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Abstract

The financial crisis, which started in 2008, spawned the HIPERFIT research center as a
preventive measure against future financial crises. The goal of prevention is to be met
by improving mathematical models for finance, the verifiable description of them in
domain-specific languages and the efficient execution of them on high performance
systems.

This work investigates the requirements for, and the implementation of, a high
performance backend supporting these goals. This involves an outline of the hardware
available today, in the near future and how to program it for high performance. The
main challenge is to bridge the gaps between performance, productivity and portability.

A declarative high-level array-oriented programming model is explored to achieve
this goal and a backend implemented to support it. Different strategies to the backend
design and application of optimizations are analyzed and experimentally tested. Result-
ing in the design and implementation of Bohrium a runtime-system for transforming,
scheduling and executing array-oriented programs.

Multiple interfaces for existing languages such as Python, C++, C#, and F# have
been built which utilize the backend. A suite of benchmarks applications, implemented
in these languages, demonstrate the high-level declarative form of the programming
model. Performance studies show that the high-level declarative programming model
can be used to not only match but also exceed the performance of hand-coded imple-
mentations in low-level languages.
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Chapter 1

Context

The financial crisis, which started in 2008, created a recession in the world economy which resulted
in unemployment and instability. One of the triggering factors in the onset of this crisis was the
poor performance of the banks in terms of pricing their financial products and assessing the risk of
their financial transactions. National and international authorities have consequently decided to
tighten regulations in the financial sector for example requiring that banks document the risk of
every loan. Regulation and legislation are means of trying to prevent a new crisis, but it does not
solve the problem that banks are performing poorly. Banks must directly address the problem at
hand by strengthening their capabilities.

A Danish initiative, which focuses on this approach, is the academic research center HIPERFIT.
It is the goal of HIPERFIT to come up with new mathematical models within financial mathematics
and develop powerful and safe tools to evaluate them; thereby strengthening the banks’ capabilities.
The research areas of HIPERFIT are cross-discipline as figure 1.1 illustrates.

MF

Mathematical
Finanance

DSL

Domain-Specific 
Languages

FP

Parallel
Functional 

Programming

HPS

High
Performance 

Systems

Risk Scenarios

Model Specification

Financial Information Specification

Extracting Parallism

High Performance Backends

Figure 1.1: Research areas of the HIPERFIT research center.

The area of Mathematical Finance explores financial models and methods with a focus on in-
creasing accuracy of models of financial phenomena and determining risks with greater precision.
Increasing accuracy and precision imply increasing parameters for a model thereby increasing
compute-time and complexity of the implementation. Domain-specific languages aid this descrip-
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Structure of the Thesis Context

tion by providing high-level language constructs that are close to the domain of the mathematical
models. Basing these languages on functional language design provides a means for formally
verifying the implementation thereby lowering the possibility of introducing errors at the im-
plementation level. The last pillar, high performance systems, researches ways to support the
high-level constructs and obtain efficient execution of mathematical models.

This manuscript documents the work that I have done and collaborated upon during my Ph.D.
studies within the area of high performance systems. The following section provides an overview
of the project itself along with an outline of the remainder of the thesis.

1.1 Structure of the Thesis

In the thesis and the publications, terms such as high-level, low-level, portability, productivity,
and performance are used. These terms can be perceived differently based on the experiences and
perspective of the reader. So a default context for them will be established here. When referring to
high-level languages, then the reader should think of languages such as domain-specific, scripting,
functional and, in general, declarative languages. Or in others words, languages that focus on
expressing what the machine should compute and not how it computes it.

High-level has historically been a fitting label for languages such as C, C++, and Fortran due to
the abstractions they provide over machine code and assembly languages. These languages, how-
ever, provide capabilities of explicit control of hardware details and often require the programmer
to use them and are for this reason referred to as low-level.

Portability is a broad term that can refer to concepts such as platform portability where a given
program can run on different platforms such as Unix, Linux, MacOSX and Windows. Another
usage is machine portability, that is, a given program can run on different hardware architectures.
Platform portability is of interest; however, the default context and primary focus is on machine
portability.

Productivity and performance, commonly perceived as two opposite and conflicting concepts,
introduce a tradeoff – the more you have of one, the less you have of the other. High-level languages
are associated with productivity as they abstract away details of the underlying machine and how
to program it. Arguably increasing productivity of the programmer since only the domain of
interest needs to be expressed and not the concerns of mapping that domain to a specific machine
architecture. Mapping the domain to a given machine thus becomes the responsibility of the
language interpreter, compiler, runtime or, generally, the backend of the language.

Performance is an abstract term but commonly associated with the efficient utilization of
hardware. As the backends for high-level languages fail to deliver this, responsibility is then
put in the hands of the programmer and the use of low-level languages for instrumentation of
hardware. Consequently, programs become an entanglement of the application domain and
hardware instrumentation requiring that the programmer has a full understanding of both.

This thesis explores exactly the tension between these concepts, specifically on bridging the
gap between performance and productivity. How can the abstractions of high-level languages be
maintained and the need for low-level languages avoided? How can a language backend exploit
information from high-level abstractions as an aid to efficiently utilize hardware?

My primary contribution to the study of these problems lies with the publications in part II.
This part of the thesis serves the purpose of putting those publications into context, providing the
background for the work, the approach to studying it and outlining directions for future work.
The thesis is organized as follows.

Sections 1.2 and 1.3 provide information about architectural traits of current, and next-generation
processing units as well as an overview of the tools and challenges for programming them. Section
1.4 describes the approach I have taken, which in short evolves around the design and implemen-
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Computing Platforms and Architectures Context

tation of Bohrium a backend for array-oriented programming. The information from sections 1.2
and 1.3 serve as motivation of several choices in the design and implementation of Bohrium.

Bohrium is a collaborative effort, section 1.5 therefore provide an overview of my contributions
to Bohrium as well as my contributions outside the context of Bohrium. Bohrium is language
agnostic in the sense that it supports a programming model instead of a specific language. Chapter
2 describes this model. The programming model is array-oriented for which an essential imple-
mentation concern is the supported data-representation. Chapter 2 section 2.2 provides a brief
overview of the data-representations that I have focused on.

Chapter 3 provides the most recent description of the state of Bohrium. Chapter 4 describes
ongoing and future work on Bohrium as well as another research direction to bridging the gap
between performance and productivity. The final chapter 5 concludes upon the work.

1.2 Computing Platforms and Architectures

Computing systems have evolved in utilization, efficiency and availability. The results of the early
advances can be summarized in the concept of the Turing machine[68], the halting problem[68]
and the von Neumann architecture[73]. These concepts provide the fundamental architecture of
computing systems today, whether they are supercomputers or workstations.

The computing industry produces microprocessors under the driver that the amount of tran-
sistors/components on a cheap integrated circuit doubles somewhere between every 12[49] to
24[50] months. This trend in the fundamental building block for microprocessors has for a period
of years had an associated doubling in clock frequency for general-purpose microprocessors.
The frequency-scaling of the general-purpose processor has provided scalable performance of
applications. An application-developer could expect that application-performance would scale
linearly with the frequency of the next generation of a general-purpose processor.

The power and memory wall are two factors breaking this convenient expectation. As the
frequency increases so does power consumption and the need for dissipating heat. The clock
frequency of the general-purpose processor has peaked at around 4 GHz. Attempts at going above
this boundary are mostly the domain of enthusiasts and involves clocking the processor to run
above its specification and extreme cooling methods involving liquid nitrogen. Frequency scaling
did have its issues prior to reaching the 4 GHz boundary due to a discrepancy between the speed
of the processor and the speed of memory system. This is because production of processors has
focused on increasing frequency, whereas the production of memory has focused on increasing
capacity. The memory wall or von Neumann bottleneck refers to this discrepancy in the hardware
design. General-purpose processors have, despite this, been providing scalable performance in
concert with frequency scaling by integrating a complex multi-layered cache-hierarchy within the
processor. The cache hierarchy also relies on complex on-chip units preloading data into cache
thereby lowering the cycles wasted when waiting for data from main memory.

The following sections will describe the current trends in the design of processing units. Starting
with the current design of the latest generation of Central Processing Units (CPUs) in subsection
1.2.1, followed by the currently very popular graphics processing unit (GPU) in section 1.2.2. These
two processing units designs are currently the most widespread. Subsection 1.2.3 and 1.2.4 describe
emerging architectures of the Accelerated Processing Unit (APU) and the Many Integrated Cores
(MIC).

1.2.1 Multi-core CPUs and ccNUMA

Vendors of general-purpose processors are using the growing amount of transistors available to
cram multiple cores onto the same chip. That is, instead of scaling up the core frequency, they scale
out the number of cores. Higher performance can then be achieved by having multiple processes or
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threads of execution thereby increasing the instruction throughput. Current architectures provide
shared memory and symmetric multiprocessing (SMP) with cache coherence. Another similar
model uses symmetric multithreading (SMT) where each core run multiple hardware threads to
better utilize the core. The term multi-core processor covers both.

Shared memory architectures support a convenient programming model as it provides a single
address space for all threads. This allows for efficient inter-process/thread communication.

A multi-core processor consists of homogenous cores in which part of the memory hierarchy is
private. When threads running on different cores update the same values, private cached copies
must be updated or invalidated, a choice left to the cache protocol of the processor. Scaling up the
number of cores while maintaining cache coherence becomes increasingly difficult when expecting
Uniform Memory Access (UMA). Non-Uniform (NUMA) is for this reason used in the latest
generation of multi-core processors. Figure 1.2 illustrates two such designs.

(a) Two-socket configuration with two Intel Xeon E5-
2650L. The processor package has a single die, the pack-
age is referred to as a NUMA node. Each node has
twelve cores each with its own private L1 and L2 cache.
L3 cache is shared with all cores on the same NUMA
node. Each core can run two hyperthreads.

(b) Two-socket configuration with two AMD Opteron 6272
processors. The processor package has two dies, each die is
referred to as a NUMA node and is comprised of four bulldozer
modules. The bulldozer module has two cores each with its
own private L1 data cache. L1 instruction cache and L2 cache
is shared in the bulldozer module. L3 cache is shared with all
cores on the same NUMA node.

Figure 1.2: Examples of multi-core processors with non-uniform memory access.

Obtaining efficiency from CPUs is not only about thread-level parallelism. For compute-
oriented tasks CPUs rely on instruction level parallelism (ILP) by providing instruction set ex-
tensions for carrying out a single instruction on multiple data (SIMD). Technology pioneered
by supercomputers was adopted and integrated into mainstream general-purpose processors.
Different vendors like Intel, AMD, Cyrix provide different SIMD-like extensions as a competitive
advantage to provide the most compute power of their x86-compatible processors.

Instruction set extensions to x86 have started out as MultiMedia eXtensions (MMX) by Intel,
extended MMX (eMMX) by Cyrix which allowed a single instruction to be performed on multiple
integers. AMD in response added the 3DNow! as an MMX extension for instructions on multiple
single-precision floating point numbers. As increased floating-point compute capability became
popular Intel replied with the Streaming SIMD Extensions (SSE) supporting floating-point opera-
tions. With each new generation, Intel has continued expanding their vector extension labeling
them SSE/1/2/3/4/5 and now Advanced Vector Extensions (AVX/1/2). AMD have kept up
and provide compatibility with the extensions but also introduce a revised version of SSE5 and
their own extensions labeled XOP, FMA4, and CVT16. The vector-oriented extensions have been
increasing the widths of FMA-instructions which execute two instructions in one clock-cycle such
as multiply add and multiply subtract. The next generation of processors from Intel, Skylake and
Cannonlake, will introduce 512-bit wide (AVX-512) instructions.

Thread-level and instruction-level parallelism are great advances that increase the compute-
capability of CPUs. However, there is a downside as these advances on compute-capabilities lead
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to hitting the memory wall even harder. Current and next-generation multi-core processors are
thus highly concerned with improving the memory subsystem. The performance consequences of
the memory-wall are best described with an example.
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(a) Results from running a synthetic memory-bound bench-
mark on an Intel 2650L with two NUMA nodes and a total
of 24 cores.
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(b) Results from running a synthetic memory-bound bench-
mark on an AMD Opteron 6274 with four NUMA nodes
and a total of 8 cores.

Figure 1.3: Benchmark illustrating scalability challanges due to the memory wall and remote
memory access on multi-core NUMA architectures. The graphs show speedup relative to the serial
implementation labeled SS.

Figure 1.3 provide speedup graphs on a synthetic memory-bound benchmark on two different
multi-core processors with NUMA. The benchmark initializes an array and then updates it. There
are three implementations of the bencmark: serial initialization with serial access (SS), serial
initialization with parallel access (SP), and parallel initialization with parallel access (PP). The
labels PP/AN and PP/AL denote two different strategies for controlling thread locality. Only the
parallel access of the implementations are timed. The purpose of this experiment is to illustrate the
scalability challenge of the memory wall and the effect of NUMA.

Comparing SS to PP/AL on figures 1.3a and PP/AN on figure 1.3b show how severely the
memory wall limits scalability. On the 24-core system (figure 1.3a) a best-case speedup of 5.9 is
obtained. On the 32-core system (figure 1.3b) a speedup of 7.5 is obtained. The memory wall is
here and it is severe.

NUMA architectures aid scalability, however there are pitfalls a programmer must be aware
of. Compare SS to SP on figures 1.3a, and 1.3b. Memory is initialized using memset which infers
that memory will not be distributed among NUMA nodes. The consequence is that the majority
of threads will suffer the negative effect of NUMA which is higher latency for retrieving data on
another node. This completely thrashes performance on all the processors as the figures show.

A programmer can easily step into the NUMA pitfall, even when aware, and must explicitly
manage thread locality. Figure 1.3b illustrates this most significantly. Compare PP to PP/AN,
here two identifical implementations are executed, yet with different scalability. The difference is
that threads are bound for the results labeled PP/AN. Bound in a manner that minimizes remote
access/internode communication. Locality has become essential for multi-core performance due
to NUMA.

1.2.2 General-Purpose Graphics Processing Units

Graphics Processing Units (GPUs) were historically devices dedicated to handle processing of
the graphics intensive parts of an application such as rendering in Computer Aided Design
(CAD) and real-time graphics for computer games. As the graphics processors evolved and
became programmable through DirectX and OpenGL the raw performance of the GPU generated
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efforts in trying to use the GPU hardware for other areas than graphics. At the time the efforts
were painstakingly hard as a computational science simulation must be expressed using the
graphics pipeline and programmed with DirectX or OpenGL. This involved using pixel shaders as
compute functions, setting up input as texture images and the output represented as a set of pixels
generated by raster operations. The field was called GPGPU, for general-purpose computing on
GPUs. With promising results within the field GPU vendors started to support it with the first
major breakthrough being the Compute Unified Device Architecture (CUDA[55]) from NVIDIA.

Today the major vendors NVIDIA and AMD/ATI provide a broad range of support for
GPGPU. NVIDIA continue to promote CUDA as the primary means for GPGPU on NVIDIA
GPUs. AMD/ATI had previously promoted their own programming model STREAM[7] but has
deprecated it in the favor of the open standard OpenCL[67] for general-purpose programming
of their GPUs. Current GPU design still has hardware dedicated for graphics processing but the
overall GPU architecture has unified into components which are usable for both graphics and
general-purpose applications.

The latest shift from GPU vendor AMD was a complete change in GPU architecture. Previous
generation have used VLIW4 architecture which is now replaced by what they label as the Graphics
Compute Next (GCN) architecture. This was done to increase performance for non-graphics
workloads, namely GPGPU.

General characteristics of current GPUs are that they contain small programmer controlled local
memories and caches to boost memory throughput. GPUs are high-latency as they have simple
control logic with no branch prediction or data forwarding. For compute power they contain a
high amount of long latency, but heavily pipelined, ALUs for high throughput. The general design
relies on a massive amount of lightweight threads to compensate for high latency.

A key trait of a GPU is that even though it is capable of performing branch instructions it
is very poorly suited to do so due to high-latency and high costs incurred as a consequence of
control divergence. The GPGPU term should therefore not be equated with the general-purpose
programmability of a low-latency CPU. A key concern for efficiently utilizing a GPU is that it is
connected with the CPU over the PCIe bus. The CPU and GPU are thus operating on physically
separated memory systems. This is why GPUs are often referred to as accelerators or coprocessors, as
they are used to offload specific tasks from the CPU to GPU. As mentioned the performance of
the GPU is gained from massively parallel workloads which can be split into execution on a rich
amount of SIMD units in the case of an AMD GPU and SIMT-based cores in the case a NVIDIA
GPU.

1.2.3 Accelerated Processing Units

The design of multi-core CPUs struggle to increase performance by adding special-purpose
instructions to increase compute capability of floating point operations and extending the memory
system with the ccNUMA architecture. The vendor AMD introduced a different design labeled
the Accelerated Processing Unit (APU) where a GPU is integrated into the same die as the CPU.
One can see the APU as a CPU which has replaced its floating point unit with a GPU. This is not
entirely accurate but the design idea is to gain compute performance from a GPU core dedicated to
compute performance where a multi-core CPU obtains compute performance by having multiple
cores with advanced floating point units. As described in the previous section the CPU and GPU
operate on distinct memory spaces and one of the key challenges is to determine when to move
data between them. The APU design solves this by providing a unified memory space for both the
CPU and the GPU, hereby maintaining the convenient programming model of a shared memory
space. This union of memory spaces has been labeled the heterogeneous Uniform Memory Access
(hUMA). hUMA has the additional trait that memory access times are uniform in contrast to the
NUMA memory system of the current multi-core CPUs. The devices themselves are programmed
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using OpenCL delivering the convenience of also having a single programming model regardless
of whether the program is executed on the CPU or GPU core.

As I began my PhD studies no processing units existed using the APU architecture. The
APU efforts of AMD reached the market in 2011 which in the first iteration was mostly just the
successful engineering feat of allowing the CPU and GPU cores to co-exist on the same die. When
programming them using OpenCL the memory spaces were still two distinct virtual memory
addresses and the programmer had to manually map a pointer in CPU memory space to that of the
GPU’s memory space. This is however just a mapping of namespaces and does not require copying
of data. The first APU (codename Kaveri) to take full advantage of the Heterogeneous System
Architecture (HSA) was released in early 2014. As of 2015 the roadmaps of AMD are pointing in
the direction of APUs in a wealth of configurations for different applications.

1.2.4 Many Integrated Cores and Network On Chip

The architecture of the Many Integrated Cores (MIC) and Network on Chip (NIC) is somewhere
in between the design-space of CPUs and GPUs. The MIC architecture uses simpler processing
cores, compared to the previously described multi-core processors, requiring fewer components
and thereby allowing for a higher number of cores on the same die. The interconnect between the
cores is the central focus of the architecture.

Xeon Phi is Intel’s flagship product for their MIC-design. The design features a throughput-
oriented coprocessor with its own memory connected to the system via the PCIe bus much
like the GPUs. The instruction set is, unlike GPUs, based on x86. In this architecture, a high
performance bidirectional ring network connects multiple in-order cores providing fully
coherent L2 caches. Each core integrates a Vector Processing Unit (VPU) with 32-bit wide
SIMD units supporting fused-multiply accumulate (FMA). Each core supports four threads
using symmetric multithreading (SMT) model labeled Hyperthreading. They hide latency by
switching execution when a cache-miss occurs, and a hardware-prefetcher to prefetch cache
data to avoid cache-misses. The latest product the Xeon Phi 7120 scales the core-count up to
61 cores running at 1.238 GHz with access to 16 GB GDDR5 ram.

Tilera is the producer of multiple MIC-based processors. These processors are, unlike the Xeon
Phi, not designed to be coprocessors but rather full-featured processors on their own, capable
of efficiently running an operating system. Tilera provides their own instruction-set for
their processors which are not x86 compatible. The Tilera design consists of identical cores
placed in mesh-network with L1 cache and a fully coherent L3 cache. Tilera has a specialized
technology named Dynamic Distributed cache (DDC) to facilitate the cache coherence. Tilera
claims that it accelerates coherent cache performance by a factor of two compared with other
multi-core interconnects. Their latest product the Tile-Gx8072 scales the core-count up to 72
cores running at 1.0-1.2 GHz with four integrated memory controllers capable of accessing
up to 1 TB of DDR3 memory.

Epiphany is a MIC-architecture which was designed from the ground up by Adapteva as a crowd-
sourced project with the goal of creating a non-legacy architecture with vast scalability. The
Epiphany[33] architecture is a coprocessor design much like the Xeon Phi but features a
mesh-based interconnect like the Tilera. In Epiphany, the mesh-network connects nodes.
Each node contains a RISC CPU, DMA Engine, Local Memory and a Node Interconnect
Interface. The interesting architectural difference is that the Epiphany provides one big flat
shared memory space, but there is no cache-hierarchy and, therefore, no cache coherency
to maintain. The first epiphany based product named the Parallela is a System on Chip
(SOC) which became available October 2013. It features a dual-core ARM A9 and a 16-core
Epiphany coprocessor with access to 1GB of DDR3 memory.
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The MIC/NOC architectures do not distinguish between the chip as a coprocessor or a as full-
featured processor. Their general trait is the network-oriented interconnect between the cores.
A recent example of this trend is that Intel has announced that the next generation of Xeon Phi
(Knights Landing) will be available as both a coprocessor and a standalone CPU.

1.2.5 Supercomputers

In the search for an answer as to what the best performing next generation processor will be, and
thus the most interesting for the backend to target, one has historically been able to inspect the
technological traits of the TOP5001 list of supercomputer sites in the world.

As of June 2015 the first place on the TOP500 list is held by the Tianhe-2 (MilkyWay-2) su-
percomputer. It uses a x86-based multi-core processor, the Intel Xeon E5-2692, along with the
Intel Xeon Phi 31S1P coprocessor. Following it, at second place, is the Cray XK7 based supercom-
puter Titan. Titan features an AMD Opteron 6274 multi-core processor along with an NVIDIA
K20X GPU. The computation nodes of current supercomputers have thus adopted mainstream
general-purpose commercial-of-the-shelf (COTS) components. While this does not provide much
inspiration as to which features next generation processors can adapt, it does testify that the current
mainstream ccNUMA architecture is useful for high performance computing tasks insofar as it is
used for these tasks. The most inspiring asset of today’s two fastest supercomputers is that they
feature heterogeneous nodes. The Tianhe-2 uses the Xeon Phi coprocessor, and the Titan uses an
NVIDIA based GPU. If today’s supercomputers are an indication of tomorrow’s processors, then it
is certain that the next generation processors will be heterogeneous. One indication is that since
today’s top-performing super-computers are clusters of COTS components then the distributed
shared memory programmed using MPI[66]/PGAS is an attractive means of obtaining scalable
performance. Other approaches such as the SGI Altix machines have a completely different design
which scale up into one huge machine programmable via shared memory although with multiple
layers of NUMA. The SGI machines can scale up to 2048 cores and 16TB of memory. The core
count is equivalent of 128 Cray XK7 nodes, and the memory of a single SGI machine is equivalent
to 512 Cray XK7.

The primary barrier, regarding heterogeneity is the physical separation of memory spaces, the
inconvenient handling of non-shared memory spaces and the performance penalty for transferring
data between the device and main-memory. The latest generation of the Xeon Phi integrates the
coprocessor on the same die as the CPU cores, turning the Xeon Phi into a full-fledged processor.
It thus seems like the next generation processors will be heterogeneous, consisting of multiple
coprocessors integrated on the same die.

1.2.6 Summary

The memory wall and effects of NUMA are the key motivations for hardware vendors exploring
different architectures and designs. It is hard to predict the future, and the current divergence in
processor design from the major vendors does not make it easier. Thus, designing a backend for
data-centric applications on next-generation processing units, one cannot focus on targeting just
a single architecture. The design of multi-core CPUs, APUs, and MICs all point in the direction
of shared memory model featuring cache coherence with varying levels of non-uniform memory
access.

The most opposing trend in this regard is the physically separated memory spaces of acceler-
ators such as discrete GPUs. These drag in another direction, pulling with the force that is their
superior throughput in terms of floating point operations. Regardless of whether the memory
system is shared or distributed the common trend is that next-generation processing units and

1The list is updated every six months and available online at http://www.top500.org/
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computing systems will be heterogeneous. It must be the focus of the backend to be able to handle
the current heterogeneity of computing systems as it is a lasting trait of processing units and
computing systems of today and the foreseeable future.

1.3 Backends and Languages

This section outlines current approaches to programming computing systems for high performance.
This includes the tools available for programming the TOP500 supercomputers as well as high-end
workstation.

The mainstream languages C, C++ have very limited support for expressing parallelism. One
explanation for this is that the languages themselves predate thread-level parallel processing.
Compilers and interpreters for these languages do to some extent provide ways of utilizing parallel
hardware but mainly for instruction-level parallelism. These languages are regardlessly popular
weapons of choice when it comes to programming parallel hardware through the use of language
extensions, libraries and runtime systems.

1.3.1 Low-level APIs

pthreads: Posix Threads

Posix threads (Pthreads[53]) are a standardization of threading libraries for symmetric multipro-
cessors. Historically vendors have each provided proprietary threading-libraries for their own
processing units which hindered portability from one CPU to the other and in some cases from
one generation of a CPU to the other. The IEEE POSIX 1003.1c standard provides a standardized C
language threads programming interface for Linux and other UNIX-like systems. Implementations
that adhere to this standard are referred to as POSIX threads, or Pthreads. Pthread compatible
threading libraries provide the fundamental building block for parallel computation the library
contains functions for creating/killing a thread and synchronization between threads of a process.

Pthreads portability breaks when it comes to using multiple platforms. Synchronization
primitives such as barriers are defined as optional which leads to uncertainty as to whether or not
synchronization barriers will be available when deploying an application based on Pthreads. The
lack of operating system portability is due to tight bounds between the multi-tasking support and
process/thread model of the operating system.

A widespread, well-supported, and highly portable alternative for multithreading is avail-
able and named Open Multi-Processing (OpenMP[22]). OpenMP provides a runtime API for
encapsulating the concepts of multithreading but without the concerns of mapping to the exact
vendor-provided threading-model. OpenMP is described in greater detail in section 1.3.2 on
Compiler Directives.

Qthreads: An API for Programming with Millions of Lightweight Threads

Qthreads[75] provide abstraction that enable development of large-scale multithreading applica-
tions on commodity architectures. Qthreads was designed and implemented to unify threading
models for emerging architectures with large scale hardware supported multithreading. It provides
a lighter threading model compared to other threading models such as pthreads. A key feature
of Qthreads is the ability to describe locality encapsulated in the concept of shepherds. Which as
described previously is essential for performance on NUMA architectures.
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CUDA: Compute Unified Device Architecture

Compute Unified Device Architecture (CUDA) is a parallel computing platform and programming
model introduced by NVIDIA for using their GPUs for GPGPU purposes. CUDA gives developers
access to the virtual instruction set and memory of the parallel computational elements in CUDA
GPUs. Using CUDA, the latest NVIDIA GPUs become accessible for computation like CPUs.

The CUDA platform is accessible to software developers through C, C++ and Fortran libraries.
The CUDA programming model revolves around kernels which are self-contained functions
implemented in CUDA C/C++ or CUDA Fortran. The CUDA-API provides the means for JIT-
compiling kernels using one of the supported compilers. The implementation of the kernels
themselves evolve around a programming model NVIDIA has labeled Single Instruction Multiple
Threads (SIMT). The model is closely related to SIMD but has, due to the CUDA architecture,
essential low-level differences in relation to thread-scheduling. The lowest scheduling unit in
CUDA is a warp. A warp is a set of threads scheduled to execute in parallel and all threads within
the warp are executing exactly the same instruction. It is thus not a single instruction mapped to
multiple data elements (SIMD), but a single instruction mapped to multiple threads (SIMT); the
threads themselves decide which data element to operate on. Each thread has a unique position
(blockIdx, threadsIdx) in a three-dimensional organization partitioned into blocks of threads. In
the SIMT-model, each thread uses its coordinate to map to the data-elements.

The warp-size is supposed to be an implementation detail that the programmer should not be
aware of, but for many optimizations on the CUDA platform knowing the warp-size is essential
for obtaining high performance. Another low-level concern is how and when to transport data
between the main memory of the host and the device memory of the GPU.

OpenCL: Open Computing Language

Open Computing Language (OpenCL) can briskly be described as the open alternative to CUDA.
OpenCL is the low-level API to use when targeting AMD GPUs. OpenCL includes a language
(based on C99) for writing kernels (functions that execute on OpenCL devices), plus an API
to declare which devices to use, allocate and copy data on and between devices, and execute
kernel-functions on the compute devices. The goals of OpenCL do stretch quite a great deal
further.

OpenCL is a framework for writing programs that execute across heterogeneous platforms
consisting not only of GPUs but also of CPUs, APUs, MICs, and Digital Signal Processors (DSP)s .
The goal of OpenCL is to provide the platform for parallel computing using task-based and data-
based parallelism. Major vendors including Intel, Qualcomm, AMD, NVIDIA, Altera, Samsung,
Vivante, and ARM has adopted and actively support OpenCL. Although the support from NVIDIA
seem to be faltering.

The previously mentioned families of processing units Opteron, Xeon Phi, Radeon HD, APU,
and Epiphany are all programmable using OpenCL. However, since OpenCL is a low-level
interface, the programmer must still explicitly control the hardware to the extent that OpenCL
allows. Therefore, it follows that the performance of a kernel written in OpenCL is not portable
across processing units. One example is a kernel written for a GPU which implies a kernel written
to utilize around 1500 threads. Instantiating 1500 threads on a CPU which at the hardware level
only supports 16 threads will only ensure horrifically slow execution. OpenCL is nonetheless a
very promising and convenient low-level API for instrumenting parallel execution.

MPI: Message Passing Interface

The TOP500 super-computing sites have previously had a mixture of architectural differences
for obtaining scalability. Previously, SGI-like architectures have dominated the TOP500 sites,
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but today the design have converged towards large-scale, custom-build systems based on the
commercial-of-the-shelf components such as the systems designed by Cray, Inc. Along with this
convergence the Message Passing Interface (MPI) has become the de-facto standard for distributing
work-loads among the nodes of a cluster regardless of its size.

Message Passing is often used with the Single Program Multiple Data (SPMD) model. When
using MPI a number of processes run and execute the same program. MPI / SPMD are thus
a great deal coarser grained in its decomposition than the SIMT/SIMD models. The processes
communicate by passing messages; there is no notion of shared memory. Each process has a rank
which is much like the threadIdx/blockIdx of CUDA; it is a unique identifier of the process in the
set of processes running the same program on multiple machines. The rank is thus the key used to
direct the behavior of the program and decompose the problem domain.

PGAS: Partitioned Global Address Space

Partitioned Global Address Space (PGAS), also known as distributed shared memory, is a design
around a communication primitive for maintaining a shared memory model in a distributed setting.
This is in sharp contrast to MPI in which all communication is based on passing messages and
shared memory is not possible. The PGAS model is used in the same setting as MPI for large-scale
computational clusters. Accessing a value in distributed memory is significantly slower than
access to a value in local memory. The PGAS model encapsulates this by provided one big global
address space but conveniently provide constructs for determining whether a given operation will
be accessing local or distributed memory.

The GASNet communication system is an example of a building block implementing this
distributed memory model. It is however intended for use in compilers and runtime-system and
not for end-users.

BLAS: Basic Linear Algebra Subprograms

BLAS[2] was originally a Fortran library containing 38 low-level subprograms for many of the
basic operations within numerical linear algebra. The operations included dot product, elementary
vector operation, Givens transformation, vector copy and swap, vector norm, vector scaling, and
the determination of the index of the vector component of largest magnitude. BLAS has, since
its first publication in 1979, gone from being just a Fortran library to become the defacto library
interface for performing operations within the scope of linear algebra. The BLAS operations today
consist mainly of three levels.

Level 1 Vector expression on the form: y ← ax+ y where x, y are vectors and a constant. As well
as dot products and vector norms.

Level 2 Matrix/Vector expression on the form: y ← αAx+ βy where A is a matrix, x, y are vectors
and α, β are constants.

Level 3 Matrix/Matrix operations on the form: C ← αAB + βC where A,B,C are matrices and
α, β are constants.

The Netlib[2] provides a C-reference implementation of BLAS and there are optimized versions
of the BLAS libraries for almost all hardware targets. Both enthusiasts and vendors supply the
implementations of these libraries. To name a few Intel provides the Math Kernel Library (MKL[1])
targeting their multi-core CPUs and the MIC. AMD supplies Core Math Library (ACML) targeting
their Opteron CPUs and Accelerated Parallel Processing Math Libraries (APPML) targeting their
GPUs. NVIDIA provides cuBLAS[5] a complete BLAS implementation for dense matrices and
a cuSPARSE[51] for a dedicated subset for sparse matrices, both targeting CUDA-based GPUs.
GotoBLAS[32]/OpenBLAS[77]/GotoBLAS2 are open-source initiatives currently led by Texas
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Advanced Computing Center (TACC) targeting Intel Nehalem, Intel Atom, VIA Nano, AMD
Shanghai, and AMD Istanbul. There currently exists an abundance of BLAS-libraries targeted for
virtually any architecture.

Another very popular BLAS approach, which has had significant impact on high performance
computing, is Automatically Tuned Linear Algebra Software (ATLAS)[74]. Microbenchmarks help
estimate attributes such as cache-sizes which can then be used to provide optimal values for block
sizes for tiling. Additional micro-kernel benchmarks are executed to determine optimal values for
each BLAS operation. The autotuning approach allows for highly tuned BLAS-libraries as even
small variations within a CPU architecture can be measured, modeled and integrated with the
optimized BLAS-operations.

Build To Order (BTO)[63] is another interesting approach to obtaining an efficient BLAS library
implementation. BTO is a BLAS-expression compiler that generates high performance implemen-
tations of basic linear algebra kernels. The user of the Build to Order BLAS compiler writes down
a specification for a sequence of matrix and vector operations together with a description of the
input and output parameters. The BTO-compiler then tries out many different choices of how
to implement, optimize, and tune those operations for the available hardware. The result of this
process is output as a C file containing a function that implements the specified composition of the
operations described by the user. This approach is quite interesting as it allows to optimize, not
only for particular hardware, but also for expressions.

1.3.2 Compiler Directives

Libraries augment the functionality of a language. They do not extend the language itself as they
are not part of the grammar, but they do extend what can be done within the language such as
providing control over processing threads and co-accelerators such as low-level APIs from the
previous chapters. This attribute is both a force and a weakness. Another approach to extending a
language is using compiler/interpreter directives. Directives are similar to a library in the sense
that they are not part of the language grammar. Directives are hints, tags, decorators or pragmas
inserted in source-code providing directives for the compiler to follow or ignore. The following
descriptions cover some widespread and popular directive-based frameworks.

OpenMP[22] is one of the most widespread and well-supported compiler directives for C, C++,
and Fortran compilers. OpenMP provides a convenient framework for orchestrating and syn-
chronizing threads on multi-core processors. OpenMP supplies pragmas such as #pragma
parallel which when in front of an anonymous code block will execute the code block in
its own thread. Another construct #pragma parallel for provides a simple means for
expressing data-parallelism. When #pragma parallel for is put in front of a for-loop
the compiler will attempt to perform a fork-join parallelization over the loop-body. OpenMP
is a standardized API which is integrated with C/C++/Fortran through directives. Support
for coprocessors and accelerators have been added in OpenMP 4.0.

OpenACC[76] is a collection of directives for code-blocks and loop-bodies similar to OpenMP.
With OpenACC these code-blocks and loop-bodies are targeted execution on coprocessors
and accelerators such as GPUs. The benefit of using OpenACC directives in comparison to
OpenCL/CUDA is that it encapsulates device initialization and data movement between
host and accelerator. It simplifies many of the tasks required for offloading computations to
an accelerator/coprocessor.

LEO[52] are Intel’s Language Extensions for Offload, they provide offload capabilities for In-
tel Graphics and the Xeon Phi accelerator and coprocessor. Adding #pragma offload

target(mic|gfx) will execute the codeblock following on an accelerator or Intel graph-
ics. Adding #pragma offload_transfer target(mic) provide control for memory
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management on accelerators. LEO works with OpenMP to provide both task-based and
loop-centric parallelization when targeting an accelerator. This simplifies porting already
OpenMP parallelized code to run on the Xeon Phi. However, when used to target Intel
graphics then only perfect loop-nest are offloadable and OpenMP is not supported.

OmpSs[27] abstracts parallelization to one level higher than that of OpenMP and OpenACC
by providing task-based programming model. OmpSs targets the programming of hetero-
geneous and multi-core architectures and extends OpenMP 3.0 by offering asynchronous
parallelism in the execution of the tasks. The main extension provided by OmpSs is the
concept of data dependencies between tasks and not just the fork-join based parallelization
of the #pragma parallel for or #pragma acc loop. This is done through directives
such as #pragma omp task in(...) out(...). This information is used during the
execution by the underlying OmpSs runtime to control the synchronization of the different
instances of tasks by creating a dependence graph that guarantees the proper order of execu-
tion. This mechanism provides a simple way to express the order in which tasks must be
executed, without needing to add explicit synchronization.

Directive-based programming is a very promising technology for dealing with heterogeneous
architectures.

1.3.3 Libraries

BLAS is an example of a successful high performance library to such an extent, that today it is
not just a library but the defacto interface for linear-algebra. It conveniently hides the low-level
details from the user by delegating the task of mapping BLAS-operations to the library provider.
However, BLAS does have its short-comings when it comes to ease of use, but more importantly
the BLAS interface is static. Optimizing a composition of BLAS-operations implies extending the
interface with the composition such as the approach of the BTO-BLAS compiler.

The following listing describes current approaches to maintaining performance of libraries and
to some extent increasing it by allowing composition of operations.

Blitz++[71] is a C++ template library for array manipulation. It exposes a single class called blitz←↩

::Array<T_numtype,N_rank> which provides a dynamically allocated N -dimensional array. The
implementation is based on utilization of expression templates for performance. Expression
templates facilitate lazy-evaluation at compile-time. Any expression performing operations
on one or more blitz::Array generate a tree-like data structure of expressions. The expression
structure is evaluated at compile-time and provides means for applying optimizations such
as loop fusion, unrolling, tiling/blocking, and algorithm specialization. The high-level
abstraction of arrays provides a convenient declarative notation effectively shielding the user
from low-level optimizations. Blitz++ is being used in C++ projects but also as the backend
for applications written in high-level languages such as R and Python.

Armadillo[60] is a C++ linear algebra library with a structure much similar to Blitz, but with an
emphasis on ease of use by providing syntax similar to that of Matlab and Octave. It uses
expression templates similarly to Blitz++ to obtain performance and also provide various
matrix decompositions integration with LAPACK[3], or one its high performance drop-in
replacements, such as MKL from Intel or ACML from AMD. Performance comparisons[60]
suggest that the library is considerably faster than Matlab and Octave. Armadillo also
provides integration with the programming language R. The integration was demonstrated
at the R/Finance2 conference in Chicago, IL, USA May 2013 showing a speedup of 66 on the
same hardware for a Kalman Filter application written in R.

2R/Finance: Applied Finance with R, http://www.rinfinance.com/
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Eigen[35] is yet another C++ library for linear algebra based on expression-templates with a
focus on ease of use. The library provides very efficient utilization of a single CPU core.
Current work on Eigen focuses on expanding support for multi-cores by delegating to BLAS
libraries and further down the road orchestrate the parallelization within Eigen explicitly
using OpenMP.

Thrust[8] is a C++ template library maintained by NVIDIA for parallel platforms based on the
Standard Template Library (STL). Thrust allows the user to implement high performance
parallel applications with minimal programming effort through a high-level interface that is
fully interoperable with technologies such as C++, CUDA, OpenMP, and Thread Building
Blocks (TBB). Thrust provides a collection of data parallel primitives such as scan, sort, and re-
duce, which can be composed to implement complex algorithms with concise, readable source
code. The user effectively delegates the task of selecting the most efficient implementation to
Thrust by describing computations in terms of high-level abstractions. Thrust specifically
provide an STL-interface compatible with std::vector. The interface quite efficiently hides the
low-level details of multi-core threading and GPU kernel-code generation. The STL-interface
is provided through two std::vector compatible containers: thrust::device_vector and thrust::←↩

host_vector. Thrust does not hide the essential challenge of deciding when to move a problem
to the GPU. Thrust is thus specifically designed for a coprocessor architecture in which the
host can be a general-purpose multiprocessor and the device a the coprocessor/accelera-
tor. Users of Thrust, must decide when to use a device/coprocessor and when to use the
host/multi-core for executing the composed STL-algorithm.

Bolt[59] is a C++ template library maintained3 by AMD which provides an STL compatible library
of high level constructs for creating accelerated data-parallel applications. Bolt can briefly be
described as the AMD equivalent to Thrust – targeting the same architectures – but using
OpenCL instead of CUDA. The high-level abstraction is very similar and, like Thrust, Bolt
also exposes the locality of the arrays by distinguishing between a host and a device vector.

Cilk Plus[17, 57] is not only a library but also an extension to C and C++ that offers a quick and
easy way to harness the power of both multi-core and vector processors. Cilk Plus provides
parallel constructs in the form of three keywords cilk_spawn, cilk_sync, and cilk_for. The three
keywords provide a simple model for explicit parallel programming while runtime and
template libraries offer a well-tuned environment for building parallel applications. Cilk
Plus consists of language extensions, a library and the runtime system to support it. Cilk
requires compiler support in order to provide an array notation of unprecedented simplicity
compared to purely library-based approaches. The Intel compiler supports Cilk and so does
branches of gcc 4.8 and llvm.

These libraries have seen widespread use, and their popularity can be credited to their ease
of use granted the declarative programming style based on operator overloads in the case of
Blitz++, Armadillo, and Eigen and the STL-compatible interface of Thrust and Bolt. An observation
regarding these libraries is that they fail to hide hardware specifics when it comes to utilizing
separate memory spaces. Thrust and Bolt both expose this by requiring the user of the library to
decide whether a given operation should operate on data on the device or on the host. Blitz++,
Armadillo, and Eigen do not yet support execution on other targets than the CPU and main
memory it is uncertain how these libraries will address this issue.

3Latest information available via https://github.com/HSA-Libraries/Bolt
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1.3.4 Languages

The previous sections have mostly been concerned with C/C++/Fortran and the low-level APIs,
libraries, and compiler directives available within them. The reason is that C is a fundamental
building block. C is the language for systems programming. C provides the low-level control
needed for constructing low-level APIs, libraries, and for controlling hardware. The C language
provides structures to encapsulate related data, and MACROs for preprocessing and transforming
source-code. The C language thus has very limited means for providing high-level abstractions for
the user which makes it ill-suited for application-programming.

C++ with its integrated legacy support for C has been, and still is, a popular choice for
encapsulating the low-level details of C by means of classes, operator overloads, and STL-container
interfaces. C++ is even popular within Computational Financial as one of the leading educational
institutions Carnegie Mellon teaches C++ as part of the curriculum in their master program in
Computational Finance. Fortran has been and still remains the weapon of choice within the natural
sciences for expressing computational experiments such as simulations and model-testing.

The following describes the approaches of more high-level languages concerning productivity
and performance. Substantial research effort has been put into increasing programmer produc-
tivity for large-scale clusters and supercomputers. The challenge was to replace a programming
model based on X+ MPI where X is one of C, C++ or Fortran with something that increased the
productivity of the programmer. The earliest was High Performance Fortran (HPF), later ZPL[19].
The results of the efforts are the PGAS languages which provide convenient means for supporting
the SPMD model in a distributed environment. PGAS is supported in a different form by Unified
Parallel C (UPC[18]), CoArray Fortran (CAF[54]), IBM X10 (X10[61]), and Chapel[20, ?].

HPF High Performance Fortran is a high-level data-parallel programmig system based on Fortran.
It was one of the first attempts at creating a high-level language abstracting the details
required by X + MPI approach. Although not successful HPF had a major impact on the
design and implementation of data-parallel languages. A postmortem[37] of the language
summarizes lessons learned from the rise and fall of HPF for future languages to consider in
their design.

ZPL Z-level Programming Language is a parallel array programming language designed from
first principles for fast execution on both sequential and parallel computers. ZPL can achieve
efficiency comparable to hand-coded message passing by exploiting the latent parallelism of
array operations. ZPL is not a PGAS language but the concepts introduced by ZPL such as
regions live on in Chapel.

UPC Unified Parallel C is one of the earliest examples of a PGAS language, which combines
the convenience of a global address space with the locality control and scalability of user-
managed data partitioning. Any code which forms a valid C program is also valid UPC
program. UPC is thus tightly coupled with the low-level nature of C. UPC provide high
performance by hiding latency through single-sided communication but does little to advance
the productivity of the programmer.

CAF CoArray Fortran is based on many iterations of work on Fortran. Fortran has long been
a favorite among scientific programmers. For that reason, it has always been viewed as
an important language to map to scalable parallel systems. CAF 2.0 is the current peak of
the efforts based on the works of High Performance Fortran (HPF) and CoArray Fortran
1.0. CAF 2.0 is a partitioned global address space programming model based on one-sided
communication, is a coherent synthesis of concepts from MPI, Unified Parallel C, and IBM’s
X10 programming language.

16



Backends and Languages Context

X10 is from IBM and named based on a mission statement when IBM set out develop a petaflop
computer, which could be programmed ten times (hence X10) more productively than a
computer of similar scale in 2002. The roadmap of the X10 team was to develop a pro-
gramming model for large scale, concurrent systems that could be used to program a wide
variety of computational problems, and could be accessible to a large class of professional
programmers. The result is X10: a modern language in the strongly typed, object-oriented
programming tradition whose design fundamentally focuses on concurrency and distribu-
tion, and which is capable of running with good performance at scale. UPC came from C,
CAF from Fortran, and X10 came from Java and has a Java inheritance.

Chapel is an emerging parallel programming language that strives to improve the productivity
of parallel programmers from desktops to supercomputers. It is the only one of the PGAS
languages which provides its own grammar and do not come with a legacy such as C,
Fortran or Java. It also strives to support more general styles of parallelism in software and
hardware. Cray Inc. leads the design of Chapel in collaboration with members of academia,
computing centers, and industry. It is developed in a portable, open-source manner under the
BSD license. A key feature of this philosophy is that higher-level features are implemented
within Chapel in terms of the lower-level concepts, ensuring that the various levels are
compatible and at every level support composition of concepts. Chapel thus supports both
low-level instrumentation of communication and locality while at the same time providing a
convenient syntax and ease of use in terms high-level language constructs. It is as such the
best of both worlds.

The above mentioned languages are based on PGAS and highly focused on large-scale computa-
tional clusters and supercomputers. They mainly target distributed memory systems. A wealth of
other parallel programming languages exists which to a greater extent focus on obtaining high
performance on a single node or workstation and utilizing parallelization at the node/workstation
level. Such languages include but are not limited to Julia[10] and NESL[12].

NESL is a parallel language developed at Carnegie Mellon. The major focus of NESL is to
provide a convenient and high-level data-oriented programming model. NESL advocates
the expression of algorithms in a high-level form and hereby extract nested data-parallelism.
NESL consists of a runtime system which executes virtual machine code (VCODE[13]). The
NESL project itself seem to have stopped development around 1995-2000. However recent
work has shown that NESLs model of nested data- parallelism is also highly applicable to
efficient utilization of GPUs[9]. The group researching domain specific languages in the
HIPERFIT context also investigate the use of NESL and nested-parallelism targeting GPUs.

MATLAB is a high-level language and interactive environment for technical computing. Matlab
has a long history dating back to the 1970s where it was introduced in academia as alternative
to Fortran and LINPACK[25]/EISPACK[31]. The name Matlab is an abbreviation of Matrix
Laboratory which emphasizes the use of an array-oriented programming model where
all variables are arrays/matrices. Matlab thus provided a convenient matrix-notation for
performing linear algebra and mapped these to Fortran and calls to LINPACK/EISPACK.
Today Matlab has widespread use in academia within domains of economics, science, as well
as industry. It is today implemented in C and LINPACK/EISPACK has been replaced by
LAPACK[3].

IDL IDL is an interactive data language that have seen widespread use in areas such as astronomy,
atmospheric physics and medical imaging. It features a high-level declarative syntax and
applies well to an interactive processing of large amounts of data. IDL is a commercial
product though free implementations of the language exist most notably the GNU Data
Language.
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Julia is a high-level, high performance dynamic programming language for technical computing
with syntax which is familiar to users of MATLAB, Python, and R. It provides a sophisticated
llvm-based compiler, distributed parallel execution, numerical accuracy, and an extensive
mathematical function library. The library, largely written in Julia itself, also integrates
mature, best-of-breed C and Fortran libraries for linear algebra, random number generation,
signal processing, and string processing. Julia provides parallel constructs such as @spawn

and @parallel for local multi-core parallelization. The constructs @distribute and @localize

for distribution on clusters. Julia mainly targets multi-core processors and grids or clusters
of multi-cores. However as the CUDA compiler has now been contributed to the LLVM
compiler project it could mean that Julia’s compiler through the llvm-code code target CUDA
based GPUs.

Another approach to uniting productivity and performance is to directly map low-level libraries
into high-level languages. Below are two examples of this approach described.

R is a programming language and software environment for statistical computing and graphics.
It is widely used among statisticians and data miners for developing statistical software and
data analysis. It has also widespread adoption within mathematical/computational finance at
the University of Copenhagen where it is used as an integrated teaching tool. The university
of Washington similarly use R as part of the curriculum of their Master of Computational
Finance program. R can be regarded as a domain-specific language for statistical computing,
and it has very little focus for generic parallel constructs or high performance. However,
there are multiple efforts of integrating R, via C++[28], with libraries such as Eigen[6] and
Armadillo[29] as a means of increasing the computational capabilities of applications written
in R.

Python is a high-level, high productivity dynamic interpreted programming language. Python
has a philosophy of batteries-included which means that along with the distributions of
the Python interpreter follows a rich standard library. The design of Python is thus to a
have a somewhat small and simple language with a high focus of productivity and easily
readable code. The language itself does not contain parallel constructs but relies on libraries
for these purposes, libraries which are included with the distribution of the interpreter.
Python has a suite of libraries consisting of Numerical Python (NumPy[69]), Scientific
Python (SciPy[36]), Interactive Python (IPython[56]), and MatplotLib[34] which combined
provides high-level interface similar to that of MATLAB with a base abstraction of a multi-
dimensional array structure. Python has gained much popularity due to its simplicity and
well-supported libraries especially within scientific computation communities. Python has
also proven itself in finance communities Python has multiple interpreters with different
performance characteristics, the most popular is the reference implementation CPython.
CPython integrates well with C-libraries and the NumPy library also gains it performance
boost by providing an efficient backend implementation of the array operations exposed in
the library.

This ends the background describing the architectural diversity of current and near-future process-
ing units and the multiple levels of abstraction the processing units themselves and the computing
system they are part of can be programmed with.

1.4 Approach

As I started my Ph.D. studies the HIPERFIT initiative had just begun and the different research
areas ran in parallel. As a consequence, there was no domain specific language for the backend
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to support. The backend instead became language agnostic by circumstance rather that design.
However, what was given from the HIPERFIT context was the intent of creating a high-level
domain specific language, most likely in the shape of a functional language.

With that in mind I looked at related work on programming systems for high performance and
productivity as the previous two sections describe. The result was the following design criteria
and goals.

• Support an array-oriented programming model

• Language integration via intermediate representation

• Target a performance that is comparable to straight forward hand-coded C/C++ for the same
application

The motivation behind the focus on array-oriented programming is manifold. Considering pro-
ductivity the widespread and actively used high-level languages such as Python/NumPy, Matlab,
R, and Julia all use arrays and a convenient declarative notation for manipulating them. Without
knowing exactly how the domain-specific language would look like it seemed safe to assume that it
would provide abstractions similar to those just described. The existence of purely functional array-
oriented languages such as Single-Assignment-C[62] also testifies that the model does not conflict
with the intents of designing domain-specific languages using functional language design. From
a performance perspective, history has shown that data-parallelism drives performance[19, 14].
In short the array-oriented model allows for convenient notation within the language and the
backend can exploit the inherent data-parallelism of array operations for performance. Focusing
on a programming model instead of a language was a way to bootstrap the studies.

What started out as a condition of circumstance became a novelty of the work. It allowed the
exploration of using an intermediate representation for array operations as the bridge between
language and backend and thereby building the bridge between performance and productivity.
The three criteria formed the thesis queston: Is it possible to construct a language agnostic backend
for high-level languages without sacrificing performance?

I have applied an experimental[23, 24] approach to explore this question. The contributions I
have made in this regard are described in the following section. The experimental environment
included the specification and construction of an eight-node beowulf-cluster. The specification was
inspired by the current trends as described in section 1.2 and resulted in a node-configuration with
two Opteron 6274 CPUs, 128GB of memory, three Radeon HD 7850 GPUs, and gigabit ethernet.
A configuration that encapsulated several programming challenges for shared memory multi-
core processors with NUMA architecture, distributed memory, GPUs, and the general trend of
heterogenous architectures.

As previously mentioned then the design and implementation of the backend is a collaborative
effort. The cluster encapsulates several performance related challenges where the focus of my
studies is the efficient utilization of shared memory multi-core processors with NUMA architecture.
That means exploring whether the declarative array-oriented programming provide sufficient
information for a backend to efficiently manage non-uniform memory access without help from
the programmer. Efficient utilization of other processing units as well as distributed memory are
also of interest but out of scope for my work.

Focusing on multi-core processors also aid experimental testing and performance evaluation as
it allows for comparative studies to existing languages, libraries and tools. The cluster served as
a laboratory and to perform actual experiments in that laboratory I implemented a tool named
Benchpress which is described in Chapter 4 section 4.5. Modern software engineering practices
were applied to maintain good research conduct and laboratory practice. Including providing all
source code as open source in publicly available repositories and using continous integration tools
for correctness testing.
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1.5 Contributions

The core of the thesis is based on the design, implementation and experimental evaluation of a
backend for array-oriented programming which resulted in 12 papers that I have co-authored
throughout my studies. 10 of which are published, one submitted but not yet published and
one not yet submitted. My main contribution to this work is the C-targeting Array Processing
Engine (CAPE) which I have described in the paper Automatic mapping of array operations to specific
architectures[48] (see Part II section 6.1) submitted for publication in the Elsevier International
Journal of Parallel Computing, ref: PARCO-D-15-00170.

Together, they describe the incremental steps in implementing a prototype, evaluating the per-
formance, making observations, getting feedback, revising the design, revising the implementation
and then re-iterating. That is, they describe performance related issues with different approaches
culminating in the current state of the array-oriented backend Bohrium and the array processing
engine CAPE.

The remainder of this section will go through the publications and describe my role in the
work. The end of the section describes a divergence exploring interoperability with the parallel
programming language Chapel.

The first experimental prototype was named Copenhagen Vector Bytecode (cphVB[42] see Part
II section 6.2). The work on cphVB led to the publication and presentation4 of a paper at the SciPy
conference in Austin, Texas, June 2012. The contributions of cphVB are materializing the idea
of using an intermediate representation (vector bytecode) as the mediator between a language
and backend. As well as exploring the use of the virtual machine approach for processing array
operations and observing performance related challenges for future work.

print sum ( (rand (N ) /100) +5)

Figure 1.4: Array-notation pseudo-code for com-
puting the N random numbers, divide them with
100, add 5 and calculate the sum.

t1 = malloc (N ) ;
f o r (i=0; i<N ; N++)
t1 [i ] = random_generator ( ) ;

t2 = malloc (N ) ;
f o r (i=0; i<N ; N++)
t2 [i ] = t1 [i ] / 1 0 0 ;

free (t1 ) ;

t3 = malloc (N ) ;
f o r (i=0; i<N ; N++)
t3 [i ] = t2 [i ] + 5 ;

free (t2 ) ;

sum = 0 ;
f o r (i=0; i<N ; N++)
sum += t [ 3 ] ;

free (t3 ) ;

Figure 1.5: C-like pseudo-code processing array
operations from figure 1.4.

. . .
output = malloc (N ) ;
execute_array_operation (output , input ) ;
free (input ) ;
. . .

Figure 1.6: C-like pseudo-code illustrating an ar-
ray processing pattern.

My contribution to cphVB was the imple-
mentation of the virtual machine using static
dispatch for processing array operations on
CPUs. The static dispatch processed a byte-
code at a time, either performing a memory
management operation or executing an array
operation.

The first prototype matched and outper-
formed the performance of NumPy, however,
the question was whether the backend would
be able to match and outperform hand-coded
C/C++ and the initial work revealed several
challenges to meeting this goal.

When presenting and attending the confer-
ence I also became aware of a problem referred
to as the Python import problem. The problem is
an instance of the more general problem, that
had been studied before[30, 26], of using dy-
namic loading when running on clusters with
a shared filesystem. This problem was stud-
ied further and a novel approach to solving
it was introduced and published with the pa-
per Bypassing the Conventional Software Stack
Using Adaptable Runtime Systems[46] (see Part II
section 6.4) submitted to and presented at the
Euro-Par 2014 parallel processing workshops.

4The presentation was recorded and can be seen at https://youtu.be/HFxn3mSp9ww
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A key observation was made during the exploration of approaches to processing array opera-
tions. Figure 1.5 illustrates the low-level operations performed when processing the array program
in figure 1.4. In the case of Python/NumPy the loops in figure 1.5 are ufuncs5 or calls to optimized
libraries[1, 11, 2, 74, 43] when applicable and available. For every array operation the pattern
consists of: [allocate]; execute; [deallocate]

For compound expressions arrays are allocated to store intermediate values between array
operations as illustrated in figure 1.6. This pattern is common in languages that rely on library-
delegation for efficient implementation of array operations.

There are multiple performance challenges with this approach which became the main focus of
the studies to improve. The first step I took was experimenting with memory allocation, specifically
a buffer allocation and reuse scheme dubbed the software victim cache. The work was done on a
fork6 of the NumPy project and the approach and findings described in the paper Doubling the
Performance of Python/NumPy with less than 100 SLOC[47] (see Part II section 6.3) submitted to and
presented at the PyHPC workshop in conjunction with SC13. The approach improved performance
as side-effects of memory-allocation and first-touch page allocation were avoided which due
to the [allocate]; execute; [deallocate] pattern on large arrays had a considerable
improvement in terms of consumed wall-clock time. The work was a contribution to NumPy and
generalizes to other languages to the extent that they apply the same array-processing pattern.

