quantum noise is homogeneously reduced in the whole spectral range by factor of cosh (2r). The result
obtained in eq.(2.29) coincides with eq.(1.44), which corresponds to the scheme utilizing an EPR-entanglement,
whose second mode is reflected from the signal recycling cavity, being detuned from it (the first mode probes the
motion of ETM mirrors).

2.4.2 Effect of mismatching in susceptibilities

Above we assumed that the spectral responses of the atomic ensemble and the GWD to quantum back action
are precisely matched, particularly meaning ΩS = 0 and the absence of the imaginary part of χS . The latter
is in principle feasible if, for example, a large cooperativity CS is achieved (see section 2.3). Now we select a
realistic range of values for CS (the case CS = 5 is investigated in Figure 2.3) and firstly study the performance of
the protocol without applying the virtual rigidity, while fulfilling the condition eq.(2.14b) on the coupling rates.
Eq.(2.18) shows that the atomic linewidth γS,pb grows ∝ KS/ (ΩSCS) with reduction of the Larmor frequency,
deteriorating the noise suppression. Figure 2.3(b) displays that the finite and relatively large (compared to the
assumed GWD coupling rate

√
K ′
I) Larmor frequency ΩS,opt allows to perform the optimization of the sensitivity

gain, predominantly addressing the drop in lower spectral range. Values of ΩS below ΩS,opt lead to the broadband
reduction of the sensitivity due to the stronger impact of imaginary part of χS(Ω). In contrast, the substantial
mismatch of resonance frequencies causes impaired performance of the protocol, when increasing ΩS > ΩS,opt. The
value ΩS,opt. is determined by the parameters of the atomic system, mainly, the cooperativity. In order to fix the
product ΓS ×ΩS , one should adjust the readout rate while scanning the Larmor frequency, as also demonstrated
on Figure 2.3(b).
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(a) The strain sensitivity of the GWD. The green curve
shows the case of quantum noise limited interferometer de-
scribed by eq.(1.8). The red curve demonstrates the GWD
combined with the atomic spin ensemble in the parallel
scheme, whose quatum noise is given by Sh,atoms from
eq.(2.26) with optimized relative weight g, the resonance
frequency ΩS and the readout rate ΓS of the spin oscilla-
tor.
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(b) The sensitivity gain relative to the SQL-limited in-
terferometer. Sh and Sh,atoms are given by eq.(1.8) and
eq.(2.26), respectively. The green, red and blue curves
demonstrate the sensitivity improvement for different pa-
rameters (readout rate ΓS and Larmor frequency ΩS) of
the spin ensemble. The dashed yellow line corresponds to
the case of implemented virtual rigidity with optimized
parameters and is shown for reference (it is not described
by eq.(2.26)).

Figure 2.3: The reduction of quantum noise in the GWD coupled to the atomic oscillator. The interferometer is
operated using the circulating power I = 1 kW, the mass of ETM M = 40 kG and the arm lengths L = 4 km,
giving the coupling rate

√
K ′
I = 63.1 Hz and the cavity bandwidth γL ≈ 950 Hz. The source of entangled light

is characterized by the factor of two-mode squeezing r = 1. The spin ensemble has the cooperativity CS = 5 and
the intrinsic linewidth γS = 0.5 Hz. The spectrum of the thermal force σT is assumed to have its minimal value,
corresponding to the atomic ground state.
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(a) The effect of different cooperativity CS values is in-
vestigated when the virtual rigidity is applied (ϕS = π/6,
ΩS,eff ≈ 0, KS,eff = KI).
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(b) The effect of different carrier phase angle ϕS values is
shown when the virtual rigidity is applied and CS = 5 is
set.

Figure 2.4: Sensitivity gain relative to the quantum noise limited interferometer (the latter is defined by Sh in
eq.(1.8)). The sensitivity of the GWD coupled to the atomic spin ensemble corresponds to Sh,atoms.

We move to the next step, where the virtual rigidity is exploited. Hence, the effective resonance frequencies
and coupling rates of two systems are ’automatically’ matched. At the same time, the uncompensated imaginary
part of χS as well as boosted contribution of intrinsic thermal spin noise σT show up due to arising of γS and
reveal themselves as a dip in the sensitivity gain centered at some spectral frequency below

√
K ′
I . The different

cooperativity CS values are tested on Figure 2.4(a) while the rest parameters are fixed. As an example, at r = 1.25
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(b) Non-symmetric losses.

Figure 2.5: Effect of optical losses on the sensitivity gain relative to ”standard” (SQL-limited) interferometer.
Two mode squeezing factor r = 1.2 and cooperativity Cs = 10 are set, when virtual rigidity is applied (ϕS = π/6).

and K ′
I = (100Hz)2 a critical value CS ∼ 10 might be defined. When this value is exceeded, the dip is strongly

reduced, providing rather flat sensitivity gain across the spectral range of interest. Figure 2.4(b) demonstrates
another important feature of the virtual rigidity concept as stated by eq.(2.24). Namely, the choice of carrier
phase angle for the atomic ensemble ϕS,opt. = π/6 gives the lowest possible impact of uncompensated imaginary
part of spins susceptibility function due to atomic decay rate (alternatively, the homodyne angle ζS is tuned, while
ϕS is fixed). In contrast, varying ϕS as extra degree of freedom is accompanied by a sharp decline of sensitivity
gain, which is explicitly pronounced around the dip.

2.4.3 Influence of optical losses

The optical losses in the hybrid system can be divided into two groups: losses induced before and after
interaction with GWD/atomic systems, denoted as input (’in’) and output (’out’) losses, respectively. Both types
are be taken into account using beam splitter model of absorption: optical mode (for example, the signal or
idler mode of the entanglement) is mixed with vacuum, losses determine the transmissivity/reflectivity of the
fictitious beam splitter. We define the coefficients ηS,in and ηM,in for each (spins/GWD) channel representing
their efficiencies. Interbeam correlations eq.(1.19) are impaired due to the losses:

⟨∆(x̂L,s,in − x̂L,i,in)
2⟩ =

ηM,in + ηS,in
2

cosh (2r) +
2− (ηM,in + ηS,in)

2
+
√
ηM,inηS,in sinh (2r). (2.30)

In case of symmetric losses ηM,in = ηS,in = ηin the right hand side of eq.(2.30) equals ηine
−2r + (1 − ηin).

Thus, adding input losses can be seen as the reduction of the two-mode squeezing level r before light starts to
interact with oscillators. The output losses {ηM,out, ηS,out} decrease the homodyne detection efficiency, changing
the input-output relations on example of atomic system eq.(2.10b) according to:

p̂L,i,out =
√
ηS,out

[
p̂L,i,in + χSΓS x̂Li,in + χS

√
ΓSγS f̂T

]
+ (1−√ηs,out)ẑi. (2.31)

Here ẑi is the vacuum field, which enters the signal quadrature through reflective port of emulated beam splitter.
Eq.(2.28) can be used to calculate strain sensitivity in the presence of optical losses, but the expressions for σI ,
σS and σIS are now given by:
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σI = ηM,in

(
1 +K2

FPM

)(
cosh (2r) +

1− ηM,in

ηM,in
+

Ω4

Ω4 +K2
I,FPM

·
1− ηM,in

ηM,inηM,out

)
, (2.32a)

σS = ηS,in

(
1 + (χSΓS)

2
)(

cosh (2r) +
1− ηS,in
ηS,in

+
|χ−1
S |2

|χ−1
S |2 + Γ2

S

·
1− ηS,in
ηS,inηS,out

)
+ ΓSγSχ

2
SσT , (2.32b)

σIS =
√
ηM,inηS,in (1 + χSΓSKFPM ) sinh (2r). (2.32c)

The improvement of sensitivity with included optical symmetric losses (ηM,in(out) = ηS,in(out)) is presented on

Figure 2.5(a). As can be seen, in the high frequency limit Ω >
√
K ′
I the sensitivity is predominantly determined

by total optical losses ηM(S),tot = ηM(S),in + ηM(S),out = ηtot. Indeed, the expression for sensitivity gain G =
(Sh|p̂L,out

)/Sh,atoms with respect to the quantum noise limited interferometer (given by eq.(1.8)) can be written
as:

G(Ω >
√
K ′
I) ≈

ΛM
1

cosh (2r) + ΛM + ΛS
, Λj =

ηj,in + ηj,out − ηj,inηj,out
ηj,inηj,out

, j = I, S. (2.33)

In the approximation of small losses eq.(2.33) converts to:

G(Ω >
√
KI,FPM ) ≈

(
2ηtot−3
ηtot−1

)
1

cosh (2r) + 2
(
2ηtot−3
ηtot−1

) . (2.34)

Therefore, the input and output losses are equally important. Another situation is for low frequency range
Ω <

√
K ′
I . Increasing input losses is more detrimental in comparison to output losses:

G(Ω <
√
KI,FPM ) ≈

1 + ϵI,in
1

cosh (2r) + ϵI,in + ϵS,in + ϵS,Out tan (ϕS)
, ϵj,l =

1− ηj,l
ηj,l

, j = I, S, l = in,out. (2.35)

The case of non-symmetric losses is investigated on Figure 2.5(b). Remarkably, the sensitivity gain scales
down rapidly with the growth of the imbalance between the input optical losses. The effect is pronounced less if
the output losses are significantly different.

2.4.4 Optimization of squeezing factor

The presence of intrinsic spin thermal noise along with non-perfect matching of susceptibilities between two
systems results in a complex dependence of the strain sensitivity Sh,atoms on squeezing factor r and Fourier spectral
frequency Ω. Consequently, increasing the strength of correlations r improves the broadband suppression of total
quantum noise only until a certain value rmin is reached. The level rmin depends on cooperativity CS , carrier
phase angle ϕS and interferometer coupling rate K ′

I . Exceeding such threshold will allow to gain the sensitivity
at high/low frequencies at the cost of extra noise around Ω ∼

√
K ′
I , making a characteristic dip 7 bigger. One

can optimize the squeezing factor r for a specific spectral frequency Ω, obtaining ropt.(Ω) [43], as shown on Figure
2.6(a). It will result in the best possible sensitivity gain Sh,atoms(ropt.(Ω),Ω) (fig.2.6(b), black curve) in a whole
spectrum range of interest. At any fixed value r > rmin optimal sensitivity gain might be achieved only locally,
around specific Ω. From the experimental point of view it would be beneficial to choose r = rmin for the given
setup since it will ensure the most uniform improvement in the sensitivity across the entire frequency range.

7Such a deep is clearly seen, for example, in Figure 2.4(a,b)
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(b) Sensitivity gain relative to the SQL-limited GWD,
when r is adjusted as function of Fourier frequency Ω,
corresponding to the black curve. Red, green and blue
curves demonstrate the sensitivity improvement, when
coefficients r are fixed.

Figure 2.6: Optimization of squeezing factor r = r(Ω) is explored. CS = 10, K ′
I = (100Hz)2, ϕS = π/6 entail

rmin ≈ 1.85.
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Chapter 3

Entanglement source

3.1 Introduction

Exploitation of quantum effects enabled completely new methods in computation and communications pro-
tocols. Quantum information processing (QIP) and quantum key distribution (QKD) can be given as examples.
Among various physical platforms, light is a promising candidate for implementation of aforementioned quantum
algorithms. Distinctive properties of photons make them an excellent carrier of information and can be utilized
in quantum networks [45]. In quantum computation, light can serve as a primary platform [46], but also as a
part of integrated schemes [47]. In particular, the electromagnetic field efficiently couples to systems that act
like harmonic oscillators, such as optomechanical membranes and atomic ensembles extensively discussed in this
thesis. It opens up the possibility to leverage the benefits of continuous variables (CV) in quantum enhanced
protocols implemented in hybrid composite systems [48].

Entangled states of light play a key role in majority of quantum algorithms, being, for example, an essential
part of quantum teleportation scheme [49],[50]. Remarkably, having distributed the entanglement between light
modes with different wavelengths (colors), one can use the teleportation to link physically disparate quantum
systems, which are suitable for solution of specific classes of tasks. A significant advantage of entanglement in
continuous variables is the opportunity to perform the protocols, inclding teleportation, in unconditional manner
[48],[51]. However, strong correlations between entangled modes are required in order to ensure the sufficient
fidelity of operations. Therefore, the development of methods to generate high-quality entanglement sources is an
important task in contemporary quantum engineering.

In this chapter we describe the preparation and characterization of the entanglement between optical modes
separated by ∼ 200 nm and encoded in continuous variables. High level of interbeam correlations allows for
demonstration of EPR-steering, the entanglement is also proved by means of Duan criterion. The quantum noise
reduction −7.1 dB below the shot noise level is achieved down to middle-audioband frequencies. It thus represents
an important intermediate result, considering the goal to create the entanglement source suitable for the scheme
of sensitivity improvement for GWDs studied in this thesis. The specific choice of 852 nm and 1064 nm for the
wavelengths of the entangled optical modes is made to enable interaction with the spin ensemble of Cs atoms and
GWD interferometer respectively. However, exploiting the flexibility of the scheme presented in this chapter, it is
feasible, for example, to implement the quantum interface between telecom fiber networks with quantum memory
that might be seen as essential component of a quantum repeater [52, 53, 54]. In a broader prospective, one can
envision an application of EPR-entangled states in the field of metrology [55].

The experiment was carried out by the author of this thesis and Tulio Brito Brazil. The author contributed to
all parts of experiment, such as building the optical setup, setting and adjusting the electronic control schemes,
collection and processing of final experimental data.

3.1.1 Review of criteria for entanglement

The concept of entangled states was introduced by Schrodinger [56] and played an essential role in the formu-
lation of the EPR-paradox [57], which raised the concerns about the completeness of quantum mechanics theory
developed by that time. The entanglement is defined through the violation of separability criterion, which for
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particular case of 2 modes takes the form:

ρ̂ =

N∑
j

µjρ
A
j ⊗ ρBj , (3.1a)

ρ̂ =

∫
ρAα ⊗ ρBαP (α) dα. (3.1b)

Here the expressions for both cases of discrete variables (DV) and continuous variables (CV) are presented
in eq.(3.1a) and eq.(3.1b) respectively,

∑N
j µj = 1,

∫
P (α) dα = 1, index j (variable α) determines discrete

(continuous) spectrum of density operator ρ̂A(B). For the mode m = {A,B} we define the observable x̂ml with
eigen-(wave)-vectors |xml ⟩ and eigenvalues xml as a result of measurement in basis set by l = {θ, ϕ}, θ(ϕ) is a choice
for the mode A(B). Using the (conditional) probability Ploc(x

m
l |l, α) = ⟨xml | ρ̂l |xml ⟩ to perform the measurement

of localized quantum state in mode A(B), we can re-write the separability condition eq.(3.1) in terms of hte joint
probability P (xAθ , x

B
ϕ ):

P (xAθ , x
B
ϕ ) =

∫
Ploc(x

A
θ |θ, α)Ploc(xBϕ |ϕ, α)P (α) dα. (3.2)

The EPR-paradox questioned the completeness of quantum mechanics, proposing the ’modification’ of introduced
theory, but assuming the validity of the local realism. The concept developed by Bell, however, allowed to
reconsider the main conclusions of EPR-paper. In assumption of locality principle, Bell [58] and Clauser [59]
deduced the expression of joint probability P (xAθ , x

B
ϕ ) in the manner of eq.(3.2):

P (xAθ , x
B
ϕ ) =

∫
P (xAθ |θ, α)P (xBϕ |ϕ, α)P (α) dα, (3.3)

where α is now considered as the local hidden variable. The latter is the set of parameters distributed between
modes A and B, which in some sense pre-determines the results of measurements in each mode while remaining
(technically) inaccessible in the experiments. Eq.(3.3) forms the basis of Bell inequalities: postulates of the locality
principle should be complied if inequality holds. Whereas violation of Bell inequality, as well as failure of eq.(3.3),
is permissible by quantum mechanics theory but implies the failure of the theory of local hidden variables that
might be treated as extrapolation of local realism concept in that case. Violation of Bell inequality was predicted
to be possible in case of utilization of so called Bell states which will later turn out to be perfectly entangled state
[60]. It has to be noted that eq.(3.3) does not necessarily assumes that the measurements on the local quantum
states are performed since ρA(B) is not introduced in contrast to eq.(3.2). From this perspective, the violation of
Bell inequalities is more challenging compared to the violation of separability condition.

The EPR-paradox can be studied in terms of inferred variances. We consider the situation, where two observers,
Alice and Bob, measure the canonical position of localized objects (xA ≡ x and xB, respectively), and Alice tries
to predict the result of her measurement using the information obtained from Bob measurement outcome. In order
to do so, Alice calculates the expected value xpre(x

B). She then can estimate the discrepancy between obtained
and predicted results, using the expression:

∆inf (x)
2 =

∫ (
x− xpre(x

B)
)2
P (x, xB) dxdxB, (3.4)

which will be referred to as the inferred variance. The right hand side of eq.(3.4) can be minimized if xpre = ⟨x|xB⟩
is selected for each possible xB [61]:

∆inf (x)
2 → min ≡ V x

A|B (3.5)

We follow the same procedure for determining ∆2
inf (p) and V

p
A|B for the canonical momentum p. The Heisenberg

uncertainty principle dictates that [61] the requirement ∆inf (x)
2∆inf (p)

2 ≥ V x
A|BV

p
A|B ≥ 1 should be satisfied for

the localized quantum state in Alice mode. On the other hand, observing
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∆inf (x)
2∆inf (p)

2 < 1 (3.6)

brings to the precision level beyond the Heisenberg fundamental limit. Since fulfilling the condition eq.(3.6)
manifests the incompatibility of local realism with quantum mechanics, it can be considered as EPR criterion
leading to EPR-paradox as was formulated in [62].

The condition eq.(3.6) can not imply a direct exchange of the information between Alice and Bob. However,
it might appear that Bob through his local measurement implements the control of the state in Alice mode.
Hence, the criterion eq.(3.6) is linked to EPR-steering [61]. Apart from measuring the inferred variances, Reid
also proposed alternative strategy to witness EPR-paradox. One can assume the particular case, where Alice
makes a prediction xpre = gxB, based on result of Bob’s measurement xB. The selection g = ∆(xxB)/∆(xB)2 for
Gaussian case leads to minimized inferred variance ∆2

inf (x) = V x
A|B, see eq.(3.5). Therefore, such a reduction of

the noise in the linear combinations of Alice’s and Bob’s canonical variables
{
x̂A − gx̂B, p̂A − g′p̂B

}
that satisfies

∆
(
xA − gxB

)2
∆
(
pA − g′pB

)2
< 1 (3.7)

is equal to the condition eq.(3.6) and proves the EPR-paradox1. The inequality (3.7) offers the convenient way to
verify EPR-steering criterion in the experiments and will be extensively investigated further in this thesis.

We now study the case of two-mode Gaussian states characterized by homodyne measurements and examine
the EPR-paradox by describing the results in terms of joint probability P (xAθ , x

B
ϕ ) (see eq.(3.3), eq.(3.2)). Failure

of

P (xAθ , x
B
ϕ ) =

∫
Ploc(x

A
θ |θ, α)P (xBϕ |ϕ, α)P (α) dα (3.8)

is equivalent to the demonstration of EPR paradox here [63]. Condition eq.(3.8) was written under the assumption
of localized quantum state in Alice’s mode, but not in Bob’s mode, thus implying ’asymmetric’ locality principle.

One can see that condition eq.(3.8) is not equal to requirements eq.(3.2) and eq.(3.3), although each of the
three conditions can be violated if the distributed modes display quantum correlations. In particular, the violation
of separability condition doesn’t necessarily lead to the confirmation of the EPR-paradox. In fact, we will use the
definition of EPR-entanglement as subtype of an entanglement strong enough to prove Reid criterion. In turn,
demonstration of the EPR-paradox is in general not sufficient for violation of the Bell inequality. Although mea-
suring canonical variables {x̂, p̂} can not show the inconsistency between the theory of local hidden variables with
predictions of quantum mechanics for two-mode Gaussian states in CV [61], in generalized case the certification
of Bell nonlocality demands stronger correlations in comparison to the steering effect. At the same time, as was
pinpointed earlier, demonstration of EPR-steering is more feasible from experimental point of view and in prin-
ciple can serve as a quantitative measure of entanglement level for investigated state. Exploring the correlations
between two modes, one can introduce the parameter ϵEPR as a product of variances in eq.(3.7):

ϵEPR = ∆
(
xA − gxB

)2
∆
(
pA − g′pB

)2
(3.9)

obviously having in mind values ϵEPR < 1. As an alternative to the EPR-steering metric, we can apply the
measure of intermode correlation strength from Duan criterion2 [37]:

∆D = ∆

(
xA − xB√

2

)2

+∆

(
pA + pB√

2

)2

. (3.10)

The Duan criterion is derived from the separability condition and the positive partial transpose (PPT) criterion
[64]. Hence Duan sets the threshold ∆D = 2; reducing this value for specific two-mode states is enough to
demonstrate an entanglement. As expected, the violation of the inequality in Reid criterion is more demanding
than violation of the Duan inequality. We also notice that reducing noise down ∆D = 1 is sufficient condition to
infer EPR-paradox verification.

We now consider two-mode squeezed state of light (eq.(1.21), eq.(1.23)) with correlations between modes
characterized by parameter r. Taking into account eq.(1.18), eq.(1.19), we expect to obtain for inferred variances
∆inf (x)

2, ∆inf (p)
2 (eq.(3.5))

1We will refer to this as demonstration of EPR paradox in a manner proposed in original EPR paper
2this criterion was already introduced in eq.(2.6) to prove entanglement between two disparate mechanical systems
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∆inf (x)
2|min = ∆inf (p)

2|min =
1

cosh (2r)
(3.11)

as well as for linear combinations xA−gxB and pA−g′pB with gopt = −g′opt = tanh (2r), as predicted by eq.(1.29).
As a result, the EPR steering is confirmed with ϵEPR equal to:

ϵEPR =

(
1

cosh (2r)

)2

. (3.12)

At the same time, the Duan criterion yields for TMSV state:

∆D = 2e−2r. (3.13)

Along with level of two-mode squeezing r, EPR and Duan criteria are the main instruments for characterization
of the entangled state of light reported in this thesis.

3.1.2 Experimental approaches
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length.

Figure 3.1: Different approaches to generate EPR-entangled states of light.

χ(2)-nonlinear media enable efficiently generating two-mode squeezed states, which makes them central for
many experimental techniques for demonstrating and exploiting continuous-variable entanglement. Inherently
weak non-linear interaction can be enhanced by placing χ(2)-medium inside a resonator. The first observation
of continuous-variable entanglement evidenced as a violation of the EPR criterion was made in [65]. Optical
Parametric Oscillator was operated below threshold with type-II parametric down conversion process. Entan-
glement was obtained for frequency degenerate fields that had orthogonal polarizations. The quadratures in the
phase space for each mode played a role of canonical position and momentum, optical modes were explored by
means of homodyne detection. Calculation of inferred variances eq.(3.4) confirmed entanglement characterized by
factor ϵEPR = 0.7 < 1 eq.(3.9). Since then, many efforts were made to improve the strength of correlation and
their stability. A substantial progress was achieved by using an interference of two single-mode squeezed states
of light, each of them produced by type-I process in subthreshold OPO. Provided well-established techniques for
the generation of high-quality single-mode squeezed states exist, this strategy led to the strongest (to date) level
of entanglement with ϵEPR = 0.04 measured in [66]. On the other hand, frequency tunability of entanglement
sources has been also explored by operating OPO in non-degenerate configuration. In [67] the violation of EPR
paradox was certified for the spectral modes that are separated by two free spectral ranges (FSR) symmetrically
to degenerate mode, leading to ∼ 1 GHz frequency difference. This experiment was designed in such a way,
that only a frequency near-degenerate entangled state can be prepared and detected. Phase-matching conditions
were confining the frequency difference for entangled modes, and at the same time preparation method of local
oscillators (LOs) has limited them to be practically monochromatic.

In order to demonstrate the entanglement between beams of truly different colors (i.e. with a large wavelength
separation), one can in principle utilize the non-linear interaction enhanced by a cavity. The adjustment of phase-
matching conditions guarantees signal-idler entangled modes to be non-degenerate. However, homodyne detection
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is typically not available due to absence of LOs. One way to circumvent this issue is to operate OPO above
the threshold. In experiments [68], [69] bright entangled beams after exiting the OPO were sent onto auxiliary
cavities and detected after reflection. The phase of the sidebands reflected from the cavity is rotated depending
on the Fourier frequency. Thus, the ’self-homodyning’ has been realised with the mean fields that served as a
reference and replaced LOs. While this scheme allows for verification of entanglement criteria, the characterization
of output state is still not equivalent to the proper homodyne measurement. A frequency dependent phase after
the reflection from ”auxiliary” cavities makes possible to detect squeezing in phase/amplitude quadratures only in
specific frequency ranges. Furthermore, the imbalance between the amplitude and phase correlations was observed
in experiments [68] [69]. The quantum noise suppression in the sum of phase quadratures was limited possibly
due to excess phase noise of pump laser and could be observed for the values of the power of the injected pump
close to the threshold.

OPA below threshold was predicted to enable EPR correlations between different colors [70]. In experimental
realizations phase sensitive [71] and phase insensitive [72] regimes were explored. Proper characterization of
obtained correlations was achieved by combining OPA regime with above threshold OPO to generate LOs, which
were used to implement the homodyne detection. Such strategy allowed to unite the advantages of OPO and
OPA. Symmetric noise suppression in both sum of phase quadratures and difference of amplitude quadratures was
accomplished, in contrast to [68]. After optimization of detection efficiency, 6dB of two-mode squeezing [73] was
demonstrated, meaning strong different-color entanglement. Unfortunately, performance of OPO above threshold
limits phase-locking stability in this case and consequently reduces the level of signal-idler correlations, especially
in low-frequency range. Moreover, both OPO and OPA share the same phase-matching conditions. As a result,
the entangled beams are strictly linked to local oscillators, leading to lack in the flexibility of such experimental
realization.

3.2 Theory of Optical Parametric Oscillators: equations of motion

âjin
âjin1

âjout

âjloss

T(R)in T(R)out

T(R)loss

(2)

Figure 3.2: Simplified illustration of cavity with non-linear medium χ(2) inside. Coefficients T (R)in and T (R)out

represent the transmissivity (reflectivity) of input and output port, respectively. The coefficients T (R)loss corre-
spond to the fictitious mirror to account for the intracavity losses. The optical fields âinj and âoutj enter the cavity

through input and output mirrors, whereas âlossj appears due to the intracavity losses. Index j refers to the signal,
idler or pump field.
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We study three wave mixing process inside an optical resonator with a χ(2)-nonlinear medium inside. Instead
of eq.(1.16), we now write down the interaction Hamiltonian as:

Ĥint ∼ iℏg
(
âP â

†
sâ

†
i − â†P âsâi

)
, (3.14)

where âs(i) (the index ’L’ is omitted) are the field operators for the signal (idler) carrier frequency. Signal, idler

and pump fields (denoted as âj , where j = s, i, P , respectively) interact inside an optical parametric oscillator
(OPO), which consists of a cavity with 3 mirrors and χ(2) medium inside, as presented in Figure 3.2. The first
mirror (with T inj /Rinj as coefficients of transmission/reflection) is the input port for drive fields âinj . The second
mirror will be referred to as the output port (T outj /Routj ), the fields exiting OPO through this mirror âoutj are sent
to the detector. However, we also assume that external fields can enter OPO through the output port, and we
denote them as âin1j . The last mirror (T lossj /Rlossj ) is used to introduce intracavity losses (in the simplified model

this mirror is only source of losses in the OPO). In that case the ’transmission’ T lossj of the last mirror determines

losses. This mirror also allows the another external field âlossj to enter cavity. Hence, we write down the Langevin
equations for signal, idler and pump modes in the following form:

d

dt
âs =i∆sâs − γsâs + gâP â

+
i +

√
2γins â

in
s +

√
2γouts âin1s +

√
2γlosss âlosss , (3.15a)

d

dt
âi =i∆iâi − γiâi + gâP â

+
s +

√
2γini â

in
i +

√
2γouti âin1i +

√
2γlossi âlossi , (3.15b)

d

dt
âP =i∆P âP − γP âP + gâsâi +

√
2γinP â

in
P +

√
2γoutP âin1P +

√
2γlossP âlossP , (3.15c)

where for each line: the first term on the right hand side corresponds to the detuning ∆j of the signal (idler/pump)
frequency from the cavity resonance, the second term describes the damping of the fields inside the resonator with
overall leakage (decay) rate γs(i), the third term corresponds to parametric interaction on the nonlinear medium
with interaction strength g, and the last three terms correspond to the couplings of the intracavity fields to the
external fields âinj , âin1j and âlossj . The coupling with each external field injected to the OPO is characterized by

it’s own leakage rate γkj :

γkj =
c

L

(
1−

√
1− Tk,j

)
, k = in,out,loss, j = s,i,P, (3.16)

where c is the speed of light, L is the cavity length, (c/L)−1 is round trip time of photon in a resonator. Total
leak rate combines all losses sources of OPO for each wavelength: γj :

∑
k γ

k
j = γj .

