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Abstract

This thesis is an anthology of three theoretical problems in astrophysics with ap-
plications to planetary atmospheres, their immediate external environment, and
their birthplaces.

The first problem concerns the linear and nonlinear stability of equilibrium
motions. In particular, we investigate the stability of a charged particle in a cir-
cular orbit subject to axisymmetric gravitational and electromagnetic forces. We
extend previous work on this problem by including a toroidal magnetic field. In
source free regions, we prove that the toroidal field has no effect on either the equi-
librium orbit or its stability. However, in regions with charge or current sources,
we find that the toroidal field can potentially alter the stability of the orbit al-
though it plays no role in determining the equilibrium orbital coordinates. We
show that the toroidal field enters the system as a gyroscopic force and can stabi-
lize otherwise unstable particle orbits for a range of physical parameters. We also
demonstrate that gyroscopic stability so attained is only temporary and that the
slightest dissipative forces can render the system unstable again, albeit at a slower
rate. Our results may apply to dust grains orbiting within a rotating planetary
magnetosphere.

The second problem looks at how magnetic diffusion alters the character of
the magnetorotational instability. The magnetorotational instability (MRI) is gen-
erally regarded as the foremost contender for driving magnetohydrodynamic tur-
bulence in differentially rotating astrophysical disks thereby facilitating accretion.

In disks that are poorly ionized, the three non-ideal effects of ohmic, Hall and
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ambipolar diffusion take hold. We conduct a systematic analysis of the non-ideal
MRI in the shearing sheet framework and elucidate the character of the eigen-
modes. We derive expressions for the kinetic and magnetic stresses and uncover
a new characteristic scale when the net magnetic field and angular velocity are
anti-parallel. This scale may possibly signal a change in the nature of the ensuing
turbulence provided dissipative effects are small. Non-ideal effects pervade disks
around young stars and our results may be relevant to the dynamical evolution of
certain parts of such disks.

The third problem deals with modeling irradiated atmospheres. Using the
principles and methods of radiative transfer, we derive a plane-parallel equilib-
rium analytical model of an atmosphere that receives radiant energy from above
and below. Constructing analytical atmospheric models is a challenging exercise
and obtaining one with a frequency dependent opacity function is one of the main
points of difficulty. By using the picket-fence technique for modeling spectral lines,
we are able to derive exact analytical solutions and thereby obtain thermal profiles
of an atmosphere that receives strong collimated high frequency radiation from
above in addition to thermally emitted radiant energy from below. Our model
also includes the effects of coherent scattering in the lines and the continuum. An
obvious application of our analysis is to modeling planetary atmospheres, in par-
ticular, those outside of our own solar system that are presently being discovered

in the thousands.
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Resume

Denne afhandling er en antologi af tre teoretiske problemer inden for astrofysik,
med anvendelse inden for planetatmosferer, deres nermeste omgivelser og de
steder de dannes.

Det forste problem omhandler den linezre og ikke-linezre stabilitet af ligevaegts-
bevagelser. Iszr undersoger vi stabiliteten af en ladet partikel, der befinder sig i en
cirkuler bane og er udsat for rotationssymmetriske gravitationelle og elektromag-
netiske krafter. Vigeneraliserer tidligere studier ved at inkludere et toroidalformet
magnetfelt. I kildefri omrader beviser vi, at det toroidale felt ikke pavirker hverken
ligevaegtsbanen eller dens stabilitet. Til gengzld konkluderer vi, at det toroidale
felt pontentielt kan pavirke stabiliteten af banen 1 omrader med kilder af ladning
eller stram. Dette selvom disse kilder ikke spiller en rolle for bestemmelsen af
ligevaegtsbanekoordinaterne. Vi paviser, at det toroidale felt indgar i systemet som
en gyroskopisk kraft, som kan stabilisere ellers ustabile partikelbaner for en rekke
af fysiske parametre. Vi pdpeger ogsa, at den opndede gyroskopiske stabilitet kun
er midlertidig, og at den mindste smule dissipativ kraft kan gare systemet ustabilt
pany, omend med en lavere vakstrate. Vores resultater kan maske anvendes til
forsta stovpartikler, der er i omlgb inde i en roterende planetmagnetosfere.

Det andet problem er et studie af hvordan magnetisk diffusion @ndrer karak-
teren af den magnetorotationelle instabilitet (MRI). Den magnetorotationelle in-
stabilitet betragtes generelt som en sandsynlig drivkraft af magnetohydrodynamisk
turbulens 1 differentielt roterende massetilvakstskiver. I massetilvakstskiver, der

er svagt ioniserede, er de tre ikke-ideelle effekter, Ohmisk, Hall og ambipolar diffu-



sion, til stede. Vi udferer en systematisk analyse af den ikke-ideelle MRI i “shear-
ing sheet” frameworket og belyser karakteren af egenfunktionerne. Vi udleder
ligninger for den kinetiske og magnetiske spending og afslgrer en ny karakterisk
leengdeskala, hvor det totale magnetfelt og angulere hastighed er anti- parallelle.
Denne skala kan méske indikere en @ndring i karakteren af den folgende turbulens
safremt dissipative effekter er sma. Ikke-ideelle effekter er tilstede i massetilvaek-
stsskiver omkring unge stjerner og vores resultater kan potentielt vare relevante
for den dynamiske udvikling af visse dele af sidanne skiver.

Det tredje problem angdr modellering af bestrilede atmosferer. Ved hjzlp
af principper og metoder for stralingstransport, udleder vi en plan-parallel ana-
lytisk ligeveegtsmodel af en atmosfere, der belyses bade fra neden og fra oven.
Konstruktionen af en analytisk atmosfeeremodel er en udfordrende opgave, iser
hvis gennemsigtighedsfunktionen er frekvensathengig. Ved hjzlp af picket- fence
teknikken til at modellere spektrallinjer, er vi dog i stand til at finde frem til
eksakte, analytiske lgsninger, og derved termiske profiler for en atmostfare, der
modtager kraftig, hgjfrekvent, kollimeret striling ovenfra og termisk udstriling
nedefra. Vores model inkluderer ogsa effekter fra kohrent spredning i linjer og
kontinuum. En oplagt anvendelse af vores analyse er i modelleringen af planetat-
mosfarer, i serdeleshed dem uden for vores eget solsystem, der i disse tider bliver

opdaget 1 tusindvis.
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Outline

The outline of the thesis is as follows. The thesis is divided into three parts. Each
part consists of two chapters. The first chapter of every part provides a minimum
theoretical background that sets the stage for the analysis we have carried out in
the respective papers. The second chapter of every part touches upon relevant
applications, previous related work and a summary discussion of our main results
and future prospects. Lastly, we append all three papers in the order in which they

are referenced towards the end of the thesis.
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Stability of Circular Orbits






Chapter 1

Dynamical Systems and Stability
Theory

In this chapter, we provide a brief introduction to the stability theory of dynami-
cal systems. The purpose of this chapter is to provide a sufficient theoretical back-
ground for the analysis conducted in Mohandas, Heinemann, and Pessah (2018)
which we shall refer to hereafter as Paper I. We describe the basic mathematical
framework for analyzing the dynamics and stability of mechanical systems. We
outline the main notions and theorems of stability that are relevant to our work.
The account presented here is largely based on the excellent monograph on the
subject by Merkin (2012) as well as parts of Bloch et al. (1994) and Krechetnikov
and Marsden (2007). The presentation is necessarily minimal and we refer the
interested reader to the above cited references for a detailed discussion of the fun-

damental concepts.

1.1 Dynamical Systems

The dynamics of several different kinds of mechanical systems may be described
by the general first order ordinary differential equation
dy
=Y (7,t: \), 1.1
dt (y7 ? ) ( )
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1. Dynamical Systems and Stability Theory

where ¥ = {y1,92,...,yn} represent the variables characterizing the state of the
system and are usually comprised of position coordinates and velocities or mo-
menta. The time evolution of the variables given by the vector ¢ are governed
by the n number of generally nonlinear functions denoted by Y. Additionally, A
denotes a set of control parameters that may be present and could alter the specific
nature of the dynamics depending on the constant (in time) values they assume.
The system is called autonomous if none of the functions Y depend on time ex-
plicitly and is called non-autonomous otherwise. Hamiltonian systems fall into
the general class of systems that can be described by Equation 1.1. Given the initial
conditions and with the knowledge of Y, one can solve Equation 1.1, sometimes
analytically but more often numerically, to determine the trajectory or orbit fol-
lowed by the system in time. The long time evolution of most dynamical systems
typically fall into one of three categories. They either evolve into 7) a steady state

equilibrium, 77) an oscillatory state, or 727) an irregular chaotic state.

1.2 Motion Stability

Very often, one is interested in the stability of the motion of dynamical systems to
small perturbations. We refer to the solutions of Equation 1.1 given by (Greiner,
2009; Merkin, 2012)

ylzfl(t)7 7yn:fn(t)7 (1-2)

whose stability we wish to investigate as the unperturbed motion. At some initial

time ¢t = t, these solutions satisfy

y1 = f1(to), - yn = fulto), (1.3)

We consider small (relative to the unperturbed solution) perturbations to the un-

perturbed motion at ¢y such that

y1:f1(t0)+€1, ayn:fn(t0>+5nu (1~4)

where ey, ..., &, are the perturbations and the solutions given by Equation 1.4 are

referred to as the perturbed motion. The difference between the perturbed and
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Lyapunov Stability

the unperturbed solutions are called deviations or variations and are given by

xz':y,;(t)—fi(t), Z':1,...,n. (1.5)

Whereas, z;(ty) = &;, their subsequent evolution is determined by Equation 1.1.
Whether the system is stable or unstable depends on whether the deviations z;
grow or dampen as a function of time.

Let us consider the equations for the perturbed motion. Substituting Equa-
tion 1.5 into Equation 1.1, we obtain

df; — dx;
a T a

:Y;(fl“‘wla"-afn“‘wn)- (1.6)

Since the deviations are small by definition, we expand the right hand side in a

power series and subtract the equation of unperturbed motion to get

dx; )
J:ai1$1+---+ammn—|—Xi, 1=1,....,n, (1.7)

dt
9Y;
Ai5 = <ax]—>x:0 . (1.8)

The term X; denotes all the terms involving powers of x; greater than unity. If

where

we omit this nonlinear term, we obtain what are called the equations of first ap-

proximation or the linearized system of equations.

1.3 Lyapunov Stability

The notion of stability was made precise by Lyapunov who proposed the following

definition.

Definition 1 (Merkin, 2012). If for any positive value €, however small, one can find
a positive value § such that at t = to, for all perturbations x;(to) satisfying

n

> ai(t)* <6 (1.9)

i=1



1. Dynamical Systems and Stability Theory

Figure 1.1: A geometric representation of Lyapunov’s definition of stability. The

curve traces the image point defined by the deviations as it evolves in time.

the inequality

n

doa(t)? <e (1.10)

i=1

holds true, then the unperturbed motion is stable; otherwise it is unstable.

A visual aid is very helpful in understanding the above definition and is pro-
vided in Figure 1.1. Consider a space of n variables where each “coordinate” de-
notes the deviations to the unperturbed motion. Therefore, the coordinate origin
x; = 0 represents the unperturbed motion. The time evolution of the deviations

may be represented in terms of a “distance” from the origin given by the scalar

\/x%—I—:C%—l—---—I—x%, (1.11)

to an image point M located by the coordinates ;. When perturbed at the initial
time tp, the image point is My. As the system evolves, the image point traces a
trajectory in the n dimensional space given by the solution to Equation 1.7. Now

consider a sphere of radius 1/ in this space. If the system is stable in the Lyapunov



Lyapunov’s Direct Method

sense, then one can always find a smaller sphere of radius v/§ such that starting at
any image point My on or within the d sphere, the image point follows a trajectory
that never crosses the ¢ sphere. If the system is unstable, then regardless of how
small the § sphere is, or in other words, however close the initial image point M)
was to the origin, the image point at a later time will eventually cross the e sphere.

If the deviations have the additional characteristic that at late times, they con-
verge to the unperturbed motion, i.e.,

lim Y z2(t) =0, (1.12)

t—o00 v

then we say that the unperturbed motion is asymptotically stable. Note however,
for the system to be asymptotically stable, it must also be stable according to Lya-
punov’s definition in addition to satisfying Equation 1.12.

There are three restrictions on Lyapunov’s definition of stability. Firstly, we
require that only the initial conditions are perturbed and that the perturbations
evolve under the same forces as the original unperturbed system. Secondly, the
time interval over which stability is considered is arbitrarily large and in principle

infinite. Finally, the perturbations are considered to be arbitrarily small.

1.4 Lyapunov’s Direct Method

A common procedure with which one studies whether a system is stable in the
Lyapunov’s sense is the Lyapunov Direct Method or Second Lyapunov Method.
The essential component to this method is the so-called Lyapunov function. We
assume that the Lyapunov function V(%) is real, single-valued and continuous in
the domain Y 27 < p where 1 is a constant and that also satisfies V' (0) = 0.

A Lyapunov function is definite if it has only one sign, either positive or neg-
ative and vanishes only at the origin. A Lyapunov function is semi-definite if
it has only one sign, but may vanish at points other than the origin. Finally, a
Lyapunov function is indefinite if it changes sign in the domain. A sufficient con-

dition for positive definiteness of the Lyapunov function is given by Sylvester’s



1. Dynamical Systems and Stability Theory

Figure 1.2: A geometric representation of Lyapunov’s stability theorem, Theo-

rem 1.

criterion which states that the function is positive definite if all the principal diag-

onal minors of its coefficient matrix are positive, where the coeflicient matrix Cjy,

1s defined such that

o?V
Cip = 1.13
Ik 3x]8$k ’ ( )
where j = 1,...,nand k = 1,...,n. Negative definiteness is similarly ascer-

tained by checking whether —V is positive definite instead.

1.5 Lyapunov’s Stability Theorem

The conditions under which an unpertubed motion is stable to deviations and
whose evolution is governed by Equation 1.7 were laid out by Lyapunov in his
fundamental stability theorem of motion stability. We reproduce the theorem as

stated in Merkin (2012) below

Theorem 1. If for differential equations of a perturbed motion we can find a definite
function V' such that by virtue of the given equations its derivate V. is either identically

8



Linear and Spectral Stability

equal to zero or is semidefinite with the opposite sign of V., then the unperturbed motion

is stable.

We furnish a proof based on simple geometric considerations below. Consider
asphere of radius /¢ in the n dimensional deviations space as described previously
and a Lyapunov definite (assumed positive without loss of generality) function to
be defined in this space. Next, consider a surface with constant value of V = ¢
inside the € sphere. Now, construct another sphere of arbitrarily small radius v/§
that is fully contained within the surface V' = ¢. Let the initial deviations to
the unperturbed motion be such that the initial image point My is located on or
inside the § sphere. Consider also an isosurface of the Lyapunov function V' = ¢;
coincident with the initial image point M that is also contained within V' = c.

According to Theorem 1, the time derivative of the Lyapunov function

ov. . oV .oV dx

oV i L Y gy <, 1.14
o0x1 0x9 Tt oxy, dt vV s ( )

Since VV points outward for a positive definite function, V' < 0 only if the veloc-
ity dZ'/dt is at right angles or more to the constant surface V' = ¢; containing the
image point M. This means that the trajectory of the image point moves further
inward and never leaves V' = ¢1. Therefore, the image point never crosses § and
by Lyapunov’s definition, the system is stable. Figure 1.2 provides a geometrical

illustration of Lyapunov’s direct method.

1.6 Linear and Spectral Stability

In many situations, one may be able to determine the stability of the system by
examining the equations of first approximation alone. This is relatively easier to
do and is often the first resort to addressing the question of stability. We shall list
the relevant theorems that outline the method of ascertaining stability or its lack
thereof and the conditions under which it is valid.

For an autonomous system, the coeflicient a;; in the equations of first approx-

imation do not depend on time. Therefore, one may seek solutions of the form

9



1. Dynamical Systems and Stability Theory

x; = A; exp(ot) where the A;’s are constants. Substituting these in Equation 1.7
yields the characteristic equation which is a polynomial of degree n whose roots
are 0. This method basically amounts to solving an eigenvalue problem and the de-
termination of the structure or spectrum of eigenvalues. By examining the nature
of the roots, one can address the question of stability according to two theorems
due to Lyapunov as stated in Merkin (2012) which we reproduce below without

proof.

Theorem 2. If all roots of the characteristic equation of a first approximation have
negative real parts, the unperturbed motion is asymptotically stable irrespective of the

nonlinear terms.

Theorem 3. Ifat least one of the roots of the characteristic equation has a positive real

part, then the unperturbed motion is unstable irrespective of the nonlinear terms.

If some of the roots do not have a real part, the question of stability of the
linearized system requires further examination. Systems that are determined to
be stable or unstable on the basis of the spectrum of the eigenvalues alone are
referred to as being spectrally stable or unstable.

Some matrix algebra machinery is necessary in order to ascertain linear sta-
bility if the characteristic polynomial has roots with zero real part. We briefly

outline the key elements and steps involved in the procedure.

1. We first determine the greatest common divisor of all the minor matrices of
the characteristic polynomial at all orders. The greatest common divisor at

a given order k is denoted as Dy (o) for k =1,...,n.

2. We then determine the invariant factors by considering the ratio of succes-
sive greatest common divisors. That is, the invariant factor at a given order
kis Ek(O') = Dk/Dk,1 with DO = 1.

3. We then factorize the invariant factors into their respective elementary di-
VISOrs as

Ep= (0 —01)% (0 —01)%...(0c —0p). (1.15)

10
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4. The roots of the elementary divisors coincide with the roots of the charac-
teristic polynomial but with possibly different multiplicities eg;. The ele-

mentary divisor is a primary divisor if ey; = 1.

The question of linear stability is then addressed by the following theorem as

stated in Merkin (2012) which we reproduce below without proof.

Theorem 4. If some of the roots of the characteristic equation have a zero real part
and the rest of the roots all have negative real parts, then 1) the unperturbed motion
is stable, although not asymprotically, if all the roots with zero real part correspond to
simple primary divisors, i.e., ex; = 1, 11) the unperturbed motion is unstable if even
one of the roots with zero real part is a multiple root of the corresponding primary

divisor i.e., ep; > 1.

This extended examination of stability is only necessary if there are multiple

roots with zero real part and the remainder of the roots have negative real part.

1.7 Lagrangian and Hamiltonian Mechanics

We adopt the Lagrangian or Hamiltonian description which provides an equiva-
lent and elegant formulation of classical mechanics. We present a brief summary
of the framework below.

Using d’Alembert’s principle of virtual work, one derives the fundamental

equation (Greiner, 2009)
- = Qi, (1.16)

where T is the kinetic energy, Q; are the generalized forces and ¢; are the gener-
alized coordinates where @ = 1,...,n. Consider the case where the generalized
force is derived from a scalar potential as

B ov
B 3%"

Qi (1.17)

Such forces are called conservative forces and are an important, but not the only,

type of forces that one encounters. Equation 1.16 is often expressed in terms of

11
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the Lagrangian, L = T' — V which becomes
aor o _
dtdg;  Oqi

By applying a Legendre transformation, one can define a new quantity called

(1.18)

the Hamiltonian as

n
H=> pii—L, (1.19)
i=1
where we also define the canonically conjugate momentum to g; as
oL
pi = 96 (1.20)
qi

With (gi, pi) as the independent coordinates, the dynamics is governed by Hamil-

ton’s equations
0H . 0H

= y Pi= — :
ap; 9
When studying a larger classes of mechanical systems that includes forces other

G (1.21)

than conservative forces, it is helpful to decompose Equation 1.16 as

dor oT

l nl
— =Q'+ Q! 1.22
dt 6% 8qi ! v ( )
dgi .
— =g, k=1,..., 1.23
dt q " ( )

where Q! and Q7 are forces linear and nonlinear in the coordinates g; and ve-
locities ¢; respectively. The kinetic energy is a positive definite function of the

velocities as given by
L
T= 5%k k- (1.24)
The linear force terms may be further categorized as follows.

Qi =—C'q; — B'g, (1.25)

where C! and B! are n x n square matrices which we can further decompose into

symmetric and skew-symmetric components as

Cl, +Cl By, + By,

Cik = % = Ckj, bjk = %] = bkj7 (1-26)
cl. —CL. B, — Bl

Djk = % = —Pkj> 9jk = % = —9kj- (1.27)

12
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With this decomposition, the general equation of motion may be expressed as
(Merkin, 2012)

aidi+ g+ pge + byl + gyl =QF.  (1.28)
—— —— —— =~
conservative  non-—conservative  dissipative = gyroscopic
The coeflicient matrix ¢;; represent conservative forces for which the work done
is independent of the path taken. The coeflicient matrix p;; on the other hand rep-
resent forces for which the work done does depend on the path taken. Dissipative
forces denoted by the coeflicient matrix b;; represents dissipative influences such
as friction as the name suggests. Finally, gyroscopic forces denoted by the coefh-
cient matrix g;; represent forces that do not do any work. We refer the reader to

Merkin (2012) for a more elaborate definition of the force types.

1.8 Stability of Conservative Systems

While Lyapunov’s direct method offers a straightforward route to demonstrating
stability, the challenge often is in constructing a suitable positive or negative def-
inite Lyapunov function. The consideration of stability becomes greatly simpli-
fied when dealing with equilibrium states of conservative systems, that is, systems
where the total energy is a conserved quantity. The potential energy function
then presents itself as a suitable Lyapunov function for the investigation of stabil-
ity. These are systems for which only the conservative force term in Equation 1.28
is present. A theorem due to Lagrange and rigorously proved by Dirichlet states
the condition under which purely conservative systems are stable in the Lyapunov

sense. We reproduce below the so-called Lagrange-Dirichlet theorem as stated in
Merkin (2012).

Theorem 5. If at the position of an isolated equilibrium of a conservative system with

holonomic and scleronomic constraints' , the potential energy has a minimum, then

'In many systems, the motion can be constrained where the constraining conditions may be
expressed as fi(q1,q2,...,t) = 0,k = 1,...,s. Such systems are called holonomic. If time does

not appear explicitly in the constraint condition, the constraint is called scleronomic.

13



1. Dynamical Systems and Stability Theory

the equilibrium position is stable.

We sketch a quick, though not rigorous, proof of the theorem below. At the
equilibrium position, the potential energy is equal to zero and is also a minimum.

We may expand the potential energy function in a power series as

ov 1 0%V
V=vV0)+|—| ¢+=|——] gigp+.... 1.29
(0) (8%)0% 2<aqjaqk>0qjqk (1.29)

The first and second term vanishes at the equilibrium position. The third term is
in fact the coeflicient matrix as defined in Equation 1.13 which is positive at the
equilibrium position since the potential is a minimum here. Therefore, according
to Slyvester’s criterion, the potential energy is positive definite and since it is in-
dependent of time, V' = 0. According to Theorem 1, the motion is stable at the
minimum.

The Lagrange-Dirichlet theorem only provides sufficient conditions for stabil-
ity. However, one could ask whether the inverse holds; that s, is the equilibrium
unstable when it is not an isolated minimum. Chetaev proved the following gen-

eralized theorem which shows that the system is unstable when not at an isolated

minimum. We state this theorem below without proof.

Theorem 6 (Merkin, 2012). If at a position of an isolated equilibrium the potential
energy V, which is an analytical function, has no minimum, then the equilibrium is

unstable.

1.9 Cyclic coordinates and Routh’s Theorem

In a large class of mechanical systems, one or more coordinates may be absent in
the expression for the kinetic energy and the generalized forces. Such coordinates
are referred to as cyclic coordinates. Cyclic coordinates are connected to some
fundamental symmetry property of the system as revealed by Noether’s theorem
(Goldstein, Poole, and Satko, 2014). A simple example are systems with axial

symmetry. If cylindrical coordinates are used to describe the system, one finds that

14
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the azimuthal angular coordinate is conspicuously absent from the Lagrangian and

Hamiltonian. In this case, the equation of motion given by Equation 1.16 reduces

to 9
d OL
— = 1.30
dtd¢p; (1.30)
which results in the integral of motion
Pp; =cj=const. j=1,...,m, (1.31)

where m is the number of cyclic coordinates. It would then be reasonable to
work in a reduced phase space comprising only of the non-cyclic coordinates and
corresponding velocities. This is easily achieved by defining the Routhian function

as

R=L-) cupx (1.32)
k=1

where R is a function of only the positional coordinates and the corresponding
velocities and where we replace the ¢y, in terms of i, and g This yields the new

equations of motion in the reduced space

dOR OR -
4Ok _OR 5 g 1.33

dt 8ij 8(]]‘ Q] J y ( )
where V' is the potential energy associated with conservative forces and Q; are
the other kinds of forces present in the system. The Routhian function naturally

splits into three components in powers of ¢; as (Rumiantsev, 1966)

R=Ro+ R1+ Ry -V, (1.34)
where
1 ..
Ry = S akjd;dn, (1.35)
R1 = ajq'j, (1.36)

and Ry — V is simply a function of g; as are a;, and a; in general. This allows us

to express Routh’s equation as

dt d¢;  dq;  dq; g

d ORy ORy 0Ry 0OV d ORy 0OR; ~
a4Jn  Ydiu , 37
[dt 04, 0q; ] T (1.37)
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The bracketed term containing R; can be written as

8aj 8ak . .
=y _ 7k = q; 1.38
(8% 6qj> k= GjkGk; (1.38)
where g, is the skew-symmetric coefficient of the gyroscopic force. We say that
the system is gyroscopically decoupled if R; = 0. Defining a new effective poten-

tial U =V — Ry, Equation 1.37 becomes

d OR2 ORy ou . ~
Sr TP N 1.39
One can easily show that the gyroscopic forces do no work (Merkin, 2012), and

if Q; = 0 we also obtain the energy integral

Ry — U = const. (1.40)

1.10 Stability of Stationary Motions

An unperturbed motion where all the non-cyclic positional coordinates and the
cyclic velocities remain at their constant initial value is called stationary motion.
That is, we have

4 = gqjo, 4 =0, ©;j=jo (1.41)
Systems exhibiting this kind of motion are of particular interest to us and we
deal with just such a system in Paper I. The stability of stationary motions was

originally investigated by Routh who proposed the following theorem which we

state as given in Merkin (2012) without a formal proof below.

Theorem 7. If for a generalized system the potential energy U = V — Ry attains
its minimum in a stationary motion, then, at least for a perturbation in which the
magnitudes of the cyclic integrals c; are not altered, this stationary motion is stable

with respect to positional coordinates q; and velocities §;.

One can prove this in the Lyapunov sense for conservative systems. However,
this works only when the cyclic integrals are not themselves altered by the pertur-

bations. This limitation is to some extent alleviated with the following theorem.
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Theorem 8 (Merkin, 2012). If the potential energy of the generalized system U has
a minimum with respect to: a) the given p,, = cj, corresponding to the stationary
motion under consideration and b) parameters p,, = c; + 1, which are sufficiently
close to the initial values for small absolute values of n;, and moreover, if those g,
for which the potential energy is minimized are continnous functions of p;, then the

stationary motion is stable with respect to qj, and ;.

The question of the whether the inverse is true, i.e, whether the equilibrium
is unstable when it is not an isolated minimum, crucially depends on the presence
of the gyroscopic force. However, in the absence of such a force, a theorem due to
Chetaev applies and is stated without proof. This is identical to the general case

of conservative systems that may lack any kind of symmetry.

Theorem 9 (Merkin, 2012). If for an isolated stationary motion of a gyroscopically
decoupled system with cyclic integrals, U is an analytic function of q; and has no min-

imum, then the stationary motion is unstable.

As alluded to earlier, stability may be possible at an equilibrium that is not an
isolated minimum if the system is in fact gyroscopically coupled. We explore this

possibility further below.