Python/NumPy served as a means to bootstrap the studies. However, the focus of the thesis
is not on a high performance backend to Python/NumPy but rather a backend to array-oriented
programming of which Python/NumPy is one example. Work was put into expanding language
and hardware support resulting in the paper Bohrium: a Virtual Machine Approach to Portable Paral-
lelism[41] (see Part II section 6.5) submitted to and presented at HIPS workshop in conjunction with
IPDPS14. In addition to the name change the entire backend was a complete re-implementation
with language support for Python, C, C++, CIL-based languages (C#, F#, etc.) and hardware
support for CPUs, GPUs, and distributed memory. The step from cphVB to Bohrium was a large
collaborative effort in which my contribution was the C++ language bridge, and array processing
on CPU using the victim cache scheme.

t1 = malloc (N ) ;
t2 = malloc (N ) ;
t3 = malloc (N ) ;
sum = 0 ;
f o r (i=0; i<N ; N++) {
t1 [i ] = random_generator ( ) ;
t2 [i ] = t1 [i ] / 1 0 0 ;
t3 [i ] = t2 [i ] + 5 ;
sum += t [ 3 ] ;

}
free (t1 ) ;
free (t2 ) ;
free (t2 ) ;

Figure 1.7: C-like pseudo-code processing array
operations from figure 1.4 using composition.

sum = 0 ;
f o r (i=0; i<N ; N++) {
t1 = random_generator ( ) ;
t2 = t1 / 1 0 0 ;
t3 = t2 + 5 ;
sum += t3 ;

}

Figure 1.8: C-like pseudo-code processing array
operationsarray operations from figure 1.4 using
composition and contraction.

On the topic of other languages then the
C++ and NumCIL integrations were only
demonstrated and their inner workings not
described in the paper. Section 4.3 desribes
the C++ integration in greater detail and lay
out plans for future work. The paper NumCIL
and Bohrium: High productivity and high perfor-
mance[65] (see Part II section 6.8) submitted to
and presented at the PPAM15 workshop on
Language-Based Parallel Programming Mod-
els describes the CIL-based integration. I con-
tributed to the Bohrium side of the language
integration which involved modification of the
C and C++ interface of Bohrium which the CIL-
interface utilize.

Returning to the topic of improving the ar-
ray processing pattern as illustrated in figures
1.4, 1.5 and 1.6. Figure 1.7 illustrates the goal,
which is to compose array operations, the mo-
tivation for array operation composition is the

5http://docs.scipy.org/doc/numpy/reference/ufuncs.html
6victim_cache branch of: https://github.com/cphhpc/numpy/
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ability to apply array contraction as illustrated in figure 1.8. Achieving this goal significantly
reduces the need for memory allocation and in some cases, such as the example in figure 1.4, allow
streaming computations, reducing memory to a constant size. Thereby transforming othervise
memory-bound array-expressions into compute-bound, removing pressure from the largest bottle-
neck in a compute system. Composition and contraction are thus essential for performance and
required to reach an efficiency level matching that of hand-coded implementations in a low-level
language.

However, performing composition and contraction are out of reach for the static dispatch
approach. The static approach has to have an “answer” to every array operation in the form
of a function. This is required since the backend must support high-level languages which
includes interpreted languages inferring that the program is not known until runtime. This was
implemented using C++ templates and instantiation of a massive library of about 900 functions.
Having a function for every legal composition of array operations is infeasible.

The idea was to dynamically compile functions instead, the first iteration of work led to the
paper Just-In-Time Compilation of NumPy Vector Operations[44], see Part II section 6.6 which was
submitted to the GSTF Journal on Computing. The contribution of the paper was exploration
of JIT-machinery and demonstrating feasibility of the approach by JIT-compiling a subset of
bytecodes. My contribution to the work was working with Johannes Lund on the implementation.
An essential observation was made namely that the internal program representation in Bohrium
was insufficient for performing composition and contraction. This area became an essential area of
research for every contributor to Bohrium. The description of work in this direction and challenges
are described in greater detail in the not yet submitted paper Fusion of Array Operations at Runtime,
see Part II section 6.12. My contribution to this paper primarily involve input to cost-functions
and experimental validation of the theoretical models driving the construction of array operation
composition and contraction.

The work on Bohrium’s internal representation forked to explore different approaches, the
first union of these efforts was realized with the paper Bohrium: Unmodified NumPy Code on CPU,
GPU, and Cluster[40], see Part II section 6.7, which was submitted to and presented at PyHPC
in conjunction with SC13. My contribution to the work was replacing the static dispatching for
array processing on the CPU. Using lessons learned from previous work on JIT-compilation I
reimplemented the CPU engine using the new program representation. However, numbers on
parallelization were not provided in this paper and the implemented JIT-machinery worked in a
single-instruction mode which generated, specialized and compiled code at runtime but did not
apply composition and contraction.

As I continued work on these areas the first stable implementation and realization of array
composition and contraction was contributed to and published with the paper Prototyping for
Exascale[72], see Part II section 6.10, submitted to and presented at the Exascale Applications and
Software Conference (EASC15). The paper describe the role of Bohrium as a prototyping tool for
scientific computation, my contribution on JIT-compilation and code generation demonstrated
scalable performance on multi-core architectures.

The latest advances in the JIT-machinary, codegeneration, and runtime instrumentation evolved
into the C-targeting Array Processing Engine (CAPE) which was mentioned in the beginning of this
section. The paper Automatic mapping of array operations to specific architectures (see Part II section
6.1), describes CAPE in greater detail, and provides a performance study showing the realization
of the goal of bridging performance and productivity via the array-programming model.

My studies diverged as I got the opportunity of visiting and working with Bradford L. Cham-
berlain and the Chapel Team at Cray Inc. Chapel is an ideal candidate as a backend language as
it provides the features sought after, that is, support for an array-oriented programming model
and parallel execution. Since Chapel also provide a convenient array-notation it could potentially
also be used in place of the domain specfic language sought after. However, from this perspective,
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then Chapel is lacking is an interactive environment such as for prototyping and visualization.
The idea was therefore to explore the interoperability features of Chapel and experiment with
using IPython/Python/NumPy providing the interactive environment and using Chapel under
the hood for performance.

To facilitate this idea I contributed to the work described in the paper Separating NumPy API
from Implementation[39] (see Part II section 6.9) which was submitted and presented at PyHPC in
conjunction with SC14. The paper describes the Python module npbackend which factors out
the work done in Bohrium of extracting the data-parallel operations of Python/NumPy into a
self-contained component. The contribution of npbackend is that the backend implementing
the NumPy array operations can be overloaded by invoking the Python program as python -m

npbackend program.py the targeted backend can then be controlled via environment variable
such as NPBE_TARGET with values such as bohrium, pygpu, or numexpr. That is, the NumPy
backend implementation can be changed without modifying the program.

Work on interoperability between Python and Chapel materialized in the form of pyChapel78,
briefly described in the extended abstract titled Scripting Language Performance Through Interoper-
ability[45], see Part II section 6.11. The extended abstract was submitted to, and presented9 in more
detail at HPSL in conjunction with PPoPP15. PyChapel consists of a foreign-function interface for
calling Chapel procedures from Python and inlining Chapel code in Python. PyChapel also provide
a Chapel module-compiler which compiles Chapel modules into Python modules. The work on
PyChapel also encapsulate a minor contribution to the 1.10.0 release of the Chapel compiler which
facilitated compilation of Chapel code into shared libraries. Additional work needs to be done to
fully explore the potential of this Python and Chapel approach which is outlined in section 4.4.

7http://pychapel.readthedocs.org/
8https://github.com/chapel-lang/pychapel
9http://prezi.com/rzfzev1fzgul/
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Chapter 2

Programming Model

In this chapter a description of an array-oriented programming model is introduced which encap-
sulate the high-level operations within linear algebra and generalizes them for use with tensors or
specifically to multi-dimensional arrays. In the description of backends and libraries we saw the
challenges of the low-level APIs and compiler-directives. We saw that the long-lived success of
the BLAS-libraries as well as its shortcomings in terms of compositional optimization and how
a BLAS-compiler and template-oriented libraries remedy these by providing even higher-level
abstractions.

The problem with these approaches is that they break the strongest suit of BLAS, a stable
interface. One cannot rely on a single interface for these operations but have to choose a specific
binding such as Thrust to utilize multi-cores and NVIDIA GPUs or BOLT to utilize multi-cores
and AMD GPUs. This breaks portability.

It is thus the purpose of the programming model to provide a stable high-level declarative
interface which can be integrated into libraries and domain-specific languages as well as a single
interface for a backend to implement. The goal is to hereby achieve productivity of the programmer,
portability of the application and performance through the efficient implementation of the backend.

Section 2.1 describes what can be expressed within the programming model. The description
provided here is not a formal language definition it is instead an abstract description of the model.
Related work describing collection-oriented[64] languages provide examples and comparison of
their support for collection-oriented programming. Languages compared include APL, SETL,
CM-Lisp, Paralation Lisp, and Fortran 90.

A key difference between the collection-oriented model and the array-oriented model is con-
cerned with data-representation. The collection-oriented model distinguishes between simple and
nested collections. A simple collection is a list or vector of elements. A nested collection may
contain collections as elements. These terms in the array-oriented model are one-dimensional and
multi-dimensional arrays section 2.2 describes a key implementation concern for it.

2.1 Expressions

The following subsections describes the initialization of multi-dimensional arrays, the operations
that can be performed on and with them.

2.1.1 Initialization

Initializers or generators define arrays. The generators themselves are not concerned with the
dimensionality of the array they simply generate a flat array / vector of numbers with certain
characteristics.

24



Expressions Programming Model

Zeros(n) generate n numbers with the value zero.

Ones(n) generate n numbers with the value one.

Value(n, k) generate n numbers with the value k where k is a scalar.

Linear(start, end, n) Generate n numbers with values increasing linearly between start and end.

Uniform(n) generate n pseudo-random numbers with a uniform distribution.

Normal(n) generate a n pseudo-random numbers with a normal/Gaussian distribution.

Generate(n, func) generate n numbers using a stateful function.

Once generated the vector can be transformed into the shape needed.

2.1.2 Array Transformations

Reshaping is the basic transformations shaping data into a contextual useful form. Reshape is
defined as reshape(x, n1, n2, . . . , nm). Where x is an array, m is the rank or number of dimensions
of the array, and n1, n2, . . . , nm defines the length of the array in each dimension.

It is the intent with these primitives to not map directly to a domain such as linear algebra
but instead provide building blocks on which a domain such as linear algebra can be built. An
example would be how the instantiation of 3× 3 matrix with uniformly distributed numbers could
be built as:

randmat (m , n ) :
x = uniform (m*n )
re turn reshape (x , m , n )

In the example above m and n are integers denoting the m× n shape of the matrix x.

2.1.3 Operations and Operators

Element-wise, Scan, and Reduction are three fundamental operations which can be performed
upon initialized arrays. A description of the operations are provided in the following subsections.

Element-wise

An element-wise operation applies an operator, such as those in figure 2.1, to the elements of one
of more arrays. Operators are either unary or binary. The element-wise operations make up most
of the common expression performed. An expression such as sin((x * y)/2), where x and y

are array variables, consists of three element-wise operations. Two using binary operators * and /.
One using the unary operator sin.

Reductions

Reductions are operations such as computing the sum of all elements in an array A of length n:
n∑

i=0

Ai. However, reductions do apply to any binary associative operator such as those in table

2.1a. Reductions are often divided into partial and complete/full reductions. The summation as just
described is a complete reduction. It takes a multi-dimensional array of any dimension and reduces
it to a scalar by applying the binary operator to every element. A formal definition is provided
below.

Definition. The reduction operation takes a binary operator
⊕

and an ordered set of n values
[a1, a2, . . . , an] and returns the value a1

⊕
a2

⊕ · · ·⊕ an.
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A partial reduction reduces the dimensionality of an array with n dimensions to an array with
n − k dimensions by applying the binary operator over an axis in the input array. Figure 2.1
illustrates three applications of a partial reduction with k = 1. A complete reduction is just a
special-case of partial reduction where k = n− 1.

Figure 2.1: Three partial reductions with k = 1 on a 4× 4× 4 array.

Reductions can in the programming model be described in this general form. However, the
following operations should for convenience be available.

Numeric sum(x), product(x), mean(x), max(x), min(x).

Boolean all(x), any(x), count(x).

These should be available in both the complete forms and for partial applications. And provide a
general construct for any binary associative operator or function: reduce(A, k, axis, operator).

Scan

The scan operation is similar to a reduction in the sense that it is stateful and accumulates a result.
Unlike the reduction then the scan operation does not reduce the dimensionality. It stores the
accumulations instead.

Definition. The scan operation takes a binary operator
⊕

and an ordered set of n values
[a1, a2, . . . , an] and returns the ordered set of values [a1, a1

⊕
a2, . . . , a1

⊕
a2

⊕ · · · an].
Definition. The exclusive scan operation takes a binary operator

⊕
and an ordered set of n

values [a1, a2, . . . , an] and returns the ordered set of values [i, a1, a1
⊕
a2, . . . , a1

⊕
a2

⊕ · · · an−1].
The scan operation is the general formulation, popular instances include prefix-sum or cu-

mulative sum which is the scan operation applied with the addition operator. An application of
prefix-sum to the input array a = {1, 2, 3, 4, 5, 6} yields the result {1, 3, 6, 10, 15, 21}.

Gather/Scatter

The above-described operations apply operators in a pre-defined pattern on arrays. The gather and
scatter operations, on the other hand, allow description of which array elements to read (gather)
and which to write (scatter). The definition of which is controlled by an array of values. Also
referred to as an index array.
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Operators

Binary Associative x⊕ y
Addition x+ y
Multiplication x× y
Minimum min(x, y)
Maximum max(x, y)
Logical And x& y
Logical Or x | y
Bitwise And x&& y
Bitwise Or x || y
Logical Exclusive Or x ∧ y
Bitwise Exclusive Or xor(x, y)

(a) Binary Associative.

Unary⊗x
Absolute value |x|
Logical Not !x
The inverse x−1

Exponential exp(x)
Twos exponential 2x

Base-2 Logarithm log2(x)
Base-10 Logarithm log10(x)
Square Root sqrt(x)
Round up ceil(x)
Remove decimal trunc(x)
Round down floor(x)

(b) Unary.

Binary x⊕ y
Subtraction x− y
Division x

y

Power xy

Greater Than x > y
Greater Than or Equal x ≥ y
Lesser Than x < y
Lesser Than or Equal x ≤ y
Equal x = y
Not Equal x 6= y
Left Shift x� y
Right Shift x� y

(c) Binary Non-Associative.

Unary Geometry⊗x
Sinus sin(x)
Cosinus cos(x)
Tangens tan(x)
Inverse Sinus asin(x)
Inverse Cosinus acos(x)
Inverse Tangens atan(x)
Hyperbolic Sinus sinh(x)
Hyperbolic Cosinus cosh(x)
Hyperbolic Tangens tanh(x)
Inverse Hyperbolic Sinus asinh(x)
Inverse Hyperbolic Cosinus acosh(x)
Inverse Hyperbolic Tangens atanh(x)

(d) Unary Geometric Operations.

Table 2.1: Commonly supported binary and unary operators.

Array Broadcasting and Scalar Flooding

The binary element-wise operations above are only defined for arrays with an equal number of
elements and dimensions. However, there are situations where arrays can be broadcast to allow the
operation. The simplest instance is an operation with one array being a scalar. In this case, the
scalar is replicated to fit the shape of the other array. This simple scheme generalizes as long as an
array of lower dimension can be replicated to match the shape of an array of higher dimension.
Such as an element-wise operation X⊗Y where X is a matrix of shape 3× 3 and Y is a vector with
3 elements. In this case, the vector is replicated to create the matrix Y

′
of shape 3× 3 in which each

row of Y
′

is a replica of the vector Y . A similar operation would be possible for the Y T in which
case Y

′
would become a matrix of shape 3× 3 in which each column is a replica of the vector Y T .

Element-Access

The programming model focuses on extracting data-parallelism by providing a convenient high-
level view of multi-dimensional arrays and performing operations upon them. The programming
model thus highly discourages the use of imperative programming idioms such as:

f o r i in range ( 0 , length (a ) ) :
a [i ] = random ( )
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Such intent from the programmer should instead be expressed as:

a = random (number_of_elements )

However, there are situtations in which the entire array is not of interest. Frequent patterns of
this sort are the use of every nth element, every element but the first, every element but the last,
elements from n to element m. The programming model supports such element access through
the use of slicing. The slicing operation is defined as: slice(i, j, s). Slicing selects a subset of the
elements in a single dimension starting from element i, ending with element j and including every
sth element. Slicing multiple dimensions can be used for blocking up matrices, and formulating
stencil expressions.

2.2 Data Representation

A central implementation consideration for a backend supporting an array-oriented programming
model as described in section 2 is the representation of multi-dimensional arrays. Array repre-
sentation is concerned with describing the dimensionality, shape and how the array is laid out in
memory. Figure 2.2b illustrates four cases which motivate for different layout schemes.

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

2D Array 

Row-Major Layout 

Column-Major Layout 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 

(a) Dense memory layouts of a two-dimensional array.

1) Dense 2) Strided 4) Sparse 3) Strided 

(b) multi-dimensional array patterns.

Dense representation is well-known as it is the default layout used by languages such as C and
Fortran. As figure 2.2a illustrates then elements of a dense array is laid out as a continous string of
bytes ordered by rows in C and by columns in Fortran. Dense layout is the simplest as the only
meta-data needed is a flag defining element ordering. The main characteristic for a dense array in
contrast to other layouts is that memory for every element is always allocated. The motivation for
changing layout is concerned with lowering memory consumption often at the cost of complexity.

Strided representation is a generalization of the dense layout. It allows for skipping and re-using
addresses in the memory space. This is done by associating a stride to every dimension
which defines how to compute the address of the next element within that dimension. The
row-major layout from 2.2a is represented by the strides 4× 1 and the column-major layout
by the stride 1× 4.
Strided representation is useful for describing subsets of dense matrices such as the second
matrix in figure 2.2a which is a subset of first the matrix. which uses the data from the first
matrix using the stride 16 × 2. Other uses include compressed representation of matrixes
which has a regular pattern in the coefficient values. Representing a 8× 8 matrix where all
elements has the value k can by achived with a stride of: 0× 0. Using 0 as the stride for a
dimension is the general technique for re-using memory. The third 8× 8 matrix in figure 2.2b
has identical values in all rows. This can be represented with a stride of 0× 1.

Sparse representation allows for a compressed representation of a matrix. If the majority of the
matrix elements is equal to the value k. Then a sparse representation will only allocate
memory for the elements which was a value different from k. There exists a wealth of sparse
layouts with different characteristics and space-time trade-offs, the simplest are compressed-
sparse-row and compressed-sparse-column.
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In the description of these different multi-dimensional array representations examples where
only given for arrays with two dimensions. The representations do however generalize to arrays
with any number of dimensions. A concern in this regard is that of practical importance since a
three-dimensional matrix of shape 1024×1024×1024 containing elements of single-precision point
consume 4GB of memory. I have so far only worked with dense and strided array representations.

This ends the introduction of the array-oriented programming model, the following section
describes how the backend implements support for handling it.
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Chapter 3

Bohrium

Bohrium is a high performance backend for array-oriented programming. It provides the mechan-
ics to couple a programming language or library with an architecture-specific implementation
seamlessly. These mechanics cover two conceptually different areas: programming language
bridges (subsection 3.3) and runtime components (subsection 3.2). Areas bound together by the
program representation vector bytecode (subsection 3.1).

Described top-down, the language bridge maps array-operations to vector bytecode. Once
mapped the Bohrium runtime components takes responsibility for transforming, scheduling and
executing the intermediate representation. These responsibilities are handled by different classes
of components:

Filters perform analysis and transformation of bytecode, such as organizing sequences of bytecode
into blocks for the purpose of composition and contraction.

Vector Engine Managers (VEM) schedule the execution of vector bytecode on a vector engine or
delegate scheduling to another manager.

Vector Engines (VE) translate vector bytecode to native code for a specific piece of hardware and
execute it.

Figure 3.1: Overview of Bohrium concepts.

Figure 3.1 illustrates the Bohrium concepts and how components in the runtime can be combined to
match a computing system. The core support library provides routines for manipulating bytecode,
data-structures, and instrumenting the runtime components.
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3.1 Bytecode

Bytecode forms the basis for the intermediate representation in Bohrium. It is inspired by assembly
and represented as an ordered list of instructions. The ordering of instructions in the list guarantees
that if an instruction uses an operand as input then a previous instruction has used the instruction
as output. The intermediate representation in Bohrium thus simply consists of lists of bytecode
instructions generated by the language bridge and sent to the runtime system for transformation,
scheduling and execution. The ordering of instructions defines the ground for dependency analysis
e.g. if two consecutive instructions write to two different operands then the two instructions can
be scheduled for execution out of the order of the instruction list. They could also be scheduled for
execution in parallel by a vector engine targeting a multi-core processor.

There is a substantial amount of transformation and scheduling decisions which are based on
instruction dependencies. The primary motivations are composition and contraction. The vector
engines in Bohrium have used the instruction list as the basis for analysis, and each vector engine
has applied its own methods representing and analysis dependencies. The lessons learned, see
Part 6.12, has merged into a unified representation and shared framework for analysis.

The bytecode is conceptually equivalent to a RISC-type instruction set with all instructions as
three-address code (TAC) performing only memory, arithmetic, and logical operations. The vector
bytecode has no conditional operators. This comparison higlights that the bytecode instruction-set
is small and that instructions can have at most three operands, and notably that vector bytecode is
not Turing complete. With this description in mind a vector bytecode can be textually represented
as ADD x,x,1, where ADD is the Opcode and x,x,1 are the operands. Sending this bytecode to Bohrium
will eventually result in a vector engine executing it and computing: add 1 to x and store it in x.
For this particular instruction, other ISAs has a specialized Opcode such as Increment. In Bohrium,
it is up to the vector engine to do a value-specific optimization and determine if more efficient
execution is possible.

At this point, the equivalence ends as instruction operands in bytecode are not registers or
immediates but multi-dimensional arrays. Also, the instruction encodes the operands within the
instruction. There are no operations for loading operands into memory which is often the case
for RISC-type instruction sets. The principle of a RISC-instruction set is that there are few and
simple instructions this is valid for Bohrium bytecode when viewed in the context of operations on
multi-dimensional arrays. However, when translated to x86 native code the execution of a single
bytecode instruction folds out into hundreds of thousands of instructions. From the perspective of
native code, bytecode is extremely complex but from the point of view of array operations it is
indeed compact and reduced.

Another trait of vector bytecode is that the type of operands is encoded within the operand
and is not part of the Opcode. A humanly readable and trivially parsed JSON[21]-representation
defines the bytecode and the allowed type and amount of operands. The bytecode encapsulate the
following array operations:

Generate bytecodes are the source of structured data creation. These include random, range, and
scalar flooding. The Random123[58] library is used to ensure consistent random number
generation regardless of the parallel architecture in use.

Element-wise bytecodes apply a unary or binary operator to all array elements. Bohrium currently
supports 53 element-wise operators, e.g. addition, multiplication, square root, logical and,
bitwise and, equal and less than. For element-wise operations, Bohrium only allows data
overlap between the input and the output arrays if the access pattern is the same. Combined
with the fact that all operators are stateless, makes it straightforward to execute element-wise
operations in parallel.

Reduction bytecodes reduce the dimensionality of an input array using a binary operator. Again,
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Bohrium does not allow data overlap between the input and the output arrays and the
operator must be associative1. Bohrium currently supports 10 operators, e.g. addition,
multiplication and minimum. Even though none of them are stateless, the reductions are all
straightforward to execute in parallel because of the non-overlap and associative properties.

Scan bytecodes accumulate an input dimension using a binary operation. Again, Bohrium does
not allow data overlap between the input and the output arrays and the operator must
be associative. Bohrium currently supports 10 operators for scan bytecodes, e.g. addition,
multiplication and minimum.

Gather bytecodes perform indexed reads. That is, given an input, output, and index array then
the values of the index array is used to decide which elements of the input array is written to
the output.

Scatter bytecodes perform indexed writes. That is, given an input, output, and index array then
the values of the index array is used to decide which elements of the output array the input
written is written to.

Data Management bytecodes determine the data ownership of arrays, and consists of three
different bytecodes. The SYNC bytecode instructs a child component to place the array data
in the address space of its parent component. The FREE bytecode instructs a child component
to deallocate the data of a given array in the global address space. Finally, the DISCARD
operator instructs a child component to deallocate any meta-data associated with a given
array, and signals that any local copy of the data is now invalid. These three bytecodes
enable lazy allocation where the actual array data allocation is delayed until it is used.
Arrays are often created with a generator (e.g. random, scalar flooding) or with no data (e.g.
intermediate), which may exist on the computing device exclusively. Thus, lazy allocation
may save several memory allocations and copies.

Extension methods The bytecode classes mentioned above make up the bulk of a Bohrium execu-
tion. However not all algorithms may be efficiently implemented in this way. In order to
handle operations that would otherwise be inefficient or even impossible, we introduce the
fourth type of bytecode: extension methods. We impose no restrictions to this generic
operation; the extension writer has total freedom. However, Bohrium does not guarantee
that all components support the operation. Initially, the user registers the extension method
with paths to all component-specific implementations of the operation. The user then re-
ceives a new handle for this extension method and may use it subsequently as a vector
bytecode. Matrix multiplication and fast fourier transformation are examples of extension
methods that are obviously needed. For matrix multiplication, a CPU specific implementa-
tion could simply call a native BLAS library and a Cluster specific implementation could call
the ScaLAPACK[11] library.

This concludes the representation of array operations in Bohrium, the following section describe the
runtime components for managing transformation, scheduling, and execution of the operations.

3.2 Runtime components

In the context of array operations, the bytecode is compact. A reduction Opcode provides bytecode
for doing reductions as described in section 2.1.3, but only in its partial form. This means that

1

Mathematically associativity; we allow non-associativity because of floating point approximations
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in order for a language bridge to provide the functionality of a full reduction it has to send n

reductions where n is the dimensionality of the array. It is one of the responsibilities of filters to
analyse and transform the intermediate respresentation and annotate such sequences of bytecode
into a form which can yield a better execution strategy for the vector engine. Filters can also do
basic transformations such as POW x,x,2 which on many hardware devices executes more efficiently
as MUL x,x,x. More interesting transformations involve detecting grounds for doing loop-fusion or
streaming.

3.2.1 Filters

The classification of components is meant to organize responsibilities but not nescesarily restrict
itself. Filters in this sense serve as a wildcard for components which do not fit into the other classes.
Bohrium currently consists of the following filters.

fuser encapsulates the dependency analysis for array operation composition and contraction.
Multiple instances such as topological, greedy, singleton, and optimal of the fuser
exists applying different algorithms for performing transformation of bytecode sequences.
The work on fusers are described in greater detail in the paper Fusion of Array Operations at
runtime, see Part II 6.12.

bccon contracts sequences of bytecode. The purpose of the component is to detect bytecode and
sequences thereof for which more efficient but equivalent expressions exist. The simplest
example would detect a bytecode such as ADD x,x,0 and replace it with NOP or copy if the
output is to a different operand than the input. The detection of sequences can for instance
find the expression of a matrix multiplication and map it to an extension bytecode thereby
delegating execution to a highly tuned library instead of the general operation composition.

bcexp expands a single bytecode to a sequence. Given the example above then it might seem detri-
ment to performance. However, one example of its application is to detect one-dimensional
reductions and transform them to two-dimensional reductions which execute more efficiently
on the GPU.

pprint is a debug filter, it dumps an ASCII representation of the bytecode to the filesystem. It
can conveniently be used in the runtime-stack before and after another to manually inspect
transformation.

fuseprinter is a debug filter, it dumps a dot representation of the bytecode to the filesystem,
visualizing the dependencies of the bytecode.

Another application of filters is the transformation of various corner cases, with regards to array-
representation, into a general case thereby simplifying processing at a later stage such as code
generation.

3.2.2 Vector Engine Managers

Vector engine managers are responsible for one memory address space in the hardware configura-
tion. Bohrium currently have the following three vector engine managers:

node is very simple since the hardware already provides a shared memory address space; hence,
the Node-VEM can simply forward all instruction from its parent to its child components.

cluster handles the global distributed address space of a compute cluster. It is quite complex and
its implementation is based on previous work[38].

proxy is the component I implemented to support the exploration of Bypassing the Conventional
Software Stack Using Adaptable Runtime Systems[46], see Part II section 6.4.
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3.2.3 Vector Engines

The primary responsibility of a vector engine is to execute the instructions it receives in an order
that comply with the dependencies between instructions. Furthermore, it has to ensure that its
parent component has access to the results as governed by the data management bytecodes: sync,
free, discard. Bohrium has these two vector engines:

gpu is an OpenCL based implementation focusing on array processing for GPUs. It is the based
on the efforts of Troels Blum[15, 16].

CAPE is the C-targeting Array-Processing Engine and is main tool for the thesis, see Part II section
6.1. The primary focus of CAPE is shared memory multi-core architectures with non-uniform
memory access. Additionally, ongoing work is showing promising results in encapsulating
the concerns of accelerators which is described further in section 4.2.

3.2.4 Stack configuration

The runtime components can be combined to fit a given computing environment whether that is a
laptop, a workstation, or a compute cluster. Configuration is done via a configuration file in an INI
file format as shown in figure 3.2.

[stack_default ]
type = stack

stack_default = bcexp_cape

bcexp_cape = bccon

bccon = topological

topological = node

node = cape

. . .
[cape ]
type = ve

impl = libbh_ve_cape .so
libs = libbh_visualizer .so ,libbh_fftw .so
timing = f a l s e
bind = 1
vcache_size = 10
preload = true
jit_level = 3
jit_dumpsrc = true
jit_offload = 0
compiler_cmd=" . . . "
compiler_inc=" . . . "
compiler_ext=" . . . "
object_path=" . . . "
template_path=" . . . "
kernel_path=" . . . "

Figure 3.2: Default stack configuration for a desk-
top computing environment.

Stacks and components are identified by
sections and the entry type, defines just that
the type of the section. The type of a section
can be any one of: stack, filter, ve, and
vem. For stack-sections, the entries define the
runtime configuration by chaining component
identifiers. The stack_default in figure 3.2 is
equivalent to the stack configuration visualized
in figure 3.1 from the beginning of the chapter.

The component-sections define instanses of
components. A component can have multiple
sections with different options. E.g. the bcexp
component has instances identified as bcexp,
bcexp_cpu, and bcexp_gpu. These instances
perform different transformations as some are
useful for one architecture but not on another.
As a user of Bohrum one can either choose to
modify the configuration to match their system
or switch runtime stack via the environment
variable BH_STACK. Re-targeting a high-level
implementation is thus as simple as switching
an environment variable. The application itself does not need any modification.

Components are also controllable via environment variables, this is done via a naming conven-
tion: BH_SECTION_OPTION. E.g. modifying the default thread-binding policy of the CAPE engine
can be done via BH_CAPE_BIND, the size of the software victim cache via BH_CAPE_VCACHE_-
SIZE, optimization-level of the JIT-compiler via BH_CAPE_JIT_LEVEL and controlling use of
accelerator offloading via BH_CAPE_OFFLOAD.
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3.3 Language Bridges

It is the task of the language bridge to map high-level abstractions within the language to bytecode.
The technology used to do so is up to the implementer of the bridge. The bridge can be built at
multiple levels, as a library, part of an interpreter or an extension of a compiler. Bohrium currently
support several languages as visualized in figure 3.1 at the beginning of the chapter. A brief
overview of the languages and their construction is provided below.

Python uses a library-based approach. The NumPy library for Python is a building block for
representing and manipulating multi-dimensional arrays. SciPy and IPython are examples of
such libraries. The combination of these libraries offers a rich environment for scientific com-
putation. By providing a NumPy compatible library, a vast amount of existing applications
can benefit from the Bohrium Runtime system without modifying the Python interpreter or
changing a single line of Python code.

C++ implements a domain specific embedded language which is described in greater detail in
Chapter 4.3. It is also a fundamental building block for language interoperability via the C
bridge.

C implements an encapsulation of vector bytecode as functions. It provides a set of functions on
the form: BH_BYTECODE_STRUCTURE_TYPES. Such as bh_ewise_add_aaa_fff(...)
for creating a bytecode representing the element-wise addition of three arrays of floating
points numbers. It is not intended for end-users but rather as an interoperability bridge
between Bohrium and languages supporting C. The bridge is implemented as a thin wrapper
on top of the C++ bridge. The C++ bridge performs the responsibilities of a language bridge
for Bohrium, the C bridge then simply exposes a C-compatible interface for it.

CIL implements a bridge with the common-intermediate language CIL and via NumCIL library
and facilitates use of Bohrium for languages including C# and F#.

MiniMatlab is a current work in progress which implements an interpreter for a subset of the
Matlab language. The interpreter relies entirely on the Bohrium runtime to process array-
operations. A project for future work will offer a language bridge for GDL[4], the OpenSource
version of the defacto language used for data-analysis in Astronomy, IDL. Extending the
GDL compiler is in this case a good choice for integrating Bohrium as arrays are first class
citizens in the GDL language.

Choosing a strategy for integrating a language with the Bohrium runtime system is thus highly
dependent on the language itself and its users. The following subsection describes the techni-
cal details on interfacing with the runtime system followed by a section describing the binary
representation of vector bytecode along with the intermediate representation.

3.3.1 Responsibilties

Everything in the runtime system is a component which means the interface is the same regardless
of whether the component transforms, schedules or executes bytecode. Table 3.1 shows the four
functions that make up the interface. Components are initialized recursively, the bridge only has
to initialize itself and its most immediate child in the stack. Listing 3.2 provides a minimal code
example, without error-checking, of using the core library for initializing the runtime system.

The main task for a language bridge is to generate valid bytecode and send it to the runtime
system via the C-interface. It is therefore the main concern for the language bridge to map language
constructs to bytecode. The general idea is that if a certain task is beneficial in multiple languages
then the runtime system should perform the task.
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Listing 3.1: Component and Runtime Interface.
typedef bh_error ( *bh_init ) ( const char *name ) ;
typedef bh_error ( *bh_shutdown ) ( void )
typedef bh_error ( *bh_execute ) (bh_ir* bhir ) ;
typedef bh_error ( *bh_extmethod ) ( const char *name ,

bh_opcode opcode ) ;

Listing 3.2: Runtime Initialization and Use.
int64_t component_count ;
bh_component * *components ;
bh_component *bridge ,

*runtime ;

// Setup the bridge
bridge = bh_component_setup (NULL ) ;
bh_component_children (bridge ,

&component_count ,
&components ) ;

// Recurs ive ly i n i t i a l i z e ch i ldren
runtime = components [ 0 ] ; // I n i t runtime
runtime−>init (runtime ) ;

. . .
// Program i s running
. . . // Create bytecode
runtime−>execute ( . . . ) ; // Send bytecode
. . .

// Program end
runtime−>shutdown ( ) ; // Terminate

A simple example is the translation of an element-wise array-operation such as x^2 into
bytecode. In many languages translating this into MUL t,x,x instead of POW t,x,2 is straightforward.
However doing the transformation at the language-level requires that every language bridge
must implement it. A simpler solution would be to implement the transformation within a
filter-component and thus implement and maintain it in only one place. More importantly it
facilitates the application of a transformation closer to the vector engine which can decide whether
a given transformation is beneficial for execution on the hardware in question. That is, the stack
configuration could include a transforming filter on top of one vector-engine component but not
on top of another. Also, if such a transformation is unwanted by the user then it could simply be
switched on/off in the runtime configuration.

This design choice in Bohrium provides for the implementation of simple language-bridges
which can naïvely translate into bytecode. It is however not meant to discourage optimization at
the language level but instead consider the type of optimization and transformations performed.
For instance, utilizing the type checker of a compiled language as a means of removing validation
from the runtime. However, it is more interesting and perhaps more fruitful to consider language
based optimizations in the context of the high-level abstractions that the language offer its user
before bytecode translation. The high-level abstractions provide information which is lost when
translated into bytecode. An example would be a domain specific language for linear algebra, in
this context utilizing identity, symmetry, and orthogonality provides for high-level transformation
for evaluating whether a matrix is diagonalizable. Given the expression AIIIIB where A and
B are regular matrices and I is an elementary matrix, by using domain-specific knowledge
within the language such an expression can be transformed to the single matrix product AB.
Bohrium encourages such high-level transformation at the language-level and then sending the
last expression to the runtime for execution.

When generating bytecode the language bridge must ensure the generation of valid bytecode.
A valid instruction consists of an Opcode with the amount and type of operands as defined in
the bytecode definition. Additionally, the shape of the operands must be the same or in the
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case of partial reductions have an output operand with one dimension less. The runtime system
cannot execute a bytecode such as ADD t,x,y if t, x, and y does not have the same shape. It is the
responsibility of the bridge to transform the shapes as a means of allowing the execution. Likewise
transformation of operand meta-data is in general the responsibility of the language bridge.

The bh_view data-structure encapsulate the data-descriptor for arrays in Bohrium. Figure
3.3 illustrates how a three-dimensional operand shaped as 2 × 2 × 2 is represented in Bohrium
along with the layout of the operand in a linear memory space. The main purpose of the bh_-
view is representing a multi-dimensional array using a strided indexing scheme. The attributes
bh_view.ndim and bh_view.shape are self-explanatory. The bh_view.base attribute points to a bh_base
data-structure which describes a physical memory allocation in a linear memory space.

The bh_base.type attribute dictates the primitive type the allocation should be used for, bh_-
base.data points to the beginning of the allocation and bh_base.nelements states the amount of
elements of the given primitive type there should be allocated memory for. The data-structure
bh_view and bh_base are separate to distinguish between the memory allocation bh_base and what
the allocation represents namely the bh_view. The allocation of the actual data belonging to an
operand is often the responsibility of the vector engine as decisions such as to what, when and
how to allocate memory on a processing unit are inherently tightly coupled with the hardware
and should not be a concern for the language bridge.
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Figure 3.3: Representation and memory layout of a three-dimensional operand in Bohrium.

However, there are cases where the language bridge performs the allocation. This is the case
when data originates from the language and not as output from the execution of bytecode. One
example of this would be the reading an image-file from disk. In this case, the language takes care
of loading the image into memory and assigning the data pointer to the bh_base.

The attributes bh_view.start and bh_view.stride make out the strided indexing scheme part of the
multi-dimensional array representation. The listing below describes the general set of functionality
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that a language bridge must provide.

Aliases/Views to support these the language bridge must create a bh_view in which the bh_view.base
points to the bh_base of another operand.

Slicing should be provided in collaboration with views. When the user wants to define a subset
of values of an operand the bridge must provide a convenient syntax for doing so and then
create a bh_view of the sliced operand and modify the shape and strides of the view to match
the user-defined slice.

Broadcasting is another operation which is based on manipulation of views. The bridge must, if
possible, broadcast the operand of an expression such as: X + v where X is a matrix and v
is a vector. This is done by instantiating a bh_view of v with strides replicated to match the
shape of X .

Reshaping is done by the bridge by manipulating the bh_view.ndim, bh_view.stride and bh_-
view.shape of an operand. This should be supported for arbitratry shapes also those changing
the number of dimensions.

This ends the description of Bohrium, how it represents array-operations in the intermediate
presentation, the data-descriptor for the arrays themselves, runtime components, and language
bridges.
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Ongoing and Future Work

This chapter provides an overview of ongoing and future work. Section 4.1 describes the areas
for further study of the array-oriented programming model and Bohrium’s support for it. Section
4.2 details current efforts on support for coprocessors and accelerators in the C-targeting Array
Processing Engine. Section 4.3 provides a lengthy description of the BXX DSEL, the C++ language
bridge to Bohrium. Section 4.4 describes the potential areas of further exploration on interoper-
ability between Python and Chapel. In the last section, section 4.5, is the Benchpress tool briefly
introduced and future work outlined for facilitating comparative experiments.

4.1 Descriptive Power

Sections 2 and 3.1 describe the array-oriented programming model and Bohrium’s representation
of operations and support for the model. The model is applicable to a range of applications
however, since it is not turing complete, it has limitations. Specifically, when the composition of
generate, element-wise, reduction, scan, gather, and scatter operations are not sufficient to describe
a given computation, what do you do?

Bohrium already has an answer to this question, which is, simply take your data out of
Bohrium and implement the operation within the host-language or call a Bohrium extension
method. However, there are operations which might be expected to be readily available and
conveniently encapsulated, including:

Sort a fundamental operation used in a wealth of algorithms, it is quite essential to have sorting
as a building block to obtain efficient performance.

Filter provides a way to conditionally select a subset of elements within an array and is another
fundamental building block for the programming model.

Beyond expanding support for operations there is a need for expanding the operators. The most
interesting challenge is to provide support for user-defined operators. That is, enable the user to
define an operator/function for application with the generate, element-wise, reduction or other
operations. An area deserving of future work is, therefore, to expand the expressive completeness
or descriptive power of the model and Bohrium’s capabilities for processing them.

4.2 Targeting accelerators with CAPE

The performance study showed the viability of the approach applied to the design and im-
plementation of the C-targeting Array Processing engine CAPE for multi-core processors with
NUMA-architecture. Ongoing work is exploring its applicability to accelerator architectures
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such as GPUs and Intel MIC. The two main areas to expand are: code generation and runtime
instrumentation. The code generator must emit loop constructs with OpenACC directives for
GPUs and parallel sections/loop constructs with LEO/OpenMP directives for MICs. Runtime
instrumentation involves memory management on the accelerator device. Currently explored is a
runtime extension using a simple alloc, free, push, and pull interface. The interface abstracts
the details of LEO #pragma offload_transfer and OpenACC routines such as acc_[cre-
ate|delete|update_device|update_self]. The extension manages relations between host
pointers and device pointers, knows the state of buffers on host and device, and a scheme for data
persistence is implemented.

4.3 BXX: Bohrium for C++

BXX, the Bohrium language bridge for C++, serves a dual purpose. It is the fundamental building
block for other language bridges and a self-contained domain-specific embedded language (DSEL)
for array programming in C++. As a building block, it serves a key role in Bohrium and as a DSEL
it contributes to array programming in C++. BXX can be considered finished work although not
yet published. Chapter 3 describes the role of BXX in Bohrium. This section briefly introduces the
DSEL part of BXX and its contribution to array programming in C++ and what work needs to be
done before it is ready for publication.

Work related to bridging the gaps between performance, productivity and portability in
the context of C++ includes high-level abstractions such as vectors, matrices and tensors and a
convenient array-notation for performing operations on and with them. Scalar-multiplication and
matrix addition such as: Z = 42 ·X + Y can for example be written as Z = 42*X+Y;. Libraries
using this approach include Blitz++[71], Armadillo[60], and Eigen[35]. Users who come from the
domain of mathematics find it familiar as it is identical to the mathematical notation except for
the semi-colon terminating the expression. The array-notation leverages C++ language features
for operator overload and generic programming. It is via these features possible to construct a
domain-specific embedded language within C++. Expression templates (as defined by David
Vandevoorde[70]) can at compile-time construct an expression tree of all operations performed on
and with the library defined types. This DSEL/library design is quite clever in that the operator
overload enables the convenient array-notation and the expression-tree provide a means to apply
performance enhancing optimizations such as array-operation composition.

Expression templates do have some negative traits. Compiling an invalid C++ program with
an error in the expression-template produces multiple pages consisting of the entire expression
tree. Resulting in multiple screens of information that is hard to use to for debugging, even finding
a syntax error is troublesome. Another issue is that expressions cannot trivially be passed as input
to a function or returned from a function. The reason being that it would require specification
of the expression-tree within the function signature which is extremely inconvenient. Eigen
and Armadillo’s solution is to provide a base class/type for all expressions. The most severe
challenge for these libraries, even though they hide low-level details from the user, are that the
implementations themselves are tightly bound and thereby not easily retargetable to different
hardware architectures.

Purely library-based approaches based on expression templates have shortcomings in several
areas. The Intel Cilk Plus provides C/C++ language extensions for array-notation that patches a
great deal of these issues by providing a very convenient array notation, better error messages and
exploits data-parallelism for performance. Language extensions such as Cilk Plus are advantageous.
However, also quite invasive as it requires extending compiler support.

The BXX DSEL applies a similar approach to Blitz++, Armadillo, and Eigen for providing
convenient array-notation, that is, operator overload and generic programming. However, instead
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of relying on expression templates for performance, BXX maps array operations to vector bytecode
and thereby delegate scheduling and execution to the Bohrium runtime. The following subsection
provides an overview of the look and feel of BXX.

Notation and Use

C++ is notorious for its support of multiple programming paradigms. It is thus possible for a DSEL
in C++ to be object-oriented, function-oriented, or a mixture of both orientations. A functional
approach integrates well with operator overloads as it very closely mimics the syntax of mathe-
matical expressions such as X = sin(Y ) + Z. An object-oriented style does also hold its merit for
mathematical expressions on operands such as: Xt which can be represented as X.transpose().
I have opted for a functional paradigm as a means to keep the notation consistent and within a
single paradigm. The following goes through the most common operations of the library and
describes the notation by example.

// Dec lara t ion of v a r i a b l e s
multi_array< f l o a t > x , y , z ;
multi_array<int > q ;

Declaring and defining array variables are separate operations. The declaration as shown
above is only concerned with providing a name and type of an array. The initialization defines the
shape along with the actual data. In the example below are two one-dimensional arrays (vectors)
initialized with three ones and three pseudo-random numbers.

// D e f i n i t i o n and i n i t i a l i z a t i o n
x = ones< f l o a t >( 3 ) ; // y = [ 1 . 0 , 1 . 0 , 1 . 0 ]
y = random< f l o a t >( 3 ) ; // x = [ 0 . 2 2 5 , 0 . 4 5 6 , 0 . 9 6 5 ]

Variables can, once declared and defined, be used as input for operations such as element-wise
addition or reduction.

Variables can, once declared but not defined, be used to store the result of an operation. They
will then inherit the shape based on the result of the operation when assigned.

// Element−wise operat ions
z = x + y ; // z = [ 1 . 2 2 5 , 1 . 4 5 6 , 1 . 9 6 5 ]
// Reduction
z = sum (z ) ; // z = [ 4 . 6 4 5 ]

Array variables reference either another array variable or the anonymoys result of an operation.
Directly assigning a variable to another will create a view/alias of the other variable. Given two
variables x and y, where y is an alias of x, any operation on y will also affect x and vice versa as
illustrated in the example below.

// Al ias ing
y = x ; // y i s an a l i a s of x
y += 1 ;
cout << x << endl ; // [ 1 . 2 2 5 , 1 . 4 5 6 , 1 . 9 6 5 ]

In case an actual copy of a variable is needed the user has to explicitly request a copy. Copies
also occur implicitly when variables are type-cast. Both of these situations are illustrated below.

// E x p l i c i t copy elements of arrays
z = copy (x ) ; // z = [ 1 . 2 2 5 , 1 . 4 5 6 , 1 . 9 6 5 ]
// Typecasting , copies i m p l i c i t l y
q = as<int >(x ) ; // q = [ 1 , 1 , 2 ]
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The definition/initialization assigns the shape of a variable. It can be changed at a later point
in time as long as the number of elements remain the same. The code below provide a couple of
shape transformation examples.

multi_array< f l o a t > u ;
u = random< f l o a t >( 9 ) ;
. . .
u = reshape (u , 3 , 3 ) ; // Turn vec tor i n t o a 3x3 matrix
u = transpose (u ) ; // Transpose the matrix
. . .
u = reshape (u , 9 ) ; // Turn 3x3 matrix i n t o a vec tor

We have so far covered how to describe alias and explicit copies. This leaves the notation for
updating an array. The code below show how to update either a part of or the entire array.

y (x ) ; // Update every element y with the values from x
y [_(0 ,−1 , 2 ) ] = 4 2 ; // Update every second element

The update of the every second element in the example above introduces the slicing notation.
This notation is the most brittle from a productivity perspective compared to the notations provided
by languages such as Matlab, R, Python and Cilk Plus. However, it is as good as it gets when using
a library-based approach. A sliced array variable can occur anywhere a regular array variable can
occur and there are a couple of shorthands that condenses the slicing notation.

multi_array< f l o a t > grid ;
grid = random< f l o a t > ( 9 , 9 ) ;

// S l i c e d a l i a s e s
center = grid [_INNER ] [_INNER ] ;

// S l i c i n g shorthand
y [_ALL ] // All elements
y [_ABF ] // All but f i r s t
y [_ABL ] // All but l a s t
y [_INNER ] // All but f i r s t and l a s t

Further examples of the notation, as well as examples of applications such as Black-Scholes,
Heat-Equation, Rosenbrock, Leibnitz PI, Monte Carlo Pi, and Shallow Water can be inspected on
the benchpress website: benchpress.rtfd.org.

The DSEL supports basic functionality for legacy support with C++ in the form of the iterator-
interface for element-wise traversal. Overload of the shift-operator provides a convenient means
of outputting the contents of the array.

f o r (multi_array< f l o a t > : :iterator it=y .begin ( ) ; it != y .end ( ) ; ++it ) {
printf ( "%d" , *it ) ;

}
. . .
cout << y << endl ;

The use of the iterator is highly discouraged as it forces synchronization of memory with the
C++ memory space. Each element needs to be exposed and printed to screen in the above example.
The iterator forces memory, which could be distributed out on GPU device memory or distributed
in a cluster, to be copied back into main-memory for the thread requesting the iterator.

The iterator should for this reason only be used at the end of an application when results from
computations need to be reported back to the user of the application. The BXX library also provide
export/import methods for retrieving and providing a pointer to the underlying storage used
by the arrays. The export/import are intended for interoperability with visualization libraries
and to integrate with legacy code.
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Future Work

In the paper introducing CAPE ("Automatic mapping of array operations to specific architectures",
see the Publications chapter section 6.1), a performance study using BXX is provided comparing
speedup. Speedup of hand-coded implementations of a set of benchmarks in C++ using OpenMP.
Results showed that BXX/CAPE can match and outperform these implementations. The extraction
of the data-parallel array-operations via the array-notation provided by BXX and the delegation of
optimization, scheduling and execution to Bohrium/CAPE is the driver of performance. The main
contribution of BXX is the exploration of a novel approach to high performance DSEL implementa-
tion in C++. BXX provides convenient array-notation without the quirks of expression templates,
without requiring compiler-support and performance matching hand-coded implementations in
C++ with OpenMP.
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Figure 4.1: Results from the Black Scholes bench-
mark reported as elapsed wall-clock in sec-
onds. Four different C++ implementations us-
ing Armadillo, Blitz++, Hand-coded paralleliza-
tion with OpenMP, and BXX with and without
optimization. Executed on machine with two
Opteron 6274 processors and a total of 32 cores.

Future work will study the performance
further, figure 4.1 show a first step in this di-
rection. The figure shows a graph of elapsed
wall-clock as a function of threads for the
Black Scholes benchmark implemented with
Armadillo, Blitz++, OpenMP (C++/P), and
BXX with (BXX+0) and without (BXX-O) opti-
mization. As the figure shows, the expression-
template approach of Armadillo and Blitz++ is
able to perform array-contraction and thereby
decent single-threaded performance. However,
Blitz++ does not support parallelization and
Armadillo relies on BLAS libraries for paral-
lelization. Parallelization is thus only success-
ful when operations are directly mappable to
BLAS which fails for this benchmark. The fo-
cus for a future performance study is therefore
Intel Cilk Plus which should be able to utilize
Intel MKL in a similar manner but also perform parallelization and optimization of general array
operations.

In addition to a performance study, usability features will be added such as interface-compatibility
with existing libraries. Thereby enabling interoperability with Blitz++, Armadillo, and Eigen or
porting implementations using these libraries. Also for usability, the set of functions for linear
algebra will be expanded, and other convenient functions added.

4.4 PyChapel

The pyChapel module introduces interoperability between Python and Chapel. However, it can
with little effort be expanded to support any language capable of interoperating with C. Including
but not limited to Fortran and Haskell and thereby providing a generic and simplified approach to
foreign function interfaces in Python.

The ideas I had for Python and Chapel interoperability were cut short as I prioritized exploration
of the Bohrium/CAPE approach. However, interoperability between Python and Chapel is a
powerful combination that allow a study of language symbiosis. From Pythons perspective, the
interoperability allow access to a low-level language that supports the same abstraction level as
NumPy. One project to pursue is finishing the work on pyChapel and the npbackend module.
Thereby transparently mapping Python/NumPy array operations to Chapel. Effectively increasing
the performance of the Python/NumPy program without changing a single line of code. When
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those abstractions fail, then Chapel is available, under the hood, for low-level instrumentation as a
significantly more convenient alternative to parallel programming than C, C++, and Fortran.

I also spent time creating a Chapel for Python Programmers1 guide, describing common Python
idioms in Chapel terms. This work could be expanded to encapsulate further aspects and also
to create a pythonic Chapel module. That is a module with functions, iterators, and constructs
familiar to the Python programmer.

From the Chapel perspective, an interesting development in interactive environments has
happened which would be interesting to explore. The interactive environment provided by
IPython/IPython Notebook has evolved into a self-contained system named Jypyter. Jypyter
supports 40 different kernels to drive computation. The potential here is that Chapel could
leverage the features of the interactive environment by implementing a PyChapel kernel for
Jypyter.

In summary, my work exploring Python and Chapel interoperability stopped because of time
constrains not for lack of potential or interesting areas to explore.

4.5 Benchpress

Benchpress2 is a collection of tools and benchmark implementations I wrote for experimental
validation and performance testing. It provides the following functionality/commands.

bp-run is the main driver; it polls the system for hardware and software information, but most
importantly it executes suites of benchmark implementations and stores results in a JSON file.
It facilitates interaction with SLURM and various parameters including the amount of trials
to run for each benchmark. It collects data via other tools such as perf, time and in addition
to the benchmark emitted elapsed wall-clock time. Hooks, post/pre-execution commands,
can be applied for cleaning up data and side-effects before and after a benchmark run.

bp-info provides information about the location of benchmarks, hooks, commands, and the
module itself.

bp-times renders a bp-run result file in plain text formats such as ASCII and CSV.

bp-grapher renders a bp-run result file in different formats such as PNG, HTML, and pdf display-
ing benchmark results using either a generic renderer or one specialized to an experiment.

bp-compile as the suggests compiles benchmarks that require compilation. It is a minimal compi-
lation framework ensuring that miscellaneous flags are equivalent for C and C++ implemen-
tations.

The tool itself is finished work and has aided experimental testing throughout the studies. What
is left to be done is expanding the set of Benchmarks. Currently, a rich collection of Python and
a good selection of C/C++ implementations exists. However, for future work these must be
expanded to include hand-coded implementations to serve for comparative studies of CAPE and
accelerators.

1http://chapel-for-python-programmers.readthedocs.org/
2http://benchpress.readthedocs.org/

44



Chapter 5

Conclusion

I set out to explore the thesis: It is possible to construct a language agnostic backend for high-level
declarative languages without sacrificing performance. The approach for this thesis involved
investigation of related work and the construction of a backend prototype. Related work on parallel
programming languages for large-scale distributed memory architectures revealed data-parallelism
as the driver for performance.

Parallel languages such as HPF, ZPL, and Chapel inspired the idea of exploring the construction
of a backend that could exploit the inherent data-parallelism of array operations for performance.
A backend that would aid productivity by supporting high-level declarative array-notation in use
by languages such as Python, Matlab, and R. The backend would have the additional benefit of
facilitating language integration via, vector bytecode, an intermediate representation encapsulating
array operations and data management. The exploration thus turned into the construction and
experimental evaluation of a backend that would:

• Support an array-oriented programming model

• Enable language integration via an intermediate representation

• Target a performance that is comparable to straight forward hand-coded C/C++ for the same
application

The backend materialized through collaborative efforts in the form of Bohrium, a high performance
backend for array-oriented programming. Bohrium features integration with Python, C, C++, C#,
and F#. Integration with these languages are facilitated via NumPy for Python, via the BXX DSEL
for C++, and via the NumCIL library for the CIL-based languages C# and F#. The C language
integration serves as a language interoperability interface encapsulating the primitives for the
vector bytecode intermediate representation.

The parallel languages inspiring this work focused on delivering performance for large-scale
distributed memory. In contrast to those efforts, the performance context of the thesis are the
challenges presented by the current and next-generation processing units consisting of heteroge-
neous architectures with complex memory hierarchies at the node-level. With a focus on managing
non-uniform memory access on multi-core shared memory processors.

Bohrium serves as the framework for language integration and program representation. Manag-
ing the concern of efficient hardware utilization at the node-level is materialized in the construction
of the C-targeting Array Processing Engine (CAPE). CAPE envelopes machinery instrumenting
parallel runtimes, buffer management, and JIT-compilation with a C-targeting code generator
emitting C99 code with OpenMP, Intel LEO, and OpenACC directives. Considerations for non-
uniform memory access involves explicit work distribution in the emitted code and managing
thread locality in concert by the CAPE runtime.
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Conclusion

Benchmarks were implemented using CAPE via Bohrium in Python with NumPy, in C++
with BXX, and without CAPE in C++ with OpenMP. These benchmarks were the basis for a
performance evaluation of high-level declarative implementations based on the array notation
to explicit low-level parallel code. They form an experimental evaluation of the thesis. Results
showed that the implementations using CAPE via Python/NumPy outperformed the low-level
code with 20.1%, and the C++/BXX implementation outperformed the low-level code with 69.5%.
These results included benchmarks favoring optimizations performed by CAPE. Results on the
same benchmarks disabling those optimizations showed that the implementations using CAPE via
Python/NumPy performed 12.0% worse than the low-level implementation whereas the C++/BXX
implementation performed 1.5% better than the low-level implementation.

What these results describe is that the CAPE JIT-compiler can exploit high-level information
to safely apply optimizations that a low-level compiler cannot. A Python implementation can
thereby outperform a low-level implementation in C++ when high-level optimizations are appli-
cable. When they are not, then the convenience of Python introduces an overhead of 12.0% in
performance.

Consider the result of the BXX DSEL without the optimizations. In this case, the performance
matches the low-level implementation. The convenience provided by BXX does not incur a tradeoff
in performance. The information conveyed by this result is two-fold. First, this reveals a difference
in the two language bridges Python/NumPy and BXX DSEL. This is due to a vulnerability of the
algorithm for contraction and composition. Solutions to this problem are provided by ongoing
work on fusion at runtime.

Second and most importantly, the CAPE JIT-compiler and runtime can manage the low-level
concerns of the architecture required to obtain efficient utilization of a multi-core processor with
non-uniform memory access. This result supports my thesis and show the potential of Bohrium,
CAPE, and the array-oriented programming model.

46



Bibliography

[1] Intel Math Kernel Library. http://software.intel.com/en-us/articles/intel-mkl/.

[2] An updated set of basic linear algebra subprograms (blas). ACM Trans. Math. Softw., 28(2):135–
151, June 2002.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.

[4] Sylwester Arabas, Marc Schellens, Alain Coulais, Joel Gales, and Peter Messmer. Gnu data
language (gdl)-a free and open-source implementation of idl. In EGU General Assembly
Conference Abstracts, volume 12, page 924, 2010.

[5] Sergio Barrachina, Maribel Castillo, Francisco D Igual, Rafael Mayo, and Enrique S Quintana-
Orti. Evaluation and tuning of the level 3 cublas for graphics processors. In Parallel and
Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on, pages 1–8. IEEE,
2008.

[6] Douglas Bates and Dirk Eddelbuettel. Fast and elegant numerical linear algebra using the
rcppeigen package. Journal of Statistical Software, 52(5):1–24, 2 2013.