In order to study signal-idler correlations, we do several simplifications here: we suppose that the cavity is
resonant with the signal ωs (âs) and idler ωi (âi) modes (that implies ∆s = ∆i = 0). We also consider the regime
of strong and undepleted pump that is described by the classical coherent amplitude αP = α̃P e

iθP , therefore we
will discard the Langevin equation for the pump (αP remains unchanged). Finally, for the signal/idler ports all
external fields âks(i), k = in, in1, loss are in vacuum state. We again introduce the amplitude x̂s(i), phase p̂s(i)
and generalized quadratures q̂s(i)(ζ). Using eq.(3.15), one can obtain the dynamics of signal/idler quadrature
operators:

d

dt
q̂s(ψ+) =ϵ

√
γsγiq̂i(ψ−)− γsq̂s(ψ+) +

√
2γins q̂

in
s (ψ+) +

√
2γouts q̂in1s (ψ+) +

√
2γlosss q̂losss (ψ+) (3.17a)

d

dt
q̂i(ψ−) =ϵ

√
γsγiq̂s(ψ+)− γiq̂i(ψ−) +

√
2γini q̂

in
i (ψ−) +

√
2γouti q̂in1i (ψ−) +

√
2γlossi q̂lossi (ψ−) (3.17b)

where q̂ks(i)(ψ±) = cos (ψ±)x̂
k
s(i) + sin (ψ±)p̂

k
s(i), k = in, in1, loss; parameter ϵ = α̃P /αP,th determines the ratio

between pump field amplitude α̃P and threshold value αP,th =
√
γsγi/g. Eqs.(3.17) show that the parametric

interaction happens only between signal q̂s(ψ+) and idler q̂i(ψ−) quadratures whose phases are anti-symmetric
relative to the pump phase such that ψ± = θP /2±θ. Notably, the quadratures of incoming vacuum fields q̂js(i)(ψ±)
do not depend on phase angle; hereinafter we omit their phases. Without a loss of generality we can set θP = 0.
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Figure 3.3: Phasor diagram of parametric down-conversion.

Then the expression q̂s(ψ+)− q̂i(ψ−) converts to x̂s− x̂i when θ = 0 and p̂s+ p̂i at θ = π/2 (see Figure 3.3), which
can be recognized as EPR-variables.

We apply a Fourier transformation to the system3.17 and write down the equations in a matrix form:

[
γs − iω ϵ

√
γsγi

ϵ
√
γsγi γs − iω

] [
q̂s(ψ+)
q̂i(ψ−)

]
= (3.18)

=

[√
2γins 0

0
√

2γini

] [
q̂ins
q̂ini

]
+

[√
2γouts 0

0
√
2γouti

] [
q̂in1s

q̂in1i

]
+

[√
2γlosss 0

0
√

2γlossi

] [
q̂losss

q̂lossi

]

The system eq.3.18 can be applied to get a solutions for intracavity fields {q̂s(ψ+), q̂i(ψ−)}. The next step is to
obtain the expressions for output (transmitted) fields

{
q̂outs (ψ+), q̂

out
i (ψ−)

}
using the input/output relations:

q̂outs(i)(ψ±) =
√

2γouts(i)q̂s(i)(ψ±)− q̂in1s(i) (3.19)

and to detect the linear combination of output fields q̂outs , q̂outi

Âouttot (ϕ) = N(ϕ)
[
cos (ϕ)q̂outs (ψ+)− sin (ϕ)q̂outi (ψ−)

]
. (3.20)

Here N(ϕ) is the normalization factor which determines the reference which we want to compare with. If we
measure any superposition of two modes (ϕ ̸= (π/2)n, n - any integer number), then N = 2 since our benchmark
is two independent modes each SQL-limited. Otherwise we should compare with SQL in single mode, and in that

case N = 1. Calculating the variance of the output field ⟨∆
(
Âouttot (ϕ)

)2
⟩ ≡ SÂout

tot ,Â
out
tot

, we finally arrive to the

following result [67]:

SÂout
tot ,Â

out
tot

= N(ϕ)

[
1 + 4ϵηesc

2ϵ(σ cos2 (ϕ) + σ−1 sin2 (ϕ))−
(
∆2 + 1 + ϵ2

)
sin (2ϕ)

(∆2 + (E + Λ)2) · (∆2 + (E − Λ)2)

]
. (3.21)
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Here ηesc.s(i) = γouts(i)/γs(i) is escape efficiency for signal(idler) wavelength, ηesc =
√
ηesc.sηesc.i is the generalized

escape efficiency, ∆ = Ω/
√
γsγi is the normalized Fourier frequency, σ =

√
ηesc.s/ηesc.s is escape efficiency asymme-

try, Λ = (ρ+ρ−1)/2 represents the loss asymmetry with ρ =
√
γs/γi, E =

√
ϵ2 + Λ2 − 1. In addition to intracavity

losses, we introduce the losses attributed to the propagation way of signal/idler mode to the homodyne detection
setup. It is done by replacing escape efficiency ηesc,j by the total efficiency ηj = ηesc,jηdet,j in eq.(3.21). The
new term ηdet,j is the detection efficiency, which takes into account a non-ideal degree of overlapping with Local
oscillators, the photodiode efficiency and the absorption on the optics between OPO and homodyne detectors. In
case of symmetric losses (ρ = σ = Λ = 1 and E = ϵ), the best quantum noise suppression relative to the two-mode
vacuum noise is achieved at subtraction of signal from idler with equal weights [67] (setting ϕ = π/4), as given by
the following expression:

SÂout
tot ,Â

out
tot

|π/4 = 2

(
1− η

4ϵ

∆2 + (ϵ+ 1)2

)
(3.22)

that coincides with the result for the single-mode squeezing. Dependence of interbeam correlations on the pump
power for different total losses is presented on Figure 3.4. We also notice that the choice ϕ = 3π/4 leads to
the detection of the sum of two quadratures and yields the maximal enhancement of quantum noise relative to
vacuum noise since we would detect anticorrelated quadratures in this case (corresponding to antisqueezing if the
analogy to in single mode squeezing is made). The noise in single (either signal or idler) mode is obtained from
the eq.(3.21) by setting ϕ = 0 or ϕ = π/2 [67] and corresponds to the thermal state as in eq.(1.22).

Tloss,S (I)=0.2%, ηdet,S (I)=100%
Tloss,S (I)=0.4%, ηdet,S (I)=100%
Tloss,S (I)=0.2%, ηdet,S (I)=90%
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(a) The case of symmetric losses between signal and idler
channels. The effect of changing of intracavity losses Tloss,s(i)
(leading to changing of escape efficiency) as well as varying
detection efficiency ηdet,s(i) is shown.

ηdet,S (I)=(90±5)%, Tloss,S (I)=0.2%
ηdet,S (I)=90%, Tloss,S (I)=(0.2±0.1)%
ηdet,S (I)=90%, Tloss,S (I)=0.2% (sym.)

0.0 0.2 0.4 0.6 0.8 1.0

-8

-6

-4

-2

0

ε

<
A
ou
t t
ot
2
>
/2

[d
B
]

(b) The interbeam correlations at asymmetric intracavity
losses or detection efficiencies are compared with the case
of symmetric losses. The total escape efficiency and total
detection efficiency are equal to ηesc =

√
ηesc,sηesc,i=0.984

(corresponding to Tloss = 0.2%) and ηdet =
√
ηdet,sηdet,i=0.9,

respectively.

Figure 3.4: Interbeam correlations with equal weights ϕ = π/4 is plotted as a function of pump power. Losses
due input/output ports remain the same: Tout,s(i) = 0.12, Tout,s(i) ≫ Tloss,s(i) ≫ Tin,s(i) (so Tin,s(i) ≈ 0), ∆ = 0.

Non-equal losses for the signal and idler modes (due to different intracavity losses Tloss,s ̸= Tloss,i or detection
efficiencies ηdet,s ̸= ηdet,i) cause a sharp enhancement of quantum noise and contamination of signal-idler correlation
(shown on Figure 3.4(b)) starting from some critical value of ϵ (which depends on concrete values of escape
efficiencies) in comparison to symmetric case (displayed on Figure 3.4(a)). Asymmetric losses make the choice of
equal weights for q̂s and q̂s non-optimal. Therefore, the deviation from ϕ = π/4 can compensate the asymmetry
and improve the strength of signal-idler correlation, see Figure 3.5(a). In particular, a fine alignment of the relative
weight g = g(ψ) allows to almost completely recover the interbeam correlations in comparison to the symmetric
case.

The next step is the inclusion of the phase noise into the model. The detrimental effect of the phase noise can be
understood as a jitter in ψ+ and ψ− angles, which determine the phase of signal and idler quadrature, respectively.
As a result, instead of detecting q̂s(ψ+) for the signal quadrature, one measures q̂s(ψ+,1) = cos (θs)q̂s(ψ+) +
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ηdet,S (I)=(90±5)%, ψ=π /4
ηdet,S (I)=(90±5)%, ψadj.=π /4-0.01π
ηdet,S (I)=90%, (sym.)
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(a) The case of asymmetric detection efficiencies but
equal total losses associated with OPO γs = γs is

demonstrated. Comparing ⟨∆
(
Âout

tot (ϕ = π/4)
)2

⟩ and

⟨∆
(
Âout

tot (ϕ = π/4− 0.01π)
)2

⟩, one can see that the ad-

justment of the relative weight mitigates the sharp rise of
quantum noise at pump power close to threshold ϵ → 1.
Thus, the effect of non-equal losses is partially cancelled.
The case with symmetric equal efficiencies ηdet,s = ηdet,i is
shown as reference.

ηdet,S (I)=(90±5)%,
ηdet,S (I)=90% (sym.), ψ=π/4
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(b) The regime of strong pump ϵ = 0.9 is explored for
the case ηdet =

√
ηdet,sηdet,i = 90% and ηesc,s = ηesc,i =

98.4%. The equal detection efficiencies ηdet,s = ηdet,i

entail ⟨∆
(
Âout

tot (ϵ = 0.9, ϕ = π/4)
)2

⟩ = −9.33dB. Intro-

ducing the unequal detection efficiencies ηdet,s = 95%,
ηdet,i = 85%, we obtain only 4.4dB noise suppression rela-
tive to the shot noise, if we record equal superposition of
signal and idler quadratures (setting ϕ = π/4). The corre-

lations ⟨∆
(
Âout

tot (ϵ = 0.9, ϕ)
)2

⟩ at different relative weights
are displayed, and the optimal value ϕopt might be found,

giving in our case ⟨∆
(
Âout

tot (ϵ = 0.9, ϕopt)
)2

⟩ = −9.23dB.

Figure 3.5: The possibility to compensate the unequal efficiencies of signal and idler channels by varying the

relative weight in ⟨∆
(
Âouttot (ϕ)

)2
⟩ is explored.

sin (θs)q̂s(ψ++π/2), where θs = ψ+,1−ψ+ represents the fluctuations of the signal phase. Similarly, the quadrature
q̂i(ψ−,1) = cos (θi)q̂s(ψ−)+sin (θi)q̂s(ψ−+π/2) is detected for the idler mode. The spectrum of the noise associated
with the observable Âouttot,1(ϕ) =

[
cos (ϕ)q̂outs (ψ+,1)− sin (ϕ)q̂outi (ψ−,1)

]
is given by

SÂout
tot,1,Â

out
tot,1

|ϕ=π/4 = ⟨∆
({

cos (θs)q̂s(ψ+) + sin (θs)q̂s(ψ+ + π/2)

}
−
{
cos (θi)q̂i(ψ−) + sin (θi)q̂i(ψ− + π/2)

})2

⟩ =

= ⟨∆(q̂s(ψ+))
2⟩+ ⟨∆(q̂i(ψ−))

2⟩−
− 2 cos (θs) cos (θi)⟨∆(q̂s(ψ+)q̂i(ψ−))⟩ − 2 sin (θs) sin (θi)⟨∆(q̂s(ψ+ + π/2)q̂i(ψ− + π/2))⟩ (3.23)

where the case of equal losses and, consequently, ϕ = π/4 is chosen. The second line in eq.(3.23) corresponds to the

noise in each of signal/idler modes seperately (which are in thermal states, and ⟨∆
(
q̂s(i)(ψ±)

)2⟩ doesn’t depend
on phase angle ψ±). The third line describes signal-idler correlations. As was shown earlier, {q̂s(ψ+), q̂s(ψ−)} are
always correlated, and as a direct consequence, {q̂s(ψ+ + π/2), q̂s(ψ− + π/2)} are always anticorrelated, therefore:

⟨∆(q̂s(ψ+)q̂i(ψ−))⟩ > 0

⟨∆(q̂s(ψ+ + π/2)q̂i(ψ− + π/2))⟩ < 0 (3.24)

whereas |⟨∆(q̂s(ψ+)q̂i(ψ−))⟩| = |⟨∆(q̂s(ψ+ + π/2)q̂i(ψ− + π/2))⟩|. We introduce root mean square (RMS) quadra-

ture fluctuation in signal θs and idler θi modes (θj =
√∫

θ2jdθj). Averaging over jittering of quadrature angles,

we obtain the spectrum of interbeam correlations from eq.(3.23):

SÂout
tot,1,Â

out
tot,1

|ϕ=π/4 = ⟨∆(q̂s(ψ+))
2⟩+ ⟨∆(q̂i(ψ−))

2⟩ − 2⟨∆(q̂s(ψ+)q̂i(ψ−))⟩ cos (θs + θi) (3.25)
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Phase noise hinders quantum noise reduction as represented in eq.(3.25), which corresponds to SÂout
tot ,Â

out
tot

|ϕ=π/4
(given by eq.(3.22)) in the case θs = θi = 0. Eq.(3.25) can be also written in a form

SÂout
tot,1,Â

out
tot,1

|ϕ=π/4 =
[
SÂout

tot ,Â
out
tot

|ϕ=π
4

]
cos2

(
θs + θi

2

)
+
[
SÂout

tot ,Â
out
tot

|ϕ=π
4
+π

2

]
sin2

(
θs + θi

2

)
(3.26)

where the term SÂout
tot ,Â

out
tot

|ϕ=π
4
+π

2
stands for the quantum noise of sum of correlated quadratures, being also

equivalent to the difference of anticorrelated observables. The contribution of this component is increased with
the growth of θs and θi, thus compromising the suppression of quantum noise given by SÂout

tot,1,Â
out
tot,1

|ϕ=π/4.
The effect of the phase noise is demonstrated on Figure 3.6 for the ’symmetric’ phase noise (θs = θi) for

simplification. The instability of LO phase weakens the signal-idler correlations at ϵ → 1 similar to the effect of
asymmetric losses. The effect of the phase noise can not be mitigated by changing the relative weight of detected
quadratures.

ηdet,S (I)=(90)%, θPh.N.=0, ψ=π/4
ηdet,S (I)=(90)%, θPh.N.=0.01, ψ=π /4
ηdet,S (I)=(90±5)%, θPh.N.=0.01, ψ=π /4
ηdet,S (I)=(90±5)%, θPh.N.=0.01, ψopt.
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Figure 3.6: The phase noise effect is now taken into account, and it’s detrimental impact on signal-idler correlations
at ϵ → 1 is shown for the case of symmetric and asymmetric detection efficiencies (including the case when the
relative weight is optimizated).

One can consider the interbeam correlations in the context of EPR steering criterion. If we want to minimize
the quantum noise in comparison to the SQL of the signal quadrature only, the choice of equal weights (ϕ = π/4 at
ηs = ηi) is no longer optimal, as demonstrated on Figure 3.7. Instead, we should measure Âouttot |steer. = q̂outs −gq̂outi .
Optimization of g (for specific case Ω = 0) leads to [9]:

gopt.(Ω = 0) =
4ϵη1(1 + ϵ2)

ϵ4 + 2ϵ2(4η − 1) + 1
(3.27a)

SÂout
tot ,Â

out
tot

(Ω = 0)|steer = 1− 8ϵ2η(2η − 1)

ϵ4 + 2ϵ2(4η − 1) + 1
(3.27b)

The difference between eq.(3.27) and eq.(3.22) is seen as the particular case of comparison between eq.(1.31) and
eq.(1.29). For demonstration of EPR steering it is more beneficial to choose gopt. from eq.(3.27a) in the limit of
low pump power ϵ → 0, whereas g = 1 would cause the excessive noise. At the same time, when ϵ approaches
(limit of high level of two-mode squeezing) gopt. → 1 and SÂout

tot ,Â
out
tot

|steer. (eq.(3.27b)) becomes equal to eq.(3.22).

3.3 Scheme to generate entanglement: introduction

In section 3.1.2 we discussed the problems of experimental detection of entangled states of light encoded in
optical amplitude-phase quadratures. Here we address these challenges and propose the alternative strategy that
leads to the high-quality, tunable and versatile two-colour source of the EPR state. The experimental setup for
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g=1
g=gEPR
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Figure 3.7: Signal-idler correlations in the OPO output as a function of ϵ when g = gopt. from eq.(3.27b) (the best
choice for EPR-steering criterion violation) and g = 1 which is optimal for optimization relative to 2-mode SQL.
∆ = 0, ηs = ηi, phase noise is absent.
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Figure 3.8: The experimental setup for the generation and the measurement of the entangled state of light
required for establishing the link between the GWD and the atomic spin ensemble, as described in section 2.2.
The entangled beams are produced by the optical parametric oscillator (OPO), which consists of the bow-tie
optical cavity with the χ(2) non-linear medium inside. The parametric down-conversion process implemented in
the OPO requires the pump, which is obtained by overlapping two lasers (Mephisto and Ti:Sapphire, respectively)
and realizing the sum frequency generation (SFG) process on another χ(2) non-linear medium. The entanglement
is verified by means of homodyne detection (HD) of each twin beam, where the local oscillators (LO) are prepared
by taking the optical mode of respective laser. The quality of LOs modes and their low frequency stability is
improved using mode cleaner cavities (MCCs). See text for details.

generation and characterization of different color entanglement is shown on Figure 3.8 and can be divided onto six
parts: the optical parametric oscillator (OPO), the preparation of the pump for the OPO, the preparation of the
local oscillator (LO) and the homodyne detection (HD) for each entangled mode. We start with two laser sources
generating radiation at ωs and ωi frequencies, respectively. Coherent fields from these lasers are combined on χ(2)

non-linear medium, their interaction leads to the up-converted parametric field as a result of a Sum Frequency
Generation (SFG) process: ωs + ωi → ωP . Experimental details of control and characterization of the SFG will
be given in section 3.6. The SFG field serves as a pump for the parametric down conversion (PDC) process
inside the OPO (ωP → ωs + ωi), which results in the generation of the entanglement between signal and idler
modes. Since the PDC in the OPO and the up-conversion in the SFG are mutually reverse and operate under
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the same phase-matching conditions, we use the same non-linear medium in both cases. The properties of this
medium are explored in section 3.5. The geometry and the design of the OPO are discussed in section 3.7, while
the stabilization of the OPO length in order to maintain the resonance conditions is studied in section 3.8. The
characterization of the most essential features of the OPO that have a direct impact on the quality of the EPR-state
is described in section 3.9. After exiting the OPO, the entangled beams are spatially separated by the Dichroic
Mirror (DM), directed towards homodyne detectors (HD) and overlapped with respective LOs. The LO for the
signal (idler) is made by taking a small portion of the radiation from the respective laser that is then properly
stabilized and filtered. LOs should meet strict requirements for low frequency homodyne detection (LFHD), the
procedure of their preparation is given in the section 3.10.1. The homodyne detection itself is detailed in section
3.10.2. The strategy and the implementation of the phase locking is a part of the homodyne detection setup, but
is described separately (in section 3.10.3), being one of the most crucial parts for this experiment. The results of
the characterization of the entangled state are outlined in section 3.11.

The scheme with two lasers presented here is beneficial in several aspects in comparison to previous approaches.
Following proposed design, we combine stability of the OPO performance operated below threshold and advantage
to exploit two local oscillators. Thus, we get the opportunity to perform careful and proper characterization by
means of the homodyne detection. We also highlight the flexibility and the versatility of the setup in terms of
characterization. Originating from initial lasers fields in essence, LOs are in principle completely independent
from entangled modes which are determined by phase matching conditions of OPO, in contrast to [71]. Another
circumstance should be taken into account: there is a possibility to operate the entangler in regime which is free
of contamination by classical noise. It will be shown in section 3.8.2 that is devoted to ’advanced locking scheme’.

3.4 Laser sources

We use Innolight Mephisto Nd:YAG laser as source of light on signal frequency ωs, corresponding to the
wavelength 1064nm which is used to probe laser interferometer type GWD. Mephisto laser produces ≈ 600 mW
of optical power; after magnification on Nufern fiber amplifier (PSFA-1064-50-10W-2-1) we finally obtain ≈ 10 W
on 1064 nm. M-Squared Ti:Sapphire laser (SolsTiS PSX-R) provides up to 2 W on 852 nm wavelength (ωi). The
essential lasers features, relaxation oscillation performance for Ti:Sapph laser and mainly amplitude noise were
extensively studied in [74].

3.5 Crystal

A non-linear medium exploited in this experiment is periodically poled potassium-titany1-phosphate (PPKTP)
crystal. Such type of material is quite often used in squeezing experiments [75],[76] owing to high values of non-
linear coupling strength, low losses caused by absorption and relatively high damage threshold level [77]. In both
SFG and PDC processes we target at conversion 473 nm ↔ 852 nm + 1064 nm and type-0 polarization matching.
Required quasi phase matching for given poling period 6.12 µm is achieved at temperature Tph.m ≈ 68◦. Reflection
from OPO crystal surfaces is a crucial circumstance for this experiment, since it might facilitate pollution of
entangled modes via back-scattering (will be detailed in section3.8.2) and also hampers compatibility with GWD
interferometer [75]. We characterize the AR coating of the crystal and find less than 0.1% reflection from each
surface. Influence of blue light induced infrared absorption (BLIIRA) [78] and grey tracking [79] phenomenon on
OPO crystal were concluded to be insignificant (see section 3.9.1). Photothermal effects, such as thermal lensing
and local heating of crystal, had a noticeable impact on SFG process, limiting it’s efficiency and stability.

The size of crystal is 1x1x10mm. The length lc sets the Boyd-Kleinman conditions [80] onto the size of waist for
fundamental and pump modes (wλi(s) and wλP respectively) inside the crystal, demanded for optimal conversion
efficiency:

wopt.,λj =

√
lcλj

2πniζB.−K.
, j = s, i, P (3.28)

where ζB.−K. is Boyd-Kleiman optimal focusing parameters. For considered here crystal and non-linear conversion
process we have:

38



wopt.,λs ≈ 19.7µm, wopt.,λi ≈ 17.5µm, wopt.,λp ≈ 13.2µm (3.29)

3.6 Preparation of pump for OPO
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Figure 3.9: SFG efficiency as function of temperature of phase matching

To generate the pump radiation for OPO, we exploit parametric upconversion process. Two optical modes from
Mephisto and Ti:Sapph lasers are combined on a dichroic mirror and then sent to non-linear medium (PPKTP
crystal, described in sec.3.5). The beam waists of focused incoming optical modes were chosen to coincide with
optimal values (3.29) determined by Boyd-Kleinman conditions (eq.3.28), also their polarizations are matched.
As a result, the field on their sum frequency is produced whose power PP might be estimated from the following
expression [74]:

PP = αPsPi (3.30)

where Ps, Pi are optical powers of impinging laser modes on the crystal (indices i(s) denote 1064 nm and 852
nm lasers respectively) and α describes conversion efficiency of the parametric process. Having mode matching
and phase matching conditions (see Fig.3.9) optimized, we measure α ≈ 0.05 [1/W] [74] that leads to PP ≈ 1W
when all available power from both lasers Ps|max. ≈ 10 W and Pi|max. ≈ 2 W is sent to the crystal. Obtained
SFG power already substantially exceeds OPO threshold reported in section3.9.2. Therefore, we decided to stick
to single-pass configuration as we don’t need to enhance upconversion efficiency by adding resonator[81]. When
obtaining the main results of this chapter (section3.11) and also doing alignment procedures, we make sure to
operate SFG crystal safely below the damage threshold [77].

3.7 OPO: design considerations, geometry and assembly

The first decision regarding the design of OPO to be made is the choice between standing wave or travelling
wave configurations. Various aspects such as losses, mechanical robustness, astigmatism, tunability/flexibility
must be taken into account. Decisive factor was, however, spatial separation of incoming and exiting modes in
the OPO. Anticipating future application of this entanglement source in quantum noise suppression for GWD,
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we choose to utilize the travelling wave cavity, since such design provides optical isolation of interferometer from
back-scattered light [75],[76]. Compared to travelling wave, standing wave cavities open the access to higher
bandwidth of entanglement due to reduction of optical path - but this is not the most critical circumstance for the
experiment outlined here since our purpose is to demonstrate entanglement on the frequecy range approaching
audio band.

Bow-tie and triangular structures are the most prominent among various types of ring cavities. Bow tie
configurations is advantageous for outlined experiment since it ensures tight waist size of intracavity mode, which
is necessary for efficient parametric down-conversion process. Additionally, increasing number of optical elements
enables versatility in implementation of cavity locking schemes. We are also interested in compactness of cavity
while having relatively big length of optical path as consequence of travelling wave structure. Having these
considerations in mind, we choose the bow-tie configuration. The problem of astigmatism, which can entail
difficulties of mode matching between signal modes and local oscillators, turns out to be not crucial for our
protocol, as will be shown later.

Next, we must choose between the options to have double resonance (only for signal and idler modes) or
triple resonance (also for pump) for the OPO. While benefits of triple resonance are straightforward, its feasibility
is a challenging task. Bow-tie cavity geometry in principle allows3 the OPO to resonate for signal, idler and
pump modes, even despite the dispersion of non-linear crystal. However, setting up the triple resonance implies
advanced requirements on the coating of optical elements, which would be difficult to fulfill. We also consider
the challenge in implementation of such a locking scheme that maintains resonance conditions for 3 different
wavelength. Refraining from the resonance for the pump, one has to increase the pump power on the input of
OPO in order to maintain good nonlinear interaction efficiency. It is not an obstacle for us since SFG process
yields amount of pump power exceeding OPO threshold. We finally stick to double-resonant configuration.
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(a) Bow-tie configuration of OPO.
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Figure 3.10: The design and geometry of OPO.

Layout of OPO is shown in Fig.3.10(a). Having symmetric bow-tie configuration, cavity consists of two planar
(MP1, MP2) and two curved (MC1, MC2) mirrors. Pump enters through mirror MC1, output port is mirror MP2.
All mirrors are provided by LaserOptik. The mirrors MC1, MC2 have HR coating for signal-idler wavelengths
and AR coating for pump, their diameter is 7mm, thickness is 6.35mm and radius of curvature is −38mm. Two
planar mirrors have the same thickness, being half an inch in diameter. While MP1 is also HR on frequencies
of twin beams, MP2 has reflectivity 88% on fundamental wavelengths, which was chosen to provide a desired
balance between value of oscillation threshold for pump PP,th. and escape efficiency ηesc. Selected features of
mirrors along with optimized intracavity losses (will be characterized in section3.9.1) resulted in measured finesse
≈ 52 and linewidth ≈ 15 MHz for signal and idler, given the round trip length of cavity ≈ 45 cm. The main

3The cavity geometry can provide the resonance for each (signal, idler,pump) wavelength with the waist size close to values set by
Boyd-Kleimann conditions
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Figure 3.11: Effect of astigmatizm is shown on the minimal waist size as function of distance between curved
mirrors. As can be seen, the proper choice of curved mirror separation provides the equal size of tangential and
saggital sizes of smaller waist (on the crystal), but not for the bigger waist. As a result, output signal modes will
have elongated shapes that complicates their overlapping with Local oscillators.

parameters of OPO cavity are listed in table3.1. The OPO length is controlled by attached to MP1 PZT element
that is standard ceramic stack from Piezomechanik. Temperature of the crystal oven is adjusted/maintained
by actuation of Peltier element. The temperature readout is implemented by means of thermistor. Mechanical
stability of cavity is ensured by its monolithic configuration [74].

Designing the geometrical structure of cavity, we aim to approach a perfect accomplishment of Boyd-Kleinmann
conditions eq.(3.28) for the size of the signal and idler waists that should be located the center of the crystal.
For the given crystal it leads to eq.(3.29) just as for the SFG process. Therefore we need the cavity to sustain
the resonance for signal/idler modes determined by given waist sizes. We use ABCD-formalism (also known as
Ray-matrix formalism) to describe the dynamics of intracavity modes expressed by q-parameter. The condition
on self-producing mode

q =
Aq +B

Cq +D
(3.31)

means that the q-parameter for some fixed position z0 inside cavity should remain the same after one round trip.
Coefficients A,B,C,D in this case form the M matrix for the beam that comes full circle and interacts with all
optical elements. For example, if we choose z0 to be in the middle between two curved mirrors Mc1 and Mc2, then
the ABCD-matrix for the round trip is written as

MOPO ≡
[
A B
C D

]
=

[
1 dc

2
0 1

] [
1 0

− 2
Rc

1

] [
1 dp
0 1

] [
1 0

− 2
Rc

1

] [
1 dc

2
0 1

]
, (3.32)

where Rc is radius of curvature for mirrors Mc1 and Mc2. Effective distance between curved mirrors dc and the
distance dp are determined as

dc = d1 − lc

(
1− 1

n

)
, dp = dtot − d1, dtot = d1 + d3 + 2d2. (3.33)

Note that refractive index n depends on wavelength in formula for dc. If z0 is located in the middle between two
planar mirrors Mp1 and Mp2, the M-matrix can be written by replacement dc ↔ dp in eq.(3.32). The solutions of
eq.(3.31) for these two cases (reference point is either between Mp1-Mp2 or Mc1-Mc2) give the following results of
minimal waist sizes

w2
λj ,p(c)

=
λj
2π

√
Rc − dc(p)

Rc − dp(c)
(Rcdtot − dcdp). (3.34)
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Consequently, the optical mode, which is resonant for OPO in bow-tie cavity configuration, has two waists [82].
One (wc) is placed in the middle between Mc1 and Mc2, whereas the second (wp) is located in the middle between
Mp1 and Mp2. It is natural to use the smaller waist wc to fulfill Boyd-Kleimann conditions. Therefore, the
crystal is placed in the middle between Mc1 and Mc2. Adjusting cavity geometry (mainly the distance d1),
we approximately achieve requirements eq.(3.29) for signal and idler wavelengths. While the procedure of mode
matching for auxiliary seed (on signal wavelength) and locking beams (both signal and idler wavelengths) for OPO
is straightforward, the search of optimal pump configuration is experimentally challenging because of the absence
of resonance for λp wavelengths and small size of wP . We achieve mode matching for SFG field, maximizing the
efficiency of parametric gain (described in the section 3.9.2).