1.11 Gyroscopic Stabilization

A common class of dynamical systems consists of one with two essential or po-
sitional coordinates and possibly one or more cyclic coordinates (Merkin, 2012).
Indeed, we shall be concerned with a prototypical example of just such a system
in Paper I. An important route to stability that applies to such a system is that
of gyroscopic stabilization. This involves the possible stabilization of an other-
wise unstable equilibrium under the action of gyroscopic forces as introduced in
Section 1.7. We examine below the conditions under which such stabilization is
possible.

We consider here a system under the action of linear potential, gyroscopic and

dissipative forces given by the equations of motion (Bloch et al., 1994; Merkin,
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2012)

21— g2 +dz1 + az =0, (1.42)
Zo 4+ 921 +dig + Bz =0, (1.43)

where ¢ is the coeflicient of the gyroscopic force, d is the coeflicient of the dissi-
pative force and «, /3 are the coeflicients of the conservative force. Here, 21 and 29
are the positional coordinates of the perturbed motion.

Let us first consider the case without dissipation d = 0. The characteristic

polynomial for the undamped system is given by
ot + (> +a+B)o* +ab =0. (1.44)

The coeflicients « and f3 are referred to as stability coeflicients and they may be
independently positive or negative. If one of the two coeflicients are negative, then
we say the system has an odd degree of instability and if they are both negative,
we say the system has an even degree of instability (Merkin, 2012). This concept
may be generalized to systems with greater degree of freedom. In all cases, it is the
degree of instability, i.e, whether they are even or odd, and not the actual number
of positive or negative stability coeflicients that is paramount.

We can determine stability or instability by examining the dispersion relation
Equation 1.44. Three possibilities exist depending on the signs of the stability

coefficients.

1. Ifa > 0,8 > 0, the roots of the characteristic polynomial or the eigenvalues
are on the imaginary axis. In this case, the system is spectrally stable. How-
ever, whether they are linearly stable is to be discerned from the conditions

posed by Theorem 4.

2. If @ and 3 have opposite signs or equivalently if the degree of instability is
odd, there is one eigenvalue pair on the real axis and one on the imaginary
axis. One of the eigenvalues has a positive real part and the system is unstable

regardless of the presence of the nonlinear terms.
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3. If @« < 0 and B < 0, the degree of instability is even. Determination of in-
stability requires closer scrutiny. The roots of the characteristic polynomial

has the discriminant D as given below
D =g'+2g%(a+ )+ (a—B)". (145)

(a) If D < 0, two roots occupy the right half plane and two occupy the

left. The system is therefore unstable.

(b) ¥ D > 0and g? + a + 3 > 0, all roots lie on the imaginary axis. The
system is spectrally stable here. However, one would need to check the
conditions outlined in Theorem 4 in order to determine linear stabil-
ity. This mode of stability is what we refer to as gyroscopic stabilization
as stabilization is only achieved due to the presence of the gyroscopic

force represented by g.

(c) If D > 0and g? + a + 8 < 0, there are two roots on the positive real

axis and two on the negative real axis and the system is unstable.

1.12  Dissipation Induced Instability

In the previous section, we demonstrated how an otherwise unstable conserva-
tive system may be stabilized due to gyroscopic forces. However, this is not the
end of the story. We now look at the situation when dissipative forces are also
present as they invariably would be in realistic systems. In particular, we may ask
whether gyroscopic stabilization is still possible if dissipative forces are present.
The characteristic polynomial for Equation 1.44 considering dissipation is given
by

ot +2do® + (¢ +a+ B+ d)o? + d(a+ B)o + af = 0. (1.46)

By using the Routh-Hurwitz criterion, it is easy to show that the system is unsta-

ble, i.e., there are roots on the right half plane if

a<0, <0, ¢Z+a+p5>0 d>0. (1.47)
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Gyroscopic stability is therefore lost despite condition 3(b) being satisfied. This
loss of stability is known as dissipation induced instability (Bloch et al., 1994). Dis-
sipation induced instability is a significant mode of destabilization and is observed
in a number of terrestrial system (Krechetnikov and Marsden, 2007). Since dis-
sipation is a prevalent feature of most physical systems, gyroscopic stability may
only be a transient phenomenon. Indeed, stability due to gyroscopic forces is, for
this reason, sometimes referred to as temporary stability in the literature (Merkin

2012; Thomson and Tait 1883a,b).
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Chapter 2

Charged Particle Dynamics and
Stability

In this chapter, we present a summary of the analysis and results of Paper I. The
centerpiece of this paper is the study of the effect of gyroscopic and dissipative
forces on the stability of a charged particle in an equilibrium circular orbit. We
begin with a brief discussion of an astrophysically relevant scenario where the
results of our stability analysis may apply and also point to recent work in this
context. We closing with the summary of Paper I and a brief mention of future

prospects.

2.1 Charged Particle Dynamics

There are many situations of practical interest where one is concerned with the dy-
namics and stability of charged particle motion. Indeed one of the earliest and well
studied applications is with regard to charged particle motion in a planetary mag-
netosphere. This problem was first studied in great detail by Stormer (1955) for
ions and electron, whose motion is largely determined by electromagnetic forces,
in this case, the Earth’s predominantly dipolar magnetic field. However, for parti-

cles with relatively lower charge to mass ratios, such as charged dust grains, the dy-
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namical properties are enriched when additional influence such as planetary grav-
itation, planetary rotation, radiation pressure, etc., come into play. The broader
class of problems that examines charged particle motion and stability when under
the influence of a larger set of forces is sometime referred to as the general Stérmer
problem (Dullin, Horanyi, and Howard, 2002).

The dynamics of a charged particle subject to axisymmetric force fields is de-

scribed by the Lagrangian

1
L:§?+Am—¢. (2.1)

Here, r is the particle coordinates, A is a vector potential and ® is a scalar po-
tential that we refer to as the electromagnetic potentials. An overdot denotes the
time derivative of the associated variable. The scalar potential ® may generally be
a combination of any conservative potential and so may include, in addition to
the true electric field, gravity and centrifugal force in a rotating frame. Similarly,
the vector potential A may include contributions from any force proportional
to velocity such as the Coriolis force in a rotating frame in addition to the true
magnetic field. The equation of motion, which follow from the Euler-Lagrange
equation, is

i=E+7 x B, (2.2)

where
E—=-Vd, B=VxA. (2.3)

where the electric field E and the magnetic field B are to be understood in a
general sense as suggested above.

If we conduct the analysis in cylindrical coordinates (p, ¢, z), the angular co-
ordinate ¢ is cyclic due to axisymmetry. In these coordinates, it is useful to express
the toroidal component of the vector potential in terms of a scalar flux function

so that
Y = pAyp. (2.4)
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The poloidal magnetic field components are therefore

19 1 9
=% B =2 25
Yo==0a BT 05 (25)

and the total (true) magnetic field is
B = VY x Vo + pB,Vo, (2.6)
Axisymmetry allows us to construct a Routhian function of the form

1
R:im?+¥yh%p+Aﬂ—u, (2.7)

where we define the effective potential

2,2
u=@+p;. (2.8)

The dynamics may therefore be described in the reduced space defined by the
coordinates (p, z, p, 2). The quantity w denotes the angular velocity at a given

equilibrium orbit and is related to the associated integral of motion p, as

Py = pPw + 1. (2.9)

In the absence of dissipative forces, there is one other integral of motion - the
energy integral given by
1

H:§{2+£y+u (2.10)

2.2 Circular Orbits in a Rotating Magnetosphere

Equilibrium solutions of the system described by the Routh equations of motion
are given by critical points of the effective potential, U = 0. These correspond
to circular orbits p = 2 = 0 with w = const.

We are interested in the stability of such equilibrium circular orbits in a rotat-
ing magnetosphere configuration. Here, the charged particle is subject to a central
point mass gravitational potential, a dipole magnetic field and an electric field that

arises due to the presence of a highly conducting and rotating plasma. This model
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is frequently adopted for studying charged particle orbits in a planetary or stellar
magnetosphere. In a series of papers (Dullin, Horanyi, and Howard 2002; Howard
1999; Howard, Dullin, and Horanyi 2000; Howard, Horanyi, and Stewart 1999)
conducted a detailed examination of the stability characteristics of circular orbits
in a planetary magnetosphere. The principal application of the theoretical results
were to determine the locations where charged dust grains orbits around planets
such as Saturn by analyzing their stability.

We summarize the basic theoretical results of the aforementioned studies be-
low. The rotating magnetosphere model is described in terms of the poloidal flux

function 1 which in cylindrical coordinates is given by

2
=20 2.11)
T
and the scalar potential ® given by
R
o =-E 4y, (2.12)
T

where v is proportional to the magnetic dipole moment, 1 is the coefhcient of the
Newtonian gravitational potential, and €2 is the planetary spin rate. The second
term in Equation 2.12 is the electric field due to the corotating magnetosphere.

The effective potential for this system is then given by

2
u:—§+ﬂ¢+%}. (2.13)

For this system, equilibrium circular orbits can be found in the equatorial
plane and in planes above or below it (halo orbits). The equilibrium equatorial

orbits in cylindrical coordinates are solutions of

PP = 4 y(w — Q). (2.14)
The equilibrium halo orbits are more compactly expressed in spherical polar co-
ordinates (r, ¢, ¥) and are solutions of

I

7"3(A)2 = _2’}/(&) — Q), and Sin2 Y = —m

(2.15)
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Figure 2.1: Stability diagram for equilibrium equatorial orbits. Here, the regions
highlighted in the darker shade of gray correspond to potential minima and are
therefore stable. The regions highlighted in light gray correspond to potential

maxima including saddle points and are therefore unstable.

If the system is conservative, Routh’s theorem, Theorem 7 applies. The sta-
bility of the system depends upon whether the equilibrium orbits correspond to
isolated effective potential minima. That is, equilibrium orbits where 5224 > 0
or which, is tantamount to requiring that the trace and determinant of the Hes-
sian matrix Q of the effective potential are positive at the equilibrium orbit in
consideration. In cylindrical coordinates, this is given by

ou U

and

det Q = (2.17)

uru _(u\
dp? 022 0pdz )

Figures 2.1 and 2.2 illustrate the equilibrium orbits that are stable or unstable
as dictated by Routh’s Theorem, Theorem 7.
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Figure 2.2: Stability diagram for equilibrium halo orbits. Here, the regions high-
lighted in the darker shade of gray correspond to potential minima and are there-
fore stable. The regions highlighted in light gray correspond to potential maxima

are therefore unstable.

2.3 Charged Dust in Planetary Rings

Dust is as ubiquitous as gas in space and they often coexist and interact with each
other forming what is known as a dusty plasma (Goertz, 1989). It is in fact this
interaction that allows them to collect electrostatic charge and respond to elec-
tromagnetic forces in addition to other forces such as gravity, drag and radiation
pressure (Horanyi, 1996). The dust-plasma interaction can be quite complex and
intertwined. However, when the characteristic Debye shielding distance in the
plasma is much greater than the average inter dust-grain distance, the dust parti-
cle may be treated as test particles that are immersed in, but separate from, the
gaseous plasma (Horanyi, 1996). Dust grains accumulate charge in a number of
ways. Exposure to thermal ion or electron currents, secondary electron currents
due to collisional ionization, photoelectron currents due to high energy radiation,
are the predominant mechanisms by which dust grains are charged. The electro-
static charging of a dust grain is a very complex process but unless the plasma

parameters vary significantly along the orbit, it is reasonable to assume that the
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charge varies on timescales longer than the orbital timescale.

Planetary magnetospheres are a prominent location where charged dust grains
are expected to be found (Esposito, 1993, 2002). We now know that all of the so-
lar system giant planets have ring systems of varying brightness, composition and
concentration, see Figure 2.3. Jupiter is believed to have the most expansive dust
rings and Saturn’s outer rings are composed primarily of micron-sized dust (Es-
posito, 1993). Indeed Dullin, Horanyi, and Howard (2002), Howard, Dullin, and
Horanyi (2000), and Howard, Horanyi, and Stewart (1999) carried out their anal-
ysis with Saturn’s rings as the primary application. Collective effects are expected
to be low particularly in the E and G rings of Saturn, and here single particle
dynamics is expected to work well. For the same reason, our extension of the sta-

bility analysis in Paper I may also find application in such planetary ring systems.

2.4 Paper I - Summary & Prospects

In Paper I, we extend the theory of the stability of circular orbits in axisymmetric
fields to uncover new modes of stabilization and destabilization. The new stabil-
ity properties arise from the mere inclusion of an axisymmetric toroidal magnetic
field. We show that the toroidal field can enter the system as a gyroscopic force
and therefore introduce the possibility of gyroscopic stabilization. This in turn
suggests the possibility of dissipation induced instabilities as described in the previ-
ous chapter. In Paper I, we present the theoretical framework for the examination
of gyroscopic stability and dissipation induced instability for a charged particle
in circular orbit in the most general axisymmetric gravito-electromagnetic field
configuration conceivable.

As a practical application, we revisit the case of a charged particle in circular
orbit in a rotating magnetosphere. We extend the analysis conducted by Dullin,
Horanyi, and Howard (2002) to include an axisymmetric toroidal field. We also
derive the conditions under which gyroscopic stabilization and dissipation in-
duced destabilization is possible for such a system. Our findings may be of rel-

evance to dust in planetary ring systems however, it is not clear whether the mag-
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Figure 2.3: A side by side comparison of the ring systems of the solar system plan-
ets, scaled to a common planetary equatorial radius, including some of the moons.

Figure reprinted from Burns, Hamilton, and Showalter (2001), with permission

from Springer Nature.
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netic field geometry includes a significant toroidal component at the outer parts
of the magnetosphere.

We stress, however, that our theory is much more general and may encompass
a wider range of astrophysical applications. For instance, protoplanetary disks
present a possible avenue for application as charged dust grains tend to be a signif-
icant component of such disks and a as is a torodial magnetic field configuration
(Armitage, 2015). Other astrophysical possibilities may include debris disks (Wy-
att, 2008) and magnetospheres around compact objects (Frank, King, and Raine,
2002). The theory of gyroscopic stabilization and dissipative destabilization ex-
tends to fluid and plasma systems as well (Krechetnikov and Marsden, 2009; Mor-
rison, 1998). There is certainly much to explore in this regard in the astrophysical

context.
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Chapter 3
Magnetohydrodynamics

In this chapter, we present a succinct account of magnetohydrodynamic (MHD)
theory with a view to provide a minimal theoretical background sufficient to fol-
low the analysis and results of Mohandas and Pessah (2017), which we shall here-
after refer to as Paper II. Magnetohydrodynamic theory is a vast and rigorous scien-
tific disciplines and several distinct flavors or variants of the theory exist (Ogilvie,
2016), each intended to serve a specific type of physical plasma or fluid! system.
Our goal for this chapter is to introduce a non-relativistic non-ideal version of
magnetohydrodynamics that has been widely employed to study the dynamics of
protoplanetary disks. The contents of this chapter are mostly based on the classic
texts by Krall and Trivelpiece (1973), Nicholson (1983), and Sturrock (1994) and
the lecture notes by Ogilvie (2016).

3.1 Kinetics

At its most fundamental level, a plasma is simply a collection of particles, some
fraction of which is electrically charged. In the next few sections, we shall layout
a path to deriving the MHD equations starting from basic particle considerations.

Consider a system of Ny particles where the position of the i*" particle as a func-

"We shall use the terms plasma and fluid interchangeably in this part of the thesis.
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tion of time is denoted by 7;(¢) and its velocity as a function of time is denoted
by v;(t). We shall describe the dynamics as occurring in a six dimensional phase
space given by the independent coordinates (r,v) where 7 and v represent the
three components of the position and velocity vectors respectively. We define the

(number) density of this system as

No
N(r,v,t) = Zé[r—ri(t)]é[’v—’vi(t)], (3.1)
i=1

where the §’s are Dirac delta functions (Riley, Hobson, and Bence, 2006). If there
are more than one species of particle labeled by s, each containing Ny particles,

we may define a total density as
N=>"N.. (3.2)

where Nj is given by Equation 3.1 for every species. The orbital coordinates 7;(t)
and velocity v;(t) of the particles are solutions of the Euler-Lagrange equations of

motion and are given by (see Equations 2.2)
’f‘l‘ = vy, (3.3)

and

0, =9g" +qE™+ %vi x B™, (3.4)

where g™, E™ and B™ are the gravitational, electric and magnetic fields respec-
tively. The electric charge of a particle of a given species is denoted by ¢s. Note
that we have also prescribed to the cgs system of units in this part of the thesis.
The superscript m indicates that the fields include those that are self-consistently

produced by the particles themselves together with those externally applied. They
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satisfy Gauss’s law of gravity and Maxwell’s laws of electrodynamics

V.-g"=—-4nGp™ (3.5)
V-E™=A47wo™, (3.6)
V.-B™ =0, (3.7)

m 10B™
Vx B = T gm. (3.9)
c

where G is the gravitational constant. Note that we are interested in non-relativistic
dynamics and therefore ignore the displacement current in Ampere’s law, Equa-

tion 3.9. Here, we have defined the mass density

P (r,t) = st/dv]\fs(r,'v,t) (3.10)
the charge density as

0" (r,t) = qu/vas(r,'v,t), (3.11)
and the current density as

T"(r,t) = qu/dvas(r,v,t). (3.12)

3.2 Klimontovich Equation

An evolution equation for the plasma is derived by considering the time derivative

of the density N as

ONs % o[ — 7(1)] Yo d8[v — vy (t))]
5 = ; — v —wi(t)] + ;&v — il (313)
No
=— Z?’“i - Vpd[r —ri(t)]o[v — vi(t)]
=1
No
— > ;- Vob[r — ri()]6[v — vi(t)], (3.14)
i=1
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where V, and V,, are gradients with respect to the position and velocity coordi-

nates respectively. By using a property of the Dirac delta function whereby
ad(a —b) =bd(a —b), (3.15)

and substituting the equations of motion given by Equations 3.3 and 3.4 into Equa-

tion 3.13, we obtain the Klimontovich equation (Nicholson, 1983)

ON,
S 4 v VN, + g™ VN, + 2 (Em + ¥ Bm) VoN, = 0. (3.16)
ot Mg c

Equation 3.16 is an exact equation which when combined with the Maxwell-Gauss
equations and appropriate initial conditions describe the evolution of all the par-

ticles constituting the plasma.

3.3 Boltzmann Equation

The Klimontovich equation packs in a lot of information, considerably more than
we need or can handle. It is often sufficient to describe the plasma in terms of
averaged macroscopic variables such as the plasma density, pressure, velocity or
temperature. The first step to arriving at such a description is by defining a suitable
averaging procedure. In this case, we consider averaging over an ensemble of an

infinite realizations of the plasma (Nicholson, 1983). We first define

Ns = fs +0Ns, (Ns)=fs, (0N;s)=0, (3.17)

g"=g+dg, (") =g, (ég)=0, (3.18)
E"=E+6E, (E"=E, (§E)=0, (3.19)
B" =B +§B, (B™) =B, (6B)=0. (3.20)

where the field variables are decomposed into a mean and fluctuation (prefixed
by §). The quantity fs(r,v,t) is referred to as the distribution function and it
represents the number of particles with position coordinates in the range r and

r+ 07 and velocity coordinates in the range v and v+ dv of a given species. Upon
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averaging Equation 3.16, we obtain

0fs s
f+v‘vrfs+g'vvfs+q(E+UXB)'vvfs
ot M c

— 5 6E + % x 0B) - Vy0N;). (3.21)

ms

Equation 3.21 is known as the Boltzmann equation. The terms on the left of the
equality contain the average quantities that vary smoothly in phase space whereas
on the right of the equality we have sharply varying discrete quantities that are
sensitive to the discrete particle nature of the constituent particles in the plasma.
In this regard, the terms on the left represent the collective behavior of the plasma
and the terms on the right represent the collisional aspects of the plasma.

In some situations, the collisional effects may be neglected and we then have a

collisionless version of Equation 3.21 called the collisionless Boltzmann equation?

given by
ofs ds v
o Vefitg Vofs+ B (E+2xB) - Vof. =0 (3.22)
ot mg c

Equation 3.22 along with the averaged Maxwell and Gauss equations as given by

V.g=—-4nGp (3.23)
V.- FE =4myp, (3.24)
V-B =0, (3.25)

10B
E=——— .
V x T (3.26)
VxB= 41], (3.27)
c

?In the plasma physics and plasma astrophysics literature, this equation is sometimes referred to
as the Vlasov equation or the Jeans equation. Henon (1982) makes an excellent case for why neither
of the two names ought to be used when referring exclusively to Equation 3.22 and why it should

be called the collisionless Boltzmann equation.
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and
plrot) = (") = Lm, [ vt 0.0, (3.28)
olr,0) = (0) = 4. [ dofy(rv.0) (3.29)
T(rt) = (™) = zsqu /dvvfs(r, v,0), (3.30)

represent the Vlasov system of equations. We shall be concerned with collisional
plasma systems, however, and derive the appropriate system of equations in the

following sections.

3.4 MHD Equations

Let us rewrite the collisional Boltzmann equation, Equation 3.21, in a slightly

different form below

afs+v~Vf5+g-vas+qs(E—vaB)-VDfS:(afs). (3.31)
ot mg c ot /.

Note that we have dropped the subscript 7 from the spatial gradient and will con-
tinue to do so hereafter. We have also replaced the collisional term on the right
with a crude representation of the effect of collisions on the distribution function.

In order to arrive at a set of equations with macroscopic quantities as the pri-
mary variables, we take velocity moments of the Boltzmann equation. That is, we
multiply Equation 3.31 by a velocity dependent function 1)(v) and integrate over

all velocity space. The general moment equation may be expressed as (Sturrock,
1994)

0 o ()3 (8
::{5“”ﬁ<¢»)}c. (3.32)

ot
Setting ¢ = 1 in Equation 3.32, we obtain the first moment equation as

ong
ot

+ V- (nsvs) =0, (3.33)
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where we define the species averaged velocity vs = (v). Ignoring ionization and
recombination processes, we expect that the collisions do not change the number
of particles in an infinitesimal volume by very much and so assume [(9fs/0t).dv =

0. With ¢/ = v in Equation 3.32, we obtain the second moment equation as

d(msnsvs)

ot +V. (msns <'US'US>) = MsNsg + QSnsE +qsnsvs X B+ Kss’a (334)

We have also defined the second moment of the collisional integral as

K,y = ms/v <%§S)Cdv. (3.35)

While K for a given species may be non-negligible, by conservation of momen-

tum we expect that
Ko = Ky, (3.36)

We shall now define a number of variables starting with the total mass density
p= Z MmN, (3.37)
S

the total charge density as

0= qun87 (338)
s

the bulk or center of mass velocity as
pV = Z MsNgVs, (3.39)
S
and the bulk fluid current density as

J = qunsvs. (3.40)

Adding together Equation 3.33 for the different plasma species, we obtain the sin-

gle fluid continuity equation

dp B
5 TV (V) =0. (3.41)
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It is also useful to work with the relative or peculiar velocity such that its average
is given by
<ws> =vs— V. (3.42)

Adding together Equation 3.34 of each species and using Equations 3.42 and 3.41,
we obtain the single fluid momentum equation as

ov
pE—Fp(V-V)V:pg—i-QE—i-JxB—V-P, (3.43)
where we define the total pressure tensor as P = Y~ P and the pressure tensor
for a given species as

P, = /msnswswsfsdv. (3.44)

For an isotropic velocity distribution, the pressure tensor is diagonal such that
P, = psI3 where I3 is the three dimensional identity matrix. For a general ve-
locity distribution, the pressure tensor is normally split into a purely diagonal
component and a traceless component so that Py = psI5 + I (Krall and Trivel-
piece, 1973) where

1
II, = /msns {'wswS — §w5 -ws | fsdv. (3.45)

By setting ¢ = v - v, one can derive a third moment equation governing the
transport of thermodynamic energy. The system of equations is ultimately closed
by adopting some closure relation usually specified in the form of an equation of
state relating the pressure to density and temperature. We will not derive the third
moment equation here since we shall not have occasion to use it in this work and
refer the reader to Sturrock (1994) for a detailed derivation.

The magnetic field evolution is fundamentally governed by Faraday’s law as
given by Equation 3.26. We seek to derive a version of Faraday’s law in which the
only dependent field variables are the bulk velocity field and the magnetic field
vector itself. Such an equation is generally referred to as an Induction equation
in magnetohydrodynamics. A crucial step in deriving the induction equation is
to relate the Electric field to the bulk velocity and magnetic field in terms of a

generalized version of Ohm’s law. A rigorous derivation of the generalized Ohm’s
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law is beyond the scope of this work, so we provide here a only crude derivation
suitable for a weakly ionized three component (electrons, singly charged ions and
neutrals) plasma where the collisions are primarily between the ions and neutral
species.

We follow the procedure by Balbus (2009) and start by considering the mo-
mentum equations for each plasma species as given by

MsNg (?;;s + v - Vvs> = -V -Pi+p:9+qsns (E+vs X B)+ K. (3.46)

Assuming that the time scale for the evolution of the macroscopic variables are
generally much longer than the collisional time scale and the electromagnetic in-

teractions, we have for the 1ons and electrons
1
en; (E + —v; X B) + K;, =0, (3.47)
c
1
—ene (E + ~v, X B) + K., =0, (3.48)
c

where we have ignored inter-charge species collisions by virtue of the weak ion-

ization. Assuming charge neutrality, n. =~ n;, we get
Kin + Ko =J X B, where J = ene(v; — ve). (3.49)

In a plasma dominated by the neutral species, it is reasonable to assume p =~ myn,
and V &~ wv,. Using Ampere’s law, the momentum equation for the neutrals

become

ov 1
p(at—I—V'VV>:—V'P5+PQ+47T(V><B)X37 (3.50)

Thus the momentum equation for the neutrals in a neutral-dominated plasma is
the same as the bulk momentum equation derived in Equation 3.43. Now, ex-

pressing the collisional terms as (Shu, 1991)

Ken = nelenme(V — ve), (3.51)
Kin = ppiy(V — ). (3.52)
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Using Equations 3.52 and 3.51 in Equation 3.48 yields

Venme

E"‘%[V‘*‘(Ue—vi)‘F(Ui—V)]-i- [ve —v; +v;, — V]| =0. (3.53)

If |Kin| > |Ken|, then we are left with

1 1
Yenley + —J x B -
€M CeNe CYPPi

1
E+ -V xB= (J x B)x B.  (3.54)

Equation 3.54 is the version of the generalized Ohm’s law that we require and by

using it in Faraday’s law, we finally obtain

02 VenMe

(JXB)] x B—V x <47r62ne> J. (3.55)

0B 1
— =V x|V — J +
ot ene CYPPi

The first term in square brackets on the right side of Equation 3.55 is the induction
term from which the equation derives its name. The second, third and fourth
terms on the right are the Hall diffusion, ambipolar diffusion and ohmic diffusion
terms respectively.

As mentioned earlier, a number of simplifying assumptions have gone into the
derivation of Equation 3.54. We refer the reader to Freidberg (1987), Hazeltine
(2018), and Krall and Trivelpiece (1973) for a more rigorous derivation of the
generalized Ohm’s law. However, to our knowledge, only Pandey and Wardle
(2008) have presented a moderately rigorous derivation of the generalized Ohm’s

law for a weakly ionized neutral species dominated plasma.

3.5 Ideal MHD

Let us briefly comment on a simple yet powerful formulation of magnetohydrody-
namics, that of ideal MHD. Ideal MHD serves as a suitable approximation when
the hydrodynamic and magnetic dissipative effects are negligible. This situation
arises in highly ionized plasma systems. Of course, the approximation depends
very much on the scales of interest as even in highly conducting plasmas, dissipa-

tion begins to matter at small enough scales.
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In the ideal MHD approximation, the induction equation, Equation 3.55 re-
duces to
68—? =V x (V x B). (3.56)
A remarkable consequence of this equation is the flux freezing effect demonstrated
by Alfvén in his now eponymous theorem (Nicholson, 1983). This theorem im-
plies that the magnetic field is “frozen-in” to the fluid in the absence of magnetic
diffusion. A magnetic field line therefore acts as a material line element and twists
and folds in harmony with the fluid.
An interesting, albeit partial, analogy exists between the ideal induction equa-

tion and the vorticity equation for an inviscid barotropic fluid which has the form

%—L: =V x(V xw), (3.57)

where w = V x V is the fluid vorticity. Therefore, under these conditions, the

vortex lines also exhibit the same frozen-in behavior.

