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Abstract

The angular distribution of particles produced in relativistic heavy-ion collisions is com-
monly described in terms of their complex flow coefficients V,,(n, pr). This description
implicitly assumes that two-particle distributions of a single collision can be described
by the product of the complex flow coefficients; a property commonly referred to as
factorization. The amplitude and phase of the coefficients fluctuate event-by-event and
thereby break the factorization assumption for distributions which are averaged over
many events. Additionally, factorization may also be broken by non-flow processes such
as di-jets.

This analysis studies the factorization of sample-average two-particle distributions
in the (14, 7)-plane in Pb-Pb collisions at /sxy = 5.02 TeV. The analysis is performed
over the large pseudorapidity range of —3 < 1 < 5 by combining the Forward Multiplicity
Detector (FMD) and the Inner Tracking System (ITS) of the ALICE detector in a novel
analysis method. The original factorization assumption is found to hold for particle pairs
with a minimal longitudinal separation of Anyy, = 2.6 + 0.2. A modified factorization
assumption which accounts for a |An|-dependent attenuation of the two-particle Fourier
coefficients due to fluctuations is also investigated. The attenuation effect is quantified
by the empirical parameter Fy which is found to be in agreement with previous CMS
observation at /syn = 2.76 TeV as well as with AMPT model calculations.
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Chapter 1

Introduction

Gravity, the electroweak force, and the strong force are considered the fundamental
forces of nature. Each of these forces exhibit different properties and manifest them self
on different length scales. Gravity is the dominant force governing the motion of gigantic
celestial objects over very large distances. At the same time, gravity is too small to be
studied at the small length scales of collider based experiments. Electromagnetism is well
known from its applications in every-day life but is also responsible for the light seen
from distant stars. Simultaneously, electromagnetism may also be studied in particle
collisions making this force accessible on all lengths scales. In contrast to the previous
two, the weak and strong force are confined to nuclear and sub-nuclear lengths scales in
most circumstances. The weak force is famously responsible for the S-decay of atomic
nuclei but is also a key component in collider based experiments. Lastly, the strong force
is responsible for the formation of atomic nuclei from its individual nucleons and also
describes the formation of the nucleons from its constituent quarks. Each of these forces
may be regarded as the corner stone of various fields of physics and astronomy.

Heavy Ion research, including this work, is dedicated to studying the strong force
and in particular its bulk properties. The strong force couples to the so-called color
charged particles of the Standard Model (quarks and gluons) and is fundamentally de-
scribed by Quantum-Chromodynamics (QCD). A peculiarity of the strong force is that
the attraction between color charged particles increases with increasing distance. As
a result color charged particles can never be observed in isolation. Under conditions
of low density and temperature quarks and gluons form color neutral compound states
(hadrons) such as protons and neutrons. However, it is insufficient to solely understand
QCD in that regime. Neutron stars are an example of cold but high-density strongly
interacting matter existing today. An example of strongly interacting matter at high
temperature is the very first moment of the universe itself. The first few microseconds
after the Big Bang the universe posed such hot and dense conditions that quarks and
gluons were unable to form their compound states [1]. Instead, these particles formed
a strongly interacting Quark-Gluon-Plasma (QGP) within which they were essentially
deconfined. Expansion of the universe caused a cooling and eventually a phase transition
to the hadronic matter which composes most of the universe today.



13.7 billion years later the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven
National Laboratory and subsequently the Large Hadron Collider (LHC) in Geneva
succeeded to recreate small drops of QGP by colliding heavy nuclei such as gold and
lead respectively. The evolution of each drop of QGP follows an evolution very similar
to that of the early universe.

Describing the many-body-problem of a QGP by first principles of QCD is currently
computationally impossible. Instead, a description in terms of thermodynamics and rel-
ativistic hydrodynamics emerged as a successful model. In this framework, properties of
the QGP are described by the equation of state. Measuring the parameters of this equa-
tion has revealed that the QGP behaves as an almost perfect liquid [2]. A cornerstone
of this observation was the measurement of the anisotropic elliptic flow in non-central
collisions which is sensitive to the shear viscosity - a parameter of the equation of state.
As studies of the elliptic flow became more refined initially unanticipated higher orders
of anisotropic flow were also observed.

These higher order modes are now understood as a consequence of fluctuations of
the initial state geometry of the particle collisions [3]. Since this realization, the study of
fluctuations in Heavy Ion collisions continue to draw more attention. A property of the
hydrodynamical description is that every particle in the final state must be produced
independently of all other particles. This independence implies that the single-particle
distribution is sufficient to describe the configuration of all the created particles. How-
ever, the experimentally accessible quantity for studying the anisotropies of the particle
distributions are multi-particle distributions averaged over many events. The interpreta-
tion of the averaged distribution presents complications but also opens avenues to study
the nature of event-by-event fluctuations. In 2012 researchers realized that averaged
two-particle distributions exhibit deviations from the factorization assumption if the
considered particles are selected from different transverse momentum (pr) intervals [4].
Shortly after, this factorization breaking in pt was attributed to fluctuations and was
also reproduced in ideal hydrodynamic calculations [5]. More recently, attention has also
turned to a factorization breaking with respect to the pseudorapidity n which has been
observed p—Pb and Pb—Pb collisions at 2.76 TeV and 5.02 TeV [6, 7].

This work builds upon and extends our current knowledge of the factorizability of
two-particle distributions in n by studying Pb—Pb collisions at 5.02 TeV with A Large
Ion Collider Experiment (ALICE) at the LHC in Geneva, Switzerland. By combining
the Forward Multiplicity Detector (FMD) and the Inner Tracking System (ITS), this
analysis has access to an n-coverage of —3.4 < n < 5.03. However, the use of the FMD
creates a significant and unique set of experimental challenges creating the need to adapt
existing methods of analysis. The core observables of this analysis are the azimuthal
Fourier coefficients Vn,_n of the event-sample-averaged two-particle distributions. The
coefficients are measured for n = 2 with a resolution of 0.2 units of pseudorapidity in the
(14, mp)-plane yielding approximately 800 unique pair-configurations in pseudorapidity.
Non—ﬂow and decorrelation effects depending on 7 influence the shape of the measured

Va,—n(Na,m) coefficients and can be quantified by fitting the observed data with an
appropriate model. This work investigates two such models: The first being the often
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implicitly used pure factorization which assumes that Vm_n(na, M) can be written as the
product of two identical functions of 7. The second model includes decorrelating effects
in the form of an exponential suppression of Vny_n(na,nb) with increasing separation
between 7, and .

This analysis identifies the sub-regions of the phase space, which are in good agree-
ment with the models, and quantifies the decorrelation seen in the second model via
the empirical parameter Fy. The observed decorrelation effect is compared to results
published by the CMS collaboration for Pb—Pb collisions at 2.76 TeV and with model
calculation based on the AMPT event-generator.

The structure of this thesis is as follows. Chapter 2 introduces the reader to the
fundamental aspects of Heavy Ion Physics and the evolution of a typical Pb—Pb collision.
The observables of this analysis are subsequently introduced in Chapter 3. Chapter 4
discusses the properties of multi-particle distributions and their event-sample averages.
A summary of relevant previous studies is given in Chapter 5 and Chapter 6 introduces
the experiment. The experimental considerations with respect to the used observables
are laid out in Chapter 7. The event and tracklet selection is described in Chapter 8.
Chapter 9 presents the results of this work which are discussed in Chapter 10. Lastly, a
summary and perspectives for future analyses is given in Chapter 11.






Chapter 2
Heavy Ion physics

Collider based Heavy Ion (HI) physics is one of many possible fields of research in
modern physics. This chapter puts emphasizes on where HI research is located in the
bigger picture of subatomic physics while narrowing in on the core topics of this work.
Fig. 2.1 provides a visual guide to what will be further explained in the remainder of
this chapter. The Standard Model (SM) of particle physics describes the tangible world
in terms of elementary particles and four force-carrying bosons. It is briefly introduced
in Sec. 2.1 with a focus on the strong force. The properties of the strong force give
rise to interesting bulk properties, in particular at high temperatures and low densities.
Collisions of heavy ions provide sufficiently high temperatures to create a new state of
matter, the QGP. The QGP is a core topic of HI physics and offers a unique way to
study the strong force as a many-body problem. The creation and evolution of the QGP
is covered in detail in Sec. 2.2.

2.1 Fundamental particles and forces

Commonly, the SM is referred to as a quantum field theory describing three of the four
known fundamental interactions: electromagnetic, weak, and strong. The forth funda-
mental interaction is gravity which is described by general relativity. A unified descrip-
tion of general relativity and the SM is not known today. However, no experimental
process which is simultaneously sensitive to gravity (or the graviton, its hypothetical
force carrier) and the processes described by the SM is currently known.

2.1.1 The Standard Model

The SM consists of six quarks, six leptons, four force-carrying bosons and the Higgs
boson. A schematic arrangement of these particles is shown in Fig. 2.2. The quarks and
leptons are grouped vertically in three generations. Members of different generations
differ from their counter parts only by their mass but share otherwise the same spins and
charges. Ordinary matter encountered in every-day life is exclusively formed from the
first generation (electrons, up-quark, and down-quark). Particles in the SM exclusively

5
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Figure 2.1: The place of heavy ion research in subatomic physics

interact with each other via the exchange of a boson. On the other hand, bosons only
interact with appropriately charged particles’. Each of the three forces of the SM can
be separated into sectors and are commonly studied and discussed fairly independent of
each other. Heavy ion physics seeks to explain the bulk properties of the color-charged
particles of the Standard Model. Such particles are described in the QCD sector of the
SM which will therefore be described in more details below.

2.1.2 Quantum Chromodynamics

The color-charged particles of the SM include all the quarks and the force-carrying,
massless gluons. The latter means that gluons can interact with each other, which gives
rise to many distinct properties of the QCD sector. Any quark may, at any time, radiate
and reabsorb a gluon. The radiated gluon may itself create a gluon-anti-gluon pair
before being reabsorbed by the quark which initially emitted it. This process causes
any color-charged particle to be constantly surrounded by a cloud of other color-charges
seemingly enhancing the initial charge over increasing distances. This effect is referred
to as anti-screening. The ramification of anti-screening of color-charged particles is
that the attractive force between two color-charged particles increases over increasing
distances. Once the field between two color-charges contains sufficient energy to create
a quark-anti-quark pair, this pair may split up between the two initial color-charges
and thus creating two separate, color-neutral hadrons such as protons or pions. This
process, referred to as color confinement, makes it impossible to ever observe color-
charged particles in isolation.

However, a high-momentum color-charged parton (quark or gluon), is capable of
penetrating the color-charged cloud surrounding a separate parton. This causes the
effective color-charge, and thus the coupling constant as between the two color-charged
particles to decrease with increasing momentum transfers. Commonly, this effect is

1Or mass in case of the Higgs boson
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Figure 2.2: Schematic of the fundamental mass particles and force carrying bosons of the Stan-
dard Model. The background color indicates which particles interact with which bosons. The
quarks and the gluon are the most important particles for HI physics. Figure taken from [8].

described as asymptotic freedom. Processes with a large momentum transfer and thus
as < 1 can be studied in the framework of perturbative QCD (pQCD), similar to the
interaction in the electro-weak sector of the SM. However, small (also known as soft)
momentum transfers in the order of ~ 200 MeV are very common in HI collisions and
such processes cannot be described perturbatively.