[7] Amr Bayoumi, Michael Chu, Yasser Hanafy, Patricia Harrell, and Gamal Refai-Ahmed. Sci-
entific and engineering computing using ati stream technology. Computing in science &
engineering, 11(6):92–97, 2009.

[8] Nathan Bell and Jared Hoberock. Thrust: A parallel template library. GPU Computing Gems
Jade Edition, page 359, 2011.

[9] Lars Bergstrom and John Reppy. Nested data-parallelism on the gpu. In Proceedings of the 17th
ACM SIGPLAN international conference on Functional programming, pages 247–258. ACM, 2012.

[10] Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman. Julia: A fast dynamic
language for technical computing. September 2012.

[11] Laura Susan Blackford. ScaLAPACK. In Proceedings of the 1996 ACM/IEEE conference on
Supercomputing (CDROM) - Supercomputing 96 Supercomputing 96, page 5, 1996.

[12] Guy E Blelloch. Nesl: A nested data-parallel language.(version 3.1). Technical report, DTIC
Document, 1995.

[13] Guy E Blelloch and Siddhartha Chatterjee. Vcode: A data-parallel intermediate language.
In Frontiers of Massively Parallel Computation, 1990. Proceedings., 3rd Symposium on the, pages
471–480. IEEE, 1990.

[14] Guy E Blelloch and Gary W Sabot. Compiling collection-oriented languages onto massively
parallel computers. In Frontiers of Massively Parallel Computation, 1988. Proceedings., 2nd
Symposium on the Frontiers of, pages 575–585. IEEE, 1988.

47



BIBLIOGRAPHY BIBLIOGRAPHY

[15] Troels Blum, Mads R. B. Kristensen, and Brian Vinter. Transparent GPU Execution of
NumPy Applications. In Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2014 IEEE 28th International. IEEE, 2014.

[16] Troels Blum and Brian Vinter. Code Specialization of Auto Generated GPU Kernels. In
Communicating Process Architectures 2015. IOS Press, 2015.

[17] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiserson, Keith H
Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system, volume 30. ACM, 1995.

[18] William W Carlson, Jesse M Draper, David E Culler, Kathy Yelick, Eugene Brooks, and Karen
Warren. Introduction to UPC and language specification. Center for Computing Sciences, Institute
for Defense Analyses, 1999.

[19] Bradford L Chamberlain. The design and implementation of a region-based parallel programming
language. PhD thesis, University of Washington, 2001.

[20] Bradford L Chamberlain, David Callahan, and Hans P Zima. Parallel programmability
and the chapel language. International Journal of High Performance Computing Applications,
21(3):291–312, 2007.

[21] Douglas Crockford. The application/json media type for javascript object notation (json).
2006.

[22] L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory program-
ming. Computational Science Engineering, IEEE, 5(1):46–55, 1998.

[23] Peter J Denning. Acm president’s letter: What is experimental computer science? Communica-
tions of the ACM, 23(10):543–544, 1980.

[24] Peter J Denning. Is computer science science? Communications of the ACM, 48(4):27–31, 2005.

[25] Jack J Dongarra, James R Bunch, Cleve B Moler, and Gilbert W Stewart. LINPACK users’ guide,
volume 8. Siam, 1979.

[26] Matthew GF Dosanjh, Patrick G Bridges, Suzanne M Kelly, and James H Laros. A peer-to-
peer architecture for supporting dynamic shared libraries in large-scale systems. In Parallel
Processing Workshops (ICPPW), 2012 41st International Conference on, pages 55–61. IEEE, 2012.

[27] Alejandro Duran, Eduard Ayguadé, Rosa M Badia, Jesús Labarta, Luis Martinell, Xavier
Martorell, and Judit Planas. Ompss: a proposal for programming heterogeneous multi-core
architectures. Parallel Processing Letters, 21(02):173–193, 2011.

[28] Dirk Eddelbuettel. Rcppeigen. In Seamless R and C++ Integration with Rcpp, volume 64 of Use
R!, pages 177–192. Springer New York, 2013.

[29] Dirk Eddelbuettel and Conrad Sanderson. Rcpparmadillo: Accelerating r with high-
performance c++ linear algebra. Computational Statistics & Data Analysis, 71:1054–1063, 2014.

[30] Wolfgang Frings, Dong H Ahn, Matthew LeGendre, Todd Gamblin, Bronis R de Supinski, and
Felix Wolf. Massively parallel loading. In Proceedings of the 27th international ACM conference
on International conference on supercomputing, pages 389–398. ACM, 2013.

[31] Burton S Garbow, James M. Boyle, Cleve B Moler, and Jack J Dongarra. Matrix eigensystem
routines eispack guide extension. 1977.

[32] Kazushige Goto and Robert A Geijn. Anatomy of high-performance matrix multiplication.
ACM Transactions on Mathematical Software (TOMS), 34(3):12, 2008.

48



BIBLIOGRAPHY BIBLIOGRAPHY

[33] Linley Gwennap. Adapteva: More flops, less watts. Microprocessor Report, 6(13):11–02, 2011.

[34] John D Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering,
pages 90–95, 2007.

[35] B Jacob and G Guennebaud. Eigen is a c++ template library for linear algebra: Matrices,
vectors, numerical solvers, and related algorithms, 2012.

[36] Eric Jones, Travis Oliphant, and Pearu Peterson. Scipy: Open source scientific tools for python.
http://www.scipy.org/, 2001.

[37] Ken Kennedy, Charles Koelbel, and Hans Zima. The rise and fall of high performance fortran:
an historical object lesson. In Proceedings of the third ACM SIGPLAN conference on History of
programming languages, pages 7–1. ACM, 2007.

[38] Mads R. B. Kristensen. Towards Parallel Execution of Sequential Scientific Applications. PhD thesis,
University of Copenhagen, Niels Bohr Institute, Denmark, Blegdamsvej 17, 2100 Copenhagen,
Denmark, 9 2012.

[39] Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, and Kenneth Skovhede. Separating
NumPy API from Implementation. In 5th Workshop on Python for High Performance and Scientific
Computing (PyHPC’14), 2014.

[40] Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, Kenneth Skovhede, and Brian Vinter.
Bohrium: Unmodified NumPy Code on CPU, GPU, and Cluster. In 4th Workshop on Python for
High Performance and Scientific Computing (PyHPC’13), 2013.

[41] Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, Kenneth Skovhede, and Brian Vinter.
Bohrium: a Virtual Machine Approach to Portable Parallelism. In Parallel & Distributed
Processing Symposium Workshops (IPDPSW), 2014 IEEE International, pages 312–321. IEEE, 2014.

[42] Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, and Brian Vinter. cphvb: A system for
automated runtime optimization and parallelization of vectorized applications. In Proceedings
of The 11th Python In Science Conference (SciPy’12). Austin, Texas, USA., 2012.

[43] Chuck L Lawson, Richard J. Hanson, David R Kincaid, and Fred T. Krogh. Basic linear
algebra subprograms for fortran usage. ACM Transactions on Mathematical Software (TOMS),
5(3):308–323, 1979.

[44] Johannes Lund, Mads R. B. Kristensen, Simon A. F. Lund, and Brian Vinter. Just-in-time
compilation of numpy vector operations. Journal on Computing (JoC), 3(3), 2014.

[45] Simon A. F. Lund, Bradford L. Chamberlain, and Brian Vinter. Scripting Language Perfor-
mance Through Interoperability. http://polaris.cs.uiuc.edu/hpsl/abstracts/

a6-lund.pdf, 2015. [Online; accessed September 2015].

[46] Simon A. F. Lund, Mads R. B. Kristensen, Brian Vinter, and Dimitrios Katsaros. Bypassing
the conventional software stack using adaptable runtime systems. In Euro-Par 2014: Parallel
Processing Workshops, volume 8806 of Lecture Notes in Computer Science, pages 302–313. Springer
International Publishing, 2014.

[47] Simon A. F. Lund, Kenneth Skovhede, Mads R. B. Kristensen, and Brian Vinter. Doubling the
Performance of Python/NumPy with less than 100 SLOC. In 4th Workshop on Python for High
Performance and Scientific Computing (PyHPC’13), 2013.

[48] Simon A. F. Lund and Brian Vinter. Automatic mapping of array operations to specific
architectures. submitted to the International Journal on Parallel Computing, m(n):x–y, 2015.

49

http://polaris.cs.uiuc.edu/hpsl/abstracts/a6-lund.pdf
http://polaris.cs.uiuc.edu/hpsl/abstracts/a6-lund.pdf


BIBLIOGRAPHY BIBLIOGRAPHY

[49] Gordon E Moore et al. Cramming more components onto integrated circuits, 1965.

[50] Gordon E Moore et al. Progress in digital integrated electronics. SPIE MILESTONE SERIES
MS, 178:179–181, 2004.

[51] Maxim Naumov. Incomplete-lu and cholesky preconditioned iterative methods using cus-
parse and cublas. Nvidia white paper, 2011.

[52] C.J. Newburn, S. Dmitriev, R. Narayanaswamy, J. Wiegert, R. Murty, F. Chinchilla, R. Deodhar,
and R. McGuire. Offload compiler runtime for the intel xeon phi coprocessor. In Parallel and
Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE 27th International,
pages 1213–1225, May 2013.

[53] Bradford Nichols, Dick Buttlar, and Jacqueline Farrell. Pthreads programming: A POSIX standard
for better multiprocessing. O’Reilly Media, Inc., 1996.

[54] Robert W Numrich and John Reid. Co-arrays in the next fortran standard. In ACM SIGPLAN
Fortran Forum, volume 24, pages 4–17. ACM, 2005.

[55] NVIDIA. Compute unified device architecture. http://docs.nvidia.com/cuda/. [On-
line; accessed June 2013].

[56] Fernando Perez and Brian E Granger. Ipython: a system for interactive scientific computing.
Computing in Science & Engineering, 9(3):21–29, 2007.

[57] Arch D Robison. Composable parallel patterns with intel cilk plus. Computing in Science and
Engineering, 15(2):66–71, 2013.

[58] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel random numbers:
As easy as 1, 2, 3. In Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’11, pages 16:1–16:12, New York, NY, USA, 2011. ACM.

[59] Ben Sander. Bolt: A c++ template library for heterogeneous computing. AMD Fusion Developer
Summit, 12, 2012.

[60] Conrad Sanderson et al. Armadillo: An open source c++ linear algebra library for fast
prototyping and computationally intensive experiments. Technical report, Technical report,
NICTA, 2010.

[61] Vijay Saraswat, George Almasi, Ganesh Bikshandi, Calin Cascaval, David Cunningham,
David Grove, Sreedhar Kodali, Igor Peshansky, and Olivier Tardieu. The asynchronous
partitioned global address space model. In Proceedings of The First Workshop on Advances in
Message Passing, 2010.

[62] Sven-Bodo Scholz. Single assignment c: Efficient support for high-level array operations in a
functional setting. J. Funct. Program., 13(6):1005–1059, November 2003.

[63] Jeremy G Siek, Ian Karlin, and Elizabeth R Jessup. Build to order linear algebra kernels. In
Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on, pages
1–8. IEEE, 2008.

[64] Jay M Sipelstein and Guy E Blelloch. Collection-oriented languages. Proceedings of the IEEE,
79(4):504–523, 1991.

[65] Kenneth Skovhede and Simon A. F. Lund. Numcil and bohrium: High productivity and high
performance. In Proceedings of the 11th International Conference on Parallel Processing and Applied
Mathematics (PPAM), LNCS. Springer, 2015.

50

http://docs.nvidia.com/cuda/


BIBLIOGRAPHY BIBLIOGRAPHY

[66] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The Complete Reference
(Vol. 1): Volume 1-The MPI Core, volume 1. MIT press, 1998.

[67] J.E. Stone, D. Gohara, and G. Shi. OpenCL: A parallel programming standard for heteroge-
neous computing systems. Computing in science & engineering, 12(3):66, 2010.

[68] Alan M Turing. On computable numbers, with an application to the entscheidungsproblem.
Proceedings of the London mathematical society, 42(2):230–265, 1936.

[69] S. Van Der Walt, S.C. Colbert, and G. Varoquaux. The numpy array: a structure for efficient
numerical computation. Computing in Science & Engineering, 13(2):22–30, 2011.

[70] David Vandevoorde and Nicolai M Josuttis. C++ templates: the Complete Guide. Addison-Wesley
Professional, 2002.

[71] ToddL. Veldhuizen. Arrays in Blitz++. In Denis Caromel, RodneyR. Oldehoeft, and Marydell
Tholburn, editors, Computing in Object-Oriented Parallel Environments, volume 1505 of Lecture
Notes in Computer Science, pages 223–230. Springer Berlin Heidelberg, 1998.

[72] Brian Vinter, Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, and Kenneth Skovhede.
Prototyping for exascale. In Proceedings of the 3rd International Conference on Exascale Applications
and Software, EASC ’15, pages 77–81, Edinburgh, Scotland, UK, 2015. University of Edinburgh.

[73] John Von Neumann. First draft of a report on the edvac. Annals of the History of Computing,
IEEE, 15(4):27–75, 1993.

[74] R. Clint Whaley and Jack Dongarra. Automatically tuned linear algebra soft-
ware. In SuperComputing 1998: High Performance Networking and Computing,
1998. CD-ROM Proceedings. Winner, best paper in the systems category. URL:
http://www.cs.utsa.edu/~whaley/papers/atlas_sc98.ps.

[75] Kyle B Wheeler, Richard C Murphy, and Douglas Thain. Qthreads: An api for programming
with millions of lightweight threads. In Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on, pages 1–8. IEEE, 2008.

[76] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey. Openacc - first
experiences with real-world applications. In Euro-Par 2012 Parallel Processing, pages 859–870.
Springer, 2012.

[77] Zhang Xianyi, Wang Qian, and Zhang Yunquan. Model-driven level 3 blas performance
optimization on loongson 3a processor. In Parallel and Distributed Systems (ICPADS), 2012
IEEE 18th International Conference on, pages 684–691. IEEE, 2012.

51



Part II

Publications

52



Automatic mapping of array operations to specific architectures

6.1 Automatic mapping of array operations to specific architec-
tures

53



                             Elsevier Editorial System(tm) for Parallel 

Computing 

                                  Manuscript Draft 

 

 

Manuscript Number:  

 

Title: Automatic mapping of array operations to specific architectures

  

 

Article Type: Research Paper 

 

Keywords: High-level languages; Array programming; Just-in-time 

compilation; Code generation; Parallelization; non-uniform memory access 

 

Corresponding Author: Mr. Simon Andreas Frimann Lund, M.Sc. 

 

Corresponding Author's Institution: University of Copenhagen 

 

First Author: Simon Andreas Frimann Lund, M.Sc. 

 

Order of Authors: Simon Andreas Frimann Lund, M.Sc. 

 

Abstract: Array-oriented programming has been around for about thirty 

years and provides a fundamental abstraction for scientific computing. 

However, a wealth of popular programming languages in existence fail to 

provide convenient high-level abstractions and exploit parallelism. One 

reason being that hardware is an ever-moving target. 

 

For this purpose, we introduce CAPE, a C-targeting Array Processing 

Engine, which manages the concerns of optimizing and parallelizing the 

execution of array operations. It is intended as a backend for new and 

existing languages and provides a portable runtime with a C-interface. 

 

The performance of the implementation is studied in relation to high-

level implementations of a set of applications, kernels and synthetic 

benchmarks in Python/NumPy as well as low-level implementations in C/C++. 

We show the performance improvement over the high-productivity 

environment and how close the implementation is to handcrafted C/C++ 

code. 

 

 

 

 

 



Please consider this manuscript for publication in Journal of Parallel Computing.

Title: Automatic mapping of array operations to specific architectures

Affiliations:
Simon Andreas Frimann Lund
Niels Bohr Instistute, University of Copenhagen, Denmark

Brian Vinter
Niels Bohr Instistute, University of Copenhagen, Denmark

Problem: Mapping high-level language constructs and operations upon them to specific hardware 
architectures. Specifically representations of multi-dimensional arrays and operations with and upon 
them to heterogeneous hardware configuration with a focus on non-uniform memory access.

Approach: Integrate with existing languages via vector bytecode, an intermediate representation for 
array operations. Focus here on the transparent support of operations via array-notation, that is, entirely
declarative expressions without any explicit terms or hints from the application programmer. The focus 
is on presenting and experimentally evaluate the performance of an array processing engine, which 
manage memory, specialize, JIT-compile, and execute array-operations.

Contributions:

• Code generator for array operations with parallelization and composition of multiple array 
operations

• Caching JIT-Compiler and object storage for array operation kernels
• Runtime instrumenting compilation, buffer management, array operation scheduling and 

execution

Overlap: Brian Vinter, Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, and Kenneth Skovhede. 
2015. Prototyping for Exascale. In Proceedings of the 3rd International Conference on Exascale 
Applications and Software (EASC '15), A. Gray, L. Smith, and M. Weiland (Eds.). University of 
Edinburgh, Edinburgh, Scotland, UK, 77-81.
In the Prototyping for Exascale  paper an early iteration of the implementation was used in a 
performance evaluation, however, the paper does not discuss the design and implementation of the 
contributions presented above. Nor does it discuss the results in relation to the goals of the 
manuscript submitted for consideration of publication.

Closest prior:
Newburn, Chris J., et al. "Intel's Array Building Blocks: A retargetable, dynamic compiler and 
embedded language." Code generation and optimization (CGO), 2011 9th annual IEEE/ACM 
international symposium on. IEEE, 2011.
The paper stated above is the closest related prior which explore the use of retargetable and dynamic 
compilation via an intermediate representation.
The work presented in the manuscript submitted for consideration of publication improves upon prior 
work in several areas. Support for multiple languages is presented as diverse as Python and C++. 
Support and consideration non-uniform memory access and accelerators is presented. NUMA is 
evaluated and compared to hand-coded implementations. A different design to the dynamic 
compilation approach is presented.

Cover letter



 * Code generator for array operations with parallelization and 

composition of multiple array operations 

 * Caching JIT-Compiler and object storage for array operation kernels 

 * Optimized memory allocation scheme for array buffers 

 * Runtime instrumenting compilation, buffer management, array operation 

scheduling and execution 

 * Benchmark applications comparing Python/NumPy applications with 

equivalent serial and parallel C/C++ implementations 

*Highlights (for review)



Automatic mapping of array operations to specific
architectures

Simon A. F. Lund, Brian Vinter

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Abstract

Array-oriented programming has been around for about thirty years and pro-
vides a fundamental abstraction for scientific computing. However, a wealth
of popular programming languages in existence fail to provide convenient high-
level abstractions and exploit parallelism. One reason being that hardware is
an ever-moving target.

For this purpose, we introduce CAPE, a C-targeting Array Processing En-
gine, which manages the concerns of optimizing and parallelizing the execution
of array operations. It is intended as a backend for new and existing languages
and provides a portable runtime with a C-interface.

The performance of the implementation is studied in relation to high-level
implementations of a set of applications, kernels and synthetic benchmarks in
Python/NumPy as well as low-level implementations in C/C++. We show
the performance improvement over the high-productivity environment and how
close the implementation is to handcrafted C/C++ code.

Keywords: high-level languages, array programming, just-in-time
compilation, code generation, parallelization, non-uniform memory access

1. Introduction

Scientific computing demands high performance to enable processing of real-
world dataset and increasing simulation accuracy.

Traditional languages used in High-Performance Computing (HPC) such as
C, C++, and Fortran provide low-level control over the hardware. Control
that enables the programmer to utilize the available memory hierarchy and
processing units efficiently with the goal of maximizing program throughput.

A key concern for programs written in low-level languages is that perfor-
mance is inherently non-portable due to the tight coupling between application
logic and hardware instrumentation. Thus re-targeting a program written in a
low-level language requires re-implementation.

Different layers of abstraction can aid performance portability, such as us-
ing optimizing compilers to abstract differences in instruction set architecture.
Directive based programming as facilitated by OpenMP[1], Intel LEO[2], and
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OpenACC[3] encapsulate parallelization on multi-core and many-core architec-
tures. Other approaches include OpenCL[4], which provides a common frame-
work for expressing parallel programs on both multi-core and many-core ar-
chitectures. Despite these advances in abstraction and encapsulation for tradi-
tional HPC languages, expressing on-node parallelism remains tightly coupled as
OpenMP is preferable for targeting multi-core CPUs, LEO for Intel accelerators
and graphics, and OpenACC for NVIDIA graphics.

Applying low-level languages to scientific computing thus seem like a nec-
essary evil to meet performance requirements. However, high performance is
not the only demand; exploratory scientific computing requires rich interactive
environments for data exploration facilitated by visualization, experimentation
and prototyping. High-level languages such as Python/NumPy[5], Matlab[6],
R[7], Octave[8], and IDL[9] caters to these demands. The open source packages
Python/IPython[10]/NumPy[5]/SciPy[11] is an example of an increasingly pop-
ular software stack for scientific computing. A stack based on an array-oriented
programming model facilitated by NumPy.

The declarative expression form of array-oriented programming allows for
convenient abstractions from low-level concerns, albeit at the cost of trading in
the performance obtainable from explicitly instrumenting hardware. Python/NumPy
has despite the performance trade-off made its way into large compute-sites due
to projects such as PyOpenCL[12], PyCUDA[12], and PyMIC[13]. These li-
braries offer interoperability with low-level languages and APIs. Python/NumPy
in conjunction with such libraries provides the rich environment required for
exploratory scientific computing and a more convenient approach to low-level
programming.

Low-level programming in a high-level language thus seems to be a favorable
approach for scientific computing when compared to a purely low-level approach.
However, it has its shortcomings, since it is as vulnerable to the concerns of
performance portability as a purely low-level implementation, and the high-
level abstraction and encapsulation is lost.

The quest for performance is thus a resource demanding task that does
not align well with the needs of exploratory scientific computing. Subsection
1.2 exemplifies some of the performance challenges that high-level declarative
approaches face. Subsection 1.1 exemplifies the low-level pitfalls a programmer
might get stuck in when faced with low-level concerns. Subsection 1.3 provide
an overview of the contributions of the work in this paper and how it provides a
means to overcome the high-level performance challenges and low-level pitfalls.

1.1. Low-Level pitfalls on NUMA architectures

Parallel programming has well-known pitfalls such as race conditions and
deadlocks. Pitfalls that do not reveal them themselves until a program enters a
certain state at runtime and are thus hard to reproduce and debug. Multi-core
architectures with non-uniform memory access (NUMA) introduce performance
pitfalls in addition to the challenge of implementing a correct parallel program.

The severity of the performance degradation is illustrated best with an ex-
ample. Figure 1 provides pseudo-code for a synthetic benchmark simulating a
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1 # SS : S e r i a l i n i t i a l i z a t i o n and acc e s s
2 memset ( grid , 0 , s i z e o f (∗ grid )∗ nelements ) ;
3 f o r ( size_t eidx=0; eidx<nelements ; ++eidx ) {
4 grid [ eidx ] = ( grid [ eidx ]+1 )∗0 . 2 ;
5 }

1 # SP : S e r i a l i n i t i a l i z a t i o n , p a r a l l e l a c c e s s
2 memset ( grid , 0 , s i z e o f (∗ grid )∗ nelements ) ;
3 #pragma omp p a r a l l e l f o r
4 f o r ( size_t eidx=0; eidx<nelements ; ++eidx ) {
5 grid [ eidx ] = ( grid [ eidx ]+1 )∗0 . 2 ;
6 }

1 # PP: Pa r a l l e l i n i t i a l i z a t i o n and acc e s s
2 #pragma omp p a r a l l e l f o r
3 f o r ( size_t eidx=0; eidx<nelements ; ++eidx ) {
4 grid [ eidx ] = 0 . 0 ;
5 }
6 #pragma omp p a r a l l e l f o r
7 f o r ( size_t eidx=0; eidx<nelements ; ++eidx ) {
8 grid [ eidx ] = ( grid [ eidx ]+1 )∗0 . 2 ;
9 }

Figure 1: C-like pseudocode for synthetic scientific workload, grid is a data-pointer, and
nelements quantify the number of elements that the grid points to, full source-code available
at http://benchpress.readthedocs.org/benchmarks/synth_init.html

common workload. That is, at first a grid is initialized and secondly accessed
to update it.

Figure 2: Ten timesteps updating array of
100000000 doubles. Effects of ccNUMA on
scalability

The benchmark demonstrates the
scalability challenges due to remote
access on NUMA architectures, figure
2 provide a speedup graph using the
serial implementation SS as a base-
line.

The configuration used to run the
benchmark had a total of 32 cores and
128GB of shared memory. The con-
figuration partitions these resources
across two sockets each with an AMD
Opteron 6272 processor; each pro-
cessor has two NUMA-nodes. Each
NUMA-node consists of eight cores
and an on-chip memory controller with two channels to 32GB of memory.

First, comparing SS to SP on figure 2. The best speedup of ×1.5 is achieved
with eight threads, at 32 threads performance degrades to ×1.3. Obtaining a
mere ×1.3 speedup on a system with 32 cores illustrate how devastating NUMA-
effects can be to performance. The reason is that the serial initialization will
commit pages on the NUMA-node on which the single thread is running. Forcing
the majority of threads in the parallel loop to access remote memory.
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Secondly, we compare SS to PP on figure 2. The synthethic PP implementa-
tion is intended to illustrate that the programmer has parallelized initilization.
With 32 threads the best speedup of ×5.2 is obtained.

What is noticeable here is that linear speedup is obtained up to four threads.
Up to four threads the operating system kernel is able to dynamically schedule
threads to avoid remote access. Exceeding four threads, the dynamic scheduling
pays a performance hit as threads either has to access remote memory or migrate
to a different core on a NUMA-node to which the data is local.

Third and last, we compare SS to PP/AN, in this case, the best speedup
of ×7.5 is obtained with 32 threads. The point worth noting for this result is
that the implementation of PP/AN is identical to PP. The difference is that the
runtime parameter GOMP CPU AFFINITY is set to control thread-affinity. Binding
threads is advantageous when it matches parallel loop distribution. The static
distribution of the parallel loop divide iterations into chunks, for the results
provided in figure 2, then 100000000 iterations are divided with a chunk size
of loop−count

thread−count = 3125000, when executing with 32 threads. Thread0 is thus
responsible for executing loop-iteration 1−3125000 and thereby implicitly array
elements with index 0 − 3124999. Binding thread0 to core0 that is on NUMA
node0, ensures that thread0 will be assigned the same sequence of iterations
across executions of parallel loop constructs. Thereby avoiding remote access
since the array elements are available on the NUMA-node on which the thread
is executing.

Obtaining a best-case speedup of ×7.5 on a 32 core system might be dissap-
pointing. However, not in this case, since the non-tuned synthetic benchmark
is inherently memory-bound as it barely performs any compute work for each
update of the array. The number of compute cores in the machine is not the
bottleneck, the main-memory bandwidth is. The execution of PP/AN with
32 threads achieves a throughput of 30.04GB/s. For comparison the tuned
STREAM[14] (Triad) benchmark was executed and obtained a throughput of
43.1GB/s on the same machine.

The serial initialization vs parallel access is labeled as a performance pitfall as
profiling the code will show the data-access loop as the one consuming the most
time. A programmer might therefore not consider how data is initialized and less
synthethic applications might use a random number generator for initialization
or loading data from file.

Another point worth mentioning which the speedup graph and discussion
of results above do not reveal is that the parallel execution without an affinity
policy has a high deviation from the mean in terms of elapsed wall-clock time.
The deviation is due to the dynamic scheduling of threads performed by the
operating system.

Thread scheduling and data locality is thus essential concerns for the pro-
grammer to achieve reasonable throughput and predictable performance.

1.2. Performance challenges for High-Level Approaches
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Center North South East West

Figure 3: Array views for five-point stencil.

1 import numpy as np
2 solve ( grid , epsilon ) :
3 center = grid [ 1:−1 , 1:−1]
4 north = grid [−2: , 1:−1]
5 south = grid [ 2 : , 1:−1]
6 east = grid [ 1:−1 , : 2 ]
7 west = grid [ 1:−1 , 2 : ]
8 delta = epsilon+1
9 whi le delta > epsilon :

10 tmp = 0.2 ∗ (
11 north + south +
12 east + west +
13 center
14 )
15 delta = np . sum(
16 np . abs ( tmp−center )
17 )
18 center [ : ] = tmp

Listing 1: Python/NumPy implementation
of the heat equation solver. The grid is
a two-dimensional NumPy array and the
epsilon is a Python scalar.

Listing 1 provides an example
of a Python/NumPy implementa-
tion of a heat equation solver.
The code exemplifies the declarative
expression-form that Python/NumPy
and other array-oriented language
provide. In addition to the syntax
and expression-form the code illus-
trates some performance enhancing
features. Lines 3-7 construct array
views which are references to sub-
sets of the grid elements equivalent to
those illustrated in figure 3. The use
of views facilitate a significant reduc-
tion in required memory in contrast
to copying them. Another feature of
NumPy is the use of operator over-
load, as a consequence the operations:
*, +, -, abs, and sum are delegated to
routines implemented in C. The data-
descriptor for NumPy arrays is also
an efficient representation for multi-
dimensional arrays when compared to
using built-in Python data structures
such as lists.

However, porting the example from figure 1 to a language such as C can
still yield a performance improvement of an order of magnitude. That is even
without considering parallelization. The main obstable lies with the interpreted
nature of Python, since when each array operation in the loop body is executed it
materializes an array to store the result. A consequence is that Python/NumPy
become inherently memory-bound.

Considering parallelization would introduce an even larger performance gap.
A low-level implementation will store the results of the heat-equation in registers
and thus latency-hide the load/store of grid values. Even if the NumPy array
operations would be implemented as parallel routines in C, they would remain
memory bound due to the temp array materialization.

1.3. Our contributions

We introduce CAPE a C-targeting Array Processing Engine. The purpose
of which is to obtain the best of both worlds, that is, the performance from
explicitly instrumenting array operations in a low-level language with the pro-
ductivity of the high-level abstractions. To this end, CAPE supports high-level
declarations of array operations, dynamically generates and compiles efficient
code for them, manages memory by allocating supporting buffers backing the
arrays and executes the operations.
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• Code generator for array operations with parallelization and composition
of multiple array operations (Section 3.2.1);

• Caching JIT-Compiler and object storage for array operation kernels (Sec-
tion 3.2)

• Optimized memory allocation scheme for array buffers (Section 3.3).

• Runtime instrumenting compilation, buffer management, array operation
scheduling and execution (Section 3).

• Benchmark applications for comparing Python/NumPy applications with
equivalent serial and parallel C/C++ implementations (Section 4).

This paper integrates previous work on Bohrium[15] (Section 2), a framework
and runtime for extracting array-operations from languages. Bohrium allows for
experimentation with subprogram optimization, specifically the data-parallel
array operations.

This paper focuses on introducing the design of CAPE and restricts the
scope of the implementation and performance study to multi-core CPUs with
ccNUMA architecture. Although supporting other compute-oriented architec-
tures such as Intel MIC, GPUs and APUs, are an integral part of the design of
CAPE, it is out of scope for this paper to describe the implementation. Section
5, on ongoing and future work, provide an overview of how CAPE addresses
these architectures. Throughout the description of the CAPE implementation,
attention will be given on these architectures, yet a comparative performance
study is out of scope for this paper.

2. Bohrium

Bohrium is a framework which significantly reduces the costs associated with
high-performance program development. Bohrium provides the mechanics to
couple a programming language or library with an architecture-specific imple-
mentation seamlessly. These mechanics cover two conceptually different areas:
programming language bridges (subsection 2.2) and runtime components (sub-
section 2.3). These two areas are bound together by the program representation
vector bytecode (subsection 2.1).

2.1. Vector Bytecode

A vital part of Bohrium is the Vector Bytecode that constitutes the link
between the high-level user language and the low-level execution engine. The
bytecode is designed with the declarative vector programming model in mind
where the bytecode instructions operate on input and output vectors. To avoid
excessive memory copying, the vectors can also be shaped into multi-dimensional
vectors. These reshaped vector views are then not necessarily comprised of
elements that are contiguous in memory. Each dimension comprises a stride
and size, such that any regularly shaped subset of the underlying data can be
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Figure 4: Descriptor for n-dimensional vector and corresponding interpretation

accessed. We have chosen to focus on a simple, yet flexible, data structure that
allows us to express any regularly distributed vectors. Figure 4 shows how the
shape is implemented and how the data is projected.

The aim is to have vector bytecode that support data parallelism implicitly
and thus makes it easy for the bridge to translate the user language into the
bytecode efficiently. Additionally, the design enables the VE to exploit data
parallelism. In the following we will go through the six types of vector bytecodes
in Bohrium.

Element-wise bytecodes performs a unary or binary operation on all vector
elements. Bohrium currently supports 53 element-wise operations, e.g. addition,
multiplication, square root, logical and, bitwise and, equal and less than. For
element-wise operations, we only allow data overlap between the input and the
output vectors if the access pattern is the same, which, combined with the fact
that they are all stateless, makes it straightforward to execute them in parallel.

Reduction bytecodes reduce an input dimension using a binary operator.
Again, we do not allow data overlap between the input and the output vectors
and the operator must be associative1. Bohrium currently supports 10 reduc-
tions, e.g. addition, multiplication and minimum. Even though none of them
are stateless, the reductions are all straightforward to execute in parallel because
of the non-overlap and associative properties.

Scan bytecodes accumulate an input dimension using a binary operation.
Again, we do not allow data overlap between the input and the output vectors

1Mathematically associativity; we allow non-associativity because of floating point approx-
imations
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and the operator must be associative2. Bohrium currently supports 10 scans,
e.g. addition, multiplication and minimum.

Gather/Scatter bytecodes perform indexed reads and writes.
Data Management bytecodes determine the data ownership of vectors,

and consists of three different bytecodes. The SYNC bytecode instructs a child
component to place the vector data in the address space of its parent compo-
nent. The FREE bytecode instructs a child component to deallocate the data
of a given vector in the global address space. Finally, the DISCARD operator
instructs a child component to deallocate any meta-data associated with a given
vector, and signals that any local copy of the data is now invalid. These three
bytecodes enable lazy allocation where the actual vector data allocation is de-
layed until it is used. Often vectors are created with a generator (e.g. random,
constants) or with no data (e.g. temporary), which may exist on the computing
device exclusively. Thus, lazy allocation may save several memory allocations
and copies.

Extension methods The above three types of bytecode make up the bulk
of a Bohrium execution. However not all algorithms may be efficiently imple-
mented in this way. In order to handle operations that would otherwise be
inefficient or even impossible, we introduce the fourth type of bytecode: exten-
sion methods. We impose no restrictions to this generic operation; the extension
writer has total freedom. However, Bohrium does not guarantee that all compo-
nents support the operation. Initially, the user registers the extension method
with paths to all component-specific implementations of the operation. The
user then receives a new handle for this extension method and may use it sub-
sequently as a vector bytecode. Matrix multiplication and FFT are examples of
extension methods that are obviously needed. For matrix multiplication, a CPU
specific implementation could simply call a native BLAS library and a Cluster
specific implementation could call the ScaLAPACK library[16].

2.2. Language Bridges

Language bridges are responsible for providing convenient high-level abstrac-
tions within a given language and mapping these abstractions to Vector Bytecode
for processing by the Bohrium runtime.

Currently Bohrium has bridges for Python via npbackend[17], which provides
a transparent mapping of Python/NumPy array operations. The Microsoft CIL-
based languages are supported via the NumCIL[18][19] library. A C-interface
exists but is not intended for the application programmer, it is instead pro-
vided as a building block for implementing language bridges. C++ is supported
via the BXX library which provides a multidimensional array that can be uti-
lized conveniently via operator overloads and a suite of math and linear algebra
functions.

2Mathematically associativity; we allow non-associativity because of floating point approx-
imations
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1 ADD t1 , center , north
2 ADD t2 , t1 , south
3 FREE t1
4 DISCARD t1
5 ADD t3 , t2 , east
6 FREE t2
7 DISCARD t2
8 ADD t4 , t3 , west
9 FREE t3

10 DISCARD t3
11 . . .

12 . . .
13 MUL tmp , t4 , 0 . 2
14 FREE t4
15 DISCARD t4
16 MINUS t5 , tmp , center
17 ABS t6 , t5
18 FREE t5
19 DISCARD t5
20 ADD_REDUCE t7 , t6
21 FREE t6
22 . . .

23 . . .
24 DISCARD t6
25 ADD_REDUCE delta , t7
26 FREE t7
27 DISCARD t7
28 COPY center , tmp
29 FREE tmp
30 DISCARD tmp
31 SYNC delta

Figure 5: Bytecode generated in each iteration of the Python/NumPy implementation of the
heat equation solver (Fig. 1). Note that the SYNC instruction at line 31 transfers the scalar
delta from the Bohrium address space to the NumPy address space in order for the Python
interpreter to evaluate the while condition (Fig. 1, line 9).

Figure 5 illustrates the list of vector byte code that the NumPy Bridge will
generate when executing one of the iterations in the Python/NumPy imple-
mentation of the heat equation solver (Fig. 1). The example demonstrates the
nearly one-to-one mapping from the NumPy vector operations to the Bohrium
vector byte code. The code generates seven temporary arrays (t1,...,t7) that are
not specified in the code explicitly but are a result of how Python interprets the
code. In a regular NumPy execution, the seven temporary arrays translate into
seven memory allocations and de-allocations thus imposing an extra overhead.

2.3. Runtime Components

Regardless of the language bridge used, then the Bohrium runtime pro-
cesses array operation based on its stack configuration. The stack configuration
consists of an ordering of Bohrium runtime components. A language bridge
sends Vector Bytecode to the topmost component and it trickles down the stack
through the different components. Components are labeled by their role, that is
by the task they are intended to perform. The most essential component types
are:

Filter components are used for transforming Vector Bytecode. A simple
runtime-value optimizing filter could for example map pow to mul and sqrt for
suitable values of the exponent.

Vector Engine Manager (VEM) components are responsible for one
memory address space in the hardware configuration. The current version of
Bohrium implements two VEMs: the Node-VEM that handles the local ad-
dress space of a single machine and the Cluster-VEM that handles the global
distributed address space of a compute cluster.

The Node-VEM is very simple since the hardware already provides a shared
memory address space; hence, the Node-VEM can simply forward all instruction
from its parent to its child components. The Cluster-VEM, on the other hand,
has to distribute all vectors between Node-VEMs in the cluster.

Vector Engine (VE) components has to execute instructions it receives
in an order that comply with the dependencies between instructions. Further-
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Figure 6: Mapping Bohrium Vector Bytecode to CAPE TAC program representation.

more, it has to ensure that its parent component has access to the results as
governed by the Data Management bytecodes. Vector engine components are
thus responsible for implementing the low-level details for a given hardware
target.

Bohrium consists of a number of components that communicate by exchang-
ing Vector Bytecode. Because they all use the same communication protocol
they can be combined in various ways. The idea is to make it possible to
combine components in a setup that match a specific execution environment.
Re-targeting an application using Bohrium therefore does not require changing
application code, the runtime stack-configuration is simply changed to match
the execution environment. Changing stack configuration can be done by modi-
fying the default configuration via the Bohrium configuration configuration file.
Re-targeting can alternatively be done by selecting a predifined configuration
via the environment variable BH STACK.

3. CAPE

CAPE is in Bohrium terms a vector engine. That is, it is the component in
the Bohrium stack which is responsible for managing the low-level concerns of
mapping array operations, represented as vector bytecode, to a specific archi-
tecture.

3.1. Program Representation

The first task for the CAPE runtime, when executing a vector bytecode
program, is to run two passes over the bytecode instructions to construct aux-
iliary information about instructions and operands, and organize instructions
into executable blocks.

The first pass constructs an array of instructions represented as CAPE three-
address-code (tac/kp tac) and an array of CAPE operands (kp operand). We
refer to the former as the program and the latter as the symbol table. A kp tac

is equivalent to a Bohrium bytecode except it uses symbolic names for operands,
specifically, numerical values that can be used to look up the operand array

10
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descriptor in the symbol table. The array-descriptor, kp operand, is similar
to the data-structure described in 4 with an additional attribute named layout.
A kp operand describes how to access an underlying buffer (kp buffer).

The second pass constructs CAPE blocks (kp block). A block consists of
a subset of tacs in the program, an iteration space (kp iterspace), a unique
identifier and a hashed representation of the identifier. A block additionally
maintains a local scope, that is, the symbol table is regarded as globally scoped
operands, and the operands used by instructions in the block has an additional
symbolic value which is ”local” to the block.

Blocks form the basic unit for scheduling and executing array operations.
How the JIT-compiler and execution model use this program representation is
described in the following sections.

3.2. JIT-Compiler

The JIT-compiler handles the construction of executable code for a given
block. The machinery to facilitate this purpose is illustrated in figure 7. Given
a block, it returns a block function. To do so it generates C source code using
a Tac-to-C code generator (Section 3.2.1). The generated C source code is
compiled using a standard C compiler & linker to produce a shared object
containing the block function. Object storage (Section 3.2.2) dynamically loads
the object and returns a pointer to the block function.

3.2.1. Code Generator

CAPE is C-targeting, the meaning of this phrasing is that it generates C
source code, specifically C99. Also, it is meant to convey the information that
CAPE could instrument any hardware target that is addressable with C99 and
a standard compiler.

Other choices for code-targets include CUDA C and translation with the
nvcc CUDA compiler driver, thereby also limiting hardware targets to CUDA
architectures. Alternatively, by targeting OpenCL C and letting the OpenCL
compiler driver translate generated code, one could provide support for a wider
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1 void KP_IDENTHASH ( kp_buffer ∗∗ buffers ,
2 kp_operand ∗∗ operands ,
3 kp_iterspace ∗ iterspace )
4 {
5 // Bu f f e r s ( data po in t e r s )
6 double ∗ buf0_data = buffers [0]−> data ;
7 . . .
8
9 // Operands ( s t r i d e s and bu f f e r o f f s e t )

10 const int64_t opd0_start = operands [0]−> start ;
11
12 // I t e r s pa c e ( shape , layout , #elements )
13 const int64_t iterspace_nelem = iterspace−>nelem ;
14 . . .
15
16 // Pa r a l l e l s e c t i o n − preque l
17
18 { // Pa r a l l e l s e c t i o n − entry
19
20 // − operand to bu f f e r mapping
21 double ∗ restrict opd0 = buf0_data + opd0_start ;
22 double opd1 ;
23 // − work d i s t r i b u t i o n
24 // − i n i t i a l i z e accumulator v a r i a b l e s
25
26 // Pa r a l l e l s e c t i o n − loop con s t ruc t s
27 {
28 . . . array operations . . .
29 }
30 // Pa r a l l e l s e c t i o n − e x i t
31 }
32
33 // Pa r a l l e l s e c t i o n − s eque l
34 }

Figure 8: C-like pseudocode skeleton for block functions.

range of hardware targets using the same programming model for generated
code.

Using OpenCL is indeed enticing, and initial prototyping experimented with
OpenCL but was discarded primarily for matters of practical concern altough
also for performance considerations. Matters such as a series of oddities with
different OpenCL implementations that led to significant compilation overhead
and brittle drivers causing unstable and curious behavior. A performance con-
sideration was the lack of control over thread-locality, there was no means to
perform thread binding which as illustrated earlier is essentiel to performance
on NUMA architechtures. This was prior to the introduction of Device Fission
in OpenCL 1.2. The oddities of OpenCL implementations outweighed the con-
venience of a unified programming model which led to the choice of generating
C99 and using OpenMP, Intel LEO, and OpenACC directives for parallelization
and HWLOC to control locality.

Figure 8 illustrate the general structure and signature of a block function. A
block function only performs compute-oriented array operations and is in this
sense somewhat similar to a CUDA or OpenCL kernel. The CAPE runtime
handles data management.
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The first part of a block function ”unpacks” arguments, ”unpacking” in the
sense that the struct attributes of buffers, operands and the iteration space are
declared as ”flat” local variables. Examples of some of the unpacking is provided
in figure 8 line 6, 10, and 13. Exactly which attributes are unpacked depends
on the requirements of the code in the parallel section. The motivation for this
unpacking is to reduce the amount of data transferred into the parallel section.
Line 21 in figure 8 illustrates similar a concern. Here the mapping of an operand
opd0 to its supporting buffer buf0 with offset start is declared and annotated
with restrict when applicable. Such that the C compiler can enforce strict
aliasing rules and reduce alias checking at runtime.

The actual computations on array elements are performed in the loop con-
structs of the parallel section. The multi-dimensional array descriptor used by
operands and described in figure 4 drives these loop constructs. The descrip-
tor uses the following coordinate based formula to calculate the address of an
element.

addr = base addr +
rank-1∑
r=0

stride[r]× coord[r]

A loop construct implementing this formula is quite inefficient as it must use
memory for maintaining the coordinate and additionally perform an excessive
amount of calculations per element.

To circumvent this issue, the code generator emits specialized loop con-
structs. Loop constructs are specialized using the KP LAYOUT values for operands,
iteration space, as well as the dimensionality/rank. The most significant val-
ues are: KP SCALAR, KP CONTRACTABLE, KP CONTIGUOUS, KP CONSECUTIVE, and
KP STRIDED.

The KP SCALAR layout hints that the operand is either an actual scalar or a
broadcasted/flooded. Broadcasted scalars occur in an array expression such as:
a + 42.0 where a is an array. In which case the scalar 42.0 would be elevated to

an array described with the same shape as a and stride = 0 in each dimension.
By using the layout information the general formula can be entirely discarded.

The KP CONTRACTABLE is one of the most significant drivers for emitting
efficient code. It signifies that the operand is only used within the block, that is,
to store intermediate values. The code generator only need to emit a placeholder
variable such as the one on line 22 in figure 8.

The KP CONTIGUOUS and KP CONSECUTIVE are also essential means of avoid-
ing to implement the general formula. Both signify that the following linear
formula can be used instead.

addr = base addr + k ∗ element number

Where k is a constant, k=1 in the case of KP CONTIGUOUS and k>1 for
KP CONSECUTIVE. This information allow the code generater to translate into
code that increment operand data pointers using either opd0++ or opd0 +=

constant stride.
There are, however, a caveat for exploiting the information in this way as

it forces a specific ordering on the traversal of elements. If the operations per-
formed on the arrays are element-wise or the array are one-dimensional then
it is safe. Conversely if the arrays have rank larger than one and a partial re-
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duction or a scan is performed as one of the operations in the block and one of
these operations are not performed in the same order as the constant increment
imposes, then the optimization must be discarded.

The last layout value, KP STRIDED, is the least attractive as it signifies that
the stride information from the array descriptor must be used. However, a last
effort is attempted to avoid the general formular. That is, a loop nest is added
for each dimension, and a step-value for each dimension is precalculated. The
step-value is equal to the stride in the given dimension minus the step-values of
the loop nest inside it. Using the step-value, a step in the current loop nest can
increment the operand with code such as opd0 += step value.

The specialization of the pointer arithmetic and loop constructs serve the
purpose of avoiding the computationally and memory-expensive general for-
mular. Even more importantly they are generated to serve specialized work
distribution in the entry of the parallel section. The specialized work distribu-
tion targets even distribution of work between NUMA nodes, to optimize for
memory throghput. The flattening of loop constructs and division of the strided
loop constructs minimize remote access.

The current implementation is thus primarily focused on emitting efficient
code for multi-core NUMA architectures with regards to work distribution and
loop constructs.

However, the careful unpacking of meta-data and restricted transfer of meta-
data to parallel sections are also performed with thought of accelerators, as
parallel sections on these architectures means transferring not only the buffer
data as handled by the runtime but also the meta-data to device. The area left
for future work is thus the specialization of loop constructs.

The result of code generator is a string in memory, this string is either
piped to the C compiler or stored in the filesystem using the naming conven-
tion KP IDENTHASH.c where IDENTHASH is an ASCII representation of the block
identifier.

3.2.2. Object Storage

Generating source code, invoking the C compiler, and loading the generated
code consumes about 70-80 miliseconds of wall-clock time for each block func-
tion. Executing the block function can take anywhere from a few microseconds
to several seconds of wall-clock time. These numbers vary based on a long list of
parameters including C compiler flags, the specific compiler used, complexity of
the kernel function, I/O throughput of the system, and the number of elements
in the arrays when executing the block-function.

A worst-case scenario for a JIT-compilation approach is that time spent on
JIT-compilation and execution exceeds what would othervise be spent on exe-
cuting statically compiled code. In literature and production systems different
policies of ’if’ and ’when’ to JIT-compile are used. CAPE applies an aggressive
policy. To minimize compilation overhead a caching object storage is used in-
stead. The cache persists to the filesystem and is reused and shared with other
processes via the filesystem. The CAPE policy is always compile, unless the
block function exists in cache.
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1 process ( bytecode ) {
2
3 program , symbol_table , blocks [ ] = map (
4 bytecode
5 ) ;
6
7 thread_manager . bind ( ) ;
8
9 f o r block in blocks {

10 block_function = jit_compiler ( block ) ;
11 memory_manager ( block ) ; // A l l o ca t i on
12 block_function ( block ) ; // Execution
13 memory_manager ( block ) ; // De−a l l o c a t i o n
14 }
15 }

Figure 9: Pseudo-code illustration of the bytecode processing performed by the CAPE run-
time.

The design of the CAPE compiler allows for compiling block-functions ahead
of time in a addition to just in time. Thereby allowing execution to overlap the
compilation phase. However, in the current implementation the runtime does
not exploit this, but run in a simpler lookup/compile/execute mode.

Objects are stored in the filesystem using two naming conventions, the first
names objects as KP IDENTHASH.ext, where IDENTHASH is an ASCII represen-
tation of the block identifier and .ext is the extension name used for shared
libraries on the given platform. This naming convention is used when objects
are created at runtime by the JIT-compiler. The second convention names
objects as KP COLLECTION.ext which is accompanied by another file named
KP COLLECTION.index. This naming convention is used for pre-compilation and
the COLLECTION object therefore contains multiple block functions, the identi-
fiers of which are stored in the .index file.

Since object storage is shared via the filesystem, care is taken to protect
against race condition that can occur when multiple processes are running or
when using a shared filesystem. Additionally, care is taken to avoid sharing
objects compiled for different hardware targets.

3.3. Execution Model

As Section 3.2 describe, then block functions execute the compute-oriented
array operations. While data management operations, integration with other
runtimes, libraries, and the JIT-compilation machinery is the responsibility of
the CAPE runtime. Figure 9 demonstrates the general execution model used
by CAPE.

Thread Manager
Figure 2 demonstrated the need for managing thread affinity to avoid remote

access on NUMA architectures. In the example from the figure, thread affinity
is controlled by instrumenting the GNU OpenMP runtime via the environment
variable GOMP CPU AFFINITY. Such an approach is not desirable for the CAPE
runtime for several reasons.
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First, the concerns of the hardware architecture should be hidden from end-
user. Be it a programmer/scientist doing exploratory scientific computing or a
user running the program written by the scientist. The JIT-compiler machin-
ery can use any standard C compiler and as a consequence thereof, different
OpenMP runtimes. Different OpenMP runtimes have different environment
variables for managing thread affinity, such as KMP AFFINITY for Intel compiler,
and MP BIND/MP BLIST for the Portland Group compiler. Delegating control
over thread affinity to the end-user would thus expose, not only the hardware
architecture but also the CAPE compiler machinery.

Secondly, the applied thread binding has performance consequences for the
loop constructs in block functions. It is thus essential for performance that
CAPE runtime and the code generator complement each other in the efforts of
load distribution of the parallel sections and binding of threads.

The CAPE runtime, therefore, implements thread binding. The HWLOC[20]
library is used to traverse the topology of processing units on the system and
binding threads. The thread manager is invoked prior to processing blocks as
figure 9 illustrate.

Threads are bound using a single affinity policy. The code generator is aware
of the thread policy and generates code optimizing for the policy. An area left
for future work is the exploration of dynamically specializing the affinity policy
and re-binding threads for a given block.

Memory Manager
Allocation of buffers is performed by a memory manager in the CAPE run-

time. The memory manager integrates an approach from previous work[21].
Previous work investigated an expansion of the memory-allocation routines of
the NumPy library. The general idea is to apply a buffer-reuse scheme for large
memory allocations. The scheme named victim-caching was shown to provide
a speedup of up to 2.29, on average 1.32 across a benchmark suite of 15 ap-
plications. Most importantly, at no time did the victim cache scheme perform
worse than unmodified NumPy. The results of previous work motivated the
implementation of an equivalent victim-cache scheme for allocation of buffers in
CAPE.

In addition to the victim-cache scheme the memory manager allocates page-
aligned memory via mmap on the host. The memory manager is responsible for
all aspects of allocating buffers for array-operation operands. This also includes
the allocation of buffers on accelerator devices, it is left for future work do
describe this part of the memory manager.

The memory manager is invoked before and after the execution of a block
function, as figure 9 illustrate.

4. Performance Study

This section describes various performance aspects of CAPE. Section 4.1
provide numbers of a set of Python/NumPy benchmarks. These numbers show
relative speedup, using the regular NumPy implementation as a baseline, to the
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Machine:
Processor: AMD Opteron 6272
Clock: 2.1 GHz
L3 Cache: 16MB
Memory: 128GB DDR3
Network: Gigabit Ethernet
Compiler: GCC 4.8.4
Software: Ubuntu 14.04, Linux 3.13, Python 2.7.6, NumPy 1.8.2

Table 1: Machine Specifications

same applications but where the NumPy array operations are extracted using
npbackend/Bohrium and CAPE is used for processing them. The section will
thus show the speedup obtainable by the Bohrium/CAPE approach. An addi-
tional set of numbers is provided in the section, namely using Bohrium/CAPE
approach but disabling optimizations for array-operation compositioning. Those
numbers will show what is gained by the Bohrium/CAPE approach in contrast
to simply implementing a parallel version of the regular NumPy library.

Section 4.2 provide relative speedup of a subset of the benchmarks in 4.1.
The baseline used for these numbers is a serial implementation in C. For compar-
ison parallel implementations in C/C++ are also provided. These numbers thus
provide data for comparative study of how far, or how close the Bohrium/CAPE
approach is to handwritten low-level implementations.

Environment
The benchmark implementations are part of an OpenSource benchmark tool

and suite named Benchpress. The source code for the implementations and the
Benchpress tool is available online at http://benchpress.readthedocs.org/.
For reproducibility, the exact version used can be obtained from the source code
repository at https://github.com/bh107/benchpress.git revision 0aa2942.

The implementation of CAPE, BXX, Bohrium, and npbackend is simi-
larly available https://github.com/bh107/bohrium.git, the numbers pro-
duced used revision b4d3586.

Source code including the raw numbers from the performance study is also
available at the University of Copenhagen Electronic Research Data Archive as a
public archive with id YXJjaGl2ZS0xSWhQSmU=, http://www.erda.dk/public/
archives/YXJjaGl2ZS0xSWhQSmU=/published-archive.html.

Each benchmark was executed five times and the elapsed wall-clock time
was recorded. The best and the worst result, that is, the one consuming the
least and the most time were discarded, and an average of the remaining three
samples used for computing relative numbers.

Table 1 provide information about the machine on which the benchmarks
were executed.

4.1. Python/NumPy

Table 2 provide numbers of the performance gained from the Bohrium/-
CAPE approach. The numbers show speedup using the regular NumPy library
as a baseline, the raw samples of elapsed wall-clock time can be inspected in
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CAPE-AC CAPE

Threads 1 32 1 32

Synthetic Inplace Update 1.4 8.6 14.1 236.9
Synthetic Stream Ones 1.5 9.7 10.0 137.3
Synthetic Stream Range 0.9 8.0 1.8 45.5
Synthetic Stream Random 1.0 18.0 1.0 29.8

1D Stencil 0.7 8.5 1.1 21.8
2D Stencil 0.6 8.8 3.6 53.9
3D Stencil 0.8 11.0 1.8 48.6
27 Point Stencil 1.0 5.5 1.2 13.6

Jacobi 1.4 10.3 3.9 76.2
Gauss Elimination 0.7 1.6 2.1 3.8
LU Factorization 0.7 1.6 1.9 3.4
Leibnitz PI 1.0 6.1 2.2 48.3
Monte Carlo PI 1.0 17.7 1.0 30.1
Matrix Multiplication 0.9 10.1 2.1 47.3
Rosenbrock 1.5 9.9 12.5 169.4

Black Scholes 3.4 27.4 6.0 84.9
Game of Life v1 1.2 8.6 1.5 32.2
Game of Life v2 1.2 8.0 2.2 39.6
Heat Equation 1.3 9.1 4.4 41.0
Lattice Boltzmann 3D 0.8 4.0 0.8 5.3
NBody 4.7 17.2 5.1 23.6
NBody Nice 1.2 7.3 0.4 8.1
SOR 1.4 8.3 1.9 20.1
Shallow Water 1.5 9.2 6.9 62.2
Water-Ice Simulation 0.8 5.7 1.6 10.9
kNN Naive 1 0.7 10.2 1.0 26.1

Table 2: Benchmarks results, regular NumPy library used as baseline.
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the file numpy.txt in the frozen data archive. Two different configurations of
CAPE are used.

The label CAPE denotes the default configuration. In the default configu-
ration all safe optimizations are applied. This includes the victim-cache buffer
allocation scheme, bytecode-transformations, and most importantly the array-
operation composition and array-contraction optimization.

The label CAPE-AC denotes a modification of the default configuration,
specifically the array-operation composition and array-contraction optimiza-
tions are disabled.

The table additionally shows numbers for these two configurations executing
using a single thread and 32 threads.

Discussion
On the majority of benchmarks, CAPE can manage load distribution for

parallelization, avoid materialization of intermediate results, and apply runtime-
value optimizations such as transforming operations into equivalent, but more
efficient to compute, expressions. CAPE is thereby able to deliver considerable
performance improvements over the regular NumPy library.

A key contributor to the obtained performance improvement is the abil-
ity of CAPE to avoid materialization of arrays for intermediate results. One
can compare which is most efficient: array-contraction without parallelization
(CAPE and a single threads) or without array-contraction but with paralleliza-
tion (CAPE-AC and 32 threads). If only a single optimization is applied then
parallelization is on the most part favorable when considing elapsed wall-clock
time. However, for a few benchmarks a single thread is able to outperform 32
threads thanks to array-contraction.

Only considering parallelization, without array-contraction, severily limits
scalability as the materialization of intermediate results makes any benchmark
inherently memory bound. The symbiosis between parallization and array-
contraction is what enables efficient utilization of the hardware in these bench-
marks. As array-contraction reduce pressure on memory-bandwidth, scalability
improves.

Array-operation composition and array-contraction are key drivers for ex-
ploiting locality, reducing memory-bandwidth pressure and they consistently
yield improvements on throughput. The last statement is, however, contradicted
by the Nbody Nice benchmark. The exact cause of the performance penalty is
left for future work, current exploration has revealed that using certain com-
mercial compilers does not exhibit the same behavior. Indicators seem to point
toward pointer runtime alias checks but experiments are currently inconclusive.