The effect of astigmatism originates from non-perpendicular descent of impinging beam onto curve mirror.
The reflection from Mc1 and Mc2 is determined by Ray matrix with effective radii of curvatures Rc cos (θast.) and
Rc/ cos (θast.) in horizontal and vertical directions, respectively. This leads to different beam profiles in tangential
and saggital planes along the propagation inside OPO. The most important consequence for us is that horizontal
and vertical beam waists don’t coincide in general, as shown on Fig.3.11. We reduce the incidence angle until
modes start to clip the mounts inside the cavity. As a result, 2θast. ≈ 7.2◦ was set. As can be seen in Fig.3.11(a),
correct adjustment of distance between curve mirrors dc completely compensates astigmatism for smaller beam
waist wc, but not for big waist wp. Consequently, the output modes for entangled twin beams will be affected by
astigmatism. This will prevent their perfect mode-matching to local oscillator fields to some extent.
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1 < (ω4,0/∆FSR).
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(b) By changing d1 we increased Gouy phases: ζGouy,ox ≈
110◦, ζGouy,oy ≈ 99◦. It was enough to shift m + n = 4 HG
modes away from fundamental mode while keeping reasonable
separation from 3-rd order modes.

Figure 3.12: Contribution of high-order modes to the OPO spectrum.

Non-perfect alignment of OPO for TEM00 resonant mode gives a rise to higher order Hermite-Gaussian (HG)
modes also supported by cavity. The spacing of {m,n} HG mode relative to fundamental 00-mode

ωm,n =
mζGouy,ox + nζGouy,oy

2π
∆FSR (3.35)

is determined by Gouy phases [83] ζGouy,ox and ζGouy,oy in tangential and saggital planes respectively:

ζGouy = sgn(B) arccos

(
A+D

2

)
, (3.36)

where elements A,B,D are taken from round-trip Ray matrix (eq.(3.32)). In our experiment, the initial geometry
of OPO resulted in overlapping of fundamental TEM00 signal modes with family m + n = 4 of higher-order HG
modes, as demonstrated in Fig.3.12(a). This circumstance deteriorated the quality of beam profile of output
entangled modes and limited the maximum possible degree of matching with respective LOs. The Gouy phase for
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bow-tie cavity is strongly sensitive to the distance d1 between Mc1 and Mc2 mirrors. Careful control of d1 allowed
us to change the Gouy phase and cancel contamination of fundamental mode (see Fig.3.12(b))

Cavity Parameter Symbol Value Unit

Signal wavelength λs 1064 nm
Idler wavelength λi 852 nm
Pump wavelength λp 473 nm
Output Coupler Signal/Idler Refl. Rescs,i 0.88 -
Waist size in cr., Signal ωs 19.7 µm
Waist size in cr., Idler ωi 17.6 µm
Waist size in cr., Pump ωp 13.2 µm
Total length dtot ≈450 mm
Finesse Signal/Idler Fs,i ≈ 52 -
Linewidth at Signal/Idler δνs,i ≈ 15 MHz
Curved Mirror Radius of Curvature RoC -38 mm

Table 3.1: Essential parameters of OPO cavity

3.8 OPO Locking

3.8.1 Current scheme: locking fields on fundamental frequencies

In order to keep OPO in double resonance, we exploit double-stage Pound-Drever-Hall locking [84] scheme.
Specifically, OPO length stabilization relative to 1064nm laser is followed by locking of 852nm laser relative to
the cavity. The first stage is implemented by sending feedback signal to piezoelectric transducer (PZT) attached
to MP1 mirror, while another PZT element in 852 laser head module was controlled in the second stage. The
auxiliary beams on fundamental wavelengths were initially phase modulated using electro optical modulators
(EOM) with ≈ 8MHz sidebands. These optical fields were then injected into the OPO through MP1 mirror
(shown in Fig.3.13(a)) and travelled along direction opposite to pump propagation. Exiting the OPO through
MP2 mirror and being split onto dichroic mirror, auxiliary beams were detected and demodulated, as displayed on
Fig.3.13(b). Obtained error signals (shown on Fig.3.13(c)) were sent onto PID-modules. See [74] for details.

3.8.2 Future: frequency shifted beams

In experiments [75],[7],[9] targeted to exploit single-mode squeezed states for quantum noise reduction in
GWDs, resonance conditions in OPO were provided without injection of strong fields on fundamental frequency.
Instead, cavity was stabilized for pump wavelength, and utilization of ’wedged’ crystal allowed to achieve double
resonance. Absence of locking beams on fundamental frequency facilitated remarkable performance of squeezed
states in low(audio)-frequency band. In contrast, the strategy described in section3.8.1 implies presence of classical
auxiliary fields on signal/idler wavelength inside OPO. As was outlined earlier, we inject locking beams in such
a way that they initially counterpropagate relative to generated twin beams. However, travelling within cavity,
auxiliary fields experience back reflection (mainly due to the crystal non-perfect AR-coating) and eventually enter
fundamental modes, bringing the classical noise associated with lasers, Even tiny reflection (leading to several
nW only) would be sufficient to contaminate signal/idler modes and cause degrading of measured correlations.
One way to address this issue is to properly suppress the intensity noise of injected locking beams before they
enter cavity. We explored the performance of the system in such regime and managed to certify entanglement on
spectral range down to 10 KHz (characterization will be detailed in section3.11). However, on lower frequencies
we suffered from the classical noise. In order to completely cancel this detrimental effect of auxiliary beams, we
have to move them away from fundamental frequencies, but still keep the resonance conditions for OPO.

To accomplish this task, we follow the approach sketched on Fig.3.14(a). The small part of initial laser
radiation on frequency ω0 (corresponds to fundamental frequency of either signal or idler entangled beam) passes
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Figure 3.13: Implementation of OPO lock to achieve double resonance. Subplot (a): the sketch of the setup,
including optics and electronics. Symbol (∗) means electronic signal directed to the piezo actuator of Ti:Sapph
laser. Subplot (b): detailed configuration of PDH module. Subplot (c): examples of OPO transmission signal
and PDH error signal measured for signal mode (1064 nm) while the piezo attached to OPO cavity mirror was
scanned.
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(a) The shift of a locking beam (for example, on signal wavelength) to the next free
spectral range (FSR). Initially matching n-th frequency mode of the cavity, the injected
beam propagates through AOM+EOM setup (shown on the subplot on the right side).
As a result, the locking beam is moved to (n+ 1)-th frequency mode.
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(b) The shift of the seed for implementation of the phase lock. Being initially tuned to
the resonance of n-th frequency mode of the cavity, the seed is transmitted through the
double AOM-setup (shown on the subplot on the right side). As a result, the seed is
detuned from the resonance (while still being within n-th frequency mode). It allows to
prevent the pollution of the lower (acoustic) sideband frequencies with respect to the
fundamental frequency ω0.

Figure 3.14: The idea of advanced OPO locking that will enable to avoid the injection of classical beams on
fundamental frequencies. See text for details.

acousto optical modulator (AOM), driven by rf-frequency ∆1. The scattered light into the first order now has
frequency ω1 = ω0 + ∆1. Being spatially separated from fundamental field (ω0), this scattered mode is directed
on electro optical modulator (EOM) where phase modulation with frequency ∆2 and depth β is induced. After
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exiting EOM, the modulated light can be presented as

eiω1t → ei[ω1t+β sin (∆2t)] ≈ eiω1t +
β

2
ei(ω1+∆2)t − β

2
ei(ω1−∆2)t (3.37)

We adjust ∆1 and ∆2 in such a way, that ∆1 + ∆2 matches Free Spectral Range ∆FSR of OPO cavity. As a
result, the second term (∝ ei(ω1+∆2)t) on the right side of eq.(3.37) is moved to the next resonance relative to
fundamental wavelength and is used as the locking beam. At the same time, sharing the same spatial mode other
components (∝ ei(ω1−∆2)t and ∝ eiω1t) remain away from any OPO resonance and will be reflected from OPO,
locked by ei(ω1+∆2)t. The sidebands needed for PDH error signal[84] are generated due to frequency modulation
of electronic local oscillator, which drives EOM. If we assume modulation of ∆2 with frequency ∆mod and small
depth βmod, then the term ei(ω0+∆FSR)t will convert into

ei(ω0+∆FSR)t → ei[(ω0+∆FSR)t+βmod. sin (∆mod.t)] ≈ ei(ω0+∆FSR)t +
βmod
2

ei[(ω0+∆FSR)+∆mod]t − βmod
2

ei[(ω0+∆FSR)−∆mod]t

(3.38)
The same sidebands (±∆mod) will be imposed onto field ∼ ei(ω1−∆2)t.

Both signal and idler locking beams enter OPO through MP1 mirror, counter-propagate inside the cavity with
respect to pump and detected in transmission after MP2 mirror, thus replacing previous non-shifted auxiliary fields
in the scheme shown in Fig.3.13(a). We choose ∆1 to be ≈ 120MHz to implement the initial frequency shift by
AOM and then adjust the frequency ∆2 of the electronic signal driving EOM to match one of the sidebands to the
next (which is defined as (n + 1)-th, if we denote n-th resonance as the frequency mode where entangled beams
are created) resonance of OPO, as shown in Fig.3.15(a). Since ∆FSR ≈ 780MHz, we end up with ∆2 ≈ 660MHz.
Finally, modulating ∆2 with ∆mod. ≈ 1MHz, we obtain PDH error signal, as presented on the Fig.3.15(b).
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(a) The electronic signal recorded on the photodetector
used to lock OPO.
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(b) The electronic signal recorded on the photodetector
used to lock OPO together with PDH error signal.

Figure 3.15: The implementation of advanced locking of OPO, presented in section 3.8.2. Left panel (subplot
(a)): Shift of locking beam to the next FSR. Green curve is the detected locking auxiliary signal field (on 1064nm)
passed through AOM+EOM system when the cavity length is scanned. The range of scan is chosen in such a
way that central big peak corresponds to ei(ω0+∆FSR+∆1)t (it corresponds to the first term on the right-hand side
of eq.(3.37)). The smaller left peak is upper modulation sideband of ei(ω0+∆1)t carrier and coincides with n + 1
resonance (ω0 +∆FSR), while the smaller right peak comes from lower modulation sideband of ei(ω0+2∆FSR+∆1)t

carrier. Blue curve is the transmission of seed on signal fundamental wavelength (not used in main experiment):
big peak corresponds to OPO (n + 1)-resonance on frequency ω0 + ∆FSR (entangled signal field is generated in
n-resonance on frequency ω0) matching sideband ei(ω0+∆1+∆2)t of locking field. The small peak appears due to
non-ideal mode matching. Right panel (subplot (b)): Green curve is locking beam (in this case the left small
peak corresponds to desired frequency ω1 +∆2 to lock the OPO), The red curve is PDH error signal (generated
for both ω1 ±∆2 components) as specified by eq.(3.38) .
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3.9 OPO characterization

3.9.1 Intracavity losses
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(a) Experimental setup to measure intracavity losses.
OPO cavity is driven through the output port by
strong coherent field either on signal or idler fre-
quency. The pump is not shown on the sketch; how-
ever, it was also injected when effect of BLIIRA was
investigated. Pump presence didn’t run parametric
processes since it’s propagation direction was oppo-
site to travelling through the OPO drive fields.
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(b) Experimental setup to calibrate the pump power threshold.

Figure 3.16: Characterization of intracavity losses (left subplot) and parametric gain (right subplot) for the OPO.

In order to estimate intracavity losses, we measure the power of reflected field from the output port of the
OPO (MP2 mirror). To understand the underlying idea, we use eqs.(3.15) and study the dynamics of signal mode
(the same logic will be applied to idler field also) in the absence of pump that excludes parametric interaction and
coupling between signal and idler. The OPO is now driven by strong coherent field that enters the output port
only (âin1j is replaced by Adrj ). Therefore we can write down the Langevin equation for the coherent amplitude of
intracavity signal/idler field (instead of using field operators). Applying then input output relations, we obtain
the following expression for the output field to be detected:

Aoutj =
2γouts − γj − iΩ

γj + iΩ
Arefj =

γoutj − γlossj − iΩ

γoutj + γlossj + iΩ
Arefj , j = s, i. (3.39)

In eq.(3.39) the approximation γoutj , γlossj >> γinj was made. This assumption is valid for the OPO implemented in
this thesis. The input port mirror MC1 is HR, while MP2 has a power reflection coefficient Rout = 88% (measured
independently) and intracavity losses are envisioned to come mainly from crystal coating, being several order
above losses on HR mirrors MP1, MC2. The drive field A

dr
j is completely reflected from the OPO being far detuned

from resonance Ω >> γj , whereas setting Ω = 0 leads to characteristic dip in detected field. The size of the dip
will be then determined by the ratio γlossj /γj . Comparing the power of measured field being on and off resonance
with the cavity, we obtain

δP ≡
PAout

j
|on

PAout
j

|off
=

Arefj

(
Arefj

)∗
|Ω=0

Arefj

(
Arefj

)∗
|Ω>>γj

=

(
γoutj − γlossj

γoutj + γlossj

)2

, j = s, i. (3.40)

Using definition of leak rates in eq.(3.16), we obtain the expression for intracavity losses:

T lossj = 1−

[
1−

T outj

2

(
1−

√
δP

1 +
√
δP

)]2
, j = s, i, (3.41)

46



where approximation of small losses was used T lossj ,T outj << 1. Hence, escape efficiency is calculated as

ηesc.,j =
T lossj

T lossj + T lossj

, j = s, i, (3.42)

just using the definition. Provided the precise knowledge of reflection/transmission of the output coupler, the
measurement of the amplitude of reflected field yields a reasonable accuracy to estimate the intracavity loss, in
comparison to the derivation through the finesse [75]. At the same time, the method presented above is more
convenient than measuring transmissivity/refectivity/scattering of each optical element from the OPO separately.
In our experiment, we take the coherent fields from respective lasers and send the drive signal/idler onto the
output OPO port in such a way, that injected fields travel inside the cavity along the direction opposite to the
propagation of the pump, as shown in Fig.3.16(a). During the measurement the piezo in OPO is scanned that
allows us to see the characteristic dips in reflected power (Fig.3.17). We obtain the values of intracavity losses
T losss = T lossi = 0.15%, which correspond to escape efficiencies ηesc.,s = ηesc.,i = 99% given Routs(i) = 0.88. The
investigation of intracavity losses on the pump power was also performed. It was possible because pump actually
didn’t cause parametric processes being counter propagated with respect to injected bright fields on fundamental
wavelengths. The increase of pump power up to operating point (approximately 1/2 of threshold level) didn’t
trigger noticeable enhancement of intracavity losses. Therefore, the detrimental effect of Blue Light Induced
Infrared Absorption (BLIIRA) [78] on non-linear medium (PPKTP crystal) didn’t have an impact on interbeanm
correlations in the main experiment.
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Figure 3.17: The result of calibration of intracavity OPO losses for signal wavelength (1064nm) was shown. The
cavity lengths was scanned, and the ratio between reflected power on resonance and power of drive field entering
output was estimated (the bottom of the dips and the DC-top level, respectively). The analogous procedure was
performed for the idler wavelength (852nm).

3.9.2 Gain

We start with signal/idler/pump dynamics as done in system of eqs.(3.15), but now we assume the classical
drive fields for the signal wavelength and for the pump (âins and âinP are replaced by Adrs and AdrP , respectively)
while the rest external fields âini and âkj , k = in1,loss, j = s, i, P are in vacuum states. In that case all intracavity
fields âj become classical (being described by αj), and quantum fluctuation will be neglected further. Setting all

47



frequency detunings ∆j = 0, we rewrite eqs.(3.15) for classical fields:

d

dt
αs =− γsαs + gαPα

∗
i +

√
2γins A

dr
s , (3.43a)

d

dt
αi =− γiαi + gαPα

∗
s(+0), (3.43b)

d

dt
αP =− γPαP − gαsαi +

√
2γinP A

dr
P . (3.43c)

Assuming |Adrs | << |AdrP | and undepleted regime for pump, we immediately obtain the solution of eq.(3.43c)

in a form of steady intracavity pump field: α̇P = 0, αP =
(√

2γinP /γP

)
AdrP . Next, we consider equal optical

losses for signal and idler γs = γi = γ and denote G = gαP . We also search for steady solutions for signal and

idler (α̇s = α̇i = 0). Combining eq.(3.43a) and eq.(3.43b)and using input-output relationships Aoutj =
√
2γoutj αj ,

we obtain the following expression for output signal field Aouts (corresponding to frequency which was driven by
classical input light Adrs ):

Aouts =
2
√
γinγout

γ
(
1− |G|2

γ2

)Adrs . (3.44)

It follows from equation eq.(3.44) that drive field Adrs is amplified due to the parametric interaction with pump
while transmitting the OPO. This amplification does not depend on pump phase since Aouts is a function of |G|2.
We define a parametric gain as a ratio between powers of output signal field with and without injected pump and
get the following result using eq.(3.44):

Gain ≡
PAout

s

PAout
s

|Adr
P =0

=
1(

1− g2|αP |2
γ2

)2 . (3.45)

We insert the definition of threshold pump power αP,th. = γ/g into eq.(3.45) and arrive at

Gain =
1(

1− PP
PP,th

)2 , (3.46)

where PP = αPα
∗
P and PP,th = αP,thα

∗
P,th

In experiment (see Fig.3.16(b)) seed on signal wavelengths infiltrates the OPO with pump through the input
coupler. Output seed is spectrally filtered (using dichroic mirror) to remove DFG field on idler frequency and is
sent to photodetector. The OPO is locked for signal wavelength only, and the piezo in TiSapph laser cavity is
scanned. Hence, the result of parametric interaction of seed and pump is seen as peaks (parametrically amplified
seed) on top of background (transmitted seed without amplification), yielding the parametric gain. We then vary
the input pump power and measure the gain. Finally, eq.(3.46) is utilized to calibrate the threshold power of
OPO. Described procedure gives us (Fig.3.18) the value of threshold |AdrP |2 = 320 mW in terms of input power.

3.10 Detection

This section covers the preparation of local oscillators (LOs) and the homodyne detection. The description
of the phase locking is also given here. The similar scheme was used for characterization of both signal and idler
entangled twin beams (the example for 1064 nm mode is shown in Fig.3.19).

3.10.1 Preparation of Local Oscillators

The central part of LO preparation is the mode-cleaner cavity (MCC). It performs two functions: first, it
obviates the effect of beam pointing which can result in reduction of common mode rejection ratio (CMRR) of
homodyne detector due to inhomogeneity of photodiode [75]. Secondly, it provides spatial filtering of LO beam
profile, facilitating the overlapping with measured optical mode. We employ typical triangular configuration of
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Figure 3.18: The characterization of the parametric gain of the OPO. Different values of the pump power are
used, and eq.(3.46) is applied in order to extract the value of the pump threshold.
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Figure 3.19: The sketch of the experimental setup used to prepare the local oscillator (LO) and perform the
homodyne detection (HD). The optical mode of the laser is transmitted through the triangular mode cleaner
cavity (MCC), which is locked using Pound-Drever-Hall (PDH) technique. The phase modulation was induced by
means of the electro optical modulator (EOM), the feedback signal was sent to piezo electric transducer attached
to the curved mirror in the MCC. The intensity stabilization of LO can be applied by controlling the efficiency
of scattering on acousto-optic modulator (AOM). The phase lock is implemented by using the interferometric
signal between the LO and the back-reflected beam used to lock the OPO (the latter will be replaced by the seed
injected to the OPO and detuned from the resonance by using double AOM setup), see text for details. Other
abbreviations used in the caption: photodetector (PD), voltage-controlled oscillator (VCO).

travelling-wave cavity for MCC. Cavity is formed by two planar and one curved HR mirros embedded in monolithic
aluminium block. The cavity lengths are chosen to be ≈0.45m, yielding the bandwidth ≈4 MHz and finesse ≈ 200.
Small part (∼1-5 mW) of initial laser (Ti:Sapph/Mephisto) radiation not used for SFG process is sent onto the
input of MCC after having experienced ∼20-30 MHz phase modulation. MCC is locked by means of PDH technique
using the light reflected from the input port mirror. Feedback signal controlling the length is applied to PZT
element attached to the curved mirror. Filtered mode of LO propagates towards detectors after exiting opposite

49



mirror.

After transmission through MCC, the position and mode shape fluctuations are transformed into intensity
instability, which is added to initial power fluctuations of lasers. In principle, classical noise associated with
intensity fluctuations should not be major limitation of homodyne detector with strong CMRR [75]. However, we
enhance the performance of LFHD setup by introducing the power stabilization scheme that suppresses the noise
in the LO mode before overlapping with entangled mode. Intensity fluctuations are cancelled by adjusting the
scattering efficiency of the acousto-optical modulator (AOM) [85], [86] inserted just before MCC. After MCC LO
is split onto two parts, reflected field is sent to in-loop detector. Deviation of the voltage from the preset value on
the in-loop detector is transformed into feedback signal, which controls the attenuation of RF signal driving AOM.
Faraday isolator4 just before overlapping LO with signal mode can be introduced with the purpose to mitigate the
effect of parasitic interference. It prevents back reflected light to counter propagate in LO mode with subsequent
possibility to be scattered forward and induce a modulation of LO power.

3.10.2 Homodyne measurement

This part of the experimental setup includes matching of prepared LOs with signal/idler modes and character-
ization of resulting quantum states. Our endeavor was to minimize the amount of optics on the path of entangled
beams to exclude unnecessary sources of optical losses. Only indispensable optics was used, such as dichroic mirror
to spatially separate signal twin mode from idler. Therefore, we added lenses only in LO optical path to perform
mode matching. Having astigmatism due to the bow-tie configuration and not having it into MCC output, we
managed to achieve visibilities η1064 = 99.2% and η852 = 99.0%.

Signal (idler) mode overlaps with respective LO onto symmetric beam-splitter (BS), and outputs are directed
onto corresponding homodyne detector (HD). HDs were built in ’current-subtraction’ configuration. Utilizing low
noise transimpedance amplifier, carefully choosing other electronic components and employing post-amplification
of photocurrents, we obtain clearance up to 20 dB, and flatness of shot noise down to 1 KHz. We exploited InGaAs
PIN FND-500 photodiodes for HD to measure signal (1064nm) and idler (852nm) entangled modes respectively
with 12V applied bias voltage. We roughly estimated quantum efficiencies of photodiodes from the ratio between
output voltage and incident optical power and found ηph,1064 ≈ ηph,852 ≈ 90%. Common mode rejection ratio
(CMRR) for each HD was measured by inducing amplitude modulation and comparing balanced output with
amplitude noise. This yields 40dB CMRR for both photodetectors in spectral range Ω ≳ 100KHz with tendency
to drop to 25-30 dB for frequencies approaching 10 KHz. Both shot-noise flatness and CMRR were limited by
non-ideally symmetric splitting ratio of BS and inhomogeneity of quantum photodiodes. This effect was partially
compensated by adjusting the positions of beams on photodiodes. Sensitivity of transmission/reflection of BS to
polarization was also utilized to optimize splitting ratio. However, we also have to keep polarization matching
between LO and entangled modes. Polarization optics was added in LO paths, but not in signal modes. Therefore
we weren’t able to significantly deviate from fixed polarization of LO. Finally, scattering loss issue is another factor
which reduces CMRR. To deal with this problem, clean environment of the experiment was established. The next
step will be to properly isolate detection stage by external enclosure.

3.10.3 Phase lock

In order to verify entanglement by EPR-steering or by Duan criteria, both amplitude {x̂s, x̂i} and phase
{p̂s, p̂i} quadratures have to be measured. If homodyne detection in each mode is used to characterize entangled
state, the phases of of local oscillators {ΦLO,s,ΦLO,i} should be set fixed relative to the pump phase θP /2:
ΦLO,s = ΦLO,i = θP /2 (ΦLO,s = ΦLO,i = θP /2 + π/2) when amplitude(phase) quadratures are measured (see
Fig.3.20). However, we recall that according to eq.(3.17), eq.(3.22) measuring the difference (provided symmetric
losses) of any quadratures that are anti-symmetric relative to the pump phase θP /2 (denoted as q̂s(ψ+)− q̂i(ψ−),
ψ± = θP /2 ± θ from section 3.2) should yield the quantum noise reduction. Noise cancellation also occurs in
quantum observable q̂s(ψ+ + π/2) + q̂i(ψ− + π/2). Therefore, one can change the basis of quadratures from{
x̂s(i), p̂s(i)

}
to
{
q̂s(i)(ψ±), q̂s(i)(ψ± + π/2)

}
. Consequently, the phases for local oscillators have to be symmetric

4not shown in Fig.3.19

50



relative to the pump phase: (
θP
2

− ΦLO,s

)
= −

(
θP
2

− ΦLO,i

)
, (3.47)

if the difference of amplitude quadratures (in new basis) is explored. Similarly, in order to measure the sum
of phase quadratures, one needs to comply with (θP /2− ΦLO,s) + π/2 = − (θP 2− ΦLO,i) + π/2. There is no
requirement to keep ΦLO,s(i) fixed relative to θP /2 any longer.
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Figure 3.20: The idea of the phase lock on the phasor diagram. Ideally the phases of Local oscillators θLO,s, θLO,i
should be locked relative to the phase of pump field θP /2: as demonstrated on the figure, setting θLO,s = θLO,i=
θP /2 (θP /2+π/2) allows for measuring of ’genuine’ amplitude(phase) quadratures. In reality, we can only provide
the assymmetry of LOs phases with respect to θP /2 or θP /2 + π/2, while each of phases θLO,s, θLO,i (if treated
separately) is still running free relative to pump phase . However, it was sufficient to verify entanglement (see
text for details)

In order to implement phase locking for characterization of the entanglement source, we exploit the coherent
locking strategy [87] developed for control of squeezed states of light and adapt it to the case of non-degenerate
entanglement characterization. The underlying principle of coherent locking can be understood by studying
eq.(3.15) of intracavity fields evolution. In the main experiment, apart from pump AdrP , OPO is driven through
the input port by strong coherent field Adrs which in general case is detuned from resonance signal frequency
ωs by non-zero ∆s. In the following we will refer to the Adrs = |Adrs |eiθCLF as Coherent Sideband Field (CSF)
on frequency ωCSF with the optical phase θCLF . Inside the OPO the parametric interaction of two drive fields
leads to parametric amplification of CSF (see eq.(3.44)) and creation of Generated Sideband Field (GSF) whose
frequency should obey ωGSF = ωP − ωCSF and have the offset ∆i = −∆s relative to idler resonance frequency.
Again applying input-output relationships, we obtain the following expressions for the CSF and GSF transmitted
through the output port of the OPO:

Aouts =
2 (γ + i∆i)

√
γinγout

(γ + i∆s)(γ + i∆i)− |G|2
Adrs , (3.48a)

Aouti =
2 (γ + i∆i)

√
γinγout

(γ + i∆s)(γ + i∆i)− |G|2
g
√
2γinP

γγP
(Adrs )∗AdrP , (3.48b)

where we define the output fields as Aouts(i) = |Aouts(i)|e
iθout,s(i) . From eq.(3.48a) we can see that the phase θout,s of

CSF on the OPO output is determined by θCLF , while the phase θout,i of GSF exiting the cavity is set by both
pump and CSF phases θGSF = θP − θCLF . Exiting the cavity, CSF and GSF propagate together with signal and
idler entangled modes and reach the relative HDs. Observing beat notes between signal (idler) local oscillator
and CSF (GSF) and demodulating the electronic signals with frequency Ωdem. = |∆s|, we obtain the interference
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fringes that are driven by the θCSF − ΦLO,s for the signal arm and θGSF − ΦLO,i for the idler arm, respectively.
If we implement the phase lock in both arms and set

θout,s − ΦLO,s ≡ θCSF − ΦLO,s = Φlock,s = 0, (3.49a)

θout,i − ΦLO,i ≡ (θP − θCSF )− ΦLO,i = Φlock,i = 0, (3.49b)

then the condition eq.(3.47) is automatically fulfilled that makes it possible to detect q̂s(i) (ϕ±) and observe the
noise suppression by subtracting one from another. From the other side, the choice Φlock,s = Φlock,i = π/2 enables
to record q̂s(i) (ϕ± + π/2) the measuring. Verification of noise reduction in q̂s (ϕ+ + π/2)+ q̂i (ϕ− + π/2) completes
the certification of entanglement.