Non-perturbative QCD calculations are computationally extremely expensive due to
the ever increasing «; for smaller momentum transfers. One well-established way of per-
forming approximate, non-perturbative QCD calculations is lattice QCD. The ansatz of
this approach is to place the involved partons on a discreet space-time grid. The spacing
between the grid points provides an implicit momentum cut-off enabling the compu-
tations. Results obtained from lattice QCD can then be extrapolated to an infinitely
small grid size to recover the conditions of the SM. Lattice QCD has been able to make
predictions concerning the bulk property of strongly interacting matter, in particular
concerning the nature of the phase-transition in QCD phase-diagram

2.1.3 The QCD phase-diagram and the Quark-Gluon Plasma

Depending on the baryon chemical potential p; and the temperature 7', QCD matter may
assume different phases which can be represented in a phase diagram like the schematic
depicted in Fig. 2.3. The common state of matter found in today’s universe is in the
hadronic state of low temperature and density. However, the existence of other states of

7



2.1. FUNDAMENTAL PARTICLES AND FORCES

Figure 2.3: Schematic illustration of the QCD phase diagram for temperature 7" and net baryon
density. The early universe underwent a transition from the QGP to the hadronic state which
can be recreated in collider based experiments. Figure taken from [10].

matter were already theorized in the 1970s [9]. The conditions in the very first moments
of our universe were sufficiently hot for strongly interacting matter to exist in a plasma-
like state where color-charged particles are deconfined of each other?. This is the state
which is commonly referred to as the (strongly interacting) QGP. The transition from
a QGP to the hadronic state may either occur abruptly with a phase transition or in a
continuous fashion by moving across the crossover region of the phase-diagram. In our
current understanding, the universe underwent the latter evolution from the QGP to the
hadronic matter found today within a few ps after the Big Bang][1].

Relativistic heavy ion collisions at the LHC and RHIC have recreated small volumes
of QGP which follow a similar time evolution in the phase diagram as the early universe.
Early indications that a QGP had been created at the SPS collider at the European
Organization for Nuclear Research (CERN) emerged in the early 2000s [11] while the
actual discovery is usually credited to the three RHIC experiments BRAHMS, PHOBOS,
and STAR [12, 13, 14]. The small volumes and the rapid transition back into hadronic
matter within femto-seconds still poses experimental challenges. Matters are further
complicated by the fact that all stages, the creation, the evolution, and the eventual
freeze-out of the QGP all play a role in the observable final state. The following section
focuses on these three steps in the life of a drop of QGP.

2Deconfinement should be understood that a parton can move independently in the plasma, but its
mean free path between interactions is nevertheless short.

8
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Figure 2.4: Creation, evolution, and freeze out of a QGP in heavy ion collisions. Two particles
(A and B) are collided at time ¢ = 0. The system then evolves with time through the depicted
phases. Figure taken from [15].

2.2 The evolution of the QGP

The process of the creation, evolution and the eventual freeze-out of a QGP created
in heavy ion collisions is schematically depicted in Fig. 2.4. Two particles are collided
at time t = 0. Before a QGP is created the system evolves through a pre-equilibrium
phase. This phase is possibly the least understood today and is commonly described in
the framework of the Color-Glass-Condensate (CGC) [16]. Once the system has reach a
state of local equilibrium, its evolution along pressure gradients can be well described in
the framework of relativistic hydrodynamics. The expansion process leads to a cooling
of the medium and a gradual hadronization around the critical temperature T¢. Lattice
QCD calculations indicate T to be below between 155 and 175 MeV [17]. Shortly after
the freeze-out, the condensed hadrons continue to scatter inelastically off each other until
the system has cooled down to the chemical freeze-out temperature Tiy. It is predicted
that Tep &~ Tc and experimental evidence indicates that this freeze-out process takes
place at approximately 170 TeV [11]. After the chemical freeze-out, the system forms an
elastically scattering hadron-gas. The temperature at which even these elastic scatterings
cease to occurred is referred to as the kinetic freeze-out temperature.

Correlations between the final state particles stem mainly from the initial state
anisotropy, which is preserved throughout the hydrodynamical evolution.



2.2. THE EVOLUTION OF THE QGP

2.2.1 Color-Glass-Condensate

The CGC describes the state of the colliding nuclei prior to the actual collision. The
guiding principle of the CGC is that the gluon density increases rapidly for decreasing
Bjorken x, where x is the fraction of the total momentum of the nuclei carried by the
gluon. This behavior stems from the emission and self-interaction of low-momentum
gluons, as described in Sec. 2.1.2. At relativistic energies a saturation effect occurs
for the low-z gluons once their wave lengths approach the size of the nuclei. At the
relativistic energies achieved at modern heavy ion colliders, each of the colliding nuclei
is highly Lorentz-contracted in the lab frame. At the time of impact the two nuclei pass
through each other, creating a strong color field in their wake commonly referred to as
glasma.

Initial calculations of the glasma model treated the created system as an approxi-
mately boost-invariant, 2D system [18]. However, experimental [7, 6] and theoretical [19,
20, 21] studies of the n dependent event-plane decorrelations have created the need to
revisit this restriction. Recent studies of a three dimensional glasma have therefore
dropped the requirement of approximate boost-invariance [22]. The rapidity depen-
dence of the gluon density is then computed from a JIMWLK evolution which results
in a rapidity dependent structure of the colliding nuclei as is illustrated in Fig. 2.5. In
the respective work, the gluon fields were used as the initial conditions to solve the
source free Yang-Mills equations for each rapidity individually. This in turn yields the
rapidity dependent energy-momentum tensor T#”. The tensor is symmetric [23] and
each component is usually a function of the four-dimension space-time z* = (t,z,y, 2).
The components of T"” describes the energy and momentum flux of a system and are
also a fundamental quantity in the later hydrodynamic description. Its components are
schematically shown in Fig. 2.6.

The individual components of T' describe the following properties of the system at a
given point (¢, x,y, 2)

e 79 describes the energy density
e TH¥ describes the pressure of the system
e 719 give the flux of mass through the surface where z* is constant

e The remaining off-diagonal elements T+ describe the flux along the surface z* of
the v component [23]

The component 7% computed with the 3D-glasma model for Pb-Pb collisions at
V3NN = 2.76 TeV and 0.2fs/c after the collision is depicted in Fig. 2.7. While the
approximate boost invariance of the energy density is apparent, clear long and short-
range deviations due to the JIMWLK evolution are visible.

In the same work, agreement was found between the described gluon densities and
the decorrelations effects observed experimentally. This is in agreement with previous
predictions stating that the hydrodynamic evolution preserves the longitudinal structure
of the glasma phase [17]. Nevertheless, the hydrodynamical evolution is crucial step for

10



2.2. THE EVOLUTION OF THE QGP

Figure 2.5: Gluon field of one of the colliding nuclei at different rapidities after the JIMWLK
evolution. From (a) to (c) the panels depict the rapidities Y = —2.4, Y =0 and Y = 2.4. The
overall geometry remains correlated over the shown rapidity region. Figure taken from [22].

Figure 2.6: Schematic description of the energy-momentum tensor. Figure taken from [24]
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2.2. THE EVOLUTION OF THE QGP

(a) (b) (c)

M M X,T >
n

Figure 2.7: Pseudorapidity dependent energy-momentum tensor of a Pb—PDb collision at \/syn =
2.76 TeV from 3D glasma calculations. The approximate boost invariance is apparent along with
the i dependent structures introduced by the JIMWLK evolution. Figure taken from [22]

the descriptions of particle distribution in the transverse plane. The energy momen-
tum tensor computed with the (3D)-glasma can be used as the initial conditions of the
hydrodynamical evolution of the QGP [22].

2.2.2 Relativistic hydrodynamics

The applicability of hydrodynamics requires that the system is in local thermodynamic
equilibrium. While various definitions of this condition exist, it can usually be described
such that the pressure and temperature only vary over characteristic lengths scales which
are larger than the mean free path of a particle within the system [23]. This condition
is reached during the glasma phase.

If the condition of local equilibrium is given, hydrodynamics can be used to evolve
the energy-momentum tensor of a system from an initial configuration to a later state.
However, the evolution of the medium decreases the rate at which momentum transfers
take place in the system to a point where local equilibrium is no longer applicable. Thus,
hydrodynamics can only be used to evolve the system up until a final condition is met.
A hydrodynamic description of a heavy ion collision is therefore usually followed by
another model describing the hadronic freeze-out.

Equation of motion

The equations of motion of a hydrodynamic system are given by the energy-momentum
conservation and the conversation of currents. The former is given by

8T =0 (2.1)

where 0,, is the common short hand notation for the partial derivative 0/dz, in the p
dimension. The conservation of currents is similarly given by

9N =0 (2.2)
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2.2. THE EVOLUTION OF THE QGP

where N/ is the ith conserved current such as the electric charge or baryon number [25].
A further restriction on the evolution of the system is that the second law of thermody-
namics

9,8" >0 (2.3)

where S* is the entropy current that has to be conserved.

The pressure P at the initial condition is closely related to the initial anisotropy of
the energy-density and it is the driving force for the transverse evolution of the QGP.
The medium will accelerate fastest along the highest pressure gradients and will thus
maintain some memory of the initial state anisotropy throughout its evolution.

Once the fluid has expanded and cooled down to the freeze-out temperature one can
no longer continue the hydrodynamic expansion. At this point the assumption is made
that the momentum distribution of the fluid is equal to the momentum distribution
of the outgoing particles and that the outgoing particles are produced independently
of each other [23]. Lastly, the number of particles produced from one fluid element is
governed by Boltzmann statistics. Since the movement of these fluid elements maps to
the momentum distribution of the fluid it is possible to deduce the final state anisotropies
of the QGP from the experimentally accessible particle distributions.

2.2.3 Anisotropic flow

The assumption of independently produced particles from the previous section has im-
portant ramifications for the (multi-) particle probability distributions. In its most gen-
eral form the distribution of m-tuples (pairs, triplets, ...) between the created particles
can be written in terms of the probability density P,,(z1,z2,...,Zy) where x; denotes
any kinematic variable of the ith particle such as pr, 7, ¢ etc [26]. The first restriction
on this distribution is that it must be symmetric under any permutation of the particles
such that

Py (x1,x9,...,2m) = Pn(z2,21,. .., Tm) (2.4)

Under the assumption that the particles were produced independently, it further fol-
lows that the multi-particle probability distribution can be factorized into a products of
identical single-particle distributions P (z)

Pm(xl,xg,...,xm) == le(fljz) (25)
1=1

It is common to describe these distribution as Fourier series. The following replaces x
with the commonly used variables (7, ¢, pr)

1 - —in
Pi(n,0,p1) = 5 > Valpr,m)e ™ (2.6)

where the V,,(n, pr) is the nth complex Fourier coefficient in the azimuth of the single-
particle distribution. These coefficients are commonly use to describe the azimuthal
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2.3. MONTE CARLO SIMULATIONS AND EVENT GENERATORS

anisotropies of the final state particle distributions. As written in Eq. (2.6), the coeffi-
cients dependent on 7 and pt but are also known to depend on other kinematic variables
such as the particle species. Since Eq. (2.6) is the Fourier series of a real valued function
it can be written out in the terms of real valued parameters as

Pi(n, ¢,pr) = % (1 +2  wa(n,pr) cosn[p — %(mmﬂ) (2.7)

n=1

where v, is commonly referred to as the nth flow coeflicient and 1, is its corresponding
phase. Naturally, a multi-dimensional Fourier transformation can also be applied to
multi-particle distributions. The two-particle case, relevant for this analysis is given by

PQ(naanbugpav(phpT,a;pT,b) (28)
1 2 o0 o0 _inw _imcp
- % Z Z anm(na’pT,ay nb,pTVb)e ae b (29)

nN=—00 M=——00

Where V;, ,,, are the complex Fourier coefficient of the distribution. If the assumption of
independent particle emission holds true, V;, ,,, factorized into a product of the respective
single-particle coefficients

Vn,m(naupT,au nbupT,b) = Vn(naapT,a)Vm(nbapT,b) (210)

By measuring the particle densities produced in heavy ion collisions, one can infer
the shape of the underlying probability distributions which is quantified it with the here
introduced Fourier coefficients. Furthermore, the measurement of two-particle distribu-
tions averaged over many events, gives insights into the event-by-event fluctuations of
the Fourier coefficients.