4.2. C/C++

Table 3 provide numbers of the performance gained from the Bohrium/-
CAPE approach in relation to handwritten implementations in C/C++. The
numbers show speedup using a serial implementation of each benchmark in C
as a baseline. The raw samples of elapsed wall-clock time can be inspected
in the file c cpp.txt in the frozen data archive. Numbers are provided for two
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C++ NumPy C++
/ / /

OpenMP CAPE CAPE

Threads 1 32 1 32 1 32

Black Scholes +O 0.9 29.1 4.8 67.3 4.9 118.9
Black Scholes –O 0.9 29.1 1.1 26.1 1.1 31.7
Heat Equation 0.6 7.1 0.7 7.0 0.8 7.6
Leibnitz PI 1.0 22.6 0.6 14.6 0.6 15.2
Monte Carlo PI 1.0 29.8 1.0 27.8 0.9 28.2
Mxmul 1.0 9.5 1.0 14.9 1.1 15.1
Rosenbrock 1.0 21.0 1.2 15.8 1.2 21.4
Shallow Water 0.5 9.1 0.7 6.6 0.7 10.9

Table 3: Benchmarks results, serial C implementation used as baseline.

different Bohrium language bridges, Python/NumPy and C++/BXX, using the
default configuration of CAPE.

The C baseline, the parallel C++ implementations, and the CAPE JIT-
compiler uses the same version of the GNU compiler collection as well as the
same optimization flags, specifically: -O3 -march=native. The serial C imple-
mention and the CAPE JIT-compiler additionally used -std=c99 and the C++
implementations used -std=c++11. The CAPE JIT-compiler and the C++ im-
plementations additonally used -fopenmp.

The label C++/OpenMP denotes the handwritten implementation of the
benchmark in C++ using OpenMP for parallelization, thread binding was man-
aged via GOMP CPU AFFINITY=0-31.

The label NumPy/CAPE denotes that the benchmark was implemented in
Python/NumPy and array processing delegated to CAPE via the npbackend
language bridge.

The label C++/CAPE denotes that the benchmark was implemented in
C++ and array processing delegated to CAPE via the BXX language bridge.

The table additionally shows numbers for these two configurations executing
using a single thread and 32 threads.

Discussion
The C implementation of the Black Scholes benchmark is compute-bound

as the C++/OpenMP implementation show by achieving a near perfect linear
speedup using 32 threads. The numbers reported by the Python/NumPy and
C++ implementations using CAPE obtain super-linear speedup of ×67.3 and
×118.9 using 32 threads and a speedup of about ×4.8 using a single thread/core.

How the C++/CAPE and NumPy/CAPE is able to achieve such results
requires a good explanation. In the case of the Black Scholes benchmark, the
reason is quite simple. CAPE performs a runtime-value optimization of the
math-function pow. The function is the largest hot-spot in the benchmark and
CAPE transforms it to sequences of multiplications which are vastly faster to
compute. For comparison results are also provided where the pow optimization
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is switched off.
Comparing the results from the two language bridges NumPy and BXX

with 32 threads it is clear that the BXX language bridge consistently provide
better results than the NumPy bridge. Once the language bridge has mapped
operations, within the host language, to Bohrium bytecode then the knowledge
of where the bytecode originated from is lost. There is no special treatment of
bytecode from different language bridges. However, there is variation in how
bytecode is created in the host language.

The measurable difference is related to how CAPE constructs blocks and
does array-contraction/array-operation composition. The algorithm used to
construct blocks and annotate KP CONTRACTABLE operands is sensitive to the
order of instructions in the bytecode program. The BXX language bridge emits
data management bytecodes immediatly after the last array-operation byte-
code, that uses a given array, is emitted. This is advantagous for the block-
construction algorithm. The Python/NumPy bridge emits data management
bytecodes when variables exit scope or are for other reasons garbage collected.
Data management bytecodes might not be immediately emitted after the last
use. This is disadvantagous for the block-construction algorithm. As a conse-
quence, the NumPy language bridge loses some opportunities for adding instruc-
tions to blocks and to annotating operands for contraction (KP CONTRACTABLE).
Which leads to worse scalability due to increased memory bandwidth pressure.
Future work will explore means of mitigating such issues.

5. Future Work

An area of continued investigation is the exploitation of runtime values for
optimization. In this context, the information used for constructing Blocks is
investigated. The current implementation does a single pass over the program
and adds tacs into a block as long as adding the tac does not break a set of rules.
If the rules are broken, the block is ended, and a new block created. This naive
approach is cheap to compute at runtime and fairly good at producing blocks
that allow for composing array operations. However, it is vulnerable to the
order of instructions. An approach is being investigated which builds a graph
of data dependencies between instructions. The data dependencies can then be
used to drive the construction of blocks, instead of the instruction order.

For CAPE to fully utilize accelerator architectures such as GPUs and In-
tel MIC two main areas needs expansion: the code generator and the run-
time. The code generator must emit loop constructs with OpenACC direc-
tives for GPUs and parallel sections/loop constructs with LEO/OpenMP di-
rectives for MICs. Additionally the CAPE runtime must manage memory
on the accelerator device. Currently explored is a runtime extension using a
simple alloc, free, push, and pull interface. The interface abstracts the
details of LEO #pragma offload transfer and OpenACC routines such as
acc [create|delete|update device|update self]. The extension manages
relations between host pointers and device pointers, knows the state of buffers
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on host and device, and focuses on data persistence on the device to minimize
data transfers between host and device.

The performance study revealed two benchmarks for which CAPE did not
manage load distribution well, namely Gauss Elimination and LU Factoriza-
tion. Those benchmarks execute well-known operations from linear algebra for
which highly tuned libraries exist. Future work will explore the integration
of such libraries without losing opportunities for array operation composition.
Bohrium and CAPE already support third party library integration, although,
the approach is in an explicit form. That is, the language bridge must send a
bytecode extension opcode signaling a mapping between the extension opcode
and library function. Future work in this area will explore transparent detec-
tion of bytecode sequences that are equivalent to well-known highly specialized
functions and perform the mapping automatically. This will let CAPE remain
responsible for the processing of general array operations and detecting specific
functions while delegating the responsibility of processing specific functions to
a highly tuned library.

6. Related Work

Intel Array Building Blocks[22], a retargetable dynamic compilation frame-
work is closely related in its goal of closing the high-productivity and high-
performance gap. Its design is also similar consisting of a dynamic compilation
of high-level array operations to low-level code. However, ArrBB has been
discontinued and replaced with the slightly more explicit and C/C++ only ap-
proach of Intel Cilk Plus[23] and Intel Threading Building Blocks.

Other approaches providing a C-based interface include StarPU, which in
design also seek to address the challenge of performance portability, that is re-
moving the details of the executing hardware from the programmer. StarPU
provide extensions to gcc and focus on supporting c-language family and tradi-
tional HPC languages.

The work in this paper focuses on a transparent approach where the pro-
grammer is only provided with the array operations and sequential seman-
tics. Bohrium/CAPE is as such targeted towards applications written in non-
traditional HPC languages, Python/NumPy, CIL, and C++.

The use of StarPU tasks is somewhat equivalent to a CAPE Block. A key
difference is that CAPE Blocks are generated by the runtime based on a sequence
of array operations, using different codegenerators based on the required target.
Instead the StarPU tasks are user-defined, that is, the user writes the different
implementations. A wealth of language extensions for expressing parallelism in
C exists, including OpenMP, OpenACC, Intel LEO, StarPU, StarSS, to name
a few.

Bohrium and CAPE address a slightly different audience and intent which
is to provide the machinery to support high-level array abstractions with serial
semantics which execute efficiently on target hardware. The importance of the
CAPE c-interface is for interoperability and ABI-compability with other low-
level runtimes as well as the integration with existing languages.
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Very closely related to this work the work on Transparent GPU Execution
of NumPy Application[24]. The main difference being the code-generator target
and runtime. The work in[24] uses an OpenCL based codegenerator and run-
time for targeting GPUs. The main difference being the code-generator target.
Where the work on CAPE comes from previous work on Bohrium targeting
multi-core CPUs, emitting C99 code using parallel directives and runtimes in-
stead of OpenCL.

7. Conclusion

This paper introduced CAPE, a C-targeting Array Processing Engine, which
manages the concerns of optimizing and parallelizing the execution of array
operations. CAPE enables automatic mapping of array operations to specific
architectures through the use of the language bridges/integrations provided by
Bohrium.

A performance study showed super-linear speedup on a set of Python/NumPy
benchmarks, executed on a 32 core processor with NUMA architecture. The
main contributing factors to the obtained speedup are the composition of array-
oriented expressions that enable array-contraction, that is, avoid the material-
ization of arrays that store intermediate results. The second performance en-
hancing feature is the NUMA-aware code generator and runtime that enables
efficient parallelization of array expressions on this architecture.

The performance study also compared the performance of CAPE to seven
benchmarks handwritten in C, and C++ using OpenMP. Results showed that
CAPE used via the Bohrium C++ library BXX, was able to match the per-
formance of the handwritten parallel C++ implementation on five benchmarks
and outperform the hand-written code on two benchmarks.

Additionally, results showed that CAPE used via the Python language bridge
was able to match the performance of the hand-written parallel C++ implemen-
tation on three out of seven benchmarks. It underperformed 30-50 percent on
two benchmarks and outperformed the hand-written code on two benchmarks.
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Applications
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Abstract—Modern processor architectures, in addition to having still more
cores, also require still more consideration to memory-layout in order to run
at full capacity. The usefulness of most languages is deprecating as their
abstractions, structures or objects are hard to map onto modern processor
architectures efficiently.

The work in this paper introduces a new abstract machine framework, cphVB,
that enables vector oriented high-level programming languages to map onto a
broad range of architectures efficiently. The idea is to close the gap between
high-level languages and hardware optimized low-level implementations. By
translating high-level vector operations into an intermediate vector bytecode,
cphVB enables specialized vector engines to efficiently execute the vector
operations.

The primary success parameters are to maintain a complete abstraction from
low-level details and to provide efficient code execution across different, modern,
processors. We evaluate the presented design through a setup that targets
multi-core CPU architectures. We evaluate the performance of the implemen-
tation using Python implementations of well-known algorithms: a jacobi solver,
a kNN search, a shallow water simulation and a synthetic stencil simulation. All
demonstrate good performance.

Index Terms—runtime optimization, high-performance, high-productivity

Introduction

Obtaining high performance from today’s computing envi-
ronments requires both a deep and broad working knowl-
edge on computer architecture, communication paradigms and
programming interfaces. Today’s computing environments are
highly heterogeneous consisting of a mixture of CPUs, GPUs,
FPGAs and DSPs orchestrated in a wealth of architectures and
lastly connected in numerous ways.

Utilizing this broad range of architectures manually requires
programming specialists and is a very time-consuming task
– time and specialization a scientific researcher typically
does not have. A high-productivity language that allows rapid
prototyping and still enables efficient utilization of a broad
range of architectures is clearly preferable. There exist high-
productivity language and libraries that automatically utilize
parallel architectures [Kri10], [Dav04], [New11]. They are

* Corresponding author: madsbk@nbi.dk
† University of Copenhagen

Copyright © 2012 Mads Ruben Burgdorff Kristensen et al. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

however still few in numbers and have one problem in
common. They are closely coupled to both the front-end,
i.e. programming language and IDE, and the back-end, i.e.
computing device, which makes them interesting only to the
few using the exact combination of front and back-end.

A tight coupling between front-end technology and back-
end presents another problem; the usefulness of the developed
program expires as soon as the back-end does. With the
rapid development of hardware architectures the time spend
on implementing optimized programs for specific hardware,
is lost as soon as the hardware product expires.

In this paper, we present a novel approach to the prob-
lem of closing the gap between high-productivity languages
and parallel architectures, which allows a high degree of
modularity and reusability. The approach involves creating a
framework, cphVB* (Copenhagen Vector Bytecode). cphVB
defines a clear and easy to understand intermediate bytecode
language and provides a runtime environment for executing
the bytecode. cphVB also contains a protocol to govern the
safe, and efficient exchange, creation, and destruction of model
data.

cphVB provides a retargetable framework in which the
user can write programs utilizing whichever cphVB supported
programming interface they prefer and run the program on
their own workstation while doing prototyping, such as testing
correctness and functionality of their programs. Users can then
deploy exactly the same program in a more powerful execution
environment without changing a single line of code and thus
effectively solve greater problem sets.

The rest of the paper is organized as follows. In Section
Programming Model. we describe the programming model
supported by cphVB. The section following gives a brief
description of Numerical Python, which is the first program-
ming interface that fully supports cphVB. Sections Design and
Implementation cover the overall cphVB design and an imple-
mentation of it. In Section Performance Study, we conduct an
evaluation of the implementation. Finally, in Section Future
Work and Conclusion we discuss future work and conclude.

*. Open Source Project - Website: http://cphvb.bitbucket.org.
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Related Work

The key motivation for cphVB is to provide a framework
for the utilization of heterogeneous computing systems with
the goal of obtaining high-performance, high-productivity and
high-portability (HP3). Systems such as pyOpenCL/pyCUDA
[Klo09] provides a direct mapping from front-end language to
the optimization target. In this case, providing the user with
direct access to the low-level systems OpenCL [Khr10] and
CUDA [Nvi10] from the high-level language Python [Ros10].
The work in [Klo09] enables the user to write a low-level
implementation in a high-productivity language. The goal is
similar to cphVB – the approach however is entirely different.
cphVB provides a means to hide low-level target specific code
behind a programming model and providing a framework and
runtime environment to support it.

Intel Math Kernel Library [Int08] is in this regard more
comparable to cphVB. Intel MKL is a programming library
providing utilization of multiple targets ranging from a single-
core CPU to a multi-core shared memory CPU and even to
a cluster of computers all through the same programming
API. However, cphVB is not only a programming library it
is a runtime system providing support for a vector oriented
programming model. The programming model is well-known
from high-productivity languages such as MATLAB [Mat10],
[Rrr11], [Idl00], GNU Octave [Oct97] and Numerical Python
(NumPy) [Oli07] to name a few.

cphVB is more closely related to the work described in
[Gar10], here a compilation framework is provided for exe-
cution in a hybrid environment consisting of both CPUs and
GPUs. Their framework uses a Python/NumPy based front-end
that uses Python decorators as hints to do selective optimiza-
tions. cphVB similarly provides a NumPy based front-end and
equivalently does selective optimizations. However, cphVB
uses a slightly less obtrusive approach; program selection
hints are sent from the front-end via the NumPy-bridge. This
approach provides the advantage that any existing NumPy
program can run unaltered and take advantage of cphVB
without changing a single line of code. Whereas unPython
requires the user to manually modify the source code by
applying hints in a manner similar to that of OpenMP [Pas05].
This non-obtrusive design at the source level is to the author’s
knowledge novel.

Microsoft Accelerator [Dav04] introduces ParallelArray,
which is similar to the utilization of the NumPy arrays in
cphVB but there are strict limitations to the utilization of
ParallelArrays. ParallelArrays does not allow the use of direct
indexing, which means that the user must copy a ParallelArray
into a conventional array before indexing. cphVB instead
allows indexed operations and additionally supports array-
views, which are array-aliases that provide multiple ways to
access the same chunk of allocated memory. Thus, the data
structure in cphVB is highly flexible and provides elegant
programming solutions for a broad range of numerical algo-
rithms. Intel provides a similar approach called Intel Array
Building Blocks (ArBB) [New11] that provides retargetability
and dynamic compilation. It is thereby possible to utilize
heterogeneous architectures from within standard C++. The

retargetability aspect of Intel ArBB is represented in cphVB
as a plain and simple configuration file that define the cphVB
runtime environment. Intel ArBB provides a high performance
library that utilizes a heterogeneous environment and hides the
low-level details behind a vector oriented programming model
similar to cphVB. However, ArBB only provides access to the
programming model via C++ whereas cphVB is not biased
towards any one specific front-end language.

On multiple points cphVB is closely related in functionality
and goals to the SEJITS [Cat09] project. SEJITS takes a
different approach towards the front-end and programming
model. SEJITS provides a rich set of computational kernels in
a high-productivity language such as Python or Ruby. These
kernels are then specialized towards an optimality criteria. This
approach has shown to provide performance that at times out-
performs even hand-written specialized code towards a given
architecture. Being able to construct computational kernels is
a core issue in data-parallel programming.

The programming model in cphVB does not provide this
kernel methodology. cphVB has a strong NumPy heritage
which also shows in the programming model. The advantage is
easy adaptability of the cphVB programming model for users
of NumPy, Matlab, Octave and R. The cphVB programming
model is not a stranger to computational kernels – cphVB
deduce computational kernels at runtime by inspecting the
vector bytecode generated by the Bridge.

cphVB provides in this sense a virtual machine optimized
for execution of vector operations, previous work [And08] was
based on a complete virtual machine for generic execution
whereas cphVB provides an optimized subset.

Numerical Python

Before describing the design of cphVB, we will briefly
go through Numerical Python (NumPy) [Oli07]. Numerical
Python heavily influenced many design decisions in cphVB –
it also uses a vector oriented programming model as cphVB.

NumPy is a library for numerical operations in Python,
which is implemented in the C programming language. NumPy
provides the programmer with a multidimensional array object
and a whole range of supported array operations. By using
the array operations, NumPy takes advantage of efficient C-
implementations while retaining the high abstraction level of
Python.

NumPy uses an array syntax that is based on the Python list
syntax. The arrays are indexed positionally, 0 through length –
1, where negative indexes is used for indexing in the reversed
order. Like the list syntax in Python, it is possible to index
multiple elements. All indexing that represents more than one
element returns a view of the elements rather than a new copy
of the elements. It is this view semantic that makes it possible
to implement a stencil operation as illustrated in Figure 1 and
demonstrated in the code example below. In order to force
a real array copy rather than a new array reference NumPy
provides the ”copy” method.

In the rest of this paper, we define the array-base as the
originally allocated array that lies contiguously in memory.
In addition, we will define the array-view as a view of the
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Fig. 1: Matrix expression of a simple 5-point stencil computation ex-
ample. See line eight in the code example, for the Python expression.

elements in an array-base. An array-view is usually a subset
of the elements in the array-base or a re-ordering such as the
reverse order of the elements or a combination.
1 center = full[1:-1, 1:-1]
2 up = full[0:-2, 1:-1]
3 down = full[2: , 1:-1]
4 left = full[1:-1, 0:-2]
5 right = full[1:-1, 2: ]
6 while epsilon < delta:
7 work[:] = center
8 work += 0.2 * (up+down+left+right)
9 center[:] = work

Target Programming Model

To hide the complexities of obtaining high-performance from
a heterogeneous environment any given system must provide
a meaningful high-level abstraction. This can be realized in
the form of domain specific languages, embedded languages,
language extensions, libraries, APIs etc. Such an abstraction
serves two purposes: 1) It must provide meaning for the end-
user such that the goal of high-productivity can be met with
satisfaction. 2) It must provide an abstraction that consists of
a sufficient amount of information for the system to optimize
its utilization.

cphVB is not biased towards any specific choice of abstrac-
tion or front-end technology as long as it is compatible with
a vector oriented programming model. This provides means
to use cphVB in functional programming languages, provide
a front-end with a strict mathematic notation such as APL
[Apl00] or a more relaxed syntax such as MATLAB.

The vector oriented programming model encourages ex-
pressing programs in the form of high-level array operations,
e.g. by expressing the addition of two arrays using one high-
level function instead of computing each element individually.
The NumPy application in the code example above figure 1
is a good example of using the vector oriented programming
model.

Design of cphVB

The key contribution in this paper is a framework, cphVB,
that support a vector oriented programming model. The idea
of cphVB is to provide the mechanics to seamlessly couple a
programming language or library with an architecture-specific
implementation of vectorized operations.

cphVB consists of a number of components that communi-
cate using a simple protocol. Components are allowed to be
architecture-specific but they are all interchangeable since all
uses the same communication protocol. The idea is to make
it possible to combine components in a setup that perfectly
match a specific execution environment. cphVB consist of the
following components:

Fig. 2: cphVB design idea.

Programming Interface
The programming language or library exposed to the
user. cphVB was initially meant as a computational
back-end for the Python library NumPy, but we have
generalized cphVB to potential support all kinds
of languages and libraries. Still, cphVB has design
decisions that are influenced by NumPy and its
representation of vectors/matrices.

Bridge
The role of the Bridge is to integrate cphVB into ex-
isting languages and libraries. The Bridge generates
the cphVB bytecode that corresponds to the user-
code.

Vector Engine
The Vector Engine is the architecture-specific imple-
mentation that executes cphVB bytecode.

Vector Engine Manager
The Vector Engine Manager manages data location
and ownership of vectors. It also manages the distri-
bution of computing jobs between potentially several
Vector Engines, hence the name.

An overview of the design can be seen in Figure 2.

Configuration

To make cphVB as flexible a framework as possible, we
manage the setup of all the components at runtime through
a configuration file. The idea is that the user can change the
setup of components simply by editing the configuration file
before executing the user application. Additionally, the user
only has to change the configuration file in order to run the
application on different systems with different computational
resources. The configuration file uses the ini syntax, an exam-
ple is provided below.
# Root of the setup
[setup]
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bridge = numpy
debug = true

# Bridge for NumPy
[numpy]
type = bridge
children = node

# Vector Engine Manager for a single machine
[node]
type = vem
impl = libcphvb_vem_node.so
children = mcore

# Vector Engine using TLP on shared memory
[mcore]
type = ve
impl = libcphvb_ve_mcore.so

This example configuration provides a setup for utilizing a
shared memory machine with thread-level-parallelism (TLP)
on one machine by instructing the vector engine manager to
use a single multi-core TLP engine.

Bytecode

The central part of the communication between all the compo-
nents in cphVB is vector bytecode. The goal with the bytecode
language is to be able to express operations on multidi-
mensional vectors. Taking inspiration from single instruction,
multiple data (SIMD) instructions but adding structure to the
data. This, of course, fits very well with the array operations
in NumPy but is not bound nor limited to these.

We would like the bytecode to be a concept that is easy
to explain and understand. It should have a simple design
that is easy to implement. It should be easy and inexpensive
to generate and decode. To fulfill these goals we chose
a design that conceptually is an assembly language where
the operands are multidimensional vectors. Furthermore, to
simplify the design the assembly language should have a one-
to-one mapping between instruction mnemonics and opcodes.

In the basic form, the bytecode instructions are primitive
operations on data, e.g. addition, subtraction, multiplication,
division, square root etc. As an example, let us look at
addition. Conceptually it has the form:

add $d, $a, $b

Where add is the opcode for addition. After execution $d
will contain the sum of $a and $b.

The requirement is straightforward: we need an opcode.
The opcode will explicitly identify the operation to perform.
Additionally the opcode will implicitly define the number of
operands. Finally, we need some sort of symbolic identifiers
for the operands. Keep in mind that the operands will be
multidimensional arrays.

Interface

The Vector Engine and the Vector Engine Manager exposes
simple API that consists of the following functions: initial-
ization, finalization, registration of a user-defined operation
and execution of a list of bytecodes. Furthermore, the Vector
Engine Manager exposes a function to define new arrays.

Bridge

The Bridge is the bridge between the programming interface,
e.g. Python/NumPy, and the Vector Engine Manager. The
Bridge is the only component that is specifically implemented
for the programming interface. In order to add cphVB support
to a new language or library, one only has to implement the
bridge component. It generates bytecode based on program-
ming interface and sends them to the Vector Engine Manager.

Vector Engine Manager

Instead of allowing the front-end to communicate directly with
the Vector Engine, we introduce a Vector Engine Manager
(VEM) into the design. It is the responsibility of the VEM to
manage data ownership and distribute bytecode instructions to
several Vector Engines. It is also the ideal place to implement
code optimization, which will benefit all Vector Engines.

To facilitate late allocation, and early release of resources,
the VEM handles instantiation and destruction of arrays.
At array creation only the meta data is actually created.
Often arrays are created with structured data (e.g. random,
constants), with no data at all (e.g. empty), or as a result of
calculation. In any case it saves, potentially several, memory
copies to delay the actual memory allocation. Typically, array
data will exist on the computing device exclusively.

In order to minimize data copying we introduce a data
ownership scheme. It keeps track of which components in
cphVB that needs to access a given array. The goal is to
allow the system to have several copies of the same data while
ensuring that they are in synchronization. We base the data
ownership scheme on two instructions, sync and discard:

Sync
is issued by the bridge to request read access to a
data object. This means that when acknowledging a
sync request, the copy existing in shared memory
needs to be the most resent copy.

Discard
is used to signal that the copy in shared memory has
been updated and all other copies are now invalid.
Normally used by the bridge to upgrading a read
access to a write access.

The cphVB components follow the following four rules
when implementing the data ownership scheme:

1. The Bridge will always ask the Vector Engine
Manager for access to a given data object. It will
send a sync request for read access, followed by a
release request for write access. The Bridge will not
keep track of ownership itself.

2. A Vector Engine can assume that it has write
access to all of the output parameters that are refer-
enced in the instructions it receives. Likewise, it can
assume read access on all input parameters.

3. A Vector Engine is free to manage its own copies
of arrays and implement its own scheme to mini-
mize data copying. It just needs to copy modified
data back to share memory when receiving a sync
instruction and delete all local copies when receiving
a discard instruction.
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4. The Vector Engine Manager keeps track of array
ownership for all its children. The owner of an array
has full (i.e. write) access. When the parent com-
ponent of the Vector Engine Manager, normally the
Bridge, request access to an array, the Vector Engine
Manager will forward the request to the relevant
child component. The Vector Engine Manager never
accesses the array itself.

Additionally, the Vector Engine Manager needs the capabil-
ity to handle multiple children components. In order to max-
imize parallelism the Vector Engine Manager can distribute
workload and array data between its children components.

Vector Engine

Though the Vector Engine is the most complex component of
cphVB, it has a very simple and a clearly defined role. It has
to execute all instructions it receives in a manner that obey the
serialization dependencies between instructions. Finally, it has
to ensure that the rest of the system has access to the results
as governed by the rules of the sync, release, and discard
instructions.

Implementation of cphVB

In order to demonstrate our cphVB design we have imple-
mented a basic cphVB setup. This concretization of cphVB is
by no means exhaustive. The setup is targeting the NumPy
library executing on a single machine with multiple CPU-
cores. In this section, we will describe the implementation
of each component in the cphVB setup – the Bridge, the
Vector Engine Manager, and the Vector Engine. The cphVB
design rules (Sec. Design) govern the interplay between the
components.

Bridge

The role of the Bridge is to introduce cphVB into an already
existing project. In this specific case NumPy, but could just as
well be R or any other language/tool that works primarily on
vectorizable operations on large data objects.

It is the responsibility of the Bridge to generate cphVB
instructions on basis of the Python program that is being run.
The NumPy Bridge is an extension of NumPy version 1.6. It
uses hooks to divert function call where the program access
cphVB enabled NumPy arrays. The hooks will translate a
given function into its corresponding cphVB bytecode when
possible. When it is not possible, the hooks will feed the
function call back into NumPy and thereby forcing NumPy
to handle the function call itself.

The Bridge operates with two address spaces for arrays:
the cphVB space and the NumPy space. All arrays starts
in the NumPy space as a default. The original NumPy im-
plementation handles these arrays and all operations using
them. It is possible to assign an array to the cphVB space
explicitly by using an optional cphVB parameter in array
creation functions such as empty and random. The cphVB
bridge implementation handles these arrays and all operations
using them.

In two circumstances, it is possible for an array to transfer
from one address space to the other implicitly at runtime.

1. When an operation accesses an array
in the cphVB address space but it is not
possible for the bridge to translate the
operation into cphVB code. In this case,
the bridge will synchronize and move the
data to the NumPy address space. For ef-
ficiency no data is actually copied instead
the bridge uses the mremap† function to
re-map the relevant memory pages.

2. When an operations access arrays in
different address spaces the Bridge will
transfer the arrays in the NumPy space to
the cphVB space. Afterwards, the bridge
will translate the operation into bytecode
that cphVB can execute.

In order to detect direct access to arrays in the cphVB
address space by the user, the original NumPy implementation,
a Python library or any other external source, the bridge
protects the memory of arrays that are in the cphVB address
space using mprotect‡. Because of this memory protection,
subsequently accesses to the memory will trigger a segmen-
tation fault. The Bridge can then handle this kernel signal by
transferring the array to the NumPy address space and cancel
the segmentation fault. This technique makes it possible for the
Bridge to support all valid Python/NumPy application since it
can always fallback to the original NumPy implementation.

In order to gather greatest possible information at runtime,
the Bridge will collect a batch of instructions rather than
executing one instruction at a time. The Bridge will keep
recording instruction until either the application reaches the
end of the program or untranslatable NumPy operations forces
the Bridge to move an array to the NumPy address space.
When this happens, the Bridge will call the Vector Engine
Manager to execute all instructions recorded in the batch.

Vector Engine Manager

The Vector Engine Manager (VEM) in our setup is very simple
because it only has to handle one Vector Engine thus all
operations go to the same Vector Engine. Still, the VEM
creates and deletes arrays based on specification from the
Bridge and handles all meta-data associated with arrays.

Vector Engine

In order to maximize the CPU cache utilization and enables
parallel execution the first stage in the VE is to form a
set of instructions that enables data blocking. That is, a
set of instructions where all instructions can be applied on
one data block completely at a time without violating data
dependencies. This set of instructions will be referred to as a
kernel.

The VE will form the kernel based on the batch of in-
structions it receives from the VEM. The VE examines each
instruction sequentially and keep adding instruction to the
kernel until it reaches an instruction that is not blockable with
the rest of the kernel. In order to be blockable with the rest
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Processor Intel Core i5-2510M
Clock 2.3 GHz
Private L1 Data Cache 128 KB
Private L2 Data Cache 512 KB
Shared L3 Cache 3072 KB
Memory Bandwidth 21.3 GB/s
Memory 4GB DDR3-1333
Compiler GCC 4.6.3

TABLE 1: ASUS P31SD.

of the kernel an instruction must satisfy the following two
properties where A is all instructions in the kernel and N is
the new instruction.

1. The input arrays of N and the output array of A do
not share any data or represents precisely the same
data.

2. The output array of N and the input and output
arrays of A do not share any data or represents
precisely the same data.

When the VE has formed a kernel, it is ready for execution.
Since all instruction in a kernel supports data blocking the
VE can simply assign one block of data to each CPU-core in
the system and thus utilizing multiple CPU-cores. In order to
maximize the CPU cache utilization the VE may divide the
instructions into even more data blocks. The idea is to access
data in chunks that fits in the CPU cache. The user, through
an environment variable, manually configures the number of
data blocks the VE will use.

Performance Study

In order to demonstrate the performance of our initial cphVB
implementation and thereby the potential of the cphVB de-
sign, we will conduct some performance benchmarks using
NumPy§. We execute the benchmark applications on ASUS
P31SD with an Intel Core i5-2410M processor (Table 1).

The experiments used the three vector engines: simple, score
and mcore and for each execution we calculate the relative
speedup of cphVB compared to NumPy. We perform strong
scaling experiments, in which the problem size is constant
though all the executions. For each experiment, we find the
block size that results in best performance and we calculate
the result of each experiment using the average of three
executions.

The benchmark consists of the following Python/NumPy
applications. All are pure Python applications that make use
of NumPy and none uses any external libraries.

• Jacobi Solver An implementation of an
iterative jacobi solver with fixed iterations in-
stead of numerical convergence. (Fig. 3).

• kNN A naive implementation of a k Nearest
Neighbor search (Fig. 4).

†. The function mremap() in GNU C library 2.4 and greater.
‡. The function mprotect() in the POSIX.1-2001 standard.

• Shallow Water A simulation that simulates a
system governed by the shallow water equa-
tions. It is a translation of a MATLAB applica-
tion by Burkardt [Bur10] (Fig. 5).

• Synthetic Stencil A synthetic stencil simulation
the code relies heavily on the slicing operations
of NumPy. (Fig. 6).

Discussion

The jacobi solver shows an efficient utilization of data-
blocking to an extent competing with using multiple proces-
sors. The score engine achieves a 1.42x speedup in comparison
to NumPy (3.98sec to 2.8sec).

On the other hand, our naive implementation of the k
Nearest Neighbor search is not an embarrassingly parallel
problem. However, it has a time complexity of O(n2) when
the number of elements and the size of the query set is n, thus
the problem should be scalable. The result of our experiment
is also promising – with a performance speedup of of 3.57x
(5.40sec to 1.51sec) even with the two single-core engines and
a speed-up of nearly 6.8x (5.40sec to 0.79) with the multi-core
engine.

The Shallow Water simulation only has a time complexity
of O(n) thus it is the most memory intensive application in
our benchmark. Still, cphVB manages to achieve a perfor-
mance speedup of 1.52x (7.86sec to 5.17sec) due to memory-
allocation optimization and 2.98x (7.86sec to 2.63sec) using
the multi-core engine.

Finally, the synthetic stencil has an almost identical per-
formance pattern as the shallow water benchmark the score
engine does however give slightly better results than the simple
engine. Score achieves a speedup of 1.6x (6.60sec to 4.09sec)
and the mcore engine achieves a speedup of 3.04x (6.60sec
to 2.17sec).

It is promising to observe that even most basic vector engine
(simple) shows a speedup and in none of our benchmarks
a slowdown. This leads to the promising conclusion that
the memory optimizations implemented outweigh the cost of
using cphVB. Adding the potential of speedup due to data-
blocking motivates studying further optimizations in addition
to thread-level-parallelization. The mcore engine does provide
speedups, the speedup does however not scale with the number
of cores. This result is however expected as the benchmarks
are memory-intensive and the memory subsystem is therefore
the bottleneck and not the number of computational cores
available.

Future Work

The future goals of cphVB involves improvement in two
major areas; expanding support and improving performance.
Work has started on a CIL-bridge which will leverage the
use of cphVB to every CIL based programming language
which among others include: C#, F#, Visual C++ and VB.NET.
Another project in current progress within the area of support
is a C++ bridge providing a library-like interface to cphVB

§. NumPy version 1.6.1.
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Fig. 3: Relative speedup of the Jacobi Method. The job consists of
a vector with 7168x7168 elements using four iterations.
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Fig. 4: Relative speedup of the k Nearest Neighbor search. The job
consists of 10.000 elements and the query set also consists of 1K
elements.
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Fig. 5: Relative speedup of the Shallow Water Equation. The job
consists of 10.000 grid points that simulate 120 time steps.
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Fig. 6: Relative speedup of the synthetic stencil code. The job consists
of vector with 10240x1024 elements that simulate 10 time steps.

using operator overloading and templates to provide a high-
level interface in C++.

To improve both support and performance, work is in
progress on a vector engine targeting OpenCL compatible
hardware, mainly focusing on using GPU-resources to improve
performance. Additionally the support for program execution
using distributed memory is on progress. This functionality
will be added to cphVB in the form a vector engine manager.

In terms of pure performance enhancement, cphVB will
introduce JIT compilation in order to improve memory in-
tensive applications. The current vector engine for multi-cores
CPUs uses data blocking to improve cache utilization but as
our experiments show then the memory intensive applications
still suffer from the von Neumann bottleneck [Bac78]. By JIT
compile the instruction kernels, it is possible to improve cache
utilization drastically.

Conclusion

The vector oriented programming model used in cphVB
provides a framework for high-performance and high-
productivity. It enables the end-user to execute vectorized
applications on a broad range of hardware architectures ef-
ficiently without any hardware specific knowledge. Further-
more, the cphVB design supports scalable architectures such
as clusters and supercomputers. It is even possible to combine
architectures in order to exploit hybrid programming where
multiple levels of parallelism exist. The authors in [Kri11]
demonstrate that combining shared memory and distributed
memory parallelism through hybrid programming is essential
in order to utilize the Blue Gene/P architecture fully.

In a case study, we demonstrate the design of cphVB
by implementing a front-end for Python/NumPy that targets
multi-core CPUs in a shared memory environment. The imple-
mentation executes vectorized applications in parallel without
any user intervention. Thus showing that it is possible to
retain the high abstraction level of Python/NumPy while fully
utilizing the underlying hardware. Furthermore, the imple-
mentation demonstrates scalable performance – a k-nearest
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neighbor search purely written in Python/NumPy obtains a
speedup of more than five compared to a native execution.

Future work will further test the cphVB design model as
new front-end technologies and heterogeneous architectures
are supported.
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Abstract—A very simple, and outside NumPy, commonly used
trick of buffer-reuse is introduced to the NumPy library to speed
up the performance of scientific applications in Python/NumPy.
The implementation, which we name software victim-caching, is
very simple. The code itself consists of less than 100 lines of
code, and took less than one day to add to NumPy, though it
should be noted that the programmer was very familiar with
the inner workings of NumPy. The result is an improvement of
as much as 2.29 times speedup, on average 1.32 times speedup
across a benchmark suite of 15 applications, and at no time did
the modification perform worse than unmodified NumPy.

I. INTRODUCTION

Python/NumPy is gaining momentum in high performance
computing, often as a glue language between high performance
libraries, but increasingly also with all or parts of the func-
tionality written directly in Python/NumPy. Python/NumPy
represents an easy transition from Matlab prototypes, to
the extent where we observe scientists working directly in
Python/NumPy since their productivity is as high as in Matlab.
While Python/NumPy is still not as efficient as C++ or Fortran,
which are the more common HPC languages, the productivity
of the higher-level language often becomes the choice of the
programmer. As a rule of thumb, we expect Python/NumPy
to be approximately four to five times slower than C, and the
balance in choosing a programming language is thus often
a balance between faster programming or faster execution
and is stands to reason that, as Python/NumPy solutions
close the performance gap to compiled languages, the higher
productivity language will gain further traction. In our work
to improve the performance of NumPy[1] we came across a
behavior which we initially attributed to our work on cache
optimizations, turned out to be the effects of a far simpler
scheme where by temporary array allocations in NumPy are
more efficiently reused.

The amount of memory that is reserved for buffer-space is
naturally defined by the user through a standard environment
variable. In this work, we experiment with three fixed buffer-
sizes 100, 512 and 1024 mega bytes. Programmers can exper-
iment with different buffer-sizes, however, very large buffers
rarely make an impact.

The resulting changes to NumPy, less than 100 lines in
total, counted using SLOCCount[2], provides advantages over
conventional NumPy from none, but never worse, to 2.29 times
speedup. Our suite of 15 benchmarks has an average speedup
of 1.32, and thus, with no requirement to the application
programmer closes the gap to compiled languages a little
further.

The rest of this paper is comprised as follows; related work
since this is not a new idea outside Python, a section on the
implementation details, then the benchmarks are introduced
and results are presented.

II. RELATED WORK

In computer architecture, a victim-cache is a small fully-
associative cache where any evicted cache-line is stored and
thus granted an extra chance for remaining in the cache, before
being finally evicted[3]. At the CPU level victim-caching is
particularly efficient at masking cache-line tag conflicts. Since
NumPy does not have any cache, the victim cache may appear
unrelated, but the idea of a fully associative cache that holds
buffers a little while until they are fully evicted, is very similar.

In functional languages a similar buffer reuse scheme, copy
collections, is found efficient in [4]. In this work, the buffer
is very large, and numerous techniques for buffer location and
replacement are considered; most of this is similar to page
replacement algorithms at the operating system level.

Keeping control of buffers in relational databases is fairly
closely related to maintain NumPy buffers, since relational
databases also have a high locality of similar sized buffers[5]
but dissimilar to NumPy, the space available for buffers is very
high, and a more advanced replacement algorithm is needed
since databases are multiuser systems, and the buffer patterns
is thus less simple than what we can observe in NumPy.

Even though the victim cache technique itself is not related
to garbage collection, the idea of memory reuse is very similar.
Within a runtime with managed garbage collection, memory al-
locations are pooled to avoid repeated requests to the operating
system[6]. While this is useful for repeated small allocations,
most implementations assume that large allocations will stay
in memory.

III. SOFTWARE VICTIM-CACHING

We have dubbed the adopted technique software victim-
caching, since the basic functionality is very similar to victim-
caching as it is known in computer architecture. The idea is
very simple; when NumPy releases an array we do not release
the memory immediately, but keep the buffer in a victim-cache,
when NumPy issues a new array allocation we first do a lookup
in the victim-cache, and if a matching array is found, it is
returned rather than a new array allocation.

Different matching and eviction algorithms have been ex-
perimented with, see section III-C for further details. Note that
only full allocations are returned from the victim-cache, we do



not try to use partial arrays or merge arrays to find a match,
or in any other way attempt conventional heap management.

The logic behind this very naÃ¯ve approach is fairly simple
as well; scientific applications are most often comprised of
dense loops any temporary array allocation is due to this very
likely to be observed again very soon after being released. In
addition, the temporary arrays that are allocated for different
operations on the same user defined array are likely to be of
identical dimensions as well.

A. Temporary Arrays

Temporary arrays are instantiated by NumPy whenever
an intermediate result is needed. The general case is; an
expression consisting of more than a single operator and
thereby creating a complex expression. As an example, assume
we wish to calculate the distance from (0, 0) for a set of (X,Y )
coordinates in NumPy we write:

distance = numpy.sqrt(X**2 + Y**2)

This operation will create three temporary arrays, plus a
non temporary which is returned to distance, the X2, Y 2, and
+ operations will each allocate a temporary array which is
discarded after the line is executed, the square root operation
also allocates an array, which is returned to the distance array.
In this case, the first two temporary arrays are released once
the fourth allocation is called, and one of the first two could
be used since they match the allocation perfectly.

B. Implementation

The implementation is interface-compatible with malloc.
This allows for a very low-intrusion integration by only
changing 10 lines of code in the NumPy codebase. The imple-
mentation of the victim cache itself, including all matching and
eviction strategies mention in section III-C, is a total of 237
lines of code, where the simple version with only one strategy
is 81 lines. Figure 1 illustrates the data-structures, which are
maintained.

line = 4 
bytes_used = 100663296 
bytes_max  = 536870912 

line bytes pointer 

0 10485760 0xe3a3 

1 5242880 0xa2d3 

2 71303168 0x3133 

3 13631488 0x42a3 

4 0 0x0 

5 0 0x0 

6 0 0x0 

Victim Cache 

Fig. 1: Illustration of the victim-cache data-structures for a victim-cache with
seven cache-lines, a maximum size of 512MB and currently populated with
four entries consuming 96MB.

The simplest implementation maintains the currently con-
sumed bytes used of the victim-cache, the bytes max max-
imum number of bytes allowed for consumption, and the
currently used line in the victim-cache. The following section
describes different strategies of using the victim-cache. The

implementation is available as a github-fork1 of NumPy 1.7
on the branches victim cache and victim cache clean. The
branch victim cache contains the implementation featuring the
multiple algorithms which are described in the following sec-
tion. The branch victim cache clean contains the cleaned up,
less than 100 source-lines of code, implementation featuring
a single strategy and the possibility of enabling/disabling the
victim cache via environment-options.

C. Algorithms

Buffer management algorithms are a well researched
area[7]. However, for many scenarios a simple solution is as
good, or better, than advanced adaptive algorithms. For that
reason, we limit the experiments in this work to six well-
known algorithms. Three for matching buffers to requirements
and three for selecting a buffer to eliminate when the allocated
buffer space is saturated.

For matching buffers, we use three very simple algorithms,
Exact, First, and Best. Exact will only return a fit if the
requested buffer-size is exactly the same size as the buffer in
the victim cache. First will return the first of the tested buffers
large enough to hold the requested buffer. Best will search all
buffers in the victim-cache and return the buffer that is as large
as the requested size, and with as little extra space as possible.
If an exact match is found, it is returned immediately.

If the maximum allowed buffer size would be exceeded
by adding an allocation, an existing buffer in the cache must
be evicted. Choosing one can also be done in many ways
including Round-Robin, Second-Chance, and Random. Round-
Robin will evict buffers from the victim-cache in the order
they are added. If a buffer is selected for reuse, it will be
added to the end once it is released again. It could also be
described as evicting the oldest cache-line first. Second-chance
is well known from demand-paging in operating systems and
is aptly named. If a buffer is next to be evicted it will be
marked at ready-to-evict, but the algorithm will in-fact move
on in the list, only if a buffer is revisited, i.e. when a buffer
is marked as ready and is next to be evicted, will it actually
be selected for eviction. The worst case scenario is that all
buffers must be visited once before one can be chosen for
eviction, but in reality is will be more like round-robin, but
with a second chance for some buffers. Random selection
is extremely simple; a random buffer in the list is selected
for eviction, while this may appear as a strange choice this
approach has the advantage that it will not fall into a pattern
where the same set of buffers are continuously evicted.

As the applications that NumPy is commonly used for, are
highly regular in their execution pattern, we expect the simplest
algorithms to perform very well, i.e. Exact-fit for matching and
round-robin for eviction. If this is the case, there is no reason
to keep the more advanced algorithms in a final version and
the codebase can be kept very small indeed.

IV. COMPARISON

To evaluate the performance of the victim-cache, we have
chosen 15 different benchmarks, that use a broad range of
NumPy functionality. We have chosen some benchmarks that

1http://github.com/cphhpc/numpy/



operate on one-dimensional arrays and perform typical Monte
Carlo simulations. For two-dimensional benchmarks, we use
a selection of classic physics based computational kernels, for
higher dimensions, we use a 3D Lattice-Boltzmann simulation
and an n-body simulation. To show that the approach is also
valid in other scenarios, we also use naı̈ve implementations of
FFT, LU, and matrix multiplication. The source-code for the
benchmarks are available for closer inspection in the github-
fork 2 on the victim cache branch in the benchmark/Python/
folder.

A. One-dimensional benchmarks

For testing with one-dimensional applications, we have
chosen three different Monte Carlo based implementations.
The simplest version is the original Monte Carlo Pi simulation
that derives the value of π through a series of simulated dart
throws. The other two benchmarks are taken from financial
analysis domain and attempt to price a set of stock options,
using the Black-Scholes model for European pricing and swap-
tions in the LIBOR market model, respectively. The Monte
Carlo Pi simulation generates only a few temporary arrays
in each iteration, whereas the Black-Scholes implementation
generates as much as 67 temporary arrays in an iteration.
The number of temporary arrays generated by the Swaption
implementation varies with the input data and the amount of
elements in each temporary array is relatively small.

B. Two-dimensional benchmarks

For two-dimensional applications we have chosen a com-
mon Jacobi five-point stencil application, a successive over
relaxation (SOR), a shallow water simulation, a WireWorld
simulation, a Lattice-Boltzmann simulation and a cloth physics
simulation. The Jacobi stencil is chosen for its simplicity,
where the others are chosen because they are larger appli-
cations, which would be hard to optimize by hand. The SOR
simulation essentially does the same as the Jacobi stencil, but
implemented with a red/black update scheme, and includes
a global delta calculation. The Lattice-Boltzmann, shallow
water, and cloth simulations all simulate movement in a two-
dimensional space with different models for force propagation.
The Jacobi stencil code is fairly compact but still generates 9
temporary arrays in each iteration. The other benchmarks gen-
erate a larger number of temporary arrays that are candidates
for optimization from the victim cache.

C. Higher-dimensional benchmarks

To show the effects of the victim-cache with problems
that have multiple dimensions, we have chosen a some classic
computational kernels, namely a naı̈ve n-body simulation, a k-
nearest-neighbor search, and a Lattice-Boltzmann simulation in
3D space. The k-nearest-neighbors search has a low amount
of temporary arrays, and the n-body simulation and Lattice-
Boltzmann simulations have a moderate amount of temporary
arrays.

2http://github.com/cphhpc/numpy/

Benchmark Problemsize Iterations
Black Scholes 8 · 106 5
Bolzmann 3D 120× 100× 100 5
Bolzmann D2Q9 800× 800 5
Cloth 3000× 3000 1
FFT 18 N/A
Jacobi Stencil 10000× 4000× 10 10
KNN 2 · 106 × 10 3
LU Factor. 500× 500 N/A
Matrix Mul 800 N/A
Monte Carlo PI 2 · 107 10
NBody 3000× 1 1
Shallow Water 3000× 3000 5
SOR 4000× 4000 5
Swaption 1000 N/A
Wire World 5000× 5000 5

TABLE I: Overview of benchmarks and problem sizes.

D. Kernel benchmarks

To broaden the experiment we have chosen a set of kernels
that are traditionally implemented in external libraries and
implemented them in NumPy. The kernels comprise naı̈ve
versions of matrix multiplication, LU factorization, and Fast
Fourier Transformation (FFT). The FFT kernel generates a low
amount of temporary arrays. The where the matrix multipli-
cation and LU kernels generate a large amount of temporary
arrays, where the arrays generated by the LU kernel are small,
and the ones generated by the matrix multiplication are large.

Table I provides the full list of benchmarks along with the
parameters for their execution.

E. Results

As the victim cache mitigates the work related to allocating
array memory from the operating system, there is a clear
relation between the number of temporary arrays and the
gained speedup. Figure 2 shows the speedups obtained from
running the same NumPy code with three different sizes of the
victim cache. Each benchmark has been set up with parameters
that cause the benchmarks to run around 10 seconds with no
victim cache. Each benchmark is then executed with the same
input data, and varying sizes of the victim cache and the wall-
clock times are used to compute the speedup. All benchmarks
are executed on a AMD Opteron 6272 CPU with 128 GB
of memory, running with Ubuntu 12.04.2 LTS. The execution
times were stable with a maximum wall-clock time deviation
of 0.08 seconds.

We can see that some experiments gain no speedup at
all, but none of the experiments show any slow down from
the victim cache. For our problem sizes, a moderate size
victim cache of 512 MB is sufficient to gain the maximum
performance speed up, except for the Jacobi example, which
shows a large speedup when utilizing 1GB of victim cache
memory.

The SOR, shallow water, and Jacobi benchmarks show as
much as 2.3 times speedup from using the victim cache, which
we consider a significant result. The following section provides
further analysis of the results.

F. Analysis

The results are quite convincing, while a few benchmarks
do not show any improvement in performance most do, and



Bl
ac

k 
Sc

ho
le

s

Bo
lz

m
an

n 
3D

Bo
lz

m
an

n 
D2

Q9

Cl
ot

h

FF
T

Ja
co

bi
 S

te
nc

il

KN
N

LU
 F

ac
to

r.

M
at

rix
 M

ul

M
on

te
 C

ar
lo

 P
I

NB
od

y

SO
R

Sh
al

lo
w

 W
at

er

Sw
ap

tio
n

W
ire

 W
or

ld

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Sp
ee

du
p 

in
 re

la
tio

n 
to

 P
yt

ho
n/

Nu
m

Py

VCache_100M VCache_512M VCache_1G

Fig. 2: Speedup of victim-cache in relation to unmodified Python/NumPy of
the 15 benchmark applications.

no less than four show a performance increase of more than
50%, two of more then 100%. At a first glance, it is hard to
see why a simple victim-cache can improve performance that
much. The explanation can be found in the way glibc under
Linux handles memory allocations. Any allocation to an area
that is larger than 128KB3, is allocated using mmap rather than
sbrk[8]. The consequence is that memory that is allocated with
mmap, will be released to the operating system, when free
is called. This means that the memory is actually returned to
Linux as opposed to memory that is allocated with sbrk, which
is kept for reuse by glibc. The consequence of this is that the
many, large, temporary array allocations in NumPy are moved
back and forth between user space and kernel space. The actual
call to the operating system represents an overhead in itself,
but the majority of the time is spent zeroing the memory to
stop information from leaking between processes. Thus the big
advantage of the victim cache model it that we save a write
to the temporary memory, which in effect doubles the cost of
simple array operations.

To verify that the above description is in fact the reason
for the observed performance improvements, the benchmarks
were repeated using the time tool in order measure time spend
in user-level and kernel-level respectively. Figure 3 show the
time spent in kernel-level for each benchmark, for standard
NumPy (Native), and the victim-cache implementation for
three different cache sizes. In this figure, lower means less
time spent in system.

There is an obvious correlation between the benchmark
where we observed improvement in the overall runtime, and
the drop in time spent in kernel-level. Moreover, going from
512MB to 1GB of victim-cache only shows a significant
impact in the Jacobi Stencil benchmark where time spent
in kernel-level is reduced by more than half. A manual
experiment to increase the victim-cache to 2GB showed no
further improvement in runtime.

3by default but may be changed by the user
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Fig. 4: Comparison of fitting strategies.

We go on experimenting with the three different matching
algorithms, best-fit, first-fit, and exact-fit. Best-fit requires an
inspection of each element of the cache for each victim-cache
lookup, the consequence of which is clearly shown in figure
4. The difference between first-fit and exact-fit is marginal and
varies across the benchmark suite.

Figure 5 illustrates the results of experiments with different
eviction strategies. The random eviction-scheme, which is
known to work well for page-replacement in the operating
system, clearly does not apply for the victim-cache. This
result was expected since most benchmarks demonstrate a
high degree of regularity. Second change and oldest first are
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Fig. 5: Comparison of eviction strategies.

indistinguishable.

Given the interface compatibility and the previous descrip-
tion of malloc, a valid question is: ”why not just parameterize
malloc correctly?”. Because the zeroing memory only affects
allocations above MMAP_THRESHOLD bytes, one could con-
sider simply increasing MMAP_THRESHOLD. However, glibc
malloc does not allow for MMAP_THRESHOLD to go beyond
MMAP_THRESHOLD_MAX, which on 64-bit systems is only
4MB. Changing the maximum value would require recompil-
ing glibc and is thus a fairly intrusive procedure. A more
drastic approach would be to re-compile the Linux kernel
with __GFP_ZERO defined to zero, which would completely
eliminate the zeroing of pages across the operating system.

V. FUTURE WORK

The solution itself is quite simple, but the implementa-
tion may be subjected to further refinements. In the current
implementation, a rather simple list-based lookup search is
performed, yield a runtime complexity of O(n) over the
number of entries. Many better strategies exist, such as tree-
based lookups that can reduce this overhead.

The results presented in this article show that there is
indeed an overhead involved in the generation of temporary
arrays and that a victim cache can reduce the overhead by using
some extra memory. However, a more thorough approach is to
avoid creating the temporary arrays completely.

However, unlike the victim cache, such a change requires
changes in many places within the NumPy libraries. We are
actively investigating this approach as part of the Bohrium
runtime system[1].

We have produced a cleaned up version of the changes,
which only supports exact matching and round-robin eviction.
This cleaned up version is reduced to 81 lines of C-code,
combined with the ten lines in the NumPy multiarraymodule
brings the total lines of code in the victim-cache implementa-

tion up to 91. We plan to submit this patch to NumPy upstream
developers so NumPy user can reap the benefits discovered.

VI. CONCLUSION

We have implemented a very simple and non-intrusive
victim-cache in NumPy, and evaluated the effects on a variety
of different benchmarks. The experiments clearly show that the
victim-cache is able to reduce much of the overhead that occurs
when NumPy allocates memory from the operating system.
In no case did see an actual slowdown. Generally we see an
average improvement of 32% accross the benchmark suite, if
we cherry-pick only the benchmarks where we see an improve-
ment the average speedup is 52%. The best observed speedup
is 230% of the Jacobi Stencil benchmark. A victim-cache of
512MB was sufficient to harvest all the gains of victim-caching
in all benchmarks except one, the Jacobi Stencil.

We experimented with three different matching strategies,
and three different eviction strategies, however the high degree
of regularity in the benchmark suite meant that the simplest
algorithms exact-fit and oldest-eviction first performed as good
as or better than the more advanced strategies.

Overall we conclude that the victim-cache is a nearly cost-
free optimization, that potentially benefits more than half of
all NumPy applications, without any requirements towards
to programmer. The implementation comprises ten lines of
changes to the NumPy multiarraymodule and 81 lines for the
victim-cache itself, in total 91 lines of code.
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Abstract. High-level languages such as Python offer convenient lan-
guage constructs and abstractions for readability and productivity. Such
features and Python’s ability to serve as a steering language as well as
a self-contained language for scientific computations has made Python
a viable choice for high-performance computing. However, the Python
interpreter’s reliance on shared objects and dynamic loading causes scal-
ability issues that at large-scale consumes hours of wall-clock time just
for loading the interpreter.
The work in this paper explores an approach to bypass the conventional
software stack, by replacing the Python interpreter on compute nodes
with an adaptable runtime system capable of executing the compute in-
tensive portions of a Python program. Allowing for a single instance of
the Python interpreter, interpreting the users’ program and additionally
moving program interpretation off the compute nodes. Thereby avoiding
the scalability issue of the interpreter as well as providing a means of run-
ning Python programs on restrictive compute notes which are otherwise
unable to run Python.
The approach is experimentally evaluated through a prototype imple-
mentation of an extension to the Bohrium runtime system. The evalua-
tion shows promising results as well as identifying issues for future work
to address.

Keywords: Scalability, Python, import problem, dynamic loading

1 Introduction

Python is a high-level, general-purpose, interpreted language. Python advo-
cates high-level abstractions and convenient language constructs for readabil-
ity and productivity. The reference implementation of the Python interpreter,
CPython, provides rich means for extending Python with modules implemented
in lower-level languages such as C and C++. Lower-level implementations can be
written from scratch and conveniently map to Python data-structures through
Cython[4], function wrappers to existing libraries through SWIG[3, 2], or using
the Python ctypes1 interface.

1 http://docs.python.org/2/library/ctypes.html



The features of the language itself and its extensibility make it attractive
as a steering language for scientific computing, which the existence of Python
at high-performance compute sites confirms. Furthermore, there exists a broad
range of Python wrappers to existing scientific libraries and solvers[11, 20, 13, 8,
9].

Python transcends its utilization as a steering language. SciPy2 and its ac-
companying software stack[17, 18, 12] provides a powerful environment for devel-
oping scientific applications. The fundamental building block of SciPy is the mul-
tidimensional arrays provided by NumPy[17]. NumPy expands Python by pro-
viding a means of doing array-oriented programming using array-notation with
slicing and whole-array operations. The array-abstractions offered by NumPy
provides the basis for a wealth of existing[6] and emerging[19, 21, 14] approaches
that increases the applicability of Python in an HPC environment. Even though
advances are made within these areas, a problem commonly referred to as the the
import problem[1, 15, 22] still persists at large-scale compute sites. The problem
evolves around dynamic loading of CPython itself, built-in modules, and third
party modules. Recent numbers reported on Hopper[22] state linear scale with
the number of cores, which amount to a startup time of 400 seconds on 1024
cores and one hour for 8000 cores.

The approach in this paper explores a simple idea to avoid such expensive
startup costs: execute one instance of the Python interpreter regardless of the
cluster size. Furthermore, we allow the Python interpreter to run on an external
machine that might not be part of the cluster. The machine can be any one of;
the user’s own laptop/workstation, a frontend/compile node, or a compute node,
e.g. any machine that is accessible from the compute-site.

A positive complementary effect, as well as a goal in itself, is that the Python
interpreter and the associated software stack need not be available on the com-
pute nodes.

The work in this paper experimentally evaluates the feasibility of bypass-
ing the conventional software stack, by replacing the Python interpreter on the
compute nodes with an adaptable runtime system capable of executing the com-
putationally heavy part of the users’ program. The approach facilitates the use of
Python at restrictive compute-sites and thereby broadens application of Python
in HPC.

2 Related Work

The work within this paper describes, to the authors knowledge, a novel approach
for handling the Python import problem. This section describes other approaches
to meeting the same end.