The approach presented above contains an inherent drawback since it doesn’t provide the access to
{
x̂s(i), p̂s(i)

}
in the pump reference frame. While not preventing to verify Duan/EPR-steering criteria, it appears to become a
problem, when setting the link between the entanglement and the atomic spin ensemble. In order to achieve the
proper control over measured signal/idler quadratures, the phase θCSF of the CSF should be linked to the pump
phase θP . It was implemented for a single-mode squeezer [75] and for an entanglement source where the signal
and the idler were separated by single free spectral range [9]. However, this strategy can not be applied for the
case of strongly non-degenerate (different colour) OPO.

θ

pump
Aouts

Aouts Adrs

Adri

θAouti
Aouti

Figure 3.21: The effect of double seeding on the phasor diagram that breaks the symmetry between phases of
Aouts and Aouti relative to the pump phase and thus causes sub-optimal quadrature detection. Specific case θP = 0,
ISR=0.25, θCLF1 = π/6 clearly reveals that θAdr

s
̸= −θAdr

i
if θCLF2 is π (as an illustrative example).

To obtain main results reported in this chapter, we didn’t inject external CLF into the OPO. Instead, we
exploited the locking beam on signal wavelength, which was already applied to using PDH technique (see section
3.8), but, as we show below, also served another purpose in our experiment. Entering cavity through the mirror
MP1 and initially counter-propagating relative to pump, this seed experiences reflection due to non-ideal AR
coating of OPO optical elements (mainly from the crystal). Due to that spurious back-reflection, the small part
(∼ 0.1%) of intracavity seed field travels inside the OPO along the direction of pump and undergoes parametric
interaction on the crystal. As a result, back-reflected seed is parametrically amplified and GSF is generated. We
notice that in eq.(3.48) ∆s = ∆i ≡ 0 now since the frequency of signal locking beam coincides with resonance
frequency of OPO. However, we preserve the notation CLF and GSF for convenience. Both CLF and GSF exit
OPO through output coupler MP2 in signal and idler entangled modes and after spatial separation on dichroic
mirror reach the homodyne detectors. Here CLF/GSF meet respective LOs, whose phase was modulated by EOM
on a frequency Ωph.l. above the spectral range of interest (typically Ωph.l. was chosen around 600 − 800 KHz).
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The electronic signal of each interference between CLF(GSF) and signal(idler) LO was amplified using low noise
30dB amplifiers and then was sent to SR-830 Lock-in Amplifier where demodulation on the frequency Ωph.l. was
implemented. The demodulated electronic signal now could be used as an error signal containing the information
about relative phase of CLF/GSF. The choice of demodulation phase between 0 and π/2 allowed us to lock
either the phase Φlock,s(i) = 0 or Φlock,s(i) = π/2 relative to the LO phase in order to detect amplitude or phase
quadrature, respectively. Finally, the error signal was sent to PID-controller, and the feedback signal controlled
the PZT-element attached to the mirror in LO optical path after MCC. The schematics of introduced phase lock
is shown on Fig.3.19. We also note, that in different configurations the modulation Ωph.l. could be applied not to
LO, but to the locking beam itself.

Presented above strategy suffers from the following defect. Along with locking beam on signal wavelength
(1064nm), the idler seed beam (852nm) enters OPO and experiences back reflection, thus being involved in
parametric interaction between pump and reflected signal locking field. We consider the case when two coherent
locking fields are injected, namely, CLF1 Adrs = |Adrs |eiθCLF1 as a field on signal wavelength and CLF2 Adri =
|Adri |eiθCLF2 as a field on idler wavelength respectively. Solving eqs.(3.15), we obtain the expression for output
fields:

Aouts =
2
√
γinγout

γ
(
1− g2(AP )2

γ2

) [g
γ
AP (A

dr
i )∗ +Adrs

]
∼ ϵ|Adri |ei(θP−θCLF2) + |Adrs |eiθCLF1 , (3.50a)

Aouti =
2
√
γinγout

γ
(
1− g2(AP )2

γ2

) [g
γ
AP (A

dr
s )∗ +Adri

]
∼ ϵ|Adrs |ei(θP−θCLF1) + |Adri |eiθCLF2 . (3.50b)

Each CLF on the OPO output consists of two parts: parametrically amplified field on initial wavelengths and
field arising due to difference frequency generation as a result of interaction between pump and opposite seed.
Because of that, the phase of both classical fields Aouts and Aouti depend on phases of initial CLF1 and CLF2 as
well as pump phase and the amplitudes of all 3 fields. It can be seen that now locking the phases according to
eq.(3.49) does not fulfil the condition eq.(3.47) in general case if the phase θCLF2 of CLF2 is not locked relative
to phase θCLF1 of CLF1 or to the pump phase θP .

The random drift of θCLF,2, in essence, represents phase noise. Assuming equal losses in signal and idler

modes, we select homodyne phases θAout
s(i)

− ΦLO,s(i) ≡ Φlock,s(i) = 0 and analyze the noise of observable Âouttot,2 =[
q̂outs (θAout

s
)− q̂outi (θAout

i
)
]
. Similarly to eq.(3.25), one obtains

SÂout
tot,2,Â

out
tot,2

= ⟨∆(q̂s)
2⟩+ ⟨∆(q̂i)

2⟩ − 2⟨∆(q̂s(ψ+)q̂i(ψ−))⟩ cos (∆θCLF ) (3.51)

where ∆θCLF is root mean square of ∆θCLF = θAout
s

+ θAout
i

. The value ∆θCLF is a function of ϵ and amplitudes

|Adrs |, |Adri |. Importantly, ∆θCLF grows with increase of idler-to-signal ratio (ISR) defined as |Adri |/|Adrs |. In
particular, ISR= 0.2 and ϵ = 0.6 give strong phase noise ∆θCLF ≈ 0.15π (see sec.A.1). Fig.3.21 illustrates the
consequences caused by random walking of θCLF2 phase. Detailed investigation of double seeding of OPO and
regimes of different ISR is made in [88].

In order to mitigate the phase noise arising from fluctuations of θCLF2, we therefore have to reduce the ISR.
Although it can not be precisely measured (since powers are incredibly small), the characterization of AR coating
of the crystal allows to make assumption, that the ratio of back reflected to initially counter propagating fields
are approximately equal for signal and idler wavelengths. Therefore, ISR is solely defined by the input powers of
CLF1 and CLF2 before OPO. In practise, minimization of ISR was hard to implement: one the one hand, we are
interested to reduce both CLF1 and CLF2 powers as much as we can because we do not want to contaminate the
entangled modes with excessive classical noise. On the other hand, the optical power of injected locking beams
should be big enough to yield decent (signal to noise ratio) quality of PDH error signal. We also need to take
into consideration that auxiliary fields enter the cavity through HR mirror in presented configuration of OPO
locking scheme. After searching the best configuration given technical parameters of the setup (electronics), we
have chosen the input powers 1mW for the of CLF1 and 30µW for the CLF2 respectively. Hence, ISR was equal
to

√
0.03 ≈ 0.17.
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(a) Theoretical model: the random walking (scanning)
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(b) Experimental data: detection of q̂s(θAout
s

)−q̂i(θAout
i

).
Oscillations of cross-correlation are observed when
θCLF2 is slowly scanned (∼ 1 Hz). The noise was
recorded for zero spectral span and frequency 200KHz.
It corresponds to prediction of theoretical model if η =
0.85, ϵ = 0.5 and ISR≈ 0.2.

Figure 3.22: Effect of double seed (CLF1 + CLF2) injection.

If interbeam correlations SÂout
tot,2,Â

out
tot,2

are measured on the time scale faster than characteristic velocity of θCLF2

drift, we observed the fluctuation of noise level in time domain, as shown on the Fig.3.22(b). The range of these
fluctuations agrees well with expected ∆θCLF inferred from operated pump power and ISR. The slow drift of
θCLF2 can be counteracted by fine adjustment of locked phase Φlock,i while fixing Φlock,s (or vice versa).
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Figure 3.23: Quantum noise locking technique applied to entanglement. The error signal was obtained by com-
bining the photocurrents from each homodyne detector, which are then filtered. The feedback signal was sent to
the piezo in either of LO optical mode. See text for details. The following notations are used: SA - spectrum
analyzer, PID - proportional–integral–derivative controller, PZT - piezo-electric transducer.

Shift of both signal and idler locking beams to the next FSR (see section 3.8.2) will let us exclude them from
coherent phase locking scheme by proper filtering. It will enable us to inject another coherent locking beam (for
example, on signal wavelength) and implement an ’ideal configuration’ (referring to eq.(3.48), eq.(3.49)), where no
idler seeding occurs. We also recall that the purpose of OPO locking scheme introduced in section 3.8.2 is to get rid
of classical beams injection and contamination of spectral range subject to verify EPR-correlations. Therefore, we
also detune the new CLF in such a way that it stays within OPO resonance but moved beyond spectral frequencies
where entanglement will be demonstrated (as illustrated on Fig.3.14(b)). Given the OPO bandwidth ≈ 15MHz,
we typically choose |∆s| ≈5-6 MHz. In our experiment the required frequency shift might be implemented by
taking the laser field and transmitting through the double AOM setup (Fig.3.14(b) and Fig.3.19). The first AOM
scatters the light into ±1-order while the second - into ∓1-order. By adjusting modulation frequencies for both
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AOMs (∆1 ≈ 120MHz, |∆0| = |∆s| ≈5-6 MHz), the required frequency shift |∆s| is achieved. As a conclusion,
locking the OPO with next-FSR frequency shifted fields performs two functions: it eliminates the classical noise
from signal-idler entanglement spectral frequency, but also gets access to improved phase locking by obviating the
effect of idler seeding.

3.10.4 Quantum noise locking

In this section we explore the quantum noise locking (QNL) technique [89] that can yield phase sensitive
error signal in the absence of external seed, in contrast to phase locking (section 3.10.3). The experimental
scheme is presented on Fig.3.23. The phase of either LO (idler on Fig.3.23) is modulated with frequency ΩQNL by
piezoelectric transducer. Then LOs are overlapped with entangled modes and sent onto HDs. After combining the
photocurrents (for example, subtracting one from another) we observe the correlations whose level is determined by
the relative phase of LOs. The electronic signal is transmitted through spectrum analyser (SA №1) that performs
the function of band-pass filter (BPF) with subsequent envelope detector (ED). The lower frequency Ωlow of
BPF is chosen to eliminate the modulation induced by PZT in LO arm: Ωlow > ΩQNL. After envelope detection
signal is low-pass filtered followed by demodulation on lock-in amplifier with demodulation frequency ΩQNL. As
a result, we obtain QNL error signal with zero crossings corresponding to maximum correlations/anticorrelations
[89], allowing us to lock them and measure the noise on the second spectrum analyser (SA №2). The original idea
was developed to stabilize the phase of single-mode squeezed vacuum. However, despite the fact that in described
experiment we have two phases related to each LO, the feedback signal applied to the chosen LO drives it’s phase
in such a way that compensates the phase drift in other arm and always maintains the (two-mode) squeezing at
lowest possible level.

3.11 Results of entanglement characterization

The first measurement described in this section was done with the purpose to estimate the strength of signal-
idler correlations and the performance of the phase locking. Photocurrents from both HDs were sent onto SR
780 low noise amplifier with preceded subtraction. The amplified differential photocurrent was then recorded by
Agilent E4405B Spectrum Analyzer, where it’s single-frequency Fourier component Ω = 400 kHz was investigated.
Spectra are displayed on Figure 3.24. In the beginning, the phase of one LO was running free, whereas the phase
of the second LO was scanned by PZT element with frequency (∼1-5Hz). Next, the phases of two LOs were locked
according to eq.(3.49) to explore the short-term stability of the scheme of the phase control. The fluctuations of
the idler locking beam phase θCLF,2 apparently didn’t disturb the correlations on the time scale ∼0.1-1s, allowing
to reach ≈ −8 dB quantum noise reduction relative to the shot noise. Increasing the measurement time, we
observed the reduction of correlation strength when LO phases were locked caused by drifting of the idler phase.
Finally, LO phases were locked to yield anti-squeezing.

At this step we compare the performance of phase lock with QNL technique introduced in sec.3.10.4. We chose
the frequency of phase modulation ΩQNL = 30kHz, the Agilent E4405B spectrum analyzer with center frequency
800 kHz, RBW=300 kHz and VBW=100 kHz was used to implement BPF and ED stages (as SA №1 on the
Fig.3.23). We then tuned parameters of the lock-in amplifier and adjusted the depth of phase modulation. The
best shape of the error signal was reached at the following settings: LPF time constant = 100 ms, 6 dB/octave.
The correlations were then recorded with the Rohde&Schwarz FPC1500 spectrum analyser (SA №2) with settings,
which correspond to the previous measurement when the phase locking was engaged. Applying QNL technique,
we find the maximum ≈ −6 dB of quantum noise suppression, which is not compatible to ≈ −8 dB observed using
the technique detailed in section 3.10.3. We explain this modest performance of QNL technique in our case by
the fact that the assymmetry between the squeezing and the antisqueezing was not high enough [89] to provide
stability comparable with the phase locking. This circumstance prevails over possible benefit from the absence of
the classical drive beam in the OPO. Thus, we decided to refrain from QNL technique in our experiment and rely
on phase locking.

The maximum level of interbeam correlations at scanned phase of LO (trace (d) on Figure 3.24) is not limited
by the drift of the phase of the idler auxiliary beam. Using this regime, we made a conclusion regarding the
presence /absence of assymmetry in signal-idler total losses. We have adjusted relative signal-to-idler weight by
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Figure 3.24: Zero-span measurement at the frequency 400 KHz, parametric gain= 3.67 (PP /PP,th ≈ 0.48),
RBW=30 kHz, VBW=300 Hz. Trace (a): total (signal + idler) shot noise of local oscillators, traces (b)-(d):
measurement of entangled twin-beams. Trace (b): the phase of one LO was scanned showing the transition from
correlations to anticorrelations. Trace (c): LOs phases were set to be 0 - two-mode squeezing was recorded. Trace
(d): phase of one LO was flipped by 180◦ while the phase of other LO was maintained at 0, giving anti-squeezing.

tuning the ratio between powers of LOs. The relative difference of PLO1064 and PLO852 was found to be less than
1% to yield the strongest quantum noise suppression. Therefore we can consider the losses in two channels to be
approximately equal, taking into account the reduced impact of the assymmetry at relatively low ratio PP /PP,th.
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(a) Squeezing fit.
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(b) Antisqueezing fit.

Figure 3.25: Fitting squeezing and antisqueezing as a function of pump power PP .

We proceed with the characterization of the entanglement, investigating the strength of correlations as a
function of pump power PP . The dependence SÂout

tot ,Â
out
tot

(PP ) is fitted using eq.(3.26) (in the limit ∆ → 0) for

the case of two mode squeezing, the similar calibration is made for anti-squeezing. We extract several parameters
from this fit. First of all, it is the total efficiency of homodyne detection η, that is then compared with expected
value composed from all possible source of losses, which we considered and estimated independently in sections
3.10.2 and 3.9.1 (summarized in table 3.2). In a similar fashion, we verify the level of threshold pump power PP,th
obtained in section 3.9.2. We also extract the level of the phase noise θtot = θs + θi. The data were taken in the
same way as described above, but now we explore the frequency Ω = 200 kHz. Here we scan the phase of LO and
make a fit in order to extract the squeezing/antisqueezing levels for each value of PP . Thus, we make sure to get
values of correlations not spoiled by the drift of the phase of the idler locking beam. The best consistency with
the expected η, PP,th values was reached when we fixed RMS quadrature fluctuation θtot = 0.05 (rad.) and then
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extracted the set {η, PP,th, } from fits. Figure 3.25 reveals the reasonably good, although non-perfect, agreement
between fits of squeezing and antisqueezing. However, relying mostly on squeezing fit, we find Pth. =325 mW,
η = 0.84. The quality of fit of the squeezing looks quite bad, the possible reason might be the phase noise that
varies from one point to another. The maximum level of interbeam correlations here (≈ −6.5dB) was significantly
less than on Figure 3.24. We explain it by the enhanced impact of the phase noise at lower Fourier frequencies.

ηesc ηmm ηdet η

99% 98% 90% 87%

Table 3.2: Different sources of losses in entangled modes based on previous chapters.
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Figure 3.26: The spectra of noise in the linear combination of signal and idler modes. In particular, the difference
of amplitude quadratures (red trace) and the sum of phase quadratures (green trace) display the reduction of
noise compared to shot noise level (gray trace). The difference of phase quadratures and the sum of amplitude
quadratures (blue and orange traces, respectively) correspond to the antisqueezing. This figure was also used in
the following paper: T.B. Brasil et al, Nature Communications. 13, 4815 (2022).

At previous steps we have done the optimization of parameters of the phase locking and the stabilization
of OPO cavity length. Also, the optimal value for pump power σ ≈ 0.6 was found. Using these settings, we
perform broadband measurement. We exploit a new configuration of data recording: the photocurrents from
each HDs were first amplified by home-made amplifiers and then were directed to low-noise 16 bits analog-to-
digital converter (ADC) (Spectrum M2p5913-x4). Using ADC, we implemented FFT for both sum and difference
of photocurrents after digital transformation. It made possible to observe quantum noise suppression in both
amplitude {q̂s(ϕ+), q̂i(ϕ−)} and phase {q̂s(ϕ+ + π/2), q̂i(ϕ− + π/2)} quadratures, provided Φlock,s = Φlock,i = 0
and π/2, respectively. Hence, the characterization of the entanglement (eq.(3.10), eq.(3.13)) and EPR-steering
(eq.(3.11), eq.(3.12)) is performed. First, we focus on the frequency range 50 − 300 kHz and optimize spectra
of two-mode squeezing (Figure 3.26, right part). We explore quantum noise reduction in q̂s(ϕ+) − q̂i(ϕ−) and
q̂s(ϕ+ + π/2) + q̂i(ϕ− + π/2). As a result, we obtain VX−

= −7.1 dB (rX−
= 0.82) for effective amplitude

quadratures, and VP+
= −6.2 dB (rP+

= 0.71) for effective phase quadratures. We assume that rX−
̸= rP+

was
observed due to the solely technical reasons. Namely, we performed long-term measurement with big averaging
(∼ 1000) of FFT traces. Therefore, the drift of idler phase of locking beam influenced and limited correlations.
In particular case of data on Figure 3.26 this negative impact turned out to be more detrimental for measurement
Φlock,s = Φlock,i = π/2. However, it seems to be completely coincidental. We therefore take into account non-
symmetric quantum noise reduction rX−

̸= rP+
and obtain from eq.(3.13), eq.(3.12):
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∆D =e
−2rX− + e

−2rP+ = 0.44 < 2 (3.52a)

ϵEPR =
1

cosh (2rX−
)

1

cosh (2rP+
)
= 0.17 < 1 (3.52b)

Strictly speaking, we didn’t directly observe inferred variances optimized for EPR-steering criterion to obtain
the result given in eq.(3.52b). Instead, we measured linear combinations of quadratures with equal weights and
used the feature eq.(1.29) of two-mode squeezed states. Even more impressive results ∆D and ϵEPR are reported
if correction for quantum efficiency of photodiodes is made ([90]).

As was stated earlier, the impact of the phase noise grows up with the descent of the Fourier frequency.
However, we have also managed to confirm the entanglement and EPR-steering at the frequency 50 kHz and down
to 10 kHz, but with moderate levels of two-mode squeezing VX−

= −6.0 dB, VP+
= −5.2 dB (Figure 3.26, the left

part). In lower spectral range correlations are severely diminished by classical noise of injected locking beams.
Replacement of the current locking scheme with the updated configuration (section 3.8.2) is ongoing work.
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Chapter 4

Atomic spin oscillator at acoustic frequency
range

4.1 Introduction

Room temperature spin gas of alkali atoms in an external magnetic field is a suitable choice for building
light-atom interface as a crucial element of quantum communications and (distributed) quantum computation
protocols [91]. Entanglement between two distant atomic spin ensembles [38, 92], light-matter teleportation [93]
and teleportation of a quantum state from one spin ensemble to another [94] constitute important steps towards
implementation of quantum repeater [95]. A number of experiments [96, 97] has been carried out with a purpose
to explore the features of atomic quantum memory. The second application for atomic ensembles lies in the area
of quantum-enhanced sensing and metrology, such as magnetometry [98, 99]. Another direction, being relevant
for this thesis, is the reduction of quantum noise that limits the sensitivity of optomechanical systems [34, 35],
experimentally demonstrated in [39, 40].

In order to exploit the atomic system in quantum regime, most of the experiments mentioned above were
performed in MHz and sub-MHz spectral range, where one can readily reach quantum spin noise level. The
latter consists of atomic shot noise (projection noise, PN), shot (imprecision) noise of probing optical field and
quantum back action (QBA) noise arising due to the interaction of light with the atoms. Nevertheless, one can
foresee a broad range of applications for the spin ensemble operated in lower frequency band. For example, the
ability to detect magnetic fields in the acoustic spectral range is relevant for the analysis of biological signals
[100, 101, 102]. As for the main subject of this thesis, the atomic ensemble in the configuration of a quantum
oscillator should exhibit quantum noise limited performance at near-DC frequencies in order to be compatible
with free mass motion of test mass mirrors for subsequent improvement of the sensitivity of GWDs. Exploiting
the spin ensemble in a similar way, QBA evasion in the spectral domain Ω ≲ 100 kHz can be pursued for free-space
levitated optomechanics, including optically trapped dielectric nano-particles [103, 104]. However, if an atomic
spin oscillator is shifted down to a lower spectral range, its dynamics tends to be contaminated by ubiquitous
technical noise, compromising quantum regime and precluding quantum-enhanced protocols outlined above.

In this chapter we report the atomic spin oscillator, whose quantum (back action) noise dominated motion
extends from MHz spectral range down to the upper part of acoustic band. We exploit the ensemble of Cs133 atoms
contained in a glass cell. The system is optically pumped to approach a coherent spin state (CSS). Analogous to
optomechanics [105, 106], the spin ensemble induces the suppression of fluctuations of probe optical field below
shot noise limit [107]. Such ponderomotive squeezing is experimentally observed and calibrated in this chapter.
Although being used just as a metric for the amount of the quantum noise in the system throughout this thesis,
the ponderomotive squeezing is of interest on its own, representing an alternative way to produce non-classical
states of light [108]. In particular, we demonstrate that the ponderomotive squeezing is preserved down to the
lower part of audioband (≳ 6 kHz), thus confirming the strong contribution of the quantum noise to the spin
motion for respective spectral range. Targeting the potential application of the atomic ensemble for quantum
noise mitigation in GWDs, we investigate the feasibility to tune the spin oscillator even further towards DC-
frequencies. Specifically, we show the downshift of an effective resonance frequency of the spin oscillator by virtual
rigidity (virtual optical spring has been introduced in sec.2.3), which might be seen as the consequence of the
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ponderomotive squeezing.
Jun Jia and Ryan Yde with the help from Rodrigo Adriano Thomas, Michael Zugenmaier and Luiz Couto

performed initial preparations to operate the atomic ensemble in MHz and sub-MHz range. It included arranging
the optical pumping scheme, testing the cells, setting the drive magnetic field together with magnetic shielding
and optimization of atomic cell filling factor by the top-hat profile of the probe beam. The author of the thesis
contributed to the calibration by coherently induced Faraday rotation (CIFAR) and magneto optical resonance
spectroscopy (MORS). The work on the technical improvements that allowed for the transition from MHz to kHz
spectral rangewas led by Tulio Brito Brazil. Those aspects are not covered here. The author participated in the
final experimental run, collection of the experimental data, their processing and interpretation. In particular,
the questions of the impact of the tensor alignment spin noise and the amplitude noise of the probe laser on the
quantum noise limited motion of the spin oscillator in acoustic range will be discussed in this chapter.

4.2 Theory

4.2.1 Structure of atomic levels

We begin with the ground state 6S with orbital momentum l = 0 and the first excited state 6P (l = 1) of
133Cs atom with single electron on external orbit (n=55). Since spin of electron is s = 1/2, we observe fine
splitting of 6P -state into 6P1/2 (l ↑↓ s) and 6P3/2 (l ↑↑ s), while denoting the ground state as 6S1/2. The optical
transitions 6S1/2 ↔ 6P1/2 and 6S1/2 ↔ 6P3/2 correspond to D1-line (the wavelength 894nm) and D2-line (852nm)
respectively. The next step is to include the hyperfine splitting of each level from 6S1/2, 6P1/2, 6P3/2 due to
interaction of total electron momentum l + s and nuclear spin I = 7/2. As a result, both 6S1/2 and 6P1/2 levels
are split onto 2 sublevels each (F = I ± (l− s) = 7/2± 1/2: F = 3, 4), whereas 6P3/2 is splitted onto 4 sublebvels
F = 2, 3, 4, 5, where F represents the total momentum of atom (electron spin + orbital momentum of electron
+ nuclear spin). Finally, applied external magnetic field B splits each hyperfine levels F onto 2F + 1 (if F is
integer or onto 2F if not) sublevels, whose energies are defined by the projection m of total momentum F onto
the direction of magnetic field:

m = −F, −(F − 1), . . . (F − 1), F. (4.1)

We are interested to study the energy levels of ground level 6S1/2, whose values are given by the expression:

EF,m =
∆EHFS
2(2I + 1)

+ gIµBmB +
∆EHFS

2

√
1 +

4m

2I + 1
x+ x2, x =

(gJ − gI)µBB

∆EHFS
, (4.2)

where ∆EHFS ≈ 9.2 GHz is the hyperfine splitting of the state 6S1/2. In the first-order approximation Zeeman
sublevels are equidistant and separated by Larmor frequency ΩL

ΩL =
gFµBB

ℏ
. (4.3)

If we decompose eq.(4.2) and take into account ∝ m2 terms, we introduce the correction for Larmor frequency
determined by factor

ΩQZS =
2Ω2

L

(∆EHFS/ℏ)
. (4.4)

This effect is known as quadratic Zeeman splitting (QZS). With QZS included, the expression for energy of Zeeman
levels is given by:

EF,m = ℏΩLm+ ℏΩQZSm
2 (4.5)

Above we neglected the first term ∝ ∆EHFS on the right side of eq.(4.2) since it does not depend on m and
represents constant shift. In the following description we consider atoms to populate 6S1/2, F = 4 hyperfine level.

4.2.2 Atomic ensemble in external magnetic field

We study the behaviour of single atom and introduce the operator of orbital momentum ĵ, that can be
decomposed onto operators of projections of total momentum onto OX, OY and OZ axes:

ĵ2 = ĵ2x + ĵ2y + ĵ2z . (4.6)
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We can specify the commutations relations for those operators in a form:[
ĵk, ĵl

]
= iϵklĵp,

[
ĵ2, ĵk

]
= 0 (4.7)

We assume the quantization axis to be OX defining the direction the magnetic field B⃗ that causes Zeeman splitting.
We now introduce eigenvectors |F,m⟩ of operators ĵ2, ĵx:

ĵ2 |F,m⟩ = λ(F ) |F,m⟩ (4.8a)

ĵx |F,m⟩ = m |F,m⟩ , (4.8b)

where λ(F ) is the squared total momentum and m is defined in eq.(4.1). We specify that m2 ≤ λ(j) from

definition of λ(j). Next, we define operators ĵ+, ĵ− using projections of ensemble momentum
{
ĵy, ĵz

}
onto axes

perpendicular to quantization axis:

ĵ∓ = ĵz ± iĵy, ĵ+ =
(
ĵ−

)†
(4.9)

which obey the following commutation relations:[
ĵx, ĵ±

]
= ±ĵ±. (4.10)

Using eq.(4.10), we can deduce the following expression:

ĵx

(
ĵ± |jm⟩

)
= ĵ±

(
ĵx ± 1

)
|jm⟩ = (m± 1)

(
ĵ± |jm⟩

)
. (4.11)

From eq.(4.11) we can conclude that operators
{
ĵ+, ĵ−

}
are actually ladder operators [109] since they move

down/up the atom to the next Zeeman sublevel:

ĵ+ |F, (m− 1)⟩ = βF,m,+ |F,m⟩ (4.12a)

ĵ− |F,m⟩ = βF,m,− |F, (m− 1)⟩ (4.12b)

One can get the expressions for λ(F ) and βF,m,± using eq.(4.7), eq.(4.10). Here we just provide with the result
omitting the derivation routine [109]:

λ(F ) = F (F + 1) (4.13a)

βF,m,+ = βF,m,− ≡ βF,m =
√
(F +m)(F −m+ 1) (4.13b)

We now make a transition from operators for single atom to operators of orbital momenta for the whole ensemble.
Using eq.(4.8b), eq.(4.9), eq.(4.12) and eq.(4.13b), we introduce

ĵx =

F∑
m=−F

mσ̂mm, Ĵx =
∑
N

ĵx, (4.14a)

ĵy =
1

2

F∑
m=−F

βF,m (σ̂m+1,m + σ̂m,m+1) , Ĵy =
∑
N

ĵy, (4.14b)

ĵz =
1

2i

F∑
m=−F

βF,m (σ̂m+1,m − σ̂m,m+1) , Ĵz =
∑
N

ĵz, (4.14c)

ĵ0 =
F∑

m=−F
|m|σ̂mm, Ĵ0 =

∑
N

ĵ0, (4.14d)

where σ̂kl = |k⟩ ⟨l| is the projection operator (meaning Zeeman sublevel for hyperfine level F : σ̂kl ≡ |F, k⟩ ⟨F, l|)
andN is the number of atoms in the ensemble. System eq.(4.14) was completed by operator Ĵ0 which represents the
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total momentum, being analogous to ĵ2. Collective operators obey commutation relations, for example
[
Ĵy, Ĵz

]
=

iĴx. The ladder operators for collective atomic motion

Ĵ+ = Ĵz − iĴy, Ĵ− = Ĵz + iĴy (4.15)

are mapped to the bosonic annihilation/creation operators (eq.(4.9)) corresponding to single deexcitation/excitation
in the system [110]:

Ĵ+ =
√
N

√(
1̂− ĵ+ĵ−/N

)
ĵ−, Ĵ− =

√
Nĵ+

√(
1− ĵ+ĵ−/N

)
. (4.16)

Commutation relations
[
Ĵ+, Ĵ−

]
= 2Ĵx are fulfilled provided [111], [110]

Ĵx = Jx −
1

2
ĵ+ĵ−. (4.17)

We now consider that atomic system is prepared in such a state that projection of spin along quantization axis
becomes macroscopic: Ĵx ≈ Jx ≈ |⟨Ĵx⟩|. One may determine the polarization of spin ensemble P:

P =
1

NF
⟨Ĵx⟩ =

1

NF

∑
N

F∑
m=−F

m⟨σ̂mm⟩ (4.18)

that represents the degree of ensemble orientation along the applied magnetic field directed along OX axis. In the
limit that all atoms occupy the highest (lowest) Zeeman sublevel m = F (or m = −F ), all momenta are aligned
along (opposite to) magnetic field, resulting in P = 1 (P = −1). Strongly polarized state of atomic ensemble
allows for the approximation ⟨ĵ+ĵ−⟩/⟨Ĵx⟩ ≪ 1. Using that, we simplify eq.(4.16) and deduce:

Ĵ± ≈ ĵ±
√
Jx (4.19)

The interaction of atomic system with applied magnetic is described by Hamiltonian ĤB ∝ B⃗Ĵ = ℏΩLĴx, where
ΩL is given by eq.(4.3). Using eq.(4.17), we obtain the following expression ĤB:

ĤB = ℏΩL

(
Jx −

Ĵ+Ĵ−
Jx

)
= −ℏΩS |Jx|+

ΩS
2

(
x̂2S + p̂2S

)
(4.20)

where normalized projections of total momentum x̂S and p̂S

x̂S =
1√
Jx
Ĵz, p̂S =

−sign(Jx)√
Jx

Ĵy (4.21)

are defined. The mutual orientation of macroscopic angular momentum Jx and magnetic field B⃗ is encoded in the
sign of effective Larmor frequency ΩS :

ΩS = sign(−Jx)ΩL. (4.22)

The first term ∝ ΩS.|Ĵx| on the right hand side of eq(4.20) represent the offset of energy of spin system. The
second term describes the precession of normalized projections of total spin ensemble perpendicular to the external
magnetic field. One can see that x̂S and p̂S are actually canonical position and momentum in a phase space

x̂S =
ĵ− + ĵ+√

2
, p̂S =

ĵ− − ĵ+√
2i

(4.23)

and follow the commutation rule [x̂S , p̂S ] = i. The behavior of collective spin as harmonic oscillator is valid in
assumption of Holstein-Primakov approximation.