2.3 Monte Carlo simulations and event generators

Monte Carlo (MC) Simulations of HI collisions allow a comparisons of theoretical pre-
dictions with observed data. This section introduces the most common techniques used
for such simulations.

2.3.1 Glauber models

Glauber MC simulations are commonly used to approximate the initial conditions of a
HI collision. Glauber models treat the collision as a collection of uncorrelated binary
collisions between the constituents of the colliding nuclei. The nucleons inside the col-
liding nuclei are presumed to be randomly distributed by a Wood-Saxon distribution.
When two nuclei collide, each of their nucleons may interact one or several times based
on the inelastic nucleon-nucleon cross-section. The overlap (centrality) of a collision
is parameterized by the impact parameter b defined as the distance between the two
geometric centers of the colliding nuclei. Fig. 2.8 depicts a Glauber MC simulation of
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2.3. MONTE CARLO SIMULATIONS AND EVENT GENERATORS

Figure 2.8: Glauber Monte Carlo simulation of a Au+Au collision viewed in the transverse plane
(left) and the (x-z)-plane (right). Darker circles mark nucleons participating in the collision.
Figure taken from [27].

a Au—Au collisions where the darker circles indicate participating nucleons. The ini-
tial states produced by Glauber MC simulations exhibit an initial anisotropy which is
strongly dependent on the impact parameter (the “almond”-shaped overlap region in
Fig. 2.8 (left)) but also exhibits significant event-by-event fluctuations.

2.3.2 HIJING

The most commonly used event generator in relativistic HI physics is Heavy Ion Jet
Interaction Generator (HIJING) [28]. HIJING uses a Glauber model to compute the
initial conditions of a collision. The interactions between nucleons with a large momen-
tum transfer are described in a pQCD fashion using multiple minijets. Soft interactions
are treated in the Lund-string framework. Notably, the Hijing event generator does
not include processes which preserve the initial state azimuthal anisotropies. Therefore,
HIJING fails to reproduce results from anisotropic flow measurements.

2.3.3 AMPT

A Multi Phase Transport model (AMPT) combines various components and techniques
reflecting the complexity of a heavy ion collision [29]. The initial stage is computed
using HIJING providing the full information of produced excited strings and minijets.
For the string melting scenario, which is used for the model comparisons in this work,
the excited strings and minijets are passed into Zhang’s Parton Cascade (ZPC) which
describes scattering processes among partons until the hadronic freeze-out. Lastly, A
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2.3. MONTE CARLO SIMULATIONS AND EVENT GENERATORS

Relativistic Transport (ART) model is applied to describe final hadronic rescattering
processes.

Thanks to the ZPC phase, AMPT preserves information of the initial state anisotropies
throughout the evolution to the final state. AMPT with string melting has been able to
reproduce measurements of v,,(n) [30] and also exhibits n-dependent event-plane fluctu-
ations [21] which are of importance to this analysis.

16



Chapter 3

Observable definitions

This chapter presents a brief overview of the observables used throughout this analysis.
All observables in this analysis are pr integrated due to technical limitation of the
detectors involved. Therefore, the following introduces all variables only with a n and ¢
dependence but a generalization to also include pr is straight forward and presents an
interesting avenue for future analyses.

3.1 One and two-particle densities

As discussed in Sec. 2.2.3, measuring anisotropies in the number of produced particles
provides insights into the energy-momentum distribution of a collision. By measuring the
single-particle and two-particle densities and averaging them over many events one can
approximate the underlying probability distributions governing the particle production.
The single-particle density is defined as

pine) = (o) )

where N is the number of particles at that given point in phase-space. Hence, p; denotes
the particle density averaged over many events.
The averaged density of particle pairs is similarly defined as

d4N airs
P > (3.2)

ﬁ2(77m Moy Pas @b) - <d77d77dg0d(pb
o a

where the subscripts a and b differentiate between the two particles in the pair.
Due to experimental considerations further explained in Chapter 7 it is beneficial to
work with the normalized two-particle density defined by

AP2(77aa"7(27A90a780b) (33)
£1(Nas a)P1(Ms Pb)

T2 (nm by Pas Qﬁb) =
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3.2. FOURIER COEFFICIENTS OF THE TWO-PARTICLE DISTRIBUTION

3.2 Fourier coefficients of the two-particle distribution

A summary of the most important properties of the (multidimensional) Fourier transfor-
mation is given in Appendix C.1. The Fourier decomposition of ry along its azimuthal
dimensions yields the two-particle Fourier coefficients

~

1 2 2 p2m o .
Gl = (55) [ [ ralommepu e ore e ()

where the " (caret symbol) emphasizes that this coefficient is calculated from the event
sample average and is thus not necessary identical with the coefficients of the event-
by-event distributions. In Chapter 4 it will be shown that the only non-zero modes of
Vn,m(na, M) are n = —m and that Vn,,n(na, M) is real.

3.3 Factorization

This analysis is concerned with the functional shape of Vn7,n(na, Mp). The two different
models which are described in the following are both focused on the hydrodynamical
assumption described in Sec. 2.2.3. They do not attempt to describe other processes
(commonly referred to as non-flow) such as di-jets or weak decays. The experimental
procedure of performing the factorization is described in Sec. 7.4.

3.3.1 Purely factorizing model (Model A)

In a purely hydrodynamical picture all particles are emitted independently. This prop-
erty causes the two-particle Fourier coefficients to factorize on an event-by-event level.
This factorization is expressed as

A

V=1, 1) = (Va (11a) Viy () 3.5

= (on(na) o ()00 (3.6)

= 0y, (na)07, (o) (3.7)

where 97}(n) are the flow coefficients extracted from the average over the event sample.

If fluctuations of v, are uncorrelated along n and if the event-planes ¢ and 9 are
always identical within one event Eq. (3.7) holds and 9/ (n) is the mean value of the
event-by-event flow coefficients v, (n). Decorrelation effects (i.e., 92 and v are not
identical within one event), cause an attenuation of the averaged flow coefficients such
that 92 (1) < (v,(n)). In that case, Model A deviates from the data if the decorrelation
effects are dependent on 1. The degree to which the observed an_n (Na,mp) is compatible
with Model A provides a limit to the size of factorization-breaking fluctuations of the
flow coefficients, event-plane decorrelations and non-flow effects.

The flow coefficients 97 (1)) are found as the numerical best-fit solution to the observed
Vm_n(na,nb). The latter is measured as a histogram of finite bin size in 7, and 7.
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3.4. FACTORIZATION RATIO

Vi,—n(Mas ) 07 (11a) 07 ()

U/

Figure 3.1: Schematic representation of Model A. Each element of 9B (n) affects several elements
of Vn,—n(nm nb)

Eq. (3.7) can therefore be seen as a non-linear equation system

. o A i A

Vi, (1, ) = By (1) 05, (1) (3.8)
where ¢ and j are the bin-indices along 7, and 7, respectively. Graphically, Eq. (3.8) can
be represented as shown in Fig. 3.1 where V,, _y, (74, m) is a two-dimensional matrix and
92 (n) a one-dimensional vector. Solving Eq. (3.8) for all points in Vj, (14, 7) yields
the “vector” ©/(n) which best describes the observed data.

3.3.2 Long-range decorrelating model (Model B)

The second model which is compared to the observed data was suggested by the CMS
collaboration albeit based on a vastly different analysis method [6]. The model is given
by

Vo (110> 1) = 07 ()05 ()17 (3.9)
The parameter F)! is an empirical measure for a An = 1, — 1, dependent factorization
breaking and as such provides insights into longitudinal fluctuations during the early
stages of the collision [19, 21]. It is important to stress that the best fit of the observed
data to either model yields 0 (1) # 02 (n) unless Fyl = 0.

The flow coefficients 92 () and the constant Fy/ are found by solving

5 o
Vi (i) = 37 ()07 (o e~ 7 1=l (3.10)

with respect to the measured Vn’_n(na,nb). The analogous graphical representation of
Eq. (3.10) is schematically shown in Fig. 3.2. The additional factor compared to Model
A is constant along 7, + 7, and exponentially attenuates V;, _, (14, 75) along |An|.

3.4 Factorization ratio

The non-linear character of the models proposed in Sec. 3.3.1 and Sec. 3.3.2 make the
data-to-model comparison non-trivial. The observable of choice for this comparison is
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Vi, —n(Ta, M) 05 (na) oF ()

_
b

Figure 3.2: Schematic representation of Model B. Each point in 92 (n) affects several elements

in Vi, —n (14, ). The factor e~ Fillna=ml attenuates Vi, —n(Na, M) along |An|.

the ratio f,, between the observed value to the prediction of the fitted model

Vn —n(naa nb)
_ 3.11
M1ar) (31

where the Model M (1, 1) is either 82 ()2 () for Model A or 02 (14 )65 (ny)e~Fr' e =l
for Model B.

fn(nth 77b) =
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Chapter 4

Event sample averages of
multi-particle distributions

The probability distribution of an individual event may be described by the complex
Fourier coefficients V,,(n, pr), but these coefficients may fluctuate from event to event.
More specifically, this chapter treats the flow coefficients v,, and their associated phases
1y, as random variables. Throughout this chapter, the effects of different kinds of fluctu-
ations of vy, fmd 1y, are assessed with respect to the experimentally accessible quantities
ﬁl, ﬁg, and me.

The structure of this chapter is as follows: Sec. 4.1 introduces a short-hand notation
which enables this chapter to be generic over any kinematic variable while maintaining
a good readability. Sec. 4.2 investigates if the Fourier coefficient of an averaged (multi-)
particle distribution is identical to the average of the event-by-event coefficients. Sec. 4.3
studies the averaged one- and two-particle distributions in the absence of any fluctuations
and under the assumption that every event shares the same orientation in the detector.
The latter restriction is relaxed in Sec. 4.4 such that the event sample contains events
of any possible orientation. Sec. 4.5 then treats the scenario where the phase and the
amplitude are expected to fluctuate event-by-event.