3.6 MHD Waves

The complexities of fluid systems stems from the different variety of wave phe-
nomena they can support. Waves are oscillations in the fluid that occur when
some disturbance causes the fluid to deviate from its equilibrium state transporting
energy away from the source of disturbance. Magnetic fields only add to the rich-
ness of the wave families and their properties. Examples of hydrodynamic waves
include acoustic or sound waves and gravity waves (Pringle and King, 2007). We
derive here the basic MHD waves under ideal fluid conditions and briefly discuss
their attributes.

Here, we look at the basic types of MHD waves and describe their main char-
acteristics. For simplicity, we consider an ideal fluid in static equilibrium, i.e.,
V' = 0. Disturbances to the equilibrium state are represented by the perturbed
velocity vector du as well as the perturbed density, pressure and magnetic fields dp,

dp and 6 B. The calculations become somewhat simpler if we work in terms of a
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displacement vector defined such that du = 0€/0t. The continuity and induction

equation then have the form

op =V - (p€), (3.58)
SB=B-V¢E—BV-£—¢-VB. (3.59)

The momentum equation is given by

82
ge _ -V <6p+

)t =B VIB-VE-B(V-€)].  (3.60)

P o A7

B-0B ) 1
We shall consider a homogeneous system where the equilibrium pressure, density
and magnetic field are uniform. Assuming a barotropic equation of state such that
6p = a®5p where a is the speed of sound in the fluid, the gradient of the kinetic

and magnetic pressure perturbations become

B-6B
V<5p+ J )
47

, B2 1
=|ap+—|V-£E+——B-B-V§. (3.61)
4 4

Spatial homogeneity of the basic state allows us to assume a plane waveform for
the displacement vector, & = Re[€ exp(ik - 7 — iwt)]. With this, the equation of

motion becomes

2
2~k Kam Z) (k&) — -0 B)(B §)

(k- B)
41

[(k-B)§—(k-£)B]. (3.62)

where we omit the tilde for convenience. If the displacement is orthogonal to the
wavevector and the magnetic field, i.e., k- £ = B - £ = 0, we obtain the wave

solution given by the dispersion relation
W=tk - va, (3.63)

These solutions are called Alfvén waves and v is the Alfvén velocity defined as

B
= 3.64
A= (3.64)
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Alfvén waves are incompressible waves that oscillate transverse to and propagate
along the magnetic field and are much like waves on a string with the restoring
force provided here by magnetic tension.

Two other wave modes are obtained by considering displacements that have
a parallel component with respect to the wavevector and the magnetic field. By
taking the dot product of Equation 3.62 with k and B, we obtain the system of

equations

W~ (a®p+ VK Ek-B k-
P ( P 4’T> arl ) S (3.65)
—a’p(k - B) puw? B-¢

Non-trivial solutions require that the following equation is satisfied

wt — Wk (a® + %) + kP (k- va)? = 0. (3.66)

Without loss of generality, let us assume k||va. We then obtain two additional

wavemodes

2 = (0 +0}) £ B (a2 +3)2 — dk2a2(k wa) (3.67)

w4 represents fast magnetoacoustic waves and w_ represents slow magnetoacous-
tic waves. Both the fast and slow waves constitute compressible longitudinal os-
cillations. The fast magnetoacoustic wave is a quasi-isotropic wave in which the
magnetic and gas pressure act in concert. The slow magnetoacoustic wave is an
acoustic-like wave that is strongly oriented along the magnetic field and where the

magnetic and gas pressure forces act in opposition.

3.7 Shearing Sheet Equations

Ideal or non-ideal MHD theory is frequently used to describe the dynamics of stars
and accretion disks. The magnetized plasma or fluid that makes up an accretion
disk is predominantly in rotational motion around the central object as a result of

angular momentum conservation. Therefore, the dominant velocity component
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is azimuthal in cylindrical coordinates (7, ¢, ) and is simply
V =7rQ(r, 2)p. (3.68)

The balance of forces in the radial direction is assumed to be largely between the

centrifugal force of the rotating fluid and the gravitational force due to the central

109 H\?
a=y-12 o (1Y’ 569)

where @ is the gravitational potential and H and R are characteristic vertical and
radial length scales for the disk. The O(H/R) terms may be due to hydrody-

namic and magnetic pressure gradients. In cold protostellar or protoplanetary

object. Thus, we have

disks, H/R < 1 as a result of which, disks are largely centrifugally supported
although small gradients in the thermodynamic properties could potentially be
relevant to and affect disk stability (Barker and Latter, 2015). In the absence of
self-gravity, ® is just the Newtonian potential. Consequently, the disk plasma ro-
tates at a near Keplerian rate so that fluid elements closer to the central object
rotate faster than those farther away resulting in shear between adjacent layers of
the disk fluid.

The plasma or fluid in an accretion disk is spread across a truly astronomical
extent. Disks around young stellar objects span 100 AU or more. Capturing the
dynamics across the vast range of scales is extremely difhicult if not impossible. A
very useful technique that allows one to study the local physics is afforded by the
shearing sheet or shearing box system of equations (Binney and Tremaine 2011;
Goldreich and Lynden-Bell 1965). Here, one derives equations of motion in a
localized Cartesian frame centered around a fiducial radius where the differential
rotation is represented as a planar shear.

The shearing sheet equations are derived by considering a small patch of the
disk around an arbitrarily chosen fiducial point in the disk labeled by the coor-
dinates (7o, o + Qot, z0). Without loss of generality, we set the reference angle

vo = 0 and the height zyp = 0. A local representation of the rotational velocity
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Figure 3.1: Shearing sheet schematic

is obtained by an expansion around the fiducial radius 7 such that in Cartesian

coordinates with origin at rp, we have
Vo(ro +x) = (ro + 2)Qro + x, 2) e, = —qQozey, (3.70)

where we have defined the dimensionless shear rate

_ 0ln )
— Olnr

(3.71)

r=rg

that is related to Oort’s first parameter A (Binney and Tremaine, 2011). We trans-
form the MHD equations to a rotating frame around 7. In particular the momen-

tum equations with the Coriolis and centrifugal forces become

p(aa‘t/+V-VV):2pV><Q—pV<I>Cg—V-P+V-M, (3.72)

where we have defined the combined gravitation-centrifugal potential as

Q%TQ
2 M

Doy =D — (3.73)
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and the general magnetic stress tensor

M = BB -

(BéB)Ig. (3.74)

Assuming dominant centrifugal support in Equation 3.69, we also expand the
combined gravito-centrifugal potential around r( radially and vertically in a power
series. If we also assume axisymmetry of the fields, we obtain the following system

of equations in Cartesian coordinates (x, y, z)

.. (pu) =0, (3.75)

ot

ou 9 9 1 1

— +u-Vu =2u x Qy + 2¢Qpre, — Qjze, — -V -P+ -V -M, (3.76)
p p

ot

B 1 2 enTlle
eV fu- g B x BV (2500 5 67)
ot €N cYPPi 4mwe3n,

Equations 3.75 -3.77 represent the shearing box or shearing sheet(ignoring verti-
cal stratification) system of equations. They may be further simplified by assum-
ing axisymmetry and incompressibility. Note that u represents the total velocity
field and may consist of perturbations in addition to the equilibrium solution V4.
Without axisymmetry, an additional spatial gradient of u representing advection
by the shear flow Vi would be present. This gradient has an  dependence which
may be eliminated by a further transformation of coordinates at the cost of an

additional time derivative.

3.8 Magnetorotational Instability

As with individual particles, wave or fluid motion may be stable or unstable. In-
stabilities in fluids or plasmas can have very important consequences and play a
vital role in determining the dynamics of many physical systems. In this section,
we describe one such instability called the magnetorotational instability (MRI)
that is of immense significance to astrophysical disks and is the subject of our

investigation in Paper II.
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We introduce below the simplest version of the MRI derived in the shearing-
sheet approximation. We will continue to work with the displacement vector.
However, due to the background planar shear, the displacement vector is related
to the perturbed velocity as

23

6/114:5

+Vy VE—E- V. (3.78)

On the other hand, the induction equation as given by Equation 3.59 remains
unchanged despite the background shear. We assume the plane waveform solu-
tion for the perturbations as in the previous section but only consider a uniform
equilibrium field and wavevector that are both aligned in the z direction. The

equations of motion are then given by

w2, — 2iw0E, = —(2¢0 — k*v3)E,, (3.79)
w2, + 2w, = k203 gy, (3.80)

From Equations 3.79 and 3.80, we obtain the dispersion relation
wh — WA(K? + 2k%0%) + K2R (K203 — 2¢9%) =0, (3.81)

where we have defined the radial epicyclic frequency k = 1/2(2 — ¢){2. We shall
discuss the characteristic traits of the different solutions to the dispersion relation
in greater detail in the following chapter. However, let us point out a very inter-
esting feature of Equation 3.81. Note that unlike Equation 3.66 whose solutions
were the standard MHD waves, one set of the two distinct pairs of solutions of

Equation 3.81 can be purely imaginary. That is, for

kva < /249, (3.82)

one of the solutions represents exponentially growing perturbations. Thus, for
q > 0, it is possible to find a finite range of wavenumbers which grow exponen-
tially provided the magnetic field is weak. This leads to an unstable situation and

is called the magnetorotational instability (Balbus and Hawley, 1998).
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The instability has a maximum growth rate of wyax = i¢€2/2 which occurs at

wavenumber

O [4
KmaxUA = % 21 (3.83)
q

This unstable mode was first discovered by Chandrasekhar (1960b) and Velikhov
(1959) in the context of Taylor-Couette flow experiments. However, its astrophys-
ical significance was not appreciated until Balbus and Hawley (1991) proposed the
instability as the driver of angular momentum transport in accretion disks as we
shall discuss in the following chapter.

The most remarkable aspect of the dispersion relation above is that the stabil-
ity characteristics change abruptly with the addition of a magnetic field. Without
a magnetic field, the solutions are all stable waves and stability is governed by

2 > 0orq > 2. However, there is a dis-

Rayleigh’s criterion which requires s
continuous change in stability criteria, given by Equation 3.82, that arises with
the introduction of the slightest magnetic field. One can also derive the MRI in
global calculations (Gammie and Balbus, 1994; Latter, Lesaffre, and Balbus, 2009).
Therefore, there is little doubt over the potential of the MRI to drive a rapidly
growing disk wide MHD instability. As we will see in the next chapter, this insta-
bility is widely considered to be the main vehicle of angular momentum transport

in most types of accretion disks.
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Chapter 4

Non-ideal MRI in Accretion
Disks

In this chapter, we provide the relevant context for our study of non-ideal effects
on the magnetorotational instability. We provide an overview of the significance
of the MRI in accretion disks as a driver of angular momentum transport. This
is followed with a discussion of the non-ideal conditions expected in disks around
young stars and how they alter the character of the MRI. Following a short ac-
count of nonlinear numerical simulations of disks, we conclude with a summary

of our work as presented in Paper II.

4.1 Angular Momentum Transport in Accretion Disks

The universe abounds with accretion disks. They are often present around young
stars as they are born and can be found around them in their twilight years. Ac-
cretion disks form around stellar objects because much of the disk material has
excess angular momentum that it cannot easily rid itself of (Pringle, 1981). The
time scale for angular momentum exchange is usually much longer than the free-
fall time scale and so the infalling gas settles into a disk like structure with the star

in the center. Eventually, gravity prevails and much of the disk material finds its
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way onto the central object. More than being mere buffers of gas, accretion disks
play very important roles. Disks around younger stars crucially set the stage for
the formation and evolution of planetary systems (Armitage, 2015). Disks around
older stars such as white-dwarfs, neutron stars and black holes are responsible for
powering the most energetic phenomena in the universe (Frank, King, and Raine,
2002).

Accretion disks can be classified both in terms of the type of central stellar ob-
ject around which they orbit and also by the nature of the plasma that constitute
the disk matter. The two classifications are not unrelated. Disks around young
stars mostly comprise of a weakly ionized cold plasma whereas disks around com-
pact stellar objects tend to be hotter and strongly ionized. Dust is also an impor-
tant component of disks around young stars (Dullemond and Monnier, 2010) as
well as those around active galactic nuclei (Netzer, 2015).

Observing accretion disks is a challenging enterprise. Disks around binary sys-
tems are compact in size. Nevertheless, their presence is revealed by the hotspot
emanating from the stream of material crashing onto itself as it is drawn from the
secondary star. The double peaked profile in the Balmer emission lines and the
spectral energy density in the optical and ultraviolet are other strong indications
of a disk structure (Lin and Papaloizou, 1996). Disks around active galactic nuclei
are very far away and lie shrouded in an obscure haze of dust. Their presence is
betrayed however by the excess in the blue and ultraviolet continuum and also
by MASER activity (Lin and Papaloizou, 1996). Disks around young stars have
presented the most promising sources for direct imaging of a disk and significant
strides have been taken in this direction recently with very large baseline instru-
ments becoming operational. Remarkably, the disk shadows or silhouettes in a
bright background first revealed the presence of protostellar disks in the optical
wavelength range. Scattered light from dust has, however, produced the best im-
ages of a protoplanetary disk to date (Lin and Papaloizou, 1996; Williams and
Cieza, 2011).

The fundamental problem in accretion disk theory, for a long time, was to
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identify the means by which angular momentum could be transported away from
the disk enabling matter to fall inwards (Pringle, 1981). The radially varying an-
gular velocity profile causes adjacent layers of the disk fluid to shear. However, the
kinematic viscosities of the disk gas are far too feeble to enable significant angu-
lar momentum exchange. On the other hand, the small viscosities coupled with
the immense range of spatial and temporal scales associated with a disk implies
gigantic Reynolds numbers by any chosen measure. Such high Reynolds numbers
would naturally suggest that the disk fluid or plasma is prime for turbulence. If
correlated turbulent fluctuations could sustain and grow to substantial amplitude,
they could act as an effective viscosity to drive accretion at realistic rates (Shakura
and Sunyaev, 1973).

The trouble lies in the fact that Keplerian disks are hydrodynamically stable
by the Rayleigh criterion. This fact poses a great hurdle to achieving outward
angular momentum transport by purely hydrodynamic means, though it is by
no means ruled out entirely!. However, as we saw in the previous chapter, the
stability properties of a differentially rotating disk are dramatically altered by the
presence of a weak magnetic field. With a weak field, there is a singular shift
in the criterion of stability. Weak magnetic fields are expected to be a prevalent
feature in astrophysical fluid systems and for sufficiently ionized Keplerian disks,
the magnetorotational instability is an inevitable outcome. With a growth rate of
the order of the angular frequency, the perturbations would rapidly grow to sat-
uration resulting in magnetohydrodynamic turbulence and possibly driving mass
accretion.

Assuming complete axisymmetry, the mean angular momentum equation for
a differentially rotating (ideal) disk is

ol — _
a—kv‘l‘/: -V - (rFy), (4.1)

"Hydrodynamic instability could arise in the form of the vertical shear overstability (Barker and
Latter, 2015) or the convective overstability (Klahr and Hubbard, 2014) provided the disk fluid is

baroclinic, i.e, isobars and isopynes are not parallel. However, these instabilities grow at slow rates

and are sensitive to the rate at which the fluid cools.
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where | = rpV, is the specific angular momentum. The right hand side of Equa-
tion 4.1 is the gradient of the flux of angular momentum brought about by stresses

due to velocity and magnetic perturbations
Fi == Rigo - Mi(b, 1= r,z, (42)

where

B0 B,

Ri@ = (5ui(5u<p, Mi@ = 47Tp

(4.3)

Assuming steady state accretion, radially integrating Equation 4.1 and specifying
the boundary conditions results in an equation in which F; > 0 suggests an out-
ward angular momentum flux (Balbus and Hawley, 1998; Popham and Narayan,
1991).

4.2 The Eigenvalue Problem for Ideal MRI

As a precursor to describing the analysis carried out in Paper II, we shall look at
the ideal MRI eigenvalue problem. A thorough analysis of this problem in the
shearing sheet framework was carried out by Pessah, Chan, and Psaltis (2006b)
for the ideal MRI and by Pessah and Chan (2008) for viscous-resistive MRI. We
build upon this formalism in Paper II to include all three non-ideal effects.
Assuming homogeneity and periodicity over a domain of vertical extent 2H,

we may express the perturbed fluid quantities in Fourier series as (Boas, 2006)

df(z,t) = Z 6 f exp(iknz), (4.4)

n=—oo

where k,, = nw/H and ¢ f represents any of the perturbed variables.

Assuming a uniform vertical background magnetic field, uniform density, an
isothermal equation of state and non-diffusive conditions, Equations 3.76 and 3.77
may be compactly expressed as a system of first order differential equations in time
as

0 4

aa(knvt) = L(s(knat)v (45)
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where 0 represents the vector of perturbations

0ty

S
I
>

(4.6)

We also define the linear operator

0 20 dwsg O
-2)2 0 0 )
I — (¢—2) WA : (4.7)
WA 0 0 0

0 wa —qQ 0

where wa = ky,va is the Alfvén frequency. The operator L has four eigenvalues
o; and four corresponding eigenvectors e; for j = 1,...,4. The characteristic
polynomial of L yields the dispersion relation of Equation 3.81 (with 0 = —iw).
Since the dispersion relation only contains even powers of o, there are only two

distinct pairs of modes o = £v, £ that are solutions of Equation 3.81. These are

v = (\/Z+A)1/2, (4.8)
= (VA-1)", (4.9)
where
A= k203 + (2 — )02, (4.10)
A = 4k203 + (2 — q)*Q% (4.11)

The solutions +v are purely imaginary and represent wave modes that oscillate
with approximately the epicyclic frequency & at very low wavenumbers and be-
have like Alfvén waves at high wavenumbers. The solutions £+ are purely real
for a finite range of wavenumbers and represent exponentially growing (the MRI)
and decaying perturbations respectively. Figure 4.1 shows the eigenvalues plotted

as a function of wavenumber.
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Figure 4.1: The eigenvalues of the operator L as a function of wavenumber k,.
The real part (in blue) of the eigenmode 7 is the growth rate of the ideal magne-

torotational instability.

As L is a normal operator (Riley, Hobson, and Bence, 2006), the eigenvectors
of L constitute a linearly independent basis and we may represent any vector 0 as

a linear combination

4
8 = Zaj(t)ej, a; € Cy, (4.12)
j=1

where C, represents the four dimensional space of complex numbers. Substituting

Equation 4.12 in the evolution equation, Equation 4.5, we obtain the solution

4
0(kn,t) = > " a;j(0) exp(ojt)e;, (4.13)
Jj=1

where the eigenvector e; may be expressed as
0j
2 4 2
(A +02)/20
TWA

—2iQuwpo; /(Wi + 0]2-)

(4.14)

For any given ky, it is easy to see that the eigenvector components satisfy the
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relationship
4 3 .
I M (4.15)
6]1- 3 (wi + 0']2-)

Compact expressions for the eigenvector components allows us to deduce key
relationships between the kinetic and magnetic stresses as we show below. We
define the mean kinetic (Reynolds) and magnetic (Maxwell) perturbation or fluc-

tuation stresses as

Rz‘j (t) = 5ui(z, t)5Uj(Z, t), Mij (t) = (51)1'(2:, t)(Sbj(Z, t), (4.16)

where the overbar represents a vertical average which is defined for the product of

any two real functions f and g as

H
= 2/_Hf(z,t)g(z,t)dz. (4.17)

In terms of the Fourier series of the individual velocity and magnetic perturba-

tions, the mean stresses are expressed as (Pessah, Chan, and Psaltis, 2006b)

Ri(t) =2 i Re[0; (kn, )60} (kn, 1)), (4.18)
n=1
M;;(t) =2 i Re[0b; (kn, )30} (k. t)], (4.19)

where the asterisk denotes the complex conjugate.

The off-diagonal Reynolds and Maxwell stress components are given by

=2 Z Ray(kn) exp(20t), (4.20)
=2 Z My (k) exp(20t), (4.21)
where
» Relel 62*] M Rele ;,’J ‘},*J‘] (4.22)
e ||eaj|! Y leq, [P '
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Figure 4.2: The normalized per-k mean kinetic and magnetic stresses and energy

densities as a function of wavenumber k;, for the ideal MRI eigenmode.

The trace of the stress tensors yields expressions for the mean kinetic and mag-

netic energy densities

Bi(t) =23 &k (kn) exp(20t), (4.23)
n=1
[e.e]
En(t) =2 Z Enm(kn) exp(20;t), (4.24)
n=1
where
S = w = M (4.25)

At late times, the MRI eigenmode dominates the growth of the perturbations
and therefore provides the dominant contribution to the kinetic and magnetic
stresses. Thus, the off-diagonal component of the kinetic and magnetic stresses

may be expressed as
=2 Z Ry (kn) exp(27t) + . (4.26)

=2 Z My (k) exp(29t) + .. . (4.27)
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where the dots represent the negligible contributions from the other three modes
and where n. represents the wavenumber k.va = /2¢€Q2 at which the MRI is
cut-off.

Using the respective eigenvector components in Equation 4.14 yields

Z (v +k || H2 exp(2vt) + ..., (4.28)

Ne ,}/kQ

Moy (t) = —4 Z ] ‘“H exp(2yt) + (4.29)

From Equations 4.28 and 4.29, we can easily see that R, > 0 and M, < 0 for
any ky. As a result, the total mean perturbation stress is also positive, T, =
Rgy — Mgy > 0. This conforms with expectations and would suggest an outward
flux of angular momentum under steady state conditions (Balbus and Hawley,
1998; Popham and Narayan, 1991). A property of interest is the ratio of the zy
component of the Maxwell to Reynolds stress. At late times, this is dominated by

the wavenumber for maximum growth kp,ax and is

I = — = 4.30
t1>§i R,y Re[el e2*] q ( )

—M,,  Relelel] 4-¢q
765

Pessah, Chan, and Psaltis (2006b) showed that this relationship carries over, to a
large extent, into the nonlinear regime of the MRL

An interesting feature of the ideal MRI modes considered here, is that they are
also exact solutions of the full nonlinear (local) system of equations. This is true of
the non-ideal MRI modes that we consider in Paper II as well. Several studies have
explored this property in detail and have suggested possible routes to instability
saturation (Goodman and Xu, 1994; Latter, Lesaffre, and Balbus, 2009; Pessah,
2010; Pessah and Goodman, 2009). More recently however, Latter, Fromang, and
Faure (2015) illuminated the connection between the local ideal MRI modes and
their global counterparts. With regard to the local channel modes themselves,
Latter, Fromang, and Faure (2015) showed that these modes correspond to the
evanescent (decaying) part of a global mode appearing at larger disk radii while

a radially varying version of the local mode was associated with the same global
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mode at smaller radii where the instability showed vigorous activity. A radially
varying local mode distinct from the channel mode was associated with the inner
rapidly varying part of the global mode however. Latter, Fromang, and Faure
(2015) also demonstrated that the global modes, for the most part, did not share
the property of being exact nonlinear solutions leading one to strongly suspect
that such nonlinear solutions are an artifact of the local approximation. This may
quite possibly be the case for the local non-ideal modes as well although a similar

study has yet to performed in this context.

4.3 Non-ideal MHD in Protoplanetary Disks

The plasma conditions in an accretion disk around a compact object are generally
favorable to the disk-wide occurrence of the MRI due to the high conductivity of
the plasma. However, disks around young and forming stars, called circumstellar
disks or protoplanetary disks, present an environment where different diffusive
effects play an important role in determining the dynamical evolution of both the
gas and the intermixed dust. See Figure 4.3 for a recent observational image of a
protoplanetary disk. All three non-ideal effects, i.e., ohmic, Hall and ambipolar
diffusion, depend inversely on the fraction of charged particles in the disk fluid,
see Equation 3.55. This means that the weaker the ionization of the disk plasma,
the stronger the non-ideal effects become. Their different dependencies on the
ionization fraction and also on different disk parameters implies that the relative
strength of the non-ideal effects varies depending on the location in the disk. Close
to the inner edge of the disk, the gas is expected to be sufficiently ionized so that
ideal MHD is a good approximation.

Based on simple scaling arguments and crude estimates for the disk param-
eters such as density, temperature and magnetic field strength, one can form a
rough map highlighting the dominant non-ideal effects in the disk. Figure 4.4
presents just such a plot in the parameter space defined by the density n and the
magnetic field strength B illustrating where the different non-ideal effects are dom-

inant based on the estimates derived in Armitage (2015). The general picture that
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Figure 4.3: Recent observational image of a dusty protoplanetary disk around the
young star IM Lupi as seen in reflected light captured by the SPHERE instru-
ment on ESO’s Very Large Telescope (VLT). Figure Credit ESO/H. Avenhaus et
al./DARTT-S collaboration. See also Avenhaus et al. (2018).
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Figure 4.4: A map highlighting the dominant non-ideal effect in a parameter space
given by the gas number density n and the magnetic field strength B as derived
in Armitage (2015). The boundary between the Hall and ohmic regimes were
derived assuming a disk temperature T = 1000K. The dashed line tracks the
parameter space as one moves from the inner disk at 0.1 AU to the outer disk at
100 AU.

emerges from this simplified calculation is one wherein ohmic diffusion dominates
in the inner regions of the disk, Hall diffusion dominates at intermediate distances
and ambipolar diffusion dominates in the farther reaches or the low density upper
layers of the disk.

Linear analysis also reveals the effect that each non-ideal term has on the MRI.
Ohmic diffusion acts as a purely dissipative process. This has the effect of curtail-
ing the range of wavenumbers susceptible to the instability, primarily inhibiting
growth at smaller scales and generally reducing the growth rate across the range
of unstable wavenumbers. Ambipolar diffusion behaves very much like ohmic
diffusion except that it does not dissipate currents parallel to the magnetic field.
Such currents are absent for strictly vertical magnetic fields and so the ambipolar
diffusion simply contributes to an added dissipation in this setting. On the other

hand, if the initial magnetic field has both toroidal and vertical components, am-
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bipolar diffusion can act as a destabilizing agent (Desch, 2004; Kunz and Balbus,
2004). However, combined with the dissipative action, the instability is not ex-
pected to lead to significant dynamical consequences. Hall diffusion stands out in
its capacity to modify the MRI when it comes to non-ideal magnetic diffusivities
(Wardle, 1999). Unlike ohmic and ambipolar diffusion, Hall diffusion does not
lead to magnetic dissipation. It’s effect on the plasma may be best described as
being analogous to a magnetic version of the Coriolis force (Balbus and Terquem,
2001). A deciding factor is the relative orientation of the disk angular velocity (or
more generally, the disk vorticity (Kunz, 2008) and the direction of the net mag-
netic field. In the absence of dissipative forces, the Hall diffusion has a markedly
different effect on the MRI when the field is aligned to the rotation velocity com-
pared to when it is anti-aligned. In the case of aligned field, the Hall effect shrinks
the range of unstable wavenumbers whereas in the case of an anti-aligned field,
the Hall effect can render an infinite range of wavenumbers unstable for a narrow
range of parameters. Since it is not a dissipative influence, the maximum growth
rate attainable is the same as that for ideal MRI with only the Hall effect. In a
highly diffusive situation, the Hall effect takes own a character of its own and one
finds a destabilizing mode called the Hall-shear instability that operates regardless
of rotation (Kunz, 2008; Riidiger and Kitchatinov, 2005; Wardle and Salmeron,
2012). This mode is best likened to a non-ideal version of Rayleigh’s instability,
i.e, when ¢ > 2 in the absence of magnetic fields (Mohandas and Pessah, 2017).