Python itself support a means for doing a user-level override of the import
mechanism3 and work from within the Python community has improved upon

2 http://www.scipy.org/stackspec.html
3 http://legacy.python.org/dev/peps/pep-0302/



the import system from version 2.6 to 2.7 and 3.0. In spite of these efforts, the
problem persists.

One aspect of the import problem is the excessive stress on the IO-system
caused by the object-loader traversing the filesystem looking for Python modules.
Path caching through collective operations is one approach to lowering overhead.
The mpi4py[7] project implements multiple techniques to path caching where a
single node traverses the file-system and broadcasts the information to the re-
maining N−1 nodes. The results of this approach show significant improvements
to startup times from hours to minutes but relies on the mpi4py library and re-
quires maintenance of the Python software-stack on the compute-nodes.

Scalable Python4, first described in[9], addresses the problem at a lower level.
Scalable Python, a modification of CPython, seeks to address the import problem
by implementing a parallel IO layer utilized by all Python import statements. By
doing so only a single process, in contrast to N processes, perform IO. The result
of the IO operation is broadcast to the remaining N − 1 nodes via MPI. The
results reported in[9] show significant improvements towards the time consumed
by Python import statements at the expense of maintaining a custom CPython
implementation.

Relying on dynamically loaded shared objects is a general challenge for large-
scale compute-sites with a shared filesystem. SPINDLE[10] provides a generic
approach to the problem through an extension to the GNU Loader.

The above described approaches apply different techniques for improving
performance of dynamic loading. A different strategy which in this respect is
thematically closer to the work within this paper is to reduce the use of dynamic
loading. The work in[15] investigate such strategy by replacing as much dynamic
loading with statically compiled libraries. Such technique in a Python context
can by applied through the use of Python freeze5 and additional tools6 exists to
support it.

3 The Approach

The previous sections describe and identify the CPython import system as the
culprit guilty of limiting the use of Python / NumPy at large-scale compute
sites. Dynamic loading and excessive path searching are accomplices to the havoc
raised. The crime committed is labelled as the Python import problem.

Related work let the culprit run free and implement techniques to handling
the havoc raised. The work within this paper focuses on restricting the culprit
and thereby preventively avoiding the problem.

The idea is to run a single instance of the Python interpreter, thereby keep-
ing the overhead constant and manageable. The remaining instances of the in-
terpreter are replaced with a runtime system capable of efficiently executing the
portion of the Python / NumPy program responsible for communication and

4 https://gitorious.org/scalable-python
5 https://wiki.python.org/moin/Freeze
6 https://github.com/bfroehle/slither



computation. Leaving the task of interpreting the Python / NumPy program,
conditionals, and general program flow up to the interpreter. The computation-
ally heavy parts are delegated to execution on the compute nodes through the
runtime system.

3.1 Runtime System

Fig. 1. Illustration of communication be-
tween the runtime system components with-
out the use of the proxy component.

The runtime used in this work is
part of the Bohrium[19] project7. The
Bohrium runtime system (BRS) pro-
vides a backend for mapping array
operations onto a number of differ-
ent hardware targets, from multi-core
systems to clusters and GPU enabled
systems. It is implemented as a virtual
machine capable of making runtime
decisions instead of a statically com-
piled library. Any programming lan-
guage can use BRS in principle; in this
paper though, we will use the Python
/ NumPy support exclusively.

The fundamental building block of BRS is the representation of programs in
the form of vector bytecode. A vector bytecode is a representation of an operation
acting upon an array. This can be one of the standard built-in operations such as
element-wise addition of arrays, function promotion of trigonometric functions
over all elements of an array, or in functional terms: map, zip, scan and reduction,
or an operation defined by third party.

BRS is implemented using a layered architecture featuring a set of inter-
changeable components. Three different types of components exist: filters, man-
agers, and engines. Figure 1 illustrates a configuration of the runtime system
configured for execution in a cluster of homogenous nodes. The arrows represent
vector bytecode sent through the runtime system in a top-down fashion, possibly
altering it on its way.

Each component exposes the same C-interface for initialization, shutdown,
and execution thus basic component interaction consists of regular function calls.
The component interface ensures isolation between the language bridge that runs
the CPython interpreter and the rest of Bohrium. Thus, BRS only runs a single
instance of the CPython interpreter no matter the underlying architecture –
distributed or otherwise.

Above the runtime, a language bridge is responsible for mapping language
constructs to vector bytecode and passing it to the runtime system via the C-
interface.

Managers manage a specific memory address space within the runtime sys-
tem and decide where to execute the vector bytecode. In figure 1 a node man-

7 http://www.bh107.org



ager manages the local address space (one compute-node) and a cluster-manager
which handles data distribution and inter-node communication through MPI. At
the bottom of the runtime system, we have the execution engines, which are re-
sponsible for providing efficient mapping of array operations down to a specific
processing unit such as a CPU or a GPU.

3.2 Proxy Manager

Currently, all Bohrium components communicate using local function calls, which
translates into shared memory communication. Figure 1 illustrates the means of
communication within the BRS prior to the addition of the proxy component. As
a result, the language bridge, which runs a CPython interpreter, must execute
on one of the cluster-nodes. In order to circumvent this problem, we introduce
a new proxy component.

Fig. 2. Illustration of communication between the run-
time system components with the use of the proxy com-
ponent.

This new component
acts as a network proxy
that enables Bohrium com-
ponents to exchange vec-
tor bytecode across a net-
work. Figure 2 illustrates
the means for communi-
cation which the Proxy
component provides. By
using this functionality,
separation can be achieved
between the implementation of any application using Bohrium and the actual
hardware on which it runs. This is an important property when considering
cases of supercomputers or clusters, which define specific characteristics for the
execution of tasks on them.

The proxy component is composed of two parts – a server and a client.
The server exposes the component interface (init, execute, and shutdown) to its
parent component in the hierarchy whereas the client uses its child component
interface. When the parent component calls execute with a list of vector byte-
codes, the server serialize and sends the vector bytecodes to the client, which
in turn uses its child component interface to push the vector bytecodes further
down the Bohrium hierarchy. Besides the serialized list of vector bytecodes, the
proxy component needs to communicate array-data in two cases.

When the CPython interpreter introduces existing NumPy arrays and Python
scalars to a Bohrium execution. Typically, this happens when the user applica-
tion loads arrays and scalars initially. When the CPython interpreter access the
result of a Bohrium execution directly. Typically, this happens when the user
application evaluates a loop-condition based on some array and scalar data.

Both the server and the client maintain a record of array-data locations thus
avoiding unnecessary array-data transfers. Only when the array-data is involved
in a calculation at the client-side will the server send the array-data. Similarly,



only when the CPython interpreter request the array-data will the client send
the array-data to the server.

In practice, when the client sends array-data to the server it is because the
CPython interpreter needs to evaluate a scalar value before continuing. In this
case, the performance is very latency sensitive since the CPython interpreter is
blocking on the scalar value. Therefore, it is crucial to disable Nagle’s TCP/IP
algorithm[16] in order achieve good performance. Additionally, the size of the
vector bytecode lists is significantly greater than the TCP packet header thus
limiting the possible advantage of Nagle’s TCP/IP algorithm. Therefore, when
the proxy component initiates the TCP connection between server and client it
sets the TCP NODELAY socket option.

4 Evaluation

Fig. 3. Octuplets and DCSC two physi-
cally and administratively disjoint clusters
of eight and sixteen nodes. Octuplets is a
small-scale research-cluster managed by the
eScience group at the Niels Bohr Institute.
DCSC is a larger compute-site for scien-
tific computation in Denmark. Gbit ether-
net facilitate the connection between Man-
jula and the octuplet cluster and 100Mbit
ethernet between Manjula and DCSC.

The basic idea of the approach is to
have a single instance of CPython in-
terpreting the user’s program, such as
figure 2 illustrates. With a single iso-
lated instance of the interpreter the
import problem is solved by design.
The second goal of the approach is
to facilitate execution of a Python
program in a restricted environment
where the Python software stack is
not available on the compute nodes.

The potential Achilles heel of the
approach is in its singularity, with
a single remote instance of the in-
terpreter network latency and band-
width limitations potentially limit ap-
plication of the approach.

Network latency can stall execu-
tion of programs when the round-trip-time of transmitting vector bytecode from
the interpreter-machine to the compute node exceeds the time spent computing
on previously received vector bytecode. Bandwidth becomes a limiting factor
when the interpreted program needs large amounts of data for evaluation to
proceed interpretation and transmission of vector bytecode. The listing below
contains descriptions of the applications used as well as their need for commu-
nication between interpreter and runtime. The sourcecode is available for closer
inspection in the Bohrium repository8.

Black Scholes implements a financial pricing model using a partial differen-
tial equation, calculating price variations over time[5]. At each time-step

8 http://bitbucket.org/bohrium/bohrium



the interpreter reads out a scalar value from the runtime representing the
computed price at that time.

Heat Equation simulates the heat transfer on a surface represented by a two-
dimensional grid, implemented using jacobi-iteration with numerical con-
vergence. The interpreter requires a scalar value from the runtime at each
time-step to evaluate whether or not simulation should continue. Addition-
ally when executed with visualization the entire grid is required.

N-Body simulates interaction of bodies according to the laws of Newtonian
physics. We use a straightforward algorithm that computes all body-body
interactions, O(n2), with collisions detection. The interpreter only needs data
from the runtime at the end of the simulation to retrieve the final position of
the bodies. However, the interpreter will at each time-step, when executed
for visualization purposes, request coordinates of the bodies.

Shallow Water simulates a system governed by the Shallow Water equations.
The simulation initates by placing a drop of water in a still container. The
simulation then proceeds, in discrete time-steps, simulating the water move-
ment. The implementation is a port of the MATLAB application by Burkardt
9. The interpreter needs no data from the runtime to progress the simulation
at each time-step. However, the interpreter will at each time-step, when ex-
ecuted for visualization purposes, request the current state of the simulated
water.

We benchmark the above applications on two Linux-based clusters (Fig. 3).
The following subsections describe the experiments performed and report the
performance numbers.

4.1 Proxy Overhead

Fig. 4. Elapsed wall-clock time in seconds
of the four applications on the octuplet
compute nodes with and without the proxy
component.

We begin with figure 4 which show the
results of running the four benchmark
applications on the octuplet cluster
using eight compute nodes and two
different configurations:

With Proxy The BRS configured
with the proxy component and the in-
terpreter is running on Manjula. This
configuration is equivalent to the one
illustrated in figure 2.

Without Proxy The BRS config-
ured without the proxy component.
The interpreter is running on the
first of the eight compute nodes. This
setup is equivalent to the one illus-
trated in figure 1.

9 http://people.sc.fsu.edu/~jburkardt/m_src/shallow_water_2d/



We cannot run Python on the DCSC cluster for the simple reason that the
software stack is too old to compile Python 2.6 on the DCSC compute nodes.
Thus, it is not possible to provide comparable results of running with and without
the Proxy component.

The purpose of this experiment is to evaluate the overhead of introducing
the proxy component in a well-behaved environment. There were no other users
of the network, filesystem, or machines. Round-trip-time between Manjula and
the first compute node was average at 0.07ms during the experiment. The error
bars show two standard deviations from the mean. The overhead of adding the
proxy component is within the margin of error and thereby unmeasurable.

4.2 Latency Sensitivity

Fig. 5. Slowdown of the four applications
as a function of injected latency between
Manjula and octuplet compute node.

Fig. 6. Slowdown of the four applications
as a function of injected latency between
Manjula and DCSC compute node.

We continue with figures 5 and 6. The BRS configured with the proxy com-
ponent, running the interpreter on Manjula. Figure 2 illustrates the setup. The
purpose of the experiment is to evaluate the approach’ sensitivity to network
latency. Latencies of 50, 100, 150, and 200ms are injected between Manjula and
the compute node running the proxy client. The figures show slowdown of the
applications as a function of the injected latency.

The applications Shallow Water and N-body are nearly unmeasurably af-
fected by the injected latency. The observed behavior is as expected since the
interpreter does not need any data to progress interpretation. It is thereby pos-
sible to overlap transmission of vector bytecode from the interpreter-machine
with computation on the compute nodes.

The injected latency does, however, affect the applications Heat Equation
and Black Scholes. The observed behavior is as expected since the interpreter
requires a scalar value for determining convergence criteria for Heat Equation
and sampling the pricing value for Black Scholes. Network latency affects the
results from the DCSC cluster the most, with a worst-case of a 2.8 slowdown.
This is due to the elapsed time being lower when using the sixteen DCSC com-
pute nodes. Since less time is spent computing more time is spent waiting and
thereby a relatively larger sensitivity to network latency.



4.3 Bandwidth Sensitivity

Fig. 7. Elapsed wall-clock time of the four
applications with and without visualiza-
tion on the octuplet compute nodes.

Fig. 8. Elapsed wall-clock time of the four
applications with and without visualiza-
tion on the DCSC compute nodes.

The last experiment sought to evaluate the sensitivity to high network band-
width utilization. Figures 7 and 8 show the results of an experiment where the
four applications were running with visualization updated at each time-step.
The BRS configured with the proxy component; Manjula is running the Python
interpreter. Figure 2 illustrates the setup.

When executing with visualization, the interpreter requires a varying ( de-
pending on the application) amount of data to be transmitted from the compute
nodes to the interpreter-machine at each time step. Thereby straining the avail-
able bandwidth between the interpreter-machine and the compute node running
the proxy-client.

Black-Scholes although sensitive to latency due to the need of transmitting
the computed price at each time-step, does not require any significant amount
of data to be transferred for visualization, neither does the N-Body simulation.
However, the two other applications Heat Equation and Shallow Water require
transmission of the entire state to visualize dissipation of heat on the plane and
the current movement of water. These two applications are sufficient to observe
a key concern of the approach.

We observe a slowdown of about ×1260 (Heat Equation) and ×257 (Shallow
Water) when running on the DCSC nodes. We observe a slowdown of about
×32.8 (Heat Equation) and ×8.5 (Shallow Water) when running in the octuplet
nodes. These results clearly show that network bandwidth becomes a bottleneck,
with disastrous consequences in terms of execution time and thus a limiting
factor for applying the approach for such use.

The slowdown is much worse when running on the DCSC compute nodes
compare to the slowdown on the octuplet nodes. This is due to the interconnect
being 100Mbit ethernet to the DCSC in relation to the 1Gbit ethernet connection
to the octuplet nodes.



5 Future Work

The evaluation revealed bandwidth bottlenecks when the machine running the
interpreter requests data for purposes such as visualization. The setup in the
evaluation was synthetic and forced requests of the entire data-set at each time-
step without any transformation of the data, it can, therefore, be regarded as a
worst-case scenario.

One could argue that the setup is not representative for user behaviour
and instead assume that the user would only need a snapshot of data at every
timestep/K iteration and with lowered resolution such as every I’th datapoint
and thus drastically lowering the bottleneck. However, to address the issue future
work will involve compressed encoding of data transmitted as well as suitable
downsampling for the visualization purpose.

The primary focus point for future work is now in progress and relates to the
effective throughput at each compute-node. The current implementation of the
execution engine uses a virtual-machine approach for executing array operations.
In this approach the virtual machine delegate execution of each vector bytecode
to statically compiled routine. Within this area, a wealth of optimizations are
applicable by composing multiple operations on the same data and hereby fusing
array operations together.

Random-number generators, linear spaces of data, and iotas, when combined
with reductions are another common source for optimization of memory uti-
lization and locality. Obtaining such optimizations within the runtime require
the use of JIT compilation techniques and potentially increase the use dynamic
loading of optimized codes. The challenge for this part of future work involves ex-
ploration of how to get such optimization without losing the performance gained
to runtime and JIT compilation overhead.

6 Conclusions

The work in this paper explores the feasibility of replacing the Python interpreter
with an adaptable runtime system, with the purpose of avoiding the CPython
scalability issues and providing a means of executing Python programs on restric-
tive compute nodes which are otherwise unable to run the Python interpreter.

The proxy component, implemented as an extension to the Bohrium runtime
system (BRS), provides the means for the BRS to communicate with a single re-
mote instance of the Python interpreter. The prototype implementation enabled
evaluation of the proposed approach of the paper.

Allowing the interpreter to execute on any machine, possibly users’ own work-
stations/laptops, leverages a Python user to utilize a cluster of compute nodes
or a supercomputer with direct realtime interaction. However, it also introduces
concerns with regards to the effect of network latency and available bandwidth,
between the machine running the interpreter and the compute node running
the proxy client, on program execution. These concerns were the themes for the
conducted evaluation.



Results showed that the overhead of adding the proxy component and thereby
the ability for the BRS to use a remote interpreter was not measurable in terms
of elapsed wall-clock time, as results were within two standard deviations of
the measured elapsed wall-clock. The results additionally showed a reasonable
tolerance to high network latency, at 50ms round-trip-time, slowdown ranged
from not being measurable to ×1.3−×1.4. In the extreme case of 200ms latency
ranged from not being measurable to a slowdown of ×1.9−×2.8.

The primary concern, and focus for future work, presented itself during evalu-
ation of bandwidth requirements. If the Python program requests large amounts
of data then the network throughput capability becomes a bottleneck, severely
impacting elapsed wall-clock as well as saturating the network link, potentially
disrupting other users.

The results show that the approach explored within this paper does pro-
vide a possible means to avoid the scalability issues of CPython, allowing direct
user interaction and enabling execution of Python programs in restricted envi-
ronments that are otherwise unable to run interpreted Python programs. The
approach is, however, restricted to transmission of data such as vector bytecode,
scalars for evaluation of convergence criteria, boolean values, and low-volume
data-sets between the interpreter-machine and runtime. This does, however, not
restrict processing of large-volume datasets within the runtime on and between
the compute nodes.
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Abstract—
In this work we introduce, Bohrium, a runtime-system for

mapping vector operations onto a number of different hardware
platforms, from simple multi-core systems to clusters and GPU
enabled systems. In order to make efficient choices Bohrium is
implemented as a virtual machine that makes runtime decisions,
rather than a statically complied library, which is the more
common approach. In principle, Bohrium can be used for any
programming language but for now, the supported languages are
limited to Python, C++ and the .Net framework, e.g. C# and F#.

The primary success parameters are to maintain a complete
abstraction from low-level details and to provide efficient code
execution across different, current and future, processors.

We evaluate the presented design through a setup that targets
a single-core CPU, an eight-node Cluster, and a GPU, all
preliminary prototypes. The evaluation includes three well-known
benchmark applications, Black Sholes, Shallow Water, and N-
body, implemented in C++, Python, and C# respectively.

I. INTRODUCTION

Finding the solution for computational scientific and engi-
neering problems often requires experimenting with various
algorithms and different parameters with feedback in several
iterations. Therefore, the ability to quickly prototype the
solution is critical to timely and successful scientific discovery.

In order to accommodate these demands, the scientific
community makes use of high-productivity programming lan-
guages and libraries. Particularly of interest are languages
and libraries that support a declarative vector programming
style; such as HPF[1], MATLAB[2], NumPy[3], Blitz++[4],
and ILNumerics.Net[5].

In this context declarative means the ability to specify
an operation, e.g. addition of two vectors, as a full-vector
operation, a + b, instead of explicitly specifying looping and
element-indexing: for i in n : a[i]+b[i]. Vector programming,
also know as array programming, is of particular interest
since full-vector operations are closer to the domain of the
application-programmer.

The performance of a high-productivity programming lan-
guage and/or library is often insufficient to handle problem
sizes required in the research. Thus, we see the scientific com-
munity reimplement the prototype using another more high-
performance framework, which exposes both the complexity
and the performance-potential of the underlying hardware.
This reimplementation is very time-consuming and a source
of errors in the scientific code. Especially, when the comput-
ing environments are highly heterogeneous and require both
parallelism and hardware architecture expertise.

Bohrium is a framework that circumvents the need for
reimplementation completely. Instead of manually paralleliz-
ing the scientific applications for a specific hardware com-
ponent, the Bohrium framework seamlessly interprets several
high-productivity languages and libraries while transparently
utilizing the parallel potential of the underlying hardware. The
expressed goal of Bohrium is to achieve 80% of the achievable
performance compared to a highly optimized implementation.

The version of Bohrium we present in this paper is a proof-
of-concept that supports three languages; Python, C++, and
Common Intermediate Language (CIL)1, and three computer
architectures, CPU, Cluster, and GPU. Bohrium defines an
intermediate vector bytecode language specialized for the
declarative vector programming model and provides a runtime
environment for executing the bytecode. The intermediate
vector bytecode makes Bohrium a retargetable framework
where the front-end languages and the back-end architectures
are fully interchangeable.

II. RELATED WORK

The key motivation for Bohrium is to provide a frame-
work for the utilization of diverse and complex comput-
ing systems with the goal of obtaining high-performance,
high-productivity and high-portability, HP 3. Systems such as
pyOpenCL/pyCUDA[6] provides tools for interfacing a high
abstraction front-end language with kernels written for specific
potentially exotic hardware. In this case, lowering the bar for
harvesting the power of modern GPU’s, by letting the user
write only the GPU-kernels as text strings in the host language
Python. The goal is similar to that of Bohrium – the approach
however is entirely different. Bohrium provides a means to
hide low-level target specific code behind a programming
model and providing a framework and runtime environment
to support it.

Bohrium is more closely related to the work described in
[7], here a compilation framework, unPython, is provided
for execution in a hybrid environment consisting of both
CPUs and GPUs. The framework uses a Python/NumPy based
front-end that uses Python decorators as hints to do selective
optimizations. Bohrium performs data-centric optimizations on
vector operations, which can be viewed as akin to selective
optimizations, in the respect that we do not optimize the
program as a whole. However, the approach used in the

1also known as Microsoft .NET



Bohrium Python interface we find much less obtrusive. All
arrays are by default handled by Bohrium – No decorators are
needed or used. This approach provides the advantage that any
existing NumPy program can run unaltered and take advantage
of Bohrium without changing a single line of code. Whereas
unPython requires the user to manually modify the source code
by applying hints in a manner similar to that of OpenMP. The
proposed non-obtrusive design at the source level is to the
author’s knowledge novel.

Microsoft Accelerator [8] introduces ParallelArray, which is
similar to the utilization of the NumPy arrays in Bohrium but
there are strict limitations to the utilization of ParallelArrays.
ParallelArrays does not allow the use of direct indexing,
which means that the user must copy a ParallelArray into a
conventional array before indexing. Bohrium instead allows
indexed operations and additionally supports vector-views,
which are vector-aliases that provide multiple ways to access
the same chunk of allocated memory. Thus, the data structure
in Bohrium is highly flexible and provides elegant program-
ming solutions for a broad range of numerical algorithms.
Intel provides a similar approach called Intel Array Building
Blocks (ArBB) [9] that provides retargetability and dynamic
compilation. It is thereby possible to utilize heterogeneous
architectures from within standard C++. The retargetability
aspect of Intel ArBB is represented in Bohrium as a plain
and simple configuration file that define the Bohrium runtime
environment. Intel ArBB provides a high performance library
that utilizes a heterogeneous environment and hides the low-
level details behind a declarative vector programming model
similar to Bohrium. However, ArBB only provides access to
the programming model via C++ whereas Bohrium is not
limited to any one specific front-end language.

On multiple points Bohrium is closely related in function-
ality and goals to the SEJITS [10] project. SEJITS takes a
different approach towards the front-end and programming
model. SEJITS provides a rich set of computational kernels in
a high-productivity language such as Python or Ruby. These
kernels are then specialized towards an optimality criteria. The
programming model in Bohrium does not provide this kernel
methodology instead Bohrium deduce computational kernels
at runtime by inspecting the flow of vector bytecode.

Bohrium provides in this sense a virtual machine optimized
for execution of vector operations, previous work [11] was
based on a complete virtual machine for generic execution
whereas Bohrium provides an optimized subset.

III. FRONT-END LANGUAGES

To hide the complexities of obtaining high-performance
from the diverse hardware making up modern compute sys-
tems any given framework must provide a meaningful high-
level abstraction. This can be realized in the form of domain
specific languages, embedded languages, language extensions,
libraries, APIs etc. Such an abstraction serves two purposes:
(1) It must provide meaning for the end-user such that the goal
of high-productivity can be met with satisfaction. (2) It must

Fig. 1: A computation that makes use of views to implement a 5-point stencil.

provide an abstraction that consists of a sufficient amount of
information for the system to optimize its utilization.

Bohrium is not biased towards any specific choice of
abstraction or front-end technology as long as it is compatible
with the declarative vector programming model. This provides
means to use Bohrium in functional programming languages,
provide a front-end with a strict mathematic notation such as
APL [12], or a more relaxed syntax such as MATLAB.

The declarative vector programming model encourages ex-
pressing programs in the form of high-level vector operations,
e.g. by expressing the addition of two vectors using one high-
level function instead of computing each element individually.
Combined with vector slicing, also known as vector or matrix
slicing [1], [2], [13], [14], the programming model is very
powerful as a high-level, high-productive programming model
(Fig. 1).

In this work, we will not introduce a whole new pro-
gramming language, instead we will introduce bridges that
integrate existing languages into the Bohrium framework. The
current prototype implementation of Bohrium supports three
popular languages: C++, .NET, and Python. Thus, we have
three bridges – one for each language.

The C++ and .NET bridge provides a new array library for
their respective languages that utilizes the Bohrium framework
by mapping array operations to vector bytecode. The new
array libraries do not attempt to be compatible with any
existing libraries, but rather provide an intuitive interface to the
Bohrium functionality. The Python bridge make use of NumPy,
which is the de facto library for scientific computing in Python.
The Python bridge implements a new version of NumPy
that uses the Bohrium framework for all N-dimensional array
computations.

Brief descriptions on how each one of the three bridges can
be used is given in the following. The jacobi-stencil expression
from Figure 1 is used as a running example for each language.

A. C++

The C++ bridge provides an interface to Bohrium as
a domain-specific embedded language (DSEL) providing a
declarative, high-level programming model. Related libraries
and DSELs include Armadillo[15], Blitz++[4], Eigen[16] and
Intel Array Building Blocks[9]. These libraries have simi-
lar traits; declarative programming style through operator-
overloading, template metaprogramming and lazy evaluation
for applying optimizations and late instantiation.

A key difference is that the C++ bridge applies lazy evalu-
ation at runtime by delegating all operations on arrays to the
Bohrium runtime environment. Whereas the other libraries ap-
ply lazy evaluation at compile-time via expression-templates.
This is a general design-choice in Bohrium – evaluation is
improved by a single component and not in every language-
bridge. A positive side-effect of avoiding expression-templates



double s o l v e ( m u l t i a r r a y<double> g r i d ,
s i z e t i t e r a t i o n s )

{
m u l t i a r r a y<double> c e n t e r , n o r t h , sou th , e a s t , wes t ;
c e n t e r = g r i d [ ( 1 , −1 , 1 ) ] [ ( 1 , −1 , 1 ) ] ;
n o r t h = g r i d [ ( 0 , −2 , 1 ) ] [ ( 1 , −1 , 1 ) ] ;
s o u t h = g r i d [ ( 2 , 0 , 1 ) ] [ ( 1 , −1 , 1 ) ] ;
e a s t = g r i d [ ( 1 , −1 , 1 ) ] [ ( 2 , 0 , 1 ) ] ;
wes t = g r i d [ ( 1 , −1 , 1 ) ] [ ( 0 , −2 , 1 ) ] ;
f o r ( s i z e t i =0 ; i< i t e r a t i o n s ; ++ i )

c e n t e r ( 0 . 2∗ ( c e n t e r + n o r t h + e a s t + wes t + s o u t h ) ) ;
}

Fig. 2: Jacobi stencil computation expressed in Bohrium C++.

in the C++ bridge are better compile-time error-messages for
the application programmer.

Figure 2 illustrates the Jacobi-Stencil expressed in Bohri-
um/C++, a brief clarification of the semantics follow. Arrays
along with the type of their containing elements are declared as
"multi_array<T>". The function "_(start, end,
skip)" creates a slice of every skip element from start
to (but not including) end. The generated slice is then passed
to the overloaded "operator[]" to create a segmented
view of the operand. Overload of "operator=" creates
aliases to avoid copying. To explicitly copy an operand the
programmer must use a "copy(...)" function. Overload
of "operator()" allows for updating an existing operand;
as can been seen in the loop-body.

B. CIL

The NumCIL library introduces the declarative vector pro-
gramming model to the CIL languages[17] and, like ILNu-
merics.Net, provides an array class that supports full-array
operations. In order to utilize Bohrium, the CIL bridge extents
NumCIL with a new Bohrium back-end.

The Bohrium extension to NumCIL, and NumCIL itself,
is written in C# but with consideration for other languages.
Example benchmarks are provided that shows how to use
NumCIL with other popular languages, such as F# and Iron-
Python. An additional IronPython module is provided which
allows a subset of Numpy programs to run unmodified in
IronPython with NumCIL. Due to the nature of the CIL, any
language that can use NumCIL can also seamlessly utilize the
Bohrium extension. The NumCIL library is designed to work
with an unmodified compiler and runtime environment and
supports Windows, Linux and Mac. It provides both operator
overloads and function based ways to utilize the library.

Where the NumCIL library executes operations when re-
quested, the Bohrium extension uses both lazy evaluation and
lazy instantiation. When a side-effect can be observed, such as
accessing a scalar value, any queued instructions are executed.
To avoid problems with garbage collection and memory limits
in CIL, access to data is kept outside CIL. This allows lazy
instantiation, and allows the Bohrium runtime to avoid costly
data transfers.

The usage of NumCIL with the C# language is shown in
Figure 3. The NdArray class is a typed vesion of a general
multidimensional array, from which multiple views can be
extracted. In the example, the Range class is used to extract

us ing NumCIL . Double ;
us ing R = NumCIL . Range ;

double So lve ( NdArray g r i d , i n t i t e r a t i o n s )
{

var c e n t e r = g r i d [R . S l i c e (1 ,−1) , R . S l i c e ( 1 , −1 ) ] ;
var n o r t h = g r i d [R . S l i c e (0 ,−2) , R . S l i c e ( 1 , −1 ) ] ;
var s o u t h = g r i d [R . S l i c e ( 2 , 0 ) , R . S l i c e ( 1 , −1 ) ] ;
var e a s t = g r i d [R . S l i c e (1 ,−1) , R . S l i c e ( 2 , 0 ) ] ;
var west = g r i d [R . S l i c e (1 ,−1) , R . S l i c e ( 0 , −2 ) ] ;

f o r ( var i = 0 ; i < i t e r a t i o n s ; i ++)
c e n t e r [R . A l l ] = 0 . 2∗ ( c e n t e r + n o r t h + e a s t + wes t + s o u t h ) ;

}

Fig. 3: Jacobi stencil computation expressed in NumCIL C#.

s o l v e ( g r i d , i t e r a t i o n s ) :
c e n t e r = g r i d [1:−1 ,1:−1]
n o r t h = g r i d [−2: ,1:−1]
s o u t h = g r i d [ 2 : , 1 : −1 ]
e a s t = g r i d [ 1 : −1 , : 2 ]
wes t = g r i d [ 1 : −1 , 2 : ]
f o r i in x ra ng e ( i t e r a t i o n s ) :

c e n t e r [ : ] += 0 . 2∗ ( n o r t h + s o u t h + e a s t + wes t )

Fig. 4: Jacobi stencil computation expressed in Python/Numpy.

views on a common base. The notation for views is influenced
by Python, in which slices can be expressed as a three element
tuple of offset, length and stride. If the stride is omitted, as in
the example, it will have the default value of one. The length
will default to zero, which means “the rest”, but can also be
set to negative numbers which will be intepreted as “the rest
minus N elements”. The benefits of this notation is that it
becomes possible to express views in terms of relative sizes,
instead of hardcoding the sizes.

In the example, the one line update, actually reads multiple
data elements from same memory region and writes it back.
This use of views simplifies concurrent access and removes all
problems related to handling boundary conditions and manual
pointer arithmetics. The special use of indexing on the target
variable is needed to update the contents of the variable,
instead of replacing the variable.

C. Python

The Python Bridge is an extension of the scientific Python
library, NumPy version 1.6 (Fig. 4). The Bridge seamlessly
implements a new array back-end for NumPy and uses hooks
to divert function call where the program access Bohrium en-
abled NumPy arrays. The hooks will translate a given function
into its corresponding Bohrium bytecode when possible. When
it is not possible, the hooks will feed the function call back
into NumPy and thereby forcing NumPy to handle the function
call itself. The Bridge operates with two address spaces for
arrays: the Bohrium space and the NumPy space. The user
can explicitly assign new arrays to either the Bohrium or the
NumPy space through a new array creation parameter. In two
circumstances, it is possible for an array to transfer from one
address space to the other implicitly at runtime.

1) When an operation accesses an array in the Bohrium
address space but it is not possible for the bridge to
translate the operation into Bohrium bytecode. In this



case, the bridge will synchronize and move the data
to the NumPy address space. For efficiency no data
is actually copied instead the bridge uses the mremap
function to re-map the relevant memory pages when the
data is already present in main memory.

2) When an operations access arrays in different address
spaces the Bridge will transfer the arrays in the NumPy
space to the Bohrium space.

In order to detect direct access to arrays in the Bohrium
address space by the user, the original NumPy implementation,
a Python library or any other external source, the bridge
protects the memory of arrays that are in the Bohrium address
space using mprotect. Because of this memory protection,
subsequently accesses to the memory will trigger a segmen-
tation fault. The Bridge can then handle this kernel signal by
transferring the array to the NumPy address space and cancel
the segmentation fault. This technique makes it possible for the
Bridge to support all valid Python/NumPy application since it
can always fallback to the original NumPy implementation.

Similarly to the other Bridges, the Bohrium Bridge uses
lazy evaluation where it records instruction until a side-effect
can be observed.

IV. THE BOHRIUM RUNTIME SYSTEM

The key contribution in this work is a framework, Bohrium,
that significantly reduces the costs associated with high-
performance program development. Bohrium provides the
mechanics to couple a programming language or library with
an architecture-specific implementation seamlessly.

Bohrium consists of a number of components that com-
municate by exchanging a Vector Bytecode. Components are
allowed to be architecture-specific but they are all interchange-
able since all uses the same communication protocol. The idea
is to make it possible to combine components in a setup that
match a specific execution environment. Bohrium consist of
the following three component types (Fig. 5):
Bridge The role of the Bridge is to integrate Bohrium into

existing languages and libraries. The Bridge generates the
Bohrium bytecode that corresponds to the user-code.

Vector Engine Manager (VEM) The role of the VEM is
to manage data location and ownership of vectors. It
also manages the distribution of computing jobs between
potentially several Vector Engines, hence the name.

Vector Engine (VE) The VE is the architecture-specific im-
plementation that executes Bohrium bytecode.

When using the Bohrium framework, at least one implemen-
tation of each component type must be available. However, the
exact component setup depend on the runtime system and what
hardware to utilize, e.g. executing NumPy on a single machine
using the CPU would require a Bridge implementation for
NumPy, a VEM implementation for a machine node, and a
VE implementation for a CPU. Now, in order to utilize a
GPU instead, we can exchange the CPU-VE with a GPU-VE
without having to change a single line of code in the NumPy
application. This is exactly the key contribution of Bohrium –

Bridge

Vector Engine 
Manager

Vector Engine 
Manager
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Manager

Vector 
Engine

Vector 
Engine
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Bridge is language bindings and interface to 
Bohrium, currently for NumPy, C++, and CIL
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hierarchical setups. The VEM can distribute 
and load-balance as required.

Node level VEM knows about hardware 
features and schedules operations optimally 
on hardware.

VE's are the workhorses and know how to 
implement elementwise operations and 
composite operations, currently on CPU and 
GPU

Fig. 5: Bohrium Overview

# B r i dg e f o r NumPy
[ numpy ]
t y p e = b r i d g e
c h i l d r e n = node

# Ve c t o r Engine Manager f o r a s i n g l e machine
[ node ]
t y p e = vem
impl = l ibbh vem node . so
c h i l d r e n = gpu

# Ve c t o r Engine f o r a GPU
[ gpu ]
t y p e = ve
impl = lbbh ve gpu . so

Fig. 6: This example configuration provides a setup for utilizing a GPU on
one machine by instructing the Vector Engine Manager to use the GPU Vector
Engine implemented in the shared library lbhvb_ve_gpu.so.

the ability to change the execution hardware without changing
the user application.

A. Configuration

To make Bohrium as flexible a framework as possible, we
manage the setup of all the components at runtime through
a configuration file. The idea is that the user or system
administrator can specify the hardware setup of the system
through a ini-file (Fig. 6). Thus, it is just a matter of editing
the configuration file when changing or moving to a new
hardware setup and there is absolutely no need to change the
user applications.

B. Vector Bytecode

A vital part of Bohrium is the Vector Bytecode that consti-
tute the link between the high-level user language and the
low-level execution engine. The bytecode is designed with
the declarative vector programming model in mind where the
bytecode instructions operate on input and output vectors.
To avoid excessive memory copying, the vectors can also be
shaped into multi-dimensional vectors. These reshaped vector
views are then not necessarily comprised of elements that are
contiguous in memory. Each dimension is described with a
stride and size, such that any regularly shaped subset of the
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Fig. 7: Descriptor for n-dimensional vector and corresponding interpretation

underlying data can be accessed. We have chosen to focus on a
simple, yet flexible, data structure that allows us to express any
regularly distributed vectors. Figure 7 shows how the shape is
implemented and how the data is projected.

The aim is to have a vector bytecode that support data
parallelism implicitly and thus makes it easy for the bridge to
translate the user language into the bytecode efficiently. Addi-
tionally, the design enables the VE to exploit data parallelism
through SIMD2 and the VEM through SPMD3.

In the following we will go through the four types of vector
bytecodes in Bohrium.

1) Element-wise: Element-wise bytecodes performs a unary
or binary operation on all vector elements. At the moment
Bohrium supports 53 element-wise operations, e.g. addition,
multiplication, square root, equal, less than, logical and, bit-
wise and, etc. For element-wise operations, we only allow data
overlap between the input and the output vectors if the access
pattern is the same, which, combined with the fact that they
are all stateless, makes it straightforward to execute them in
parallel.

2) Reduction: Reduction bytecodes reduce an input dimen-
sion using a binary operator. Again, we do not allow data
overlap between the input and the output vectors and the
operator must be associative. At the moment Bohrium supports
10 reductions, e.g. addition, multiplication, minimum, etc.
Even though none of them are stateless, the reductions are
all straightforward to execute in parallel because of the non-
overlap and associative property.

3) Data Management: Data Management bytecodes deter-
mines the data ownership of vectors. It consists of a synchro-
nization operator that orders a child component to place the
vector data in the address space of its parent component; a free
operator that orders a child component to free the data of a
given vector in the global address space; and a discard operator
that orders a child component free the meta-data associated a
given vector, and signals that any local copy of the data is
invalidated.

The three bytecodes enable lazy allocation where the actual
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vector data allocation is delayed until it is used. Often vectors
are created with a generator (e.g. random, constants) or with
no data (e.g. temporary), which may exist on the computing
device exclusively. Thus, lazy allocation may save several
memory allocations and copies.

4) User-extensions: The above three types of bytecode
makes up the bulk of a Bohrium execution. However, the
three types of bytecode do not constitute a Turing complete
instruction set. It is clear that the instruction set produces
executions with a deterministic finite executing time and
memory use. Thus, it cannot be Turing complete.

In order to handle operations that would otherwise be
impossible, we introduce the fourth type of bytecode: user-
extensions. We impose no restrictions to this generic operation;
the extension writer has total freedom. However, Bohrium
do not guarantee that all components support the operation.
Initially, the user registers the user-extension with paths to
all component-specific implementations of the operation. The
user then receives a new handle for this user-defined bytecode
and may use it subsequently. Matrix multiplication is a special
example of a user-extension. A CPU specific implementation
could simply call a native BLAS library and a Cluster specific
implementation could call the ScaLAPACK library[18].

C. Bridge

The Bridge component is the bridge between the program-
ming interface, e.g. Python/NumPy, and the VEM. The Bridge
is the only component that is specifically implemented for the
user programming language. In order to add Bohrium support
to a new language or library, only the bridge component needs
to be implemented. The bridge component generates bytecode
based on the user application and sends them to the underlying
VEM.

D. Vector Engine Manager

Rather than allowing the Bridge to communicate directly
with the Vector Engine, we introduce a Vector Engine Manager
into the design. The VEM is responsible for one memory
address space in the hardware configuration. The current
version of Bohrium implements two VEMs: the Node-VEM
that handles the local address space of a single computer and
the Cluster-VEM that handles the global distributed address
space of a computer cluster.

The Node-VEM is very simple since the hardware already
provides a shared memory address space; hence, the Node-
VEM can simply forward all instruction from its parent to its
child component. The Cluster-VEM, on the other hand, has to
distribute all vectors between Node-VEMs in the cluster.

1) Cluster Architectures: In order to utilize scalable archi-
tectures fully, distributed memory parallelism is mandatory.
The current Cluster-VEM implementation is quite naı̈ve; it
uses the bulk-synchronous parallel model[19] with static data
decomposition and no communication latency hiding.

Bohrium implements all communication through the MPI-2
library and use a process hierarchy that consists of one master-
process and multiple slave-processes. The master-process ex-



ecutes a regular Bohrium setup with the Bridge, Cluster-
VEM, Node-VEM, and VE. The slave-processes, on the other
hand, execute the same setup but without the Bridge and thus
without the user applications. Instead, the master-process will
broadcast vector bytecode and vector meta-data to the slave-
processes throughout the execution of the user application.

Bohrium use a data-centric approach where a static de-
composition dictates the data distribution between the MPI-
processes. Because of this static data decomposition all pro-
cesses have full knowledge of the data distribution and need
not exchange data location meta-data. Furthermore, the task of
computing vector operations is also statically distributed which
means that all processes can calculate exactly what it needs to
send, receive, and compute. Meta-data communication is only
needed when broadcasting vector bytecode and creating new
vectors – a task that has a asymptotes complexity of O(log2 n)

E. Vector Engine

The Vector Engine (VE) is the only component that actually
does the computations, specified by the user application. It
has to execute instructions it receives in an order that comply
with the dependencies between instructions. Furthermore, it
has to ensure that its parent VEM has access to the results as
governed by the Data Management bytecodes.

1) CPU: The CPU-VE utilizes a single core on a regular
CPU using a straightforward implementation that handles
instructions in a sequential manner without any instruction
reordering. The implementation is in C++ and uses templated
for-loops to implement vector operations. A precompiled
switch interprets the vector bytecode and invokes the for-loop
with the relevant type signature. All operations are inlined as
functors thus removing the need for function calls within the
for-loop.

2) GPU: To harness the computational power of the mod-
ern GPU we have created the GPU-VE for Bohrium. Since
Bohrium imposes a vector oriented style of programming
on the user, which directly maps to data-parallel execution,
Bohrium byte code is a perfect match for a modern GPU.

We have chosen to implement the GPU-VE in OpenCL over
CUDA. This was the natural choice since one of the major
goals of Bohrium is portability, and OpenCL is supported by
more platforms.

The GPU-VE currently uses a simple kernel building and
code generation scheme: It will keep adding instructions to
the current kernel for as long as the shape of the instruction
output matches that of the current kernel. Input parameters are
registered so they can be read from global memory. Similarly,
output parameters are registered to be written back to global
memory.

The GPU-VE implements a simple method for temporary
vector elimination when building kernels:
• If the instruction input is already read by the kernel, or

it is generated within the kernel it will not be read from
global memory.

• If the instruction output is not need later in the instruction
sequence – signaled by a discard – it will not be written

Machine: 8-node Cluster GPU Host
Processor: AMD Opteron 6272 AMD Opteron 6274
Clock: 2.1 GHz 2.2 GHz
L3 Cache: 16MB 16MB
Memory: 128GB DDR3 128GB DDR3
Compiler: GCC 4.6.3 GCC 4.6.3 & OpenCL 1.1
GPU: N/A Nvidia GeForce GTX 680

(2GB DDR5)
Software: Linux 3.2, Mono Compiler 2.10, Python 2.7, NumPy

2.6, Blitz++ 0.9

TABLE I: Machine Specifications

back to global memory.
This simple scheme has proven very efficient. However, the
efficiency is closely linked to the ability of the bridge to send
discards close to the last usage of an vector.

The code generation we have in the GPU-VE simply
translates every Bohrium instruction into exactly one line of
OpenCL code.

V. PRELIMINARY RESULTS

In order to demonstrate our Bohrium design we have imple-
mented a basic Bohrium setup. This concretization of Bohrium
is by no means exhaustive but only a proof-of-concept imple-
mentation. It supports the three popular languages: C++, CIL,
and Python, and the three computer architectures: CPU, GPU,
and Cluster. All of which are preliminary implementations that
have a high degree of further optimization potential. We con-
duct a preliminary performance study of the implementation
that consists of the following three representative scientific
application kernels:
Shallow Water A simulation that simulates a system gov-

erned by the shallow water equations. A drop is placed in
a still container and the water movement is simulated in
discrete time steps. It is a Python/NumPy implementation
of a MATLAB application by Burkardt [20]. We use this
benchmark for studying the Python/NumPy performance
in Bohrium. We compare the performance of the same
implementation using the Bohrium back-end and the
native NumPy back-end.

Black Scholes The Black-Scholes model is a partial differ-
ential equation, which is used in finance for calculating
price variations over time. In order to study the per-
formance of Bohrium in C++, we compare two C++
implementations of this benchmark, one using Bohrium
and one using Blitz++. The two implementations are
very similar and both uses vector operations almost
exclusively.

N-Body A Newtonian N-body simulation is one that studies
how bodies, represented by a mass, a location, and a
velocity, move in space according to the laws of New-
tonian physics. We use a straightforward algorithm that
computes all body-body interactions, O(n2), with colli-
sions detection. It is a C# implementation that uses the
NumCIL vector library[17]. We compare the performance
of the implementation using the Bohrium back-end and
the native NumCIL back-end.
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Fig. 8: Relative speedup of the Shallow Water application. For the CPU and
Cluster, the application simulates a 2D domain with 25k2 value points in 10
iterations. For the GPU, it is a 4k2 domain in 100 iterations.
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Fig. 9: Relative speedup of the Black Scholes application. For the CPU and
Cluster, the application generates 10m element vectors using 10 iterations.
For the GPU, it generates 64m element vectors using 50 iterations.
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Fig. 10: Relative speedup of the N-Body application. For the CPU and Cluster,
the application simulates 15k bodies in 10 iterations. For the GPU, it is 3200
bodies and 50 iterations.

We execute all three applications using three different
hardware setups: one using a single CPU, one using an eight
cluster-nodes, and one using a GPU. The single CPU setup
uses one of the cluster-nodes whereas the GPU setup uses
a new machine (Table I). For each benchmark/language we
compare the Bohrium execution with the baseline execution
and calculate the speedup based on the average wall clock
time of five executions. When executing on the single CPU,
we use one CPU-core likewise when executing on the eight-
node cluster, we use one CPU-core per node. The input and
output data is 64bit floating point for all executions.

A. Discussion

The Shallow Water application is memory intensive and
uses many temporary vectors. This is clear when comparing
the Bohrium execution with the Native NumPy execution
on a single CPU. The Bohrium execution is 2.10 times
faster than the Native NumPy execution primarily because of
memory allocation reuse. The Cluster setup demonstrates good
scalable performance as well. Even without communication
latency hiding, it achieves a speedup of 6.37 compared to
the single CPU setup and 13.27 compared to Native NumPy.
Finally, the GPU shows an impressive 143.68 speedup, which
demonstrates the efficiency of parallelizing vector operations
on a vector machine.

The Black Scholes application is computation intensive and
embarrassedly parallel, which is evident in the benchmark
result. The cluster setup achieve a speedup of 6.93 compared to
the Blitz++ and an almost linearly speedup of 7.93 compared
to the single CPU. The GPU achieves a slightly lower speedup
mainly due to the fact, that it is compared to a faster baseline
i.e. Blitz++ is faster than NumPy. Resulting in a speedup of
82.65 on the GPU.

The Cluster performance of the N-Body application is not
very impressive – a speedup of 4.21 compared to NumCIL
and 2.18 compared to Bohrium using a single CPU. The
problem is the use of communication intensive transpose op-
erations that translate into all-to-all communication and hurts
scalability. Especially, since the Cluster does not implement
communication latency hiding. The Bohrium execution shows
a speedup of 1.93 compared to the NumPy execution on a
single CPU. This is because Bohrium uses inline function calls
when traversing a computation loop – a technique that is not
possible in the CIL framework. Finally, the GPU demonstrate
a good speedup of 133.66 compared to NumCIL.

VI. FUTURE WORK

From the experiments we can see that the performance is
generally quite good. There is room for improvement when
distributing transposed data in the cluster, which is a deficiency
that stems from the need to broadcast all elements to all nodes.
This problem is not trivial to solve but we have previously
shown an efficient solution in the DistNumPy[21], [22] project.

Despite the good results, we are convinced that we can
improve these results significantly. We are currently working
on an internal representation for bytecode dependencies, which



will enable us to rearrange the instructions and eliminate the
use of temporary storage. In the article describing Intel Array
Building Blocks, they report that the removal of temporary
arrays is the single optimization that yields the greatest perfor-
mance improvement. Internal testing with manual removal of
temporary storage shows an order of magnitude improvement,
even for simple benchmarks.

The GPU vector engine already uses a simple scanning
algorithm that detects some instances of temporary vectors
usage, as that is required to avoid exhausting the limited GPU
memory. However, the internal representation will enable a
better detection of temporary storage, but also enable loop
detection and improve kernel generation and kernel reusability.

This internal representation will also allow pattern match-
ing, that will allow selective replacement of parts of the
instruction stream with optimized versions. This can be used to
detect cases where the user is calculating a scalar sum, using
a series of reductions, or detect matrix multiplications. By
implementing efficient micro-kernels for known computations,
we can improve the execution significantly.

As these kernels are implemented, it is simple to offer them
as function calls in the bridges. The bridge implementation
can then simply implement the functionality by sending a pre-
coded sequence of instructions.

We are also investigating the possibility of implementing a
Bohrium Processing Unit, BPU, on FPGAs. With a BPU, we
expect to achieve performance that rivals the best of todays
GPUs, but with a lower power consumption. As the FPGAs
come with a built-in Ethernet socket, they can also provide
significantly lower latency, possibly providing real-time data
analysis.

Finally, the ultimate goal of the Bohrium project is to
support clusters of heterogeneous computation nodes where
components specialized for GPUs, NUMA4 aware multi-core
CPUs, and Clusters, work together seamlessly.

VII. CONCLUSION

The declarative vector-programming model used in Boh-
rium provides a framework for high-performance and high-
productivity. It enables the end-user to execute vectorized
applications on a broad range of hardware architectures ef-
ficiently without any hardware specific knowledge. Further-
more, the Bohrium design supports scalable architectures such
as clusters and supercomputers. It is even possible to combine
architectures in order to exploit hybrid programming where
multiple levels of parallelism exist, which is essential when
fully utilizing supercomputers such as the Blue Gene/P[23].

In this paper, we introduce a proof-of-concept implemen-
tation of Bohrium that supports three front-end languages –
Python, C++ and the .Net – and three back-end hardware archi-
tectures – single-core CPUs, distributed memory Clusters, and
GPUs. The preliminary results are very promising – a Shallow
Water simulation achieves 143.68 speedup when comparing a
Native NumPy execution and a Bohrium execution that utilize
the GPU back-end.

4Non-Uniform Memory Access

REFERENCES

[1] D. Loveman, “High performance fortran,” Parallel & Distributed Tech-
nology: Systems & Applications, IEEE, vol. 1, no. 1, pp. 25–42, 1993.

[2] W. Yang, W. Cao, T. Chung, and J. Morris, Applied numerical methods
using MATLAB. Wiley-Interscience, 2005.

[3] T. Oliphant, A Guide to NumPy. Trelgol Publishing USA, 2006, vol. 1.
[4] T. Veldhuizen, “Arrays in Blitz++,” in Computing in Object-Oriented

Parallel Environments, ser. Lecture Notes in Computer Science, D. Car-
omel, R. Oldehoeft, and M. Tholburn, Eds. Springer Berlin Heidelberg,
1998, vol. 1505, pp. 223–230.

[5] “Ilnumerics,” http://ilnumerics.net/, [Online; accessed 12 March 2013].
[6] A. Klckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih,

“PyCUDA and PyOpenCL: A scripting-based approach to GPU run-
time code generation,” Parallel Computing, vol. 38, no. 3, pp. 157 –
174, 2012.

[7] R. Garg and J. N. Amaral, “Compiling python to a hybrid execution
environment,” in Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, ser. GPGPU ’10. New
York, NY, USA: ACM, 2010, pp. 19–30.

[8] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: using data parallelism
to program gpus for general-purpose uses,” SIGARCH Comput. Archit.
News, vol. 34, no. 5, pp. 325–335, Oct. 2006.

[9] C. Newburn, B. So, Z. Liu, M. McCool, A. Ghuloum, S. Toit, Z. G.
Wang, Z. H. Du, Y. Chen, G. Wu, P. Guo, Z. Liu, and D. Zhang,
“Intel’s array building blocks: A retargetable, dynamic compiler and
embedded language,” in Code Generation and Optimization (CGO),
2011 9th Annual IEEE/ACM International Symposium on, 2011, pp.
224–235.

[10] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel, K. Keutzer,
J. Shalf, K. Yelick, and A. Fox, “Sejits: Getting productivity and
performance with selective embedded jit specialization,” Programming
Models for Emerging Architectures, 2009.

[11] R. Andersen and B. Vinter, “The scientific byte code virtual machine,”
in GCA’08, 2008, pp. 175–181.

[12] K. E. Iverson, A programming language. New York, NY, USA: John
Wiley & Sons, Inc., 1962.

[13] B. Mailloux, J. Peck, and C. Koster, “Report on the algorithmic
language algol 68,” Numerische Mathematik, vol. 14, no. 2, pp. 79–218,
1969. [Online]. Available: http://dx.doi.org/10.1007/BF02163002

[14] S. Van Der Walt, S. Colbert, and G. Varoquaux, “The numpy array: a
structure for efficient numerical computation,” Computing in Science &
Engineering, vol. 13, no. 2, pp. 22–30, 2011.

[15] C. Sanderson et al., “Armadillo: An open source c++ linear algebra
library for fast prototyping and computationally intensive experiments,”
Technical report, NICTA, Tech. Rep., 2010.

[16] “Eigen,” http://eigen.tuxfamily.org/, [Online; accessed 12 March 2013].
[17] K. Skovhede and B. Vinter, “NumCIL: Numeric operations in the Com-

mon Intermediate Language,” Journal of Next Generation Information
Technology, vol. 4, no. 1, 2013.

[18] L. S. Blackford, “ScaLAPACK,” in Proceedings of the 1996 ACM/IEEE
conference on Supercomputing (CDROM) - Supercomputing 96 Super-
computing 96, 1996, p. 5.

[19] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990.

[20] J. Burkardt, “Shallow water equations,” people.sc.fsu.edu/\∼jburkardt/
m\ src/shallow\ water\ 2d/, [Online; accessed March 2010].

[21] M. R. B. Kristensen and B. Vinter, “Numerical python for scalable
architectures,” in Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model, ser. PGAS ’10. New York,
NY, USA: ACM, 2010, pp. 15:1–15:9.

[22] M. R. B. Kristensen, Y. Zheng, and B. Vinter, “Pgas for distributed
numerical python targeting multi-core clusters,” Parallel and Distributed
Processing Symposium, International, vol. 0, pp. 680–690, 2012.

[23] M. Kristensen, H. Happe, and B. Vinter, “GPAW Optimized for Blue
Gene/P using Hybrid Programming,” in Parallel Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on, 2009, pp. 1–6.



Just-In-Time Compilation of NumPy Vector Operations

6.6 Just-In-Time Compilation of NumPy Vector Operations

120



GSTF JOURNAL ON COMPUTING

Just-In-Time Compilation of NumPy Vector
Operations

Johannes Lund, Mads R. B. Kristensen, Simon A. F. Lund, and Brian Vinter
Niels Bohr Institute, University of Copenhagen, Denmark

jolu@diku.dk and {madsbk/safl/vinter}@nbi.dk

Abstract—In this paper, we introduce JIT compilation for the
high-productivity framework Python/NumPy in order to boost the
performance significantly. The JIT compilation of Python/NumPy
is completely transparent to the user – the runtime system will
automatically JIT compile and execute the NumPy instructions
encountered in a Python application. In other words, we introduce
a framework that provides the high-productivity from Python
while maintaining the high-performance of a low-level, compiled
language.

We transforms NumPy vector instruction into an Abstract
Syntax Tree representation that creates the basis for further
optimizations. From the AST we auto-generate C code which
we compile into computational kernels and execute. These incor-
porate temporary array removal and loop-fusion which are main
benefactors in the achieved speedups. In order to amortize the
overhead of creation, we also implement a cache for the compiled
kernels.

We evaluate the JIT compilation by executing several scientific
computing benchmarks on an AMD. Compared to NumPy, we
achieve speedups of a factor 4.72 for a N-Body application and
7.51 for a Jacobi Stencil application executing on a single CPU
core.

Keywords—JIT, automatic, dynamic, runtime

I. INTRODUCTION

Many scientific algorithms can be expressed by using vector
operation and linear algebra. These are easily expressed in
specialized high-level languages such as the NumPy library
for Python. However, their performance is often significantly
lower than when implemented and computed in a low-level
language. Using the high-level languages for prototyping and
re-implementing the found solution in a low level language
when required to run on actual-size data.

Expressing the data and calculations efficiently in a low-
level language such as C is far from being a trivial task. It
requires an in-depth understanding to implement this efficiently
on heterogeneous hardware architectures.

We wish to bridge the gap between the two extremes, by al-
lowing scientists to express their problems in a favorable high-
level language and at the same time achieve the performance of
a complex low-level language implementation. Thus, the goal
of this paper is to improve the performance of Python/NumPy
applications to a degree that makes it similar to low-level
languages such as C or C++. We do not expect it to out-
perform hand-optimized C code. As long as it demonstrates
similar performance while retaining the high-productivity of
the Python language, we are satisfied.

In order to improve the performance of Python/NumPy,
we introduce a Just-In-Time (JIT) compiler backend for the
NumPy library. In order to hook into the NumPy library we
make us of the Bohrium runtime system [1], which translate
NumPy vector operations into an intermediate vector bytecode
suitable for JIT compilation. Because Python is an interpreted
language, we use lazy evaluation of vector instructions in order
to have multiple instructions available to analyze, optimize,
and JIT compile.

The following methods constitute the key contributions for
the performance improvement of Python/NumPy applications
using out JIT compiler backend:

• Removal of temporary arrays
• Loop fusion
• Compiled kernel caching

II. RELATED WORK

The key motivation for our JIT back-end is to automati-
cally transform high-level Python/NumPy applications to com-
plied executable kernels, with the goal of obtaining high-
performance, high-productivity and high-portability, HP 3.

Our work is closely related to the work described in [2]
where a compilation framework, unPython, complies Python
code into C. The framework uses Python decorators as hints to
do selective optimizations. Particularly, the user must annotate
variables with C data types. Because of the Bohrium runtime
system, our JIT backend does not require any modifications to
the Python code.