4.1 Short hand notation of this chapter

Even though the analysis presented here only performs measurements with respect to 7,
it is desirable to understand the effect of the averaging procedure with respect to any
kinematic variable or particle species. Since the readability would suffer considerably if
each possible variable were to be written out explicitly, a short-hand notation is intro-
duced for this chapter. The only coordinates which are written out explicitly are the
azimuthal coordinates ¢, and ¢ of particle a and b. All other dimensions are implicit
and a superscript is used to denote that an observable is from the phase-space region a
and/or b. For example, ﬁg’b(gpa, ©p) is to be understood as the average particle density
at (1a, M, Pa, Pbs PT,as PT,p, - - -). For Fourier coefficient, the azimuthal dimensions are
replaced with the modes n and m. Therefore, me(na,nb,pT,a,pTﬁ, ...) is written as
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4.2. FOURIER COEFFICIENTS OF AN AVERAGED DISTRIBUTIONS

VT? ’TI;L. Quantities which only depend on the variables of a single-particle only have a
single superscript e.g., 0% is to be understood as Op(Ma; Pa, PTas - - -)-

4.2 Fourier Coefficients of an averaged distributions

Regardless of fluctuations of V,,, the question arises if the Fourier coefficients of an
averaged particle distribution are identical to the average of the coefficients. This section
clarifies this answer and thereby lays the groundwork for the remainder of this chapter.
In the course of the following the total number of particles in an event N is used
to normalize the particle distributions. In this regard, the assumption is made that all
events in the event sample have the same multiplicity. N is therefore a constant for
any configuration of v, and .

4.2.1 Averaged single-particle distributions

The first case to be studied is the single-particle distribution given by

- 1 1

2m ) ”
a _ dpae” e (p(p,)) = (V¢ 4.1
4 2WNM/O e (0" (0a)) £ (Vi) (4.1)

Is V@ = (V) for arbitrary fluctuations of v% and ¢*? The event-by-event fluctuations

of the latter two parameters can be expressed by their joint probability density function
(PDF) h%(v2,1%). The averaged single-particle distribution (p*(¢,)) can then be written

as 2
o = [ au [ avinun) ()

where <.}v‘1 1/1“> describes an average over events which all share identical v% and &

v%ﬂ/’%> (4.2)

parameters i.e., the average is formed over events whose particle distributions are all de-
scribed by the same probability distribution. For an average over many events, the mean
particle density can be assumed to converged to the underlying probability distribution
times the number of produced particles’:

(P (00 ) = NP (20)] (4.3)
where be‘va e is the probability distribution defined in Eq. (2.6), for fixed values of v%

and 2. Inserting Eq. (4.2) and (4.3) into Eq. (4.1) and rearranging the order of the
integrations yields

27 1 27 )
apa A —inpq pa
Vo= [Cavn [ s [ dee P )y (0

'For a single event, the observed particle distribution may deviate from its probability distribution
due to the finite number of particles.
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4.2. FOURIER COEFFICIENTS OF AN AVERAGED DISTRIBUTIONS

one can identify that the right most integral is the definition of the nth Fourier coefficient
of P;, which in turn is V¢ as defined in Eq. (2.6). Rewriting Eq. (4.4) one more time

e " g / Ao (o2, ) Ve = (V) (4.5)

reveals that the Fourier coefficients of the averaged distribution are indeed the averaged
Fourier coefficients.

4.2.2 Averaged two-particle distribution

The reasoning about the Fourier coefficients of the averaged two-particle distribution
is analogous to that about single-particle distributions but with two minor differences:
Firstly, the density of pairs needs to be normalized to the total number of pairs per event

Nggfr which is assumed to be identical for all events in the sample. Secondly, the joint-

PDF has to be modified to include the coordinates of both particles h%’f;n(vg, vl b ).
The averaged two-particle density is then given by

(i)

27 27
/dv / duv?, / dl/Jn/ d@bmhal;n Uy Vb i Uy <Pg’b(90a780b) ot b ¢a¢b>
(4.6)
o o b pab b b \ prtot pa,b
= [t [t [Tave [T gt tong A

where - denotes the parameters of the preceding quantity. The mean density

AR
of pairs was replaced in Eq. (4.7) by Ni% Py * where P;"", in turn, is the pair-probability-
distribution defined by Eq. (2.9).

The Fourier coefficients of <p;’b(gpa, <pb)> can be written as

. 1 2 1 2 ) 2 )
b - a - 7b
V,ﬁm = <27r> T / dpqe™ ¥ /0 dppe™ "0 <p; (gpa,cpb)> (4.8)

pair

By plugging Eq. (4.7) into Eq.(4.8) and using the definition in Eq. (2.9) one arrives at
. 2w
Vit = [ [ty [T [T autnt ot ttavit = (vt @9

Using Eq. (4.5) and Eq. (4.9) it is possible to asses the effects of fluctuations and corre-
lations by considering the mean Fourier coefficients instead of the mean distributions.
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Figure 4.1: Idealized two-particle distribution pg (% o) (left) and its Fourier coefficients Vj, ,,
(right) for constant Vi and V}},. All flow coefficients are 0 except vo = 0 and vy = 0.45. The
averaged Fourier coefficients V;, ,,, exhibit non-zero off-diagonal (n # —m) elements.

4.3 Identical events at constant azimuthal orientation

This section introduces the simplest possible case: V,% and V;2 do not fluctuate from event
to event and their amplitudes and phases are set to (92, 1¢) and (22,,9?,) respectively.
The event-plane of every event is identical as well i.e., every event shares the exact same
orientation in the detector. Since none of the involved quantities fluctuate, the average
of the single-particle V¢ is given by

(Vi) = (vmemmi ) = (v (7m0 ) = pgeindi (4.10)
and the two-particle coeflicients by

Vﬁf; = <V,fV,bn> = <v$e*mwzvf’ne*im¢$’l> = OG0 e~ IVh g —imin, (4.11)
An illustration of a two-particle distribution with 7 = o5 = 1 and v$ = 4 = 0.45 is
shown in Fig. 4.1 (left). The amplitudes of the Fourier coefficients are shown in the
right panel. In both cases, the resulting quantity is the product of two single-particle
distributions or coefficients.

4.4 No fluctuations and random orientation

Even if the fluctuations between every event could be assumed to be negligibly small,
each collision occurs at a random azimuthal orientation in the detector. This random
orientation can be thought of as a rotation of each event by «, which is uniformly
distributed in the interval 0 < o < 27. Such a rotation of the underlying distributions
is reflected by a phase shift in the Fourier coefficients.
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Figure 4.2: Tllustration of p; computed from a set of events whose particle distributions are
described by identical probability distributions. The flow coefficients are set to vg = 1 and
v = 0.45. The orientation « of the events in the detector is a phase shift of the distributions.
The average over all orientations yields a uniform distribution.

4.4.1 Single-particle distributions

The single-particle coefficients for events with a particular phase « is by

(Vay |, = olein@ite) (4.12)

n

Since « is uniformly distributed, the average over all possible « values is then given by

1 2m ; a
(ViD= T i e~tnWnte) g (4.13)
The integral on the right hand side of Eq. (4.13) is only non-zero for n = 0. Thus, the
averaged single-particle coefficients are given by

Vg =0 ifn=0
<v,f>={ o=t B (4.14)

0 else

Eq. 4.14 states that event-by-event anisotropies cannot be measured from the average
single-particle distributions due to the random azimuthal orientation of each collision.
Fig. 4.2 illustrates this for a simple sinusoidal event-by-event distribution which is ran-
domly rotated from one collision to then next. The average over all possible phases «
yields a constant, isotropic distribution which is in agreement to Eq. (4.14).

In the next section it will be shown that the same averaging procedure over a two-
particle distributions does not necessarily removes all anisotropies.
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4.4.2 Two-particle distributions

Analogous to the single-particle case, the average two-particle Fourier coefficient at a
particular value of « is given by

<V,$V7’,’L\a> = gagh emin(Vita) —im(¥r,+a) (4.15)

It is important to stress here that the same « is added to the azimuthal coordinate
of both particles. The average of Eq. (4.15) over all possible o values is performed
analogously to the single-particle case in the previous section.

27 _ . _

VaVb ‘ _ T)af)b 1 efin(w%Jra)ef'Lm(’t,bfnnLa) do (416)

nimla// nimo 0

ey ooy 1 2T
= vgvfnem(w“)ezm(%l)/ e~ ie(ntm) g, (4.17)
27[' 0
_ .1 [

=vaevdb e~in+m) g (4.18)

27T 0
B vevt o ifm=-n (4.19)

o otherwise .

Similarly to the single-particle distribution, certain modes of the averaged two-particle
coeflicients are zero regardless of their event-by-event value. However, contrary to the
single-particle case, modes with n = —m may assume non-zero values in Eq. (4.19). For
real function such as the underlying particle distribution, negative modes of the Fourier
coefficients are the complex conjugates of the positive ones:

Vb =vbr (4.20)

Using Eq. (4.20) and examining the m = —n modes of Eq. (4.15) yields

<v,gv_bn\a> - <vgv§*\a> (4.21)

:ﬁgﬂze—in(djz-l—a) ein(z/;z-l-oz) (422)

:@Z@ze*m(@zﬂl_ﬁ) (423)

- <vrgv7g*> (4.24)

From Eq. (4.23) one can see that the modes n = —m are not affected by the orientation

of the event, since the complex conjugate makes this combination of modes independent
of a. This also holds in the general case where v, and v,, are allowed to fluctuate since
the orientation in the detector must be independent of the underlying physical processes.
Therefore, the following focuses on the non-zero modes with n = —m.
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Figure 4.3: Effect of the phase-shift a on the two-particle distribution po(¢® 4 , ® + «). The
distributions are identical to Fig. 4.1 (left) except that the events have been rotated by a =
—m/4 (left) and o = 7w /4 (right). The phase « translates the distribution along the diagonal of
the (¢%, %) plane.

4.4.3 Two-particle distribution as a one dimensional problem

Before further studying the effect of fluctuations on the sample averages, it is instructive
to understand the effect of a rotation by a on the two-particle distributions themselves.
Fig. 4.3 shows ﬁg’b(cpa + «, pp + @) based on the same distribution shown in Fig. 4.2, but
for a = —m/2 (left) and o = 7/2 (right). It is evident that different values of o move
the distribution along the diagonal of the (¢4, vp)-plane.

An averaging over all possible « therefore creates a striped pattern as is shown in
Fig. 4.4 (left). The right hand panel of Fig. 4.4 shows the amplitudes of the Fourier
coefficients from the left panel. A comparison with Fig. 4.1 reveals that combinations
of modes n, m, which were non-zero in the event-by-event case, are zero in the event
average. As expected from Eq. (4.19), the only non-zero modes are indeed those where
n = —m. The non-zero values are identical to the corresponding values of the event-by-
event case in Fig. 4.1.

It is clear from the left hand panel in Fig. 4.4 that pa(@qa, ¢p) is constant along the
diagonal and that the entire distribution could be described as a one dimensional problem
after a coordinate transformation. In fact, such a coordinate system is commonly used
in two-particle correlations analyses.