4.4 Nonlinear evolution of the non-ideal MRI

While linear theory can furnish us with the conditions under which the disk is
expected to be stable or unstable and determine the possibility of turbulence, non-
linear numerical simulations are in order to determine the presence and character

of the ensuing magnetohydrodynamic turbulence 2. Nevertheless, linear theory

*Note that the nonlinear regime is not completely outside of the purview of analytical methods.
Interesting work in this area include Knobloch and Julien (2005) and Umurhan, Menou, and Regev
(2007).
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has been shown to predict basic features of the saturated state as evidenced by the
results in Pessah, Chan, and Psaltis (2006a,b), however, a detailed understanding
and exploration of the fully nonlinear state requires numerical simulations.

There are two main approaches to numerical simulations when studying disk
dynamics that mirror analytical approaches, namely, local shearing box simula-
tions and global disk simulations. Local shearing box simulations can solve the set
of Equations 3.75 - Equations 3.77 with or without 1) vertical stratification, ii) a
net magnetic flux, iii) non-ideal terms including viscosity and magnetic diffusion.
The advantages of the shearing box setup are the high numerical resolutions attain-
able, speed of computation, and the simplicity in specifying initial or boundary
conditions. They cannot however account for curvature effects and radial struc-
ture in the background fluid variables. Shearing box simulations have been the
prominent workhorse of numerical astrophysicists for studying differentially ro-
tating disks. Ideal MHD simulations in the shearing box (Hawley, Gammie, and
Balbus, 1995; Stone et al., 1996) have long since established the possibility of the
MRI as the most promising candidate facilitating sustained MHD turbulence suf-
ficient to drive accretion at observed rates. However, issues related to obtaining
numerical convergence depending on presence or absence of a net magnetic flux
(Davis, Stone, and Pessah, 2010; Fromang and Papaloizou, 2007; Guan et al., 2009;
Pessah, Chan, and Psaltis, 2007) as well as on the box size (Shi, Stone, and Huang,
2015) still seek a final resolution.

Inclusion of dissipative effects such as viscosity and resistivity have been rel-
atively straightforward in shearing box simulations (Lesur and Longaretti, 2007)
although the issue of physical, as opposed to numerical, convergence arises here
as well with respect to the magnetic Prandtl number (Longaretti and Lesur, 2010;
Nauman and Pessah, 2016). Guided by expectations of disk structure from models
such as that used for Figure 4.4, several shearing box simulations have been per-
formed specifically with the inclusion of one or more of the non-ideal magnetic
diffusivities and we refer here to just a few (Bai, 2014a; Bai and Stone, 2011, 2013a;
Fleming and Stone, 2003; Hirose and Turner, 2011; Simon et al., 2015).
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The first shearing box simulations including Hall diffusion were carried out by
Sano and Stone (2002a,b). These simulations did not report any significant modi-
fication to the nature of MRI driven turbulence due to the Hall effect. However,
Wardle and Salmeron (2012) pointed out that the simulations by Sano and Stone
(2002a,b) precludes the strong Hall dominated parameter regime which they ar-
gue was more relevant to protoplanetary disks. Recent local simulations (Kunz
and Lesur 2013; Lesur, Kunz, and Fromang 2014) have managed to explore this
parameter space and found peculiarities in the nonlinear state. While the simula-
tions exhibited the bi-modality of outcomes expected of the Hall effect, the system
was observed to settle into a state consisting of long-lived axisymmetric structures
called zonal flows in an unstratified disk and one with large toroidal fields and
attendant laminar Maxwell stresses with stratification. In either case, turbulence
was observed to be too weak to enable significant mass transport. Simulations
with a dominant Hall effect are not without difficulties. Numerical stability is-
sues have been a concern in these simulations (Bai, 2014b; Krapp et al., 2018) and
so results derived from simulations to date are clearly not the final word on the
matter. The dynamical picture as it currently stands is one where MHD turbu-
lence is substantially weakened due to non-ideal effects. This has sparked renewed
interest in possible hydrodynamic modes of instability (Barker and Latter, 2015;
Klahr and Hubbard, 2014; Lesur and Papaloizou, 2010) and wind-driven angular
momentum transport (Bai, 2013; Bai and Stone, 2013b).

As computational power has become more accessible and numerical schemes
more efficient, global simulations of accretion disks are now well within grasp.
While they are better at capturing large scale effects due to curvature effects and
radial stratification, resolution is still limited. Global simulations can now in-
clude ohmic diffusion (Dzyurkevich et al., 2010), ohmic and ambipolar diffusion
(Gressel et al., 2015), and Hall diffusion (Bai and Stone, 2017; Béthune, Lesur,
and Ferreira, 2016; Krapp et al., 2018). These simulations are particularly useful
and especially relevant in that they can be used to study the conditions for planet

formation and growth (Kley and Nelson, 2012). That said, it is still some time
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away before we have reliable and realistic full disk simulations at our disposal.

4.5 Paper II - Summary & Prospects

In Paper II, we have undertaken a comprehensive analysis of the linear eigenmodes
for the axisymmetric MRI subject to all three non-ideal effects. Our analysis has
enabled us to sketch a geometric representation of the eigenmodes, thereby clarify-
ing certain physical characteristics and also elucidating the polarization properties
of the oscillatory modes acting particularly under the combined influence of the
Coriolis and Hall effects. Using the formalism of Pessah and Chan (2008) and Pes-
sah, Chan, and Psaltis (2006b), we derive closed form expressions for the kinetic
and magnetic stresses: the off-diagonal component of the Reynolds and Maxwell
stresses and the kinetic and magnetic energy densities associated with the non-ideal
MRI in different parts of the parameter space defined by Hall and Pedersen (ohmic
+ ambipolar) diffusivities.

Our calculations have also enabled us to discern a previously unknown length-
scale associated with a characteristic wavenumber that we designate kiny. The
wavenumber ki, signals a role reversal in the dominant stress component when
the magnetic field and the angular velocity vector are anti-aligned. We find that
when the dissipative effects (ohmic and ambipolar) are small, the dominant con-
tribution to the off-diagonal total perturbation stress Ty, can be due to correlated
velocity perturbations rather than their magnetic counterpart. We have also de-
tected this reversal in well resolved shearing box simulations. While we have not
explored the consequences of this feature in the nonlinear regime, we surmise
that the nature of the ensuing turbulence would be noticeably different should the
Reynolds stress component maintain dominance. This is a prediction that could
be tested with local non-ideal shearing box simulations.

The parameter space wherein the Reynolds stress dominates over the Maxwell
stress is narrow and may not be widespread within a protoplanetary disk in the cur-
rent paradigm. Nevertheless, it is an interesting theoretical result that may prove

relevant when a better understanding of disk conditions emerge or one that may
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find potential application in other astrophysical contexts. Additional avenues to
explore would be the connection between local and global non-ideal MRI modes.
As mentioned earlier, global simulations, especially those including the Hall ef-
fect have only become possible recently. As much of the physics with regard to
non-ideal modes have been informed by local calculations, both analytical and
numerical; it would be useful to perform a rigorous comparison of the local and
global aspects of the non-ideal MRI along the lines of Latter, Fromang, and Faure
(2015).
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Chapter 5

Radiative Transfer

In this chapter, we present a brief introduction to the theory of radiative transfer.
As with any of the other subjects dealt with herein, this chapter is only intended
to provide an introduction sufficient to follow the technical aspects of the anal-
ysis and results presented in Mohandas, Pessah, and Heng (2018) which we shall
refer to hereafter as Paper III. For a thorough treatment of the topic, we refer the
reader to the classic texts by Chandrasekhar (1960a), Mihalas (1970), and Miha-
las and Mihalas (1984). This chapter is largely based on sections of the books by
Bodenheimer (2006), Mihalas (1970), and Thomas and Stamnes (2002).

5.1 The Radiative Transfer Equation

The fundamental goal of radiative transfer theory is to describe the flow of radi-
ation and the change in its properties as it interacts with the matter in its path.
When we describe radiation here, we generally mean a bundle of rays of light. As
we have derived for a gas of massive particles in Chapter 3, here we shall derive an
equation that describes the evolution of a “gas” of massless photons starting from
a Boltzmann equation for radiation of the form

of of

m+mvj+pr:|:at:|coll (51)
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Figure 5.1: A beam of radiation impinging through an infinitesimal surface con-

tained within an infinitesimal solid angle.

Here, f is the photon distribution function such that
dN = f(z,p,t)dzdp, (5.2)

represents the number of photons with position between x and « + dx and mo-
mentum between p and p + dp at time ¢. For a system of photons, we have & = ¢
where ¢ is the speed of light in the medium. In the absence of general relativistic
effects, we may set p = 0.

Owing to its roots in geometrical optics, the fundamental quantity in radia-
tive transfer theory is the specific intensity. The specific intensity is defined as the
amount of energy passing through an infinitesimal area element d A in the time in-
terval dt by rays contained within the solid angle dw, and in the frequency interval

dv and is given by
dE = I(x,s,v,t)s - ndAdwdvdt, (5.3)

where 1 is the unit vector normal to the area element and s is the unit vector in the

direction of the beam of photons. A visual illustration of the concept is provided
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in Figure 5.1. How does the specific intensity relate to the photon distribution
function? From Equation 5.2, we obtain the total radiant energy contained in the

unit phase space volume as
dE = hvf dx dp,
=hvfs-n,dAcdtp’dpdw,
2
= h%v (h”> fs-ndAdtdvdw,
c

hiy?

c2

fs-n, dAdtdvdw, (5.4)

where we have used the relation p = hv/c. Using Equations 5.4 and 5.3, the
Boltzmann equation for the photon gas may be expressed as

oI,
ot

+e(s-V)I, = {%I;LOH. (5.5)

where we use the subscript v to denote frequency dependence of the intensity.
Since the photons do not interact with themselves, the collisional term on the
right hand side of Equation 5.5 represents only the interactions of the photons
with matter and consists of two types of contributions. The first denotes the
loss of radiant intensity from its original trajectory and the second denotes in the
addition of radiant intensity to the original beam. We describe the two types of

interaction processes in the next section.

5.2 Extinction: Absorption and Scattering

When a beam of radiation encounters matter in its path, the resulting interaction
can lead to the removal of some photons from the original beam of radiation. This
may happen either through the process of absorption or the process of scattering.
Absorption takes place when some of the photons in the beam are lost to the
thermal energy of the intervening matter. Scattering occurs when the photon is
redirected away from its original path leading to a reduction in energy from the

incident beam of radiation. The resulting change in energy or intensity due to
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absorption and/or scattering is expressed as
§(dE,) = 61, dA dt dv dw, (5.6)

One expects that the intensity of the radiation after absorption or scattering is
diminished by an amount proportional to the incident beam intensity and the
amount of material present. The quantitative expression of this empirical result is

known as Beer’s law and is given by
0l, = —pk,I,0x (5.7)

where

k, = Kk, + 0, (5.8)

and p is the density of the absorbing or scattering matter along the path of the radi-
ant beam under consideration. Here, £, and 0, are the absorption and scattering

opacities respectively and k,, is referred to as the extinction opacity.

5.3 Emission: Thermal Radiation and Scattering

The other major contribution to the collisional term comes about when matter
in the path of a given beam of radiation adds energy to the beam. The processes
by which this occurs may be thought as being reciprocal to extinction processes
and is termed emission. Emission may be due to thermal radiation or scattering
processes and the resulting energy enhancement can also be generally expressed
by Equation 5.6. However, the increase in specific intensity due to emission is

independent of the intensity of the incident beam. Therefore
ol, = —pj, oz, (5.9)

where j, is called the emissivity.

If the material is in thermodynamic equilibrium with the surrounding radia-
tion field, then according to the Kirchhoff-Planck law, as much radiation is released
as is absorbed.

jy = KBy (T), (5.10)
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where j! is the thermal emissivity and B,, is the Planck function. In reality, ther-
modynamic equilibrium is a poor approximation in any appreciable astrophysical
domain consisting of interacting matter and photons. However, for an arbitrarily
small volume, one may assume thermodynamic equilibrium to hold locally and
therefore apply a localized version of the Kirchhoff-Planck law. Such an approxi-
mation is commonly referred to as Local Thermodynamic Equilibrium or LTE.

The other possible means by which radiant intensity in a beam is enhanced
is when radiation that is originally traveling in another direction is scattered into
the solid angle containing the beam under consideration. Scattering is generally
described in terms of a redistribution function R(v/,n’;v, ), which gives the
probability that a photon with frequency in the range (v/, 7' + dv') and within
the solid angle dw’ is scattered into the solid angle dw with a different frequency
in the range (v,v + dv).

If the frequency of the photon changes as it is scattered, we refer to scattering as
being non-coherent whereas if the frequency of the scattered photon is unchanged,
we refer to it as coherent scattering. The energy scattered by the material into the

beam of radiation is given by
d(dE) =0, dudw% ?{ /OOO IRV, s v,8)dV du'. (5.11)
In the case of coherent scattering, the redistribution function reduces to
RV, s';v,8) =P(s,8)d(v — 1), (5.12)

where P is the scattering phase function. In the case of isotropic scattering, the
phase function is trivial, P = 1 and has no dependence on the angle between

scattered and emergent beam. The emissivity due to scattering is then
S = oy (5.13)

Other analytic scattering phase functions include the dipole phase function (Mi-
halas, 1970)
P = 2(1 + cos? ©), (5.14)
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and the Henyey-Greenstein phase function (Seager, 2010)

P = L—g" (5.15)
(1492 —2gcos©)1/2’ '

where © = arccos(s’, s) and g (not to be confused with gravity) is the anisotropy
parameter. The anisotropy parameter occupies the range —1 < g < 1 such that
g = —1 refers to backward scattering, g = 1 refers to forward scattering and g = 0
refers to isotropic scattering. We will only consider the simple case of coherent
1sotropic scattering in Paper III.

Thus, the total emissivity containing contributions from both thermal emis-

sion and scattering is given by j,, = j!, + j5.

5.4 Moments of the Transfer Equation

With the general form of the collisional contributions as given above, the radiative
transfer equation may be expressed as (Bodenheimer, 2006)

13[,,
c Ot

+s-VI, = —pkl, + pjo,

= —pk,(I, — S,), (5.16)

where we define the source function, S, = j,/k,. In principle, one need only
solve the above differential equation for the intensity to obtain a complete solu-
tion to the problem of radiative transfer. This, however, requires knowledge of
the opacities and the source function together with the required number of initial
and boundary conditions. In most applications, the opacities and emissivity are
functions of temperature, composition, frequency and density which are in turn
functions of space and time. While the opacities themselves are rarely ever depen-
dent on the intensity of the impinging beam, the source function is inextricably
tied to the incident intensity if scattering is present as given by Equation 5.11.
This complicates the process of obtaining a solution to the transfer problem as

one now has to deal with an integro-differential equation. In steady-state, one can
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write down an expression constituting a formal solution of the transfer equation
(Mihalas, 1970; Thomas and Stamnes, 2002).

Alternatively, one may choose to solve a system of equations involving the
transfer equation and its moments. We define below the moments of the specific

intensity as (Bodenheimer, 2006)
1
(J,,H,, K,) = = 7{(1,5, ss)I,dw, (5.17)
iy

where J,,, H, and K, are the mean intensity, the Eddington flux and the K in-
tegral respectively. Integrating Equation 5.16 over all solid angles, we obtain the
first moment equation

1 oJ,
c Ot

1
+V-H, = %pk,,(fy — S,)dw. (5.18)
T

Multiplying Equation 5.18 with s; and integrating over all solid angles, we obtain

the second moment equation

10H, 1
<ot +V-K, = o spky (I, — Sy)dw, (5.19)

where x; represents the components of an orthogonal coordinate system. The
K-integral is a symmetric tensor with trK, = J, since }_ ss = 1. Equations 5.18
and 5.19 constitute four equations in nine unknowns. We therefore require five
additional equations to close the system. These take the form of the so-called
closure relations

K, =f,J,, (5.20)

where f represents the matrix of the so-called Eddington coefficients and are sym-
metric with unit trace. The values assigned to the Eddington coefhicients are usu-

ally based on considerations of geometry and symmetry.

5.5 The Flux

The most relevant quantity with regard to astrophysical observations is the flux.

The flux as defined by Equation 5.17 is a vector. However, because virtually all
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the flux that we collect from astronomical bodies passes nearly parallel through
a very small (relative to the size of the source and the distance to it) plane area,
we can orient our coordinate system in such a way that we measure only a scalar

component. This scalar flux is given by
F,=H, e, = j{L,(z, 6, ) cos fdw, (5.21)
1
-1

where 1 = cosf. In the literature, one often finds an equivalent quantity called
the astrophysical flux defined as F,, = £2. A basic first approximation used in mod-
eling stars or planets is to assume that they radiate as a uniformly bright sphere.
Let us calculate the flux received from a uniformly bright sphere of radius R at a
distance D from the detector. A uniformly bright sphere has an isotropic intensity
emanating from its surface, that is the intensity is the same in all directions. The

flux received is then

1
F, = 27r/ = Ts pdp (5.23)
CcoS — D
R\? R\?

where Fg = mlg where Is and Fg are the specific intensity and the associated flux
(magnitude) at the surface of the bright sphere.

We can define an equivalent temperature called the effective temperature Ty
that is related to the flux by considering a blackbody of the same shape with the

same total flux. Therefore,
1 1
F, = 27r/ X I, (p)pdp = 27TBZ,(T)/O pdp = B, (T) (5.25)
On integrating across all frequencies, we obtain

F= / F,dv=nm / B,(T)dv = oT% (5.26)
0 0
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5.6 Model Atmospheres

The development of radiative transfer as a rigorous discipline was driven by the
efforts to devise a model for the atmospheres of distant stars and planets. The con-
struction of such model atmospheres allows us to determine atmospheric condi-
tions - the temperatures, pressures and composition, of stellar or sub-stellar objects
by examining their spectrum. In the most general circumstance, this is an enor-
mously complicated enterprise even with the latest numerical techniques available
to us today. Deriving purely analytical models is a difficult to accomplish except
under a number of simplifying assumptions. We consider here a common set of

assumptions that usually make the problem analytically tractable (Mihalas, 1970)

® Homogeneous plane-parallel atmosphere: This is an assumption by which
one can reduce the dimensionality of the problem. Here, we treat the at-
mosphere as a one dimensional slab where the physical variables only ex-
hibit non-negligible changes vertically and are uniform horizontally. The
one-dimensional approximation is a reasonable assumption due to the fact
that most atmospheric domains under consideration have a horizontal ex-
tent that is many times larger than their vertical extent. In other words,
atmospheres generally possess a small aspect ratio H/L < 1 where H is the
height of the atmosphere and L the horizontal extent usually of the order

of the radius of the star or planet in question.

e Statistical, hydrostatic and radiative equilibrium: This is an assumption of
steady-state conditions. Most astronomical objects that we observe are as-
sumed to be in a state of equilibrium. We expect statistical equilibrium
in the sense that the microphysical processes that populate and depopulate
atomic levels are in balance. Hydrostatic equilibrium implies that pressure
gradients balance gravity with negligible vertical accelerations whereas ra-
diative equilibrium assumes negligible transport of energy due to convective

or other hydrodynamical motions.
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5.7 Radiative Equilibrium

The atmospheres of most stars and planets transport energy from the base of the
atmosphere where it emanates to the top of the atmosphere where it is eventually
lost to space as radiation. The general expectation is that on a global average sense,
a balance is attained between the incoming energy from the insolation and the
energy emitted and reradiated by the planet.

The two main mechanisms of energy transport in the atmosphere are radiative
and convective transport. Radiative equilibrium arises when transport is entirely
due to radiation and convective equilibrium comes about when transport is due
to convective motions alone. The atmospheres of both stars and planets may have
regions unstable to convection (Mihalas, 1970; Seager, 2010). Typically, these cor-
respond to deeper regions close to the base with high pressures and high enough
opacities. Convective instability is usually determined by Schwarzschild’s crite-
rion (Mihalas, 1970; Pringle and King, 2007).

A mathematical expression for radiative equilibrium is derived by equating the
total energy removed against the total energy added, integrated across all frequen-

cies and all solid angles. This implies

/ dyfkylydw = / du%judw, (5.27)
0 0

/ dvk,J, :/ dvk,S,. (5.28)
0 0

Equivalently, the condition of radiative equilibrium may be expressed by the fre-
quency integrated left hand side of the transfer equation, Equation 5.16 in the

steady-state

/ V. H,dv = 0. (5.29)
0
This implies that the flux is divergenceless. In a planar atmosphere, this reduces
to 17
. (5.30)
dz

where z 1s the vertical coordinate and H = [ H,dv.
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5.8 Optical Depth and Column Mass

A natural measure of distance when dealing with radiative transport is optical

depth which is defined here as
dr = —pk,dx. (5.31)

There are three things to note in this definition. Firstly, the optical depth is a di-
mensionless measure of distance. We will shortly clarify what we mean by distance
in this context. Secondly, the popular convention is such that the optical depth
increases in a direction opposite to the real spatial extent when considering a one
dimensional planar atmosphere. Finally, the inclusion of density in Equation 5.31
implies that unlike physical distance, the optical depth measures distance in rela-
tion to the amount of material in the path of the beam. Therefore, the optical
depth is larger in a region with a greater concentration of absorbing matter than
where it is not. The mean free path of photons is much less in a denser region and
this effectively increases the distance a photon has to travel to emerge unscathed.
In this sense, the optical depth is larger, 7 > 1, in the interior of stars, smaller
in interstellar space, 7 < 1, and of order unity, 7 ~ 1, at the stellar photosphere
(what we perceive as the surface of the star).

A related quantity that we shall use is the column mass defined here as
dm = —pdzx. (5.32)

The main advantage of the column mass variable is that it allows us to derive
a simple relation connecting atmospheric depth to atmospheric pressure via the
hydrostatic equilibrium condition (assuming constant gravity) P = mg. This

allows us to express the temperature as a function of pressure.

5.9 Gray Approximation and Mean Opacities

The fundamental assumption in the gray approximation approach to the solution
of the transfer equation is in treating the opacity as being independent of fre-

quency. In reality, opacities exhibit substantial frequency dependence and as such
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the gray approximation may be severely limited in parts of the atmosphere. To be
clear, the gray approximation does not posit that one assume an ad-hoc constant
value of opacity. Instead, a suitably averaged opacity is considered that substi-
tutes as reasonable approximation in certain parts of the atmosphere. This affords
one the luxury to exactly solve the transfer equation and construct an analytical
thermal profile.

The choices for the mean opacities differ with respect to the choices for the
weight function used and the mode of averaging. Conventionally, the choice of
mean opacities are motivated with a view to preserve the form of one of the mo-

ment equations. Two such mean opacities are

1. Flux-Weighted Mean:

/ Ky H,dv
T s SE— (5.33)
H,dv
0
2. Absorption Mean:
/ KyJy,dy
J,dv
0

The flux-weighted and absorption mean opacities are simple arithmetic averages
over the moments of the intensity function. The trouble with using these opacities
is that we do not have prior knowledge of the intensity moments, indeed, this is
what we set out to solve for in the first place. Unless, further assumptions can be
made, the utility of the above choices are limited.

Two popular choices of mean opacities that overcome this difhiculty are intro-

duced below

1. Rosseland Mean:

> 1 dK, >~ 1 dB,
/ — dv / — dv
L _Jo kydz  _Jo ky dT (5.35)
KR /OO dK, dv *dB, ’ '
0

dz o dT

v

82



Gray Atmosphere Model

where in deriving the second equality, we have used the Eddington approx-
imation so that K, = J,,/3 and J, = B,. The Eddington approximation
is valid in the limit of large optical depths where the radiation field is effec-
tively isotropic. As the Rosseland mean is a harmonic average, it attaches

greater weight to those regions where the opacity is lowest.

2. Planck Mean:

/ Kk, B,dv
rp = (5.36)

oo 9
/ B,dv
0
This is a mean opacity that is easily calculable and does not require prior
solution of the radiative transfer equation. It is defined so that it yields
the correct value of the integrated thermal emission. It is most relevant in
optically thin regions which generally correspond to the upper regions in a

one dimensional model atmosphere.

5.10 Gray Atmosphere Model

We now use the machinery laid out in the previous sections to construct a model
atmosphere in the gray approximation. Consider a plane-parallel homogeneous

atmosphere under equilibrium conditions. The equation of transfer is given by

dI,
— =k, (I, — S,). 37
po = kully = Sy) (5.37)

The source function, assuming LTE and coherent isotropic scattering, is given by

Sy = kuBy + 0,y (5.38)
The first moment equation is
dH,
—k,(J, —S,), 5.39
Tk 50) (539)
= r,(J, — B,). (5.40)
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Integrating over all frequencies, this becomes

H
—d =rjJ — KkpB, (5.41)
dm

where J and B are the frequency integrated mean intensity and the blackbody
function respectively. The radiative equilibrium equilibrium under the gray ap-

proximation becomes
K/JJ = HPB. (5.42)
If we make the additional assumption that k3 = kp, we get the simple relation
J=DB.
The second moment equation is given by

dK,
dm

=kH,, (5.43)
which upon integrating across all frequencies yields
AR RH. (5.44)
dm

Since H is a constant according to the radiative equilibrium condition, we can

readily solve Equation 5.44 to obtain
K =kprHT1 + ¢, (5.45)

where we have changed the independent variable to optical depth d7 = krdm
here defined in terms of the Rosseland mean opacity xkgr. To proceed we need
to connect the moments of the specific intensity to temperature. We invoke the
standard Eddington approximation whereby J = 3K and use J = B. We also
relate the Eddington flux to the physical flux 7 = 4H such that Equation 5.45
becomes

B= Z}—T +3c. (5.46)

Using the formal solution of the radiative transfer equation for a semi-infinite
planar atmosphere, the constant factor can be calculated (see Mihalas (1970)) and

is given by ¢ = F /6. Substituting the fluxes with effective temperatures, we obtain

3 2
Tt = ZTfﬂ (T + 3> : (5.47)

84



Gray Atmosphere Model

where T gives the full run of temperatures with depth in terms of the effective tem-
perature associated with the internal flux or energy emanating from the bottom

of the atmosphere.
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Chapter 6

Analytical Models of Irradiated
Atmospheres

This chapter contains a summary of the analysis carried out in Paper III. We begin
by motivating the chief astrophysical application for the model developed in Pa-
per III, namely exoplanetary atmospheres, and briefly describe the main methods
by which they are detected and characterized. This is followed by a derivation
of a basic two-step gray atmospheric model of irradiated atmospheres. We close
with a summary discussion our extension to this rudimentary model derived in

Paper III.

6.1 Exoplanets

The age of extra-solar planets or exoplanets was heralded with the discovery by
Mayor and Queloz (1995) of the first planet outside of the solar system, designated
51 Pegasi b, orbiting a main-sequence star, 51 Pegasi. Since then, there has been
an explosion in the number of exoplanets discovered with around 3000 confirmed
planets at the time of writing, see exoplanets.org. That number is set to increase
manifold in the near future with new space and ground based facilities. We have

reached the point in the human scientific enterprise wherein an answer to the
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age-old question of "are we alone in the universe?" is nearly within our grasp. A
crucial step in arriving at an affirmative answer to the presence of Earth-like life!
is to understand the properties of its atmosphere. Although the reliable detection
of an Earth-analog or Earth-twin is one of the main drivers of exoplanet science,
understanding the physical conditions that prevail among the wide diversity of

exoplanets discovered is of enormous scientific value in and of itself.