Systems such as pyOpenCL/pyCUDA [3] provides tools for
interfacing with the OpenCL and CUDA framework directly
from Python. They lower the bar for harvesting the power of
modern systems by letting the user write CPU or GPU kernels
as text strings in Python. Still, the user need knowledge of the
underlying hardware and must modify existing Python code in
order to utilize them.

III. ANALYSIS

In this section we present an analysis of the requirements
and solutions for using JIT compilation of NumPy vector
instruction. There are many different elements required in
framework for JIT compilation, which all must be designed
and implemented.
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A. Creating composite expressions

At runtime we have a list of vector instructions available
which contain information about the relation between the
instruction. We can use this relational information to build
composite expressions and create computational kernels based
on these.

In this subsection we investigate methods to extract and
analyze the information from the instruction list.

1) Naive approach: The naive approach involves folding the
instruction into larger expression. Examining the instruction
list inorder by comparing the output of a instruction with
the input of the next it can be determined if the first is a
subexpression of the later. As many expression are organized
as a chain of instructions this naive method would work well
on many of the expressions.

Creating composite expressions and computational kernels
directly from the list would be straight forward. In the case
where the output is not uesd a new composite expression
is build. For each of the following expression which uses
the previous output in its input the expression grows by
substituting the new input with the expression. With this
approach the code for the kernel could be created directly in
the first passthrough of the instructionlist.

With the order of execution the same as for the instruction
the data-dependencies between the instruction are not relevant.

This approach only handles relations in chains and would
not combine expression where both the left and right inputs
where a result of prior instruction. The only information used
would be the one found between two instructions. We have
information about the relation between all instruction in the
list and we should use this.

2) Abstract Representation: The abstract approach targets
the shortcomings of the naive approach and is the method
used. This is initially done by splitting the creation of kernels
from the data extraction and analysis. The instructions list is
translated into a abstract representation where the information
between all instructions are represented.

The expressions are created as Abstract Syntax Trees (AST)
from on the mathematical expressions from the instruction list.
The transformation from a batch of instruction results in a set
of AST’s which are later converted into computational kernels.

It is a more complex solution compared to the above and
requires the use of compiler techniques such as Static Single
Assignments (SSA) and creation of dependency graphs. We
use the AST as our working representation of the instructions
for the following reasons:

1) Not sensitive to the order of instructions but the seman-
tic meaning. Semantically equal expression result in the
same AST’s or can easily be transformed to it.

2) The tree data structure is well known and easy to work
with, analyze and optimize.

3) In the creation of an AST temporary arrays are syntac-
ticly removed.

4) The general structure can be used to represent more
complicated AST’s, which ensure that later extensions
to the form is possible.

B. Execution Orchestration
With the change of representation from a list of instruction

into a set expression it is needed to determine how these are to
be executed. In the list the order was given but with the AST’s
the choice is not as simple. We present different orchestration
methods for the AST and the resulting kernels and argues for
the methods used in our solution.

The orchestration of the AST’s for execution can take the
form of a list or a graph
• The list execution follows the sequential execution of

the kernel of the AST’s. The AST’s are all rooted to
array assignment, which originally is represented as a
instruction. The AST’s are arranged and executed in
this order. This approach is well suited for single core
execution as all operations must be performed in s
sequential order. It can be seen a flattened graph, as the
graph information is available within the AST’s.

• Orchestration based on the dependencies between the
AST, represented as a graph. The dependencies between
AST results in sequential paths. The graph will represent
the relation between the AST. From this it can be
determined if AST’s are independent each other and thus
if they can be executed in parallel.

The List model is chosen for it simplicity and that the
framework target is the a single CPU core.

The relation between the AST’s have purposes in different
optimization method which are relevant for both single- and
multi-core scenarios. Within the AST’s the relational informa-
tion is used to discover dependency violations and to secure
correctness among the AST’s. The correct inital dependencies
is vital om checking data-dependencies spanning multiple the
AST’s.

C. Representation of Kernel Function.
To execute the AST’s we must represent them in the form

of a programing language which we can execute. This could
in principle be any language, but there is a clear demand for
a highly efficient language, which narrows down the field of
candidate. The considered options where the following:
• C/C++
• Assembler

The C languages was chosen as it is supported everywhere and
can be very efficient. The choice of language is connected to
the choice in compiler as well. For the C language there is a
number of compilers available. The kernels are pretty simple
and require no extended functionality for which C++ would
be of value.

Using Assembler to create the kernels would move the
implementation closer to the metal then with C and potentially
perform better. The kernels are rather simple as they consists
of a traversal of a multidimensional array and an equation.
For the simple uses the assembler version would be fairly
straightforward to implement.

Being close the metal also has its drawbacks. In order to take
advantage of the different architectures their special instruc-
tions must be used, which requires multiple implementation to
work efficiently in a heterogeneous hardware environment.
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The machine code produced by modern compilers is very
efficient. The newest advantages in CPU design is integrated in
these optimization which can include the use of vendor specific
optimization, SSE instruction, function in-lining or even loop-
unrolling. These and many other optimization are available
in modern compilers such as GCC [4] and C-LANG/LLVM
[5]. Achieving these benefits with machine code implemented
kernels would is not practical solution.

An alternative to native code is using Intermediate Language
(IL) as used internally in LLVM. The AST’s and traversal
would be expressed in IL language and compiled with LLVM.
With this comes the possibilities to apply specific optimization
to the code in the compilation phase.

A second alternative could be OpenCL code which would
be targeted the CPU. The language is based on C99 with a few
extensions and can be compiled to both CPU’s and GPU’s. The
OpenCL framework target Multi- and Many-Core architectures
where concurrency and parallelism is in focus.

C is chosen for the kernel representation it is best suited
for the task and it will be reasonable fast to investigate future
optimizations to the kernels.

D. Kernel Compilation
The choice of compiler is strongly coupled with the choice

of language. With C chosen there are still different approaches
to take on compilation.
• Command-line compilation and dynamic linking: Write

the kernel program to a file which is then used compiled
with a compiler from the command-line,

• In memory compilation: Compile from a library function
where the kernel function code is read as strings and the
results is a function-pointer.

The command-line method is simple approach as most linux
systems has access to a C compiler such as GCC. It is required
to write the function code to a file as this is the input. By
compiling the code into a shared object file it can be linked into
the running program. This is done with the ldopen() function.

The method of using a in memory compiler eliminated the
need to perform disk I/O operations and system calls. It is
all handled in memory and within the program execution. The
Tiny C Compiler [6] (TCC), is such a library which offers
the ability to compile a string of C code into a machine code
and return a function-pointers to the functions compiled. TCC
is very small and very simple library which is easy to use.
Unfortunately the quality of the resulting machine code is far
from that GCC.

The library for C-lang with is part of LLVM. Here the C
code would be read and compiled into the LLVM IL language
and from this into machine code using the LLVM backend to
do the compilation. The LLVM and C-lang libraries are both
very large and complex API’s to work with.

TCC was initially used but replaced with the GCC as it
became clear that the performance was an issue. It here became
clear that the quality of code is more important then the
compile time. The initial investigation into LLVM revealed a
large and complex framework, of which only the compilation
part was of interest. As GCC and LLVM generally produces

code of equal quality [7] the expected outcome of using LLVM
over GCC is to reduce the compilation time and make the
implementation prettier.

The GCC method is chosen as the kernel compiler due to
its simple approach, availability and execution performance.

E. Cache
Caching in the JIT framework is related to the computational

kernels. Many of the same instructions are reoccurring, as
a result of loops in the host programs, the same AST’s are
created and thus the same kernels. The use of caches is based
on assumption that each kernel is multiple times, which is the
case in most scientific NumPy applications.

The reason to use a cache for the JIT compiled kernels is
to reduce the time required in creation and compilation of the
kernels for every AST. There will be a overhead of creating
the kernels but the overall effect can be reduced significantly
by using a cache for the kernels.

The number of unique kernels depends on the number of
uniqe AST’s created. We dont expect a large number of kernels
as many of the scientific applications uses the same computa-
tions multiple times. Running the Shallow Water benchmark,
which produces the most kernels of the benchmarks used, only
11 kernels are created in total.

We have decided to use a non-persited cache for the ker-
nels where the kernels are created and used as the program
executes. The on-the-fly strategy fits the needs of the JIT
framework very well. Creating the kernels is fast compared
to the execution time and only a few must be created. The
small time difference between loading the kernels or creating
them is insignificant compared to the runtime.

The benifit from the cache is the large number of identical
kernels fetched from memory apposed to being created.

IV. DESIGN AND IMPLEMENTATION

The goal of the system is to transform the list of instructions
unary og binary instructions into computational kernels and
execute these instead a series of individual instructions.

We described the various parts in the analysis section and
here define four phases in which we organized the various
parts. The phases, which are illustrated in Figure 1, are:

1) AST creation: Information gathering, analysis and cre-
ation of composite expressions.

2) Optimize and Orchestrate: Determining the flow of the
execution and perform optimizations on its abstract
form.

3) Kernel creation: Code generation and compilation.
4) Execution and caching.

In the first phase the instruction list is transformed into a set
of AST’s which are organized in a Nametable. The initial
AST’s are analyzed for basearray dependencies as these not
reflected in the Nametable after the initial creation. After the
dependency corrections have been performed the collection of
AST’s is a valid representation of the instruction list.

In phase two the forest of AST’s are orchestrated into an ex-
ecution list. This phase would be place for AST-based analysis
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Fig. 1. JIT Framework design overview.

Assignment : Array = Expr

Exp : Array
: Constant
: UnaryOperation
: BinaryOperation

UnaryOperation : Opcode Exp
BinaryOperation : Opcode Exp Exp
UserFunc : Exp . . . Exp

Fig. 2. AST definition for NumPy instructions

and optimization such as grouping of multiple AST’s into one,
dead-code elimination or other optimizations. Preparations for
more advanced code generation methods would be part of this
phase as well.

In Phase three we transform the AST into a kernel function
which are compiled and linked into the running program. This
involves code generation and compilations.

Phase four handles the execution of the kernels either
directly handed down from phase three or extracted from the
cache.

A. Abstract Syntax Tree for the vector expressions.

AST are generally used in compilers and interpreters to
represent the abstract syntax of the program. This repre-
sentation follows the Concrete Syntax Tree (CST) which is
representation of the program text.

We focus the AST for the JIT framework on representing
the mathematical expressions found in the instruction lists and
uses a list to represent the order of the execution.

We defined the AST used to represent the mathematical
expressions as depicted in the figure 2. We formally defined
the AST to include the following two types of components, the
Statement and Expressions. The Statements assigns the value
of an Expression to an array. The Expression can take many
forms as it is the case with mathematical expressions.

The simplest form is the array or constant. These are
used with unary and binary operator as well as userdefined
functions. These operations defines the recursive nature of the
data structure as they themselves are Expressions and takes
expressions as input. The Opcode is a basic mathematical
operators, such as add, multiply or sinus.

With this definition we are able to express the mathematical
expressions of the bytecode.

An Assignment is an instruction and thus a program consists
of series of assignments which assigns the value of a simple
array, constant or unary or binary expressions to an array. In
the case of the constant assignment it would be broadcasted
to all elements of the array.

We view the bytecode instruction as an assignment with a
left and right side. The right side is the Expr and the array the
left. When an expression consists of more then a single unary
or binary operations we label it as a composite expression, as it
composed of multiple expressions. To manage the assignment
of expressions to arrays a set of data structures are used.

1) Data structures to manage the AST: We present the
three data structures we use to create and manage the AST-
representation of an list of instructions:
• BaseUsageTable
• SSAMap
• Nametable
The BaseUsageTable is used to register when a base array

are written to. With this information we can determine depen-
dency violation with in the AST’s and ensure correct execution.

In Numpy the use of slices of data is represented af view of
the original data. This view is called an array and will always
be present. Multiple arrays can reference the same underlying
data, called a base-array. Operations on the different arrays
can thus alter the same base-array. We register which arrays
use the same base-arrays to ensure that data is written to the
base-array before it is used in a new expression.

The BaseUsageTable is implemented as a Map of lists,
{array: [nt index,...],..}, where there for each basearray is a
list of references to the Nametable of where the array is used.

We use the Static Single Assignment map (SSAMap) in
the creation phase of the Nametable and AST’s. We build the
Nametable in SSA form where each assignments as its unique
name to eases later analysis.

The SSAMap registers all arrays in an version list, {array:
[nt index,..],..}, which works as translation table from name
to array version.

The Nametable is used to store the AST representation
and associated meta-information, such as traversal states and
dependencies. With the SSA map all arrays are assigned a
new name, an integer. These names are assigned in order of
appearances while the Nametable is being build.

The Nametable can be seen as a mapping between Name,
Array and AST and holds the following information:
• A Reference to AST
• The array the AST is assigned to, a Target Array

(TArray)
• A reference to the instruction in the instruction batch
• A List of Depend-ON and Dependent-TO references

(DON and DTO)
• When the TArray is discarded and freed.
• If the name points to a userdefined function, additional

information is kept.
All the information from the instruction list kept in the
Nametable (see Figure 3).
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Fig. 4. Static Single Assignment

We do not register constants in the nametable as these
cannot be assigned an array and have no importance without
a relation to an array. Constants are inserted directly into the
autogenerated code and is only used here.

The Nametable is implemented as a vector where the name
corresponds to the index. We register all array assignment in
the Nametable in the same order they appear in the instruction
batch. This means that we preserve the execution order of
the created AST in the Nametable structure. When performing
the later dependency analysis the order can determined by a
comparison on names.

a) Static Single Assignment: SSA is used as a step to
encode relationships between variables in code in the naming.
It is done by only allowing assignment to a variable once. In
the literature [8] if a variable is assigned more then once, a
new variable is created with a subscripted number. If this the
second time, it is subscripted with a 1, second a 2 and so forth.
The relationship to previously used variables are thus encoded
into the naming since the name change of a variable is done
to the remaining variables in the list of operations. There is
no such thing as an overwrite of a variable.

Let us consider the example listed in Figure 4, which can be
viewed as a list of instructions. This involves a reassignment
of A in the same equation which we need to represent in the
AST.

We could do this by only keeping references to the arrays
by name, but we would be required to find the correct value
of A through a liveliness analysis. We use SSA form for the
Nametable to remove this necessity.

In this form all assignment are made to new variables which
makes determining the origin of a value much easier as this is
now encoded into the name. In traditional languages SSA form
handled control flow by introducing phi-functions to represent
a changes performed in a branch. As there is no such control
flow elements in the bytecode, the SSA form for AST’s are
very simple.

0
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4
5

+ A B _ 4
* E A C _

Instruction batch
NT

Free A
Discard A
Sync E

B

+ A B _ 4

+

1

2

3
4

5

B 4

4
B
A

* E A C _

67

8

11

10
9

C

C

11

12

+

B 5

*

C

13

E

+

B 5

14

F=3,D=3

15
16

Fig. 5. AST creation illustrated of Ō = (B̄+5)∗C̄. Underscore ( ) indicates
a empty value. The arrow numbering show the of the creation process from
1 to 16. The illustration does not cover the all the elements of the creation
process. SSAMap, BaseUsageTable and Dependency Graph updates among
others, are not included.

We introduce integers as new names where all assignments
are assigned a new incremented number. We thus loose the
direct relation between names in the naming scheme. In the
SSA Map we keep the information on version and their
mapping to the new names. This is also used to determine
which version of an array should used when referenced.

2) Creating the AST’s: As most AST’s the AST’s in the
JIT framework are build bottom up. Starting with the lowest
expression and using these as sub trees in the following
expressions.

In short, this is done by iterating through the instruction list
in the order of execution, creating AST’s from the instructions
and building larger and larger AST while registering the
relations in the Nametable and BaseUsageTable.

This subsection describes the design and implementation of
the algorithms used in this process of creating the AST’s and
filling the Nametable with them.

The instructions are transformed from start to end and
analyzed in this order. This results in a bottom-up approach to
AST creation, where arrays used in an AST is either new or
referencing a existing AST.

While building the Nametable and the AST’s we only look
back, appending to the existing structure and preserving the
order through the naming scheme.

The creation steps of the AST’s are best described through
an example. Depicted in figure 5 we show the creation of a very
simple program which performs the following equation: Ō =
(B̄+5)∗C̄. The program is described by the add and multiply
instruction along with a Free, Discard and Sync instruction.

(1) We start from the top of the instruction list looking at
the first instruction. (2-3) Extract the left operand B̄. As this
is and array we check if have a reference to it. (4) We store
B̄ in the Nametable as 0. (5) We extract the second operand.
As this is a constant we do nothing else. (6) We then extract
the operator and creates the AST. (7) We store AST in the
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nametable as a assignment to Ā, as 1.
(8) We are now done with the first instruction and move on

to the next in the batch. (9) We lookup the first operand Ā in
the Nametable, which is one we previously created and (10)
extract the corresponding AST. (11) We lookup and create C̄
as it is a new array and (12) stores it in the Nametable. (13)
we extact the multiply operator and create the composite AST
by combining the AST’s of Ā and C̄.

(15) we extract free operation for Ā, which we register in
the Nametable. (16) We do the same for the Discard operation.
The Sync is ignored as we execute everything in batch.

As the example shows many elements are in play to trans-
form the instruction batch to a naive forest of AST’s. It is
not the end of the creation phase as their are still base array
dependencies to handle as well as sub expression elimination to
perform. This ties into the orchestration phase as dependencies
may results in spilling AST’s into multiples.

3) Expression Orchestration: The orchestration of AST re-
quires knowledge of dependencies between the AST’s. In the
rather simple process of building the AST’s we do not check
for dependencies. As part if the orchestration phase the AST’s
are dependency validated and violatoins are resolved.

The resulting set of AST are a result of the following
reasons:

1) Different expressions used in the program.
2) Varying sizes of arrays used in the computations as a

result slicing.
3) Use of arrays across instruction batches result in a

unknown case of multiple use.
4) Base array dependency violation.
5) AST subexpressions.
The program is a list of batches of instructions. A batch is

thus a sublist og instructions. These batches is a result of the
interpreter which at the end of a batch required the evaluation
of the expressoin. This could be the result of a print statement
or other points in the Python code where evaluation is required.
With the Free and Discard intructions we know when the
interpreter no longer has a reference. In the case where the
free/discard operation for a array is not in the batch we treat
the array as having multiple dependencies in the following
batch.

The result of the Nametable creation is a set of distinct
AST’s with a internal relationship. The orchestration is highly
influences by the single core target as the AST are arranged in a
list structure. This is done by the order of the Nametable which
in effect is a sort of the AST by name. The AST root with the
smallest name is executed as the first, continuing upwards to
the AST with the highest name.

We know that the dependencies are acyclic, meaning that
dependencies between AST’s are only lower names ones.
There is no dependency violation as these have been resolved
by splitting AST’s into smaller ones. The set of AST’s can be
viewed as a graph of expression dependent on each other.

Analysis of this set prior to code generation could hold
possibilities to group AST’s into even larger kernels, further
exploiting the loop fusion benefits. Converting the dependency
information from a single AST, into a single unit would be
done by using the root nodes dependent-to and the AST’s

and the depend-on dependencies from all leaf-nodes, as the
dependencies of the AST.

Analysis of this dependency graph could be used to paral-
lelize independent AST on different CPU cores or to group
different sets of dependent AST’s into single larger kernels.
This is touches more in the future work section.

B. Code Generation

This section describes the transformation from AST’s to
autogenerated C code and computational kernels. To achieve
performance close to that of optimized C code the generated
code must be of equal quality. We will in this section cover
the information extraction and code generation.

We will take a look at the possibilities for further with
runtime generation of kernels.

1) Kernel Function: A kernel function is a C function
with a defined signature that perform a series of operations
corresponding to one or more instructions and is created from
a AST. When compiled it is defined as a computational kernel
or just kernel.

A kernel function consist of three logical elements:

• The Input
• Traversal method
• The computation

The input consists of all the distinct arrays and constants
used by in the AST.

The reason we pas array distinct is to reduce the number
of arrays used in the computation. The computation requires
computing the element-position in the matrix’s to retrive the
correct values. By removing the dublicate arrays and using the
same element-position computations multiple time we reduce
the number of calculations required.

For constants this is not an issue, and as they are used only
once. We pass these to the kernel as a array.

We know in which context the kernel functions are to be
used and thus we have no need for size parameters for the
input arrays. We use arrays as we must handle different size
inputs depending on the kernel and they must all have the same
function signature.

Kernel functions are named by the hash of the AST they
are based on. This create unique names based on the signature
of the AST and used both in naming and later caching. The
hash is based on a AST Signature, retrieved by performing a
depth-first search, left to right, where the opcode of the node
and leafs along with the Type is used to create the signature.
Extending the signiture with information on

The traversal method is how the arrays are travered as part of
the computataion. The traversal used in the kernels is pointer
incrementation where only additions are used to determin the
position of data to work in the matrices.

The computation part is the calculation perfomed on the
arrays. In the creation phase this is called the computestring
and is the computation of a series of values which produces a
result.
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2) Input extraction and equation creation: The AST’s are
traversed in a depth-first search left to right. This is the case
for all AST traversals in the JIT framework.

The recursive traversal method used in the creational phase
of the kernel, extracts the distinct arrays, all constant and
builds the compute string. The compute string is created by
combining one or two inputs with a operator. This is based
on the opcode of the AST nodes which combined with the
stringnames for the inputs are merged into the final composite
expression. The left-hand side of the created equation is re-
trieved from the target array of AST, defined in the Nametable.

The computational order from the instruction is kept in the
AST structure and no further actions are needed to ensure the
order in the kernel creation phase. To ensure the order in the
created equation parenthesis are added around each unary or
binary expression.

C. Execution and Kernel Cache
Caching is an important part of ensuring a reasonable

runtime for the JIT as we will show in section V-A1.
We perform caching to reduce the number of kernel we

create, in effect caching the JIT Optimizations for later use.
The compiled kernel is just a function pointer which must be

called with a specific number of arguments. We store the array
and constant array’s used as input with the compiled kernel
function in a execution kernel data structure. This structure
can hold both compiled kernels, instructions or userdefined
function instruction and is thus a wrapper around a element to
execute.

The caching model starts with a orchestrated set of AST’s.
• A hash of the AST is created and checked against the

cache.
• The AST are compiled into a computational kernel.
• The kernels inputs is filled based on a traversal of the

AST.
• The kernel is executed.
• The kernel is cached with the hash of the AST as key.

The kernels are directly compiled and executed in the order
they have been orchestrated in. This means that when the same
kernels are used multiple times only a single kernel is created.

The hash of the AST are done based on a left to right,
depth-first-search, which produces a vector of the structure.
This can be viewed as a flattening of the operators, types and
expression-types which forms the input for a cryptographic
hashing algorithm.

V. EVALUATION

In this section, we present performance evaluation of our
JIT implementation running on a AMD machine (See table I).
The framework testing is as follows:
• Each benchmark is the average of three run for each

configuration.
• The benchmark scripts are written in Python
• We use the system GCC compiler for both compilation

of the C/C++ implementations and the Computational
Kernels. All compilations use the -O2 as optimization
flag.

CPU AMD Opteron(TM) Processor 6274
Feq 2.20 GHz
Layout 2 CPU’s. 16 Cores per CPU
RAM 128 GB
Software Linux version 3.2.0-25-generic Python 2.7.3, GCC

version 4.6.3

TABLE I. BENCHMARK CONFIGUIRATION
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Fig. 6. Effect of kernel cache when running the Jacobi benchmark. The
matrix input and output size is fixed at 4k by 4k elements.

• In the benchmarks we measure the computation time
only. The time to initialize the arrays are not included.

A. Jacobi

The Jacobi benchmark is a implementation which solves the
heat equation iteratively using the Jacobi Method. We use this
benchmark to show the effect of kernel caching, relation to
problem size and comparison with C/C++ implementations.

1) Caching : We evaluate the effect of kernel caching by
comparing the execution with and without caching enabled.
By disabling the cache all AST’s result in the creation and
compilation of a kernel.

The runtime graph depicted in figure 6, clearly shows the
overhead of creation and compilation of the kernels and the
how this overhead is armotized over time.

2) Problem Size: Figure 7 show the runtime of the first
iteration in the Jacobi benchmark. The graphs show that there
is a strong correlation between the benefit of the JIT methods
and the size of data. As the data grows the runtime follow in a
similar quadratic way and illustrates the significant difference
in growth between the JIT and the Numpy execution.

With problems larger then 2k-by-2k elements, JIT is faster
then Numpy even in the first iteration. This will for the most
part be the case for the Jacobi or programs with similar
computational complexity as this includes the creation of all
the computation kernels. The first iterations will be the most
expensive, as caching removed the overhead of kernel creation
in the later iterations.

3) C/C++ Comparison: We wish to bridge the gap between
low-level languages and and thus we compare the Numpy im-
plementation with a range of different C/C++ implementations
as the methods used in have great impact on the performance.
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Fig. 7. Effect of the problem size running the first iteration of the Jacobi
benchmark. The matrix input and output size grows from 1k by 1k to 1-kby
10k.

Depicted in Figure 8 is the speedup graph of the Jacobi
implementations. The C/C++ versions are:
• Naive: A naive implementation where indexing into the

matrices are done multiplying a column count with the
row length to get the index for an element.

• Tuned: Only pointers are used to index the matrices. For
each row iteration only pointer incrementation is need.
To change columns a second add is done.

• VTuned: Optimization of the Tuned, thus VeryTuned,
where columns are handled slightly more efficient.

• Boost: Use of the Boost 2D array data structure.
These four implementation can be seen as four different
approaches or stages of a C implementation based on a Matlab
or Numpy prototype. The Naive approach or using libraries
as Boost would be a common first step and for many the
only step. Using pointers incrementation instead of coordinate
calculations requires a thorough understanding of C and could
be seen as a next step. The Tuned implementation divides the
normal programmer from the specialist and the step further to
VTuned pushes the expertise needed even further.

We observe a surprising ordering where the C version are
not gathered in the top. The JIT implementation is significantly
faster then the Naive approach aswell as the implementation
using the Boost library. The Pointer based implementation are
grouped in top with very high execution speeds.

In figure 8 the higher speeds of the pointer based solution
is clearly visible. The fluctuations of Tuned and VTuned is a
result of normal noise, as the difference between them are in
the +/-0.2 second range.

B. Black Scholes

The Black Scholes method is used to determine the price
of European options. The algorithm is run over a time series
which is the represent the iterations done.

The input data is a single dimensional vector and the
operations performed are highly dependent on scalars. The
C version is implemented in a double for loop summing the
intermediate results together.
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Fig. 8. Comparison of C/C++ vs NumPy implementations of the Jacobi
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Fig. 9. Comparison of C/C++ vs NumPy implementations of the Black
Scholes benchmark using a 200k elements data set.

The execution consists of 200K elements and uses from 10
to 100 iterations. Figure 9 shows the speedup compared to
NumPy. Comparing the result of the NumPy implementation
that uses JIT with the C implementation, we observe that the
C execution is much faster at few iterations. However, at 100
iterations the C implementaion is only slightly faster.

C. K-Nearest Neighbor

The K-Nearest Neighbor is an algorithm which find the
closest K closest neighbors to a given point. This means
that the distance between all points must be calculated to
determine which are the closes. This is learning algorithm is
often used to determine classification of elements in a dataset,
which can consists of multi-dimensional data elements. The
implementation is made in Numpy without any loops, resulting
4 kernels of which 2 is userdefined functions and the remaining
is computational kernels. The test is run on a varying number
of elements K ranging from 10 to 100. Each elements can be
seen as a point in a 50000 dimensional space.

Figure 10 shows the same trend of increasing speedup over
iterations. At 140 iterations we see a speedup greater than 7.
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Fig. 11. Comparison of two NumPy executions – one using the regular
NumPy implementation and one using our JIT backend – that runs the N-
Body benchmark. The data set consist of 100 bodies.

D. N-Body
The N-Body test is a simulation of elements and how the

gravitational forces effects the movement of them. We used a
naive method where the effect of all elements are applied to
all elements. The simulation is run with 1000 elements for 100
iterations, where each iteration is a timestep in the algorithm.
As the algorithm contains no natural batching a manual flush
have been inserted in the Numpy to break the instruction list
into batches.

In figure 11 we show the results of running the N-Body
benchmark. We see the same trends again, where the JIT
methods performance increase over time as the initial overhead
is amortized along with a small difference between the JIT
methods.

E. Summery
Our benchmark results show a solid speedup across all test.

This a result of both loop-fusion and temporary array removal,
as well as the implemented kernel cache. This combination
shows significant improvement.

We clearly see that the number of iterations have a signif-
icant impact on the speedup. Performance decreases are seen
in the first iteration of all test and shows that a large part of
the base speedup is a result of the cache. With this we see
the overhead of the initial kernel creations amortized over the
iterations.

We see a correlation between the problem size and complex-
ity, which both effect the potential speedup. As the problem
size, complexity or both, rises the speedup to compared
to normal Numpy follows. This is reasonable as the effect
temporary arrays removal and loop-fusion has a per-element
effect, where the complexity of the program is reflected in
number of arrays fused together in the kernels. A large and
complex problem will get the largest benefit from the JIT
Framework.

We are very close or better the naive C implementation,
but as showed in the Jacobi examples there is still room for
improvements. We do not expect to reach the computation
times of optimized C code due the overhead of Numpy and the
JIT framework. Comparing with the naive and/or Boost based
C implementation shows that we clearly are within range of
these.

VI. FUTURE WORK

In this section we take a look into the future of the JIT
framework. This includes interesting areas for further investi-
gation as well as possible optimizations. This section follows
the phases of the Framework as there are paths to investigate
in most of the JIT stages.

A. AST
The AST’s are now focused on the mathematical equation

and represent these very well but there are other elements
related to the vector operations which could be represented
in the same structure. In many other bytecode formats control
operations are part of the representation. Operations for Re-
duction and Broadcasting could be added, allowing for AST’s
to include different shapes and provide more information about
their use.

Introduce optimizations based on the AST’s prior to kernel
creation. This could be dead code elimination or redefinitions
of the equations which could lead to reduced computational
complexity.

B. Code Generation
In the code generation phase there is a range of areas to

investigate further. The implementation presented has focused
on building the framework and investigating many areas of the
JIT kernel creation. It clear that optimizations to the kernel
code and the method kernels are created is a significant part
of nearing the runtime of optimized C.

The following optimization can be applied to the kernel to
achieve a increased performance on the single core architec-
ture:
• Loop unrolling: Perform multiple operation in the most

inner loop to reduce the number of index calculations
needed in the traversal.
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• Use machine specific information: Utilize available in-
formation such as cache size or architecture in the
creation of the code. This could be to use special
libraries for certain operation, to take better advantage
of the cache or use special compiler flags or specific
compilers.

The first optimization are straightforward to implement in
the existing framework by extending code generation. Taking
advantage of architecture specifics will requires substantially
more work, as the optimization will be build on more advanced
technologies. This could be Multicore, NUMA, cache-tileing
or SSE instructions.

Creating larger kernels based on multiple AST. Combin-
ing multiple AST’s into a single kernel will have multiple
advantages. By grouping AST’s which output is used in
multiple other AST’s together aditional tempoary arrays can
be removed. Using traversal calculations on multiple unrelated
AST’s in parallel will reduce reduce the time spend on index
calculations taking further advantage of loop-fusion.

This would also be the case for reduction as these could
become part of the execution loop. In case of a reduction
it could be directly applied to the result of the computation
eliminating the need to store the result in a temp array, only
to perform a reduce afterwards.

The use of LLVM and C-Lang to compile the kernel function
should be investigated. This would enable the kernel creation to
be done in memory by using the available library. Apposed to
creating C code and compiling this, it could be more beneficial
to create the intermediate language of LLVM and use their
compiler to generator executable code. This could bring down
the overhead from the compilation making the approach of JIT
compilation more attractive for programs which is translated
into many distinct kernels.

VII. CONCLUSION

We have implemented a JIT framework for Python/NumPy
that allow NumPy instructions to be expressed in an abstract
form using Abstract Syntax Tree’s. This has allowed for a
set of optimizations to the computations of Numpy vector
operations and enables further optimizations.

Our approach of transforming the NumPy instructions into
AST’s is well suited to compose bytecode instructions into
composite expressions. We show that this composition results
in loop-fusion and temporary array removal when transformed
into computational kernels.

The process of creating ASTs is a non-trivial task because
arrays may share the same underlying data structure and de-
pendencies. By performing dependency analysis and breaking
initial AST’s into smaller trees, we transform the instruction
batch into a forest of connected tree, which express the syntax
of the batch much cleaner than a single instruction list.

We show that the use of a kernel cache provides a significant
increase in performance in real world tests. This effect is
largest for small problem sizes, where the overhead of kernel
creation is expensive, but at larger problem sizes this become
insignificant as shown in fig 8.

The combined effect of temporal array removal, loop-fusion
and caching show significant speedups. Our benchmark of

Jacobi and N-Body present speedups compared to Numpy of
7.51 and 4.72 respectively. Comparing to C version we observe
that we are close to or achieve better performance then naive
implementations with or without the Boost library, but we are
still orders of magnitude slower than optimized C.

We achieve these result with a combined set of unoptimized
and in many cases naive implementations. The JIT framework
allow many more interesting optimizations that have yet to
be applied. In the future work section, we outlined a set of
optimization that bridge the performance even closer to an
optimized C implementation.

This research has been partially supported by the Danish
Strategic Research Council, Program Committee for Strategic
Growth Technologies, for the research center ’HIPERFIT:
Functional High Performance Computing for Financial Infor-
mation Technology’ (hiperfit.dk) under contract number 10-
092299.
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Abstract—In this paper we introduce Bohrium, a runtime-
system for mapping array-operations onto a number of different
hardware platforms, from multi-core systems to clusters and
GPU enabled systems. As a result, the Bohrium runtime system
enables NumPy code to utilize CPU, GPU, and Clusters. Bohrium
integrates seamlessly into NumPy through the implicit data
parallelization of array operations, which are called Universal
Functions in NumPy. Bohrium requires no annotations or other
code modifications besides changing the original NumPy import
statement to: “import bohrium as numpy”.

We evaluate the presented design through a setup that
targets a multi-core CPU, an eight-node Cluster, and a GPU, all
implemented as preliminary prototypes. The evaluation includes
three well-known benchmark applications, Black Sholes, Shallow
Water, and N-body, implemented in Python/NumPy.

I. INTRODUCTION

The popularity of the Python programming language is
growing in the HPC community. Python is a high-productivity
programming language that focus on high-productivity rather
than high-performance thus it might seem paradoxical that
such a language would gain popularity in HPC. However,
Python is easily extensible with libraries implemented in high-
performance languages such as C and FORTRAN, which
makes Python a great tool for gluing high-performance li-
braries together[1].

NumPy is the de-facto standard for scientific applications
written in Python[2]. It provides a rich set of high-level
numerical operations and introduces a powerful array object.
NumPy supports a declarative vector programming style where
numerical operations operate on full arrays rather than scalars.
This programming style is often referred to as vector or
array programming and is commonly used in programming
languages and libraries that target the scientific community,
e.g. HPF[3], MATLAB[4], Armadillo[5], and Blitz++[6].

A major shortcoming of Python/NumPy is the lack of
thread-based concurrency. The de-facto Python interpreter,
CPython, uses a Global Interpreter Lock to serialize concurrent
execution of Python bytecode thus parallelism in restricted to
external libraries. Similarly, NumPy does not parallelize array
operations but might use external libraries, such as BLAS or
FFTW, that do support parallelism.

The result is that Python/NumPy is great for gluing HPC
code together, but often it cannot stand by itself. In this paper,
we introduce a framework that addresses this issue. We intro-
duce a runtime system, Bohrium, which seamlessly executes
NumPy array operations in parallel. Through Bohrium, it is
possible to utilize CPU, GPU, and Clusters without changing

the original Python/NumPy code besides adding the import
statement: “import bohrium as numpy”.

In order to couple NumPy with the execution back-end,
Bohrium uses an intermediate vector bytecode that correspond
to the NumPy array operations. The execution back-end is then
able to execute the intermediate vector bytecode without any
Python/NumPy knowledge, which also makes Bohrium usable
for any programming language. Additionally, the intermediate
vector bytecode solves the Python import problem where the
“import numpy” instruction overwhelms the file-system in
supercomputers[7], [8]. With Bohrium, only a single node
needs to run the Python interpreter, the remaining nodes
execute the intermediate vector bytecode directly.

The version of Bohrium we present in this paper is
a proof-of-concept implementation that supports the Python
programming language through a Bohrium implementation
of NumPy1. However, the Bohrium project also supports
additional languages, such as C++ and Common Intermedi-
ate Language (CIL)2, which we have described in previous
work [?]. The proof-of-concept implementation supports three
computer architectures: CPU, GPU, and Cluster.

II. RELATED WORK

The key motivation for Bohrium is to provide a frame-
work for the utilization of diverse and complex comput-
ing systems, with the goal of obtaining high-performance,
high-productivity and high-portability, HP 3. Systems such as
pyOpenCL/pyCUDA[9] provides tools for interfacing a high
abstraction front-end language with kernels written for specific
potentially exotic hardware. In this case, lowering the bar for
harvesting the power of modern GPU’s, by letting the user
write only the GPU-kernels as text strings in the host language
Python. The goal is similar to that of Bohrium – the approach
however is entirely different. Bohrium provides a means to
hide low-level target specific code behind a programming
model and providing a framework and runtime environment
to support it.

Bohrium is more closely related to the work described in
[10], where a compilation framework, unPython, is provided
for execution in a hybrid environment consisting of both
CPUs and GPUs. The framework uses a Python/NumPy based
front-end that uses Python decorators as hints to do selective
optimizations. Bohrium performs data-centric optimizations on
vector operations, which can be viewed as akin to selective
optimizations, in the respect that we do not optimize the

1The implementation is open-source and available at www.bh107.org
2also known as Microsoft .NET



program as a whole. However, we find that the approach used
in the Bohrium Python interface is much less intrusive. All
arrays are by default handled by Bohrium – no decorators
are needed or used. This approach provides the advantage
that any existing NumPy program can run unaltered and take
advantage of Bohrium without changing a single line of code.
In contrast, unPython requires the user to modify the source
code manually, by applying hints in a manner similar to that
of OpenMP. The proposed non-obtrusive design at the source
level is to the author’s knowledge novel.

Microsoft Accelerator [11] introduces ParallelArray, which
is similar to the utilization of the NumPy arrays in Bohrium
but there are strict limitations to the utilization of Paral-
lelArrays. ParallelArrays does not allow the use of direct
indexing, which means that the user must copy a ParallelArray
into a conventional array before indexing. Bohrium instead
allows indexed operations and additionally supports vector-
views, which are vector-aliases that provide multiple ways
to access the same chunk of allocated memory. Thus, the
data structure in Bohrium is highly flexible and provides
elegant programming solutions for a broad range of numerical
algorithms. Intel provides a similar approach called Intel Array
Building Blocks (ArBB) [12] that provides retargetability
and dynamic compilation. It is thereby possible to utilize
heterogeneous architectures from within standard C++. The
retargetability aspect of Intel ArBB is represented in Bohrium
as a simple configuration file that defines the Bohrium runtime
environment. Intel ArBB provides a high performance library
that utilizes a heterogeneous environment and hides the low-
level details behind a declarative vector-programming model
similar to Bohrium. However, ArBB only provides access to
the programming model via C++ whereas Bohrium is not
limited to any one specific front-end language.

On multiple points, Bohrium is closely related in func-
tionality and goals to the SEJITS [13] project, but takes a
different approach towards the front-end and programming
model. SEJITS provides a rich set of computational kernels in
a high-productivity language such as Python or Ruby. These
kernels are then specialized towards an optimality criterion .
The programming model in Bohrium does not provide this
kernel methodology, but deduces computational kernels at
runtime by inspecting the flow of vector bytecode.

Bohrium provides, in this sense, a virtual machine opti-
mized for execution of vector operations. Previous work [14]
was based on a complete virtual machine for generic execution
whereas Bohrium provides an optimized subset.

III. THE FRONT-END LANGUAGE

To hide the complexities of obtaining high-performance
from the diverse hardware making up modern computer sys-
tems any given framework must provide a meaningful high-
level abstraction. This can be realized in the form of domain
specific languages, embedded languages, language extensions,
libraries, APIs etc. Such an abstraction serves two purposes:
(1) It must provide meaning for the end-user such that the goal
of high-productivity can be met with satisfaction. (2) It must
provide an abstraction that consists of a sufficient amount of
information for the system to optimize its utilization.

1 i m p o r t bohrium as numpy
2 solve (grid , epsilon ) :
3 center = grid [ 1 : - 1 , 1 : - 1 ]
4 north = grid [ - 2 : , 1 : - 1 ]
5 south = grid [ 2 : , 1 : - 1 ]
6 east = grid [ 1 : - 1 , : 2 ]
7 west = grid [ 1 : - 1 , 2 : ]
8 delta = epsilon+1
9 w h i l e delta > epsilon :

10 tmp = 0 . 2 * (center+north+south+east+west )
11 delta = numpy . sum (numpy . abs (tmp -center ) )
12 center [ : ] = tmp

Fig. 1: Python/NumPy implementation of the heat equation solver. The grid
is a two-dimensional NumPy array and the epsilon is a Python scalar. Note
that the first line of code imports the Bohrium module instead of the NumPy
module, which is all the modifications needed in order to utilize the Bohrium
runtime system.

Bohrium does not introduce a new programming language
and is not biased towards any specific choice of abstraction
or front-end technology. However, the front-end must be
compatible with the declarative vector programming model and
support vector slicing, also known as vector or matrix slicing
[3], [4], [15], [16]. Bohrium introduces bridges that integrate
existing languages into the Bohrium runtime system.

The Python Bridge is an extension of NumPy version
1.6, which seamlessly implements a new array back-end that
inherits the manipulation features, such as slice, reshape, offset,
and stride. As a result, the user only needs to modify the import
statement of NumPy (Fig. 1) in order to utilize Bohrium.

The Python Bridge uses hooks to divert function call where
the program accesses Bohrium enabled NumPy arrays. The
hooks will translate a given function into its corresponding
Bohrium bytecode when possible. When it is not possible, the
hooks will feed the function call back into NumPy and thereby
forces NumPy to handle the function call itself. The Bridge
operates with two address spaces for arrays: the Bohrium space
and the NumPy space. The user can explicitly assign new
arrays to either the Bohrium or the NumPy space through
a new array creation parameter. In two circumstances, it is
possible for an array to transfer from one address space to the
other implicitly at runtime.

1) When an operation accesses an array in the Bohrium
address space but it is not possible for the bridge to
translate the operation into Bohrium bytecode. In this
case, the bridge will synchronize and move the data
to the NumPy address space. For efficiency, no data is
actually copied. Instead, the bridge uses the mremap
function to re-map the relevant memory pages when
the data is already present in main memory.

2) When an operations accesses arrays in different ad-
dress spaces the Bridge will transfer the arrays in the
NumPy space to the Bohrium space.

In order to detect direct access to arrays in the Bohrium
address space by the user, the original NumPy implementation,
a Python library, or any other external source, the bridge
protects the memory of arrays that are in the Bohrium address
space using mprotect. Because of this memory protection,
subsequently accesses to the memory will trigger a segmen-
tation fault. The Bridge can then handle this kernel signal by



Bridge

Vector Engine 
Manager

Vector Engine 
Manager

Vector Engine 
Manager

Vector 
Engine

Vector 
Engine

Vector 
Engine

Vector 
Engine

Bridge is language bindings and interface to 
Bohrium, currently for NumPy

VEM has a simple interface and can support 
hierarchical setups. The VEM can distribute 
and load-balance as required.

Node level VEM knows about hardware 
features and schedules operations optimally 
on hardware.

VE's are the workhorses and know how to 
implement elementwise operations and 
composite operations, currently on CPU and 
GPU

Fig. 2: Bohrium Overview

transferring the array to the NumPy address space and cancel
the segmentation fault. This technique makes it possible for the
Bridge to support all valid Python/NumPy application, since it
can always fall back to the original NumPy implementation.

To reduce the overhead related to generating and processing
the bytecode, the Bohrium Bridge uses lazy evaluation for
recording instruction until a side effect can be observed.

IV. THE BOHRIUM RUNTIME SYSTEM

The key contribution in this work is a framework, Boh-
rium, which significantly reduces the costs associated with
high-performance program development. Bohrium provides the
mechanics to couple a programming language or library with
an architecture-specific implementation seamlessly.

Bohrium consists of a number of components that com-
municate by exchanging a Vector Bytecode3. Components are
allowed to be architecture-specific but they are all interchange-
able since all uses the same communication protocol. The idea
is to make it possible to combine components in a setup that
match a specific execution environment. Bohrium consist of
the following three component types (Fig. 2):

Bridge The role of the Bridge is to integrate Bohrium into
existing languages and libraries. The Bridge generates the
Bohrium bytecode that corresponds to the user-code.

Vector Engine Manager (VEM) The role of the VEM is
to manage data location and ownership of arrays. It
also manages the distribution of computing jobs between
potentially several Vector Engines, hence the name.

Vector Engine (VE) The VE is the architecture-specific im-
plementation that executes Bohrium bytecode.

When using the Bohrium framework, at least one imple-
mentation of each component type must be available. However,
the exact component setup depends on the runtime system and
what hardware to utilize, e.g. executing NumPy on a single ma-
chine using the CPU would require a Bridge implementation
for NumPy, a VEM implementation for a machine node, and
a VE implementation for a CPU. Now, in order to utilize a
GPU instead, we can exchange the CPU-VE with a GPU-VE
without having to change a single line of code in the NumPy
application. This is a key contribution of Bohrium: the ability

3The name vector is roughly the same as the NumPy array type, but from
a computer architecture perspective vector is a more precise term

# Bridge for NumPy
[numpy ]
type = bridge
children = node

# Vector Engine Manager for a single machine
[node ]
type = vem
impl = libbh_vem_node .so
children = gpu

# Vector Engine for a GPU
[gpu ]
type = ve
impl = lbbh_ve_gpu .so

Fig. 3: This example configuration provides a setup for utilizing a GPU on
one machine by instructing the Vector Engine Manager to use the GPU Vector
Engine implemented in the shared library lbhvb_ve_gpu.so.
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Fig. 4: Descriptor for n-dimensional array and corresponding interpretation

to change the execution hardware without changing the user
application.

A. Configuration

To make Bohrium as flexible a framework as possible, we
manage the setup of all the components at runtime through
a configuration file. The idea is that the user or system
administrator can specify the hardware setup of the system
through an ini-file (Fig. 3). Thus, it is just a matter of editing
the configuration file when changing or moving to a new
hardware setup and there is no need to change the user
applications.

B. Vector Bytecode

A vital part of Bohrium is the Vector Bytecode that consti-
tutes the link between the high-level user language and the
low-level execution engine. The bytecode is designed with
the declarative array-programming model in mind where the
bytecode instructions operate on input and output arrays. To
avoid excessive memory copying, the arrays can also be shaped
into multi-dimensional arrays. These reshaped array views are
then not necessarily comprised of elements that are contiguous
in memory. Each dimension comprises a stride and size, such
that any regularly shaped subset of the underlying data can be
accessed. We have chosen to focus on a simple, yet flexible,



data structure that allows us to express any regularly distributed
arrays. Figure 4 shows how the shape is implemented and how
the data is projected.

The aim is to have a vector bytecode that support data
parallelism implicitly and thus makes it easy for the bridge to
translate the user language into the bytecode efficiently. Addi-
tionally, the design enables the VE to exploit data parallelism
through SIMD4 and the VEM through SPMD5.

In the following, we will go through the four types of vector
bytecodes in Bohrium.

1) Element-wise: Element-wise bytecodes performs a
unary or binary operation on all array elements. Bohrium
currently supports 53 element-wise operations, e.g. addition,
multiplication, square root, equal, less than, logical and, bit-
wise and, etc. For element-wise operations, we only allow data
overlap between the input and the output arrays if the access
pattern is the same, which, combined with the fact that they
are all stateless, makes it straightforward to execute them in
parallel.

2) Reduction: Reduction bytecodes reduce an input di-
mension using a binary operator. Again, we do not allow
data overlap between the input and the output arrays and
the operator must be associative. Bohrium currently supports
10 reductions, e.g. addition, multiplication, minimum, etc.
Even though none of them are stateless, the reductions are
all straightforward to execute in parallel because of the non-
overlap and associative properties.

3) Data Management: Data Management bytecodes de-
termine the data ownership of arrays, and consists of three
different bytecodes. The synchronization bytecode orders a
child component to place the array data in the address space
of its parent component. The free bytecode orders a child
component to free the data of a given array in the global
address space. Finally, the discard operator that orders a child
component to free the meta-data associated with a given array,
and signals that any local copy of the data is now invalid.
These three bytecodes enable lazy allocation where the actual
array data allocation is delayed until it is used. Often arrays
are created with a generator (e.g. random, constants) or with
no data (e.g. temporary), which may exist on the computing
device exclusively. Thus, lazy allocation may save several
memory allocations and copies.

4) Extension methods: The above three types of bytecode
make up the bulk of a Bohrium execution. However not all
algorithms may be efficiently implemented in this way. In order
to handle operations that would otherwise be inefficient or even
impossible, we introduce the fourth type of bytecode: extension
methods. We impose no restrictions to this generic operation;
the extension writer has total freedom. However, Bohrium
do not guarantee that all components support the operation.
Initially, the user registers the extension method with paths
to all component-specific implementations of the operation.
The user then receives a new handle for this extension method
and may use it subsequently as a vector bytecode. Matrix
multiplication and FFT are examples of a extension methods
that are obviously needed. For matrix multiplication, a CPU
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specific implementation could simply call a native BLAS
library and a Cluster specific implementation could call the
ScaLAPACK library[17].

C. Bridge

The Bridge component is the bridge between the program-
ming interface, e.g. Python/NumPy, and the VEM. The Bridge
is the only component that is specifically implemented for the
user programming language. In order to add Bohrium support
to a new language or library, only the bridge component needs
to be implemented. The bridge component generates bytecode
based on the user application and sends them to the underlying
VEM.

D. Vector Engine Manager

Rather than allowing the Bridge to communicate directly
with the Vector Engine, we introduce a Vector Engine Manager
into the design. The VEM is responsible for one memory
address space in the hardware configuration. The current
version of Bohrium implements two VEMs: the Node-VEM
that handles the local address space of a single machine and
the Cluster-VEM that handles the global distributed address
space of a computer cluster.

The Node-VEM is very simple since the hardware already
provides a shared memory address space; hence, the Node-
VEM can simply forward all instruction from its parent to its
child components. The Cluster-VEM, on the other hand, has
to distribute all arrays between Node-VEMs in the cluster.

1) Cluster Architectures: In order to utilize scalable archi-
tectures fully, distributed memory parallelism is mandatory.
The current Cluster-VEM implementation is currently quite
naı̈ve; it uses the bulk-synchronous parallel model[18] with
static data decomposition and no communication latency hid-
ing. We know from previous work than such optimizations are
possible[19].

Bohrium implements all communication through the MPI-
2 library and use a process hierarchy that consists of one
master-process and multiple worker-processes. The master-
process executes a regular Bohrium setup with the Bridge,
Cluster-VEM, Node-VEM, and VE. The worker-processes, on
the other hand, execute the same setup but without the Bridge
and thus without the user applications. Instead, the master-
process will broadcast vector bytecode and array meta-data
to the worker-processes throughout the execution of the user
application.

Bohrium use a data-centric approach where a static de-
composition dictates the data distribution between the MPI-
processes. Because of this static data decomposition, all pro-
cesses have full knowledge of the data distribution and need
not exchange data location meta-data. Furthermore, the task of
computing array operations is also statically distributed which
means that any process can calculate locally what needs to
be sent, received, and computed. Meta-data communication is
only needed when broadcasting vector bytecode and creating
new arrays – a task that has an asymptotic complexity of
O(log2 n), where n is the number of nodes.



E. Vector Engine

The Vector Engine (VE) is the only component that actually
does the computations, specified by the user application. It
has to execute instructions it receives in an order that comply
with the dependencies between instructions. Furthermore, it
has to ensure that its parent VEM has access to the results as
governed by the Data Management bytecodes.

1) CPU: The CPU-ve utilizes all cores available on the
given CPU. The CPU-ve is implemented as a in-order inter-
preter of bytecode. It features dynamic compilation for single-
expression just-in-time optimization. Which allows the engine
to perform runtime-value-optimization, such as specialized
interpretation based on the shape and rank of operands. As
well as parallelization using OpenMP.

Dynamic memory allocation on the heap is a time-
consuming task. This is particularly the case when allocating
large chunks of memory because of the involvement of the
system kernel. Typically, NumPy applications use many tem-
porary arrays and thus use many consecutive equally sized
memory allocations and de-allocations. In order to reduce
the overhead associated with these memory allocations and
de-allocations, we make use of a reusing scheme similar to
a Victim Cache[20]. Instead of de-allocating memory im-
mediately, we store the allocation for later reuse. If we, at
a later point, encounter a memory allocation of the same
size as the stored allocation, we can simply reuse the stored
allocation. In order to have an upper bound of the extra
memory footprint, we have a threshold for the maximum
memory consumptions of the cache. When allocating memory
that does not match any cached allocations, we de-allocate
a number of cached allocations such that the total memory
consumption of the cache is below the threshold. Previous
work has proven this memory-reusing scheme very efficient
for Python/NumPy applications[21].

2) GPU: To harness the computational power of the mod-
ern GPU we have created the GPU-VE for Bohrium. Since
Bohrium imposes an array oriented style of programming
on the user, which directly maps to data-parallel execution,
Bohrium byte code is a perfect match for a modern GPU.

We have chosen to implement the GPU-VE in OpenCL
over CUDA. This was the natural choice since one of the major
goals of Bohrium is portability, and OpenCL is supported by
more platforms.

The GPU-VE currently use a simple kernel building and
code generation scheme: It will keep adding instructions to
the current kernel for as long as the shape of the instruction
output matches that of the current kernel, and adding it will not
create a data hazard. Input parameters are registered so they
can be read from global memory. Similarly, output parameters
are registered to be written back to global memory.

The GPU-VE implements a simple method for temporary
array elimination when building kernels:

• If the kernel already reads the input, or it is generated
within the kernel, it will not be read from global
memory.

• If the instruction output is not need later in the
instruction sequence – signaled by a discard – it will

1 . . .
2 ADD t1 , center , north
3 ADD t2 , t1 , south
4 FREE t1
5 DISCARD t1
6 ADD t3 , t2 , east
7 FREE t2
8 DISCARD t2
9 ADD t4 , t3 , west

10 FREE t3
11 DISCARD t3
12 MUL tmp , t4 , 0 . 2
13 FREE t4
14 DISCARD t4
15 MINUS t5 , tmp , center
16 ABS t6 , t5
17 FREE t5
18 DISCARD t5
19 ADD_REDUCE t7 , t6
20 FREE t6
21 DISCARD t6
22 ADD_REDUCE delta , t7
23 FREE t7
24 DISCARD t7
25 COPY center , tmp
26 FREE tmp
27 DISCARD tmp
28 SYNC delta
29 . . .

Fig. 5: Bytecode generated in each iteration of the Jacobi Method code
example (Fig. 1). Note that the SYNC instruction at line 28 transfers the
scalar delta from the Bohrium address space to the NumPy address space
in order for the Python interpreter to evaluate the condition in the Jacobi
Method code example (Fig. 1, line 9).

not be written back to global memory.

This simple scheme has proven fairly efficient. However, the
efficiency is closely linked to the ability of the bridge to send
discards close to the last usage of an array in order to minimize
the active memory footprint since this is a very scarce resource
on the GPU.

The code generation we have in the GPU-VE simply
translates every Bohrium instruction into exactly one line of
OpenCL code.

F. Example

Figure 5 illustrate the list of vector byte code that the
NumPy Bridge will generate when executing one of the
iterations in the Jacobi Method code example (Fig. 1). The
example demonstrates the nearly one-to-one mapping from the
NumPy vector operations to the Bohrium vector byte code. The
code generates seven temporary arrays (t1,...,t7) that are not
specified in the code explicitly but is a result of how Python
interprets the code. In a regular NumPy execution, the seven
temporary arrays translate into seven memory allocations and
de-allocations thus imposing an extra overhead. On the other
hand, a Bohrium execution with the Victim Cache will only
use two memory allocations since six of the temporary arrays
(t1,...,t6) will use the same memory allocation. However, no
writes to memory are eliminated. In the GPU-VE the source
code generation eliminates the memory writes all together.
(t1,...,t5) are stored only in registers. Without this strategy
the speedup gain would no be possible on the GPU due to the
memory bandwidth bottleneck.
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Fig. 6: Relative speedup of the Shallow Water application. For the CPU and
Cluster, the application simulates a 2D domain with 25k2 value points in 10
iterations. For the GPUs, it is a 2k× 4k domain in 100 iterations.

Machine: 8-node Cluster GPU Host
Processor: AMD Opteron 6272 AMD Opteron 6274
Clock: 2.1 GHz 2.2 GHz
L3 Cache: 16MB 16MB
Memory: 128GB DDR3 128GB DDR3
Compiler: GCC 4.6.3 GCC 4.6.3 & OpenCL 1.1
Network: Gigabit Ethernet N/A
Software: Linux 3.2, Python 2.7, NumPy 1.6.1

TABLE I: Machine Specifications

V. PRELIMINARY RESULTS

In order to demonstrate our Bohrium design we have imple-
mented a basic Bohrium setup. This concretization of Bohrium
is by no means exhaustive but only a proof-of-concept. The
implementation supports Python/NumPy when executing on
CPU, GPU, and Clusters. However, the implementation is
preliminary and has a high degree of further optimization
potential. In this section, we present a preliminary performance
study of the implementation that consists of the following three
representative scientific application kernels:

Shallow Water A simulation of a system governed by the
shallow water equations. A drop is placed in a still
container and the water movement is simulated in discrete
time steps. It is a Python/NumPy implementation of a
MATLAB application by Burkardt [22].

Black Scholes The Black-Scholes pricing model is a partial
differential equation, which is used in finance for calcu-
lating price variations over time[23]. This implementation
uses a Monte Carlo simulation to calculate the Black-
Scholes pricing model.

N-Body A Newtonian N-body simulation is one that studies
how bodies, represented by a mass, a location, and
a velocity, move in space according to the laws of
Newtonian physics. We use a straightforward algorithm
that computes all body-body interactions, O(n2), with
collisions detection.

We execute all three applications using four different
hardware setups: one using a two CPUs, one using an eight-
node cluster, one using a AMD GPU, and one using a NVIDIA
GPU. The dual CPU setup uses one of the cluster-nodes
whereas the two GPU setups use a similar AMD machine
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Fig. 7: Relative speedup of the Black Scholes application. For the CPU and
Cluster, the application generates 10m element arrays using 10 iterations. For
the GPUs, it generates 32m element arrays using 50 iterations.
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Fig. 8: Relative speedup of the N-Body application. For the CPU and Cluster,
the application simulates 25k bodies in 10 iterations. For the GPUs, it is 1600
bodies and 50 iterations.