Coordinate transformation to azimuthal differences and averages

The new coordinate system is one of angular difference and averages given by

Ap =g — vy (4.25)
- 1
$ =5 (@at @) (4.26)
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Figure 4.4: Average two-particle distribution (left) and its Fourier coefficients (right) for an event
sample where every event shares an identical probability distribution but is randomly oriented
in the detector.

where Ay is the azimuthal difference and ¢ is the azimuthal average. In Fig. 4.4 (left),
A is perpendicular to the stripes while ¢ is parallel.
The Jacobian of the transformation (¢q, ¢p) — (A, ) is given by

aéAap) B((E)Ago) L
I(Dp,3) = [ v o ] _ {1 1] (4.27)
Pa ¥b 2 2
which yields the determinant 1.
Using the definition from Eq. 4.8, the non-vanishing coefficients (n = —m) are given
by
Vet = <v,gv,§*> (4.28)
2m ) 2 ) 1 b
— a,
— / dgoae“w“/ dppe™ "0 Aot <p2 (Pas <pb)> (4.29)
0 0 pair
2 2 . 1 ab
= [ e [ e (o)) (430)
0 0 pair

Eq. (4.30) can then be rewritten as
. 2 ) 2
Vel = / dApe™A¥) / g <pZ’b’(A<P, ¢)> (4.31)
0 0

where pg’b/ is the two-particle distribution in the new coordinate system. The second
integral is precisely the integration parallel to the isotropic strips in Fig. 4.4 (left).
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Denoting the result of that integration by < pg’b” (Acp)> one finds that

21
Ve, = / dApem(B) Niot (5" (29)) (4.32)
0 pair

This is indeed the one dimensional notation one intuitively expected. Eq. (4.31) shows
that the two-particle coefficients extracted from the distribution of angular differences
is identical to those computed from the distribution of pairs in the (¢4, ©p)-plane.

The real amplitude of Eq. (4.32) is often denoted as Vj,a in literature. However, as
shown in this section, the identical coefficients can be computed from either coordinate
system and ‘A/m_n will be used to label the two-particle coeflicients throughout this work.

4.5 Fluctuations of v, and v,

In Sec. 4.4 it was shown that in the absence of fluctuations V; ’fn are the only potential
non-zero coefficients due to the random orientation of each event. This section turns the
attention to event-by-event fluctuations of v,, and ¢,. Such fluctuations may be random
or correlated between a and b or between the amplitudes and the phases. Under the
assumption that fluctuations between the amplitudes are not correlated with fluctuations
in the phases, it is possible to treat each component individually

veb, = <vgvj*> (4.33)
_ <v2v3> <efm<wwz>> (4.34)

This assumption is made for the following two sections which will first investigate the
phase-terms and then the amplitudes.

4.5.1 Fluctuating phases

The value to which the term <e*m(¢%*w2)> computes depends on the correlations of the

phases between a and b. If the phases at point a and point b are not correlated, the

average is given by
<efm<¢szz>> — <€fz'mz)z> <emwz> (4.35)

Due to the random orientation of each event, all 17 and d)fl are equally likely to occur and
each of the terms on the right hand side evaluate to zero, except for the n = 0 mode.
In that case, it is impossible to measure any anisotropies in an averaged two-particle
distribution. However, two-particle distributions have been found to exhibit azimuthal
anisotropies, and therefore the phases between a and b must be correlated.

Although the exact form of the correlation is unknown, one can expect that the
fluctuations of the phase are equally likely in either direction. Therefore, the average
must be identical if the regions a and b are reversed:

<€fm(wszz)> _ <€fm(wszz>> (4.36)
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Figure 4.5: Decorrelation effect due to a linear event-plane twist with slope —m (Event I) Due
to symmetry considerations, a twist of m is just as likely to be found in the event sample (Event
IT). The decorrelation effect increases with increasing |An| between two points.

Eq. 4.36 only holds true if the average is real valued. Based on the same consideration it

follows that | <e_m(wg_d’3)> | < 1. Thus, any fluctuations of the event-planes will always

attenuate fon

If the fluctuations at a and b are uncorrelated, but around a common mean value
VU ,,, this attenuation will be identical for all combinations of @ and b?. Thus, the shape
of f/,f ’fn will be unchanged but scaled by a constant value. However, if U does depend
on a and b, it will cause an a, b dependent attenuation of Vs ’fn.

A n-dependent event-plane ¥,,(n) is of particular relevance to this analysis. Due to
the symmetry constraint in Eq. (4.36), ¥,,(n) must be just as common in the event sample
as U, (—n). If ¥, (n) is a slowly varying function, two point with a small |, — | = An
will exhibit a smaller decorrelation effect than points with larger separations. Fig. 4.5
illustrates this effect for a linear event-plane twist W, (n). The further two points are
separated in 7, the larger their relative phase difference. From the symmetry argument
discussed above, it follows that an event with W(—n) is just as likely to occur. This
introduces a bias in the sample average: Pairs with a large separation in 7 will exhibit
a stronger decorrelation behavior than pairs with a small longitudinal separation. This
leads to a non-factorizable, |An|-dependent attenuation of Vri ’fn. It should be noted
that W, (n) does not necessarily need to be linear [21]. However, the argument that
decorrelation effect increases with larger n separation still holds.

4.5.2 Fluctuating v,

This section investigates fluctuations of the coefficients v, in the term (vgv?) from
Eq. (4.33). In case the fluctuations between a and b are uncorrelated, one may write the
average as

(vavh) = (om) (o) (4.37)

2This scenario is identical to the rotation of the event in the detector by a discussed in Sec. 4.4.
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Figure 4.6: Uncorrelated (left) and correlated(right) fluctuations of v, (n). In the uncorrelated
case, all fluctuations are around a constant mean. Correlations may arise from forward-backward
asymmetries which vary event-by-event.

Note that the independence in Eq. (4.37) does not attenuate the measured ‘A/;? ’fn, con-
trary to the fluctuations of the event-planes discussed in Sec. 4.5.1.

Independence between a and b is given if the fluctuations at ¢ have no influence
on the fluctuations at b. Fig. 4.6 (left) schematically depicts this scenario where all
fluctuations are local.

Fig. 4.6 (right) depicts a correlated fluctuation. The two depicted events exhibit a
forward-backward asymmetry in 7 which may be present in individual events but not in
the averaged distribution. Considering correlated fluctuations, <vgvg> can be written as

<vgug> — (1) (%) + Cov [ug, vﬂ (4.38)

Where Cov [vg, vfl] denotes the covariance between the two points. The covariance may
be a function of a and b itself or a constant. However, given the sum in Eq. (4.38), either

scenario affects the factorizability of <v,‘§vg>.

4.5.3 Simultaneously fluctuating v, and v,

The correlations between the event-planes and the flow coefficients have recently received
increased attention due to recent experimental observations of event-plane decorrelation
effects [7, 6, 31]. Fig. 4.7 depicts the correlation between the event-plane differences
to the relative fluctuations of the flow coefficients based on hydrodynamical calcula-
tions [20]. A stronger correlation is observed in central events than in the mid-central
events.

The disentanglement of the event-plane and amplitude fluctuations is a difficult prob-
lem. Future research with the method described in this thesis could introduce a new
model to fit the observed data such as

Vi (as ) = (0(0a)0n () + (11, mp) e~ 110l (4.39)

where ¢(4,mp) reflects the sum in Eq. (4.38). However, using a sum in the fitted model
creates additional technical difficulties with respect to the detector efficiencies and is
outside of the scope of this work.
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Figure 4.7: Correlation between event-plane and flow coefficient fluctuations based on 34+1D
hydrodynamical calculations of Pb—Pb collisions for two different centralities. The strength of
the correlation is stronger for central collisions than the mid-central ones. Figure taken from [20]
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Chapter 5

Previous studies of the
factorization of multi-particle
distributions

The factorization of multi-particle distributions has been in the focus of research for
many years. This chapter highlights some of the most important studies with respect to
this analysis.

5.1 pr dependent factorization breaking

5.1.1 Experimental observation

In 2012 the ALICE collaboration published a study using two-particle distributions to
measure the pp-dependent flow coefficients v, (pr) based on the factorization assumption
defined in Eq. (2.10) [4]. For this purpose, the two-particle correlation function, C, was
measured as a function of Ay, An, pr 4, and pr . It can be shown that C' is proportional
to the reduced two-particle distribution used in this analysis [32]. The two-particle
Fourier coefficients were measured by averaging C (A, An, pr q,p1,5) Over the interval
0.8 < |An| < 1.8 and fitting the A¢ distribution to the first 6 modes of a Fourier series
given by

n=6
C(Ap,pra,pTp) =1+ Z Vaa(Pr,a, P1p) cos(nAyp) (5.1)
n=1
where VA (p1,q,pT) are the pr-dependent two-particle Fourier coefficients. In the ab-
sence of correlated fluctuations and event-plane decorrelations, VA (pT,q,p15) can be
written as
Vaa(pr,as pTp) = (Un(pT.a)) (Vn(pTp)) (5.2)
A fitting procedure similar to the one described in Sec. 3.3.1 was performed on VA (P16, PTp)
under the assumption of pure factorization:

Voa (T, pp) = 08 ()0l (1) (5.3)
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Figure 5.1: Factorization of Voa(pr.a,pr) in Pb-Pb collisions at 2.76 TeV [4]. Top: Unique
combinations of all pp-bins of the measured Vaoa coefficient (points) and the best-fit factorized
form (red lines). Bottom: Factorization ratio r2T. Arrows indicate points outside of the plotted
range.

The degree to which the factorization assumption holds was evaluated using the factor-
ization ratio defined by

VnA (pT,aa pT,b)
vpt(Pr.a)vnt (o)

' (PT,as PTB) = (5.4)

The coefficients VA (pr,q, pr,p) Were measured form particles with 0.5 GeV /¢ < pr <
15 GeV/c and are shown for n = 2 on an interleaved pr o, prp axis in Fig. 5.1. The fitting
procedure was performed over the entire (pr q,prp)-plane without explicitly excluding
any regions of the phase space. However, an implicit bias toward pairs of low-pT particles
due to the larger statistical weight is present in the measurement. The results of the
fitting procedure is shown as red lines in Fig. 5.1 (top). The ratio between the measured
Voa(PT.a, pTp) and the resulting fit is shown in the bottom panel. It was observed that
the purely factorizing model of Eq. (5.3) is not able to simultaneously describe pairs
of low-pr particles and pairs of high-pr particles. This breaking of the factorization
assumption was attributed to non-flow effects [4].

5.1.2 Factorization breaking in ideal hydrodynamics

Following the observation of pp-dependent factorization breaking it was realized that
such an effect is not necessarily a non-flow effect but rather a consequence of initial state
fluctuations and the averaging over events [5]. The factorization ratio used to study this

claim is
(Vi (pr,a)Va(prp))

VViE01,0)Va(pr,a)) (Vi) Valpr,s))

Eq. (5.5) compares 3 points in the (pr,q,pT)-plane and yields unity if all three points
are compatible with the factorization assumption. In contrast to the factorization ratio
T defined in Bq. (5.4), 75 P°™ is not biased by the higher statistical weight of low-pr

re PO (pp g, PTp) =

(5.5)
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Figure 5.2: Factorization ratio r3=P°n for V,,A(p%, p%) in Pb-Pb collisions at 2.76 TeV for the
10% most central events (stars) (see Fig. 5.1). The ALICE results are compared with the results
from ideal hydrodynamics simulations (NeXSPheRIO) for Au—Au collisions at 200 GeV. Figure
taken from [5].

particles. Under the expectation that V,,(pr) varies smoothly with pp, two particles
at pr,, and prp will exhibit an increasingly large decorrelation effect for an increasing
separation in pr. In Eq. (5.5), the nominator is susceptible to such decorrelations while
the two terms in the denominator always correlate two-particles with identical pr. The
effect of such fluctuations is evaluated using the NeXSPheRIO relativistic ideal hydro-
dynamics event generator with fluctuating initial conditions. NeXSPheRIO simulated
Au-Au collisions at /sy = 200 GeV. The factorization ratio given by Eq. (5.5) is
shown for n = 2 and n = 3 for the simulated events in Fig. 5.2.