We can identify two different regimes of dynamics of the spin ensemble depending on the sign of projection
of total momentum onto quantization axis. If Jx < 0 then Larmor frequency ΩS is positive, and we observe the
the ’traditional’ motion of spin oscillator in phase space (rotation counterclockwise). Physically, negative sign of
Jx corresponds to anti-alignment of macroscopic spin relative to magnetic field. Hence, all atoms populate the
Zeeman sublevel m = −F with lowest energy. In contrast,it is possible to induce the inverse population of atomic
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ensemble, pushing atoms to highest Zeeman sublevel m = F , implying Jx > 0. In that case the single excitation
of system will lower its total energy since atoms can only move to the states m < F , which is also highlighted by
negative sign of atomic frequency ΩS . At the same time, we obtain the oscillator with an effective negative mass,
whose harmonic evolution in phase space is opposite to oscillator with positive Larmor frequency.

4.2.3 Interaction of atoms with light

This section has the following structure. First, we summarize the most essential steps of procedure outlined in
[112] to derive the generalized Hamiltonian describing interaction between ensemble of atoms and probe light field.
Next, we elaborate on the main features of Faraday interplay that is comprehensively covered in [113, 111, 114, 115]
(arranged in chronological order) and forms the basement for experimental characterization provided in this
chapter. Finally, we discuss the effects caused non-linear (tensor) interaction between light and ensemble beyond
Faraday model, mainly inspired by analysis performed in [113].

Generalized Hamiltonian of light-atom interaction

The Hamiltonian of interaction between dipole moment of single atom and electric field is written as Ĥint. =
ˆ⃗
d(+) ˆ⃗E(−) +

ˆ⃗
d(−) ˆ⃗E(+) where superscript (±) denotes positive/negative frequency components. We consider that

the probe field is detuned from the D2-line and adiabatically eliminate the hyperfine manifold F ′ corresponding
to excited states. The Hamiltonian is then transformed:

Ĥint. =
ˆ⃗
E−α̂

ˆ⃗
E+, α̂ =

∑
F ′

σ̂gdσ̂F ′dσ̂g
∆F ′

(4.24)

where α̂ is polarizability tensor, σ̂F =
∑

m |F,m⟩ ⟨F,m|, σ̂g =
∑

F σ̂F σ̂F ′ =
∑

m′ |F ′,m′⟩ ⟨F ′,m′|, σ̂e =
∑

F ′ σ̂F ′

and ∆F ′ is the detuning from D2 transition. Initially prepared at 6S1/2, F = 4, atoms move to excited state
6P3/2 and then come back to the ground state with total momentum either F = 4 or F = 3. Here we consider
the case of unchanged total spin, meaning the transition F = 4 ↔ F = 4. Hence, the interaction is now driven by
ĤFF = σ̂F Ĥint.σ̂F . The respective polarizability operator αFF = σ̂Fασ̂F can be presented in a form:

α̂FF = −d
2
0

∆

(
a0 + ia1ĵ ×+a2Q̂

)
, (4.25)

where ∆ is the detuning from the resonance and d0 is the dipole matrix element corresponding to the change
of electronic angular momentum during the transition from ground to excited state. Eq.(4.25) represents the
decomposition of polarizability operator onto scalar, vector and (second rank) tensor components. The vector
part

ĵ× =

 0 ĵz ĵy
ĵz 0 −ĵx
−ĵy ĵx 0

 (4.26)

yields the contribution ĤFF (1) = −(d20/∆)i
ˆ⃗
E− ·

[
ĵ × ˆ⃗

E+
]
= (d20/∆)iĵ ·

[
ˆ⃗
E− × ˆ⃗

E+
]
. The tensor rank part Q̂ with

components given by

Q̂kl = −(ĵk ĵl + ĵlĵk) + δkl
2

3
ĵ2 (4.27)

and scalar term form Hamiltonians ĤFF (2) and ĤFF (0) respectively. The coefficients a0(∆), a1(∆) and a2(∆) as

functions of detuning are calculated in [112] for the specific case of D2-transition for 133Cs prepared at ground
state F = 4. Importantly, in the limit of large ∆ the coefficient a2 behaves as ∝ 1/∆ → 0, while a0,1 → C0,1

approaching constant levels.

We exploit the encoding of probe light by Stokes vector
ˆ⃗
S which are compatible with collective variables of the

atomic spin system and hence constitute a convenient tool to describe light-matter interplay [48]. The components
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{
Ŝx, Ŝy, Ŝz

}
represent the difference in the photon number flux operators of polarizations in different (canonical,

diagonal or circular polarized) bases whereas Ŝ0 gives the total amount of photons in the system:

Ŝx =
1

2
(n̂H − n̂V ) =

1

2

(
â†xâx − â†yây

)
(4.28a)

Ŝy =
1

2
(n̂D − n̂A) =

1

2

(
â†xây + â†yâx

)
(4.28b)

Ŝz =
1

2
(n̂R − n̂L) =

1

2

(
â†xây − â†yâx

)
(4.28c)

Ŝ0 =
1

2
(n̂H + n̂V ) ≡

1

2
(n̂D + n̂A) ≡

1

2
(n̂R + n̂L) =

1

2

(
â†xâx + â†yây

)
. (4.28d)

The creation/annihilation operators âx,y (and consequently, the operators of number of photons n̂i) are position-
dependant and defined as

âx,y(z, t) =

∫
dk

2π
âx,y(t)e

ikz (4.29a)

where we assume that the probe light travels along axis OZ. Notably, in the case of linearly polarized probe field,
for example, along OX-axis1 we have âx → iα, α is the amplitude of the field2, |α| ≫ 1. Then, Stokes operators
are transformed according to:

Sx ≈ S0 =
|α|2

2
, Ŝy =

iα

2

(
â†V − âV

)
, Ŝz = −α

2

(
â†V + âV

)
(4.30)

where we highlight that the operator Ŝx can be treated as the classical variable. One might see that x̂L,S and
p̂L,S introduced as

x̂L,S =
Ŝz√
Sx
, p̂L,S =

Ŝy√
Sx

(4.31)

are nothing but canonical position and momentum of electromagnetic field in vertical (along OY axis) polarization.

The commutation relation
[
x̂L,S , p̂L,S

]
= i is fulfilled and the probe field acts as harmonic oscillator in normalized

Stokes variables. Using decomposition eq.(4.24) and introduced Stokes operators eq.(4.28), we obtain explicit
expressions for interaction Hamiltonian:

ĤFF (0) = a0Ŝ0, ĤFF (1) = −a1Ŝz ĵz, ĤFF (2) = −a2
(
Ŝx

[
ĵ2x − ĵ2y

]
+ Ŝy

[
ĵxĵy + ĵy ĵx

]
+ 2Ŝ0ĵ

2
z −

2

3
Ŝ0ĵ

2

)
(4.32)

In order to make a transition from interaction with single atom to coherent interaction, we introduce continuous
spin variables:

ĵk(z) =

N∑
l=1

δ(z − zl)ĵlk, k = x, y, z (4.33)

where superscript l denotes the sum across the ensemble with ĵlk being the spin of individual atom. The probe
optical field propagates along Z-axis, the atomic ensemble with a density ρ is confined in a volume with cross-
section area A and length L. Then the Hamiltonian of interaction between the whole ensemble and light is directly
obtained from eq.(4.32):

Ĥcoh = gcs

∫ L

0

[
a0Ŝ0 − a1Ŝz ĵz + a2

(
Ŝx

[
ĵ2x − ĵ2y

]
+ Ŝy

[
ĵxĵy + ĵy ĵx

]
− 2Ŝ0ĵ

2
z +

2

3
Ŝ0ĵ

2

)]
Aρ(z)dz, (4.34)

1coinciding with quantization axis and with direction of external magnetic field
2phase for âx is selected without loss of generality
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Figure 4.1: Atomic ensemble is driven by the probe light that is detuned by ∆ from the transition 6S1/2 ↔ 6P3/2.
The external magnetic field B splits both ground F = 4 and excited F ′ = 4 hyperfine levels. The either utmost
Zeeman sublevel (|m = −4⟩ or |m = 4⟩) and the next Zeeman sublevel within the ground hyperfine manifold F = 4
constitute a two-level system that acts like harmonic oscillator. Depending on mutual orientation of B and highly
polarized collective macroscopic spin (J ≈ Jx), we observe either clockwise or counter clockwise Larmor precession
of quantum orbital momentum in Y-Z plane, corresponding to either positive or negative mass oscillator. Inclusion
of the third Zeeman sublevel |mF = 2⟩ or |mF = −2⟩ gives rise to dynamics of alignment operators.

where the single photon to single atom coupling rate gcs = −ℏcγspλ2/ (16A∆π) with spontaneous emission rate
γsp describing decay from excited states. The collective spin projections in eq.(4.34) are functions of z as defined
in eq.(4.33). Note that decoherence effects are not addressed so far.

The first scalar part of the Hamiltonian given by eq.(4.34) (ĤFF (0) ∝ Ŝ0) corresponds to DC Stark shift
equally moving all atomic energy levels proportional to the power of probe field. This term is not of interest for

us. Next contribution comes from vector part ĤFF (1) ∝ Ŝz ĵz being particular case of
ˆ⃗
Sˆ̂j that defines the mutual

rotation of Stokes vector and atomic spin. The contribution of this type of interaction is extensively studied in the
next subsection. The remain component ĤFF (2) leads to dynamical Stark shift and quite complex dynamics. The
role of this term in this work is predominantly negative and must be mitigated. We achieve this by tuning the
adjusting the optical detuning ∆. Careful examination and calibration of impact of this contribution is provided
in the last section of this chapter.

Two-level system approximation. Faraday interaction

We again assume the spin ensemble prepared in high polarized state implying that most of the atoms are
in the utmost Zeeman level (|m = −4⟩ or |m = 4⟩). In such case, the approximation of level structure with
lowest (highest) sublevel and adjacent Zeeman sublevel |m = −3⟩ (or |m = 3⟩) for ground hyperfine manifold
(Fig.4.1) is justified [114]. We then map the atomic ensemble to an arbitrary system with total angular mo-
mentum F = 1/2, meaning effective spin-1/2 system. We denote |1(2)⟩ = |F = 1/2,m = −1/2(1/2)⟩ and
|3(4)⟩ = |F ′ = 1/2,m = −1/2(1/2)⟩. Driving light is detuned by factor ∆ from the resonance F = 1/2 ↔ F ′ = 1/2.
Excluding dipole forbidden transitions |1⟩ ↔ |3⟩ and |2⟩ ↔ |4⟩, we can write the light-atoms interaction Hamilto-
nian

Ĥl-a =
ˆ⃗
d
ˆ⃗
E = ℏg0 (σ̂23âL − σ̂14âR + h.c. ) (4.35)

where âR(âL) are bosonic annihilation operators for right (left)-circular polarized light, g0 is light-matter coupling
strength. Assuming rotating wave approximation, neglecting populations of excited states and applying pertur-
bation theory, one may obtain the effective master equation driven by Hamiltonian transformed from eq.(4.35) to
(details are given in [116] (eq.1-3) and [114], sec.5.5):

Ĥl-a,eff = g
(
σ̂22â

†
LâL − σ̂11â

†
RâR

)
, g =

ℏg20∆
∆2 + (γe/2)

2 , (4.36)

where g is light-matter coupling rate and γe is excited state decay rate. The Hamiltonian eq.(4.36) causes the AC
Stark shift, moving the energy of levels |1⟩, |2⟩.
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Now we express ground state atomic operators σ̂kl via operators of total momentum ĵk, k = 0, x, y, z in a
frame of spin-half-toy model3, while using definitions eq.(4.28) of Stokes parameters. As a result, we write the
effective Hamiltonian eq.(4.35) in a form [114]:

Ĥl-a eff = g
(
Ŝ0ĵ0 − Ŝz ĵz

)
(4.37)

The term Ŝz ĵz on the right side of eq.(4.37) exhibits Faraday interaction just as ĤFF (1) from eq.(4.32). The decay
from excited atomic states due to spontaneous emission is described by

L̂13 =

√
γe
3
σ̂13, L̂24 =

√
γe
3
σ̂24, L̂23 =

√
2γe
3
σ̂23, L̂14 =

√
2γe
3
σ̂14. (4.38)

In order to include the decay terms into the master equations, one has to implement the transformation similar
to eq.(4.36) (for example, L̂14,eff = σ̂11âR

√
2γe/3/ (∆− iγe/2), see [116], eq.4 for details). In a result, eq.(4.37)

gives the set of stochastic equations describing dynamics of Stokes components and operators of spin projections:

dŜx
dt

= −gŜyĴz (4.39a)

dŜy
dt

= gŜxĴz (4.39b)

dŜz
dt

= 0 (4.39c)

dĴx
dt

= gŜzĴy − γS0Ŝ0Ĵx −NFxF̂st.x (4.39d)

dĴy
dt

= −gŜzĴx − γS0Ŝ0Ĵy −NFxF̂st.y (4.39e)

dĴz
dt

= −γS0ŜzĴ0 − γS0Ŝ0Ĵz −NFxF̂st.z, (4.39f)

Note the transition from single atom spin projection ĵx,y,z to collective variables defined now as Ĵx,y,z(t) =∫
LAρĵx,y,z(z, t)dz that are compatible with collective variables from eq.(4.14). Eq.(4.39a)-(4.39b) yield rotation
of probe polarization in XY-plane during propagation through the atomic ensemble. Such precession is caused
by quantum fluctuation of spin component Ĵz inducing circular birefringence. Given macroscopic value Sx, the
projection of atomic momentum Ĵz will be imprinted onto the output Stokes component Ŝy, as follows from
eq.(4.39b). Therefore the information about spin motion can be read out. At the same time, eq.(4.39c) dictates
that the component Ŝz remains unaffected. In turn, eq.(4.39d)-(4.39e) show that the dynamics of spin ensemble is
disturbed by the probe light that might be seen as rotation around effective magnetic field created by Ŝz. The light-
matter interplay doesn’t influence the Stokes variable Ĵz that reflects the feature of quantum non-demolition type of

interaction. All 3 spin projections experience decay4 characterized by the rate γS0 = ℏg20 (γe/2) /
(
∆2 + (γe/2)

2
)
.

Apart from that, we include the contribution from stochastic Langevin force F̂st.k with the strength defined by
factor NFk, k = x, y, z (see [116] and [112] for details).

If we exploit the definition eq.(4.21) of quadratures x̂S , p̂S of atomic ensemble together with definition eq.(4.31)
of canonical variables of optical mode x̂L,S , p̂L,S and add harmonic motion of spin oscillator in external magnetic
field (given by eq.(4.20)) to light-matter interplay eq.(4.36), we will arrive to input-output relations in a form of
eq.(2.10), namely:

q̂L,S,out(ζS) = q̂L,S,in(ζS) + 2ΓSχS cos (ζS)x̂L,S,in +
√

2ΓSγSχS cos (ζS)f̂th, (4.40)

3From the system eq.(4.14) applied for an arbitrary ensemble with F = 1/2 we obtain σ̂11 = ĵ0 − ĵz, σ̂22 = ĵ0 + ĵz, σ̂12 = ĵx − iĵy,

σ̂21 = ĵx + iĵy
4In contrast to decoherence processes for probe optical field that are neglected here.
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where q̂L,S,in(out)(ζS) = p̂L,S,in(out) cos (ζS)+x̂L,S,out sin (ζS). We introduced the readout5 (measurement) rate ΓS =

a1g
2|Jx||Sx| for coherent interaction of atomic ensemble and probe optical field. Note the we added factor a1(∆) to

the definition of ΓS since an abstract F = 1/2 system is replaced by the specific case of 133Cs atomic level structure.
The total decay rate γS = γS,pb + γS,in is split into two parts. The term γS,pb = γS0S0 ≡ γS0|α|2 represents the
power broadening contribution from the probe field originating from spontaneous emission eq.(4.38). The other
sources of decoherence are lumped into intrinsic atomic linewidth γS,in and will be will be briefly discussed later.

The susceptibility function χS of the atomic oscillator is defined as in eq.(2.8). The Langevin ’thermal’ force f̂th
sets the interaction with Markovian bath, being obtained by combining F̂st.k from eq.(4.39).

4.2.4 Effect of (high-order) tensor terms

The Hamiltonian ĤFF (2) from eq.(4.32) yields the following set of stochastic equations, describing the contri-
bution of tensor terms to the evolution of spin operators

∂ĵx
∂t

=− gcsa2

(
(Ŝ0 − Ŝx)

[
ĵy ĵz + ĵz ĵy

]
+ Ŝy

[
ĵxĵz + ĵz ĵx

])
, (4.41a)

∂ĵy
∂t

= gcsa2

(
(Ŝ0 + Ŝx)

[
ĵxĵz + ĵz ĵx

]
+ Ŝy

[
ĵy ĵz + ĵz ĵy

])
, (4.41b)

∂ĵz
∂t

=− gcsa2

(
2Ŝx

[
ĵxĵy + ĵy ĵx

]
− 2Ŝy

[
ĵ2x − ĵ2y

])
(4.41c)

and Stokes operators of probe light

∂Ŝx
∂z

=− gcsa2

(
Ŝz

[
ĵxĵy + ĵy ĵx

])
, (4.42a)

∂Ŝz
∂z

= gcsa2

(
Ŝz

[
ĵ2x − ĵ2y

])
, (4.42b)

∂Ŝz
∂z

= gcsa2

(
Ŝx

[
ĵxĵy + ĵy ĵx

]
− Ŝy

[
ĵ2x − ĵ2y

])
(4.42c)

respectively. One can clearly see that the system eq.(4.39) is now perturbed by alignment operators
{
ĵk, ĵl

}
=

ĵk ĵl + ĵlĵk and ĵ2k − ĵ2l , where k, l = x, y, z. The presence of alignment operators is conditioned by deviation
from simplified spin-1/2 model; as reflected on the Fig.4.1, the third Zeeman sublevel |m = −2⟩ (or |m = 2⟩) is
accounted. We notice that in the approximation of highly polarized spin ensemble the following approximations
for alignment operators are valid [115]:

ĵ2x − ĵ2y ≈ F (F − 1/2) (4.43a)

ĵxĵy + ĵy ĵx ≈ ±(2F − 1)ĵy (4.43b)

Tensor Stark shift

One of the consequences of tensor interaction is dynamical shift of the spin resonance frequency. We exploit
approximation eq.(4.43) for alignment operators and select the following terms from eq.(4.41b)-(4.41c):

∂ĵy
∂t

= gcsa2(2F − 1)
(
Ŝ0 + Ŝx

)
ĵz (4.44a)

∂ĵz
∂t

=− gcsa2(2F − 1)2Ŝxĵy. (4.44b)

5factor of 2 in front of the readout rate in eq.(4.40) is the matter of selected convention
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The construction of the system eq.(4.44) resembles rotation of spin projections in YZ-plane around X-axis, thus

giving the amendment δΩ
(2)
S to oscillation frequency ΩS defined by the strength of applied magnetic field. Using

the following features of alignment operators

⟨m| ĵ2x |m⟩ = m2, (4.45a)

⟨m| ĵ2y(z) |m⟩ = F (F + 1)−m2

2
, (4.45b)

⟨m| ĵxĵy + ĵy ĵx |m⟩ = 0, (4.45c)

one may calculate the shift δΩ
(2)
S = δE

(2)
F,m/ℏ, where

δE
(2)
F,m = E

(2)
F,m − E

(2)
F,m−1 = 2gcsa2S0 [2m+ 1] . (4.46)

and E
(2)
F,m = ⟨F,m| ĤFF (2) |F,m⟩ = −gcsa2S0

[
F (F + 1)− 2m2

]
. The overall resonance frequency δEF,m = EF,m−

EF,m−1 corresponding to transition between two adjacent Zeeman sublevels now depends on projection of total
spin m. The formula eq.(4.46) is given for particular case of linear polarization of probe light that coincides with
quantization axis OX (making the approximation Ŝx ≈ Sx ≈ S0 justified). In contrast, one can select the arbitrary
angle β between direction of magnetic field and probe polarization. We then change the basis of Stokes operators

from
{
Ŝx, Ŝy, Ŝz

}
to
{
Ŝ||, Ŝ⊥, Ŝz

}
, where

[
Ŝ||, Ŝ⊥

]
= R(2β)

[
Ŝx, Ŝy

]
, and R(2β) is the rotation matrix. The

component Ŝ|| ≈ S0 = |α|2/2 becomes classical, whereas Ŝ⊥ and Ŝz are quantum operator with zero mean. Change
of the basis converts eq.(4.46) to:

δE
(2)
F,m = gcsa2S0

(
1 + 3 cos (2β)

2

)
[2m+ 1] . (4.47)

Specifically, the selection β = −(1/2) arccos (1/3) ≈ 55◦ cancels the tensor Stark shift. Alternatively, we can
adjust the polarization angle to counteract quadratic Zeeman splitting expressed in eq.(4.5).

Coupling of intensity noise

As follows from eq.(4.45a)-(4.45b), the alignment operator ĵ2x− ĵ2y has the strong spectral component at Ω = 0,
induced by transition to excited hyperfine level and subsequent decay back without changing the projection of total
momentum m. This operator couples to Ŝy and shapes the response of spin projection ĵz, see eq.(4.41c). Since
the Stokes component Ŝy contains the quantum back action noise centered at Ω = ΩS (from Faraday interaction
model), the spin operator ĵ2x − ĵ2y also contributes to the noise budget in the spectral range Ω = ΩS . Importantly,

ĵz spin quadrature is contaminated by intensity fluctuations (if any) of probe optical field contained in Ŝ|| Stokes
quadrature representing total photon flux. The amount of added noise is defined by polarization angle β; the ratio
between projected intensity noise of probe and back-action noise (’desired’ noise source) from Faraday model is
4 (2F − 1)2 (a2/a1)

2 (1 + sin2 (2β)Z
)
[113], where Z is the added (on top of shot noise) amplitude noise of probe

laser in shot noise units. Notably, the impact of probe power fluctuation is maximized at β = π/4 and minimized
at β = 0, π/2, when only shot noise of laser is projected.

P-P interaction

The other alignment spin operator ĵxĵy+ ĵy ĵx has non-zero matrix element ⟨m′| ĵxĵy+ ĵy ĵx |m⟩ if |m′−m| = 1

leading to spectral response at Ω = ΩS that competes to Faraday interplay. Combining eq.(4.43b) and ĤFF (1),
we study the following interaction Hamiltonian

Ĥ
(pp)
l−a,eff = a1gcs

(
Ŝz ĵz + ESŜ⊥ĵy

)
, ES = −14

a2
a1

cos (2β). (4.48)
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Written in canonical variables6, this Hamiltonian takes the form Ĥ
(pp)
l−a,eff =

√
ΓS

(
x̂L,S x̂S + ES p̂L,S p̂S

)
and results

in the stochastic equations of motion (decoherence effects are added) given by [115]

∂x̂S
dt

= ΩS p̂S + (γS + 2ESΓS) x̂S +
√
γS f̂st,x − ES

√
ΓS p̂L,S,in, (4.49a)

∂p̂S
dt

= −ΩS x̂S + (γS + 2ESΓS) p̂S +
√
γS f̂st,P −

√
ΓS x̂L,S,in, (4.49b)

∂x̂L,S
dt

=
√

ΓSES p̂S , (4.49c)

∂p̂L,S
dt

= −
√

ΓS x̂S . (4.49d)

In general, the light-matter interaction is no longer QND, since atomic motion is now directly recorded on both
optical phase quadrature p̂L,S,out and amplitude quadrature x̂L,S,out. Similarly, the probe light perturbs the spin
ensemble dynamics, getting coupled to both canonical position x̂S and momentum p̂S . Secondly, the linewidth of
atomic oscillator is modified, resulting in γS,ten = γS +2ESΓS . This effect will be referred to as tensor broadening.

In order to cancel the effect of tensor broadening and deviation from QND-type interaction, one has to nullify
ES and set polarization angle β = π/4. Clearly, such a choice will boost the projection of amplitude noise of
probe field onto atomic motion and establish non-zero tensor Stark shift of resonance frequency. Nevertheless, in
described experiment the configuration ES = 0 is mostly preferred, since we want to simplify input-output relations
for characterization of atomic ensemble. Therefore, we will fix β = π/4 throughout the rest of this chapter and
deviate only for calibration of input probe polarization (will be clearly specified and described later).

One can present Hamiltonian Ĥ
(pp)
l−a,eff from eq.(4.48) in the form

Ĥ
(pp)
l−a,eff =

(√
ΓS/2

) [
(1 + ES) ĤBS + (1− ES) ĤTMSq

]
, (4.50)

where ĤBS = âL,S b̂
†
S + â†L,S b̂S expresses swapping between photon and atomic excitation (beam-splitter type

interaction) while ĤTMSq = âL,S b̂S + â†L,S b̂
†
S induces the entanglement between light and spin ensemble (two

mode squeezing type interaction)7. Being determined by factor ES , the relative weights of ĤBS and ĤTMSq are
equal if ES = 0, yielding QND Hamiltonian ∝ x̂L,S x̂S .

4.3 Experimental realization and preliminary characterization

4.3.1 Atomic ensemble in a cell

The spin ensemble consisting of ∼ 1010 cesium-133 atoms is placed in the square dc × dc × Lc channel of
encapsulated glass vapour cell. The detailed description of cell construction and some aspects of their fabrication
can be found in [114, 115]. The dimensions of the channel have been selected such that the transverse cross section
is 2mm×2mm whereas the length is Lc = 80 mm. The choice of cell geometry is motivated by the application of
quantum noise reduction in GWDs. First, large (in comparison to [39, 40]) transverse dimensions mitigate the
negative impact of collisions between atoms and the walls of the cell. The reduction of this collision rate, as well
as anti-relaxation coating for the cell walls, decreases the respective contribution (designated as γS,walls) to the
total (intrinsic) spin damping rate γS,in. In turn, big cell length Lc facilitates achieving large optical depth and
hence, large spin quantum cooperativity (atomic readout rate). Moreover, we explore the possibility to convert
the probe optical field into top-hat configuration (will be mentioned in sec.4.3.4). Maintaining a good quality of
top-hat beam within such a long cell becomes more feasible for increased size of cross-section area (in particular,
dc = 2mm turns out to be sufficient for Lc = 8cm). In general, the increase of cell size is accompanied by the
number of drawbacks, such as stronger coupling to the classical noise and slower motional averaging.