6.2 Exoplanetary Atmospheres

Our primary window to the atmospheres of exoplanets are the spectral features
that we can extract from the light that is collected. There are two prominent
methods by which we obtain such spectral information - transit spectroscopy and
direct imaging (Madhusudhan et al., 2014). The transit method involves the ob-
servations of those exoplanets that cross their host star’s disk orthogonal to the
line of sight connecting the star to the detector. Depending on the orbital phase
of the transiting exoplanet, the spectra that we obtain can be further categorized
into three kinds - transmission spectra, thermal spectra and thermal phase curves
(Madhusudhan et al., 2014).

We obtain the transmission spectrum as the planet passes in front of and cuts
through the disk of the host star end to end. This phase of the planet’s orbit is
often referred to as the primary eclipse and degeneracy free observations are ob-
tained when the planet is on a non-inclined orbit. As the planet passes through
the disk of the star, some of the starlight is blocked by the disk of the planet and
there is a dip in brightness and the flux received as a result. The depth of this dip
is proportional to the ratio of the size of the planet to the star. However, if the
planet has a substantial atmosphere, the light of the star is diminished by differing
amounts at different wavelengths depending on the composition and concentra-

tion of absorbers present in the atmosphere. Transmission spectrum typically

"While this is a restrictive perception of the nature of life, it is the only one we have to work

with.
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Figure 6.1: A cartoon representation of the two main methods of detecting and
observing exoplanets. Figure reprinted from Hecht (2016), with permission from

Springer Nature.
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captures information relating to the atmospheric properties at the day-night ter-
minator of the transiting planet.

As the planet slips behind its host star, there is again a smaller but measurable
dip in the flux observed. This phase of the planet’s orbit is commonly referred to as
the secondary eclipse and yields information about the day-side composition and
temperature pressure profile. This dip is greatest in the near-to-mid IR wavelength
range as this is the wavelength band in which the planet’s emission is most intense
and where the stellar emission is expected to be relatively lower in comparison.
Thermal spectra yields information about the day-side atmospheric features of the
planet.

The transmission spectroscopy method of exoplanet observations is most sen-
sitive to closely orbiting giant planets. For this reason, such planets are the most
amenable to atmospheric modeling. These planets are also expected to be tidally
locked to their host star with permanent day sides and night sides. This in turn
allows us to extract longitudinal information about the planet’s atmosphere as it re-
veals different phases during its orbit. Observations from different phases also en-
ables us to extract information about the atmospheric dynamics. The presence of
super-rotating equatorial winds were confirmed by using global circulation mod-
els in conjunction with observations of hot and cold spots on the planet shifted
from its sub-stellar and anti-stellar points (Showman, Cho, and Menou, 2010).

Direct imaging of planets is a more challenging endeavor. It has been possible
however to achieve this for a smaller set of planets and is another useful method
by which we can study the planet’s atmosphere. The planets that are best suited
for direct imaging are young massive planets that are widely separated from their
host star. This is because younger and massive planets are likely to be hotter and
brighter (Madhusudhan et al., 2014). While the reach of direct imaging will extend
to relatively lower mass and older planets with the advancement of newer ground
based and space based instruments, currently transit spectroscopy remains the pri-

mary workhorse of exoplanet atmosphere observations.
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6.3 Gray Atmosphere Model for Irradiated Atmospheres

We now present the simplest analytical model of an irradiated atmosphere by using
the gray approximation. In this scenario, a complex interplay of absorption, re-
emission and reflection lead to energy balance between external radiative forcing
and the emergent internal radiation. We will construct a very basic model that
describes the vertical thermal structure of such an atmosphere. A key assumption
is the separation in wavelength or frequency of the external and internal radiation.
This separation in frequency is a good assumption for Earth and distant planets in
general but becomes questionable the closer the planet is to the star. Nevertheless,
it serves as a useful first approximation. This also enables us to carry forward the
calculation in parallel on two fronts: the shortwave set of equations connected
to irradiation and the longwave set of equations connected to internal radiation.
We then combine the two using the principle of energy conservation or radiative
equilibrium to arrive at a complete solution.

For simplicity, we also assume only absorption in the derivation. The mo-
ments of the radiative transfer equation in the longwave band denoted by the sub-

script L are

dH,
=L gL - \B, (6.1)
dr
and p
K
2 = HL7 (62)
dr

where the optical depth is defined as dr = k. dm. Here, A = kp/k1, where kp is
the Planck mean opacity and £, is the absorption mean opacity in the longwave
band. The moments of the radiative transfer equation in the shortwave band de-

noted by the subscript S are
dHg

—= = ~J 6.3
and J
K
- 5 — ~Hs, (6.4)
-

where we have assumed negligible thermal emission in the shortwave and have

also defined v = kg/k1. Using the closure relation Kg = ji®Jg (Guillot, 2010;
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Heng, Mendonga, and Lee, 2014) where [z is the angle of the collimated irradiation
beam from the star, we combine the two first order moment equations into the

single second order equation

d?Jg

- = Vs, (6.5)
which has the solution
Js = Jsoexp(—v,7), (6.6)
where vy, = /|| and i < 0. We also obtain the Eddington flux in the shortwave
as Hg = —|f1|Js. The radiative equilibrium condition is given by
% = Ji, — v Hs — A\B =0, (6.7)

where H = Hy, + Hg is the total Eddington flux. We readily obtain the solution

to Equation 6.2 in terms of the fluxes as

o,
Ky =Hr+c+—. (6.8)
T

Using the Eddington approximation to the right hand side of Equation 6.7 as well

as in Equation 6.8, we have

B
T

Hr+c+ (71 - ”‘) HS] . (6.9)

It only remains to determine the constant of integration ¢ to obtain the complete
solution. We may use the same procedure as in the non-irradiated gray case to

obtain
2 1

2
=-H—-|-+—] Hs(0). 6.10
o= -G o) mo (6.10)
Substituting Equation 6.10 and replacing the Eddington fluxes with the the inter-
nal and irradiation astrophysical fluxes using the relations 7 = 4H and F.(0) =

4Hg(0), we get

_37 2\ 3502 1 Yu 1 B
B_4A<T+3) 4 A [:ﬁ%ﬁ(g ™ exp(—yu7)| . (6.11)
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Figure 6.2: The temperature profile computed for a non-irradiated gray atmo-
sphere (blue curve) and an irradiated dual-band gray atmosphere (black curves)

for two different strengths of shortwave absorption opacity.

Finally, substituting the Planck function and the astrophysical fluxes with the re-

spective effective temperatures yields the temperature profile

3T 2\ 3 |uTa (2 1 v 1
4 _ 2 Tint I irr | - e o
T = i) <T+ 3) 1% 3 + " + T exp(—7y,7)| . (6.12)

Figure 6.2 shows the temperature profile for an irradiated atmosphere as a function
of optical depth given by Equation 6.12 and for a non-irradiated atmosphere as

given by Equation 5.47.

6.4 Numerical Modeling of Irradiated Atmospheres

We briefly mention the present state of affairs with regard to numerical efforts to
model irradiated atmospheres with applications to exoplanets. There are currently
two ways of numerically modeling irradiated atmospheres: the forward modeling

technique and the atmospheric retrieval method (Hubeny, 2017). In the former
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method, the objective is to self-consistently solve the equations of radiative transfer
by adopting suitable physical prescriptions for atomic and molecular abundances,
their opacities as well as cloud and haze opacities, together with considerations of
equilibrium, in order to predict the temperature structure and atmospheric spec-
trum of the planet. In the latter method, one solves the radiative transfer equations
with the exception that the temperature and pressure profiles are treated as free
parameters along with atomic and molecular abundances and is used in conjunc-
tion with statistical algorithms to simultaneously retrieve the temperature profile
and chemical composition of a planetary atmosphere from observational data. A
few numerical codes that perform retrieval computations are Nemests (Irwin et
al., 2008), Cumvera (Line et al., 2013), Tau-Rex (Waldmann et al., 2015). Some
numerical codes that perform forward modeling include, but are not limited to,
Coorrrusty (Hubeny, Burrows, and Sudarsky, 2003), Exo-rRem (Goukenleuque
et al., 2000) and Herios (Malik et al., 2017).

In addition to the forward modeling and retrieval techniques, there is an ad-
ditional duality of approaches to modeling exoplanetary or, more generally, sub-
stellar mass objects (SMO) atmospheres. By adapting either, 1) a stellar atmosphere
code, or ii) a solar system planetary atmosphere code, one can take advantage of
the extensive historical development in modeling stars and solar system planets.
(Hubeny, 2017). Both approaches offer their unique set of advantages as well as
challenges. Stellar atmosphere codes have a long history of development and have
achieved great levels of sophistication. They are capable of incorporating NLTE
effects which are, however, not very important in the context of planetary atmo-
spheres. Moreover, spectral lines in SMO’s tend to be mostly organized in bands
and are of molecular origin. Adapting stellar atmosphere codes therefore boils
down to removing procedures for dealing with NLTE, and implementing opaci-
ties obtained from pre-calculated tables. On the other hand, one has to include a
reliable treatment of cloud formation and also methods to determine concentra-
tions of molecular species as functions of temperature and pressure.

Atmospheric modeling codes that were originally used for modeling solar
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system planet (or satellite) atmospheres also presents a natural choice of a tool
that could be adapted to model exoplanets. However, most exoplanets that are
amenable to atmospheric characterization are closely orbiting highly irradiated
exoplanets. As these are planets for which a solar system analog is unavailable,

codes used to model solar-system planets would have to be adjusted accordingly.b

6.5 Paper III - Summary & Prospects

In this paper, we extend the analytical treatment of modeling exoplanetary atmo-
spheres by accommodating for the presence of spectral lines that may be due to
absorption and/or scattering processes, thereby, taking further departures from
the strict gray approximation compared to previous calculations. We accomplish
this by using the picket fence model devised by Chandrasekhar (1935). The picket
fence model was originally used to derive an analytical model of non-irradiated
stellar atmospheres (Mihalas, 1970), see Figure 6.3 for a rough schematic of the
model concept. Recently, it was applied to model irradiated atmospheres by Par-
mentier and Guillot (2014), however, they only considered the case of lines result-
ing from pure absorption. We have extended the model to include the possibil-
ity of lines resulting from a combination of absorption and scattering processes.
While exoplanetary atmospheres may be the most obvious and popular applica-
tion, we propose the possibility of using our model to derive thermal profiles of
irradiated binary companions such as a brown-dwarf in a binary system orbiting
a white-dwarf companion (Santisteban et al., 2016; Showman, 2016).

Although such analytical models cannot possibly match or compete with the
latest numerical atmospheric models in terms of sophistication they serve impor-
tant and useful purposes (Hubeny, 2017; Hubeny and Mihalas, 2014). Analytical
models such as the one we have derived can provide a quick means of estimating
approximate atmospheric features for a minimal set of parameters. The physical
insight gained from analytical models is without parallel and their pedagogical
value is not to be under-appreciated. These models can also be used as initial ap-

proximations for numerical schemes and can also help benchmark results obtained
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1-5

ko

Figure 6.3: The picket fence model. A sequence of uniformly wide and uniformly
spaced steps in opacity, measured in terms of the parameter 3, across frequency

represent the spectral lines on top of the continuum.

from computational models.
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We investigate the stability of test-particle equilibrium orbits in axisymmetric, but otherwise
arbitrary, gravitational and electromagnetic fields. We extend previous studies of this problem
to include a toroidal magnetic field. We find that, even though the toroidal magnetic field does
not alter the location of the circular orbits, it enters the problem as a gyroscopic force with the
potential to provide gyroscopic stability. This is in essence similar to the situation encountered in
the reduced three-body problem where rotation enables stability around the local maxima of the
effective potential. Nevertheless, we show that gyroscopic stabilization by a toroidal magnetic field
is impossible for axisymmetric force fields in source-free regions because in this case the effective
potential does not possess any local maxima. As an example of an axisymmetric force field with
sources, we consider the classical problem of a rotating, aligned magnetosphere. By analyzing the
dynamics of halo and equatorial particle orbits we conclude that axisymmetric toroidal fields that are
antisymmetric about the equator are unable to provide gyroscopic stabilization. On the other hand,
a toroidal magnetic field that does not vanish at the equator can provide gyroscopic stabilization for
positively charged particles in prograde equatorial orbits.

1. INTRODUCTION

The study of particle dynamics in axisymmetric fields is important in a variety of problems spanning a wide range
of scales in nature. The axial symmetry can be exploited to reduce the number of degrees of freedom. In the reduced
phase space, the scalar potential, which conservative forces derive from, is replaced by an effective potential that
includes the toroidal kinetic energy. Critical points of the effective potential are equilibria of the reduced system.
These correspond to circular orbits in three-dimensional space. Howard (1999) provides a thorough overview of the
stability of circular orbits in axisymmetric gravitational and electromagnetic fields. The magnetic fields considered
there are assumed to be purely poloidal. While this is a reasonable assumption to make in many axisymmetric systems,
it is not difficult to think of examples where toroidal magnetic fields play a significant role. Such examples include
toroidal fusion devices and galactic disks.

In this paper, we generalize Howard (1999) analysis addressing the stability of circular orbits by including a toroidal
axisymmetric magnetic field. Axisymmetric poloidal and toroidal magnetic fields enter the dynamics in a fundamentally
different way. All the effects related to the poloidal magnetic field can be encapsulated in the effective potential
together with the gravitational contribution, whereas this is never the case for the toroidal part. As we detail below,
this crucial difference makes it possible for the toroidal magnetic field to provide stability in regions of parameter
space where a purely poloidal field cannot. This is a manifestation of the phenomenon known as gyroscopic stability,
which is usually associated with the Coriolis force.

The rest of the paper is organized as follows. In section 2 we state the equations of motion for a test particle in
reduced phase space by introducing the Routhian and an effective potential that depends only on the poloidal flux
function. In section 3 we analize the stability of circular orbits and find the conditions for gyroscopic stabilization via
a toroidal magnetic field. In particular, we show that in source-free regions, gyroscopic stabilization via a toroidal
magnetic field is impossible. In section 4 we illustrate some of the implications of our findings by analysing the problem
of a rotating magnetosphere. We conclude by discussing our results in section 5.

2. EQUATIONS OF MOTION
The motion of a classical, non-relativistic! particle is governed by the Lagrangian per unit particle mass
L:%¢2+A-q‘uq>, (1)
where 7 denotes the time derivative of the particle’s position vector. We have absorbed the coupling constants (i.e.,

charge and mass) in the scalar potential ® and the vector potential A, both of which are assumed time-independent.

1 This is the most general single particle Lagrangian compatible with Galilean invariance (Jauch 1964, Roman and Leveille 1974).



In the following, we will refer to ® and A as electromagnetic potentials. Note, however, that ® can include the
gravitational potential and/or the centrifugal potential and A can include a contribution accounting for the Coriolis
force that arises in a rotating frame. The equation of motion derived from eq. (1) via the Euler-Lagrange equation
is # = E + 7 x B, where the electric field is E = —V® and the magnetic field is B = V x A. We note that if only
electromagnetic forces are present, then E and B differ from the true electromagnetic fields by a factor equal to the
charge-to-mass ratio.

2.1. Motion in reduced phase space

We work in cylindrical coordinates (p, ¢, 2) and assume that the system is symmetric about the z-axis. This means
that neither A nor ® depend on the cyclic coordinate ¢. From the Euler-Lagrange equation d/dt(0L/0¢) = OL/0p it
then follows that the generalized angular momentum p,, = dL/9¢ is an integral of motion. Substituting eq. (1) we
obtain

Py = p2¢ + 1, (2)
where we have introduced the poloidal flux function

Y = pA,, (3)
in terms of which the magnetic field is given by B = Vi x Vo + pB, V.
Since p,, is an integral of motion, the dimensionality of the problem may be reduced by one. For this we introduce
the Routhian R = L — wp,,, where
1
—(py —¥) (4)

w =

hs)

is equal to the angular velocity ¢ expressed through eq. (2) as a function of p and z. With eq. (4) the Routhian is
given by

1
R:5@2+f)+Am+q@27M (5)
where
2,2
U=ad+" 2“ (6)

is the effective potential. _ _ )
The equations of motion of the reduced system are d/dt(OR/0¢") = OR/0q" for ¢* = (p, z) or

j+ B,z +0U/dp =0,
2 —B,p+0U/0z = 0.

These equations possess the energy integral
1
H= §(p2+z'2)+U, (8)

which evidently is independent of the toroidal magnetic field. This is because the force due to the toroidal magnetic
field does not do work in the reduced configuration space. Such forces are called gyroscopic forces (Thomson and Tait
1883a,b). Very much in contrast to this, the force due to the poloidal magnetic field, which in fact is gyroscopic before
reduction, has become a potential force in the reduced configuration space. A reduced system of the form (7) with
B, # 0 is said to be gyroscopically constrained or coupled (see e.g. Rumiantsev 1966, Merkin 1996).

2.2. Hamiltonian formalism

Before moving on to study the stability of equilibrium solutions of the equations of motion, we note that the reduced
system may also be described using a Hamiltonian formalism. In a gyroscopically coupled system this is best done by
working in non-canonical phase space coordinates

w®* = (p, z,p, %), )



see e.g. Littlejohn (1979, 1982) or Bolotin and Negrini (1995). In these coordinates, the equations of motion are
g ) ) g , q

o0H
W = JoB
w = J pywh (10)

where the Hamiltonian H is defined in eq. (8) and the Poisson matrix J? is given by

001 0
000 1

af _

=11 00 -8, (11)
0-1B, 0

It is straightforward to verify that given the definitions in egs. (10) and (11), Hamilton’s equations in the form
of eq. (10) are equivalent to the equations of motion (7). We also note that the Poisson bracket defined by
{f, g} = (0f Jow™)J*P(dg/0w’) satisfies the Jacobi identity {f,{g,h}} + {g, {h, F}} + {h,{f,g}} = 0 for any B,(p, z),
as it should.

3. STABILITY OF CIRCULAR ORBITS

In this section we discuss the stability of equilibrium solutions to the equations of motion (7). We note that all that
is said here in fact holds for arbitrary forms of the effective potential. This means that for instance the restricted
three-body problem is within the scope of our discussion. Only in section 4 will we specialize to effective potentials of
the form given in eq. (6), in which the scalar potential ® is independent of the canonical angular momentum p,,.

3.1. Stability criteria

Equilibria of the reduced system described by eq. (5) are solutions with p = z = 0. The angular velocity ¢ is,
however, in general non-zero. Equilibria of the reduced system thus correspond to uniformly rotating solutions of
the original system. In the classic literature (e.g. Routh 1884), such solutions are known as steady motions. A more
modern term is relative equilibria (e.g. Marsden and Weinstein 1974).2 In the following we will refer to these solutions
simply as circular orbits.

Inspection of the equations of motion (7) reveals that circular orbits are stationary points of the effective potential,
i.e. points at which 6U = 0 for arbitrary variations dp and dz. Their location is evidently independent of the toroidal
magnetic field B,. This agrees with the expectation that because the magnetic force is perpendicular to the velocity,
the toroidal magnetic field should of course have no effect on strictly circular orbits.

Whether or not circular orbits can be expected to actually occur in nature (along with nearly circular orbits in
their vicinity) depends on their stability. Various notions of stability exist in the literature (see e.g. Holm et al. 1985).
Arguably the most important one for practical purposes is due to Lyapunov: an equilibrium wg, with w® defined in
eq. (9), is stable for every £ > 0 if there is a 6 > 0 such that if [w®(0) — w| < 6 then |w*(t) — wd| < e for t > 0. It
is important to note that w®(¢) in this definition evolves according to the nonlinear equations of motion (10). By
contrast, spectral stability is concerned with the spectrum of the Hamiltonian matrix J*?92H/0w?dw", obtained by
linearizing eq. (10). A Hamiltonian system is spectrally stable if all eigenvalues of this matrix lie on the imaginary
axis. Lyapunov stability implies spectral stability but not vice versa (Holm et al. 1985). In the following, stability will
generally be synonymous with Lyapunov stability — the stronger of the two notions — unless specified otherwise.

The discussion in the above paragraph has an important caveat: the canonical angular momentum p,, (the cyclic
integral) is assumed fixed. Truly arbitrary perturbations would also allow p,, to be varied. It is often argued that in
practice the restriction of fixed cyclic integrals is unimportant because, as Pars (1965) writes, “if we do allow small
changes in the [cyclic integrals] we are merely transferring our attention to oscillations about a neighboring state of
steady motion.” This argument is originally due to Lyapunov (see Rumiantsev 1966). It may of course be that there
is no neighboring state of steady motion, in which case this argument fails and a more elaborate approach becomes
necessary (Salvadori 1953). A comprehensive discussion is given by Hagedorn (1971). In the following we will ignore
these subtleties and take p,, as fixed.

2 1t should be noted that relative equilibria potentially encompass a much wider class of solutions than just steady motions. Like steady
motions, relative equilibria are obtained by reduction through symmetry, but unlike steady motions, relative equilibria allow for the
underlying symmetry group to be non-Abelian.
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According to Routh’s theorem (Routh 1884), a circular orbit is stable if it corresponds to an isolated minimum of
the effective potential. This is the case if the second variation §2U > 0 for any non-zero dp and/or dz. Expressed in
terms of the Hessian Q of the effective potential, whose trace and determinant are given by

U U U U (09U \°
tr@Q=—+—— and detQ=—— — 12
e Op? + 9.2 " et Q Op? 022 <0p82> ’ (12)
a critical point of the effective potential is an isolated minimum if and only if
tr@>0 and detQ >0. (13)

If the inequalities in eq. (13) are satisfied, then the total energy at equilibrium is positive definite (i.e. 32H > 0 for
any non-zero dw®) and can thus be used as a Lyapunov function to prove Routh’s theorem using Lyapunov’s direct
method (Merkin 1996). In the absence of a toroidal magnetic field (B,, = 0), in which case the system is gyroscopically
decoupled, the converse is also true (Hagedorn 1971, Lyapunov 1907, Malkin 1959, Chetaev 1961, Rumyantsev and
Sosnitskii 1993): circular orbits are unstable if they do not minimize U locally.

3.2. Gyroscopic stabilization

In the presence of a toroidal magnetic field, the system is gyroscopically coupled. In this case, all circular orbits
located at isolated minima of U are still stable. However, there may now also exist stable circular orbits located at
isolated mazima of the effective potential, where §2U < 0. This is known as gyroscopic stabilization (Thomson and
Tait 1883a,b, Merkin 1996, Chetaev 1961). All orbits are spectrally unstable at saddle points (det Q@ < 0).

A note about energetics is in order here. Isolated minima of the effective potential correspond to isolated minima of
the total energy because the kinetic energy is positive definite. In other words 62H > 0. Definiteness of 62 H is referred
to as formal or energetic stability (Holm et al. 1985, Scheeres 2006). It is a sufficient but not necessary condition for
Lyapunov stability. The toroidal magnetic field does not affect the energetic stability of circular orbits. It can, however,
stabilize energetically unstable orbits, namely isolated maxima of U, for which §2H is indefinite because 62U < 0.

In order to determine the conditions for gyroscopic stabilization to occur, we first carry out a spectral stability
analysis. Considering infinitesimal perturbations of the linearized equations of motion eq. (7) leads to the characteristic
polynomial

ot + (B2 +tr Q)o* +det Q = 0. (14)

The roots of this equation comprise the spectrum of the Hamiltonian matrix J*#92H/0w?dw” mentioned above. A
comprehensive discussion of eq. (14) is given in Bloch et al. (1994), see also Chetaev (1961) and Haller (1992). Isolated
maxima of the effective potential are critical points where 62U < 0 or, equivalently, det @ > 0 and tr @ < 0. Depending
on the strength of the toroidal field, only a subset of these maxima are gyroscopically stabilized. The precise conditions
are

~B2<trQ<0 and 0<4detQ < (trQ+ B2)” (15)

Note that for a given maximum of the effective potential, it is always possible to satisfy these inequalities for large
enough B,,. A visual representation of the inequalities in egs. (13) and (15) is given in fig. 1.

If the inequalities in eq. (15) are satisfied, then the circular orbit is gyroscopically stabilized in the spectral sense:
all eigenvalues o as given by the roots of eq. (14) lie on the imaginary axis. In order to show that circular orbits can
be gyroscopically stabilized in the Lyapunov sense is more challenging. Since U is negative definite at an isolated
maximum, the total energy H defined in eq. (8) is indefinite and thus cannot be used as a Lyapunov function to prove
stability using the direct method.

Instead, Lyapunov stability at isolated maxima of the effective potential can be demonstrated with the help of the
Kolmogorov-Arnold-Moser (KAM) theorem. At a spectrally stable isolated maximum, where egs. (15) are satisfied, the
eigenvalues +0; and +o, of the linearized system, given by the roots of the characteristic polynomial (14), are purely
imaginary. If these eigenvalues are non-resonant (o7 # n203 for n = 1,2,3), then the nonlinear dynamics of the system
close to equilibrium is nearly integrable. The integrable, linear dynamics takes place on two-dimensional tori in phase
space and the KAM theorem ensures these tori persist under nonlinear perturbations, provided certain non-degeneracy
conditions are met (Haller 1992, Arnold 1963). Note that since p,, is assumed fixed, these considerations strictly
speaking only demonstrate conditional Lyapunov stability for the reduced system.

It is important to stress that both resonance and degeneracy occur with probability zero in continuous (real valued)
parameter space. Moreover, if the system is resonant it may still be stable (Sokolskii 1974). Likewise, non-degeneracy
is sufficient but not necessary for stability: in systems with two degrees of freedom (such as the present one) degenerate
equilibria are, as a rule, stable (Arnold et al. 2006, sec. 6.3.6.B).
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Figure 1. Orbits in the dark-grey region are formally stable. Orbits in the stripped region are gyroscopically stabilized by
a toroidal magnetic field B,. Orbits in the light-grey region outside the stripped region are unstable. The fraction of this
parameter space that is actually populated with orbits depends on the specific structure of the electromagnetic potentials. Note
that the trace and the determinant of a real symmetric 2 X 2-matrix satisfy 2v/det Q < | tr Q|, thus the white area is inaccessible.

3.3. The effects of dissipation

The above considerations need to be amended if the system is dissipative. Minima of the effective potential remain
stable when dissipation is added to the system, however, all other equilibria are unstable no matter how small (but
finite) the dissipation is. In particular, gyroscopically stabilized equilibria, which correspond to maxima of the effective
potential, lose their stability if dissipation is added (Thomson and Tait 1883a,b, Rumiantsev 1966, Chetaev 1961,
Haller 1992). Loss of gyroscopic stabilization due to dissipation is an instance of a wider class of phenomena known as
dissipation-induced instabilities (Bloch et al. 1994, Krechetnikov and Marsden 2007).

In practice gyrcosopic stabilization is thus only a transient phenomenon. The growth rate of these instabilities,
which are generally proportional to the dissipation rate (Bloch et al. 1994, MacKay 1991), is much smaller than the
growth rates in the absence of gyroscopic forces. Thomson and Tait (1883a,b) refer to this as temporary, as opposed
to secular, stability.

The fact that in realistic systems, gyroscopic forces are not able to truly stabilize an otherwise unstable equilibrium
does not diminish the significance of gyroscopic stabilization by very much. This can be seen in the restricted three-body
problem applied to the Sun-Jupiter system. The critical points of the effective potential in this problem are either
saddle points (L, Lo, and L) or local maxima (L, and Ls). Gyroscopic stability at L, and Lg is provided by the
Coriolis force. The Trojan asteroids are are found to cluster around L, and Ls even though they are subject to a
dissipative force due to nebular drag and hence to dissipation induced instability.

3.4. Impossibility of gyroscopic stabilization in source-free regions

In the previous section we have seen that whether gyroscopic stabilization is possible depends on the sign of tr Q. In
order to calculate the trace Hessian, we need to compute its diagonal elements. These are given by

2 24 2
8—[]—8 7w8—¢+3w2+4sz+B§ and

o0 U _ e o
ap:  Op? Op?