The simulation is compared with the previously discussed ALICE observations in
Pb-Pb collisions at /sy = 2.76 TeV [4]. The ideal hydrodynamic simulation exhibits
a factorization breaking of similar trend and larger magnitude than the experimental
observation. The factorization breaking of the simulated data set originated exclusively
from initial state fluctuations. Therefore, the observation of a factorization breaking is
in agreement with hydrodynamics and not necessarily a non-flow effect.

Subsequent studies by the CMS collaboration observed a similar factorization break-
ing in pp and further compared their observations to two different initial state models -
MC Glauber and MC-KLN - in the framework of viscose hydrodynamics [6]. The results
of that study are shown in Fig. 5.3 as a function of momentum difference between the
two particles @ and b. The simulations succeeded in qualitatively describing the trend of
the experimental data, but failed to predict the correct scale of the factorization break-
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Figure 5.3: pp-dependent factorization ratio 7y "™ (pr 4, pr ) for various centralities (rows) and

values of p$ (columns) in Pb-Pb collisions at 2.76 TeV [6]. The results of viscose hydrodynamic
simulations are shown for the MC-Glauber and MC-KLN initial condition models at n/s = 0.12.
A significant factorization breaking is observed for central events and for particle pairs with large
separations in pr and large values of p}. The simulations reproduce the correct shape of the
factorization breaking but fail to quantitatively describe the data.

ing. The factorization was found to be largely insensitive to the shear viscosity (1/s)
used in the hydrodynamical evolution.

5.2 n-dependent factorization breaking

In Ref. [5], it was also suggested to perform a similar study with respect to the relative
difference between particles in 1. However, using a factorization ratio analogous to the
one defined in Eq. (5.5) for pseudorapidity instead of pr is not feasible. Particle pairs
with a small An-separation are known to often originate from non-flow processes such
as di-jets or weak decays. It is therefore not appropriate to use such pairs in a study
which seeks to investigate the factorization breaking from a hydrodynamic perspective.

The CMS collaboration proposed a factorization ratio which is based on asymmetries
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caused by decorrelation effects [6]. The ratio is given by

FCMS Vii—n (M, )
(Tas ) = —f/ SE— (5.6)
— (wn(=na)vn () cos [n (¥ (=na) — Un(m))])

Un —a
(v (Ua)vn(nb)cos[n(\lfn(n) T, (m))]) (5.7)

For symmetric collision systems (v,(7,)) has to be symmetric around 7, = 0. It is
then further assumed that fluctuations in the amplitudes of the Fourier coefficients are
uncorrelated to the event-planes ¥,, and to each other!. Under these assumptions, one
can simplify Eq. (5.7) to

(cos [n (Vn(=na) = Yn(m))])
(cos [n (Vn(1a) — Wnlm))])

It is important to understand the limits of Eq. (5.8). In the case of n, = 0 the ratio
yields unity by construction. On the other hand, if n, approaches 7, one has to expect
increasing short-range non-flow contributions in the denominator causing a deviation
from unity. Therefore, care has to be taken to only interpret values of rS™MS(n,, ;)
which are sufficiently far away from these two limits. The measurement was performed
on pairs formed between a track in the Tracker (|n| < 2.5) and a hit in the forward
calorimeter (HF+) which has an an n-coverage of 3 < 1 < 5.2. The ratio r$™S(n,, m)
was then evaluated for various values of 7, in the central rapidity region and for a
constant value of 7, in the HF+. The n, bins which were evaluated in the forward
regions are 3.0 < n, < 4.0 and 4.4 < n, < 5.0. Fig. 5.4 depicts the regions of the
(14, mp)-plane used in the CMS analysis based on these acceptances. The corresponding
factorization ratios are shown in Fig. 5.5 for various centralities. A significant deviation
from unity is observed in all centrality bins. A dependence on 7 is also observed and
strongest in central and peripheral collisions. As depicted in Fig. 5.4, the study for
3.0 < mp < 4.0 includes particle pairs with a |An| < 0.5. Such a small separation might
include sizable non-flow contributions.

The observed factorization breaking is attributed to event-plane decorrelations ac-
cording to Eq. (5.8). In order to quantify the effect, an empirical parametrization is
introduced:

CMS(

(5.8)

&Q

Na> M)

cos [n (W5 (na) — Wn(1p))] = e~ ma=ml (5.9)

where F}! is the identical parameter introduce in the definition of Model B in Eq. (3.9).
For small An = 1, —n, Eq. (5.9) is approximately linear and rS™S can be expressed by

_ U
rMS (g, my) A e 2Fe (5.10)

! Considering the discussion in Sec. 4.5, the validity of these assumptions may be drawn in question.
If the assumptions are not valid, the interpretation of the observed factorization breaking cannot be
conclusively attributed to an event-plane fluctuation but may also be caused by fluctuations of the flow
coefficients.
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Figure 5.4: The regions of the (1,,ns)-plane used for the measurements shown in Fig. 5.5.
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Figure 5.5: 7, dependent factorization ratios as defined in Eq. (5.8) for Pb—Pb collisions at
2.76 TeV at various centralities [6]. A 7,-dependence is observed for all centralities. A dependence
on 7, is most pronounced for the most central and most peripheral events. The dashed lines
correspond to the fit to the data for 4.4 < n, < 5.0 according to Eq. (5.10).
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Figure 5.6: Measurements of the empirical decorrelation parameter F;7 as a function of centrality
for Pb—Pb collisions at 2.76 TeV and p—Pb collisions at 5.02 TeV (not further discussed here) [6].
A significant centrality dependence is observed for n = 2.

Therefore, F}! can be measured from rS™S by performing a fit according to Eq. (5.10).
The result of the fit is shown in Fig. 5.5 as the dashed blue line. The corresponding F);
parameters are depicted in Fig. 5.6.

5.3 Factorization breaking as non-flow identification

The PHOBOS collaboration conducted a study to identify the minimal |An|-gap neces-
sary for the factorization assumption to hold for ‘727_2(%, ) in 200 GeV Au—Au colli-
sions [33]. Therefore, that study bears strong resemblance to the identification of Anmin
in this work. The factorization of %,_g(na,nb) was performed according to Model A
defined in Eq. (3.7) at various An-gaps. The measured %,,Q(na, M) is shown in Fig. 5.7
(left) and the factorized best-fit for |[An| > 2 is shown on the (right).

Instead of forming a factorization ratio similar to the one in this analysis, the as-
sumption is made that the non-flow contributions can be regarded as an addition to the
observed Vo (14, m). Under that assumption the non-flow &(14,7,) can be isolated by

(Masmv) = Va,—2(1as M) — v3'(na)v3 (1) (5.11)

The non-flow contributions of Fig. 5.7 (left) are depicted in Fig. 5.8.
If the non-factorizing non-flow only extends to a maximal |An|, any factorization
with a |An|-gap larger than that extent will yield identical values of §(n,, 7). In order
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Figure 5.7: ‘727_2(%,771)) (left) of Au-Au collisions at 200 GeV and the fitted factorization
(right) [33]. The factorization was conducted with a minimal separation between the parti-
cle pairs of |An| > 2. The non-factorizable short-range non-flow is clearly visible along the
diagonal of the (74, ns)-plane.
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Figure 5.8: Non-flow in Au—Au collisions at 200 GeV isolated by means of factorization in the
long-range region [33]. The non-flow contribution is largest for particle pairs with small separa-
tions in 7. The factorization assumption appears to hold well for particle pairs with a separation
larger than |An| > 2.
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Figure 5.9: Ratio of non-factorizable non-flow ¢ to the factorized flow coefficients vy (7)) for various
values of |An,| (the minimal 7 separation between particle pairs) [33]. The gray band denotes the
90% C.L. of the systematic uncertainty. A convergence of the non-flow contribution is observed
for An. > 2.

to asses if such a behavior is observed in the data the following ratio is defined

PPHOBOS(A ) ) — M (5.12)
<V2,—2(77a7 77b)>

where Anc is the |An|-gap applied during the factorization, -|a,. denotes that this
result was formed with the gap Anc, and (-) is an average over the entire (7, 75)-plane.
If v HOBOS converges to a constant value for increasing Anc this can be interpreted
as having excluded the non-factorizing non-flow effects. The ratio r¥ HOBOS(Ane) for
Au—Au collisions at 200 GeV is shown in Fig. 5.9 for various centralities. A convergence
to a constant value is observed for all centralities and the minimal required |An|-gap is
determined to be |An| = 2.
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Chapter 6

The ALICE Experiment

CERN was established in 1954 as one of Europe’s first scientific joint ventures. It has
since grown from its original 12 member states to 22 member states and now houses the
LHC as well as ALICE. This chapter provides an introduction to these facilities with a
particular focus on the subdetectors which were used in this analysis.

6.1 The Large Hadron Collider

CERN has housed various particle accelerators in the past which are partly still in use
for other experiments or as pre-accelerators for the LHC. The LHC itself measures 27 km
in circumference and is currently the worlds largest and most powerful accelerator. It is
situated approximately 100 m underground on the boarder between France and Switzer-
land and provides high energy particle collisions to four large experiments: ALICE,
ATLAS, CMS, and LHCb. All four of these experiments maintain a heavy ion program
and are involved in the analysis of proton—proton (pp), proton—lead (pPb), xenon—xenon
(Xe—Xe), and lead-lead (Pb—Pb) collisions. Each of the four main experiments has a
specific focus in the field of particle or nuclear physics. ALICE is the dedicated heavy
ion experiment.

6.2 ALICE

ALICE is a global collaboration composed of 1800 members distributed over 176 insti-
tutes in 41 countries [34]. The experiment was designed to study soft, non-perturbative
QCD physics such as the QGP and participates in the data collection for all collision
systems provided by the LHC. The entire experiment measures 16 x 16 x 25m? and
is composed of 18 subdetector systems. A schematic drawing of the detector and its
subsystems is depicted in Fig. 6.1. The main design goal of the experiment was to
provide an excellent momentum resolution and particle identification [36] in the central
rapidity region of —0.8 < 1 < 0.8; often also referred to as the central barrel. The
central barrel consists of six detectors (arranged from the interaction point): The Inner
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Figure 6.1: Schematic drawing of ALICE and its subdetectors. Taken from [35]

Tracking System (ITS), Time Projection Chamber (TPC), Transition Radiation De-
tector (TRD), Time of Flight (TOF), and the High-Momentum Particle Identification
Detector (HMPID). Furthermore, ALICE is equipped with several detectors at smaller
angles at the backward and forward rapidities. The detectors in the forward region
which are relevant for this analysis are the FMD and the VZERO (often also referred
to as VO0) detector. The former is used in this analysis to measure the particle distribu-
tions in the forward and backward acceptance while the latter is used for triggering and
multiplicity estimation purposes. All of these detectors operate within a magnetic field
of 0.5 T provided by a solenoid magnet (L3).