6In contrast to eq.(4.31), we need to re-define quadratures for optical field: x̂L,S = Ŝz/
√

S||, p̂L,S = Ŝ⊥/
√

S||
7Annihilation/creation operators for Stokes quadrature are annihilation/creation operators in for the optical mode denote by

polarization perpendicular to linear polarization of probe field (âL,S ≡ â⊥), see eq.(4.30) and account for rotation of Stokes operator

basis
[
Ŝ||, Ŝ⊥

]
= R(2β)

[
Ŝx, Ŝy

]
. The annihilation/creation operators for atomic ensemble are ladder operators (b̂S = ĵ−, b̂

†
S = ĵ+)

introduced in eq.(4.9)
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Polarized spin ensemble precesses around external bias magnetic field, created by the system of coils. The
spatial inhomogeneity of bias field leads to an increase of atomic linewidth (the respective contribution is denoted as
γS,inh). To prevent the perturbation of spin dynamics caused by stray magnetic fields coming from environment,
the cell and coils are placed in multi-layer magnetic shielding. Clean current sources are necessary to avoid
undesired technical spin noise due to unstable bias field.

The preliminary characterization of the cell filled with atoms includes the measurement of cell transmission,
T2-coherence time and calibration of vapour density. The procedures are outlined in [117, 115]. The results of
characterization of the cell used for measurements reported in this chapter will be summarized in Jun Jia upcoming
thesis.

The probe optical field used for calibration of the spin oscillator in this chapter was generated by DL Pro laser
(Littman Metcalf configuration). However, it is the local oscillator (LO, coming from M-Squared Ti:Sapphire
laser) for homodyne detection of idler mode of entanglement (in chapter 3) that should be ultimately used as
the probe beam for the atomic ensemble. The amplitude noise of TiSapph laser, being significantly higher in
comparison to the DL Pro diode laser, will allegedly counteract quantum noise limited dynamics of the spin
oscillator. Therefore, the intensity stabilization loop will be needed on the next steps of the experiment.

To conclude this section, we list the contributions to the total spin decay rate γS . Apart from spin-wall
collisions (∝ γS,walls) and broadening due to inhomogeneous magnetic field (∝ γS,inh), one needs to account for
spin-exchange collisions (∝ γS,exc). Their impact is reduced by increasing the polarization of the spin ensemble.
Similarly to probe light induced broadening (γS,pb), there is a broadening arising from pumping optical fields.

4.3.2 Initialization and characterization of spin state

Atomic thermal noise

Finite polarization P of spin ensemble given by eq(4.18) increases the noise of spin quadratures arising from
the coupling with environment. We assume that occupations of Zeeman sublevels follow ⟨σ̂mm⟩ ∼ erSm, where
rS = 1/TS is the parameter related to the spin temperature TS . The spectrum of stochastic thermal force F̂st.y(z)
introduced in eq.(4.39) is given by the expression [114]:

⟨F̂ †
st.yF̂st.y⟩ =

N

2ZS

F∑
m=−F

exp (rSm)
[
F (F + 1)−m2

]
, ZS =

F∑
m=−F

exp (rSm) . (4.51)

In a framework of Holstein-Primakov approximation one calculates the environmental noise σTh perceived by
canonical spin variables x̂S , p̂S by introducing thermal occupation nS

σTh = ⟨f̂ †thf̂th⟩ = (nS + 1/2) , (4.52)

where f̂th is the normalized stochastic thermal force from eq.(4.40). Thus nS is determined by the degree of spin
orientation. In particular, P = 1 corresponds to nS = 0 and bottom limit of thermal noise Sf̂th = 1/2 which

can be treated as shot noise of atoms (projection noise). In the more relevant for us regime P ≈ 0.9 we obtain
nS ≈ 0.5 and roughly twice more thermal noise compared to perfectly polarized ensemble.

Optical pumping

In order to approach coherent spin state with minimal possible thermal noise, we exploit the scheme of optical
pumping with two optical fields involved. The idea is presented on Fig.4.2. The first field, named as optical pump,
is circularly polarized and adjusted to the transition |F = 4⟩ ↔ |F ′ = 4⟩ of D1-line (6S1/2 ↔6P1/2). Depending
on the choice between σ+ and σ−-polarization, the field pushes atoms to the excited hyperfine level, increasing
(decreasing) projection of total spin by |∆m| = 1. Coming back to the ground level due to spontaneous decay,
atoms eventually move towards utmost Zeeman sublevel |F = 4,mF = 4⟩ (or |F = 4,mF = −4⟩) that is a dark
state. We also note, that pump induces power broadening due to the coherence between |F = 4,mF = 4⟩ (or
|F = 4,mF = −4⟩) and |F = 4,mF = 3⟩ (or |F = 4,mF = −3⟩) since the last is affected by pump and hence, not
dark.
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mF: -4 -3 -2 -1 0 +1 +2 +3 +4

Figure 4.2: The scheme of energy levels of atomic spin ensemble. Pump and repump lasers are needed to prepare
the spin state with optimized spin polarization (see text for details). Probe optical field reading out the spin
motion is also shown on the figure.

Being transferred to F ′ = 4 by pump, atoms can decay to F = 4 but also to F = 3 hyperfine level which
is undesirable event in the sense of optical pumping scheme performance. The role of the second optical field,
referred to as repump, is to eject atoms from hyperfine level F = 3, thus forcing them to move to F = 4. Affected
by circularly polarized repump, spins tend to increase their quantum number m on the level F = 4. Therefore,
the repump itself may act similar to pump, enhancing its effectiveness. Different choices of frequencies for repump
are possible. We typically select the transition F = 3 → F ′ = 4, as illustrated on Fig.4.2.

Pump and repump are produced by DFB (distributed feedback) laser and DL Pro laser (Littman Metcalf
configuration) respectively, generating radiation at 894 nm and 852 nm. Two fields are overlapped at some point
and then propagate together. We use the scattering on AOM into the 1st order to control the optical power.
Pump and repump finally enter the cell orthogonal to probe and parallel to magnetic field. Special care has to be
taken in order to properly illuminate the cell, covering the whole longitudinal section.

Characterization: MORS

The foundation to calibrate the spin polarization is the method presented in [118]. One refers to this technique
as Magneto-Optical Resonance Spectroscopy (MORS). The method gives the opportunity to recover the distri-
bution of populations on Zeeman sublevels. Dependence of frequency of Zeeman transition EF,m+1 ↔ EF,m on
number m due to quadratic Zeeman splitting (see eq.(4.5)) is a crucial factor in MORS. In order to implement the
calibration, the static magnetic field causing splitting of hyperfine level and yielding Larmor precession is com-
bined with an orthogonal and weak alternating magnetic field. Its frequency is swept across the range of Zeeman
manifold, sequentally exciting the transitions between neighboring sublevels. Following eq.(4.39b), the resulting
atomic motion is recorded onto probe light that is measured by means of polarization homodyne detection.

If hyperfine multiplet F = 4 is investigated, the spectrum of extracted MORS signal in general contains 8
peaks8. The peaks are spaced according to eq.(4.3), the linewidth of each peak is defined by coherence time of
sublevels, and the amplitudes depend on population difference between corresponding adjacent sublevels. The
last circumstance is the key to recovering the distribution of spin populations.

While performing the fit of the signal, we make several assumptions. Mainly, the population distribution
should obey thermal distribution as outlined earlier. If the spin temperature TS is extracted from MORS fit, one
can directly calculate spin polarization using P = (1/ZSF )

∑F
m=−F m exp (rSm). In addition, we assign equal

Zeeman coherence to all transitions and hence, equal linewidth for all peaks. Details can be found in [115].

To characterize the cells in this thesis, two different fashions of MORS calibration were carried out. If all
optical fields (pump/repump/probe) as well as RF modulation of magnetic field are permanently on, we name
this configuration as ’continuous’ MORS. In this case the probe optical field causes additional broadening of
atomic lines because of the light absorption. Together with the pump broadening, it prevents observation of

8(2F + 1)− 1, where 2F + 1 is the number of Zeeman sublevels
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Figure 4.3: Pulsed MORS. From left to right we reduce the pump power from 40µW to 18µW and then to 3µW
and observe the reduction of spin polarization from P = 0.98 (left panel) to P = 0.95 (middle) and finally to
P = 0.92 (right).

resolved MORS signal. One way to circumvent this obstacle is to increase the line separation by tuning the
polarization angle β of input probe and exploiting tensor Stark shift given by eq.(4.47).

Alternatively, the issue of broadening is addressed in pulsed scheme. There are several possible variations of
calibration by MORS in pulsed regime [117], [40], [118]. We exploit the following cycle: first, pump and repump
are sent in pulse and prepare the state close to coherent spin state (|F = 4,mF = 4⟩). The pumping fields are then
switched off and immediately after that, the RF magnetic field at Larmor frequency is produced. The duration of
pulse controlling alternating magnetic field is of the order of tB,rf = 20µs such that ΩQZS ≪ 1/tB,rf is fulfilled.
As a result, all transitions between adjacent Zeeman sublevels are excited. So far the probe field is on with the
power Pp ≈ 1 mW. This value is selected because we want to reproduce the experimental conditions in the next
section. In particular, we need to take into consideration the effect of depolarizing the ensemble due to the probe
field. Finally, the RF magnetic field is shut off and at the same time the power of probe beam is reduced down
to the level ∼ 10µW. This is the stage where the spin state is measured. The power of probe is controlled by the
efficiency of scattering onto the 1st order on AOM, in the same way as for pump/repump.

The scheme presented above, although minimizing the impact of power broadening, leads to the following
possible issue. The perturbation of spin dynamics by back-action due to the probe light (expressed in a term
dĴy/dt ∝ ŜzĴx) is considered as insignificant in contrast to impact by RF magnetic field. It is not entirely clear
whether the model given in [117] and [115] is perfectly valid under the circumstance of strong probe power Pp ≈ 1
mW during initialization stage.

Examples of pulsed MORS signal with imposed fit are demonstrated on Fig.4.3. We pump atoms towards Zee-
man state with the highest energy |mF = 4⟩ and achieve relatively strong orientation of the ensemble. Therefore,
we don’t witness all 8 peaks, but only 2 (3 on the most right subplot) and identify them as |mF ⟩ ↔ |mF − 1⟩
where mF = 4, 3 (also mF = 2) respectively, if counting from right to left9. The height of |mF = 4⟩ ↔ |mF = 3⟩
is the biggest, signifying inverted spin population as expected. We then make another simplification of the model
and reduce the number of transitions down to 3, considering the levels |F = 4,m⟩, m ≤ 1 completely unpopulated.
Optimization of optical pumping yields the largest spin polarization P = 0.98 extracted from the fitting. As shown
on the Fig.4.3, the polarization reduces with the decline of pump power. The linewidth of peaks γMORS gives the
T2 coherence time, limited by spin-spin, spin-wall collisions and inhomogeneity of static magnetic field. Presented
on the Fig.4.3 data exhibit γMORS ≈ 20 Hz for the cell with cross section 5mm×5mm (given for illustrative pur-
poses). For the cell tested in this chapter (2mm×2mm) we obtain γMORS ≈ 90 Hz (not shown here) for the peak
linewidth in pulsed experiment. Looking at the Fig.4.3, one may note the presence of a bump on the right with
respect to resolved Zeeman transitions. This spectral component looks significantly lower and broader than the
other lines of MORS signal. Therefore the bump isn’t considered directly in the estimation of spin temperature.
Instead, we account for it in the model as a background shaped by Gaussian function. We also attempt to analyze
its origin in the following section, although without reaching clear understanding.

The estimated polarization drops down to P = 0.89− 0.91 in the continuous regime. We will see in the next
section that results of the fit with spin noise model better match polarization obtained in continuous MORS in
comparison to the pulsed configuration, where the polarization seems to be overestimated.

9the spacing between adjacent Zeeman sublevels grows up as m increases according to eq.(4.5)
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Figure 4.4: CIFAR signal: theoretical curves

4.3.3 Calibration of readout rate

We extract the spin measurement rate ΓS , investigating the atomic response to strong modulation of probe
light polarization. The outlined technique is referred to as Coherently induced Faraday rotation (CIFAR) [44].
The advantage of presented below scheme is that calibration signal doesn’t depend on detection efficiency. At
the same time, full susceptibility function (resonanse frequency Ωs and the linewidth γS) can be reconstructed
exploiting this method.

Instead of vacuum noise in the input, the spin ensemble is now driven by light state x̂L,S,in → G sin (ϕS),

p̂L,S,in → G cos (ϕS)
10. The modulation phase ϕ is directly related to the carrier phase, as introduced in the

section2.3. The input-output relations eq.(2.10) are then written in matrix form[
qL,S,out (ζS)

qL,S,out (ζS⊥)

]
=

[
sin (ζS) − cos (ζS)
cos (ζS) sin (ζS)

] [
1 0

2ΓSχS 1

] [
sin (ϕS)
cos (ϕS)

]
G. (4.53)

We consider the absence of tensor effects here and the arbitrary homodyne detection angle ζS . Also, thermal force
f̂T is negligibly small compared to back action noise and imprecision noise caused by strongly modulated input
light quadrature. Measuring the spectrum of q̂L,S,out (ζS), we obtain

SCIFAR = SqL,S,out(ζ)
= | sin (ϕS + ζS) + γSΓS cos (ζS) cos (ϕS)|2|G|2 (4.54)

The induced interference between amplitude and phase quadratures of light generates a characteristic dispersive
signal, demonstrated on Fig.4.4. In particular, selecting the phase detected output quadrature (ζS = 0) and equal
modulation of input amplitude and phase quadratures (ϕS = π/4) formula eq.(4.54), one may estimate ΓS just

10implying their spectral components on some specific frequency Ω
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measuring the distance between maximum and minimum of the curve (shown on Fig.4.4(a)), in approximation of
small spin linewidth γS ≪ ΓS . Modulation phase ϕS different from π/4 as well as homodyne angle ζS ̸= 0 alter the
extrema spacing, see figure4.4(b)-(c). Inclusion of tensor effects (E ≠ 0) changes11 the expression for calibration
signal[44]:

SCIFAR =
∣∣∣(1− 2ΓSEχS

[γS
2

− iΩ
])

sin (ϕS + ζS) + γSΓS [(1− E) cos (ϕS + ζS) + (1 + E) cos (ϕS − ζS)]
∣∣∣2 |G|2

(4.55)
Impact of tensor interaction is demonstrated on Fig.4.4(d). When observing pure amplitude quadrature xL,S,out,
Lorentzian shape is arising on top of the flat constant background. The amplitude of Lorenzian is determined by
amplitude and sign of ES . In generic case ζS ̸= −ϕS ̸= ±π/2 the tensor interaction adjusts the shape of dispersive
curve as well as the distance between minimum and maximum that is now ≈ ΓS

(
1 + E2

S

)
in the limit of low atomic

losses.

HD

PID

Ωmod.

HWP
QWP

B

PZT2

PZT1PBS1

PBS2

LO

drive

PDph.l.

Figure 4.5: Sketch of experimental setup to calibrate readout rate. The laser field after passing polarizing beam
splitter PBS1 is separated onto strong local oscillator LO (PLO ≈ 1mW) and weak drive (Pdr. ≈ 20µW) fields.
LO and drive are then recombined on the second polarizing beam splitter PBS2. One output of PBS2 is sent to
photodetector PDph.l. to generate error signal for phase lock while the other output mode is transmitted through
atomic cell and detected on homodyne detector HD.

Experimental setup is shown on Fig.4.5. The linearly polarized optical field denoted as ’drive’ is phase-
modulated with modulation strength G at frequency Ωmod. using piezo-electric transducer PZT1 and subsequently
overlapped with orthogonal polarized Local Oscillator LO on polarizing beam-splitter PBS2. As a result, one
of the output modes of PBS2 contains the state qmod.(ϕ) ∼

(
x̂L,S,vac sinϕS + p̂L,S,vac cosϕS

)
|G| sin (Ωmod.t) with

arbitrary modulated polarization quadrature (see [44] for details). The phase angle ϕS is set by phase lock loop
between LO and drive fields. For that purpose, the second output of polarization-sensitive interferometer is used
to generate the interference fringes as error signal. The feedback signal is then applied to the piezo element PZT2

in one of the interferometer arms. The optical mode in desired polarization state qmod.(ϕS) probes the atomic
oscillator and the output filed is detected on the ’self-homodyning’ detection setup with subsequent spectral
analysis. To obtain the signal as on Fig.4.4, one needs to scan the modulation frequency Ωmod. around preset
Larmor frequency. We have chosen ΩS ≈ 40 kHz since our phase modulator (the piezo element) itself demonstrates
reasonably clean and flat spectral response to the applied voltage in this frequency range. Another important
technical detail is the selection of the operating point for phase modulation depth defined by G. Excessively
strong drive voltage might cause distortion of observed spectral signal since the optical field cannot be described
by harmonic oscillator model any longer and the simplified model eq.(4.36) of light-matter interaction isn’t valid
[44]. Hence, the fit will be compromised, yielding unreliable values for extracted parameters. From the other side,
the modulation should be strong enough to provide decent amplitude of spectral signal for fit. After careful search
we have chosen the amplitude of drive voltage ≈ 250mV. Out of the same considerations we selected low ratio
between optical powers of drive and local oscillator Pdr./PLO ≈ 20µW/1mW= 0.02.

Fig.4.4(b,c) reveal the enhanced sensitivity of horizontal scaling of SCIFAR to ϕS and ζS . Consequently, the
trustworthiness of fit strongly depends on the correct knowledge of detection and modulation phases. In order

11only amendment due to ’P-P’ interaction is accounted
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to calibrate ϕS and ζS , the following procedure was exploited. Initially we make sure the input polarization of
light is set to QND configuration, remove QWP from the detection stage, scan modulation phase and search for
flat response of SCIFAR. Thus, the angle ϕS,0 = π/2 is found as dictated by eq.(4.54). Secondly, ϕS is scanned
again (shown on Fig.4.6, top panel) until SCIFAR becomes perfectly symmetric Lorenz peak. In described case
it happens at ϕS,1 = ϕS,0 − 84◦. At this stage we note that expected ϕS,1 should be shifted precisely by π/2
from ϕS,0 since HWP alone in the detection setup should match to the pure phase quadrature p̂L,S (ζS ≡ 0). We
then conclude that HWP used in the experiment is non-ideal and adds some circularity to the polarization giving
detection phase ζS = −6◦12.
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Figure 4.6: CIFAR: experimental data. Temperature is set T = 38◦, probe power PLO ≈ 1mW.

Having both detection and modulation angles calibrated, we select several points for ϕS and perform a fit of
each dataset with the model of amplitude and phase CIFAR response. As seen from the Fig.4.6, bottom panel, the
different ϕS,i yield different values for extracted readout rate ΓS and damping rate γS . The uncertainty ≈ 15% on
both parameters is mainly attributed to imperfect calibration of ϕS , which is limited by the software of a FPGA
board in the phase lock loop. Nevertheless, obtained values for ΓS and γS will serve as a reasonable reference for
further examination of atomic ensemble (performed in sec.4.4.2). Directly from the CIFAR we evaluate the ratio
ΓS/γS ≳ 10, a prerequisite for high cooperativity.

Finally, we apply CIFAR to explore the dependence of spin parameters on probe power PLO and pump intensity
Ppump. The quality of fit is impaired with increase of PLO, but we are able to identify that the damping rate γS
is dominated by intrinsic linewidth, giving the room for improvement of cooperativity. From the other side, the
growth of Ppump irrevocably reduces the ratio ΓS/γS (Fig.4.7). Thus, we choose the value Ppump ≈ 40µW for the
experiment, big enough to provide strong spin polarization and yielding relatively high ΓS/γS ratio at the same
time.

12such statement comes from the simple feature of eq.(4.54) producing symmetric Larmor peak whenever ζS + ϕS,1 = 0.
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Figure 4.7: The extracted readout rate ΓS and atomic linewidth γS when the pump power is varied.

4.3.4 Broadband noise

Motional effects (or external spin degrees of freedom) have to be taken into account while studying the dynamics
of the atomic ensemble interacting with an optical field. For that purpose, a theoretical approach presented in
[119] utilizes the Bloch-Heizenberg-Langevin formalism and incorporates boundary conditions as atoms interact
with the cell walls. The solution is obtained by introducing the basis of atomic diffusion modes [120], that might
be understood as writing ladder operator eq.(4.9) in a form ĵ∓ =

∑
k ĵ∓,kuk(r). Each atomic mode ĵ∓,k is assigned

to its own damping rate γdS,k
13 and coupling strength defined by its overlapping Ik with the optical mode of the

probe field. The characteristic shape of the experimentally observed spin spectrum is illustrated on Fig.4.8 that
reflects the presence of multiple atomic modes. One may identify narrowband structure (Fig.4.8, right inset)
centered around Ω ≈ 1.017 MHz and linewidth ≲ 0.5 kHz. It corresponds to the contribution to γS from spin-spin
and spin-wall collisions arising from uniform (homogeneous) mode k = 0. At the same time, non-zero overlapping
Ik with higher modes (k > 0) forms a structure, that resembles a broad pedestal (Fig.4.8, left inset). While the
broad peak has the same central frequency as narrow peak on the top, the linewidth of composite response from∑

k=1 ĵ∓,k is of the order of transient time of an atom crossing the cell14 in directions orthogonal to propagating
probe field. The utilization of an anti-relaxation coating for the cell leads to strong reduction of the damping rate
γdS,0 in comparison to γdS,k, k > 0 making long-lived mode clearly distinguishable [119].

Alternatively, one can regard the cumulative response of atomic diffusion modes k ̸= 0 as a single mode
described by canonical variables {x̂S,bb, p̂S,bb} complementary to {x̂S , p̂S}. The mode {x̂S,bb, p̂S,bb} originates
from time-dependent coupling gcs(t) between single atoms and optical field due to non-homogeneous intensity
distribution of the probe [121], [115]. The dynamics of mode {x̂S,bb, p̂S,bb} is driven by the Hamiltonian with
the same structure as for {x̂S , p̂S}, meaning Larmor precession disturbed by Faraday rotation. Consequently, we
introduce the readout rate ΓS,bb, damping rate γS,bb and susceptibility function

χS,bb = ΩS/
(
Ω2
S − ω2 − iγS,bbω +

(
γS,bb/2

)2)
. (4.56)

We hence consider that the mode {x̂S,bb, p̂S,bb} gives rise to Lorenz peak, but more correct way to treat it would be
to define Gaussian peak instead since the superposition of big amount of Lorenz modes should be approximated
by Gaussian distribution. We will refer to the respective contribution to the spin noise spectrum as broadband
noise.

The influence of the size of the probe Gaussian beam on the features the of broadband response is carefully
examined in [115]. The linewidth of broad peak declines with the growth of beam diameter wpG. Such observation
looks consistent with the argument presented in [119]: the overlapping Ik with high-order atomic modes scales
down faster for larger k (those have bigger decay rate). The strength of the broadband noise coupling ΓS,bb is
also reduced for increased wpG. This is an expected result as well since intensity distribution within cell becomes
more homogeneous in such case. Enlarging the size of the probe beam and aiming to mitigate the undesired
broad pedestal in the spin spectrum, one needs to consider the problem of optical losses: the edges of the optical
mode are truncated by the cell channel at certain moment and the transmission is degraded. This obstacle might

13’d’ in subscript means ’diffusion’
14Considering the filling of the cell with the probe beam approaches unity
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be tackled by substituting Gaussian beam with top-hat profile. To produce top-hat beam, the initial Gaussian
beam was converted exploiting aspherical beam shaping lens. After such transformation the mode is transmitted
through the system of spherical lenses in order to match the geometry of the cell [122]. The efforts in producing
the most suitable top-hat beam culminated in a converging configuration with the size wpth,1 ≈ 1.9 mm on the
input of the cell and wpth,1 ≈ 1.6 mm on the output yielding a filling factor FF

FF =
1

Ld2c

∫ Lc

z=0
w2
pth(z)dz ≈ 0.7 (4.57)

In order to characterize the amount of broadband noise in the spin system, we extend the input-output
relations eq.(4.40). Interaction of the probe field with the atomic mode {x̂S,bb, p̂S,bb} together with perturbation
by stochastic thermal force will be recorded according to

p̂L,S,bb = 2ΓS.bbχS,bbx̂L,S,in +
√
2ΓS,bbγS,bbχS,bbf̂th,bb. (4.58)

Therefore, the measured optical phase quadrature in described here experiment will be p̂L,out = p̂L,S,bb + p̂L,S,out,

where p̂L,S,out ≡ q̂L,S,out|ζS=0 is taken from eq.(4.40). Notably, the Langevin force f̂th,bb in general might be

different from the stochastic force f̂th acting on long-lived atomic mode. The PSD of p̂L,out normalized by shot
noise (SN) is given by

SL,out = ⟨p̂†L,outp̂L,out⟩ = 1 +A2
nb/((ΩS − ω)2 + (γS/2)

2) +A2
bb/((ΩS − ω)2 + (γS,bb/2)

2). (4.59)

The terms on right side are flat spectrum of SN, contributions from {x̂S , p̂S} and {x̂S,bb, p̂S,bb}. We don’t care
about separating back action term from thermal noise for both atomic modes at the moment. Therefore, we
introduce constants Anb and Abb

15 for x̂S , p̂S and x̂S,bb, p̂S,bb respectively representing the strength of combined
back action noise and thermal noise. The approximation χS ≈ 0.5/(ΩS−ω−iγS) for the narrowband susceptibility
function is assumed in eq.(4.59) provided ΩS ≈ ω ≫ γS and same for χS,bb. The fit of spectrum on Fig.4.8 using
eq.(4.59) yields γS,bb ∼ 75 kHz. Indeed, this value is in a reasonable agreement with transient time τtr ∼ 2rhat/VS ,
where VS ∼ 100 m/s is the thermal velocity at temperature T = 30 − 40◦. The height of broadband noise hbb
is 0.3 in SN units which is the substantial improvement compared with probing the ensemble using Gaussian
beam [115]. The ratio between heights of narrow and broadband peaks (hn and hbb) can serve as the most
straightforward metric of suppression of high order atomic modes (k > 0). The response of {x̂S , p̂S} is distributed
between several peaks in the spin noise spectrum presented on Fig.4.8 owing to spin polarization P < 1 and the
strength of magnetic field big enough to resolve Zeeman multiplets. Hence, we reconstruct the Lorenz peak with
the linewidth γS ≈ 300 Hz extracted from CIFAR and integrated area as for split configuration calculated by
fitting16 experimental data. Doing so, we obtain the effective height hn,eff of peak produced by the mode k = 0
and find the ratio hn,eff/hbb ∼ 800.

4.4 Quantum noise limited spin oscillator

4.4.1 Noise budget in a framework of Faraday interaction model

We can calculate the spectrum of the atomic noise using eq.(4.40) with added broadband noise as

SS(Ω)|q̂L(ζS) = 1 + 4ηSQBA cos2(ζS) + 2ηScorr sin(2ζS) + 4ηSTh cos
2(ζS) + ηSbb cos

2(ζS). (4.60)

where the total noise is normalized to the shot noise of the probe light. The right-hand side of eq.(4.60) consists of
the following terms: the unity represents the imprecision noise, SQBA = Γ2

S |χS(Ω)|
2 is back-action noise, Scorr =

ΓSRe [χS(Ω)] are cross correlations between SN and QBAN, STh ≈ 2γSΓS |χS(Ω)|2 σTh is thermal noise with σTh
given by eq.(4.52), Sbb represents the broadband noise. Since we use the spectral range |Ω − ΩS | ∼ γS ≪ γS,bb
to calibrate the spin oscillator, the broadband noise is seen as an offset added to the shot noise rather than the

15A2
nb = Γ2

S + ΓSγS(2nS + 1) and similarly for Abb
16In order to fit the narrowband part of the spectrum, the model eq.(4.59) has to be modified: A2

nb/((ΩS −ω)2+(γS/2)
2) is replaced

by a superposition of Lorenz functions. This circumstance will be of crucial importance in the section 4.4.2.
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Figure 4.8: Main plot: the (composite) spin noise spectrum measured at the strength of external magnetic field
corresponding to ΩS ≈ 1.017 MHz. The left subplot shows the broadband noise formed by high-order diffusion
modes

∑
k=1 ĵ∓,k according to [119]. The right subplot demonstrates the narrow line of long-lived atomic mode

with decay rate defined by spin-spin and spin-wall damping mechanisms. This line is split because of quadratic
Zeeman effect and non-perfect spin polarization. See text for details.

component shaped by the Lorenz function χS,bb (see eq.(4.58)). The detection efficiency η is introduced to account
for optical losses on the cell and in the optical path towards the homodyne detection.

Each noise source was initially estimated independently. Specifically, the readout rates and the susceptibility
function were reconstructed by CIFAR, giving the information about QBAN and cross-correlation terms. The
thermal occupation nS ∝ STh was obtained from MORS, the broadband noise was calibrated in the section 4.3.4.
The detection efficiency η = 0.92 is obtained by measuring the transmission of the cell and characterizing each
optical element after the ensemble, including the quantum efficiency of photodiodes.

In the following section, we will fit the spectra of spin noise at different detection angles ζS and evaluate the
amount of QBAN in the atomic oscillator compared to all other noise sources. The fit with the spin model can
be used to independently validate the models for CIFAR and MORS. However, we mainly rely on spin noise fit.

We will see that the model given by eq.(4.60) appears as incomplete because of two reasons. First, the probe
laser is not shot noise limited, and the extra intensity fluctuations are perceived by the atomic ensemble. Secondly,
the light-matter interaction is restricted by the Faraday model meaning the QND regime. However, as we have
seen in section 4.2.4, the tensor interaction plays a significant role and can’t be ignored.