(Table I, II). For each benchmark/language, we compare the
Bohrium execution with a native NumPy execution and calcu-
late the speedup based on the average wall clock time of five
executions. When executing on the PU, we use all CPU cores
available likewise when executing on the eight-node cluster,
we use all CPU cores available on the cluster-node. The input
and output data is 64bit floating point for all executions. While
measuring the performance, the variation of the timings did not
exceed 1%.

The data set sizes are chosen to represent realistic work-
loads for a cluster and GPU setup respectively. The speedups
reported are obtained by comparing the wall clock time of
the original NumPy execution with the wall clock time for

GPU: AMD/ATI NVIDIA
Processor: ATI Radeon HD 7850 GeForce GTX 680
#Cores: 1024 1536
Core clock: 900 MHz 1006 MHz
Memory: 1GB DDR5 2GB DDR5
Memory bandwidth: 153 GB/s 192 GB/s
Peak (single-precision): 1761 GFLOPS 3090 GFLOPS
Peak (double-precision): 110 GFLOPS 128 GFLOPS

TABLE II: GPU Specifications



executing the same Python program with the same size of
dataset.

A. Discussion

The Shallow Water application is memory intensive and
uses many temporary arrays. This is clear when comparing
the Bohrium execution with the Native NumPy execution on
a single CPU. The Bohrium execution is 2.18 times faster
than the Native NumPy execution primarily because of mem-
ory allocation reuse. The Cluster setup demonstrates good
scalable performance as well. Even without communication
latency hiding, it achieves a speedup of 6.07 compared to the
CPU setup and 13.2 compared to Native NumPy. Finally, the
two GPUs show an impressive 89 and 140 speedup, which
demonstrates the efficiency of parallelizing array operations
on a vector machine. NVIDIA is roughly one and a half times
faster than AMD primarily because of the higher floating-point
performance and memory bandwidth.

The Black Scholes application is computationally intensive
and embarrassingly parallel, which is evident in the benchmark
result. The cluster setup achieve a speedup of 10.1 compared
to the Native NumPy and an almost linearly speedup of 7.91
compared to the CPU. Again, the performance of the GPUs is
superior with a speedup of 130 and 181.

The N-Body application is memory intensive but does not
use many temporary arrays thus the speedup of the CPU
execution with the Native NumPy execution is only 1.29.
However, the application scales well on the Cluster with a
speedup of 9.0 compared to the Native NumPy execution and
a speedup of 7.96 compared to the CPU execution. Finally,
the two GPUs demonstrate a good speedup of 41.3 and 77.1
compared to the Native NumPy execution.

VI. FUTURE WORK

From the experiments, we can see that the performance is
generally good. There is much room for further improvements
when executing on the Cluster. Communication techniques,
such as communication latency hiding and message aggrega-
tions, should improve performance[24], [25] further.

Despite the good results, we are convinced that we can still
improve these results significantly. We are currently working
on an internal representation for bytecode dependencies, which
will enable us to rearrange the instructions and eliminate
the use of temporary storage. In the article describing Intel
Array Building Blocks, the authors report that the removal
of temporary arrays is the single optimization that yields
the greatest performance improvement. Informal testing with
manual removal of temporary storage shows an order of
magnitude improvement, even for simple benchmarks.

The GPU vector engine already uses a simple scanning
algorithm that detects some instances of temporary vectors
usage, as that is required to avoid exhausting the limited GPU
memory. However, the internal representation will enable a
better detection of temporary storage, but also enable loop
detection and improve kernel generation and kernel reusability.

This internal representation will also allow pattern match-
ing, which will allow selective replacement of parts of the
instruction stream with optimized versions. This can be used

to detect cases where the user is calculating a scalar sum, using
a series of reductions, or detect matrix multiplications. By
implementing efficient micro-kernels for known computations,
we can improve the execution significantly.

Once these kernels are implemented, it is simple to offer
them as function calls in the bridges. The bridge implementa-
tion can then simply implement the functionality by sending
a pre-coded sequence of instructions.

We are also investigating the possibility of implementing a
Bohrium Processing Unit, BPU, on FPGAs. With a BPU, we
expect to achieve performance that rivals the best of todays
GPUs, but with lower power consumption. As the FPGAs
come with a built-in Ethernet support, they can also provide
significantly lower latency, possibly providing real-time data
analysis.

Finally, the ultimate goal of the Bohrium project is to
support clusters of heterogeneous computation nodes where
components specialized for GPUs, NUMA6 aware multi-core
CPUs, and Clusters, work together seamlessly.

VII. CONCLUSION

The declarative array-programming model used in Boh-
rium provides a framework for high-performance and high-
productivity. It enables the end-user to execute regular
Python/NumPy applications on a broad range of hardware
architectures efficiently without any hardware specific knowl-
edge. Furthermore, the Bohrium design supports scalable ar-
chitectures such as clusters and supercomputers. It is even
possible to combine architectures in order to exploit hybrid
programming where multiple levels of parallelism exist, which
is essential when fully utilizing supercomputers such as the
Blue Gene/P[26].

In this paper, we introduce a proof-of-concept implemen-
tation of Bohrium that supports the Python programming
language through a Bohrium implementation of NumPy and
three computer architectures: CPU, GPU, and Cluster. The
preliminary results are very promising – a Black Scholes
computation achieves 181 times speedup for the same code,
when comparing a Native NumPy execution and a Bohrium
execution that utilize the GPU back-end.

The results are sufficiently good that we remain optimistic
that we can reach a level where a pure Python/NumPy appli-
cation offers sufficient performance on its own.
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Abstract. In this paper, we explore the mapping of the NumCIL C#
vector library where operations are offloaded to the Bohrium runtime
system and evaluate the performance gains. By using a feature-rich lan-
guage, such as C#, we argue that productivity can be increased. The
use of the Bohrium runtime system allows all vector operations written
in C# to be executed efficiently on multi-core systems.
We evaluate the presented design through a setup that targets a 32 core
machine. The evaluation includes well-known benchmark applications,
such as Black Sholes, 5-point stencil, Shallow Water, and N-body.
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1 Introduction

We have previously introduced the NumCIL library[13] for performing linear
algebra in C#, using an approach known as vector programming, array pro-
gramming or collection programming[12]. In such an approach, the programmer
writes high-level operations on multidimensional vectors rather than looping over
the individual elements. One of the primary benefits of such an approach is that
it leaves the program more readable because it is more of a description of what
should be done, rather than how it should be done. This approach can greatly
speed up the development cycle, as the developer can focus on the structure of
compact expressions, rather than explictily specify details such as loop indicies.

The Bohrium runtime system[10] is a related project aiming to deliver ar-
chitecture specific optimizations. In Bohrium, a program will use the C or C++
interface to describe multidimensional vectors and request various operations on
these. The execution of these operations is deferred until the program requires
access to the result. This lazy evaluation approach enables the Bohrium run-
time to collect a number of scheduled instructions and perform optimizations on
these. The optimizations are an ongoing research project.

Since Bohrium uses a common intermediate representation of the scheduled
operations, it is possible to apply different optimization strategies to different
execution targets. The Bohrium intermediate representation also enables exe-
cution of Bohrium bytecode on multi-core CPU’s, GPGPU’s and even cluster
setups.
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In this article, we only evaluate the performance using a multi-core CPU. A
more detailed description of the Bohrium system is available in M. Kristensen
et al.[10].

By adding an extension to the NumCIL library, the vector operations ex-
pressed in C# can be forwarded to the Bohrium runtime system. This enables the
programmer to have a rapid development cycle, without even having Bohrium
installed. Once the program is tested for correctness, the unmodified program
can then be executed with Bohrium support, such that all vector operations are
executed with an efficient multi-core implementation.

2 Related Work

The array programming approach is in widespread use over a number of differ-
ent programming languages, including Ada[5], CoArray Fortran[8], Chapel[3],
NumPy[9] and numerous others. The NumPy approach differs in that it has no
explicit support in Python but is implemented using Pythonic constructs in such
a way that it seems natural to Python programmers. This approach means that
nothing needs to change, in the Python programmers toolchain, to take advan-
tage of the array programming found in NumPy. This non-intrusive approach
with a natural language integration is the inspiration for the NumCIL library.

The idea of using language features to add support for vector program-
ming instead of modifying the language is also found in the C++ libraries
Armadillo[11] and Blitz++[16]. The Armadillo library leverages existing linear
algebra systems to achieve high performance but does so at template instantia-
tion time, rather than at runtime.

The RyuJIT[4] compiler adds support for smaller vectors by converting vec-
tor operations to SIMD instructions. This approach helps in handling memory
access and accelerates the execution time, but does require changes to the run-
time system and does not offer any features for larger arrays. The RuyJIT is
scheduled to ship with Microsoft’s .Net framework 5[4]. The Mono runtime[17]
offers the Mono.Simd library with similar capabilities, implemented as a library
with special support from the runtime[18].

The ideas for providing an intermediate representation of the requested op-
erations, and performing optimizations on this, are also found in the, now dis-
continued, Intel Array Building Blocks (ArBB) project[7]. The ArBB system
relies on a special compiler and an extended C++ syntax to describe computa-
tional kernels. When executing a batch of instructions, a number of optimization
techniques are applied, such as removal of scratch memory, loop fusion, etc.

The Bohrium runtime system[10] is similar to ArBB and Chapel, in that the
programmer uses vectors and describes what should be done, rather than how
it is done. Internally this is achieved by means of a vector-oriented byte-code,
i.e. simple instructions for a pseudo vector processing system. This abstraction
allows Bohrium to be programming language agnostic, and is used to express a
flat C API . With this API, it is possible to support a number of programming



3

languages, such as Python, C++ and C#, in which the developer uses some
array-library to interact with Bohrium.

The programming model used by Bohrium and NumCIL is very similar to
the one found in NumPy[9], for which there also exists a Bohrium interface. In
that sense, NumCIL fills the same role as NumPy, by providing an abstraction
for interacting with Bohrium.

3 Implementation

The NumCIL library consists of three main item types: Multidimensional views,
data storage and operators. The views are applied to the data storage to se-
lect a subset of the flat data storage, and project it into multiple dimensions,
using offset, stride and skip values. Applied operators affect only the subset
of the data that view projects, which greatly reduces the need for copying data
into appropriately sized containers. The implementation of the multidimensional
views found in NumCIL are compatible with NumPy’s ndarrays[9] and also the
Bohrium data views.

The primary design goal for the Bohrium extension to NumCIL has been
to allow a non-intrusive addition. This allows code already written and tested
with NumCIL to use the Bohrium runtime system without any changes. The
non-intrusive design is achieved by hooking into the DataAccessor class, which
is normally a simple wrapper for an array. By replacing the NumCIL factory
instance that produces DataAccessor items, it becomes possible to provide
Bohrium enabled data accessors.

Table 1 shows a simple multidimensional program written with NumCIL. It il-
lustrates how a flat array can be projected into multiple dimensions, and how the
data can be broadcasted into larger dimensions. The program can be executed in
Bohrium, simply by adding the statement NumCIL.Bohrium.Utility.Activate();
prior to running the code.

If the program in table 1 is executed with Bohrium loaded, the variable “a”
will not be allocated until it is needed in the very last line. In that very last line,
the allocation, multiplication, addition and summation is executed in Bohrium
as a single instruction batch. Depending on the Garbage Collector, the batch
may or may not contain instructions to deallocate the memory as well.

When a Bohrium enabled data accessor is created, it can be created with or
without existing data. If there is no existing data, as with “a”, an empty array
is allocated by the Bohrium system and a handle for this is maintained by the
data accessor. If existing data is already present, as with “c”, the data accessor
behaves as a non-Bohrium enabled data accessor facilitating access to the array
data. This ensures that data is always kept where it is already allocated and not
copied needlessly.

When an operation is applied to a multidimensional view that is referencing
a Bohrium enabled data accessor, such as the multiplication, the views involved
are created in Bohrium and an instruction matching the requested operation is
emitted to the Bohrium runtime system. However, emitting the operation does
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C# code Resulting data

using NumCIL.Float32;

...

var a = Generate.Range(3);

var b = a[Range.All, Range.NewAxis];

var data = new float[] { 2, 3 };

var c = new NdArray(data);

var d =

b

*

c;

Console.WriteLine((d

+ 1)

.Sum());

[0, 1, 2]

[[0], [1], [2]]

[2, 3]

[2, 3]

[[0, 0], [2, 3], [4, 6]] =

[[0 ,0], [1, 1], [2, 2]]

*

[[2, 3], [2, 3], [2, 3]]

[[0, 0], [2, 3], [4, 6]]

+ [[1, 1], [1, 1], [1, 1]]

= [[1, 1], [3, 4], [5, 7]] = 15

Table 1: A simple vector program with NumCIL

nothing more than adding the operations to the current batch. Since the CLR is
using a garbage collected approach, there is a chance that the GC will run before
the operations are executed. If the GC runs, it can reuse the memory occupied
by non-referenced items, and it may also choose to move existing data to a new
location, and thus invalidating a pointer to the data. This problem is exacerbated
by the introduction of temporary storage when compiling a composite statement
as shown in table 2.

Composite expression Expansion to single expressions

var e = Generate.Range(10);

var f = ((e + 10) * e) - 1;

var e = Generate.Range(10);

var t0 = e + 10;

var t1 = t0 * e;

var f = t1 - 1;

Table 2: A composite expression and the equivalent single expression version

All of the temporary variables shown in table 2 will be short lived and elim-
inated when the GC runs. In order to avoid issues with the GC, it is possible to
Pin the memory when obtaining a pointer to the data. As long as the pointer
is Pinned, the GC will not attempt to move or reuse the data. Since multiple
multidimensional views may point to the same data, as with “a” and “b”, a
reference counting scheme is used to defer the Unpinning until the last reference
is out of scope. This further ensures that data is not copied but used where it is
located, with minimal overhead.
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When a Bohrium enabled data accessor is created without existing data, only
the view data is initialized, and the data storage is kept uninitialized. When the
operations eventually execute, the Bohrium runtime will allocate only the needed
data. This allows for using more memory than what is physically available on
the machine with no side effects.

When data is requested by the CIL, i.e. for the summation operation which
returns a scalar, all pending operations need to execute to ensure that the data
observed by the application is seeing the expected results. This is accomplished
by performing a Bohrium sync command on the target data, and then requesting
a flush of all pending instructions.

In the case where the data being requested is not backed by a CIL array, an
extra instruction is inserted that will copy the data allocated by Bohrium into
a freshly created CIL array. This copy operation is done prior to the sync and
flush commands, such that the intermediate storage can easily be eliminated by
the Bohrium runtime system, thus allowing the results to be written directly to
the CIL array.

If the user is only requesting a single element from the data, the entire data
stays in the Bohrium allocated memory region, and only the requested element
is copied into a CIL variable. This greatly reduces memory usage if only single
elements are requested in a large array, such as when reading only the border
values. If the user is writing to a single element in data that is not backed by a
CIL array, all pending operations are flushed before writing the element directly
into the memory region allocated by Bohrium. Table 3 shows the different states
the DataAccessor goes through.

Created with Used in operation Access element Access array

create new array
emit copy

flush free bh handle
No data → create bh handle → read from pointer → flush

convert to CIL
return array

pin flush flush
CIL array → create bh handle → unpin → unpin

read array return array

Table 3: State flow for a Bohrium enabled NumCIL DataAccessor
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4 Results

To evaluate the performance of the library, we have implemented a number of
computational cores for classic simulations. The benchmarks are all implemented
in C# and run using Mono 3.2.8 on Ubuntu 14.04.02. In order to provide a
reasonable baseline, the benchmarks are also implemented with NumPy 1.8.2
and executed with Python 2.7.6. The hardware platform has two AMD Opteron
6272 CPUs with a total of 32 cores and 128 GB DDR3 memory with 4 memory
busses. GCC version 4.8.2 was used to compile the Bohrium runtime. Source
code is available for the Bohrium and NumCIL packages[15], as well as for the
benchmarks[14].

Various options were used when executing the C# benchmarks. The basic
Managed mode is using only C# and CIL functionality. The Unsafe configura-
tion, utilizes the option to bypass array bounds checks within the CIL runtime,
by accessing the data through memory pointers, with so-called unsafe code.
The Unsafe configuration does not appear to influence the execution times
on Mono, but is shown here as it does have an effect on the Microsoft .Net
runtime[13]. When executing the benchmarks with Bohrium enabled, the num-
ber of utilized threads are varied to give an indication of the scalability.

The NumPy versions execute faster than the C# versions of the same code in
general. There are two main reasons for this. Firstly, the NumPy implementation
is written mostly in C, which means that none of the Python overhead is present.
Secondly, the Mono JIT compiler does not perform various optimizations, such as
efficient function inlining. When using the Microsoft .Net runtime, the execution
times are roughly half of the Mono results, and approximately 20% faster than
the NumPy code[13]. On the Windows platform, we would expect NumCIL by
itself to perform roughly 50% faster than the reported Mono results, but when
coupled with Bohrium, only metadata is handled by the .Net runtime, and thus
the obtained execution times would be the same.

4.1 General observations

The speedup does not exceed a factor of 4, even when using 32 cores. This limi-
tation stems from the current execution mode in Bohrium, where each operation
is executed individually. This approach has the effect that each operation will
read all memory inputs and write all memory outputs for each operation, even
if the inputs or outputs are needed for other operations. As the inputs and out-
puts are vectors, the caches are not utilized, effectively limiting the output to
the bandwidth of the memory system.

This issue, and many other performance issues, can be mitigated through a
technique known as loop fusion, where loop traversals are transposed, such that
less memory access is required. Even though these optimizations are not yet
implemented in Bohrium, we still see speedups. Once these optimizations are
fully implemented in Bohrium, the NumCIL library will automatically perform
even better.
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4.2 Black-Scholes model

The Black-Scholes model is a financial method for estimating the price of stock
options[1]. It can be considered an embarrassingly parallel computation kernel,
similar to Monte-Carlo π, but with a heavier computational workload. As shown
in figure 1, the performance gains from the Bohrium runtime are fairly low, due
to the current configuration not being able to efficiently fuse the operations,
causing a high load on the memory system. As the memory system is saturated,
adding execution units does not improve performance.
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Fig. 1: BlackScholes 3200000, 36 iterations

4.3 Heat Equation

The Heat Equation benchmark is implemented as a 5-point stencil and simulates
thermal dispersion in a material. The stencil is applied ten times to a 5000x5000
element array of single precision floating point numbers. The computation is
simple additions, using multiple parallel accesses to the same memory. Even
though the Mono implementation has some drawbacks and performs significantly
slower than NumPy, the Bohrium runtime can re-use memory allocations, which
allows for significant speedups[6]. Despite the low computational complexity, the
Bohrium runtime can speed up execution when using all cores.

4.4 n-body simulation

The n-body simulation is implemented in a naive manner, yielding a O = N2

complexity. For each time-step, the forces of all bodies on all bodies are com-
puted, and their velocities and positions are updated. The Mono runtime slightly
outperforms the NumPy version for this benchmark. When the Bohrium run-
time is activated, it is capable of memory re-use and runs over twice as fast on
a single core, with speedup on up to 16 threads.
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Fig. 2: HeatEquation 5000x5000, 10 iterations
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Fig. 3: nBody 5000, 10 iterations

4.5 Shallow water

The Shallow Water simulation[2] is performed on a grid of 5000 by 5000 sin-
gle precision numbers, over ten discrete timesteps, simulating water movements.
Many independent computations on each element dominate the computations,
yielding irregular memory accesses. The NumPy implementation is more than
twice as fast as the Mono version. The Bohrium runtime can improve this even
further, by almost a factor of two, yielding a total speedup of four times, com-
pared to the basic Mono performance.
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Fig. 4: Shallow water 5000x5000, 10 iterations

5 Conclusion

We have implemented and evaluated an extension to the NumCIL library, which
enables completely transparent support for execution of existing programs with
the Bohrium runtime system.

From the benchmarks, it is clear that even with the sub-par performance from
the Mono JIT compiler, the Bohrium runtime system can deliver substantial
speedups.

Given the high-level language features in C#, it is clear that the NumCIL
library can be used for rapid development, and when paired with the Bohrium
runtime, it also yields high performance.

Even with the speedups reported here, a number of additional optimiza-
tions are being developed for the Bohrium runtime, including loop fusion and
NUMA-aware memory handling. Once these optimizations are implemented in
Bohrium, the loosely coupled approach used in NumCIL will automatically give
even greater performance boosts.
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Abstract—In this paper, we introduce a unified back-
end framework for NumPy that combine a broad range of
Python code accelerators with no modifications to the user
Python/NumPy application. Thus, a Python/NumPy application
can utilize hardware architecture such as multi-core CPUs and
GPUs and optimization techniques such as Just-In-Time compi-
lation and loop fusion without any modifications. The backend
framework defines a number of primitive functions, including
all existing ufuncs in NumPy, that a specific backend must
implement in order to accelerate a Python/NumPy application.
The framework then seamlessly translates the Python/NumPy
application into a stream of calls to these primitive functions.

In order to demonstrate the usability of our unified backend
framework, we implement and benchmark four different back-
end implementations that use four different Python libraries:
NumPy, Numexpr, libgpuarray, and Bohrium. The results are
very promising with a speedup of up to 18 compared to a pure
NumPy execution.

I. INTRODUCTION

Python is a high-level, general-purpose, interpreted lan-
guage. Python advocates high-level abstractions and conve-
nient language constructs for readability and productivity
rather than high-performance. However, Python is easily ex-
tensible with libraries implemented in high-performance lan-
guages such as C and FORTRAN, which makes Python a great
tool for gluing high-performance libraries together[1]. NumPy
is the de-facto standard for scientific applications written in
Python[2] and contributes to the popularity of Python in the
HPC community. NumPy provides a rich set of high-level
numerical operations and introduces a powerful array object.
The array object is essential for scientific libraries, such as
SciPy[3] and matplotlib[4], and a broad range of Python
wrappers of external scientific libraries[5], [6], [7]. NumPy
supports a declarative vector programming style where numer-
ical operations applies to full arrays rather than scalars. This
programming style is often referred to as vector or array pro-
gramming and is commonly used in programming languages
and libraries that target the scientific community, e.g. HPF[8],
ZPL[9], MATLAB[10], Armadillo[11], and Blitz++[12].

NumPy does not make Python a high-performance lan-
guage but through array programming it is possible to achieve
performance within one order of magnitude of C. In contrast
to pure Python, which typically is more than hundred if
not thousand times slower than C. However, NumPy does
not utilize parallel computer architectures when implementing
basic array operations; thus only through external libraries,
such as BLAS or FFTW, is it possible to utilize data or task
parallelism.

In this paper, we introduce a unified NumPy backend that
enables seamless utilization of parallel computer architecture

such as multi-core CPUs, GPUs, and Clusters. The framework
exposes NumPy applications as a stream of abstract array
operations that architecture-specific computation backends can
execute in parallel without the need for modifying the original
NumPy application.

The aim of this new unified NumPy backend is to provide
support for a broad range of computation architectures with
minimal or no changes to existing NumPy applications. Fur-
thermore, we insist on legacy support (at least back to version
1.6 of NumPy), thus we will not require any changes to the
NumPy source code itself.

II. RELATED WORK

Numerous projects strive to accelerate Python/NumPy ap-
plications through very different approaches. In order to utilize
the performance of existing programming languages, projects
such as Cython[13], IronPython[14], and Jython[15], introduce
static source-to-source compilation to C, .NET, and Java,
respectively. However, none of the projects are seamlessly
compatible with Python – Cython extends Python with static
type declarations whereas IronPython and Jython do not sup-
port third-party libraries such as NumPy.

PyPy[16] is a Python interpreter that makes use of Just-
in-Time (JIT) compilation in order to improve performance.
PyPy is also almost Python compliant, but again PyPy does
not support libraries such as NumPy fully and, similar to
IronPython and Jython, it is not possible to fall back to
the original Python interpreter CPython when encountering
unsupported Python code.

Alternatively, projects such as Weave[17], Numexpr[18],
and Numba[19] make use of JIT compilation to accelerate
parts of the Python application. Common for all of them is
the introduction of functions or decorators that allow the user
to specify acceleratable code regions.

In order to utilize GPGPUs the PyOpenCL and PyCUDA
projects enable the user to write GPU kernels directly in
Python[20]. The user writes OpenCL[21] or CUDA[22] spe-
cific kernels as text strings in Python, which simplifies the
utilization of OpenCL or CUDA compatible GPUs but still
requires OpenCL or CUDA programming knowledge. Less in-
trusively, libgpuarray, which is part of the Theano[23] project,
introduces GPU arrays on which all operations execute on the
GPU. The GPU arrays are similar to NumPy arrays but are
not a drop-in replacement.

III. THE INTERFACE

The interface of our unified NumPy backend (npbackend)
consists of two parts: a user interface that facilitates the
end NumPy user and a backend interface that facilitates the



Fig. 1: The Software Stack
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backend writers (Fig. 1). The source code of both interfaces
and all backend implementations is an available at the Bohrium
project’s website1 for further inspection. In the following two
subsections, we present the two interfaces.

A. The User Interface

The main design objective of the user interface is easy
transition from regular NumPy code to code that utilizes a
unified NumPy backend. Ideally, there should be no difference
between NumPy code with or without a unified NumPy
backend. Through modifications of the NumPy source code,
the DistNumPy[24] and Bohrium[25] projects demonstrate
that it is possible to implement an alternative computation
backend that does not require any changes to the user’s NumPy
code. However, it is problematic to maintain a parallel version
of NumPy that contains complex modifications to numerous
parts of the project, particularly when we have to fit each
modification to a specific version of NumPy (version 1.6
through 1.9).

As a consequence, instead of modifying NumPy, we in-
troduce a new Python module npbackend that implements an
array object that inherit from NumPy’s ndarray. The idea is
that this new npbackend-array can be a drop-in replacement
of the numpy-array such that only the array object in NumPy
applications needs to be changed. Similarly, the npbackend
module is a drop-in replacement of the NumPy module.

The user can make use of npbackend through an ex-
plicit and an implicit approach. The user can explicitly im-
port npbackend instead of NumPy in the source code e.g.
“import npbackend as numpy” or the user can alias
NumPy imports with npbackend imports globally through
the -m interpreter argument e.g. “python -m npbackend
user_app.py”.

Even though the npbackend is a drop-in replacement, the
backend might not implement all of the NumPy API, in
which case npbackend will gracefully use the original NumPy
implementation. Since npbackend-array inherits from numpy-
array, the original NumPy implementation can access and
apply operations on the npbackend-array seamlessly. The result
is that a NumPy application can utilize an architecture-specific
backend with minimal or no modification. However, npback-
end does not guarantee that all operations in the application
will utilize the backend — only the ones that the backend
support.

1http://bh107.org

1 i m p o r t npbackend as np
2 i m p o r t matplotlib .pyplot as plt
3
4 d e f solve (height , width , epsilon= 0 . 0 0 5 ) :
5 grid = np .zeros ( (height+2 ,width+2) ,dtype=np .float64 )
6 grid [ : , 0 ] = -273 .15
7 grid [ : , - 1 ] = -273 .15
8 grid [ - 1 , : ] = -273 .15
9 grid [ 0 , : ] = 4 0 . 0

10 center = grid [ 1 : - 1 , 1 : - 1 ]
11 north = grid [ : - 2 , 1 : - 1 ]
12 south = grid [ 2 : , 1 : - 1 ]
13 east = grid [ 1 : - 1 , : - 2 ]
14 west = grid [ 1 : - 1 , 2 : ]
15 delta = epsilon+1
16 w h i l e delta > epsilon :
17 tmp = 0 . 2 * (center+north+south+east+west )
18 delta = np . sum (np . abs (tmp -center ) )
19 center [ : ] = tmp
20 plt .matshow (center , cmap= ' h o t ' )
21 plt .show ( )

Fig. 2: Python implementation of a heat equation solve that uses the finite-
difference method to calculate the heat diffusion. Note that we could replace
the first line of code with “import numpy as np” and still utilize
npbackend through the command line argument “-m”, e.g. “python -m
npbackend heat2d.py”

Figure 2, is an implementation of a heat equation solver
that imports the npbackend module explicitly at the first
line and a popular visualization module, Matplotlib, at the
second line. At line 5, the function zeros() creates a new
npbackend-array that overloads the arithmetic operators, such
as * and +. Thus, at line 17 the operators use npbackend
rather than NumPy. However, in order to visualize (Fig. 3)
the center array at line 20, Matplotlib accesses the memory
of center directly.

Now, in order to explain what we mean by directly, we
have to describe some implementation details of NumPy. A
NumPy ndarray is a C implementation of a Python class
that exposes a segment of main memory through both a C
and a Python interface. The ndarray contains metadata that
describes how the memory segment is to be interpreted as a
multi-dimensional array. However, only the Python interface
seamlessly interprets the ndarray as a multi-dimensional array.
The C interface provides a C-pointer to the memory segment
and lets the user handle the interpretation. Thus, with the
word directly we mean that Matplotlib accesses the memory
segment of center through the C-pointer. In which case, the
only option for npbackend is to make sure that the computed
values of center are located at the correct memory segment.
Npbackend is oblivious to the actual operations Matplotlib
performs on center.

Consequently, the result of the Matplotlib call is a Python
warning explaining that npbackend will not accelerate the
operation on center at line 20; instead the Matplotlib im-
plementation will handle the operation exclusively.

B. The Backend Interface

The main design objective of the backend interface is
to isolate the calculation-specific from the implementation-
specific. In order to accomplish this, we translate a NumPy
execution into a sequence of primitive function calls, which
the backend must implement.



Fig. 3: The matplotlib result of executing the heat equation solver from figure
2: solve(100,100)

.

Figure 4 is the abstract Python module that a npbackend
must implement. It consists of two Python classes, base
and view, that represent a memory sequence and a multi-
dimensional array-view thereof. Since this is the abstract
Python module, the base class does not refer to any physical
memory but only a size and a data type. In order to implement
a backend, the base class could, for example, refer to the
main memory or GPU memory. Besides the two classes,
the backend must implement eight primitive functions. Seven
of the functions are self-explanatory (Fig. 4), however the
extmethod() function requires some explanation. In order
to support arbitrary NumPy operations, npbackend introduces
an Extension Method that passes any operations through to
the backend. For example, it is not convenient to implement
operations such as matrix multiplication or FFT only using
ufuncs; thus we define an Extension Method called matmul
that corresponds to a matrix multiplication. Now, if a backend
knows the matmul operation it should perform a matrix mul-
tiplication. On the other hand, if the backend does not know
matmul it must raise a NotImplementedError exception.

IV. THE IMPLEMENTATION

The implementation of npbackend consists primarily of the
new npbackend-array that inherits from NumPy’s numpy-array.
The npbackend-array is implemented in C and uses the Python-
C interface to inherit from numpy-array. Thus, it is possible
to replace npbackend-array with numpy-array both in C and
in Python — a feature npbackend must support in order to
support code such as the heat equation solver in figure 2.

As is typical in object-oriented programming, the
npbackend-array exploits the functionality of numpy-array as
much as possible. The original numpy-array implementation
handles metadata manipulation, such as slicing and trans-
posing; only the actual array calculations will be handled
by the npbackend. The npbackend-array overloads arithmetic
operators thus an operator on npbackend-arrays will call the
backend function ufunc (Fig. 4 Line 26). Furthermore, since
npbackend-arrays inherit from numpy-array, an operator on a
mix of the two array classes will also use the backend function.

However, NumPy functions in general will not make use

1 ””” A b s t r a c t module f o r c o m p u t a t i o n backends ”””
2
3 c l a s s base ( o b j e c t ) :
4 ””” A b s t r a c t b a s e a r r a y h a n d l e ( an a r r a y has on ly one ←↩

base a r r a y ) ”””
5 d e f __init__ (self , size , dtype ) :
6 self .size = size # T o t a l number o f e l e m e n t s
7 self .dtype = dtype # Data t y p e
8
9 c l a s s view ( o b j e c t ) :

10 ””” A b s t r a c t a r r a y view h a n d l e ”””
11 d e f __init__ (self , ndim , start , shape , stride , base ) :
12 self .ndim = ndim #Number o f d i m e n s i o n s
13 self .shape = shape # Tuple o f d imens ion s i z e s
14 self .base = base #The ba se a r r a y t h i s view r e f e r s t o
15 self .start = start*base .dtype .itemsize # O f f s e t from ←↩

b as e ( i n b y t e s )
16 self .stride = [x*base .dtype .itemsize f o r x i n stride ] ←↩

# Tuple o f s t r i d e s ( i n b y t e s )
17
18 d e f get_data_pointer (ary , allocate=False , nullify=False ) :
19 ””” R e tu r n a C- p o i n t e r t o t h e a r r a y d a t a ( a s a Python ←↩

i n t e g e r ) ”””
20 r a i s e NotImplementedError ( )
21
22 d e f set_data_from_ary (self , ary ) :
23 ””” Copy d a t a from ' a r y ' i n t o t h e a r r a y ' s e l f ' ”””
24 r a i s e NotImplementedError ( )
25
26 d e f ufunc (op , *args ) :
27 ””” Per fo rm t h e ufunc ' op ' on t h e ' a r g s ' a r r a y s ”””
28 r a i s e NotImplementedError ( )
29
30 d e f r e d u c e (op , out , a , axis ) :
31 ””” Reduce ' a x i s ' d imens ion of ' a ' and w r i t e t h e r e s u l t ←↩

t o o u t ”””
32 r a i s e NotImplementedError ( )
33
34 d e f accumulate (op , out , a , axis ) :
35 ””” Accumulate ' a x i s ' d imens ion of ' a ' and w r i t e t h e ←↩

r e s u l t t o o u t ”””
36 r a i s e NotImplementedError ( )
37
38 d e f extmethod (name , out , in1 , in2 ) :
39 ””” Apply t h e e x t e n d e d method ' name ' ”””
40 r a i s e NotImplementedError ( )
41
42 d e f r a n g e (size , dtype ) :
43 ””” C r e a t e a new a r r a y c o n t a i n i n g t h e v a l u e s [ 0 : s i z e [ ”””
44 r a i s e NotImplementedError ( )
45
46 d e f random (size , seed ) :
47 ””” C r e a t e a new random a r r a y ”””
48 r a i s e NotImplementedError ( )

Fig. 4: The backend interface of npbackend.

of the npbackend backend since many of them uses the C-
interface to access the array memory directly. In order to
address this problem, npbackend has to re-implement much
of the NumPy API, which is a lot of work and is prone to
error. However, we can leverage the work by the PyPy project;
PyPy does not support the NumPy C-interface either but they
have re-implemented much of the NumPy API already. Still,
the problem goes beyond NumPy; any library that makes use
of the NumPy C-interface will have to be rewritten.

The result is that the npbackend implements all array
creation functions, matrix multiplication, random, FFT, and all
ufuncs for now. All other functions that access array memory
directly will simply get unrestricted access to the memory.

A. Unrestricted Direct Memory Access

In order to detect and handle direct memory access to
arrays, npbackend uses two address spaces for each array



memory: a user address space visible to the user interface
and a backend address space visible to the backend interface.
Initially, the user address space of a new array is memory
protected with mprotect such that subsequent accesses to the
memory will trigger a segmentation fault. In order to detect and
handle direct memory access, npbackend can then handle this
kernel signal by transferring array memory from the backend
address space to the user address space. In order to get access
to the backend address space memory, npbackend calls the
get_data_pointer() function (Fig. 4, Line 18). Simi-
larly, npbackend calls the set_data_from_ary() function
(Fig. 4, Line 22) when the npbackend should handle the array
again.

In order to make the transfer between the two address
spaces, we use mremap rather than the more expensive
memcpy. However, mremap requires that the source and
destination are memory page aligned. That is not a problem
at the backend since the backend implementer can simply use
mmap when allocating memory; on the other hand, we cannot
change how NumPy allocates its memory at the user address
space. The solution is to re-allocate the array memory when
the constructor of npbackend-array is called using mmap. This
introduces extra overhead but will work in all cases with no
modifications to the NumPy source code.

V. BACKEND EXAMPLES

In order to demonstrate the usability of npbackend, we im-
plement four backends that use four different Python libraries:
NumPy, Numexpr, libgpuarray, and Bohrium, all of whom are
standalone Python libraries in their own right. In this section,
we will describe how the four backends implement the eight
functions that make up the backend interface (Fig. 4).

A. NumPy Backend

In order to explore the overhead of npbackend, we
implement a backend that uses NumPy i.e. NumPy uses
NumPy through npbackend. Figure 5 is a code snippet
of the implementation that includes the base and view
classes, which inherit from the abstract classes in figure
4, the three essential functions get_data_pointer(),
set_data_from_ary(), and ufunc(), and the Exten-
sion Method function extmethod().

The NumPy backend associates a NumPy view
(.ndarray) with each instance of the view class and an
mmap object for each base instance, which enables memory
allocation reuse and guarantees memory-page-aligned
allocations. In [26] the authors demonstrate performance
improvement through memory allocation reuse in NumPy.
The NumPy backend uses a similar technique2 where it
preserves a pool of memory allocations for recycling. The
constructor of base will check this memory pool and, if the
size matches, reuse the memory allocation (line 11-15).

The get_data_pointer() function simply returns a
C-pointer to the ndarray data. The set_data_from_ary()
function memmoves the data from the ndarray ary to the view
self. The ufunc() function simply calls the NumPy library
with the corresponding ufunc. Finally, the extmethod()

2Using a victim cache

1 i m p o r t numpy
2 i m p o r t backend
3 i m p o r t os
4
5 VCACHE_SIZE = i n t (os .environ .get ( ”VCACHE SIZE” , 10) )
6 vcache = [ ]
7 c l a s s base (backend .base ) :
8 d e f __init__ (self , size , dtype ) :
9 s u p e r (base , self ) .__init__ (size , dtype )

10 size *= dtype .itemsize
11 f o r i , (s ,m ) i n enumera t e (vcache ) :
12 i f s == size :
13 self .mmap = m
14 vcache .pop (i )
15 r e t u r n
16 self .mmap = mmap .mmap ( - 1 , size )
17 d e f __str__ (self ) :
18 r e t u r n ”<b as e memory a t %s>”%self .mmap
19 d e f __del__ (self ) :
20 i f l e n (vcache ) < VCACHE_SIZE :
21 vcache .append ( (self .size*self .dtype .itemsize , ←↩

self .mmap ) )
22
23 c l a s s view (backend .view ) :
24 d e f __init__ (self , ndim , start , shape , stride , base ) :
25 s u p e r (view , self ) .__init__ (ndim , start , shape , stride ,←↩

base )
26 buf = np .frombuffer (self .base .mmap , dtype=self .dtype , ←↩

offset=self .start )
27 self .ndarray = np .lib .stride_tricks .as_strided (buf , ←↩

shape , self .stride )
28
29 d e f get_data_pointer (ary , allocate=False , nullify=False ) :
30 r e t u r n ary .ndarray .ctypes .data
31
32 d e f set_data_from_ary (self , ary ) :
33 d = get_data_pointer (self , allocate=True , nullify=False )
34 ctypes .memmove (d , ary .ctypes .data , ary .dtype .itemsize * ←↩

ary .size )
35
36 d e f ufunc (op , *args ) :
37 args = [a .ndarray f o r a i n args ]
38 f = e v a l ( ”numpy.% s ”%op )
39 f (*args [ 1 : ] , out=args [ 0 ] )
40
41 d e f extmethod (name , out , in1 , in2 ) :
42 (out , in1 , in2 ) = (out .ndarray , in1 .ndarray , in2 .ndarray←↩

)
43 i f name == ” matmul ” :
44 out [ : ] = np .dot (in1 , in2 )
45 e l s e :
46 r a i s e NotImplementedError ( )

Fig. 5: A code snippet of the NumPy backend. Note that the backend module
refers to the implementation in figure 4.

recognizes the matmul method and calls NumPy’s dot()
function.

B. Numexpr Backend

In order to utilize multi-core CPUs, we implement a back-
end that uses the Numexpr library, which in turn utilize Just-
In-Time (JIT) compilation and shared-memory parallelization
through OpenMP.

Since Numexpr is compatible with NumPy ndarrays,
the Numexpr backend can inherit most functionality from the
NumPy backend; only the ufunc() implementation differs.
Figure 6 is a code snippet that includes the ufunc() imple-
mentation where it uses numexpr.evaluate() to evaluate
a ufunc operation. Now, this is a very naı̈ve implementation
since we only evaluate one operation at a time. In order
to maximize performance of Numexpr, we could collect as
many ufunc operations as possible into one evaluate()



1 ufunc_cmds = { ' add ' : ” i 1 + i 2 ” ,
2 ' m u l t i p l y ' : ” i 1 * i 2 ” ,
3 ' s q r t ' : ” s q r t ( i 1 ) ” ,
4 # . . .
5 }
6
7 d e f ufunc (op , *args ) :
8 args = [a .ndarray f o r a i n args ]
9 i1=args [ 1 ] ;

10 i f l e n (args ) > 2 :
11 i2=args [ 2 ]
12 numexpr .evaluate (ufunc_cmds [op ] , \
13 out=args [ 0 ] , casting= ' u n s a f e ' )

Fig. 6: A code snippet of the Numexpr backend.

1 i m p o r t pygpu
2 i m p o r t backend_numpy
3 c l a s s base (backend_numpy .base ) :
4 d e f __init__ (self , size , dtype ) :
5 self .clary = pygpu .empty ( (size , ) , dtype=dtype , cls=←↩

elemary )
6 s u p e r (base , self ) .__init__ (size , dtype )
7
8 c l a s s view (backend_numpy .view ) :
9 d e f __init__ (self , ndim , start , shape , stride , base ) :

10 s u p e r (view , self ) .__init__ (ndim , start , shape , stride ,←↩
base )

11 self .clary = pygpu .gpuarray .from_gpudata (base .clary .←↩
gpudata , offset=self .start , dtype=base .dtype , ←↩
shape=shape , strides=self .stride , writable=True , ←↩
base=base .clary , cls=elemary )

12
13 d e f get_data_pointer (ary , allocate=False , nullify=False ) :
14 ary .ndarray [ : ] = np .asarray (ary .clary )
15 r e t u r n ary .ndarray .ctypes .data
16
17 d e f set_bhc_data_from_ary (self , ary ) :
18 self .clary [ : ] = pygpu .asarray (ary )
19
20 d e f ufunc (op , *args ) :
21 args = [a .ndarray f o r a i n args ]
22 out=args [ 0 ]
23 i1=args [ 1 ] ;
24 i f l e n (args ) > 2 :
25 i2=args [ 2 ]
26 cmd = ” o u t [ : ] = %s ”%ufunc_cmds [op ]
27 exec cmd
28
29 d e f extmethod (name , out , in1 , in2 ) :
30 (out , in1 , in2 ) = (out .clary , in1 .clary , in2 .clary )
31 i f name == ” matmul ” :
32 pygpu .blas .gemm ( 1 , in1 , in2 , 1 , out , overwrite_c=True )
33 e l s e :
34 r a i s e NotImplementedError ( )

Fig. 7: A code snippet of the ligpuarray backend (the Python binding module
is called pygpu). Note that the backend_numpy module refers to the
implementation in figure 5 and note that ufunc_cmds is from figure 6.

call, which would enable Numexpr to fuse multiple ufunc
operations together into one JIT compiled computation kernel.
However, such work is beyond the focus of this paper – in this
paper we map the libraries directly.

C. Libgpuarray Backend

In order to utilize GPUs, we implement a backend
that makes use of libgpuarray, which introduces a GPU-
array that is compatible with NumPy’s ndarray. For the
two classes, base and view, we associate a GPU-array
that points to memory on the GPU; thus the user ad-

Processor: Intel Xeon E5640
Clock: 2.66 GHz
L3 Cache: 12MB
Memory: 96GB DDR3
GPU: Nvidia GeForce GTX 460
GPU-Memory: 1GB DDR5
Compiler: GCC 4.8.2 & OpenCL 1.2
Software: Linux 3.13, Python 2.7, & NumPy 1.8.1

TABLE I: The Machine Specification

dress space lies in main memory and the backend address
space lies in GPU-memory. Consequently, the implemen-
tation of the two functions get_data_pointer() and
set_data_from_ary() uses asarray() to copy be-
tween main memory and GPU-memory (Fig. 7 Line 14 and
15). The implementation of ufunc() is very similar to the
Numexpr backend implementation since GPU-arrays supports
ufunc directly. However, note that libgpuarray does not support
the output argument, which means we have to copy the result
of an ufunc operation into the output argument.

The extmethod() recognizes the matmul method and
calls Libgpuarray’s blas.gemm() function.

D. Bohrium Backend

Our last backend implementation uses the Bohrium runtime
system to utilize both CPU and GPU architectures. Bohrium
supports a range of frontend languages including C, C++, and
CIL3, and a range of backend architectures including multi-
core CPUs through OpenMP and GPUs through OpenCL. The
Bohrium runtime system utilizes the underlying architectures
seamlessly. Thus, as a user we use the same interface whether
we utilize a CPU or a GPU. The interface of Bohrium is very
similar to NumPy – it consists of a multidimensional array and
the same ufuncs as in NumPy.

The Bohrium backend implementation uses the C interface
of Bohrium, which it calls directly from Python through
SWIG[27]. The two base and view classes points to a
Bohrium multidimensional array called .bhc_obj (Fig. 8).
In order to use the Bohrium C interface through SWIG, we
dynamically construct a Python string that matches a specific
C function in the Bohrium C interface.

The set_bhc_data_from_ary() function is iden-
tical to the one in the NumPy backend. However,
get_data_pointer() needs to synchronize the array data
before returning a Python pointer to the data. This is because
the Bohrium runtime system uses lazy evaluation in order to
fuse multiple operations into single kernels. The synchronize
function (Fig. 8 Line 34) makes sure that all pending opera-
tions on the array have been executed and that the array data
is in main memory, e.g. copied from GPU-memory.

The implementations of ufunc() and extmethod()
simply call the Bohrium C interface with the Bohrium arrays
(.bhc_obj).

VI. BENCHMARKS

In order to evaluate the performance of npbackend, we
perform a number of performance comparisons between a

3Common Intermediate Language



1 i m p o r t backend
2 i m p o r t backend_numpy
3 i m p o r t numpy
4
5 d e f dtype_name (obj ) :
6 ””” Re tu rn name of t h e d t y p e ”””
7 r e t u r n numpy .dtype (obj ) .name
8
9 c l a s s base (backend .base ) :

10 d e f __init__ (self , size , dtype , bhc_obj=None ) :
11 s u p e r (base , self ) .__init__ (size , dtype )
12 i f bhc_obj i s None :
13 f = e v a l ( ” bhc . b h m u l t i a r r a y %s new empty ”%←↩

dtype_name (dtype ) )
14 bhc_obj = f ( 1 , (size , ) )
15 self .bhc_obj = bhc_obj
16
17 d e f __del__ (self ) :
18 exec ” bhc . b h m u l t i a r r a y %s d e s t r o y ( s e l f . bhc ob j ) ”%←↩

dtype_name (self .dtype )
19
20 c l a s s view (backend .view ) :
21 d e f __init__ (self , ndim , start , shape , stride , base ) :
22 s u p e r (view , self ) .__init__ (ndim , start , shape , stride ,←↩

base )
23 dtype = dtype_name (self .dtype )
24 exec ” base = bhc . b h m u l t i a r r a y %s g e t b a s e ( bas e .←↩

bhc ob j ) ”%dtype
25 f = e v a l ( ” bhc . b h m u l t i a r r a y %s new from view ”%dtype )
26 self .bhc_obj = f (base , ndim , start , shape , stride )
27
28 d e f __del__ (self ) :
29 exec ” bhc . b h m u l t i a r r a y %s d e s t r o y ( s e l f . bhc ob j ) ”%←↩

dtype_name (self .dtype )
30
31 d e f get_data_pointer (ary , allocate=False , nullify=False ) :
32 dtype = dtype_name (ary )
33 ary = ary .bhc_obj
34 exec ” bhc . b h m u l t i a r r a y %s sy nc ( a r y ) ”%dtype
35 exec ” bhc . b h m u l t i a r r a y %s d i s c a r d ( a r y ) ”%dtype
36 exec ” bhc . b h r u n t i m e f l u s h ( ) ”
37 exec ” base = bhc . b h m u l t i a r r a y %s g e t b a s e ( a r y ) ”%dtype
38 exec ” d a t a = bhc . b h m u l t i a r r a y %s g e t b a s e d a t a ( base ) ”%←↩

dtype
39 i f data i s None :
40 i f n o t allocate :
41 r e t u r n 0
42 exec ” d a t a = bhc . b h m u l t i a r r a y %←↩

s g e t b a s e d a t a a n d f o r c e a l l o c ( base ) ”%dtype
43 i f data i s None :
44 r a i s e MemoryError ( )
45 i f nullify :
46 exec ” bhc . b h m u l t i a r r a y %s n u l l i f y b a s e d a t a ( ba se ) ”%←↩

dtype
47 r e t u r n i n t (data )
48
49 d e f set_bhc_data_from_ary (self , ary ) :
50 r e t u r n backend_numpy .set_bhc_data_from_ary (self , ary )
51
52 d e f ufunc (op , *args ) :
53 args = [a .bhc_obj f o r a i n args ]
54 in_dtype = dtype_name (args [ 1 ] )
55 f = e v a l ( ” bhc . b h m u l t i a r r a y %s %s ”%(dtype_name (←↩

in_dtype ) , op .info [ ' name ' ] ) )
56 exec f (*args )
57
58 d e f extmethod (name , out , in1 , in2 ) :
59 f = e v a l ( ” bhc . b h m u l t i a r r a y e x t m e t h o d %s %s %s ”%(←↩

dtype_name (out ) , dtype_name (in1 ) , dtype_name (in2 ) ) )
60 ret = f (name , out , in1 , in2 )
61 i f ret != 0 :
62 r a i s e NotImplementedError ( )

Fig. 8: A code snippet of the Bohrium backend. Note that the backend
module refers to the implementation in figure 4 and note that the
backend_numpy module is figure 5.

Hardware Utiliza-
tion

Matrix Multiplica-
tion Software

Native 1 CPU-core ATLAS v3.10
NumPy 1 CPU-core ATLAS v3.10
Numexpr 8 CPU-cores ATLAS v3.10
libgpuarray 1 GPU clBLAS v2.2
BohriumCPU 8 CPU-cores O(n3)
BohriumGPU 1 GPU O(n3)

TABLE II: The benchmark execution setup. Note that Native refers to a regular
NumPy execution whereas NumPy refers to the backend implementation that
makes use of the NumPy library.

regular NumPy execution, referred to as Native, and the four
backend implementations: NumPy, Numexpr, libgpuarray, and
Bohrium, referred to by their name.

We run all benchmarks, on an Intel Xeon machine with a
dedicated Nvidia graphics card (Table I). Not all benchmark
executions utilize the whole machine; Table II shows the spe-
cific setup of each benchmark execution. For each benchmark,
we report the mean of ten execution runs and the error margin
of two standard deviations from the mean. We use 64-bit
double floating-point precision for all calculations and the size
of the memory allocation pool (vcache) is 10 entries when
applicable.

We use three Python applications that use either the NumPy
module or the npbackend module. The source codes of the
benchmarks are available at the Bohrium project’s website4:

Heat Equation simulates the heat transfer on a surface rep-
resented by a two-dimensional grid, implemented using
jacobi-iteration with numerical convergence (Fig. 2).

Shallow Water simulates a system governed by the Shallow
Water equations. The simulation commences by placing
a drop of water in a still container. The simulation then
proceeds, in discrete time-steps, simulating the water
movement. The implementation is a port of the MATLAB
application by Burkardt5.

Snakes and Ladders is a simple children’s board game that
is completely determined by dice rolls with no player
choices. In this benchmark, we calculate the probability
of ending the game after k-th iterations through successive
matrix multiplications. The implementation is by Natalino
Busa6.

Heat Equation

Figure 9 shows the result of the Heat Equation benchmark
where the Native NumPy execution provides the baseline. Even
though the npbackend invertible introduces an overhead, the
NumPy backend outperforms the Native NumPy execution,
which is the result of the memory allocation reuse (vcache).
The Numexpr achieves a 2.2 speedup compared to Native
NumPy, which is disappointing since Numexpr utilizes all
eight CPU-cores. The problem is twofold: we only provide one
ufunc for Numexpr to JIT compile at a time, which hinders
loop fusion, and secondly, since the problem is memory bound,
the utilization of eight CPU-cores through OpenMP is limited.

4http://www.bh107.org
5http://people.sc.fsu.edu/˜jburkardt/m src/shallow water 2d/
6https://gist.github.com/natalinobusa/4633275
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Fig. 9: The Heat Equation Benchmark where the domain size is 30002 and
the number of iterations is 100.
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Fig. 10: The Shallow Water Benchmark where domain size is 20002 and the
number of iterations is 100.

The Bohrium-CPU backend achieves a speedup of 2.6 while
utilizing eight CPU-cores as well.

Finally, the two GPU backends, libgpuarray and Bohrium-
GPU, achieve a speedup of 5.6 and 18 respectively. Bohrium-
GPU performs better than libgpuarray primarily because of
loop fusion and array contraction[28], which is possible since
Bohrium-GPU uses lazy evaluation to fuse multiple ufunc
operations into single kernels.

Shallow Water

Figure 10 shows the result of the Shallow Water bench-
mark. This time the Native Numpy execution and the NumPy
backend perform the same, thus the vcache still hides the
npbackend overhead. Again, Numexpr and Bohrium-CPU
achieve a disappointing speedup of 2 compared to Native
NumPy, which translate into a CPU utilization of 25%.

Finally, the two GPU backends, libgpuarray and Bohrium-
GPU, achieve a speedup of 3.7 and 12 respectively. Again,
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Fig. 11: The Snakes and Ladders Benchmark where the domain size is 10002

and the number of iterations is 10.

Bohrium-GPU outperforms libgpuarray because of loop fusion
and array contraction.

Snakes and Ladders

Figure 11 shows the result of the Snakes and Ladders
benchmark where the performance of matrix multiplication
dominates the overall performance. This is apparent when ex-
amining the result of the three first executions, Native, NumPy,
and Numexpr, that all make use of the matrix multiplication
library ATLAS (Table II). The Native execution outperforms
the NumPy and Numexpr executions with a speedup of 1.1,
because of reduced overhead.

The performance of the Bohrium-CPU execution is signif-
icantly slower than the other CPU execution, which is due to
the naı̈ve O(n3) matrix multiplication algorithm and no clever
cache optimizations.

Finally, the two GPU backends, libgpuarray and Bohrium-
GPU, achieves a speedup of 1.5 and 1.9 respectively. It is a
bit surprising that libgpuarray does not outperform Bohrium-
GPU since it uses the clBLAS library but we conclude that
the Bohrium-GPU with its loop fusion and array contraction
matches clBLAS in this case.

Fallback Overhead: In order to explore the overhead of
falling back to the native NumPy implementation, we execute
the Snakes and Ladders benchmark where the backends do not
support matrix multiplication. In order for the native NumPy
to perform the matrix multiplication each time the application
code uses matrix multiplication, npbackend will transfer the
array data from the backend address space to the user ad-
dress space and vice versa. However, since npbackend uses
the mremap() function to transfer array data, the overhead
is only around 14% (Fig. 12) for the CPU backends. The
overhead of libgpuarray is 60% because of multiple memory
copies when transferring to and from the GPU (Fig. 7 Line 13-
18). Contrarily, the Bohrium-GPU backend only performs one
copy when transferring to and from the GPU, which results in
an overhead of 23%.
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Fig. 12: The Snakes and Ladders Benchmark where the backends does not
have matrix multiplication support. The domain size is 10002 and the number
of iterations is 10.
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Fig. 13: Overhead of npbackend where we compare the NumPy backend with
the native NumPy execution from the previous benchmarks.

Overhead

In the benchmarks above, the overhead of the npbackend is
very modest and in the case of the Heat Equation and Shallow
Water benchmarks, the overhead is completely hidden by the
memory allocation pool (vcache). Thus, in order to measure
the precise overhead, we deactivate the vcache and re-run the
three benchmarks with the NumPy backend (Fig. 13). The ratio
between the number of NumPy operations and the quantity
of the operations dictates the npbackend overhead. Thus, the
Heat Equation benchmark, which has a domain size of 30002,
has a lower overhead than the Shallow Water benchmark,
which has a domain size of 20002. The Snakes and Ladders
benchmark has an even smaller domain size but since the
matrix multiplication operation has a O(n3) time complexity,
the overhead lies between the two other benchmarks.

VII. FUTURE WORK

An important improvement of the npbackend framework
is to broaden the support of the NumPy API. Currently,
npbackend supports array creation functions, matrix multipli-
cation, random, FFT, and all ufuncs, thus many more functions
remain unsupported. Even though we can leverage the work
by the PyPy project, which re-implements a broad range of the
NumPy API in Python7, we still have to implement Extension
Methods for the part of the API that is not expressed well
using ufuncs.

Currently, npbackend supports CPython version 2.6 to 2.7;
however there is no technical reason not to support version
3 and beyond thus we plan to support version 3 in the near
future.

The implementation of the backend examples we present
in this paper has a lot of optimization potential. The Numexpr
and libgpuarray backends could use lazy evaluation in order to
compile many ufunc operations into single execution kernels
and gain similar performance results as the Bohrium CPU and
GPU backends.

Current ongoing work explores the use of Chapel[29] as a
backend for NumPy, providing transparent mapping (facilitated
by npbackend), of NumPy array operations to Chapel array
operations. Thereby, facilitating the parallel and distributed
features of the Chapel language.

Finally, we want to explore other hardware accelerators,
such as the Intel Xeon Phi Coprocessor, or distribute the
calculations through MPI on a computation cluster.

VIII. CONCLUSION

In this paper, we have introduced a unified NumPy back-
end, npbackend, that unifies a broad range of Python code
accelerators. Without any modifications to the original Python
application, npbackend enables backend implementations to
improve the Python execution performance. In order to assess
this clam, we use three benchmarks and four different backend
implementations along with a regular NumPy execution. The
results show that the overhead of npbackend is between 2%
and 21% but with a simple memory allocation reuse scheme
it is possible to achieve overall performance improvements.