The detectors coordinate system follows the common conventions used in collider
based experiments where the z-axis is aligned with the direction of the beam. The
nominal Interaction Point (IP) is centered in the detector at z = 0cm, but collisions
may occurred displaced from the IP.

It is very common for analyses in ALICE to not use all subdetectors simultaneously
and this analysis is no exception. The primary factor for the choice of the deployed
detectors is to optimize the longitudinal acceptance while also maintaining a sufficient
resolution in 7 as well as in the azimuth. The FMD provides a very large n acceptance
of —3.4 < n < —1.7 and 1.7 < n < 5.0 but neither provides tracking nor pr resolution
capabilities. The full tracking capabilities of the central barrel are only available within
—0.9 < 1 < 0.9 which would leave large acceptance gaps at 0.9 < |n| < 1.7. In order to
maximize the n coverage, the decision was made to only use the two inner most layers
of the ITS when estimating the particle densities. This increased the acceptance in the
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Figure 6.2: Schematic drawing of ITS and the forward detectors. The cylindrical layers are the
ITS, the dark-brown disk are the subsystems of the FMD. The turquoise components are the T0
and the light brown disks are the VZERO detectors. The IP is located in the center of the ITS.
Figure is taken with modifications from [37].

central region to —1.5 < 1 < 1.5. As in most analysis by ALICE, the VZERO detector
was used for triggering purposes. The detectors which are used in this analysis are
depicted in Fig. 6.2 and are described in more details in the following.

6.2.1 The Inner tracking system and the SPD

The ITS is one of the core detectors of ALICE which plays a vital role in almost all
analyses. Its primary design goals were the capability to reconstruct the primary vertex
of a collision to within less than 100 pm, while also providing crucial tracking information
for particle identification[36]. The ITS has full azimuthal coverage and surrounds the
beam pipe. The ITS directly supports the beam pipe to avoid relative movements
during operation. The inner tracking system is itself composed of three subdetectors:
the Silicon Pixel Detectors (SPD), the Silicon Drift Detectors (SDD), and the Silicon
Strip Detectors (SSD). The SPD as the inner most detector is situated r = 3.9 cm from
the interaction point while the outermost SSD is located at r = 43.0cm. If all three
subdetectors are combined for tracking purposes, the ITS has a coverage of |n| < 0.9,
but it is also possible to use each subdetector individually as is done for this analysis.
In order to maximize the n-acceptance of the analysis, only the SPD as the innermost
detector with the largest longitudinal coverage is used. The SPD is itself comprised of
two separate layers. The coverage of the inner (outer) layer is |n| < 2.0 (|n| < 1.4)
respectively. The SPD’s close proximity to the IP make it ALICE’s most important
vertex detector. Its fast clock-cycle of 10 MHz also allows it to be used for triggering
purposes. Given its close proximity to the IP, the SPD is designed to operated in high
track densities of up to 50 tracks/cm?. The necessary resolution as well as radiation
resistance is provided by 9.8 million cells which are read out binary, i.e., if the signal
from the cell surpasses a given threshold the cell is regarded as hit. Each cell measures
50 pum x 425 pm in 7y and z respectively. If a particle traverses both layers of the SPD,
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Table 6.1: Summary of individual FMD subsystems. Numbers taken from [39].

Name  Azimuthal sectors 2z [cm] 7 [cm] n coverage resolution
FMD1 20 320 42172  [3.68,5.03] 18°
FMD2i 20 83.4 4.2-17.2 [2.28, 3.68] 18°
FMD2o 40 75.2  15.4-28.4 [1.70,2.29] 9°
FMD3i 20 —75.2  4.2-17.2 [-2.29,—1.70] 18°
FMD3o 40 —83.4 15.4-28.4 [-3.40,—2.01] 9°

it is likely to create a signal in one or two neighboring cells in each layer. A pair of such
clusters in the inner and outer layer are referred to as a tracklet. The primary vertex of
a collision is found by first computing all possible tracklets and subsequently finding the
point which has the smallest distance to all tracklets. That point is then the most likely
primary vertex position. Once the primary vertex position is established a refitting of
the tracklets, taking the primary vertex position into account is conducted [38]. The
tracklets found from this second procedure are then available for the subsequent analysis.

6.2.2 Forward multiplicity detector

The FMD is used to measure the particle multiplicities in the forward and backward
regions and its location with respect to the other detectors of this analysis is depicted in
Fig. 6.2. Similarly to the ITS the FMD is divided into three subsystems: FMD1, FMD2,
and FMD3. All subsystems are silicon strip detectors arranged in five rings with their
surface areas oriented perpendicular with respect to the beam pipe providing a total of
51200 channels. The FMD’s primary purpose is to provide a large and high resolution
n-acceptance in the regions not covered by the central barrel. Furthermore, its ¢ solution
was chosen with anisotropic flow measurements in mind making this detector the natural
choice for this analysis.

Depending on their distance from the beam pipe the five rings are divided into inner
(i) and outer (o) rings whose properties are summarized in Tab. 6.1. The number of
azimuthal segments is the limiting factor for the ¢ resolution of the detector. Notably,
the FMD was not designed as a trigger detector which is reflected in its long integration
time of ~ 2ps which makes this detector susceptible to the pile-up effects discussed in
Sec. 8.1. A very detailed description of the FMD may be found in Refs. [39, 40].

6.2.3 VZERO

The VZERO detector is comprised of two ring-shaped scintillator arrays on either side
of the IP which cover approximately the same 7-region as the FMD, i.e., =3.7 < n <
—1.7 (VOC) and 2.8 < n < 5.1 (VOA). It was primarily designed to act as an online
multiplicity trigger, but can also be used for other purposes such as centrality and event-
plane estimation or beam-induced background rejection[41]. The timing characteristics
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Table 6.2: Summary of the two VZERO subsystems VZERO-A and VZERO-C. Numbers taken
from [41].

Nam Azimuthal Radial fem] fem] . ©
ame sectors sectors = 1e rie I coverage resolution

VOA 8 4 329 [4.37 41.2] [2.8, 5.1] 45.0°

VoC 8 4 [—88, —86]1 [4.5, 32.0] [—3.7, —1.7] 45.0°

(= 0.6 ns) of the VZERO are significantly better than those of the FMD but not sufficient
to locate the vertex position or as a timing detector [37].

The two rings of the VZERO - VOA and VOC - are located asymmetrically around the
IP and their properties are summarized in Tab. 6.2. The signal produced by the scintil-
lator tiles of the VZERQ is related by a monotonic function to the number of particles
traversing the detector. The detector can therefore be used to estimate the centrality
of a Pb—Pb collision since the number of produced particles is strongly correlated with
the impact parameter of the collision. While the VZERO could technically also be used
for analyses of the produced particle densities, its large segmentation make its use for
anisotropic flow measurements difficult [42]. This analysis uses the VZERO as a trigger
and to identify out-of-bunch pile-up events in the FMD as described in Sec. 8.1.

6.2.4 Multiplicity and centrality estimation

The impact parameter b of a HI collision is defined as the distance between the two
geometric centers of the colliding nuclei. Head-on (central) collisions therefore have an
impact parameter of b = 0 and the overlap region between the nuclei is maximal. With
a decreasing overlap region the number of nucleons participating in the collision (Npart)
also decreases; a process which is commonly simulated using MC Glauber simulations.
The multiplicity N, produced in a collision increases monotonically as a function of
Npart- While neither b nor Npart cannot be directly measured, Ny, is easily accessible.
The centrality of Pb—Pb collisions is therefore commonly estimated by measuring N,
and relying on the strong correlation between Ncn, Npart, and b. These correlations
extend over a large range in 7 such that the number of charged particles can either be
measured in the central, or in the forward/backward region of the detector. A given
event is classified in terms of its multiplicity and therefore centrality with respect to the
entire event sample. Commonly, the relation to the event sample is expressed in terms
of the accumulated percentile points of events with a multiplicity larger than the given
event. Therefore, 0% denotes the most central and 100% the most peripheral events.

In ALICE the most commonly used detector for centrality estimation is the VO.
However, due to its zytx dependent n-overlap with the FMD it was not used for that
purpose in this analysis. Instead the centrality was estimated using the number of
clusters in the inner most layer of the SPD (CLO0).

!The radial segments are slightly displaced in z.
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Chapter 7

Experimental considerations

The measurement of Vn,_n(na, m) and the corresponding factorization ratios bear var-
ious experimental complications. The material budget of the ALICE detector in the
forward and backward region is not precisely known, thus making corrections based on
MC simulations difficult for the FMD. Therefore, it is desirable to construct observables
which are as independent of detector effects as possible. The reduced two-particle den-
sity r2(1a, My, Pa, ) is such a quantity and its robustness against uncorrelated detector
effects is discussed in Sec. 7.1. A further complication arises from the highly non-uniform
acceptance regions in (7, ) of the detectors involved. This can be partly overcome by
exp101t1ng the symmetries of the averaged two-particle distributions before computing
V n(Na, M) as discussed in Sec. 7.2. A residual detector effect present in Vn —n(Nasmp) is
caused by secondary particles from material interactions. In Sec. 7.3 the effects of such
secondary particles is discussed. The implementation of the factorization procedure and
the propagation of statistical uncertainties through the entire analysis is discussed sub-
sequently in Sec. 7.4 and Sec. 7.5. Lastly, the assumptions made with regard to the
robustness of this analysis are verified in a MC-closure test in Sec. 7.6.

7.1 Uncorrelated detector efficiencies

Generally, the number of particles observed in a detector might not necessarily corre-
spond to the number of primary particles produces in the collision. Reasons for this
discrepancy may be a finite probability to successfully detect and reconstruct a particle
traversing a detector, which decreases the number of observed particles. However, the
number of detected particles may also increase due to detector effects. In the case of the
FMD, every primary particle produces on average more than two secondary particles
which may also be detected but cannot be differentiated from primary particles. The
effects caused by secondary particles from material interactions are primarily dependent
on the detector geometry and are constant throughout the data taking period. Further-
more, they can be assumed to affect each primary particle individually. The number of
observed particles N°P® is then understood as the product of the true number of primary
particles N times a detector dependent factor e. For detectors with pr resolution,
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the density of observed particles can therefore be expressed by

d3Nobs > < d3Ntruth >
i S 7.1
<d77d<pde (. 0.p1) dndedpr 1)

where € is constant for all events.

However, since neither the FMD nor the SPD resolve in pr the approximation is
made that the effect of the pr dependence is small when forming the average. This
allows the (7, ¢) dependent particle density to be written as

dQNobs
dndy

5%, 0) = < > ~ (0. )P, ) (7.2)

where €(n, ) is a modified efficiency after averaging over pr. The quantities 5P and
Pt are the single particle distributions as defined in Eq. (3.1). In Sec. 4.2.1 it was
shown that single-particle distributions, averaged over the event sample, have no az-
imuthal anisotropies. Thus, all observed anisotropies must originate from detector effects

and one may rewrite Eq. (7.2) as

P, 0) = € (n, )™ (n) (7.3)
where ﬁtlr“th’ emphasizes the p-independence of the averaged single-particle distribution.