5% = 5 Yoz T B (16)



where the poloidal magnetic field components are B, = —p~'9y/8z and B, = p~'9y/dp. Adding up eq. (16) yields
the trace of the Hessian. The resulting expression can be simplified with the help of Gauss’ law V - E = ¢°, i.e.

op2  pdp | 022 e

and Ampere’s law V x B = J°, whose toroidal component is given by

9% 10y 0% .
o7 pop oz 1

In the plasma physics literature, the differential operator acting on ¢ in eq. (18) is known as the Grad-Shafranov
operator (see e.g. Almaguer et al. 1988). With egs. (17) and (18), evaluating the trace at equilibrium yields

trQ:w2+(w+Bz)2+B§—gs+pwj;, (19)

where we have used

02 o,

— —w w* and 8—@7 %*
dp Bp_p

5 Yo, 0. (20)
The first three terms on the right hand side of eq. (19) are all non-negative. Thus, in source-free regions, where ¢* = 0
and J3 = 0, the effective potential has no local maxima and gyroscopic stabilisation cannot occur. We note that
matter distributions make a negative contribution to ¢® and hence a positive contribution to tr @. We also note that
poloidal currents, i.e. sources of the toroidal magnetic field, do not enter eq. (19) at all.

In addition to physical sources in the form or matter and charge distributions there may also be fictitious sources that
arise in a rotating frame. For instance, associated with the centrifugal force is a fictitious charge distribution ¢® = 202
That being said, in appendix A we show that the stability of circular orbits is not affected by a transformation to a
rotating frame of reference.

4. MOTION IN A ROTATING MAGNETOSPHERE

As an example of astrophysical relevance where gyroscopic stability by a toroidal magnetic field is possible we
analyse the stability of circular orbits in the classical problem of a rotating magnetosphere. We consider the same
model studied by Howard et al. (1999, 2000) and Dullin et al. (2002), where the poloidal magnetic field and the
planetary gravitational potential are due to a point dipole and a point mass, respectively.

The poloidal flux function is given by

2

v =1, (21)

where r is the spherical radius. The parameter «y is proportional to the product of the charge to mass ratio and the
dipole strength. Without loss of generality we take the magnetic dipole to point along the z-axis. With this convention,
v > 0 for positive charges. The poloidal magnetic field components B, = —p~10v/0z and B, = p~10%/0p derived
from eq. (21) are

7(22% - p?)

B, = 5

P

3vpz
- and B, = . (22)

The scalar potential is
_ K
O =—=4 M. (23)
r
The first term is the gravitational potential. The second term arises from the requirement that the electric field
vanishes in a frame rotating with the planetary rotation rate ).
The current density that derives from eq. (21) via Ampere’s law (18) vanishes away from the origin. However, the

charge density that derives from eq. (23) via Gauss’ law (17) does not vanish and is given by

o° = —20B, (24)



for » > 0. This charge density, known in the astrophysical literature as the Goldreich-Julian charge density (Goldreich
and Julian 1969), is distributed continuously throughout space. Because of this, positivity of the trace in eq. (19) is no
longer ensured.

In order to assess what orbits can be subject to gyroscopic stabilisation, we analyse the characteristics of equilibria,
focusing our attention on the regions of parameter space associated with negative tr @. The calculations involved in
obtaining det Q and tr Q in eq. (12) have already been carried out in Dullin et al. (2002). For the reader’s convenience,
and because we use different notation, we restate the results that are relevant to the discussion here.

Using eq. (21) and eq. (23) we obtain the location of the equilibrium circular orbits by requiring that the first
variation of the effective potential U in eq. (6) vanishes, i.e. by requiring

U ;

o= 7% {mﬂ +37p%(w — Q) — 2y(w — Q)r? — 5| =0, (25)
U

2 r% {/“"2 +37°(w - Q)| =0. (26)

Setting to zero each of the two factors on eq. (26) leads to equatorial and halo orbits respectively. We analyse each of
these cases separately.

4.1. Equatorial orbits

Equatorial orbits lie within the plane z = 0. Their radial location is obtained from eq. (25) with » = p. The result is

o b =) (27)

w? '

The determinant and trace of the Hessian evaluated at equatorial equilibria are given by

1
det Q = T [37(:/.) - Q)+ ,u] [(20.;7 — Oy +p)? =3 — 'yQ)Z] (28)
and
1
wo= s [73(w = 20 + 2yp(w - 30) + 202 (29)

From these expressions we can easily compute the zeros of both det Q and tr Q@ and characterise the various regions of
parameter space according to their stability properties. The results are illustrated in fig. 2, which is almost identical to
Figure 7 in Dullin et al. (2002), except that we also plot the curve along which the trace vanishes.

In addition to the two energetically stable regions identified already by Dullin et al. (2002), there is now a region
spanned by orbits corresponding to particles with positive charge (v > 0) in prograde rotation (w > 0). These orbits
can be stabilized via gyroscopic effects provided a sufficiently strong toroidal field is present. We remark, however,
that this is unlikely to be the case as the toroidal field is typically anti-symmetric about the equator in realistic
magnetospheres (see e.g. Bunce and Cowley 2001).

4.2. Halo orbits

The coordinates for circular halo orbits are obtained by setting to zero the second term in eq. (26) and using this
result in eq. (25). This leads to

2 -Q
rd = -9 and  sin?d = ——H , (30)
w? 3y(w—Q)
where ¢ is the angle subtended between the radius vector r and the z-direction such that p = rsin¥ and z = r cos¥.
The determinant and trace of the Hessian evaluated at halo equilibria are given by

1672
Swirl2

det Q = —

[w? = 40w + Q2] [3y(w — Q) + 4] (31)
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Figure 2. Stability diagram for equatorial orbits. The region where equatorial orbits exist are shaded light gray. Regions of
formal stability are shaded dark gray. The only difference with respect to Dullin et al. (2002) is that we also indicate (by the
intermediate shade of gray) the region where gyroscopic stabilization can in principle occur. This figure is consistent with
egs. (19) and (24) in that, at the equator, B, < 0 for v > 0 and thus the term +2QB, makes a negative contribution to the
trace. Note that B, < 0 at the equator corresponds to a rotating dipole for which the magnetic moment and the angular velocity
are aligned. The inset shows the region spanned by the orbits for which gyroscopic stabilization is possible in the parameter
space defined in fig. 1. Note that a toroidal magnetic field B, > V29 provides gyroscopic stabilization for all the orbits for
which this is possible.

and

272
wird

trQ =

The regions of stability that derive from determining the signs of both det @ and tr Q are illustrated in fig. 3. This
figure is similar to Figure 9 in Dullin et al. (2002), except that we also plot the curve along which the trace vanishes.
Close inspection of this figure, see in particular the inset, reveal that there are no regions where det @ > 0 and tr Q@ < 0.
We thus conclude that gyroscopic stabilization of halo orbits via a toroidal magnetic field is impossible in an aligned
dipolar magnetosphere.

[u(&ﬁ —402) — dy(w — Q)(w — 20)%]. (32)

5. SUMMARY AND DISCUSSION

Howard (1999) presented an overview of the stability of circular orbits in combined axisymmetric gravitational
and poloidal magnetic fields. In this case, orbital stability is completely determined by the effective potential, which
contains all the dynamical effects arising from the magnetic field. Under these assumptions, because the kinetic energy
is positive definite, equilibria are stable if and only if they minimize the effective potential.

In this paper, we have generalized this problem by including an axisymmetric toroidal magnetic field, which cannot
be included in the effective potential. We pointed out that, unlike the poloidal field component, the toroidal magnetic
field does no work in the reduced phase space, i.e., the magnetic force associated with it is gyroscopic®. Thus even

3 We point out that forces that are gyroscopic in three-dimensional space do not necessarily act as gyroscopic forces in the reduced space.
This is indeed the case for a purely poloidal axisymmetric magnetic field. We also note the Lagrangian can acquire gyroscopic terms in
the reduced space even in the absence of gyroscopic forces in three-dimensional space.
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Figure 3. Stability diagram for halo orbits. This is analogous to Figure 9 in Dullin et al. (2002). The dark regions are stable
with det @ > 0 and tr @ > 0. The sign of the determinant changes across solid lines and that of the trace across dashed lines.
The solid hyperbola w = Q — p/(37) is also the boundary of the region where circular halo orbits exist. Close inspection of the
figure — especially the inset — reveals that there is a small region where (a) halo orbits exist and (b) the trace is negative. But
the determinant is also negative in that region. The solid horizontal lines w/Q = 2 4+ /3 thus mark the transition from local
minima to saddle points. Gyroscopic stabilization is impossible because no halo orbits exist that correspond to local maxima of

the effective potential.

thought the toroidal field does not influence the location of the circular orbits it can alter their stability properties by
enabling gyroscopic stability.

Absent dissipation, we carried out a spectral stability analysis and determined the conditions for gyroscopic
stabilization by an axisymmetric toroidal magnetic field and summarized our results in fig. 1. We showed that, given a
circular orbit in an isolated local maxima of the effective potential, it is always possible to find a sufficiently strong
axisymmetric toroidal magnetic field to gyroscopically stabilise it. Making use of the KAM theorem we concluded that
gyroscopic stability holds in the Lyapunov sense. In real systems, dissipative processes prevent gyroscopic stability
from being truly realized. Nevertheless, this type of dissipation induced instabilities evolve on timescales that are
much longer than the growth rates of instabilities that would operate in the absence of gyroscopic stabilization. We
thus argue that gyroscopic stabilization should be relevant.

We showed that the effective potential associated with combined axisymmetric gravitational and poloidal magnetic
fields does not present isolated local maxima in source free regions, thus implying that gyroscopic stabilisation is
impossible in this case. As an example where sources are present, we considered a rotating, aligned magnetosphere and
investigated the effects of a toroidal magnetic field. This is a generalization of the problem investigated by Howard,
who provided a detailed account of the stability properties of equatorial (Howard et al. 1999) and halo (Howard et al.
2000) orbits of charged dust-particles for an aligned, rotating dipole. We found that there are no equilibrium halo
orbits that can be subject to gyroscopic stabilisation. We also found, however, that there do exist prograde equatorial
orbits for positive charges for which a toroidal magnetic field that does not vanish at the equator provides gyroscopic

stabilization.
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Appendix A: Circular orbits in a rotating frame

Let us carry out a coordinate transformation to a frame rotating with a constant frequency €2 around the z-axis.
The angular velocity in the rotating frame is

W =w-0Q. (A1)
The transformed scalar potential ® and the poloidal flux function 1’ are respectively given by
=0 — %pzsz{ (A2)
and
P =+ p*Q. (A3)

The second term on the right hand side of eq. (A2) arises because the electrostatic potential transforms as the temporal
component of an ultra space-like four-vector (A, = Ay — v - A/c). The last terms in egs. (A2) and (A3) account for
the centrifugal force and the Coriolis force, respectively.

From eq. (A3) it follows that the generalized angular momentum, defined in eq. (2), is invariant, i.e.

P = Dy (Ad)
Given the transformations in egs. (A2) to (A4), the effective potential transforms according to
U'=U-Qp,. (AD)
This is obviously consistent with eq. (A1) since w = dU/dp,,. From eq. (A5) it follows immediately that
SU'=6U and 82U’ =5°U (A6)

for arbitrary variations dp and §z. This means that neither the location of circular orbits nor their energetic stability
is affected by a transformation to a rotating frame of reference.
In the rotating frame, the components of the poloidal electric field are given by

E =FE QB 02
E.=E, — pQB,.

The second term on each right hand side arise simply from a Galilean transformation with relative velocity p>QV .
The last term in eq. (A7) is the centrifugal force. The components of the transformed poloidal magnetic field are

!
R (A8)
B, =B, +2Q,
which include the Coriolis force. The toroidal component of the magnetic field B,, is invariant. In light of eqs. (14)
and (A6) this means that the spectral stability of circular orbits is not affected either by a transformation to rotating
frame of reference.

From Gauss’ law (17) and Ampere’s law (18) it follows that

o' = ¢° — pQTS + 208, + 207 (A9)

and J3' = J5. It is casy to check that these transformations together with egs. (A1) and (A8) indeed leave the trace
of the Hessian as given in eq. (19) invariant.

Equation (A9) shows that regions of space that are source-free in an inertial frame are not source-free in a rotating
frame. We stress, however, that the last term in eq. (A9) is not a physical source of either the electromagnetic or
gravitational fields, but is a fictitious charge density that derives from the centrifugal potential via Gauss’ law (17).
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Abstract

The effect of magnetic field diffusion on the stability of accretion disks is a problem that has attracted considerable
interest of late. In particular, the Hall effect has the potential to bring about remarkable changes in the dynamical
behavior of disks that are without parallel. In this paper, we conduct a systematic examination of the linear
eigenmodes in a weakly magnetized differentially rotating gas with a special focus on Hall diffusion. We first
develop a geometrical representation of the eigenmodes and provide a detailed quantitative description of the
polarization properties of the oscillatory modes under the combined influence of the Coriolis and Hall effects. We
also analyze the effects of magnetic diffusion on the structure of the unstable modes and derive analytical
expressions for the kinetic and magnetic stresses and energy densities associated with the non-ideal
magnetorotational instability (MRI). Our analysis explicitly demonstrates that, if the dissipative effects are
relatively weak, the kinetic stresses and energies make up the dominant contribution to the total stress and energy
density when the equilibrium angular momentum and magnetic field vectors are anti-parallel. This is in sharp
contrast to what is observed in the case of the ideal or dissipative MRI. We conduct shearing box simulations and
find very good agreement with the results derived from linear theory. Because the modes under consideration are
also exact solutions of the nonlinear equations, the unconventional nature of the kinetic and magnetic stresses may

https://doi.org/10.3847/1538-4357 /aa6118

CrossMark

have significant implications for the nonlinear evolution in some regions of protoplanetary disks.

Key words: accretion, accretion disks — instabilities — magnetohydrodynamics (MHD)

1. Introduction

The magnetorotational instability (MRI; Balbus & Hawley 1998),
driven by differential rotation and weak magnetic fields, is
considered to be the foremost mechanism of linear destabilization
in astrophysical disk systems. There has been substantial ongoing
interest in studying the effect of magnetic field diffusion on the
MRI primarily with a view to understanding protoplanetary disk
evolution (Turner et al. 2014). In particular, diffusion mediated by
Hall currents has commanded a great deal of attention by virtue of
its capacity to pave the way to new avenues of destabilization
(Wardle 1999; Balbus & Terquem 2001). Local linear analysis has
helped reveal the markedly different character of the unstable
dynamics (Wardle 1999; Balbus & Terquem 2001; Wardle &
Salmeron 2012) and their fundamental dependence on disk
conditions, namely, the relative orientation of the net equilibrium
angular momentum and magnetic field vectors and the strength of
the Hall currents.

One expects to find vast swathes within a protoplanetary disk
that are conducive to the prevalence of significant Hall currents
as a result of ion-neutral collisions (Kunz & Balbus 2004,
Pandey & Wardle 2008; Armitage 2011). This has provided
great impetus in driving efforts to understand the nonlinear
evolution of disks influenced by non-ideal effects. A number of
local shearing box simulations with Hall diffusion either in
isolation or in unison with other non-ideal effects (viz. ohmic
and ambipolar diffusion) have been carried out in the recent
past (Sano & Stone 2002a, 2002b; Bejarano 2011; Kunz &
Lesur 2013; Bai 2014, 2015; Lesur et al. 2014; Simon
et al. 2015). Efforts are currently underway to perform global
simulations including the Hall effect and the first among them
has already been reported by Béthune et al. (2016).

While the march to conduct ever more sophisticated
numerical experiments of a non-ideal MHD disk system strides

onward, certain fundamental aspects, especially those pertain-
ing to the question of angular momentum transport may be
beneficially served by a systematic examination of the non-
ideal MRI eigenmodes. With this goal in mind, we revisit the
local linear analysis of a uniformly magnetized disk with Hall
diffusion in the shearing sheet approximation. We adopt the
approach of Pessah et al. (2006) and Pessah & Chan (2008)
that has previously been employed to thoroughly examine the
ideal and dissipative MRI eigenmodes. Here, we carry out an
exhaustive analysis of the detailed eigenmode structure of the
unstable and oscillatory modes affected primarily by Hall
diffusion. As part of our analysis, we determine the mean
kinetic and magnetic stresses and energy densities of the non-
ideal MRI mode across parameter space. Our work reveals that
the relative dominance of the Reynolds and Maxwell stresses as
well as the ratio of magnetic to kinetic energy can deviate from
that of ideal or dissipative MRI when the background field and
angular momentum vector are anti-parallel. These departures
depend intimately on the range of length scales involved and
may have significant implications for the ensuing turbulence. A
detailed analysis of the linear eigenmodes may also find utility
in testing and benchmarking numerical algorithms designed to
include Hall diffusion.

This paper is organized as follows. In Section 2, we outline
the fundamental assumptions and equations. In Section 3, we
layout the basic groundwork for our analysis and solve the
eigenvalue problem. We then examine the mode properties in
detail and provide a physical picture of mode behavior in
Section 4. In Section 5, we discuss the properties of the kinetic
and magnetic stresses and energy densities for the unstable
mode. We present the results of numerical simulations in
Section 6 to test the validity of our analytical results and
conclude with a summary and discussion of the potential
implications in Section 7.
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2. Basic Equations and Assumptions

We consider a partially ionized, weakly magnetized,
incompressible gas subject to ohmic, Hall, and ambipolar
diffusion in the presence of a gravitational field due to a central
point mass. While we shall strive to retain generality wherever
possible, our primary focus will nevertheless be on character-
izing the effect of Hall diffusion on the linear modes.

We work in the shearing sheet approximation (Goldreich &
Lynden-Bell 1965) and therefore adopt a frame of reference
that co-rotates at a fiducial radius, ry, in the midplane of the
disk. The shearing sheet frame is defined by the set of cartesian
coordinates

y = ro(¢ — Qot),

where x/ry ~ ¢ < 1 and is based on a local expansion of the
combined gravitational and centrifugal potentials to first order
in € around the fiducial radius. The angular frequency at the
fiducial radius is denoted by €2 and the disk is assumed to be in
dominant centrifugal balance with the radial gravitational force.
Consequently, all other dynamical state variables are taken to
be uniform to lowest order in ¢. Ignoring vertical stratification,
the incompressible shearing sheet equations are given by

% + @ Vyu=2u x Q + ¢QVx?
t

2 .
ol B) e BT,

X =7r—="ro, =2

p 87 47p
()
B G xB) - V%1, 2)
ot o
V.ou=0, @)
V-B=0, )]

where p is the gas density, P is the gas pressure, B is the
magnetic field, o is the constant electrical conductivity, c is the
speed of light, and v is the constant fluid viscosity. The shear
rate g evaluated at the fiducial radius is defined as

omQ
dlnr

r=ro

Here, u is the velocity of the neutrals and the electron velocity,
u,, may be expressed as (Balbus & Terquem 2001)
u(,:u+(u(,—u,»)+(ui7u):u7L+M

, (5
en,  uppic

where e is the electron charge, n, is the electron number
density, v, is the drag coefficient, and p; is the ion mass density.
The current density is given by

J=-"(V xB). ©)
4

Equations (1)—(4) admit u = —gQoxy and B = By as a
steady-state solution for the velocity and magnetic field.! We
consider Eulerian perturbations (éu, 6B) to all the fluid
variables, which are assumed to depend only on the vertical
coordinate and time. Rescaling the Eulerian magnetic field

! Note that Equations (1)—(4) are insensitive to the presence of a uniform

background toroidal field under axial symmetry.
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perturbations to have dimensions of velocity, b = 6B / Jamp,
we obtain the following set of linearized equations

by, ‘ 06b 06u,
= = 2Q6uy + v a; + VTZ*, @)
Obuy 9bb, 0%6u,
— =(q — 2)Qpbu, + -+ v—, 8
o (g = 2)Q00ux + va 2 TVoz (®)
06b, , Obu, cBy 0%6b,
ot A 0z 4men, 072
2 2 2
I By ) 0%6b, . ©)
dno  Awpyp;) 97°
8(5[% (%uy CB[) 82(5}7;
= = = — —————— — Qb
o " 0z dmen, 0z7* TR0
2 2 ) 9%b,
| B O (10)
dno  Ampyp;) 97°
We have also defined the equilibrium Alfvén speed as
_ B an

VA = .
: Vamp,

The constraints of incompressibility, Equation (3), and
solenoidality, Equation (4), require that éu, = db, = const,
and we may thus set éu, = 6b, = 0 without loss of generality.
Furthermore, restricting the spatial dependence of the perturba-
tions to the vertical dimension implies that nonlinear terms
vanish exactly from Equations (7)-(10). Therefore, even
though we refer to the problem at hand as a linear mode
analysis, the modes under consideration are expected to be
long-lived (Goodman & Xu 1994).

3. Eigenvalue Problem

We conduct the linear analysis by solving the eigenvalue
problem defined in the shearing sheet frame. The basic analysis
in this setting has been carried out in a number of previous
studies (Wardle 1999; Balbus & Terquem 2001; Kunz 2008;
Wardle & Salmeron 2012). We shall however, closely inspect
the characteristics of the linear eigenmodes that will enable us
to establish fundamental properties of the mean kinetic and
magnetic stresses and energy densities.

Assuming vertically periodic boundary conditions over the
domain [—H, H], where 2H may be taken to be the vertical
extent of the disk, we express the perturbed variables as a
Fourier series in z, such that

&z )= Z &f (kn, )exp(ikn2), (12)

n=-00

where k, = nm/H, n is an integer number and §f represents
any of the given Eulerian perturbations.” In what follows, we
shall omit the subscript n for the wavenumber as well as the
subscript 0 for the equilibrium variables for brevity and
convenience.

2 For weak magnetic fields, we may approximate Ak = ky | — k, oc 37172
and thus consider the distribution of wavenumbers to be a?proximately
continuum even for moderate values of the plasma 5 ~ 01023,
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The set of Equations (7)—(10) can be expressed more
compactly as

Db 1) = L8k, 1, (13)
ot
where
Sk, 1) = [6u; bu, by 6byIT, (14)
and the linear operator L is
—w, 20 Twp 0
-2)Q — v 1
L— (q' ) w, 0 iwa ’ (15)
iwa 0 —wp —WH
0 iWA wWH — qQ —Wwp

which we have expressed entirely in terms of the frequencies
defined below

wa = kwa, Alfvén frequency (16)
wy, = kv, Viscous frequency 17
wp = k2np, Pedersen frequency (18)
wn = Ky, Hall frequency. (19)

Here we have also introduced the Pedersen diffusivity
C2 B2

— + >

dro ATprap;

Np =10+ s = (20)

with 7, and 7, denoting the ohmic and ambipolar diffusivi-
ties, respectively, as well as the Hall diffusivity

=B cB

= slnyl- (€2

The parameter s assumes the value of +1 depending on the
value of the scalar product Q- Bin Equation (21).2

The linear operator L has four eigenvalues, o, and associated
eigenvectors, ¢;, that satisfies the eigenvalue equation

Lej:Ujej fOl‘j: 1,....4. (22)

L is a normal operator and therefore its eigenvectors are
orthogonal if the associated eigenvalues are non-degenerate. In
this case, the eigenvectors of L constitute a linearly
independent basis set and thus any given arbitrary vector ¥}
can be represented as the linear combination

4
o= Za_,-ej, (23)
Jj=1

where a; are in general complex valued time dependent
quantities and may be thought of as the coordinates in the C,
space defined by the eigenvectors. Substituting Equation (23)
in Equation (13), we obtain

a;j(t) = a;(0)e”". (24)

3 With more general wavevectors and angular frequency profiles, the sign of

7y is determined by the quantity (k - w)(k - B), where w =V x u is the
equilibrium vorticity (Kunz 2008).
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Therefore

4
§k, 1) = Y a;(0)ee;. 25)

Jj=1

3.1. Dispersion Relation and Eigenvalues

The characteristic polynomial derived from the matrix
operator L, given by Equation (15) yields the dispersion
relation

(ovop + wi)? — 292 (0 + wi) + 40203
+ (02 + ) kh + (4 — @)Quywi = 0. (26)

where

k=J2Q - ¢ and kg = Jwu(wy — ¢Q), 27

are the epicyclic and the Hall-epicyclic frequency respectively.
Defining £y makes it easier to recognize the parallel between
the Hall-Shear Instability (Riidiger & Kitchatinov 2005;
Kunz 2008) that occurs when x% < 0 and the well-known
Rayleigh instability that is present when x* < 0. We also use
the shorthands,

0,=0+w, and op= 0 + wp. (28)

The dispersion relation Equation (26) is rather cumbersome
to solve analytically when dissipative effects are included.
Nevertheless, we sketch the procedure for obtaining the roots
below. We begin by converting Equation (26) to depressed
form

o + Lo 4+ Mo, + N =0, (29)

with the coefficients
L =24 —a® + k2 + k3, (30)
M= —2a(k* — Kf), (31)

N = (W — a®? + k2w + a?) — 432
+ KR+ 0) + (4 — @) Qunw), (32)

where o, = (0, + 0p)/2 and a = (w, — wp)/2.
The solutions of Equation (29) are given by

M

O = tay—A Fp VA £, —, (33)
b NN
with
A:%+§, and A:(YJrL)Z*N, (34)

where a and b in Equation (33) mark the four possible
combinations of the + signs and y is the solution of the cubic
equation

2
(Y+ %)[(Y+ Ly — N]= M? (35)

Provided Y = —L/2, we may recast Equation (35) as

M/4
Y+ L)? — =t 36
I+ D i 12 0o
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and substituting in Equation (33), we obtain

3L Y M/4 LY
o=t || =+ >4y —— | £, =+ .
\/[4 2 1/L/4+y/2] 4 2

(37

Finally, using the shorthands defined in Equation (28), we
obtain the eigenvalues,

c=0, — @, (38)

Two of the four possible solutions given by Equation (38) are
of an oscillatory nature and two are exponentially varying. We
derive asymptotic expressions for the eigenvalues in the
dissipationless limit (w, = wp = 0) in Appendix A.
4. The Eigenmodes
The set of normalized eigenvectors of the operator L,
Equation (15), can be expressed as

6 =L for j=1,2,3,4, (39)

where

2Q03 + 2Q8% + wpwi
O'P.(O'PUI/ + wh) + okh ' (40)
iwp (2Q0p — wnoy)
iwa (op0, + Wi — 202 + 2Qwy)

e =

The eigenvector components satisfy the following relationship

4
g wagQU(wp — wy)
= e 28

¢

+ @1

€

g ¢

where the superscripts denote the corresponding eigenvector

component. In the absence of Hall diffusion wy — 0,

Equation (40) reduces to Equation (48) of Pessah & Chan

(2008) and to Equation (32) of Pessah et al. (2006) in the ideal

limit, w, = wp = wy = 0.

In the dissipationless limit, but including Hall diffusion, by

multiplying Equation (40) with
i
@220 — wp) — (0 + w1

(42)

and using the identity (derived from the dispersion relation)
290? + 2Qk% + wywi _ 0? + Wi + kG 43)

200 —wp) — (@2 +wd) 22— wy

we may recast Equation (40) in the more useful form of

where
F =05+ wi + ki) (2Q — w) ™!, (45)
G =299 — wi) — (03 + w12 —wp) . (46)
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The physically meaningful perturbation components are then
obtained from the real part of the eigenvector as

8;(z, 1) = RIS (k, Nexp(ikz)]. 7

Since d; is a function of the real spatial variable z and time 7, we
can draw geometrical meaning from the eigenvector,
Equation (47), and construct a physical picture of the mode
evolution.