Provided relatively low level of the thermal noise (meaning small nS), properly adjusted detection angle ζS
yields the drop of noise level below the shot noise, manifesting ponderomotive squeezing. In the limit χS ≈ Re{[χS ]}
the maximal value of the squeezing induced by spin ensemble is achieved for the optimal detection phase ζS,opt
and in a narrow spectral range around Ωopt, expressed by

SS(Ωopt)|q̂L,out(ζS,opt) ≈ 1− η
Cq

Cq + 1
, (4.61)

where Cq is the atomic quantum cooperativity defined as the ratio between QBAN and thermal noise:

Cq =
SQBA
STh

=
ΓS

γS (1 + 2nS)
. (4.62)
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Figure 4.9: The spectra of the optical field after probing the atomic spin oscillator with |ΩS |/(2π) = 0.96 MHz.
Top panel: the phase quadrature (ζS = 0) is detected. We distinguish the positive (a) and negative (b) mass
configurations, comparing the frequency of the strongest transition ωS1 to the other transitions from the F = 4
multiplet (only ωS1a can be identified). In addition, we observe the spectral component at frequency ωS2 that
is always bigger than ωS1 and ωS1a, regardless of the sign of the mass of the oscillator at F = 4. This line
presumably appears because of inhomogeneous magnetic field across the cell. We include it as a third oscillator
into the model. Bottom panel: Adjustment of the homodyne detection phase ζ = ζopt allows for the observation
of the ponderomotive squeezing.

4.4.2 Calibration of quantum back action noise

Atomic oscillator in MHz spectral range. Multi-oscillator model

We initially select the frequency detuning ∆ = 1.6 GHz17 of the optical field from the transition 6S1/2, F =
4 ↔ 6P3/2, F

′ = 5 and the optical power of the probe field Pprobe ≈ 1 mW. We then start with the measurement
of spin noise, setting magnetic field to the level, which corresponds to the resonance frequency ΩL = 0.96 MHz
according to eq.(4.3). By controlling the polarization of the optical pumping fields, we can initialize the atomic
state with the macroscopic spin oriented along or opposite to the external magnetic field. Thus, we switch between
the regimes of the ensemble with positive and negative mass [39]. The respective spin noise spectra are shown on
Fig.4.9a-4.9b in which the phase quadrature is detected. Analogous to Fig.4.3, one can resolve at least two lines
from F = 4 hyperfine manifold due to the quadratic Zeeman splitting and finite spin polarization. With regard
to the model given by eq.(4.60), we obtain two two-level systems, hence, two oscillators. When the macroscopic
spin is counter-oriented to the static magnetic field (Fig.4.9a), the first oscillator is formed by |F = 4,mF = −4⟩
and |F = 4,mF = −3⟩ levels, the second corresponds to |F = 4,mF = −3⟩ ↔ |F = 4,mF = −2⟩ transition. In
the case of spin polarization along magnetic field (Fig.4.9b) we identify |F = 4,mF = 4⟩ ↔ |F = 4,mF = 3⟩ and
|F = 4,mF = 3⟩ ↔ |F = 4,mF = 2⟩ transitions with the two observed peaks, respectively. In the positive-mass

17the adjustment of ∆ later will be of critical importance
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(negative-mass) regime the ’desired’ |F = 4,mF = −4⟩↔|F = 4,mF = −3⟩ (|F = 4,mF = 4⟩↔ |F = 4,mF = 3⟩)
oscillator prevails, confirming that the atomic ensemble was prepared in the correct state with polarization P
approaching unity. At the time of data processing, the low broad spectral component to the right of F = 4
multiplet (it is named ’bump’ in the section 4.3.2) in both spectra was recognized as unresolved F = 3 manifold,
rising due to the limited performance of the repump. Considering relatively high degree of orientation on F = 3,
we decided to account for it by adding the third oscillator into the model. Having done tests afterwards, we
realized that the spectral spacing between alleged F = 3 and F = 4 structures doesn’t follow eq.(4.2) while
changing the strength of the applied magnetic field. Moreover, reducing the repump power, we managed to find
the real (resolved) F = 3 manifold. Our current understanding (not reinforced by profound investigations) is
that the component at ωS2 still belongs to F = 4 level, which is however split due to the inhomogeneity of the
magnetic field through the cell. Therefore, the atoms perceive different field and experience different energy shift
at specific parts of the cell (for example, the center versus edges). In such case scenario, complementing the model
by another single oscillator18 also seems justified.

Based on the discussion above, the model eq.(4.60) should be extended to the case of three oscillators. To
implement that, we replace the contribution of QBAN SQBA by the term

SQBA,
∑ = |

n=3∑
i

eiψS,iΓS,iχS,i(ΩS,i, γS,i,Ω)|2. (4.63)

Such a modification reflects that each oscillator is assigned a specific readout rate ΓS,i, a damping rate γS,i and
a resonance frequency ΩS,i. Secondly, introducing phases ψS,i, we emphasize that quantum back action noise can
interfere between different oscillators. The last circumstance isn’t valid for thermal noise that is now calculated
as STh,

∑ =
∑n=3

i STh,i where STh,i is defined as in eq.(4.60). It means that the interaction of each oscillator with
the environment is determined by the individual thermal occupations nS,i.

The utilization of the multi-oscillator model apparently questions the trustworthiness of extracted parameters
assigned to an individual oscillator. Instead, we rely on total quantum back action noise and thermal noise
calculated as integrated areas of spectrum based on the performed fit. In particular, we estimate their ratio
and find cooperativity Cq = 2.7 for the positive-mass system that agrees well with the measured ponderomotive
squeezing SS = −4.6 dB, shown on Fig.4.9c. Upon inverting the spin population, we witness the drop of the
squeezing down to SS = −3.7 dB, see Fig.4.9d. Since we flip the orientation of B in this particular experiment
instead of switching the polarization of pumping fields, the small reduction of the ponderomotive squeezing may
be related to sub-optimal current ratio between coils controlling magnetic field. Therefore, an extra broadening is
added to the spin decay rate. However, regardless the sign of the effective mass, the motion of the spin ensemble
is predominantly driven by quantum noise in MHz spectral range.

The correctness of extracted QBAN and thermal noise is further confirmed by studying their behaviour as a
function of the probe detuning ∆. The expressions for the integrated areas are

∫
Ω SQBAdΩ ∝ Γ2

S

∫
Ω |χS (Ω)|2 dΩ =

Γ2
S/γS ∝ A2/

[
∆2
(
γS,in∆

2 + C
)]

and
∫
Ω SThdΩ ∝ γSΓS

∫
Ω |χS (Ω)|2 dΩ = ΓS ∝ A/∆2 respectively19. Here

ΓS = A/∆2, γS = γS,in + C/∆2, where A, C and γS,in are constants that don’t depend on ∆. We validate the
expected behavior both for

∫
Ω SQBA and

∫
Ω STh while varying ∆, as shown in Fig.4.10. Only two oscillators

from resolved F = 4 manifold are taken into account when fitting
∫
Ω SQBA(∆) and

∫
Ω STh.(∆), whereas the last

oscillator (’spurious F = 4’) is discarded.

Spin oscillator when resonance frequency is reduced from 130 kHz down to 10 kHz at fixed (1.6
GHz) detuning ∆. Growth of nS

We stick to the positive-mass configuration and reduce ΩS to 130 kHz. The quadratic Zeeman splitting
between |mF = 4⟩ ↔ |mF = 3⟩ and |mF = 3⟩ ↔ |mF = 2⟩ now becomes negligible, and those two oscillators
effectively merged into one. We now have to choose between the single oscillator model and its extension up to
two oscillators in total, since the ’spurious F = 4’ oscillator is still pronounced. We compare two models when
fitting the spectrum of the phase quadrature p̂L,out and the quadrature q̂L,out(ζS,opt), which yields the strongest

18We will refer to it as ’spurious F = 4’ oscillator
19The coefficient a1 is considered to be independent on the detuning ∆ here, such approximation works well withing the range of ∆

investigated in this experiment
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Figure 4.10: Quantum back action noise (left) and thermal noise (right) at varied dutuning ∆. Red points
are experimental data, obtained from integrated area of the respective noise. Blue lines are imposed fits:
NQBA/

[
∆2
(
γS,in∆

2 + C
)]

for QBA noise and Nth/∆
2 for thermal noise respectively, see text for details. The

normalization constants NQBA and Nth are not parameters of importance for us here. The coefficients γS,in and C
define contributions of intrinsic linewidth and power broadening to the total decay rate and thus should be fixed
according to the earlier stages of calibration (CIFAR and MORS).
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Figure 4.11: Spin noise spectra at the resonance frequency scanned from ΩS = 130 kHz down to 11 kHz when the
detection angle ζS is set to observe the phase quadrature (top panel) and the largest ponderomotive squeezing
(bottom panel). The optical detuning ∆ is set to 1.6 GHz.

ponderomotive squeezing. It was found that the readout rate for the ’desired’ oscillator is equal to ΓS,1 = 3.8 kHz
in both cases, whereas the remaining oscillator exhibits ΓS,2 = 0.15 kHz ≪ ΓS,1. We then decided to proceed with
the single oscillator model from this point and extracted all essential parameters of the atomic spin ensemble. The
measurement rate ΓS (index ’1’ is omitted) and the linewidth γS = 0.22 kHz are in reasonable agreement with
the results of the CIFAR calibration, whereas the amount of thermal noise, encoded in the thermal occupation
nS = 3.7, is bigger than the value nS = 0.6 estimated from MORS. Finally, we get the cooperativity Cq = 1.9 and
the level of ponderomotive squeezing SS = −4.0 dB, which matches well to the experimentally observed value and
thus supports the validity of the model.

We proceed by shifting the Larmor frequency down towards the acoustic range (see Fig.4.11). As follows from
the fit, the reduction of ΩS is accompanied by a gradual rise of the atomic linewidth and a drastic enlargement
of the thermal occupation nS while the readout rate remains at the same level as well as the broadband noise
Sbb. The growth of the spin damping rate might be again attributed to sub-optimal ratio between coils. At the
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same time, we don’t expect the decline of the spin polarization when the frequency is reduced. As will be shown
below, the observed increase in nS effectively accounts for the noise sources driving the spins that have not been
explicitly included in the model eq.(4.60). Big values of nS explain the degradation of the cooperativity in the
lower spectral range. As a result, the ponderomotive squeezing entirely disappears at ΩS ≈ 10 kHz.
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and shot (green) noise.

Measured
Estimated

10 50 100 500 1000

-4

-3

-2

-1

0

ΩL/2π [kHz]

S
q
[d
B
]

z=
0.
75

z=
0.
4

z=
0.
2 z=

0.
1

(b) The ponderomotive squeezing as a function
of the Larmor frequency

Figure 4.12: The reduction of the ponderomotive squeezing with lowering the Larmor frequency ΩS is attributed
to the enhancement of the laser intensity noise (left subplot, red trace). Right subplot: blue dots/blue curve
(with shaded blue area as confidence interval) predict the decline of quantum noise suppression using formula
eq.(4.64). The discrepancy between model and experimentally observed ponderomotive squeezing (red data) is
increased towards the acoustic frequency range and presumably originates from the impact of ’DC’-noise.

How laser intensity noise compromises quantum-noise-limited behaviour of the spin oscillator in
the framework of the Faraday interaction model

One can relate the reduction of the ponderomotive squeezing to the rise of the colored intensity noise of the
probe laser upon lowering the resonance frequency ΩS . In order to interrogate the atomic ensemble, we use a
DL Pro laser (Littman Metcalf configuration, the same as for the repump in MORS experiment). The spectrum
of its amplitude noise is shown on Fig.4.12a, when the optical power is set to the operating point of 1mW. In
the previous subsection we included the intensity fluctuations (among other effects) into the effective thermal
occupation. Now we make an attempt to quantitatively evaluate the contribution of the probe laser noise to the
spin noise budget using the link eq.(4.61) between the cooperativity and the level of the ponderomotive squeezing.
To do that, we modify the expression eq.(4.62) for Cq and arrive to Cq = SQBA/ (STh + Sint), where the term Sint
represents initial intensity fluctuations perceived by atoms and printed back onto the output light quadrature.
Here we follow the logic that any extra noise (the intensity noise of probe laser in our case) uncorrelated with
QBAN should be added in the same manner as we account for thermal noise. In order to calculate the term Sint,
we first consider the coupling of probe power fluctuations to the spin noise at frequencies close to ΩS by means
of tensor interaction in the way outlined in the subsection 4.2.4. However, the magnification of probe intensity
noise down to 10 kHz isn’t significant enough to explain the drop of quantum noise reduction that was observed
in experiment (Fig.4.11). Our next assumption is that the atomic ensemble senses the power fluctuations of probe
via Faraday interaction model20. Namely, an extra laser noise is coupled through the same readout rate ΓS as
quantum noise limited light. Therefore, we define the ’classical back action noise’ Scl.BA as the response of atomic
system on the intensity laser noise. The expression eq.(4.62) for cooperativity is now converted to:

Cq =
SQBA

STh + Scl.BA
=

SQBA
STh + ZSQBA

, (4.64)

where Z is the amount of laser intensity noise on top of SN in SN units. Eq.(4.64) readily explains the drop of
ponderomotive squeezing from ΩS ≈ 1 MHz to ΩS ≈ 100 kHz. However, the discrepancy between the prediction
by the model and the data grows when audioband is approached, as shown on Fig.4.12b.

20It directly contradicts to [113] though
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Spin noise formed by tensor interaction

We continue extending the model given by eq.(4.60) and now focus on the Hamiltonian ĤFF (2) from eq.(4.32).

It is responsible for the tensor dynamics beyond Faraday interplay ∝ a1Ŝz ĵz. We start with the term ĵxĵy + ĵy ĵx
and explore its impact on the spin noise spectra, varying the angle β of the probe polarization before entering
the atomic cell. The experimental results are demonstrated on the Fig.4.13. In accordance with section 4.2.4, we
see that a deviation from β = π/4 is accompanied by the disturbed amplitude quadrature of light x̂L,S,out. It is
manifested in the characteristic dip/peak in the spectrum (presented on Fig.4.13a), which should be flat around
Larmor frequency ΩS in the framework of the Faraday rotation model. Next, we set the homodyne phase to detect
the phase quadrature and also see different spectra depending on β, shown on the Fig.4.13b. This effect might be
seen as an alteration of the readout rate ΓS and the damping rate γS

21. The last circumstance in turn changes the
level of ponderomotive squeezing, see Fig.4.13c. Eventually, we get rid of the term ĵxĵy+ ĵy ĵx, setting β such that
the output light quadrature x̂L,S,out is unperturbed after passing the spin ensemble. Hence, the corresponding
alignment operator doesn’t contribute to the spin noise budget.
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Figure 4.13: Effect of the term ĵxĵy + ĵy ĵx and its compensation by the adjustment of the polarization angle β of
the input light.
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Figure 4.14: Spin noise spectra measured at the magnetic field corresponding to ΩS ≈ 43 kHz. One can identify
the spin response centered around Larmor frequency, but also two peaks located at Ω ≈ 2ΩS (shown on subplot)
and Ω ≈ 0 (the enhancement of the noise below Ω ≲ 20 kHz for the red curve). The last two are presumably
attributed to the tensor operator ĵ2x − ĵ2y .

21If the atomic linewidth is enlarged, then we have tensor broadening, as mentioned in the section 4.2.4
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Figure 4.15: Left plot: ’DC’-noise at different frequencies ΩL while the detuning ∆ = 1.6 GHz is fixed. One
can make a conclusion that the bandwidth and the center frequency (assumed to be 0) doesn’t change with the
strength of the magnetic field. Middle plot: Spectra of ’DC’-noise at different ∆ while the Larmor frequency
ΩL = 960 kHz is fixed. The amplitude of the noise is clearly reduced with increase of the detuning. Right
plot: Red dots: the integrated areas of DC-noise, recovered from spin noise spectra and measured at different
detunings. Blue curve: imposed fit using the function NDC/

[
∆4
(
γS,in∆

2 + C
)]
. The parameters γS,in and C are

set to match the results of the fit of SQBA(∆) (presented on Fig.4.10), although it might seem to be unnecessary
requirement. See text for the details.
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Figure 4.16: Spin noise spectra at the resonance frequency varied within the acoustic spectral range (ΩS = 6, 11,
19 kHz from left to right) and the detuning ∆ = 3.1 GHz. Main plots demonstrate the measurements of the phase
optical quadrature, whereas the insets show the optimized ponderomotive squeezing for a specific ΩS . One can
clearly see the improvement compared to the case of ∆ = 1.6 GHz, outlined on Fig.4.11.

Apart from the atomic response recorded onto the probe optical field and manifesting in the frequencies near
ΩS , we notice other spectral components. An example is shown on Fig.4.14, where the magnetic field is tuned to
ΩS ≈ 43 kHz. One can see two components that are clearly separated from the Fano resonance curve corresponding
to the ponderomotive squeezing. The first feature is a tiny peak at Ω ≈ 86 kHz, whereas the second is represented
by the abrupt rise of the noise towards DC-frequencies. The latter presumably constitutes the peak centered
at Ω = 0, although we didn’t manage to characterize the spectra below 1 kHz due to the limited performance
of our homodyne detection. We suppose that the spin responses at Ω = 0 and Ω = 2ΩS originate from the
second spin alignment operator ĵ2x − ĵ2y . The main argument in favour of this is the fact that the matrix elements

⟨m′| ĵ2x − ĵ2y |m⟩ ≠ 0 if |m′ −m| = 0 (according to eq.(4.45a)- (4.45b)) or |m′ −m| = 2. However, the reasoning

outlined above contains the following flaw. The alignment operator ĵ2x− ĵ2y couples to the orientation spin operator

ĵz through the Stokes component Ŝy (see eq.(4.41c)) that produces the response at spectral frequency Ω = ΩS .
Therefore, spin components ĵy(z) should not be affected at Ω = 0 and Ω = 2ΩS even despite the fact that the

alignment operator ĵ2x − ĵ2y itself exhibits the dynamics at these frequencies. It apparently means that the rise of
the DC-component and the component at twice Larmor frequency in the spectrum of light field q̂L,S,out probing
the atomic ensemble is not predicted by eq.(4.41)-(4.42), if they are analyzed using a simplified ’perturbation
theory’ approach. In the absence of the precise analytical solution and/or numerical simulations of the light-spin
coupling by means of the tensor interaction, we don’t attempt to resolve this question here. At the same time, an
experimental observation of DC and double Larmor peaks is reported in [123] with rationale given by [124].

84



1.5 2.0 2.5 3.0 3.5 4.0 4.5

-2

0

2

4

6

Δ/2π [GHz]

P
S
D
[d
B
,r
el
at
iv
e
to
S
N
]

Figure 4.17: The influence of the detuning ∆ on the value of the ponderomotive squeezing, the Larmor frequency
ΩS is within the spectral range where the ’DC-noise’ is significant. The obtained results can be interpreted as an
evidence that there is an optimal ∆|opt (= 3.0− 3.5 GHz in considered case), at which the ratio between QBAN
and other noise sources (including ”DC-noise”) is maximized. It agrees with eq.(4.65).

We now focus on the DC-component (we will refer to it as ’DC’-noise) that covers the spectral range Ω ≲ 20
kHz and isn’t changed when the Larmor frequency is varied (see Fig.4.15). Consequently, the ’DC’-noise has a
tangible overlap with the Larmor peak when the spin oscillator is shifted down to the audioband. In order to
account for the ’DC’-noise in the spin model, we introduce the term SDC that has to be added to eq.(4.60). The
presence of SDC allows to explain the mismatch between the experimentally observed ponderomotive squeezing
in the acoustic band and the value predicted by Eq.(4.64).

One possible way to understand the origin of the ’DC’-noise is to explore its integrated area as a function of the
detuning ∆ in a manner that it was done for QBAN and thermal noise. Having in mind the tensor interaction, we
expect SDC ∝ (a2/a1)

2 (ΓS)
2 |χS,DC(Ω)|2, where χS,DC(Ω) is the susceptibility function that defines the spectral

shape of the ’DC’-noise. In the absence of any analytical or numerical solution, we can’t directly introduce
χS,DC(Ω). However, we anticipate somewhat similar to the Lorenz peak with center frequency located at Ω = 0.
Consequently, one may surmise

∫
Ω |χS,DC(Ω)|2dΩ ∝

∫
Ω |χS(Ω)|2dΩ if the mechanisms forming decay rate γS are

still valid for SDC . Finally, we obtain the expression
∫
Ω SDC ∝ (a2/a1)

2 ∫
Ω SQBA ∝ 1/

[
∆4
(
γS,in∆

2 + C
)]

for
the integrated area of the DC-noise, using the approximations a2 ∝ 1/∆ and a1 ≈ 1. This dependence on the
detuning is validated on Fig.4.15 for the experimental data, when ΩS is moved up to the MHz range to avoid an
overlapping with the ’DC’-noise. The less assumption-dependent but also less specific conclusion is that

∫
Ω SDCdΩ

scales down faster than 1/∆4 as ∆ is increased. It is already sufficient to claim that the ’DC’-noise doesn’t come
from the Faraday interaction model.

The fast reduction of SDC upon increasing the probe detuning, being presumably explained by the term a2,
opens the possibility to optimize the cooperativity and the ponderomotive squeezing in audio frequency range.
However, one needs to compare the ’DC’-noise with SQBA and STh (Scl.BA) since the latter three terms also
depend on the detuning. We express the cooperativity as a function of the detuning, using

[∫
Ω SQBAdΩ

]
(∆),[∫

Ω SThdΩ
]
(∆),

[∫
Ω Scl.BAdΩ

]
(∆) obtained earlier, and then apply the approximation eq.(4.61) with added SDC

term. We finally arrive to the formula:

SS ≈ 1− η
Cq(∆)

Cq(∆) + 1
+

D

∆r
, (4.65)

where Cq(∆) ∝ 1/(1 + B∆2) (the coefficient B might be expressed using A, C, γS,in and Z defined above) and
SDC = D/∆r (r ∈ [4, 6]) is the simplified expression for ’DC-noise’. Eq.(4.65) predicts the existence of a minimum
of SS that is achieved at some optimized ∆opt. It turned out that set of parameters chosen for outlined experiments
gives ∆opt ∈ 3 − 3.5 GHz, which is higher in comparison to the initial value ∆in = 1.6 GHz. Thus, increasing
the detuning, we managed to improve the performance of the spin oscillator in audio frequency range, as shown
on Fig.4.16. In particular, we observed SS = −1.4 dB and SS = −0.85 dB of the ponderomotive squeezing at
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ΩS = 11 kHz and ΩS = 6 kHz respectively at ∆ = 3.1 GHz. The validity of the expression eq.(4.65) is confirmed
as shown on Fig.4.17. Exceeding the value ∆opt leads to the situation where the reduction of the ’DC-noise’ cannot
compensate the decline of SQBA/STh due to the significance of the intrinsic spin linewidth. Notably, if the system
is operated in the ’power-broadening’ limited regime (γS,in ≪ γS ≈ γS,pb = C/∆2), then it will be possible to
keep boosting ∆ until the ’DC’-noise is completely eliminated. However, the strong intensity noise of the probe
laser precluded us to reach the configuration where the contribution of the power broadening to the linewidth
dominates for the spin oscillator in acoustic range.

4.4.3 ’Virtual rigidity’ interpretation

ζS=-0.25π (theory)

ζS=0.0π(data)
ζS=0.47π(data)
ζS=-0.44π(data)
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Figure 4.18: Main plot: Force-normalized quantum noise of light (SN and QBAN) exhibiting the tuning of
effective resonance frequency ΩS , corresponding to the position of the minimum for each curve. The shift depends
on the homodyne detection phase ζS , see eq.(2.22). In addition, the effective readout rate Γ̃S = ΓS cos

2 ϕ is
reduced, leading to a reduction of the parabola’s vertical offset and an increase of its steepness. Inset (right
bottom subplot): The corresponding unnormalized spectra showing the ponderomotive squeezing.

We demonstrate that the ponderomotive squeezing in spin noise spectra is directly linked to the virtual rigidity
defined in section 2.3. Considering the lossless detection η = 1 and the absence of the broadband noise, we present
eq.(4.60) in a form:

SS = NS,th (σTh + σLN ) (4.66)

where NS,th = 8ΓSγS |χS |
2 cos2 (ζS) is the normalization factor, the physical meaning of which is the response of

the oscillator to the thermal force (being a particular case of the external force driving the motion of the oscillator).
In turn,

σL.N. =
1

2

ΓS
γS

+
1

4

sin (2ζS)

cos2 (ζS)

Re[χS ]

γS
∣∣χS∣∣2 +

1

8ΓSγS
∣∣χS∣∣2 cos2 (ζS) (4.67)

is the spectrum of the force, which represents the quantum noise of light normalized by the tranfer functionNS,th. If

the phase quadrature p̂L,S,out is detected, then eq.(4.67) becomes σL.N.(ζS)|ζS=0 = ΓS/ (2γS)+1/(8ΓSγS |χS |
2). On

the other hand, the general form of eq.(4.67) might be written as σL.N.(ζS) = ΓS,eff/ (2γS)+1/(8ΓS,effγS |χS,eff |2),
where ΓS,eff = ΓS cos

2 (ζS) is the effective readout rate, χS,eff = ΩS,eff/(Ω
2
S,eff − Ω2 − iγSΩ + (γS/2)

2) ≈
0.5/ (ΩS,eff − Ω− iγS) is the effective susceptibility function with the modified resonance frequency ΩS,eff ac-
cording to eq.(2.22). We retrieve σLN from spin noise spectra, collected in the experiment (ΩS ≈ 40 kHz) and
measured at different homodyne angles ζS . As shown on Fig.4.18, we observe the effective downshift of the
Larmor frequency by ∆ΩS,eff = −0.8 kHz and expect to get ∆ΩS,eff ≈ −2 kHz at selected parameters of the

86



spin ensemble - it would be just a matter of setting the detection angle to π/422. Combining this result with
the ponderomotive squeezing at Ω = 6 kHz, we would obtain the quantum-noise-dominated motion of the spin
oscillator with the effective resonance frequency ΩS,eff ≈ 4 kHz, thus approaching the lower part of audioband at
experimental conditions demonstrated here.

22However, we were not interested in such a choice of ζS , since our purpose was to maximize the level of ponderomotive squeezing
that happens at detection phase near π/2
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Chapter 5

Conclusions and future directions

5.1 Combining entanglement and atoms: frequency-dependent conditional
squeezing

We have outlined the preparation and characterization of the entangled state of light and the atomic spin
ensemble in quantum regime, as reported in chapters 3 and 4, respectively. Each system has a potential to become
a crucial element of diverse quantum enhanced protocols, such as quantum metrology or quantum networks. In
this thesis, we focus on the specific application that is the quantum noise reduction in laser interferometer-type
GWDs, exploring the approach [42] detailed in the chapter 2. This scheme is expected to provide a sensitivity
enhancement for the next generations of interferometric GWDs in the frequency band, where the quantum radiation
pressure noise together with the imprecision noise will dominate. Therefore, the ultimate goal is to address the
spectral range Ω ≲ 100 Hz, which is unreachable for either of two independently prepared systems at the time of
writing this thesis. Specifically, the entanglement between optical modes is preserved down to Ω ≈ 10 kHz, but
severely contaminated by technical noise at lower frequencies. In turn, an environmental noise, particularly acting
on the atomic ensemble through the tensor alignment dynamics, prevails over the quantum back action noise of
the spin oscillator at Ω ≲ 10 kHz. It is manifested in the deterioration of the ponderomotive squeezing produced
by the atomic ensemble, when its resonant frequency is decreased. Applying the advanced locking scheme for
OPO (sec. 3.8.2), we predict the extension of operational range of entanglement down to 1 kHz. We also see
the detrimental impact of amplitude noise of probe optical field for the spin oscillator as substantial. Using the
intensity stabilization loop, we hope to provide a quantum regime for the atomic ensemble approaching spectral
frequencies Ω ≈ 1 kHz.

After modifications considered above are implemented, one can perform the tests of a hybrid quantum system,
implying that the entangled light and the atomic ensemble are coupled and the spectral range 1-20 kHz is covered.
Without having any prototype of quantum mechanical oscillator mimicking the dynamics of the test mass mirror
in the GWD interferometer, we intend to prove the experimental feasibility of quantum noise reduction scheme
[42] by presenting a two-mode conditional squeezed state of light where the phase of one optical mode experiences
the frequency dependent rotation induced by the interaction with the spin oscillator. The latter thus replaces a
filter cavity, which compensates the rotation of the signal quadrature caused by the quantum radiation pressure
noise in the GWD. The rest of this chapter is devoted to the proposal and modelling of the experiment that can
be seen as alternative to techniques studied in [29, 30].