Further improvements are possible when using JIT com-
pilation and utilizing multi-core CPUs, a Numexpr back-
end achieves 2.2 speedup and a Bohrium-CPU backend
achieves 2.6 speedup. Even further improvement is possi-
ble when utilizing a dedicated GPU, a libgpuarray backend
achieves 5.6 speedup and a Bohrium-GPU backend achieves
18 speedup. Thus, we conclude that it is possible to accel-
erate Python/NumPy application seamlessly using a range of
different backend libraries.
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ABSTRACT
Prototyping is a common approach to developing new sci-
entific codes. Through prototypes a scientist builds confi-
dence that an idea can in fact work for a scientific chal-
lenge, and the prototype also acts as the definitive design
for a final implementation. As supercomputing approaches
exaflops performance, the teraflops platforms that are avail-
able for prototyping becomes increasingly distant from the
target performance, and new tools are needed to help close
the performance gap between high productivity prototyp-
ing and high performance end-solutions. In this work we
propose Bohrium, an open-source just-in-time compiler, as
a possible solution to the prototyping problem. We will
show how the same Python program can execute seamlessly
on single-core, multi-cores, GPGPU and cluster architec-
tures, and thus eliminating the need for parallel program-
ming in the prototype stage. We will show how the same,
unmodified, Python implementation of a Jacobi solver, a
Black-Scholes pricing, an O(n2) complexity n-body simula-
tion, and a Shallow-Water simulation scales to a 32-core ma-
chine with 50.1, 29.8, 17.3, and 44.4 speedups compared to
the NumPy execution, while the same Python benchmarks
run on a NVidia GTX 680, achieves speedups of 55.7, 43.0,
77.1, and 140.2, and a eight node cluster with gb-ethernet
interconnect (256 cores in total), obtain speedups of 4.1, 7.9,
6.6 and 6.4, compared to a single 32 core node.

1. INTRODUCTION
While achieving exascale-computing in itself is a huge tech-
nical task, bringing scientific users to a competence level
where they can utilize an exascale machine is likely to pose
problems of the same scale. While large codes, maintained
by a research community, is likely to make the transition
from peta- to exascale as a natural evolution in the code,
smaller teams will be hard pressed to make the move to
exascale. One of the challenges that face researchers that
write their own codes is that of prototyping. Today most
teams will move from idea to code via a prototype, typi-
cally in Matlab, IDL, Python or a similar high productivity
programming language.

Prototyping is an essential tool for testing the scientific hy-
pothesis in small scale before spending more time on an ac-
tual implementation, since many scientific expressions do

Idea Days Proto-
type 

Full 
version 

Months 

Matlab C++ Paper 

Figure 1: Prototyping workflow

not easily translate into algorithms, and issues such as nu-
merical stability, etc. are often not investigated formally.
Thus the actual workflow for scientific codes is often itera-
tive as shown in figure 1 below. Scientists will test their idea
in a high productivity environment, using a small dataset,
typically a ratio of one to a thousand, on a conventional,
but large, computer, before moving on to an actual super-
computer for the real scale experiments.

With respect to exascale computing this approach poses a
significant challenge, while exascale machines will be build
by scaling supercomputers to a core count two orders of
magnitude, in the order of 100 million, no such explosion
in high-end servers is guaranteed, or even likely. Thus while
researchers today, are expected to move three orders of mag-
nitude, from teraflops to petaflops, when moving from proto-
type to final implementation, prototyping is likely to remain
at teraflop when supercomputers move to exaflops, and re-
searchers will have to move six orders of magnitude. Even
scaling three orders of magnitude as is done today is non-
trivial and often problems arise that were not detected by
the prototype, when this challenge is increased another three
orders of magnitude it is unlikely that the current approach
will be sustainable.

Thus it makes sense to investigate new, scalable, approaches
to prototyping. The successful prototyping tool must be
highly productive and allow descriptive representations of
an algorithm both of which are met by todays use of Mat-
lab. A future prototyping tool must however be much faster
than Matlab, it must have a better single core performance,
and it must be able to run on multicores, accelerators, and
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cluster-computeres alike in order to satisfy the requirement
of doing prototyping at the petaflops-scale in order to re-
duce the distance to state-of-the-art exaflops machines to
three orders of magnitude, as it is today.

In the following, we introduce the Bohrium just-in-time com-
piler which, combined with the Numerical Python library
NumPy[5], may provide a solution to next-generation-proto-
typing. Bohrium is not developed for prototyping, but rather
for rapid solutions on parallel hardware, but non the less it
matches the requirements that we believe are essential for
prototyping in for the exascale.

2. THE BOHRIUM RUNTIME SYSTEM
The open-source project Bohrium1 is a runtime system for
high-performance high-productivity development[4, 3]. Bohr-
ium provides the mechanics to couple an array-programming
language or library with an architecture-specific implemen-
tation seamlessly.

Bohrium consists of a number of components that commu-
nicate by exchanging a hardware agnostic array bytecode.
Components can be architecture-specific but they are all in-
terchangeable since all uses the same bytecode and commu-
nication protocol. This design makes it possible to com-
bine components in a setup that match a specific execu-
tion environment without changing the original user appli-
cation. Bohrium consist of the following three component
types (Fig. 2):

Bridge The role of the Bridge is to integrate Bohrium into
existing languages and libraries. The Bridge generates
array bytecode that corresponds to the user-code.

Vector Engine Manager (VEM) The role of the VEM
is to manage data location and ownership of arrays.
It also manages the distribution of computing jobs be-
tween potentially several Vector Engines and thus mul-
tiple processors.

Vector Engine (VE) The VE is the architecture-specific
implementation that executes array bytecode.

When using the Bohrium framework, at least one implemen-
tation of each component type must be available. However,
the exact component setup depends on the runtime system
and what hardware to utilize, e.g. executing NumPy on a
single machine using the CPU would require a Bridge imple-
mentation for NumPy, a VEM implementation for a machine
node, and a VE implementation for a CPU. Now, in order to
utilize a GPU instead, we can exchange the CPU-VE with
a GPU-VE without having to change a single line of code
in the NumPy application. This is a key feature of Bohr-
ium: the ability to change the execution hardware without
changing the user application.

2.1 Configuration
To make Bohrium as flexible a framework as possible, Bohr-
ium manage the setup of all the components at runtime
through a configuration file. The idea is that the user or

1Available at http://www.bh107.org.
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Figure 2: Component Overview

system administrator can specify the hardware setup of the
system through an configuration file (Fig. 3). Thus, it is
just a matter of editing the configuration file when changing
or moving to a new hardware setup and there is no need to
change the user applications.

2.2 Vector Bytecode
A vital part of Bohrium is the array bytecode that consti-
tutes the link between the high-level user language and the
low-level execution engine. The bytecode is designed with
the declarative array-programming model in mind where the
bytecode instructions operate on input and output arrays.
To avoid excessive memory copying, the arrays can also be
shaped into multi-dimensional arrays. These reshaped array
views are then not necessarily comprised of elements that are
contiguous in memory. Each dimension comprises a stride
and size, such that any regularly shaped subset of the un-
derlying data can be accessed. We have chosen to focus on a
simple, yet flexible, data structure that allows us to express
any regularly distributed arrays. Figure 4 shows how the
shape is implemented and how the data is projected.

The aim is to have an array bytecode that support data
parallelism implicitly and thus makes it easy for the bridge
to translate the user language into the bytecode efficiently.
Additionally, the design enables the VE to exploit data par-
allelism through SIMD2 and the VEM through SPMD3.

2.3 Bridge
The Bridge component is the bridge between the program-
ming interface. In order to interface with the frontend lan-
guage, the language-specific bridge component translates ar-
ray operations into Bohrium array bytecode lazily. That
is, the bridge collects array operations until it encounter
a language condition, in which case it sends the collected

2Single Instruction, Multiple Data
3Single Program, Multiple Data
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# Bridge for NumPy
[numpy]
type = bridge
children = node

# Vector Engine Manager for a single machine
[node]
type = vem
impl = libbh_vem_node.so
children = gpu

# Vector Engine for a GPU
[gpu]
type = ve
impl = lbbh_ve_gpu.so

Figure 3: This example configuration provides a
setup for utilizing a GPU on one machine by in-
structing the Vector Engine Manager to use the
GPU Vector Engine implemented in the shared li-
brary lbhvb_ve_gpu.so.
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Figure 4: Descriptor for n-dimensional array and
corresponding interpretation

1 import numpy as np
2
3 def solve(height, width, epsilon=0.005):
4 grid = np.zeros((height+2,width+2),np.float64)
5 grid [:,0] = -273.15
6 grid [:,-1] = -273.15
7 grid [-1,:] = -273.15
8 grid [0,:] = 40.0
9 center = grid [1:-1,1:-1]

10 north = grid [:-2,1:-1]
11 south = grid [2:,1:-1]
12 east = grid [1:-1,:-2]
13 west = grid [1:-1,2:]
14 delta = epsilon+1
15 while delta > epsilon:
16 tmp = 0.2∗(center+north+south+east+west)
17 delta = np.sum(np.abs(tmp-center))
18 center[:] = tmp

Figure 5: Python implementation of a heat equation
solve that uses the finite-difference method to calcu-
late the heat diffusion. Note that in order to utilize
Bohrium, we use the command line argument “-m”,
e.g. “python -m npbackend heat2d.py”

operations to the underlaying Bohrium components. Con-
sequently, Bohrium only handles a subset of the frontend
language – namely the array operations. The frontend lan-
guage handles all non-deterministic aspect of program, such
as conditional branches and loops, by itself.

An example of a Bohrium bridge is the Python/NumPy-
bridge that seamlessly integrates with NumPy. The bridge
is a drop-in replacement of NumPy thus without changing a
single line of code, it is possible to utilize Bohrium (Fig. 5).

2.4 Vector Engine Manager
In order to utilize scalable architectures fully, distributed
memory parallelism is mandatory. The Cluster component
in Bohrium is currently quite näıve; it uses the bulk-syn-
chronous parallel model[6] with static data decomposition
and no communication latency hiding. We know from pre-
vious work than such optimizations are possible[2].

Bohrium implements all communication through the MPI-
2 library and use a process hierarchy that consists of one
master-process and multiple worker-processes. The master-
process executes a regular Bohrium setup with the Bridge,
Cluster-VEM, Node-VEM, and VE. The worker-processes,
on the other hand, execute the same setup but without the
Bridge and thus without the user applications. Instead,
the master-process will broadcast array bytecode and array
meta-data to the worker-processes throughout the execution
of the user application.

Bohrium use a data-centric approach where a static decom-
position dictates the data distribution between the MPI-
processes. Because of this static data decomposition, all
processes have full knowledge of the data distribution and
need not exchange data location meta-data. Furthermore,
the task of computing array operations is also statically
distributed which means that any process can calculate lo-
cally what needs to be sent, received, and computed. Meta-
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data communication is only needed when broadcasting ar-
ray bytecode and creating new arrays – a task that has an
asymptotic complexity of O(log2 n), where n is the number
of nodes.

2.5 Vector Engine
The Vector Engine (VE) is the only component type that
actually performs array operations. Bohrium implements
two VEs, the CPU-VE and GPU-VE, that utilizes multi-
core CPUs and GPGPUs respectively. Through the use of
Just-In-Time (JIT) compilation, both VEs compiles the ar-
ray bytecode received from the Node-VEM into architecture
specific binary kernels. In order to utilize multi-core CPUs,
the CPU-VE feeds the JIT-compiler with OpenMP anno-
tated ANSI C source code whereas the GPU-VE generates
OpenCL source code in order to utilize GPGPUs from both
Nvidia and AMD.

3. BENCHMARKS
In order to evaluate the performance of Bohrium, we will
perform a series of benchmarks that compares Bohrium against
Python/NumPy. For each benchmark, we report the mean
of five execution runs all within 10% deviation from the
mean. We use 64-bit double floating-point precision for all
calculations and all speedup results are strong scaling where
the data size is fixed. The benchmarks consist of the follow-
ing four applications:

Black Scholes The Black-Scholes pricing model is a par-
tial differential equation, which is used in finance for
calculating price variations over time[1]. This imple-
mentation uses a Monte Carlo simulation to calculate
the Black-Scholes pricing model.

Heat Equation simulates the heat transfer on a surface
represented by a two-dimensional grid, implemented
using jacobi-iteration with numerical convergence (Fig.
5).

N-Body Nice The Nice variation of the newtonian n-body
simulation is used to model larger galaxies with a large
number of asteroids. The mass of the asteroids is small
enough that their gravitational pull is insignificant.
Thus, only the force of the planets are applied to the
asteroids. The planets exchange forces similar to a
regular n-body simulation.

Shallow Water simulates a system governed by the Shal-
low Water equations. The simulation commences by
placing a drop of water in a still container. The simu-
lation then proceeds, in discrete time-steps, simulating
the water movement. The implementation is a port of
the MATLAB application by Burkardt4.

Multi-Core Processor
Figure 6 shows that results of running the four applications
on 32 CPU-cores (Table 1). Beside comparing Bohrium ver-
sus Python/NumPy, the results of the Heat Equation in-
cludes two handwritten parallel implementations – one in
ANSI-C and one in C++11 – both using OpenMP. The re-
sults clearly shows that the CPU-VE of Bohrium achieve a

4http://people.sc.fsu.edu/˜jburkardt/m src/shallow water 2d/

Processor: AMD Opteron 6272
Clock: 2.1 GHz
Cores: 32
L3 Cache: 16MB
Memory: 128GB DDR3
Compiler: GCC 4.6.3
Network: Gigabit Ethernet
Software: Linux 3.13, Python 2.7, NumPy 1.8.2

Table 1: Multi-Core Processor Specification
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Figure 6: Relative speedup utilizing 32-cores com-
pared to a sequential Python/NumPy execution.

significant performance boost compared to Python/NumPy
and is even competitive to handwritten compiled C/C++
code.

GPGPU
Figure 7 shows that results of running the four applications
on a GPGPU (Table 2). Compared to the multi-processor,
the GPGPU takes the performance boost even further. No-
ticeable is the Black Scholes results with more than 300
times speedup compared to Python/NumPy.

Cluster
Figure 8 shows that results of running the four applications
on an eight-node cluster where each node is the multi-code
processor from Table 1 connected through Gigabit Ether-

Processor: Intel Core i7-3770
Clock: 3.4 GHz
Cores: 4
L3 Cache: 16MB
Memory: 128GB DDR3
Compiler: GCC 4.6.3
Network: Gigabit Ethernet

GPGPU: AMD HD 7970
Clock: 1000 MHz
Memory: 3GB GDDR5
-bandwidth: 288 GB/s
Software: Linux 3.13, Python 2.7, NumPy 1.8.2,

OpenCL 2.1

Table 2: GPGPU Specification
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Figure 7: Relative speedup utilizing GPGPU com-
pared to a sequential Python/NumPy execution.
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Figure 8: Relative scalability on an eight-node clus-
ter. We compared the utilization of one node (32-
cores) against the utilization of eight node (256-
cores).

net. We run a MPI-process per cluster node and use the
CPU-VE benchmark (here, we use an older version of the
CPU-VE implementation than the one previously used) in
Bohrium to utilize the 32-cores on each node. In order to
show scalability, we compare 32-cores executions with 256-
cores executions. The scalability goes from 50% to 95%
speedup utilization.

4. CONCLUSIONS
In this work we have shown how Python/Numpy in com-
bination with the Bohrium just-in-time compiler, offers an
attractive work-to-performance ratio. While better perfor-
mance can be had from expert implementations, a Python/
Numpy implementation is fully on-par with other high-pro-
ducitivity languages with respect to the the effort the scien-
tist has to put in, and the performance is on-par, or close
to, that of an straight forward C++ implementation. The
end result is that a scientist may move seamlessly from a

laptop version of a code to a large, heterogeneous, parallel
machine, without any changes to the code. In fact, we will
show that the scientist can continue to work from a laptop,
with interactive graphics if needed, while the contracted ar-
ray operations are all executed on a remote machine, includ-
ing supercomputers, granted that the scientist is willing to
wait online for the job to be scheduled at the SC site. The
descriptive approach not only makes scientists more pro-
ductive, but also reduces the number of errors as no explicit
parallelism is expressed, and synchronization requirements
are fully derived from the descriptive implementation of the
algorithm.
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1. Introduction
Attractiveness of programming in scripting languages can arguably
be attributed to language features, removal of responsibilities from
the programmer, and a rich execution environment. Attractive lan-
guage features include dynamic typing and type inference support-
ing generic and less verbose code. Dynamic, managed memory, and
garbage collection removes the error-prone tasks of allocating, re-
allocating and freeing memory from the programmer. Interactive
interpreters facilitates experimentation and rapid application devel-
opment. The lack of features such as parallel language constructs
gives the programmer straightforward sequential semantics with-
out concern to the hazards related with parallel execution. Scripting
languages are often labeled as high-level since they remove these
responsibilities from the programmer, allowing for code to evolve
around manipulating abstractions closer to the application domain.

The price for these conveniences is often paid with lowered
hardware utilization since the programmer only expresses what is
to be computed not how to compute it. With a lack of control and
no means of obtaining it, it becomes the task of the interpreter to
map high-level application code to hardware efficiently.

One approach is to rely on language interoperability to increase
application performance. Using Python as an example, the CPython
interpreter allows for interoperability with C/C++, either via lan-
guage extensions or by providing access to libraries.

Python has seen widespread use and popularity using this ap-
proach, specifically the NumPy/SciPy/iPython software stack gives
the programmer a rich interactive environment for scientific com-
puting. This is achieved by maintaining high-level abstractions and
enabling significant performance improvements by implementing
the computationally demanding portions in C and providing access
to them via high-level data structures and operations upon them.

This becomes more challenging (or important) as efficient uti-
lization of hardware becomes increasingly complex with continu-
ing developments in hardware architectures such as increasing core
counts on CPUs with NUMA architectures, distinct address spaces
in accelerators such as GPUs, MICs, FPGAs. Interpreters are rarely
able to keep up with the developments in hardware, and the ab-
stractions provided by scripting languages will fail to deliver the
potential use of available hardware. At this point, the need arises to
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enable the programmer to peel off layers of the language abstrac-
tions and take control.

Current approaches for doing so in Python include writing
Python extensions, using SWIG or ctypes. In addition low-level
APIs such as pyCUDA, pyOpenCL, pyMIC, and MPI4PY can be
used.

These approaches successfully provide the means of recover-
ing the majority of the lost performance and have contributed to
Python’s popularity in HPC environments serving as a steering-
language for scientific computing. Language interoperability is the
driver for the realization of these tools and libraries.

However, they come at the price of sacrificing all of the conve-
niences described earlier. The following sections introduce a differ-
ent approach to foreign-function interfaces and interface generation
which leverages the advantages of interoperability without sacrific-
ing the attractive qualities of the scripting language.

2. Approach
The general idea is to provide a less verbose foreign function
interface (FFI) by using introspection on the function definition
and function decoration to construct a function prototype which
can either be implemented inline, from file, or mapped to a library.

In order to maintain the high-level abstractions, the foreign
language must support them. C does not meet this requirement,
however, Chapel provides an ideal target. It supports high-level
operations on arrays and also supports peeling off layers of the
abstraction allowing the programmer to take control if they have
sufficient motivation for doing so.

Figure 1. Computationally expensive Python function.

Figure 2. Python function rewritten in Chapel using an inlined
foreign function body.



A prototype implementation named pyChapel1 serves to illus-
trate the approach. pyChapel consists of a foreign function interface
and a module compiler / interface generator.

The idea is that a computationally expensive function such as
the one in figure 1 can be rewritten in a foreign language or mapped
to a library.

The raw foreign function body can be provided inline, from file
or by mapping it to an existing library. When using pyChapel in
this manner, Chapel code will be dynamically generated and com-
piled at runtime. Machinery within pyChapel lowers compilation
overhead by re-using previously compiled code.

PyChapel also provides a module-compiler, compiling Chapel
modules into Python modules as illustrated in figure 3.

# pych --compile hellolib.chpl

Figure 3. Source code of the Chapel HelloLib module and com-
mand to compile it into a Python module.

The module can then be accessed from Python as illustrated in
figure 4.

Figure 4. Accessing Chapel module HelloLib from Python.

When using the pyChapel module compiler, code will be gener-
ated and compiled prior to runtime.

3. Results
Two synthetic Python applications, hereafter referred to as finance
and scicomp, were used to get an initial impression of the perfor-
mance gained by mapping the computationally expensive portion
of the application code to Chapel. The code can inspected in the
pyChapel online documentation2. Two versions of each applica-
tion were implemented, a reference implementation and a modifi-
cation mapping the expensive functions (simulation and quant)
to Chapel using techniques illustrated in figure 1 and figure 2. The
rewrites were implemented without any explicit parallelism in or-
der to maintain the abstraction-level of the code.

1 http://pychapel.rtfd.org
2 http://pychapel.readthedocs.org/usage_examples.html#
accelerate-your-numpy-code

The machine executing was a laptop with 6GB of memory with
an Intel i5-2410M CPU @ 2.3Ghz CPU with two physical cores.
finance ran in 26.7s without pyChapel and 4.2s with. scicomp ran
in 28.3s without pyChapel and 8.8s with. Resulting in speedups
of 6.3× and 3.2×, respectfully.

A third implementation of scicomp was written, replacing the
@Chapel decorator with @FromC. Mapping the Python function
simulation to a C implementation. Running the C-targeted im-
plementation showed only a marginal decrease in wall-clock time
compared to the Chapel-targeted implementation.

4. Future Work
The pyChapel module was created as a means of providing interop-
erability between Python and Chapel. However, it can with little ef-
fort be expanded to support any language capable of interoperating
with C including but not limited to Fortran and Haskell and thereby
providing a generic and simplified approach to FFIs in Python.

The dynamic compilation machinery in pyChapel opens up
exploration within staged computation[1]. This can be done by
manipulating inlined foreign function bodies at runtime as a means
of generating optimized code based on run-time values of inputs,
such as specializing input-sensitive BLAS and FFT routines.

Current work focuses on maintaining the attractiveness of
Python by implementing pyChapel as a target for the npbackend[2]
module. The array operations of Python/NumPy can thereby be
mapped transparently to Chapel. Thereby, effectively increasing
the performance of the Python/NumPy program without changing
a single line of code.

5. Conclusion
The experimental prototype pyChapel proposes a new approach
to foreign function interfaces and interface generation for Python.
The primary target for the prototype is Chapel, however, C is
currently also supported, and further work can with little effort
expand support for any language capable of interoperating with C.
Chapel is the primary target as it maintains the attractive qualities
of the scripting languages such as high-level array operations for
scientific computing. Initial results indicate that the performance
improvement of targeting Chapel is equivalent to that of targeting
C.

Acknowledgments
The Chapel Team at Cray, Inc. provided valuable insights dur-
ing the development of PyChapel especially Elliot Ronaghan, Ben
Harshbarger, Thomas Van Doren, and Lydia Duncan.

This research has been partially supported by the Danish Strate-
gic Research Council, Program Committee for Strategic Growth
Technologies, for the research center ’HIPERFIT: Functional High
Performance Computing for Financial Information Technology’
(hiperfit.dk) under contract number 10-092299.

This research has been partially supported by the Danish
Strategic Research Council, Program Committee for Strategic
Growth Technologies, for the ’High Performance High Produc-
tivity’ project under contract number 09-067060.

References
[1] O. Kiselyov, C.-c. Shan, and Y. Kameyama, “Bridging the theory of

staged programming languages and the practice of highperformance
computing,” Tech. Rep., 2012.

[2] M. R. B. Kristensen, S. A. F. Lund, T. Blum, and K. Skovhede, Sepa-
rating NumPy API from Implementation, 2014.



Fusion of Array Operations at Runtime

6.12 Fusion of Array Operations at Runtime

171



Fusion of Array Operations at Runtime
Mads R. B. Kristensen, Simon A. F. Lund, Troels Blum, and James Avery

Niels Bohr Institute, University of Copenhagen, Denmark
{madsbk/safl/blum/avery}@nbi.dk

Abstract—In this paper, we address the problem of fusing
array operations based on criteria, such as compatibility, data
communication, and/or reusability. We formulate the problem as
a graph partition problem that is general enough to handle loop
fusion, combinator fusion, or other fusion of subroutines.

I. INTRODUCTION

Array operation fusion is a program transformation which
combines, or fuses, multiple array operations into a single
kernel of operations. When it is applicable, the technique can
drastically improve cache utilization through temporal data
locality and enables other program transformations such as
streaming and array contraction[1]. In scalar programming
languages, such as C, array operation fusion typically cor-
responds to loop fusion where individual computation loops
are combined into single loops. The effiect is a reduction of
arrays traversals (Fig. 1). Similarly, in functional programming
languages it typically corresponds to the fusion of individual
combinators. In array programming languages, such as HPF[2]
and ZPL[3], the fusion of array operations is mandatory since
a user application in these languages will consist of array
operations almost exclusively.

However, the fusion of two array operations is not always
applicable. Consider the two for-loops in Fig. 2; since the
second loop traverse the result from the first loop reversely,
we have to compute the complete result of the first loop
before continuing to the second loop thus fusion is not directly
applicable. With clever analytics, it might be possible to
transform the program to a form where fusion is applicable
however in this paper we presume that such optimizations have
already been done.

We generalize this problem to: Given a mixed graph, find
a legal partition of vertices that cuts all non-directed edges
and minimizes the cost of the partition.1. Hereafter, we refer
to this problem as the Weighted Subroutine Partition Problem.

We develop different algorithms to solve this problem
and evaluate both their theoretical and practical performance
compared to an optimal solution. In order to maximize data
locality, we use them to fuse array operations within the
Bohrium project[4] thus evaluating the algorithms in practice.
All of Bohrium including the work of this paper is open source
and available at www.bh107.org.

II. THE WEIGHTED SUBROUTINE PARTITION PROBLEM

The Weighted Subroutine Partition (WSP) problem is an
extension of the The Weighted Loop Fusion Problem[5] where

1See Sec. II for the definition of a legal partition and its cost.

#define N 1000
double A[N], B[N], T[N];
// Array expression : A += B*A
for ( int i=0; i<N; ++i)
T[i] = B[i] * A[i];

for ( int i=0; i<N; ++i)
A[i] += T[i];

(a) Two individaul for-loops.

for ( int i=0; i<N; ++i){
T[i] = B[i] * A[i];
A[i] += T[i];
}

(b) Loop fusion: the two
for-loops fused into one.

for ( int i=0; i<N; ++i){
double t = B[i] * A[i];
A[i] += t;
}

(c) Array contraction: the
temporary array T is con-
tracted into the scalar t.

Fig. 1. Loop fusion and array contraction in C.

#define N 1000
double A[N], B[N], T[N];
int j = N;
// Array expression : A += reverse(B * A)
for ( int i=0; i<N; ++i)
T[i] = B[i] * A[i];

for ( int i=0; i<N; ++i)
A[i] += T[--j];

Fig. 2. Two for-loops that cannot be fused easily because of inter-iteration
dependencies.

we include the weight function in the problem formulation. In
this section, we will formally define the WSP problem and
show that it is NP-hard.

Definition 1. A WSP graph, G = (V,Ed, Ef ), is a mixed
graph where (V,Ed) forms a directed graph and Ef is
undirected edges between vertices in V .

Definition 2. The vertices in a WSP graph, G = (V,Ed, Ef ),
have a strict partial order imposed by the directed edges in
Ed such that if there exist a path from v1 ∈ V to v2 ∈ V
then v1 < v2. Since the order is strict, the directed part of the
graph, (V,Ed), is also acyclic.

Definition 3. Let a partition, P , of a WSP graph, G =
(V,Ed, Ef ), denote a partitioning of the vertices, V , into
k blocks, P = {B1, B2, ..., Bk}. Let ΠV denotes the set of
possible partitions of V and let P, P ′ ∈ ΠV have a partial
order, P ≤ P ′, defined as ∀B ∈ P,∃B′ ∈ P ′ : B ⊆ B′.
Definition 4. Given a WSP graph, G = (V,Ed, Ef ), a
partition, P ∈ ΠV , is said to be legal when for each block,
B ∈ P , the following holds:



1) @v1, v2 ∈ B : (v1, v2) ∈ Ef . (I.e. no block contains both
endpoints of a fuse-preventing edge)

2) If v1 < v2 < v3 and v1, v3 ∈ B then v2 ∈ B. (I.e. the
directed edges between blocks must not form cycles)

Definition 5. Given a partition, P , of vertices in a WSP graph,
a cost function cost(P ) returns the cost of the partition and
respects the following conditions:

1) cost(P ) ≥ 0
2) P ≤ P ′ ⇒ cost(P ) ≥ cost(P ′)

Definition 6. Given a WSP graph, G = (V,Ed, Ef ), and a
cost function, cost(P ), the WSP problem is the problem of
finding a legal partition, P , of V with minimal cost:

P ∈ argmin
P ′∈Π̂V

cost(P ′) (1)

where Π̂V denotes the set of legal partitions of V .

A. Complexity

In order to proof that the WSP problem is NP-hard, we
perform a reduction from the Multiway Cut Problem[6], which
Dahlhaus et al. shows is NP-hard for all fixed k ≥ 3.

Definition 7. The Multiway Cut (MWC) problem can be
defined as follows: An instance of the MWC problem,
µ = (V,E, S,w), consist of a graph (V,E), a set S =
{s1, s2, ..., sk} of k specified vertices or terminals, and a non-
negative weight w(u, v) for each edge (u, v) ∈ E. A partition,
P = {B1, B2, ..., Bk}, of V associate a cost:

costMWC(µ, P ) :=
∑

B,B′∈P ′

B 6=B′

∑

u∈B
v∈B′

(u,v)∈E

w(u, v) (2)

and is said to be legal when each B ∈ P contains no more
than one terminal.

Given an instance of the MWC problem, µ = (V,E, S,w),
the set of solutions is given by:

argmin
P∈Π̂V

costMWC(µ, P ) (3)

where Π̂V denote the set of possible legal partitions of the
vertices in V .

Theorem 1. The WSP problem is NP-hard for a graph, G =
(V,Ed, Ef ), with a chain of k ≥ 3 edges in Ef .

Proof. We prove NP-hardness through a reduction from the
MWC problem.

Given an instance of the MWC problem, µ = (V,E, S,w),
we build an instance of the WSP problem as follows. We
form the graph G = (V,Ed, Ef ) where V = V ′, Ed = ∅, and
Ef = {(si, sj) : 1 ≤ i < j ≤ k}. We set the cost function to:
cost(P ) = costMWC(µ, P ).

We then have that Π̂V = Π̂V ′ , where Π̂V and Π̂V ′ is the
set of legal partitions of the vertices V and V ′ respectively,
because:
• The fuse-preventing edges in Ef is exactly between

each terminal in S thus in both partition sets, multiple

terminals are never in the same block (required by Def.
7 and the first condition of Def. 4).

• The set of directed edges in Ed is empty, which makes
Def. 2 and the second condition of Def. 4 always true.

The cost function, cost(P ), is a legal WSP cost function
because it respects the conditions of Def. 5:
• Since w(u, v) is non-negative for all (u, v) ∈ E′, cost(P )

is non-negative for all P ∈ Π̂V .
• When P, P ′ ∈ Π̂V and P < P ′, it means that some

blocks in P have been merged into shared blocks in P ′,
which reduces the cost, but they are otherwise identical
thus cost(P ) > cost(P ′).

Finally, since Π̂V = Π̂V ′ and the set of solutions to the
MWC and WSP instance is identical (Eq. 3), we hereby
conclude the proof.

III. CONCRETIZATION OF THE WSP PROBLEM

Since the WSP problem formulation is very general, we will
express a concrete optimization problem as a WSP problem
thus demonstrates its real world use. The concrete problem
is an optimization phase within the Bohrium runtime system
where Bohrium partitions a set of array operations for fusion
– the Fusion of Array Operations (FAO) problem:

Definition 8. Given set of array operations equipped with a
strict partial order imposed by the data dependencies between
them, (A,<), find a partition, P , of A where:

1) All array operations within a block in P are fusible (Def.
9)

2) For all blocks, B ∈ P , if v1 < v2 < v3 and v1, v3 ∈ B
then v2 ∈ B. (I.e. the directed edges between blocks
must not form cycles).

3) The cost of the partition (Def. 10) is minimized.

In the following, we will provide a description of Bohrium
and show that a solution to the WSP problem is a solution to
the FAO problem (Theorem 2).

A. Fusion of Array Operations in Bohrium

Bohrium is a computation backend for array programming
languages and libraries that supports a range of languages,
such as Python, C++, and .NET, and a range of computer
architectures, such as CPU, GPU, and clusters thereof. The
idea is to decouple the domain specific frontend implemen-
tation with the computation specific backend implementation
in order to provide a high-productivity and high-performance
framework.

Similar to NumPy, a Bohrium array operation operates
on a set of inputs and produces a set of outputs[4]. Both
input and output operands are views of arrays. An array view
is a structured way to observe the whole or parts of an
underlying base array. A base array is always a contiguous
one-dimensional array whereas views can have any shape,
stride, and dimensionality[4]. Hereafter when we refer to an
array, we mean an array view; when we refer to identical
arrays, we mean identical array views that points to the same



1 import bohrium as bh
2
3 def synthetic():
4 A = bh.zeros(4)
5 B = bh.zeros(4)
6 D = bh.zeros(5)
7 E = bh.zeros(5)
8 A += D[:-1]
9 A [:] = D [:-1]

10 B += E[:-1]
11 B [:] = E [:-1]
12 T = A * B
13 bh.maximum(T, E[1:], out=D[1:])
14 bh.minimum(T, D[1:], out=E[1:])
15 return D
16 print synthetic()

(a)

1 COPY A, 0
2 COPY B, 0
3 COPY D, 0
4 COPY E, 0
5 ADD A, A, D[:-1]
6 COPY A, D[:-1]
7 ADD B, B, E[:-1]
8 COPY B, E[:-1]
9 MUL T, A, B

10 MAX D[1:], T, E[1:]
11 MIN E[1:], T, D [1:]
12 DEL A
13 DEL B
14 DEL E
15 DEL T
16 SYNC D
17 DEL D

(b)

Fig. 3. A Python application that utilizes the Bohrium runtime system. In
order to demonstrate various challenges and trade-offs, the application is very
synthetic. Fig. (a) shows the Python code and Fig. (b) shows the corresponding
Bohrium array bytecode.

base array; and when we refer to overlapping arrays, we mean
array views that points to some of the same elements in a
common base array.

Fig. 3a is a Python application that imports and uses
Bohrium as a drop-in replacement of NumPy. The application
allocates and initiates four arrays (line 4-7), manipulates those
array through array operations (line 8-14), and prints the
content of one of the arrays (line 16).

In order to be language agnostic, Bohrium translates the
Python array operations into array bytecode (Fig. 3b) that the
Bohrium backend can execute2. In the case of Python, the
Python array operations and the Bohrium array bytecode is
almost a one-to-one mapping where the first bytecode operand
is the output array and the following operands are either input
arrays or input literals. Since there is no scope in the bytecode,
Bohrium uses DEL to destroy arrays and SYNC to move
array data into the address space of the frontend language
– in this case triggered by the Python print statement (Fig.
3a, line 16). There is no explicit bytecode for constructing
arrays; on first encounter, Bohrium constructs them implicitly.
Hereafter, we use the term array bytecode and array operation
interchangeable.

In the next phase, Bohrium partitions the list of array
operations into blocks that consists of fusible array operations
– the FAO problem. As long as the preceding constraints
between the array operations are preserved, Bohrium is free
to reorder them as it sees fit thus optimizations based on data
locality, array contraction, and streaming are possible.

In the final phase, the hardware specific backend implemen-
tation JIT-compiles each block of array operations and execute
them.

1) Fusibility: In order to utilize data-parallelism, Bohrium
and most other array programming languages and libraries
impose a data-parallelism property on some or all array
operations. The property ensures that the runtime system

2For a detailed description of this Python-to-bytecode translation we refer
to previous work [7], [8].

can calculate each output element independently without any
communication between threads or processors. In Bohrium, all
array operation must have this property.

Definition 9. An array operation, f , in Bohrium has the data-
parallelism property where each output element can be calcu-
lated independently, which imposes the following restrictions
to its input fin and output fout:

∀i ∈ fin,∀o, o′ ∈ fout : i∩o = ∅∨o = o′∧o∩o′ = ∅∨o = o′

(4)
In other words, if an input and an output or two output arrays
overlaps, they must be identical. This does not apply to DEL
and SYNC since they do not do any actual computation.

Consequently, array operation fusion must preserve the data-
parallelism property:

Corollary 1. In Bohrium, two array operations, f and f ′, are
said to be fusible when the following holds:

∀i′ ∈ f ′in,∀o ∈ fout : i′ ∩ o = ∅ ∨ i′ = o

∧
∀o′ ∈ f ′out,∀o ∈ fout : o′ ∩ o = ∅ ∨ o′ = o

∧
∀o′ ∈ f ′out,∀i ∈ fin : o′ ∩ i = ∅ ∨ o′ = i

Proof. It follows directly from Definition 9.

2) Cost Model: In order to have an optimization object,
Bohrium uses a generic cost function that quantify unique
memory accesses and thus rewards optimizations such as array
contraction, data reuse, and operation streaming. For simplic-
ity, Bohrium will not differentiate between reads and writes
and will not count access to literals and register variables, such
accesses adds no cost:

Definition 10. In bohrium, the cost of a partition, P =
{B1, B2, ..., Bk}, of array operations is given by:

0 ≤ cost(P ) =
∑

B∈P
length


 ⋃

f∈B
(fin ∪ fout)


 (6)

where length(A) returns the total number of bytes accessed
by the unique arrays in A. Note that the cost of DEL and
SYNC is always zero.

Bohrium implements two techniques to improve data local-
ity through array operation fusion:
Array Contraction When an array is created and destroyed

within a single partition block, Bohrium will contract the
array into temporary register variables, which typically
corresponds to a scalar variable per parallel computing
thread. Consider the program transformation between Fig.
1b and 1c where the temporary array T is array contracted
into the scalar variable t. In this case, the transformation
reduces the accessed data and memory requirement with
(N-1) * sizeof(double) bytes.



Data Access Reuse When a partition block accesses an array
multiple times, Bohrium will only read and/or write to
that array once thus saving access to main memory.
Consider the two for-loops in Fig. 1a that includes two
traversals of A and T. In this case, it is possible to save
one traversal of A and one traversal of T through fusion
(Fig. 1b). Furthermore, the compiler can reduce the access
to the main memory with (N − 1)2 since it can keep the
current element of A and T in register.

Corollary 2. In Bohrium, the cost saving of fusing two array
operations, f and f ′, (in that order) with inputs, fin and f ′in,
outputs, fout and f ′out, and the arrays to be destroyed, fdel
and f ′del, is given by:

0 ≤ saving(f, f ′) = length(fout∩f ′del)+ length(fout∩f ′in)

Proof. The cost saving of fusing f and f ′ follows directly
from the definition of the two optimizations Bohrium will
apply when able: Array Contraction and Data Access Reuse.
Array Contraction is applicable when an output of f is
destroyed in f ′, which saves us length(fout ∩ f ′del) bytes.
Meanwhile, Data Access Reuse is applicable when an output
of f is also an input of f ′, which saves us length(fout ∩ f ′in)
bytes. Thus, we have a total saving of length(fout ∩ f ′del) +
length(fout ∩ f ′in).

3) Fusion of Array Operations: Finally, we will show that
algorithms that find solutions to the WSP problem also find
solutions to the FAO problem.

Lemma 1. In Bohrium, the cost of a partition of array
operations is non-negative and monotonically decreasing on
fusion thus satisfies the WSP requirement (Def. 5).

Proof. The cost is clearly non-negative since the amount of
bytes accessed by an array is non-negative. The cost is also
monotonically decreasing when fusing two array operations
since no new arrays are introduced; rather, the cost is based
on the union of the arrays the two array operations accesses
(Eq. 6).

Theorem 2. A solution to the WSP problem is a solution to
the FAO problem.

Proof. Given an instance of the FAO problem, (A,<), we
build an instance of the WSP problem as follows. We form
the graph G = (V,Ed, Ef ) where:

1) For each array operation a ∈ A, we have a unique vertex
v ∈ V such that v represents a.

2) For each pair of array operations a, a′ ∈ A, if a < a′

then there is an edge (a′, a) ∈ Ed.
3) For each pair of array operations a, a′ ∈ A, if a and a′

is non-fusible then there is an edge (a, a′) ∈ Ef .
We set the WSP cost function to the partition cost in Bohrium
(Def. 2).

Through the same logical steps as in Theorem 1, it is easy
to see that the set of legal partition of A equals the set of
legal partitions of V. Additionally, Lemma 1 shows that the

partition cost in Bohrium is a legal WSP cost function (Def.
5), which hereby concludes the proof.

IV. FINDING A SOLUTION

In this section, we will present a range of WSP partition
algorithms – from a greedy to an optimal solution algorithm.
We use the Python application in Fig. 3 to demonstrate the
results of each partition algorithm.

In order to unify the WSP problem into one data structure,
Bohrium represents the WSP problem as a partition graph:

Definition 11. Given an instance of the WSP problem – a
graph, G = (V,Ed, Ef ), a partition, P = {B1, B2, ..., Bk}
of V , and a partition cost, cost(P ) – the partition graph
representation is given as Ĝ = (V̂ , Êd, Êf , Êw) where:
• Vertices, V̂ , represents partition blocks thus V̂ = P .
• Directed edges, Êd, represents dependencies between

blocks thus if (B1, B2) ∈ Êd then there exist an edge
(u, v) ∈ Ed where u ∈ B1 and v ∈ B2.

• Fuse-preventing edges, Êf , represents non-fusibility be-
tween blocks thus if (B1, B2) ∈ Êf then there exist an
edge (u, v) ∈ Ef where u ∈ B1 and v ∈ B2.

• Weighted cost-saving edges, Êw, represent the reduction
in the partition cost if blocks are fused thus there is an
edge between all fusible blocks and the weight of an edge
(B1, B2) ∈ Ew is cost(P1) − cost(P2) where B1, B2 ∈
P1 and (B1 ∪B2) ∈ P2, which in Bohrium corresponds
to saving(B1, B2) (Corollary 2).

Additionally, we need to define some notation:
• Given a partition graph, Ĝ, the notation V [Ĝ] denotes the

set of vertices in Ĝ, Ed[Ĝ] denotes the set of dependency
edges, Ef [Ĝ] denotes the set of fuse-preventing edges,
and Ew[Ĝ] denotes the set of weight edges.

• Given a partition graph, Ĝ, let each vertex v ∈ V [Ĝ]
associate a set of vertices, θ[v], where each vertex
u ∈ θ[v] cannot fuse with v either directly because u, v
are connected with a fuse-preventing edge or indirectly
because there exist a path from u to v in Ed[Ê] that
contains vertices connected with a fuse-preventing edge.

Thus we have that a vertex in a partition graph v̂ ∈ V [Ĝ] is a
set of vertices in the WSP problem. In order to remember this
relationship, we mark the vertices in a partition graph with
theˆnotation.

A. Initially: No Fusion
Initially, Bohrium transforms the list of array operations into

a WSP instance as described in Theorem 2 and then represents
the WSP instance as a partition graph (Def. 11) where each
block in the partition is assigned exactly one array operation
and the weight of the cost-saving edges is derived by Corollary
2. We call this the non-fused partition graph.

The complexity of this transformation is O(V 2) since we
might have to check all pairs of array operations for depen-
decies, fusibility, and cost-saving, all of which is O(1). Fig.
5 shows a partition graph of the Python example where all
blocks have one array operation. The cost of the partition is
86.



B. Sequences of Vertex Fusions

We will now show that it is possible to build an optimal
partition graph through a sequences of weighted edge fusions
(i.e. edge contractions). For this, we need to define vertex
fusion in the context of a partition graph:

Definition 12. Given a partition graph, Ĝ = (V̂ , Êd, Êf , Êw),
and two vertices, û, v̂ ∈ V̂ , the function FUSE(Ĝ, û, v̂) returns
a new partition graph where û, v̂ has been replaced with a
single vertex x̂ ∈ V̂ . All three sets of edges, Êd, Êf , and
Êw, are updated such that the adjacency of x̂ is the union
of the adjacency of û, v̂. The vertices within x̂ becomes the
vertices within û ∪ v̂. Finally, the weights of the edges in Êw

that connects to x̂ is re-calculated.

The asymptotic complexity of FUSE is O(Êd +Êf +Êw$)
where $ is the complexity of calculating a weight edge. In
Bohrium $ equals the set of vertices within the WSP problem
V thus we get O(Êd + Êf + ÊwV ).

In order to simplify, hereafter when reporting complexity we
use O(V ) to denote O(V + V̂ ) and O(E) to denote O(Êd +
Êf + Êw +Ed +Ef ) where Ed, Ef are the set of edges in the
WSP problem. Therefore, the complexity of FUSE in Bohrium
is simply O(V E).

Furthermore, the FUSE function is commutaive:

Corollary 3. Given a partition graph Ĝ and two vertices
û, v̂ ∈ Ĝ, the function FUSE(Ĝ, û, v̂) is commutaive.

Proof. This is because FUSE is basically a vertex contraction
and an union of the vertices within û, v̂ both of which are
commutative operations[9].

However, it is not always legal to fuse over a weighted edge
because of the preservation of the partial order of the vertices.
That is, given three vertices, a, b, c, and two dependency edges,
(a, b) and (b, c); it is illegal to fuse a, c without also fusing b.
We call such an edge between a, c a transitive weighted edge
and we must ignore them. Now we have:

Lemma 2. Given a basic non-fused partition graph,
Ĝ1, there exist a sequences of weighted edge fusions,
FUSE(Ĝ1, û1, v̂1), FUSE(Ĝ2, û2, v̂2), ..., FUSE(Ĝn, ûn, v̂n),
where (ûi, v̂i) ∈ Ew[Ĝi] and (ûi, v̂i) is non-transitive for
i = 1, 2, ..., n, for any legal partition graph Ĝn.

Proof. This follows directly from Corollary 3 and the build of
the basic non-fused partition graph, which has weight-edges
between all pairs of fusible vertices. The fact that we ignore
transitive weighted edges does not preclude any legal partition.

Bohrium implements, IGNORE(Ĝ, e), which given a weight
edge, e ∈ Ew[Ĝ], determines whether the edge should be
ignored or not (Fig. 4). The search of the longest path (line
3) dominates the complexity of this function thus the overall
complexity is O(V + E).

1: function IGNORE(G, e)
2: (u, v)← e
3: l← length of longest path between u and v in Ed[G]
4: if l = 1 then
5: return true
6: else
7: return false
8: end if
9: end function

Fig. 4. A help function thet determines whether the weight edge, e ∈ Ew[G],
should be ignored when searching for vertices to fuse.

Fig. 5. A partition graph of the Python application in Fig. 3. For illustrative
proposes, the graph does not include ignored weight edges (cf. Fig. 4).

C. Greedy Fusion

Fig. 6 shows a greedy fuse algorithm. It uses the function
FIND-HEAVIEST to find the edge in Ew with the great-
est weight and either remove it or fuse over it. Note that
FIND-HEAVIEST must search through Ew in each iteration
since FUSE might change the weights.

The number of iterations in the while loop (line 2) is O(E)
since minimum one weight edge is removed in each iteration
either explicitly (line 5) or implicitly by FUSE (line 7). The
complexity of finding the heaviest (line 3) is O(E), calling
IGNORE is O(E + V ), and calling FUSE is O(V E) thus the
overall complexity is O(V E2).

Fig. 7 shows a greedy partition of the Python example. The
partition cost is 46, which is a significant improvement over
no fusion. However, it is not the optimal partitioning, as we



1: function GREEDY(G)
2: while Ew[G] 6= ∅ do
3: (u, v)← FIND-HEAVIEST(Ew[G])
4: if IGNORE(G, (u, v)) then
5: Remove edge (u, v) from Ew

6: else
7: G← FUSE(G, u, v)
8: end if
9: end while

10: return G
11: end function

Fig. 6. The greedy fusion algorithm that greedily fuses the vertices connected
with the heaviest weight edge in G.

Fig. 7. A partition graph of the greedy fusion of the graph in Fig. 5.

shall see later.

D. Unintrusive Fusion

In order to reduce the size of the partition graph, we
apply an unintrusive strategy where we fuse vertices that are
guaranteed to be part of an optimal solution. Consider the two
vertices, a, e, in Fig. 5. The only beneficial fusion possibility
a has is with e thus if a is fused in the optimal solution, it is
with e. Now, since fusing a, e will not impose any restriction
to future possible vertex fusions in the graph. The two vertices
are said to be unintrusively fusible:

Theorem 3. Given a partition graph, Ĝ, that, through the
fusion of vertices u, v ∈ V [Ĝ] into z ∈ V [Ĝ′], transforms
into the partition graph Ĝ′; the vertices u, v is said to be
unintrusively fusible when the following conditions holds:

1) θ[z] = θ[v] = θ[u], i.e. the set of non-fusibles must not
changes after the fusion.

2) Either u or v is a pendant vertex in graph (V [Ĝ], {e ∈
Ew[Ĝ]|¬IGNORE(Ĝ, e)}), i.e. the degree of either u or
v must be 1 in respect to the weigh edges in Ĝ that are
not ignored.

Proof. The sequences of fusions that obtain an optimal par-
tition solution cannot include the fusion of u, v into z when

Fig. 8. A partition graph of the unintrusive fusion of the graph in Fig. 5.

two conditions exists:
1) There exist a vertex x both in G and G′ that are fusible

with u or v but not z and the cost saving of fusing z, u
or z, v is greater than the cost saving of fusing u, v.

2) There exist two non-fusible vertices x, y both in Ĝ and
Ĝ′ in which the cost saving of fusing x, u and fusing
v, y is not greater than the cost saving of fusing u, v.

Since we have that θ[z] = θ[v] = θ[u], condition (1) cannot
exist and since either u or v is a pendant vertex condition (2)
cannot exist. Thus, we have that the fusion of u, v is always
beneficial and is part of an optimal solution, which concludes
the proof.

Fig. 9 shows the unintrusive fusion algorithm. It uses a
help function, FINDCANDIDATE, to find two vertices that are
unintrusively fusible. The complexity of FINDCANDIDATE is
O(E(E+V )), which dominates the while-loop in UNINTRU-
SIVE thus the overall complexity of the unintrusive fusion
algorithm is O(E2(E + V )). Note that there is no need to
further optimize UNINTRUSIVE since we only use it as a
preconditioner for the optimal solution, which will dominate
the computation time anyway.

Fig. 8 shows an unintrusive partition of the Python example
with a partition cost of 62. However, the significant improve-
ment is the reduction of the number of weight edges in the
graph. As we shall see next, in order to find an optimal graph
partition in practical time, the number of weight edges in the
graph must be very modest.

E. Optimal Fusion

Generally, we cannot hope to solve the WSP problem in
polynomial time because of the NP-hard nature of the problem.
In worse case, we have to search through all possible fuse
combinations of which there are 2E . However, in some cases
we may be able to solve the problems within reasonable time
through a carefully chosen search strategy. For this purpose,



1: function FINDCANDIDATE(G) . Help function
2: for (v, u)← Ew[G] do
3: if IGNORE(G, (u, v)) then
4: Remove edge (u, v) from Ew

5: end if
6: end for
7: for (v, u)← Ew[G] do
8: if the degree is less than 2 for either u or v

when only counting edges in Ew[G] then
9: if θ[u] = θ[v] then

10: return (u, v)
11: end if
12: end if
13: end for
14: return (NIL,NIL)
15: end function
16:
17: function UNINTRUSIVE(G)
18: while (u, v)← FINDCANDIDATE(G) 6= (NIL,NIL) do
19: G← FUSE(G, u, v)
20: end while
21: return G
22: end function

Fig. 9. The unintrusive fusion algorithm that only fuse unintrusively fusible
vertices.

we implement a branch-and-bound algorithm that explores the
monotonic decreasing property of the partition cost (Lemma
1).

Consider the result of the unintrusive fusion algorithm (Fig.
8). In order to find the optimal solution, we start a search
down through a tree of possible partitions. At the root level of
the search tree, we check the legality of a partition that fuses
over all weigh edges. If the partition graph is legal, i.e. it did
not fuse vertices connected with fuse-preventing edges, than
it follows from Lemma 1 that the partition is optimal. If the
partition is not legal, we descend a level down the tree and try
to fuse over all but one weight edge. We continue this process
such that for each level in the search tree, we fuse over one
less weight edge. We do this until we find a legal partition
(Fig. 10).

Furthermore, because of Lemma 1, we can bound the search
using the cheapest legal partition already found. Thus, we
ignore sub-trees that have a cost greather than the cheapest
already found.

Fig. 11 shows the implementation and Fig. 12 shows an
optimal partition of the Python example with a partition cost
of 34.

F. Naı̈ve Fusion

For completeness, we also implement a partition algorithm
that does not use a graph representation. In our naı̈ve approach,
we simply go through the array operation list and add each
array operation to the current partition block unless the array
operations makes the current block illegal, in which case we
add the array operation to a new partition block, which then
becomes the current one. The asymptotic complexity of this
algorithm is O(n2) where n is the number of array operations.

Fig. 10. A branch-and-bound search tree of the unintrusively fused partition
graph (Fig. 8). Each vertex lists a sequences of vertex fusions that build a
specific graph partition. The grayed out area indicates the part of the search
tree that a depth-first-search can skip because of the cost bound.

Fig. 13 show that result of partitioning the Python example
with a cost of 50.

G. Fuse Cache

In order to amortize the runtime of applying the fuse
algorithms, Bohrium implements a fuse cache of previously
found partitions of array operation lists. It is often the case that
scientific applications use large calculation loops such that an
iteration in the loop corresponds to a list of array operations.
Since the loop contains many iterations, the cache can amortize
the overall runtime time.

V. EVALUATION

In this section, we will evaluate the different partition
algorithm both theoretically and practically. We execute a
range of scientific Python benchmarks, which are part of an
open source benchmark tool and suite named Benchpress3.
Table I shows the specific benchmarks that we uses and Table
II specifies the host machine. When reporting runtime results,
we use the results of the mean of eight identical executions
as well as error bars that shows two standard deviations from
the mean.

We would like to point out that even though we are
using benchmarks implemented in pure Python/NumPy, the
performance is comparable to traditional high-performance
languages such as C and Fortran. This is because Bohrium
overloads NumPy array operations[8] in order to JIT compile
and execute them in parallel seamlessly[cite simon].

1) Theoretical Partition Cost: Fig. 14 shows that theoret-
ical partition cost (Def. 10) of the four different partition
algorithms previously presented. Please note that the last five
benchmarks do not show an optimal solution. This is because
the associated search trees are too large for our branch-and-
bound algorithm to solve. For example, the search tree of
the Lattice Boltzmann is 2664, which is simply too large

3Available at http://benchpress.bh107.org. For reproducibility, the exact
version can be obtained from the source code repository at https://github.
com/bh107/benchpress.git revision 01e84bd995.



1: function FUSEBYMASK(G,M ) . Help function
2: f ← true . Flag that indicates fusibility
3: for i← 0 to |Ew[G]| − 1 do
4: if Mi = 1 then
5: (u, v)← the i’th edge in Ew[G]
6: if not FUSIBLE(G, u, v) then
7: f ← false
8: end if
9: G← FUSE(G, u, v)

10: end if
11: end for
12: return (G, f)
13: end function
14:
15: function OPTIMAL(G)
16: G← UNINTRUSIVE(G)
17: for (v, u)← |Ew[G] do
18: if IGNORE(G, (u, v)) then
19: Remove edge (u, v) from Ew

20: end if
21: end for
22: B ← GREEDY(G) . Initially best partitioning
23: M0..|Ew [G]| ← 1 . Fill array M with ones
24: o← 0 . The mask offset
25: Q← ∅
26: ENQUEUE(Q, (M, o))
27: while Q 6= ∅ do
28: (M, o)← DEQUEUE(Q)
29: (G′, f)← FUSEBYMASK(G,M )
30: if cost(G′) < cost(B) then
31: if f and G′ is acyclic then
32: B ← G′ . New best partitioning
33: end if
34: end if
35: for i← o to |M | − 1 do
36: M ′ ←M
37: M ′

i ← 0
38: ENQUEUE(Q, (M ′, i+ 1))
39: end for
40: end while
41: return B
42: end function

Fig. 11. The optimal fusion algorithm that optimally fuses the vertices in G.
The function, cost(G), returns the partition cost of the partition graph G.

Benchmark Input size (in 64bit floats) Iterations
Black Scholes 1.5×106 20
Game of Life 108 20
Heat Equation 1.44×108 20
Leibnitz PI 108 20
Gauss Elimination 2800 2799
LU Factorization 2800 2799
Monte Carlo PI 108 20
27 Point Stencil 4.2875×107 20
Shallow Water 1.024×107 20
Rosenbrock 2×108 20
Successive over-relaxation 1.44×108 20
NBody 6000 20
NBody Nice 40 plantes, 2×106asteroids 20
Lattice Boltzmann D3Q19 3.375×106 20
Water-Ice Simulation 6.4×105 20

TABLE I
BENCHMARK APPLICATIONS

Fig. 12. A partition graph of the optimal fusion of the graph in Fig. 5.

Fig. 13. A partition graph of a Naı̈ve partition of the Python example (Fig.
3).

Processor: Intel Core i7-3770
Clock: 3.4 GHz
#Cores: 4
Peak performance: 108.8 GFLOPS
L3 Cache: 16MB
Memory: 128GB DDR3
Operating system: Ubuntu Linux 14.04.2 LTS
Software: GCC v4.8.4, Python v2.7.6, NumPy 1.8.2

TABLE II
SYSTEM SPECIFICATIONS
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Fig. 14. Theoretical cost of the different partition algorithms. NB: the last
five benchmarks, Lattice Boltzmann, NBody, NBody Nice, SOR, Water-Ice
Simulation, does not show an optimal solution.

even when the bound can cut much of the search tree away.
As expected, we observe that the three algorithms that do
fusion, Naı̈ve, Greedy, and Optimal, have a significant smaller
cost than the non-fusing algorithm Singleton. The difference
between Naı̈ve and Greedy is significant in some of the
benchmarks but the difference between greedy and optimal
does almost not exist.

2) Practical Runtime Cost: In order to evaluate the full
picture, we do three runtime measurements: one with a warm
fuse cache, one with a cold fuse cache, and one with no
fuse cache. Fig. 15 shows the runtime when using a warm
fuse cache thus we can compare the theoretical partition cost
with the practical runtime without the overhead of running
the partition algorithm. Looking at Fig. 14 and Fig. 15, it
is evident that our cost model, which is a measurement of
unique array accesses (Def. 10), compares well to the practical
runtime result in this specific benchmark setup. However, there
are some outliners – the Monte Carlo Pi benchmark has a
theoretical partition cost of 1 when using the Greedy and
Optimal algorithm but has a significantly greater practical
runtime. This is because the execution becomes computation
bound rather than memory bound thus a further reduction in
memory accesses does not improve performance. Similarly, in
the 27 Point Stencil benchmark the theoretical partition cost
is identical for Naı̈ve, Greedy, and Optimal but in practices
the Optimal is marginal better. This is an artifact of our cost
model, which define the cost of reads and writes identically.

Fig. 16 shows the runtime when using a cold fuse cache such
that the partition algorithm runs once in the first iteration of the
computation. The results show that 20 iterations, which most
of the benchmarks uses, is enough to amortize the partition
overhead. Whereas, when running the partition algorithm in
each iteration, which is the case when running with no fuse
cache (Fig. 17), the Naı̈ve partition algorithm outperforms both
the Greedy and Optimal algorithm because of its smaller time
complexity.
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Fig. 15. Runtime of the different partition algorithms using a warm cache.
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Fig. 16. Runtime of the different partition algorithms using a cold cache.
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Fig. 17. Runtime of the different partition algorithms using no cache.
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