A defining property is the relative orientation of the velocity
and magnetic field components associated with the perturba-
tions by taking the scalar product of the two-dimensional
vectors defined by 6, = [e} ejz] and & = [ej3 ef], ie.,
Oy - Op = ugbg cos 0;, where

] + 1P and bo = \fle}P +1efP.  @8)

4.1. The Oscillatory Eigenmode

The Hall effect is distinct from the other kinds of magnetic
diffusion in that the electromotive forces it induces act as a
“magnetic-Coriolis” force (Balbus & Terquem 2001). This
property leads to the polarization of the oscillatory eigenmodes
in a manner akin to that rendered by the kinetic Coriolis force.
The only effect that ohmic and ambipolar diffusion has on
these modes is to damp the wave amplitude over time. Since
the effect of dissipation on the eigenmodes has been studied
extensively in Pessah & Chan (2008), we shall focus
exclusively on the geometric aspects of the oscillatory modes
due to Hall diffusion alone and set w, = wp = 0 here.

In order to provide a geometrical representation of the modes in
physical space, it is useful to first consider the norm of the ratios
constructed using the components of Equation (44) below:

2 2

3

4
4

¢

- loi? 29 — wy)?
2292 — wi) — (03 + WP

(49)

2
&
1
¢

Note that we retain the label j to denote the eigenmode here
because the unstable modes may also become oscillatory
beyond a cut-off wavenumber for certain values of the Hall
parameter. Using the dispersion relation, Equation (26), the
ratio defined in Equation (49) becomes

2 3R
¢

4
¢

olfo7?
_ ooy 1’|+ :L , (50)

2
e
¢
where we have defined the quantity

[0% + wi + 2Q(wn — ¢)]
o220 — wp) '

w=q% (5D
When the mode is purely oscillatory, —|a_,-|20j2:1 and
Equation (50) simply describes an ellipse where both the
perturbed velocity and magnetic field components of the
eigenvector Equation (44) represent their respective semimajor
and minor axes. The eccentricity of the ellipse, ¢, is related to p
as

if 4 < 0,

1
B {u/(l ) i, 62
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Figure 1. Eccentricity e of the polarized oscillatory mode, 03 = iw, as a function of wavenumber for ¢ = 1.5 and 7jy; = —1.0, 0.0, 1.0. Asymptotic approximations in

the low wavenumber limit (k — 0) and the high wavenumber limit (k — o) are represented by the dashed and dotted lines respectively. The left panel corresponds to
a Whistler mode, the central panel corresponds to an Alfvén mode, and the right panel corresponds to a cyclotron mode; all three are subject to the combined influence

of rotation and shear (see Appendix A).

With the aid of the asymptotic forms for the eigenvalues,
Equations (97)-(98), we can determine the asymptotic behavior
of the eccentricity as given below

2 << —1/2:
oplime?~ L, lim 2~ L2 (53)
k=0 2 k—o0 |wrl
-1/2 < iy < 0:
. Q
o lim ¢~ —420HL
k—00 WA + zﬂlel
. Q
oy lime2~ 4, m e~ L2 (54)
k=0 2 k=00 Jwnl
My = 0:
Q
s lim 2~ L2
e ™ (55)
oy lime? ~ 4 lim €2 ~ q—n,
k—0 k—0o0 WA
iy > 0:
o lim €2~ ﬁ,
fooo Wi
oy lime2~d, lim 2~ M (56)
k—0 2 k=00 wi + 2Quwy

The eccentricity of the Alfvén and Whistler modes (see
Appendix A for mode nomenclature) decreases with increasing
wavenumber and the polarization becomes increasingly
circular. The eccentricity is generally maximum in the limit
of K — 0, and has the value of €mgy = \/m, which inciden-
tally shares the value of the Oort constant for a differentially
rotating disk. The eccentricity of the cyclotron mode (see
Appendix A) is only marginally lower than the maximum €«
at large wavenumbers because its frequency is bounded at wg,
see Appendix A. In Figure 1, we show the three distinct ways
in which the eccentricity of the oscillatory mode can vary as a
function of the wavenumber with the asymptotic forms derived
above to match.

Using Equations (41) and (50), the relative orientation of &,
and 9, for the oscillatory modes can be described by the angle

1 — €e2(k)

0,=— s 57
€08 \/[1 — €2(k)cos? ][1 — €2 (k)sin? p] S

where ¢ = kz + wt. In general, 6, oscillates in time, so d, and
d, move in and out of phase as ¢ changes by a factor of 7/2.

Figure 2 charts the evolution of the net velocity vector of the
positive branch eigensolutions, oy and o3, over a half period for
a fixed wavenumber and two different values of the Hall
parameter. Notice that the polarization of oy for 7j; = 1 as well
as o3 for fj; = —1.5 is very nearly circular whereas the
polarization of o3 for 7y = 1 is visibly elliptical. We also
remind the reader that any determination of the direction of
polarization (right or left) is to be made by examining the
eigenvector, Equation (47). For instance, oy associated with
fly = 1is right elliptically polarized whereas o3 associated with
fly = —1.5 is left elliptically polarized even though both
behave like a Whistler mode at large wavenumbers.

4.2. The Non-ideal MRI Eigenmode

Here, we examine the properties of the eigenvector
corresponding to the non-ideal MRI mode. Closed form
expressions are easily derived in the absence of viscous effects
and so we set w, = 0 hereafter. This would correspond to
considering the very low magnetic Prandtl number limit
Pm = v/np, — 0, which is also the relevant regime of
parameter space with regard to protoplanetary disks.

We express below the main characteristic scales associated
with the unstable mode obtained from the dispersion relation,
Equation (26) in the inviscid limit (Wardle & Salmeron 2012)
and applicable in the parameter space defined by (7, 7p). In
what follows, it shall be expedient, on occasion, to use the
dimensionless variables

~  kwn N Ny $2
F=A —
o’ M

- npS2
p =7
P Vﬁ

, 58
2 (58)

The critical wavenumber beyond which the non-ideal MRI is
cut-off is

2 2q[1 + 2 — q)iy
Ol @ - Qi+ 22 - Q@R+ TD)

(59)
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Figure 2. Visualization of the eigenmodes 07 and o3 in the horizontal plane at kz = 7/4 for k = 10, ¢ = 1.5 and two different values of the Hall diffusivity,
fiy = 1.0, —1.5. The thick solid line denotes the velocity vector and the arrows indicate the direction of polarization (right or left, see Appendix A) of the
corresponding eigenmodes as seen by an observer looking down at the midplane from above. Each row of plots depicts the mode evolution over one half period

in time.

A suitable combination of the Pedersen and Hall diffusivities
can lead to k. — oo. This occurs when the denominator in
Equation (59) vanishes

L+ @ = @iy + 22 - Qi + 7y) = 0. (60)
The wavenumber at which the growth rate is maximum is
_ —27nlvm +22 - 9]

295 = 29 — i + 2Q2 — 91Ty — 27mTlp)

and the maximum growth rate -, , normalized by the angular
frequency, satisfies

~2
m

(61)

16417jpYm

B - 2
4q* — 1673,

P +22-q)

H (62)

In a portion of the parameter space defined by (7, 7p), the
maximum growth rate is reached asymptotically as the
wavenumber approaches infinity and the denominator of
Equation (61) vanishes. The growth rate in this region is
obtained by solving

i + 22 — PIGE + 99

+ [27pm + (4 — @)l +1=0. (63)

This regime will be the subject of greater discussion in the
following section.

Let us now examine how the planes containing the velocity
and magnetic vectors 9, and 8 associated with the unstable
mode are oriented relative to each other. Using Equation (41),
we find

el ej + ef e,f

) 1
B wawpg§le,

cos d, = (64)

bouo bouo

In the absence of dissipation, wp — 0, 6, = 7/2, 37/2, and §,
and 6 are orthogonal to each other. Additionally, the angle 1
subtended by the velocity vector with respect to the x axis in
the xy plane is simply given by tanv) = |eA’2| / |e$|.

Figure 3 illustrates d, and d, projected onto the midplane of
the disk for four representative values of the Hall diffusivity
fly, for a fixed wavenumber k, with and without dissipation wp.
The angle 1) becomes smaller with increasingly negative values
of the Hall parameter, 7j;;. This is shown graphically in Figure 4
for the wavenumber ki, at which the growth rate of the ideal
MRI is maximum. One can also see that the velocity and
magnetic vectors are not quite orthogonal when wp = 0
(Pessah & Chan 2008).
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Figure 3. Geometrical representation of the velocity field d, and the magnetic
field d, projected on the horizontal plane of the disk for different values of the
Hall parameter, 7y = —1.5, —0.6, 0.0, 1.0. The top panel presents the case
without dissipation 7, = 0 evaluated at k=096 and the bottom panel
illustrates the case with magnetic dissipation 7, = 1.0 evaluated at the
wavenumber k = 0.48. A general trend that one observes is for the velocity
vector to lean in toward the positive x axis and for the magnetic vector to lean
in toward the positive y axis with an increasingly negative Hall parameter. The
magnetic and velocity vector are, however, only orthogonal to each other in the
dissipationless limit and when Pm = 0.

Finally, the ratio of the magnitudes of the magnetic vector to
the velocity vector, by/ug, can also be computed from the
eigenvector components Equation (40). Figure 5 measures this
ratio as a function of wavenumber for different values of the
Hall parameter. We find that this ratio becomes lower than
unity, implying that the magnetic perturbation is weaker in
comparison to the velocity perturbation when 7; < 0 and for a
very large range of wavenumbers with 7j, < 1. This feature will
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Figure 4. Angle 1 between the velocity vector 8, and the x axis plotted as a
function of the Hall parameter ;. The angle is calculated from the eigenvector

components evaluated at the wavenumber, ky, for the ideal MRI.

be of particular interest with regard to the transport stresses of
the non-ideal MRI unstable mode and will be explored further
in the following section.

5. Kinetic and Magnetic Stresses and Energy Densities

We now use the results of the eigenmode analysis to
ascertain the properties of the mean kinetic and magnetic
stresses and energy densities. In particular, we focus on the xy
component of the Reynolds and Maxwell stresses of the MRI
mode. We define the mean Reynolds and Maxwell stresses as

R (t) = bu;(z, 1)éu;(z, t) and M (r) = 0b;(z, 1)ob;(z, 1),  (65)

where the over-line denotes the vertical average over the
domain [—H, H]. In terms of their Fourier components, the
stress components are given by (see Pessah et al. 2006 for the
derivation)®

Rj(t) =2 im[(siﬁ (kny )81 (ks 1)1, (66)
n=1
M) =2 im[é@i (kny )85 (K, D)]. (67

n=1

The xy component of the Reynolds and Maxwell stress tensor
associated with the MRI unstable eigenmode are

o0
ny H=2 ZRX,\"(kn)ezn(k"”v (68)
n=1
My (1) = 23 My (ky)e? &, (69)
n=1
where
9%[67] ef*]
Rayylkn) = ————, (70
[e- |l
9%‘[63%4,*]
Mxy(kn) = 72 (71)
[l

4 In order to keep track of the various modes contributing to the mean values,
we restore the index wavenumber n throughout this section.
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Figure 5. Ratio by /ug of the MRI unstable eigenmode for different values of the Hall parameter 7};; without dissipation (left) and with dissipation (right). This ratio
becomes lesser than unity for 7j;; < 0 and it has implications for the relative strengths of the magnetic and kinetic stresses pertinent to angular momentum transport.

The trace of the tensors R;; and Mj; gives us the mean kinetic
and magnetic energy densities, respectively,

Ex () =2 3 Ex (ky) 2o k01, (72)

n=1
() = 23 (k) 2760, (73)

n=1

where
Elhny = Rentho) er Ry (ko) a8
M (kn) + M,y (kn

Emkn) = % (75)

The quantities Ry, M.y, &, and &y represent the contribution
of each mode k to the mean values of the corresponding
functions (Pessah et al. 20006).

The ratio of the xy components of Maxwell stress to the
Reynolds stress is a non-trivial function of k,. In the ideal limit
(with w, = wp = wy = 0), using the dispersion relation, one
can easily see that M,, > R,, for the full range of unstable
modes, k. In the dissipationless limit, where w, = wp = 0 but
wy = 0, this ratio reduces to

~Mykn) WA QO — wy)?
Raykn) [ (ka) + Wi + KEP

Interestingly, the ratio defined in Equation (76) is only greater
than unity if

(76)

ky <k = @;2). (77)
n

The wavenumber k; is purely imaginary if g > 0 and is
infinite if 7j; = 0. However, when 7j;; < 0 and g < 2, lgi is
finite and real valued. This implies that there is a range of
unstable wavenumbers for which R,, > M,,. It is rather
difficult to derive an equivalent expression for &; in closed form
with wp = 0 since this would require solving a quartic equation
in k. However, numerical calculations hint at the presence of
such a scale with dissipative effects present as well and we
comment further on this in the following section. As we shall
discuss below, the potential for a role-reversal of the dominant
stress components are directly tied to the exact nature of the
unstable mode in different parts of the parameter space.

The characteristic variables that specify the wavenumber at
which the growth rate is quenched kc~, and the wavenumber at
which the growth rate is maximum ky,, divides the parameter
space defined by (7, 7p) into three regions I, II, and III as
described in Wardle & Salmeron (2012). Region I is defined by
the space outside of a semi-circle in the coordinates (7, 7jp)
spanning from (—1/2, 0) to (—2, 0). Here the unstable mode
has a finite l;c and Igm. The space contained within the afore-
mentioned semi-circular locus and an arc extending from
(> 7p) = (—4/5, 0) to (=2, 0) is designated Region II. Here
the unstable mode has a finite k,, but k. is infinite. Finally, the
area enclosing the lower boundary of Region II and the horizontal
axis 7jy; is designated as Region III. In this region, both k. and ky,
are infinite. The region 7j; < —2 is stable to the MRI for all
values of 7jp. This classification will be useful in specifying the
dominant stresses in parameter space as we discuss below.

5.1. Stresses and Energies in Region 1

As mentioned above, the MRI growth is cut off at a finite
wavenumber in Region I. This implies that the major
contributions to Equations (68), (69), (72), and (73) come
from a finite range of unstable wavenumbers n =1 to
n = N, where N, labels the cut-off wavenumber k.. At late
times, the mean stresses and energy densities may then be
expressed as

Ne
Ry (D) = 2 ) Ry (kn)e? ®0)" 4 ., (78)
n=1
Ne
My (1) = 23 My (kn)e? &7 9
n=1
Ne
Ex (1) = 2 Ex(kn)e? & 4 (80)
n=1
Ne
Em() =2 Emlkn)e?®t @81

n=1

with the dots representing oscillatory contributions that we may
safely neglect. Within this region of parameter space, it is
reasonable to expect that at late times during the linear
evolution, the kinetic and magnetic stresses are dominated by
contributions linked to the scale k. In the dissipationless limit,
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we can thus expect

. 71”,\‘)' B Mxv
lim ~
>1 Ry Ry

_ G- 9lE -9+ 2] 82)

km zq

Equation (82) trivially reduces to Equation (65) of Pessah et al.
(2006) in the ideal MHD limit. Deriving an equivalent
analytical expression for the late time stress ratios in the
presence of dissipation is tedious but can easily be computed
numerically. However, numerical calculations also reveal that a
real valued k; may be present for certain values of 7 in Region
I and the scales are arranged in the order of lgm < lgi < Igc.
Nevertheless, the ratio of the stress components will be
dominated by the fastest growing mode, at which one always
finds —M,, > R,y. In the dissipationless limit, k; is never real
valued.

5.2. Stresses and Energies in Regions Il and IIl

The unstable mode grows at a uniform rate for a wide range
of wavenumbers that extend infinitely in both Regions II and
IIT. One can therefore derive asymptotic forms of the per-k
kinetic and magnetic stress energy densities, Equations (70),
(71), (74), and (75) as given below

7322 + v/ 1) (o + VEN/13)

lim R, .
oo uh 4 20 (e + 20m) + R (Y + 40%)
(83)
1lim My, ~ 0, (84)
k—o0 i
. |
lim & ~ —, (85)
k—o0 2
lim &y ~ 0, (86)
k—o0

where n% = ni' + 77|2> and v is the solution to Equation (62)
for Region II and Equation (63) for Region III. Using
Equations (83) and (85) in Equations (68) and (72), we may
then approximate the time dependent xy Reynolds stress tensor
and kinetic energy density as

o0
Riy (1) = 26~ Ry(k — 00) Y1, (87)

Ex () ~ ! Zl”. (88)

While the infinite sum in Equations (87) and (88) appear to
be a divergent series, it is in fact the Riemann zeta function

1
Cls) = Z—Y’

n=11
with s = 0 and possesses a finite valued sum of ( (0) = —1/2
(Hardy 1956). We shall not endeavour to speculate on the
implications of this curious feature since an infinite range of
scales will never come to pass as the fluid approximation
inevitably breaks down. The alternative is no less dramatic in
that a finite series would have the sum = N, where N can be
rather large.
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Figure 6. Parameter space defined by 7 and 7, demarcated into three regions
I, II, and III based on the distinct characteristic traits of the MRI for the said
range of parameter values. The figure is identical to Figure 5 of Wardle &
Salmeron (2012) with the relative strengths of the xy kinetic and magnetic
stress components additionally specified.

We are thus led to expect

. —Vxy
lim :
1> Ry

< 1, (89)

with the ratio becoming increasingly smaller the greater the
unstable range of wavelengths accounted for. In a real
astrophysical system such as a protoplanetary disk, dissipation
due to ohmic and ambipolar diffusion may be large enough in
some parts of the disk to keep the kinetic stress R,, and energy
density Eg, bounded, by suppressing the unstable growth at
smaller length scales. Therefore, the dominance of kinetic
stresses may go unchallenged unless dissipation forces the
instability to operate within Region I, see Figure 6. On the
other hand, if one can find parts of the disk where
the diffusivities fall within Regions II and III, one should
expect the Reynolds stress to dominate. Figure 7 shows the
per-k kinetic and magnetic xy stress component and energy
densities in the dissipationless limit for different values of the
Hall parameter, 7.

6. Comparing Analytical Results with Numerical
Simulations

In this section, we present the results of unstratified shearing
box simulations with a uniform net vertical field including Hall
and ohmic diffusion, performed using the grid-based higher order
Godunov MHD code ATHENA (Stone et al. 2008). The Hall
effect is implemented in Athena using an operator-split technique
(Bai 2014) that is similar to the dimensionally split scheme
proposed by O’Sullivan & Downes (2006, 2007). We use the
HLLD Riemann solver and a CTU unsplit integrator with third-
order reconstruction. The simulations we performed are identical
to the test runs reported in Appendix B of Bai (2014).

We adopt an isothermal equation of state and the initial
conditions constitute random velocity perturbations of strength,
du/cs = 107, The default boundary conditions are periodic in y
and z and shearing periodic in x. Our simulations were performed
with a plasma beta, defined as the ratio of thermal to magnetic
pressure (3 = 800, background angular frequency € =1,
equilibrium density p, = 1, isothermal sound speed ¢, = 1, and
dimensionless shear rate ¢ = 3 /2. The computational domain has
an extent of L, X L, x L, = 0.1H x 0.1H x 2H. We work
with the default grid resolution N, x N, x N, = 4 x 4 x 256.
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Figure 7. xy components of the per-k Reynolds and Maxwell’s stress tensor and the kinetic and magnetic energy densities of the MRI unstable mode, Equations (70),
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corresponding values of the said quantities derived from shearing box simulations. Legends with the superscript “s” label the corresponding quantity derived from
simulation data.
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Figure 8. xy components of the Reynolds stress tensor, Maxwell’s stress tensor and the Shakura-Sunyaev ags parameter of the MRI unstable mode for different values
of the Hall parameter, 7j; = —1.5, —0.6, 0.0, 1.0 and g = 1.5 obtained from shearing box simulations with N. = 256. In accordance with the results of the linear

theory, we find that the Reynolds stress dominates over the Maxwell’s stress
when 7y < 0.

In order to directly test and compare against the predictions fu = —1.5,7p = 1.0

0.30

of analytical theory, we run the code by varying the Hall
parameter over the different values, 7j; = —1.5, —0.6, 0.0, 1.0 0.25
and 7jp = 0.0.> We also perform one additional simulation with 2 020
the parameters 7)y; = —1.5 and 7)p = 1.0. The simulations were s
run for up to 20 orbits with orbital advection via Fargo enabled. 5 015
Such short run times suffice for the task at hand since the aim is >
. & 0.10 |
to test the agreement between our analytical results and the 3
linear evolution of the simulations. We obtain the perturba- 0.05
tions, du,, duy, 6b,, 6b,, from the Athena output and compute 0.00
their Fourier transform at time, ¢ = 119~!. We then combine 0.0 05 1.0 1.5 2.0 25 0.0 05 1.0 1.5 20 25
these variables as given by Equations (70), (71), (74), and (75) A A
to Ob.tam the .klnetlc and magnetic stress components and Figure 9. Reynolds and Maxwells stress components R, and M,, of the MRT
energies at a given scale. unstable mode with 7y = —1.5 and ¢ = 1.5 without dissipation 7, = 0 (left
We have found the simulation and the theoretical results to be panel) and with dissipation 7, = 1.0 (right panel). The discrete markers denote
in excellent agreement for as many vertical modes, &, as can be the corresponding values of the stresses derived from shearing box simulations.

Legends with the superscript “s” label the corresponding quantity derived from

reliably resolved. The output of the shearing box simulation : ;
simulation data.

conducted with a vertical grid resolution, N, = 256, is over-
plotted against the values of the corresponding stresses and energy
densities obtained from linear theory in Figure 7. Figure 8 plots
the growth in the xy time dependent Reynolds and Maxwell’s
stress as well as the Shakura—Sunyaev alpha parameter defined as

for the same set of parameters 7y = —1.5, —0.6, 0.0, 1.0,
flp = 0.0,and N, =256 and where the over-lines denote
horizontal averages. In accordance with the implications that

f (pduxdu, — 8b,6by)dz followed from Equations (87) and (88), we find that even for such

ass = T [ od , 90) moderate resolutions, the Reynolds stress noticeably dominates

& f paz the Maxwell’s stress during the linear growth of the instability.

For a fixed value of 7j; = —1.5, we compare the kinetic and

5 Note that the dimensionless Hall parameter in Athena, Qy, is related to the magnetic stress and energy densities with two different values of

Hall parameter in our work as Qu = 2/ 7. flp = 0.0, 1.0 in Figure 9. Although a finite value of k; appears to

10
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Figure 10. Per-k Reynolds stress component R, of the Hall-MRI unstable
mode with 7y = —1.5 and ¢ = 1.5. The crosses denote the corresponding

values of the per-k stress component derived from shearing box simulations
with three different vertical grid resolutions, N, = 256, 512, 1024. The
agreement between analytical and numerical results improves at higher
wavenumbers as the resolution increases.

be present with 7j, = 1.0, —M,, > R, at km and so Maxwells
stress maintains its hegemony over its kinetic counterpart.

Figure 10 compares the values of the xy component of the
per-k Reynolds stress tensor obtained from simulations with
three different vertical grid resolutions. It is quite apparent that
with increasing resolution, the agreement between theory and
simulation improves substantially as many more smaller scale
modes are reliably resolved. This places a stringent requirement
upon the resolution demands, while performing simulations of
a weakly magnetized shearing system when Hall diffusion is
present and dissipation is comparatively weak, if one is to
obtain accurate results in accordance with theoretical expecta-
tions. In the simulations conducted by Sano & Stone (2002b),
the vertical resolution was generally low (N, = 32, L, = H).
However, one can already see in their results that the volume
averaged Reynolds and Maxwell’s stresses at saturation were
the same order of magnitude when 7j;; < 0 and 7jp < 1. This is
not so for comparable simulations performed with resistivity
but without Hall diffusion (Sano et al. 2004), where the xy
Maxwell’s stress at saturation was larger than the corresp-
onding Reynolds stress. While we have not explored the
nonlinear regime in our work, we anticipate that with higher
grid resolution, one might find stronger mean Reynolds stress
perpetuating even at late times. This could be confirmed with
dedicated numerical studies.

7. Summary and Discussion

In this paper, we have carried out a detailed examination of the
linear eigenmodes in the shearing sheet framework for a weakly
magnetized system subject to non-ideal effects with a special
focus on Hall diffusion. Although our analysis invoked simplify-
ing assumptions, we have nonetheless been able to go a step
further from similar analysis performed in the past and glean
certain key attributes governing these modes. A careful examina-
tion of the eigenvectors has enabled us to provide a detailed
description of the polarization properties and to sketch a visual
representation of the eigenmodes as they evolve in space and
time. By employing the formalism of Pessah et al. (2006), we
have also derived expressions for the kinetic and magnetic stresses
and energy densities in terms of the complex eigenvector
components. This has enabled us to generalize the ratio of the
magnetic to kinetic stresses applicable to the later stages of linear
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evolution of the MRI when subject to Hall diffusion. Our central
result is the identification of regimes in the parameter space
defined by (7, 7p), wherein the kinetic stresses and energies are
found to dominate their magnetic equivalents. This property is in
sharp contrast with what one expects of the ideal MRI or the MRI
subject to dissipative effects alone.

Since the non-ideal MRI unstable eigenmodes studied here are
also exact nonlinear solutions of the shearing sheet equations
(Goodman & Xu 1994; Kunz & Lesur 2013), the unique traits
associated with these modes may carry through or influence the
subsequent nonlinear evolution of the system. In ideal as well as
dissipative MHD (Latter et al. 2009; Pessah & Goodman 2009;
Pessah 2010), these so-called channel modes have been shown to
be unstable to parasitic instabilities, which may result in their
ultimate saturation. Kunz & Lesur (2013) is the only work we are
aware of that has explored the stability of the Hall-MRI modes to
parasitic instabilities. In light of the findings presented here, it
would be worthwhile to revisit the question of saturation via
parasitic modes, particularly for the case with negative Hall
diffusivities (77 < 0) and weak dissipation.

There have been a number of recent numerical studies of a
weakly magnetized system subject to Hall diffusion (Kunz &
Lesur 2013; Bai 2014, 2015; Lesur et al. 2014; Simon
et al. 2015) in the shearing box framework. To our knowledge,
none of these studies have reported anything resembling the
behavior of stresses with fj; < 0, that we have presented in this
paper. We surmise that this may be due to the insufficient
vertical grid resolution and comparably strong ohmic and
ambipolar diffusion present in virtually all of these simulations.
Most of these studies have been performed with primary
applications to protoplanetary disks and, among them, simula-
tions exploring the system with anti-parallel angular momen-
tum and magnetic field vectors have been comparatively few.
However, Simon et al. (2015) did report the appearance of
transient turbulent bursts in their shearing box simulations with
all non-ideal effects and anti-parallel angular momentum and
magnetic field vectors. However, they attribute this behavior to
a non-axisymmetric version of the Hall-Shear instability
(Riidiger & Kitchatinov 2005; Kunz 2008).

Conventional wisdom dictates that the ensuing turbulence in
a magnetorotationally unstable system is one that is dominated
by magnetic stresses and energies. Astrophysical disks such as
those around young stellar objects are thought to harbor regions
within them where Hall diffusion is the dominant non-ideal
effect (Balbus & Terquem 2001; Kunz & Balbus 2004;
Wardle 2007; Bai 2011; Wardle & Salmeron 2012; Xu &
Bai 2016). These regions may also be subject to diffusion by
ohmic and ambipolar diffusion to varying extents. If the
dissipative effects are sufficiently strong, they can act to cut
down the range of scales unstable to the MRI and thereby
curtail the dominance of kinetic stresses if 7; < 0. However,
there is no definitive estimate at the moment of how prevalent
the different non-ideal effects are and to what degree.
Therefore, it is still too early to judge whether factors that
favor the conditions leading to predominant kinetic stresses
may or may not be found. The implications that this role-
reversal might have upon the ensuing turbulence warrants
further study.