The planned experiment starts with entangling two optical modes, encoded in quadrature bases x̂L,I , p̂L,I
and x̂L,S , p̂L,S respectively. Having been prepared by means of spontaneous parametric down conversion (SPDC)
process (see sec.1.3.1), such two-mode squeezed vacuum (TMSV) state is characterized by coefficient r determining
the strength of interbeam correlations (eq.(1.17)). The first optical mode q̂L,I(ζI) = cos(ζI)p̂L,I+sin(ζI)x̂L,I , being
referred to as signal, is directed to homodyne detection, the homodyne phase ζI is adjusted. The other mode
x̂L,S , p̂L,S , named ’idler’, initially probes the atomic ensemble. It leads to the transformation according to input-
output relations eq.(4.40). Consequently, one can use the following expression to present the phase quadrature
p̂L,S,out of the idler mode that passed through the spin oscillator:

p̂L,S,out = NLNS

[
cos(θS,eff )p̂L,S + sin(θS,eff )x̂L,S + Uthf̂th

]
, (5.1)
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Figure 5.1: The simulated spectra of entangled two mode squeezed vacuum (TMSV) state of light (the squeezing
factor r = 0.75 corresponding to ≈ −6.5 dB quantum noise reduction with respect to the shot noise of two
modes), whose idler mode interacts with the atomic spin ensemble. Both modes are measured by means of
homodyne detection, the idler quadrature is renormalized by total quantum light noise (SN+QBAN), see text
for details. The idler homodyne phase ζS is set to record the phase quadrature, while the signal detection angle
ζI is varied. The resulting noise follows eq.(5.2) that is normalized by the noise of vacuum states in each mode
(TMV). For all subplots the atomic coupling rate ΩqS =

√
ΓSΩS and full spin damping rate γS are set to 4 kHz

(marked with black dashed vertical lines) and 0.4 kHz respectively. The resonance spin frequency ΩS is always
positive here. Equal relative weights for signal and idler quadratures are selected (g =

√
0.5), unless otherwise

specified. Top left panel: ΓS = 16 kHz, ΩS = 1 kHz, thermal noise and projected noise are ignored (the last
term on the right side of eq.(5.1) is manually zeroed), optical losses in both signal ad idler modes are absent. Top
right panel: ΓS = 6 kHz, ΩS = 2.7 kHz, spin projection noise is added while nS=0, optical losses are absent.
Bottom left panel: ΓS = 6 kHz, ΩS = 2.7 kHz, thermal noise is included (nS=2.5), optical losses are absent.
Bottom right panel (most realistic case for the experimental setup discussed in this thesis): ΓS = 6 kHz,
ΩS = 2.7 kHz, nS=2.5, optical losses are 20% for each mode. Insets on right top corner for bottom and top right
panels: SSqC(Ω, ζI(Ω)|opt) is compared to two mode squeezing STMSV = exp(−2r) (see eq.(1.31) ) before idler
mode interacts with atomic ensemble. White dashed curves show the contour ζI(Ω)|opt = −ArcTan [2ΓSχS(Ω)]
that determines the optimal detection phase ζI for specific spectral frequency Ω to minimize the noise SSqC in
two optical modes.
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where NLNS =
√
1 + 4Γ2

S |χS |2, θS,eff = ArcTan (2χSΓS). If p̂L,S,out is measured by means of homodyne detection

and renormalized dividing by NLNS , then one can see (looking at the first 2 terms on the right side of eq.(5.1))
the interaction of idler mode with spin ensemble as the effective rotation of the quadrature q̂L,S ≡ q̂L,S(θS,eff ) =
p̂L,S,out/NLNS defined by effective phase angle θS,eff . In fact, it is caused by change of the ratio between QBAN
(∝ x̂L,S) and imprecision noise (∝ p̂L,S) with the Fourier frequency Ω. The factor Uth = (2

√
2ΓSγS)χS/NLNS in

eq.(5.1) represents the rescaling of thermal force acting on the ensemble, and the broadband noise is neglected.
The expression

SSqC =
〈
∆
(
gq̂L,I(ζI) +

(√
1− g2

)
q̂L,S(θS,eff )

)2 〉
(5.2)

determines the noise obtained by combined measurement of signal and idler quadratures with arbitrary relative
weight (defined by factor g), normalized by noise in both modes containing vacuum state (representing two-mode
SN or two-mode vacuum (TMV)). In order to maintain the strongest interbeam correlations across the wide
spectral range1, one will need to align the signal homodyne angle

ζI(Ω)|opt = −θS,eff = −ArcTan (2χSΓS) (5.3)

as function of the frequency Ω. If the spin oscillator can be approximated by the motion of a free mass object, then
the functional dependence given by eq.(5.3) is exactly opposite to the rotation of the signal phase accumulated
while passing the GWD interferometer, provided the correct choice of the atomic coupling rate ΩqS . The role
of the negative mass (the negative resonance frequency2) of the spin oscillator becomes clear at this point: if the
positive mass is used instead, then the atomic ensemble turns the idler quadrature in the phase space in such a
way, that the undesired rotation of the signal quadrature is enhanced rather than being cancelled.

Aiming at proof-of-principle demonstration, we set the task for creating such a frequency dependent two
mode squeezed state of light that would be relevant for broadband quantum noise reduction in a fictitious GWD
interferometer with coupling rate ΩqM =

√
K ′
I = 4 kHz (which is in fact two orders higher than in contemporary

versions). Different configurations of parameters, describing the spin oscillator with coupling rate ΩqS =
√
ΓSΩS =

4 kHz, are explored and shown on Fig.5.1. The spectrum of the entanglement source is assumed to be flat
and spanned down to DC-frequencies with squeezing factor r = 0.75 roughly matching the experimental results
presented in chapter 3. The upper left subplot demonstrates the most optimal configuration. Specifically, the
inequality ΩS , γS ≪ ΩqS is fulfilled, making the approximation of free mass motion justified. In a result, the
’desired’ rotation of the idler quadrature is obtained, starting from p̂L,S well above ΩqS to x̂L,S at frequencies
approaching DC. The situation changes if the Larmor frequency ΩS is increased and becomes comparable to ΩqS ,
as shown on the top right subfigure of Fig.5.1. In contrast to the previous case, the effective idler phase θS,eff
now reaches π/2 at spectral range significantly higher than Ω = 0. It can also be seen as a displacement of
’effective’ atomic coupling rate that may be defined as characteristic spectral frequency Ω giving some specific
ratio between QBAN and SN (for example, unity). In addition, the impact of finite atomic damping rate and
projection noise is manifested in degradation of interbeam correlations which is mostly pronounced near transient
spectral frequencies around ΩqS . Further increase of ΩS will shrink the range of idler phase rotation, similarly
to the impact or big atomic linewidth γS (both cases aren’t covered here). The bottom left subplot of Fig.5.1
exhibits the detrimental influence of finite atomic thermal noise. The presence of thermal and projection noise
may be considered as one of the most critical drawbacks of atomic spin ensemble in comparison to filter cavities.
Finally, optical losses are included into the model on the bottom right subplot.

Overall, the bottom right subfigure of Fig.5.1 shows the realistic configuration, based on the characterization
of the spin oscillator performed in chapter 4 and envisioning upcoming upgrades. In particular, we emulate the
composite effect of thermal noise, environmental noise and tensor alignment spin noise using thermal occupation
nS = 2.5. Indeed, doing optimization of ponderomotive squeezing for the case ΩS ≈ 10 kHz, we managed to reduce
nS down to 2.5-3 appearing from the fit of total spin noise. The total homodyne detection efficiency is estimated
to exceed 85% for either of optical mode. In turn, optical losses related to the entanglement source as well as phase
noise are accounted by the initial value of two mode squeezing. We thus expect that the theoretical prediction
is in general reproducible using the experimental setup reported in this thesis, provided technical improvements
outlined earlier.

1Meaning the range where QBAN competes with SN
2The sign of the resonance frequency ΩS defines the sign of the susceptibility function χS(Ω)
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[30] Südbeck, J., Steinlechner, S., Korobko, M. & Schnabel, R. Demonstration of interferometer enhancement
through einstein–podolsky–rosen entanglement. Nature Photonics 14 (2020). URL https://www.nature.

com/articles/s41566-019-0583-3.

[31] Wade, A. et al. Polarization speed meter for gravitational-wave detection. Phys. Rev. D 86 (2012). URL
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.86.062001.

[32] Sun, K.-X., Fejer, M., Gustafson, E. & Byer, R. Sagnac interferometer for gravitational-wave detection.
Physical review letters 76, 3053–3056 (1996). URL https://journals.aps.org/prl/abstract/10.1103/

PhysRevLett.76.3053.

[33] Chen, Y. Sagnac interferometer as a speed-meter-type, quantum-nondemolition gravitational-wave detector.
Phys. Rev. D 67, 122004 (2003). URL https://link.aps.org/doi/10.1103/PhysRevD.67.122004.

94

https://link.aps.org/doi/10.1103/PhysRevLett.125.131101
https://link.aps.org/doi/10.1103/PhysRevLett.125.131101
https://www.nature.com/articles/nphys2083
https://link.aps.org/doi/10.1103/PhysRevLett.123.231107
https://link.aps.org/doi/10.1103/PhysRevLett.123.231108
https://link.aps.org/doi/10.1103/PhysRevLett.123.231108
https://www.nature.com/articles/s41586-019-1051-4
https://www.nature.com/articles/nphys3701
https://www.nature.com/articles/s41566-019-0527-y
https://link.aps.org/doi/10.1103/PhysRevLett.116.041102
https://link.aps.org/doi/10.1103/PhysRevLett.124.171101
https://link.aps.org/doi/10.1103/PhysRevLett.124.171101
https://iopscience.iop.org/article/10.1088/1361-6633/aab906/meta
https://iopscience.iop.org/article/10.1088/1361-6633/aab906/meta
https://www.nature.com/articles/nphys4118
https://www.nature.com/articles/s41566-019-0582-4
https://www.nature.com/articles/s41566-019-0582-4
https://www.nature.com/articles/s41566-019-0583-3
https://www.nature.com/articles/s41566-019-0583-3
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.86.062001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.76.3053
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.76.3053
https://link.aps.org/doi/10.1103/PhysRevD.67.122004


[34] Polzik, E. S. & Hammerer, K. Trajectories without quantum uncertainties. Annalen der Physik 527 (2015).
URL https://onlinelibrary.wiley.com/doi/10.1002/andp.201400099.

[35] Tsang, M. & Caves, C. M. Evading quantum mechanics: Engineering a classical subsystem within a quantum
environment. Phys. Rev. X 2, 031016 (2012). URL https://link.aps.org/doi/10.1103/PhysRevX.2.

031016.

[36] Hammerer, K., Aspelmeyer, M., Polzik, E. & Zoller, P. Establishing einstein-poldosky-rosen chan-
nels between nanomechanics and atomic ensembles. Physical review letters 102, 020501 (2009). URL
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.102.020501.

[37] Duan, L.-M., Giedke, G., Cirac, J. I. & Zoller, P. Inseparability criterion for continuous variable systems.
Phys. Rev. Lett. 84, 2722–2725 (2000). URL https://link.aps.org/doi/10.1103/PhysRevLett.84.2722.

[38] Julsgaard, B., Kozhekin, A. & Polzik, E. Experimental long-lived entanglement of two macroscopic objects.
Nature 413, 400–3 (2001). URL https://www.nature.com/articles/35096524.

[39] Møller, C. et al. Back action evading quantummeasurement of motion in a negative mass reference frame. Na-
ture 547 (2016). URL https://www.nature.com/articles/nature22980?proof=thttps%3A%2F%2Fwww.

nature.com%2Farticles%2Fsj.bdj.2014.353%3Fproof%3Dt.

[40] Thomas, R. et al. Entanglement between distant macroscopic mechanical and spin systems. Nature Physics
17, 1–6 (2021). URL https://www.nature.com/articles/s41567-020-1031-5.

[41] Danilishin, S., Khalili, F. & Miao, H. Advanced quantum techniques for future gravitational-wave de-
tectors. Living Reviews in Relativity 22 (2019). URL https://link.springer.com/article/10.1007/

s41114-019-0018-y.

[42] Khalili, F. Y. & Polzik, E. S. Overcoming the standard quantum limit in gravitational wave detectors
using spin systems with a negative effective mass. Phys. Rev. Lett. 121, 031101 (2018). URL https:

//link.aps.org/doi/10.1103/PhysRevLett.121.031101.

[43] Zeuthen, E., Polzik, E. & Khalili, F. Y. Gravitational wave detection beyond the standard quantum limit
using a negative-mass spin system and virtual rigidity. Phys. Rev. D 100, 062004 (2019). URL https:

//link.aps.org/doi/10.1103/PhysRevD.100.062004.

[44] Thomas, R., Ostfeldt, C., Baerentsen, C., Parniak, M. & Polzik, E. Calibration of spin-light coupling
by coherently induced faraday rotation. Optics Express 29 (2021). URL https://opg.optica.org/oe/

fulltext.cfm?uri=oe-29-15-23637&id=453210.

[45] Kimble, H. The quantum internet. Nature 453, 1023–30 (2008). URL https://www.nature.com/articles/

nature07127.

[46] Knill, E., Laflamme, R. & Milburn, G. A scheme for efficient quantum computation with linear optics.
Nature 409, 46–52 (2001). URL https://www.nature.com/articles/35051009.

[47] Kurizki, G. et al. Quantum technologies with hybrid systems. Proceedings of the National Academy of
Sciences 112, 3866 (2015).

[48] Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77,
513–577 (2005). URL https://link.aps.org/doi/10.1103/RevModPhys.77.513.

[49] Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and einstein-podolsky-
rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). URL https://link.aps.org/doi/10.1103/

PhysRevLett.70.1895.

[50] Braunstein, S. L. & Kimble, H. J. Teleportation of continuous quantum variables. Phys. Rev. Lett. 80,
869–872 (1998). URL https://link.aps.org/doi/10.1103/PhysRevLett.80.869.

95

https://onlinelibrary.wiley.com/doi/10.1002/andp.201400099
https://link.aps.org/doi/10.1103/PhysRevX.2.031016
https://link.aps.org/doi/10.1103/PhysRevX.2.031016
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.102.020501
https://link.aps.org/doi/10.1103/PhysRevLett.84.2722
https://www.nature.com/articles/35096524
https://www.nature.com/articles/nature22980?proof=thttps%3A%2F%2Fwww.nature.com%2Farticles%2Fsj.bdj.2014.353%3Fproof%3Dt
https://www.nature.com/articles/nature22980?proof=thttps%3A%2F%2Fwww.nature.com%2Farticles%2Fsj.bdj.2014.353%3Fproof%3Dt
https://www.nature.com/articles/s41567-020-1031-5
https://link.springer.com/article/10.1007/s41114-019-0018-y
https://link.springer.com/article/10.1007/s41114-019-0018-y
https://link.aps.org/doi/10.1103/PhysRevLett.121.031101
https://link.aps.org/doi/10.1103/PhysRevLett.121.031101
https://link.aps.org/doi/10.1103/PhysRevD.100.062004
https://link.aps.org/doi/10.1103/PhysRevD.100.062004
https://opg.optica.org/oe/fulltext.cfm?uri=oe-29-15-23637&id=453210
https://opg.optica.org/oe/fulltext.cfm?uri=oe-29-15-23637&id=453210
https://www.nature.com/articles/nature07127
https://www.nature.com/articles/nature07127
https://www.nature.com/articles/35051009
https://link.aps.org/doi/10.1103/RevModPhys.77.513
https://link.aps.org/doi/10.1103/PhysRevLett.70.1895
https://link.aps.org/doi/10.1103/PhysRevLett.70.1895
https://link.aps.org/doi/10.1103/PhysRevLett.80.869


[51] Vaidman, L. Teleportation of quantum states. Phys. Rev. A 49, 1473–1476 (1994). URL https://link.

aps.org/doi/10.1103/PhysRevA.49.1473.

[52] Radnaev, A. et al. A quantum memory with telecom-wavelength conversion. Nature Physics 6(11) (2010).
URL https://www.nature.com/articles/nphys1773.

[53] Rakonjac, J. V. et al. Entanglement between a telecom photon and an on-demand multimode solid-state
quantum memory. Phys. Rev. Lett. 127, 210502 (2021). URL https://link.aps.org/doi/10.1103/

PhysRevLett.127.210502.

[54] Mannami, K. et al. Coupling of a quantum memory and telecommunication wavelength photons for high-rate
entanglement distribution in quantum repeaters. Optics Express 29 (2021). URL https://opg.optica.

org/oe/fulltext.cfm?uri=oe-29-25-41522&id=465522.

[55] Yadin, B., Fadel, M. & Gessner, M. Metrological complementarity reveals the einstein-podolsky-rosen para-
dox. Nature Communications 12 (2021). URL https://www.nature.com/articles/s41467-021-22353-3.

[56] Schrodinger, E. Discussion of probability relation between separated systems. Mathematical Proceed-
ings of the Cambridge Philosophical Society 31, 555–563 (1935). URL http://dx.doi.org/10.1017/

S0305004100013554.

[57] Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered
complete? Phys. Rev. 47, 777–780 (1935). URL https://link.aps.org/doi/10.1103/PhysRev.47.777.

[58] Bell, J. S. On the einstein podolsky rosen paradox. Physics Physique Fizika 1, 195–200 (1964). URL
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195.

[59] Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable
theories. Phys. Rev. Lett. 23, 880–884 (1969). URL https://link.aps.org/doi/10.1103/PhysRevLett.

23.880.

[60] Bohm, D. Quantum theory (1951).

[61] Reid, M. D. et al. Colloquium: The einstein-podolsky-rosen paradox: From concepts to applications. Rev.
Mod. Phys. 81, 1727–1751 (2009). URL https://link.aps.org/doi/10.1103/RevModPhys.81.1727.

[62] Reid, M. D. Demonstration of the einstein-podolsky-rosen paradox using nondegenerate parametric ampli-
fication. Phys. Rev. A 40, 913–923 (1989). URL https://link.aps.org/doi/10.1103/PhysRevA.40.913.

[63] Wiseman, H. M., Jones, S. J. & Doherty, A. C. Steering, entanglement, nonlocality, and the einstein-
podolsky-rosen paradox. Phys. Rev. Lett. 98, 140402 (2007). URL https://link.aps.org/doi/10.1103/

PhysRevLett.98.140402.

[64] Peres, A. Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996). URL https:

//link.aps.org/doi/10.1103/PhysRevLett.77.1413.

[65] Ou, Z. Y., Pereira, S. F., Kimble, H. J. & Peng, K. C. Realization of the einstein-podolsky-rosen paradox
for continuous variables. Phys. Rev. Lett. 68, 3663–3666 (1992). URL https://link.aps.org/doi/10.

1103/PhysRevLett.68.3663.

[66] Steinlechner, S., Bauchrowitz, J., Eberle, T. & Schnabel, R. Strong einstein-podolsky-rosen steering with
unconditional entangled states. Phys. Rev. A 87, 022104 (2013). URL https://link.aps.org/doi/10.

1103/PhysRevA.87.022104.

[67] Schori, C., Sorensen, J. L. & Polzik, E. S. Narrow-band frequency tunable light source of continuous
quadrature entanglement. Phys. Rev. A 66, 033802 (2002). URL https://link.aps.org/doi/10.1103/

PhysRevA.66.033802.

96

https://link.aps.org/doi/10.1103/PhysRevA.49.1473
https://link.aps.org/doi/10.1103/PhysRevA.49.1473
https://www.nature.com/articles/nphys1773
https://link.aps.org/doi/10.1103/PhysRevLett.127.210502
https://link.aps.org/doi/10.1103/PhysRevLett.127.210502
https://opg.optica.org/oe/fulltext.cfm?uri=oe-29-25-41522&id=465522
https://opg.optica.org/oe/fulltext.cfm?uri=oe-29-25-41522&id=465522
https://www.nature.com/articles/s41467-021-22353-3
http://dx.doi.org/10.1017/S0305004100013554
http://dx.doi.org/10.1017/S0305004100013554
https://link.aps.org/doi/10.1103/PhysRev.47.777
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195
https://link.aps.org/doi/10.1103/PhysRevLett.23.880
https://link.aps.org/doi/10.1103/PhysRevLett.23.880
https://link.aps.org/doi/10.1103/RevModPhys.81.1727
https://link.aps.org/doi/10.1103/PhysRevA.40.913
https://link.aps.org/doi/10.1103/PhysRevLett.98.140402
https://link.aps.org/doi/10.1103/PhysRevLett.98.140402
https://link.aps.org/doi/10.1103/PhysRevLett.77.1413
https://link.aps.org/doi/10.1103/PhysRevLett.77.1413
https://link.aps.org/doi/10.1103/PhysRevLett.68.3663
https://link.aps.org/doi/10.1103/PhysRevLett.68.3663
https://link.aps.org/doi/10.1103/PhysRevA.87.022104
https://link.aps.org/doi/10.1103/PhysRevA.87.022104
https://link.aps.org/doi/10.1103/PhysRevA.66.033802
https://link.aps.org/doi/10.1103/PhysRevA.66.033802


[68] Villar, A. S., Cruz, L. S., Cassemiro, K. N., Martinelli, M. & Nussenzveig, P. Generation of bright two-color
continuous variable entanglement. Phys. Rev. Lett. 95, 243603 (2005). URL https://link.aps.org/doi/

10.1103/PhysRevLett.95.243603.

[69] Li, Y., Guo, X., Wang, X. & Zhang, K. Observation of two-color continuous variable quantum correlation
at 0.8 and 1.5 micrometer. JOSA B 27, 842–843 (2010). URL https://aip.scitation.org/doi/full/

10.1063/1.3467045.

[70] Coutinho dos Santos, B., Dechoum, K., Khoury, A. Z., da Silva, L. F. & Olsen, M. K. Quantum analysis of
the nondegenerate optical parametric oscillator with injected signal. Phys. Rev. A 72, 033820 (2005). URL
https://link.aps.org/doi/10.1103/PhysRevA.72.033820.

[71] Guo, X., Xie, C. & Li, Y. Generation and homodyne detection of continuous-variable entangled optical
beams with a large wavelength difference. Phys. Rev. A 84, 020301 (2011). URL https://link.aps.org/

doi/10.1103/PhysRevA.84.020301.

[72] Guo, X., Zhao, J. & Li, Y. Robust generation of bright two-color entangled optical beams from a phase-
insensitive optical parametric amplifier. Applied Physics Letters 100, 091112 (2012). URL https://doi.

org/10.1063/1.3690876. https://doi.org/10.1063/1.3690876.

[73] Wang, N., Du, S. & Li, Y. Compact 6 dB two-color continuous variable entangled source based on a single
ring optical resonator. Applied Sciences 8, 330 (2018). URL https://www.mdpi.com/2076-3417/8/3/330.

[74] Brasil, T. B. Multicolor entanglement to link quantum systems. Ph.D. thesis (2021). URL https://www.

teses.usp.br/teses/disponiveis/43/43134/tde-10062021-094717/es.php.

[75] Stefszky, M. S. Generation and detection of low-frequency squeezing for gravitational-wave detection - PhD
thesis. Ph.D. thesis (2012). URL http://hdl.handle.net/1885/156058.

[76] Mansell, G. Squeezed light sources for current and future interferometric gravitational-wave detectors. Ph.D.
thesis (2018). URL http://hdl.handle.net/1885/154249.

[77] Pasiskevicius, V., Wang, S., Tellefse, J., Laurell, F. & Karlsson, H. Efficient nd:yag laser frequency dou-
bling with periodically poled ktp. Applied optics 37, 7116–9 (1998). URL https://opg.optica.org/ao/

abstract.cfm?uri=ao-37-30-7116.

[78] Mabuchi, H., Polzik, E. & Kimble, H. Blue-light induced infrared absorption in knbo3. Journal of
the Optical Society of America B 11 (1994). URL https://opg.optica.org/josab/abstract.cfm?uri=

josab-11-10-2023.

[79] Blachman, R., Bordui, P. & Fejer, M. Laser-induced photochromic damage in potassium titanyl phos-
phate. Applied Physics Letters 64, 1318 – 1320 (1994). URL https://aip.scitation.org/doi/10.1063/

1.111920.

[80] Boyd, G. & Kleinman, D. Parametric interaction of focused gaussian light beams. Journal of Applied Physics
39, 3597 – 3639 (1968). URL https://aip.scitation.org/doi/10.1063/1.1656831.

[81] Kerdoncuff, H. et al. Cavity-enhanced sum-frequency generation of blue light with near-unity conversion effi-
ciency. Optics Express 28 (2020). URL https://opg.optica.org/oe/fulltext.cfm?uri=oe-28-3-3975&

id=426405.

[82] Rambach, M. Narrowband Single Photons for Light-Matter Interfaces. Ph.D. thesis (2017).

[83] Kaddour, Z., Taleb, A., Aı̈t-Ameur, K. & Martel, G. Revisiting gouy phase. Optics Communications 280,
256–263 (2007). URL https://www.sciencedirect.com/science/article/pii/S0030401807008590?

via%3Dihub.

[84] Black, E. An introduction to pound drever hall laser frequency stabilization. American Journal of Physics
69, 79–87 (2001). URL https://aapt.scitation.org/doi/10.1119/1.1286663.

97

https://link.aps.org/doi/10.1103/PhysRevLett.95.243603
https://link.aps.org/doi/10.1103/PhysRevLett.95.243603
https://aip.scitation.org/doi/full/10.1063/1.3467045
https://aip.scitation.org/doi/full/10.1063/1.3467045
https://link.aps.org/doi/10.1103/PhysRevA.72.033820
https://link.aps.org/doi/10.1103/PhysRevA.84.020301
https://link.aps.org/doi/10.1103/PhysRevA.84.020301
https://doi.org/10.1063/1.3690876
https://doi.org/10.1063/1.3690876
https://doi.org/10.1063/1.3690876
https://www.mdpi.com/2076-3417/8/3/330
https://www.teses.usp.br/teses/disponiveis/43/43134/tde-10062021-094717/es.php
https://www.teses.usp.br/teses/disponiveis/43/43134/tde-10062021-094717/es.php
http://hdl.handle.net/1885/156058
http://hdl.handle.net/1885/154249
https://opg.optica.org/ao/abstract.cfm?uri=ao-37-30-7116
https://opg.optica.org/ao/abstract.cfm?uri=ao-37-30-7116
https://opg.optica.org/josab/abstract.cfm?uri=josab-11-10-2023
https://opg.optica.org/josab/abstract.cfm?uri=josab-11-10-2023
https://aip.scitation.org/doi/10.1063/1.111920
https://aip.scitation.org/doi/10.1063/1.111920
https://aip.scitation.org/doi/10.1063/1.1656831
https://opg.optica.org/oe/fulltext.cfm?uri=oe-28-3-3975&id=426405
https://opg.optica.org/oe/fulltext.cfm?uri=oe-28-3-3975&id=426405
https://www.sciencedirect.com/science/article/pii/S0030401807008590?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0030401807008590?via%3Dihub
https://aapt.scitation.org/doi/10.1119/1.1286663


[85] Patrick, K. Laser Characterization and Stabilization for Precision Interferometry. Ph.D. thesis, Hannover
U (2010).

[86] Tricot, F., Phung, D. H., Lours, M., Guerandel, S. & De Clercq, E. Power stabilization of a diode laser
with an acousto-optic modulator. Review of Scientific Instruments 89, 113112 (2018). URL https://hal.

sorbonne-universite.fr/hal-01981700.

[87] Vahlbruch, H. et al. Coherent control of vacuum squeezing in the gravitational-wave detection band. Phys.
Rev. Lett. 97, 011101 (2006). URL https://link.aps.org/doi/10.1103/PhysRevLett.97.011101.

[88] Ning, W. & Yongmin, L. Quantum analysis and experimental investigation of the nondegenerate optical
parametric oscillator with unequally injected signal and idler. Phys. Rev. A 93, 013831 (2016). URL
https://link.aps.org/doi/10.1103/PhysRevA.93.013831.

[89] McKenzie, K. et al. Quantum noise locking. Journal of Optics B: Quantum and Semiclassical Optics 7
(2005). URL https://iopscience.iop.org/article/10.1088/1464-4266/7/10/032.

[90] Brasil, T. B., Novikov, V., Kerdoncuff, H., Lassen, M. & Polzik, E. Two-colour high-purity einstein-podolsky-
rosen photonic state. arXiv:2110.00066 (2021). URL https://arxiv.org/abs/2110.00066.

[91] Hammerer, K., Soerensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles.
Rev. Mod. Phys. 82, 1041–1093 (2010). URL https://link.aps.org/doi/10.1103/RevModPhys.82.1041.

[92] Krauter, H. et al. Entanglement generated by dissipation and steady state entanglement of two macroscopic
objects. Phys. Rev. Lett. 107, 080503 (2011). URL https://link.aps.org/doi/10.1103/PhysRevLett.

107.080503.

[93] Sherson, J. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006). URL
https://www.nature.com/articles/nature05136.

[94] Krauter, H. et al. Deterministic quantum teleportation between distant atomic objects. Nature Physics 9,
400 (2012). URL https://www.nature.com/articles/nphys2631.

[95] Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations
in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998). URL https://link.aps.org/doi/10.

1103/PhysRevLett.81.5932.
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Appendix A

Chapter 3: entanglement source

A.1 Phase noise associated with double seeding of OPO

∆θCLF = θAout
s

+ θAout
i

defines the deviation from antisymmetric phases of signal and idler drive fields exiting
the OPO (which are, in turn, directly linked to homodyne phases). The phases θAout

s(i)
can be obtained from the

phasor diagram depicted on the Fig.3.21 or using eq.(3.50):

tan (θAout
s(i)

) =
ϵ|Adri(s)| sin (θP − θCLF,2(1)) + |Adrs(i)| sin (θCLF,1(2))
ϵ|Adri(s)| cos (θP − θCLF,2(1)) + |Adrs(i)| cos (θCLF,1(2))

. (A.1)

The root mean square ∆θCLF corresponding to the amount of phase noise can be obtained by fixing the θCLF,1 (for
example, equal to zero) and performing the integration of ∆θCLF on θCLF,2 over 2π range, since the fluctuation
of phase of idler coherent filed relative to signal phase is relevant.
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