We are grateful to the referee whose comments led to an
improved version of the paper. We acknowledge useful
discussions with Tobias Heinemann, Oliver Gressel, and
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Figure 11. Positive branch solutions, oy and o3, of the eigenvalue problem for four representative values of the Hall parameter, 7y = —1.5, —0.6, 0.0, 1.0 and
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respectively.
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Appendix A
Classification of the Eigenmodes in the Dissipationless
Limit

Here, we solve the dispersion relation Equation (26) in the
dissipationless limit w, = wp = 0 and describe the nature of
the different solutions in some detail. In the limit M — 0 and
choosing the root such that y = —L/2 in Equation (35), we
find that the roots of Equation (29) given by Equation (37)

reduces to
A}Iiin()a::t\/f/\o:q: VAo, 1)
where
Ao = % and Ay = LTOZ - No, ©2)

and
2 2
Ao=wh + 2 4+ 58 93
0 At 2 93)
A 7( fﬂ)z LA R 94)
0 2 YS! Al

Setting wy — 0 in Equations (93) and (94), we recover the
ideal MRI solutions (Pessah et al. 2006). For the purpose of
identification, we shall designate the four eigenvalues as

o=7 o0=-7 o0=iw o=-w, (95)

where

v=y-Mo+ Ay and w= Ao+ Ag. (96

The notation v and w has been chosen to be redolent of the
unstable and oscillatory nature of the corresponding eigenmodes.
The positive branch eigensolutions, o7 and o3, have the following
asymptotic forms, at very low and high wavenumbers

wn ] — )] 7 if 7 if 7
limo ~ {qu q(2 — q)" + gy REPIf fj; > 0 and L.EP if fj; < 0, ©7)

k=0 ix, LEP
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98
iwg, LEP ©8)

k— 00

Jim o~ {wH, REP if 7j; > 0 and LEP if 7 < 0,

where wg is the so-called gyration frequency (Heinemann &
Quataert 2014)

2 2
MF:FQ+ﬂMQ—@Q+ﬂ}
WH WH

99)

In the absence of rotation and shear, wg is approximately equal
to the ion-cyclotron frequency, w.; = eB/m;c reduced by the
ionization fraction n,/n. The acronyms R.E.P and L.E.P stand
for Right and Left Elliptically Polarized, respectively, and
indicates the direction of polarization of the oscillatory
eigenmodes as seen by an observer looking down perched
above the disk midplane.

The Coriolis force and the Hall effect endow the oscillatory
modes with a circular polarization or helicity. The effect of
shear is to make the polarization elliptical. Hall diffusion has
the added effect of bringing about divergent behavior of the
oscillatory modes at large wavenumbers. One of the otherwise
Alfvénic branches breaks out into what is commonly referred to
as the Whistler mode where the frequency varies quadratically
with wavenumber. The other Alfvén branch asymptotes to a
maximum frequency corresponding to the reduced ion-
cyclotron frequency for smaller wavelengths.

Under ideal MHD conditions, an infinitesimal perturbation
executes a circular trajectory due to the Coriolis force. The
shear eccentrically stretches this motion toward positive
azimuth inward from the point of origin and toward negative
azimuth outward. The Lorentz tension is activated and tries to
restore the fluid element, thereby transferring angular momen-
tum from the inward moving fluid element to the tethered
element moving outward. The respective fluid elements fall
further inward and outward to compensate and the egression is
greater at intermediate length scales where tension is weakest.
This is the standard physical picture of the MRI (Balbus &
Hawley 1998). When 7j;; > 0, the Hall effect introduces an
“epicyclic motion” of its own (Balbus & Terquem 2001) that
has the opposite sense of the Coriolis induced epicycles. At
smaller length scales, this push-back is intensified and together
with tension, suppresses any unstable motion. When #; < 0,
the Hall effect induced epicycles have the same sense as the
Coriolis motion and moreover acts to negate the restoring
magnetic tension forces at the smaller length scales. These
epicycles respond at the frequency wg, which is also now
purely imaginary and leads to continued exponential growth at
ever smaller length scales. Wardle & Salmeron (2012) refer to

13
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the instability as operating in the “cyclotron limit” at the high
wavenumber end.

Figure 11 shows the positive eigensolutions, oy and o3 as a
function of wavenumber for four representative values of 7)y.
The asymptotic forms given by Equations (97) and (98) are
plotted over the exact solutions for comparison. Notice the
eigensolutions oy and o3, splitting into separate branches with
fly = 1 in Figure 11, at high wavenumbers. For the sake of
identification, we shall refer to modes that asymptote to the
frequency wg, as simply the cyclotron mode. Bear in mind,
however, that when —1/2 < f); < oo, 07 becomes oscillatory
beyond the cut-off wavenumber k.. The change in sign of iy
effects an interchange of the Whistler and cyclotron behavior on
the modes, 07 and o3, at high wavenumbers. Furthermore, when
—2 < fjy < —1/2, wg is purely imaginary and corresponds to
the large wavenumber growth rate of the unstable mode, o;.
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Abstract

We apply the picket fence treatment to model the effects brought about by spectral lines on the thermal structure of
irradiated atmospheres. The lines may be due to pure absorption processes, pure coherent scattering processes, or
some combination of absorption and scattering. If the lines arise as a pure absorption process, the surface layers of
the atmosphere are cooler, whereas this surface cooling is completely absent if the lines are due to pure coherent
isotropic scattering. The lines also lead to a warming of the deeper atmosphere. The warming of the deeper layers
is, however, independent of the nature of line formation. Accounting for coherent isotropic scattering in the
shortwave and longwave continuum results in anti-greenhouse cooling and greenhouse warming on an
atmosphere-wide scale. The effects of coherent isotropic scattering in the line and continuum operate in tandem to
determine the resulting thermal structure of the irradiated atmosphere.

Key words: methods: analytical — planets and satellites: atmospheres — radiative transfer

1. Introduction

Analytical radiative transfer models have proved to be of
considerable utility in the study of stellar and planetary
atmospheres since their development a century ago (Mihalas
1970). Despite the availability of sophisticated high-speed
numerical techniques in the present day (Hubeny 2017),
simplified analytical treatments continue to remain valuable
primarily as a means to derive physical insight and under-
standing of atmospheric conditions.

The usefulness of analytical models to construct model
atmospheres are afforded by the simplistic nature of the
underlying assumptions, namely that of gray opacities, plane-
parallel steady-state structure, hydrostatic and radiative equili-
brium (Mihalas 1970). These assumptions are, however, also
the source of their limitations. In particular, the assumption
of frequency independent (gray) mean opacities are far
from a realistic representation of true atmospheric opacities
(Heng 2017). Nevertheless, such simplified 1D analytical
models have been useful in providing an exact solution that
predicts basic atmospheric trends and one that may serve as a
good initial approximation for numerical schemes (Hubeny &
Mihalas 2014).

Analytical or semi-analytical models with small departures
from grayness have been derived over the years (Hubeny &
Mihalas 2014). In the context of irradiated atmospheres, such
as that of close-in extrasolar planets, the most elementary
extension constitutes what is referred to as the two-step gray or
semi-gray or dual-band transfer models (Hansen 2008;
Guillot 2010; Heng et al. 2012, 2014). These models are
predicated on the approximate division of radiant energy into
two distinct and nearly nonoverlapping bands; the shortwave
associated with external stellar irradiation and the long-
wave associated with internal planetary thermal emission.
The transfer equations or their moments, with different mean
opacities for the shortwave and longwave components, are
then solved separately and linked together by the principle of
energy conservation.

Recently, Parmentier & Guillot (2014) derived an analytical
model by applying the picket fence method of Chandrasekhar
(1935) to irradiated atmospheres. The picket fence treatment
was originally developed to model line blanketing effects in
nonirradiated stellar atmospheres and has since been refined by
a number of authors (Miinch 1946; Athay & Skumanich 1969;
Mihalas & Luebke 1971). Spectral line blanketing leads to two
major effects that introduces departures from a gray atmos-
phere: surface cooling and backwarming (Mihalas &
Luebke 1971; Athay 2012). The former refers to the reduction
of temperature in the upper layers of the atmosphere due to the
added emissivity of the lines whereas the latter effect describes
the temperature enhancement in the deeper atmosphere as a
result of the flux redistribution within the continuum due to the
lines. Both of these effects were present in the model derived
by Parmentier & Guillot (2014). However, their analysis did
not account for the influence of scattering in both the shortwave
and the longwave. The surface cooling effect has been seen to
be dependent on the nature of line formation in nonirradiated
atmospheres (Chandrasekhar 1935). The degree of cooling is
lower if scattering contributes to the line in some measure and
is completely absent when the lines are entirely due to a pure
scattering process. One would expect this feature to be present
in irradiated atmospheres as well. Furthermore, continuum
scattering is known to induce an atmospherewide shift in
temperatures (Heng et al. 2014; Heng 2017). This shift is
toward hotter temperatures if the isotropic scattering contri-
butes to the longwave continuum and is toward lower
temperatures if isotropic scattering contributes to the shortwave
continuum. Therefore, one must account for scattering in the
line and continuum in order to derive a closer approximation to
actual atmospheric thermal structures.

In this paper, we generalize the picket fence treatment to
irradiated atmospheres to include coherent scattering effects.
We derive solutions that accommodate for coherent isotropic
scattering in the lines as well as the continuum, in the longwave
and shortwave frequency bands. Our model therefore provides
a fuller picture of the possible atmospheric thermal structure
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while preserving the advantages and utility rendered by
tractable nongray analytical models.

The paper is organized as follows. In Section 2, we present
the picket fence model equations. In Section 3, we connect the
longwave picket fence model with the shortwave equations and
solve for the resulting temperature profile. We present a
discussion of the results in Section 4 and conclude with a
summary in Section 5.

2. The Picket Fence Model

We consider a plane-parallel atmosphere and model the
transport of radiation by solving the moments of the steady-
state radiative transfer equation. We apply the dual-band
approximation and derive separate moment equations in the
longwave and shortwave frequency bands.

We begin with the longwave band where we make use of the
picket fence method (Chandrasekhar 1935). The radiative
transfer equation in a plane-parallel atmosphere has the basic
form

#% =k, — S, M
om

where 1 is the cosine of the zenith angle, m is the column mass,
k is the frequency dependent extinction opacity, 7, is the
specific intensity, and S, is the source function. The intensity
and source function are, in general, functions of j, m, and v.
We define the moments of the intensity, the mean intensity,
the Eddington flux, and the K-integral, respectively, as follows

(Mihalas 1970)

Lz%ﬂnmmw, @
1 1

mzaffvwmw, ©)
1 1

mzathmmww. “

In the parts of the frequency interval containing lines, the
equation of transfer is (Athay 2012; Mihalas 1970)

o1,
p— = (ke + k)b, — (keSew + kiSi), Q)]
om

where the subscripts ¢ and [ refer to the continuum and line
respectively. Considering coherent isotropic scattering, the
continuum and line source functions have the form

,{/(T

Sv=¢ecBy, + (1 — ey, & = o (6)
R

Sw=¢eB, + (1 —e)d,, &= o (@)
!

where x denotes the absorption opacity that together with the
corresponding scattering opacity assume constant but separate
values in the line and continuum. The parameter € is a
measure of the fraction of photons lost to pure absorption
(Mihalas 1970). It is in fact the complementary parameter to the
single scattering albedo but we shall refer to it here as the
scattering parameter regardless.
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Integrating over the frequency interval containing only the
lines leads to the transfer equation

20 (L + 5)1, - [i —1+0- Ez)f]fl
or &

c c

— (1 +a&pB, ®

whereas integrating over the remainder of the frequency
interval representing the continuum yields

Eclt% =hL—(1—-¢e)h—(1- BRebB )
or

Here the subscripts 1 and 2 represent the integrated variables in
the line and continuum respectively. We have also defined the
line to continuum opacity ratio

e=t, (10)

Ke

the integrated blackbody function
B= [B,av. an

and the frequency independent optical depth
dr = Kkedm. (12)

Finally, we introduce the parameter 3, which gives the relative
probability of finding a line in the frequency interval and may
in general be a function of frequency. However, we take ( to be
a constant in Equations (8) and (9) assuming that the lines have
uniform width and are uniformly spread across the spectral
range.

The first and second moments of the radiative transfer
equation in the line and continuum are, respectively,

dH,
—L =\ - 8B, (13)
dr
dH-
2 =ph-(1- BB, (14)
dr
and
& _ 1y, as)
dr &
& _ 1y, (16)
dr &
where we have defined
A=1+¢g& n = 1+4¢&& (17)

In the limit ¢, = 1, we recover the moment equations used by
Chandrasekhar (1935).

3. Irradiated Atmospheres

We now extend the original picket fence treatment to
irradiated atmospheres, like that of close-in extrasolar giant
planets. This is achieved by linking the shortwave transfer
solution to the longwave picket fence model solution via the
radiative equilibrium condition.

We first consider the radiative transfer equation as it applies
to the shortwave frequencies. The frequency integrated transfer
equation for the shortwave band, where the source function
contains only a non-negligible contribution due to coherent
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isotropic scattering, is given by

dl
p = L — (= ), (18)
dr &
with
y=S g2 (19)
Ke ks

where k; and k; are the shortwave absorption and extinction
opacities respectively. The parameter v quantifies the strength
of the shortwave opacity to its longwave continuum counterpart
and &; measures the fraction of shortwave photons lost to
absorption. The moment equations for the shortwave are

== = A, 20
o (20
and
& _2p, @
dr &

Using the closure relation K, = ji%J, (Guillot 2010; Heng
et al. 2012, 2014), where fi is the cosine of the angle of the
collimated stellar beam with respect to the vertical, we obtain
the second-order ordinary differential equation

P _
L= Ry 22
ar* @2
which has the simple exponential solution
Jy = J(0)exp (=% 7)s (23)

where v, = v/lal and v, =, /& are assumed constant.
Consistency with Equation (20) implies

H; = H; (O) exp (77;&7—) (24)

with H(0) = —|f| /& J;(0) Heng et al. (2014).
The radiative equilibrium condition, which is given by
d(H, + Hy + Hy)/dT = 0 implies

M+ b+ =[A8+ 1 - BB, (25)
Adding Equations (13) and (14), we have

d
—(H + Hp) = =)y = Y H,, (26)
dr

which has the full solution
Hy+ H, ="H — H, 27)

where H is the total integrated longwave Eddington flux.
Combining Equations (15) and (16), we obtain

i(ﬁ + Kz) 5Ly, (8)
dr\ n & €
which has the full solution

K

H
—+Kk=—7+c+
n Ec EcVue

H. (29

With the Eddington approximation J,, = 3K;,, we may
express the integrated Planck function as

3 Ve ]
B==| K + K, — —H;|. 30
/\|: | 2= 3 (30)
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Using Equation (29), this may be written in either of the two
forms given below

B=3 e h- e+ = - 2=|u| ap
Al e n Ec Ve 3

B= %[An(ET + c) L - K+ ( A l)H]

¢ EcVue 3

(32)

Combining Equation (15) with Equation (13) and
Equation (16) with Equation (14) by using the Eddington
approximation, we obtain the pair of inhomogeneous second-
order ordinary differential equations

2K,
SC = IAGK — 6B), 33)
dr
2
A sk (1 - BB (34)
dr?

Substituting Equations (31) and (32) in Equations (33) and (34)
yields

d’Ky 3\ 3nA
dK_INg 308 g
dr EcA )
/L] LSS 1YY (35)
€A \ € 3
2 ~ _
G P T P
dr? EcA )
— .
S A ey (36)
A\ EeNe 3
where we have defined the convenient shorthands
A=2+1-4 (37
fi=8+n1-7. (38)
Bounded solutions to Equations (35) and (36) are given by
Ki = aexp(—qr) + 7][17 (HT + ¢
Tl
B )
Vye€e A — 3\ €V 3
1 —
K> = bexp(—qr) + M(HT + ¢)
ech
— M AN ke H,, (40)
Vye€e A — 3\ EcVe 3

where ¢, its inverse rather, is a characteristic optical depth that
is given by
37

= iy 41
q A 41)

In order for Equations (39) and (40) to add up to Equation (29),
we require a = —bn. Finally, the integrated Planck function
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Figure 1. Boundary temperature 7(7 = 0) of an irradiated atmosphere as a
function of the line scattering parameter ¢; at a fixed line width (3 but different
values of the line strength 7 and shortwave absorption opacity parameter .

may be expressed as

B= 3—7(7‘[7’ +c) —
Ecn
 (Oege = 3 (ese = 31

Vue€e (7/2,55(- X - 3/\77)

wb exp(—qr)

H;(0)exp(—ye7),  (42)

Thus it remains only to determine the integration constants b
and ¢, which we achieve by the application of suitable
boundary conditions. For the sake of conformity with
Chandrasekhar (1935), we use the relations F = 4H and
Fx = 4H,(0). Assuming that at 7 = 0, we have 4H,,(0) =

6K;,(0) (Chandrasekhar 1935) and by considering
Equations (15) and (16) evaluated at 7 = 0, we obtain
6 {
61+ 49)b — L’?c + £~.7-'
e e

3Aﬁ(mg+§n)[ L

_ F=0, 43
Ve — 37 \ e 3] * “3)

& ecf

300 = B) (e + 2 )
e LG BVIET PR

7;155(7)\ - 3/\77 EC’Y[LE 3

The boundary condition used here corresponds to the
application of the second and third choices listed in Parmentier
& Guillot (2014, see their Section 2.3.2) with the second
Eddington coefficient fiy = 1/2. Solving the system of
Equations (43) and (44) results in

b=bF+ bFx, c¢=cF+ cFx 45)
where
b= B0 =Ba-D 6
€TI(67] + 44)
b= B4 = PljeecA = D + 370 = D

ee(V2eec A — 3M(67 + 4q)
3 B0 = BypOn -1
2 (vieec A — 3AR)(67 + 4g)

(47)
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o= S8+ 10 = B)] + 4q7
6n (67 + 4q)
130 + 2) (60 + 4977028 = 1) + 3]
67;L£€L'n(’7/21,551'5\ - 3/\77)(677 + 4‘1)
_ 3AB(0 = D99 + %= (6 + 4g + 6m)]
6Yucecn(ViEc A — 3AD) (67 + 4q)
ING(6 + 49) (e + 31)

—&——— ——— . (49)
61V A — 3N (6] + 4q)

(48)

=

We now express the fluxes in terms of their respective
equilibrium temperatures as given by
4
ossT* 5B Tint

B=22 F- . F=
™ ™

4
ﬁUSBEn, (50)
T

where ogp is the Stefan—Boltzmann constant, T is the internal
temperature associated with the thermal flux at the bottom of
the atmospheres and T, is the irradiation temperature
associated with the flux at the top of the atmosphere. This
substitution results in the temperature profile given by

4 —
T4 = 3T 7—7~T + 4—70; - 74(77)\~ ])bl exp(—qr)
4 |ed Ecll A
i -
3l Ty 4_770& _AmA l)bsexp(fqﬂ
4 e A

_ (f)/ifgc - 3)(’)&555 — 377)\)
37;1553'(7;215555\ — 3)\7})

CXP(’YuET):|.
(51D

In the limit of 3 — 0 and no external irradiation 7, = 0, we
have

f=n A=1, b =0, c,:%, (52)
and Equation (51) reduces to the classic Milne’s solution
T4 = %Tfn(‘r + %) (53)

With only 7;, = 0, we recover the nonirradiated solution of
Chandrasekhar (1935, see Equation (52))

4. Results

The picket fence model of Chandrasekhar (1935) was
originally developed to capture the effects that arise due to
line blanketing in stellar atmosphere models. The initial
treatment was based on the ideal case of lines with uniform
width, strength, and separation. A discussion of the specific
limitations that result from these assumptions is presented in
Athay & Skumanich (1969) and Athay (2012). Nevertheless,
the original model did succeed in illustrating the basic effects
due to line blanketing, namely that of cooler surface
temperatures and warmer deeper temperatures. We have,
therefore, retained the same simplified treatment of the
lines in order to construct a general nongray model that
includes coherent isotropic scattering. All of the results
presented here are derived assuming fiducial values for the
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Figure 2. Temperature profiles for a given line width 3 and two different values of the line strength 7. The temperature profile in each case is derived for three different
values of the shortwave opacity parameter 7 represented by the solid, dashed, and dashed—dotted curves. The blue curves represent the profile with lines that are due to
pure scattering, whereas the orange curves represent lines due to pure absorption. v > 1 results in an anti-greenhouse effect leading to a relatively hotter upper
atmosphere and a cooler lower atmosphere. The dotted black line is the gray temperature profile computed for v = 0.1 and is plotted here to illustrate the backwarming

effect seen in the solid (blue and orange) curves for the same ~.

internal temperature T;, = 100 K, the irradiation temperature
Ty = 1000 K and irradiation angle given by || = 1/4/3.

4.1. Surface Cooling and Backwarming

Line blanketing introduces two main effects in the thermal
structure and spectrum of atmospheres* If line formation can be
attributed solely to absorption processes, the temperature of the
upper layer is lower compared to what it would be in the
absence of lines (the gray limit), an effect that is referred to as
surface cooling (Athay 2012). The degree of surface cooling is
lowered if the lines are partly due to scattering processes
parameterized here by g. The surface cooling is completely
absent if the lines are entirely due to scattering g — 0. Figure 1
shows the change in boundary or skin temperature, here
referred to as the temperature at zero optical depth, with the
longwave scattering parameter ¢ for a fixed line width but
different line strengths. In the case of irradiated atmospheres,
the strength of the shortwave opacity also influences the
boundary temperature due to greater or lower relative
absorption of incident starlight in the upper layers. Higher
values of ~, therefore, lead to higher upper layer temperatures.

The deeper layer warming observed in the nongray model
that we have derived here is due to the effect of line blanketing.
This backwarming results from the increase in temperature due
to an attendant increase in the radiative flux per unit interval
that is redistributed within the continuum band of frequencies
as a result of its occlusion by the lines. Deeper layer
backwarming is, however, insensitive to the nature of line
formation. Figure 2 shows temperature profiles for two limiting
values of the scattering parameter €, and two different values of
the line strength 7). The profiles are calculated for a fixed angle
of the irradiation beam, a constant line width, fiducial values of
the effective internal and irradiation temperatures, and three
different values of the shortwave absorption opacity (excluding
the effect of shortwave scattering here). We plot the gray
temperature profile with v = 0.1 as a dotted black line in
Figure 2 to illustrate the backwarming effect. Notice that the
corresponding nongray temperature profile with & = 1 and
& = 0 in Figure 2 are both warmer by the same extent with

4 Some works include the additional effect of line blocking, which we do not

consider here. Our usage of the term blanketing is in the sense of Athay (2012).
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Figure 3. Characteristic optical depth ¢~', below which surface cooling effects
are observed, as a function of the line scattering parameter ¢, for different
values of the line strength 7 at a fixed line width 3.

reference to the dotted line thereby illustrating the the deeper
layer warming as well as its insensitivity to the nature of line
formation. The degree of backwarming increases with the
width of the line, represented here by (3, and has been examined
in detail by Parmentier & Guillot (2014). In the limite; = 1 and
v 2 1, we see, as was also found in Parmentier & Guillot
(2014), that the lower boundary temperatures confine the
heating due to stronger shortwave absorption into a thin hot
layer immediately below the surface. This thin hot layer is of
course absent in the opposite limit of £, = 0 due to the lack of
surface cooling.

4.2. Limit Optical Depth

A characteristic depth that emerges from the picket fence
calculation is given in terms of ¢ ' as defined by
Equation (41). The corresponding quantity in Parmentier &
Guillot (2014) is referred to as 7y, and it represents the depth
above which the surface cooling effect may be present in the
atmosphere provided that the lines are due in some part to
absorption processes. This scale is a function of the line
width 3, the line opacity ratio &, as well as the scattering
parameters ¢; and €.. However, as shown in Figure 3, the
variation of ¢~ with respect to g is negligible and is largely
decided by the line width and strength. Similarly, any
meaningful change in e, brings about only a negligible
modification to ¢~'. Our results derived for g — 1 are
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Figure 4. Temperature profiles for two different values of the shortwave continuum coherent isotropic scattering parameter &, represented by the solid and dotted
lines. The profiles are derived in the presence of spectral lines of a given width and strength as well as two different values of the shortwave opacity parameter
~ represented by the orange and blue curves. The left panel illustrates the temperature profile when the lines are due to pure scattering and the right panel is for lines
due to pure absorption. We consider the limit of pure absorption in the longwave continuum here. The inclusion of coherent shortwave continuum scattering results in

a leftward shift in the temperature profile toward cooler temperatures.
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Figure 5. Temperature profiles for two different values of the longwave continuum coherent isotropic scattering parameter &., represented by the solid and dotted
lines. The profiles are derived in the presence of spectral lines of a given width and strength as well as two different values of the shortwave opacity parameter
v represented by the orange and blue curves. The left panel illustrates the temperature profile when the lines are due to pure scattering and the right panel displays the
profiles when the lines are due to pure absorption. We consider the limit of pure absorption in the shortwave continuum here. The inclusion of coherent longwave
continuum scattering results in a rightward shift in the temperature profile toward hotter temperatures.

qualitatively similar to Parmentier & Guillot (2014) and
differ quantitatively only by a factor of a Rosseland
mean opacity o, defined here in dimensionless form as
(Chandrasekhar 1935, see Equation (56))

8
n

1 +1-6 (54
0

4.3. Longwave and Shortwave Continuum Scattering

The effect of coherent scattering in the shortwave is to push
the temperature profile to lower values on a near global scale
(Heng 2017). Coherent isotropic continuum scattering in the
shortwave is parameterized in terms of & and its effect on the
temperature profile is demonstrated in Figure 4. The global
shift in the thermal profile toward lower temperatures adds to
any surface cooling present that is due to absorption lines and
also effectively offsets the backwarming in the mid to deeper
layers. The lower temperatures result from a reduction in the
total energy budget by a factor of 1-Ag, where Ag is the Bond
albedo, which may be expressed in terms of the scattering
parameter €, (Heng et al. 2012).

Coherent isotropic scattering in the longwave continuum
band of frequencies has a similar atmosphere-wide effect where

the temperatures are now shifted to higher values as illustrated
in Figure 5. This is a manifestation of the classical greenhouse
effect (Heng 2017) and is different from the lack of surface
cooling due to lines formed by scattering. The former is an
actual warming process and is present on a global scale,
whereas the latter is the result of the lines being uncoupled
from the thermal energy reservoir (Mihalas & Luebke 1971).
Taken together, scattering processes therefore play an impor-
tant role in determining the equilibrium temperature profile
even in simple pseudo-nongray models.

5. Summary

We have derived an analytical model for irradiated atmo-
spheres that combines the effect of spectral lines in the
longwave band of frequencies, where the lines may be due to
either pure absorption or pure coherent scattering processes or
some combination of the two. To achieve this, we adapted the
picket fence treatment of Chandrasekhar (1935) to model line
blanketing effects. The picket fence treatment has been recently
used to model irradiated atmospheres but without including the
possibility of lines due to coherent scattering (Parmentier &
Guillot 2014). Our results demonstrate that the cooling of the
upper layers due to line blanketing depends on the nature of
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line formation as was previously observed in the context of
nonirradiated atmospheres. If scattering is solely responsible
for the lines, then the surface temperatures retain their gray
value, as the lines are not coupled to the thermal energy of the
gas in this limit. Transit spectroscopy of exoplanets is generally
most sensitive to very low pressure levels or equivalently the
upper layers of the exoplanet’s atmosphere (Madhusudhan
et al. 2014). Given that the surface temperature is sensitive to
the line formation process as revealed by the picket fence
analysis, one must exercise caution in the interpretation of
observations on the basis of atmospheric transfer models.
Furthermore, the contribution of coherent scattering in the
continuum can significantly alter global temperature levels
depending on the wavelength band. If the planet reflects some
fraction of its incident light, the deeper layer temperatures are
lowered and negates the backwarming effect due to the lines. If
coherent scattering is present in the longwave continuum, the
greenhouse effect comes into play leading to greater warming
throughout the atmosphere. Our analytical model therefore
accommodates a greater range of possibilities over a larger
parameter space and may be used to derive reasonable
estimates of the thermal structure of irradiated atmospheres.
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