The same approximation with respect to the pp-dependence may also be performed
for the two-particle density

P (Nas s Pas ©b) = €(Nay Pa) ey ©6) P ™ (1as b, Pad) (7.4)

From Eq. (7.3) and Eq. (7.4) it is apparent that the former can be used to cancel out
the detector effects in the latter without altering the azimuthal dependencies of the two-
particle distribution. Plugging Eq. (7.2) and Eq. (7.4) into the definition of the reduced
two particle density 7o from Eq. (3.3) yields

ﬁgbs (77a, Ty Pas @b)

720 T G0r 20) = s 208 20 (75)
_ (0, Pa) (16, 08) 5" (Mas 1y Pa, 1) (7.6)

€(as Pa)e(M, 90) T (0a) ™ () '
_ 5™ (1a, 1, Pas Pb) )

P () PR ()

In Eq. (7.7), all efficiencies cancel out, making 79 robust with respect to uncorrelated
detector effects. Therefore, ro can be used to compute Vi, _p (14, 7).
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0 w/2 ™ 3r/2 27
@

Figure 7.1: Detector acceptance in (7, ¢) for 0 < zytx < 0.5 cm. White areas represent excluded
regions (see text).

Limitations to the robustness of r,

It is important to address the limitations of the robustness of o in the context of this
analysis. While Eq. (7.7) holds true analytically, ﬁ(l’bs and ﬁgbs are measured in finite bins
of n, i, and also zytx. If the efficiency varies significantly within a bin it is not justifiable
to move €(n, @) out of the average in Eq. (7.2). However, if that approximation is not
applicable, the efficiencies will not cancel out in Eq. (7.7). It is therefore important for
this analysis to exclude any histogram bins over which the efficiency can not be assumed

as approximately constant.

7.2 Non-uniform acceptance and Fourier decomposition

While both, the FMD and the SPD were designed to have a full 27 coverage, both
detectors exhibit gaps within their acceptance. Depending on the reconstructed vertex
position, these gaps appear at different positions, which makes the acceptance zytx-
dependent. Histogram bins which partly overlap with an inactive region of the detector
in n, @, or zyix are removed from the analysis. In order to not exclude more regions of
the phase-space than necessary, the analysis is performed in narrow zyix bins of 0.5 cm
width. The resulting acceptance map for 0 cm < zyx < 0.5 cm is shown in Fig. 7.1.
The gaps in the acceptance inevitably lead to some bins of (14, M, ©a, ¢p) having an
incomplete ¢ coverage for either one or both particles. Fig. 7.2 shows the (¢4, ¢p)-plane
of 9 at n, = 0 and 7, = 4 where particle a exhibits a gap in its ¢ acceptance. Such gaps
in the (pq, pp)-plane make an efficient two-dimensional Fast Fourier Transform (FFT)
impossible and a two-dimensional fit to a Fourier series unstable. In order to extract
Vn,,n(na,nb) from regions with acceptance gaps in ¢, the symmetries of ro along the
diagonal of the (¢4, ¢p)-plane are exploited as described in Sec. 4.4.3. The transformation
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Pb—Pb ,/syn = 5.02TeV 10-20%
—5.0cm < zyix < —4.5cm
2m

I No data

37/2

pa[rad]

0 w/2 7r 3r/2 27
pp[rad]

Figure 7.2: Normalized two-particle density r in the (., @p)-plane in —5.0cm < zy4x < —4.5cm
and 10—20% centrality. Particle pairs are formed from the same phase space as in Fig. 9.5 except
of the z,tx position. Particle a exhibits an acceptance gap in the ¢.

(0% ) = (Ag, @) has a Jacobian of 1 and therefore 73(1q, b, Pa, ¥s) can be trivially
transformed to the new coordinate system:

72 (Nas Moy Pas b) = T5(Nas Mo, A, @) (7.8)

Since 74(1q, My, A, $) does not depend on @ one may perform an average along that
coordinate without loss of generality

TIQI(n(l?T/b?A@) = <ré(naanb7A¢7&)>(5 (79)

Acceptance gaps can be taken into account when forming the average such that
5 (Nay My, Agp) is defined in every bin of Agp.

It is important to note here that the uncorrected p, is not constant along ¢ since
detector effects depend on absolute values of ¢ and thus remain after averaging over the
event sample. Therefore, 7§ cannot be calculated as

(P8 (11ay v, Ap, §)) 5
<,0°bs N £a) PP (1M; 9b)) g5

75 (N, b, Ap) # (7.10)

A more detailed study of the effects introduced when performing the normalization
according to Eq. (7.10) is provided in Ref. [43].
7.2.1 Fourier transformation

The Fourier coefficients Vm_n(na,nb) are computed from 74 (ns, 5, Ap) in the Ay di-
mension. The procedure has to be performed in every bin of the (14, 7)-plane, for each
Zytx-bin, and for each centrality bin separately. Furthermore, errors are propagated with
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a bootstrapping method (see Sec. 7.5) requiring the analysis to be repeated hundreds of
times. For the binning chosen in this analysis, this results in approximately ~ 1 million
separate Fourier transformations. A Fourier decomposition may be performed very ef-
ficiently using a FFT: a numerical, deterministic algorithm which is a standard tool in
most scientific libraries [44, 45]. While an ordinary least square fit would perform at best
with complexity O(n(logy n)?) [46], a FFT can be performed at O(%5 logn) [47] where n
is the number of bins in the Ay dimension. For the 20 bins used in this analysis, the
FFT is approximately one order of magnitude faster than the least square procedure.
The FFT yields the complex Fourier coefficients for the frequencies from —n/2 up to
n/2.

7.3 Secondary particles from material interactions

In Sec. 7.1 it was shown that 75 (ng, 75, Ap) is a robust observable with respect to un-
correlated detector efficiencies. Thus, no further corrections to 4 are required in that
respect. However, in addition to uncorrelated detection efficiencies, correlated detector
effects are also present in the observed quantities.

7.3.1 Secondary particles from detector material interaction

Whenever a particle traverses detector material it has a finite chance to interact. This
interaction may be an absorption, a deflection, or a creation of a secondary particle. The
secondary particle will be strongly correlated to the initial momentum of the incident
particle. This correlation will be present in the observed particle-pair density if both
particles are subsequently detected. Furthermore, a deflection from the azimuthal direc-
tion of the primary particle causes a decorrelation effect with respect to an underlying
flow-signal. If the deployed detectors have tracking capabilities it is possible to recon-
struct the vertex where the secondary particle has been created and thus disregard it in
the subsequent analysis. The SPD-tracklets are refitted to the event’s vertex position,
thus decreasing the effect of secondary particles. However, the FMD has no tracking
capabilities making it impossible to differentiate primary and secondary particles in the
analysis.

Based on MC simulations, Fig. 7.3 depicts the origin of secondary particles which
were subsequently detected by the FMD as a function of zyx and distance from the
beam axis r. The ITS subdetectors and support structure along with the beam pipe are
found to contribute a large number of secondary particles to the multiplicity observed
in the FMD.

To better understand the origin of the observed multiplicities as a function of 7
Fig. 7.4 depicts the number of charged particles traversing active regions of the ITS and
the FMD for collisions within —2cm < zytxy < 2cm. The simulation was performed
on Pb-Pb collisions at /snn = 2.76 TeV but the energy dependence of the number of
secondary particles produced per primary particle is expected to be small. The different
colors denote in which part of the detector the secondary particles were created. Evi-
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Figure 7.3: Origin of secondary particles created by material interactions. The active detector
elements of the ITS, its support structure as well as the four inner rings of the FMD are clearly
visible. Figure taken from [48].
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Figure 7.4: Origin of particles traversing the FMD or ITS. The FMD exhibits a large number of
secondary particles compared to primary particles. The number of observed secondary particles
depends strongly on the pseudorapidity 7. The simulation was conducted for Pb—Pb collisions
at 2.76 TeV within —2cm < zy4x < 2cm.

dently, the SPD experiences a much smaller and more homogeneous flux of secondary
particles compared to the FMD where the number of secondary particles is in parts
more than 3 times larger to the number of detected primary particles. The origin of the
secondary particles exhibits a strong n dependence.

Ay between two primary particles

The effect of secondary particles on the measured angular distance between a pair of
primary particles is schematically shown in Fig. 7.5. The two primary particles were
produced in the collision at ¢, and . In the absence of detector effects, the difference
for this pair is well defined as Ap = ¢, — ¢p. However, if one or both particles are
deflected or produce correlated secondary particles, it blurs the Ay distribution as well.
This effect can be described in terms of a blurring function f(n, ) which is convolved?
along the azimuth with the distribution of primary particles. The observable two-particle
probability distribution is then given by

P5™ (10, My Par 06) = f(0a) * f(06) * Py (110, M, Pas ) (7.11)

where * denotes a convolution. Convolutions are multiplications in Fourier space, making
Eq. (7.11) easier to work with after applying the Fourier transformations along the

LA short summary of the most important properties of convolutions is given in Appendix C.2
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Ay = @) — ¢h

P1 Y2

Figure 7.5: Schematic of how secondary particles decorrelated the azimuthal differences of two
underlying primary particles created at ¢; and @s.

azimuthal dimensions (denoted by F, and Fp).

Voo (as ) = Fa [fb [Pé’bs(cpa, Pbs T 77b)” (7.12)

= (2171)2 Falf(pa)l - Folf(e0)] - Fa [,7—";, [PQtrUth(cpa, gab,na,nb)H (7.13)

= Gu(Ma) * Gm (M) * Vi (Ma, Mb) (7.14)

The Fourier transform of the blurring functions (scaled by 1/2m) (,(n.) and (., (m) act
as 1 dependent scaling factor of the Fourier coefficients. The described blurring effect is
dominated by secondary particles from material interactions and is therefore a property
of the detector which is independent of the event-by-event fluctuations of Vj, p (14, ).
The averaged Fourier coefficients can therefore be written as

Vi,—n(Mas M) = Cu(Ma) = Gm (M) - <V;f#th(%777b)> (7.15)

which shows that the blurring of the azimuthal dimensions of the two-particle distribu-
tion does not affect their factorizability in the (n,,n)-plane. When the factorization is
performed, ¢, (n) is implicitly combined with the flow coefficients

v (1) = Ga (o™ () (7.16)

This holds true for both Model A, and Model B. For the factorization ratio defined in
Eq. (3.11), ¢, (n) cancels out completely.

Furthermore, Eq. (7.15) shows that analyses which seek to measure corrected flow
coefficients should apply a correction for secondary particles in Fourier space [30].

Correlations between primary and secondary particles

The observed two-particle distribution also contains pairs between secondary particles
and their respective primary mothers. Such pairs are expected to be strongly correlated
and in short azimuthal and longitudinal distance of each other. Eq. (7.11) does not
apply to correlated pairs and thus the effect of such pairs is not expected to cancel out
when forming the factorization ratio fy,(7a, ).
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7.3.2 Detector segmentation

The effects of the detector segmentation on the Fourier coefficients an_n is conceptually
very similar to that of independent secondary particles. The finite width of a detector
element can be viewed as a finite detector resolution which acts as a filter function on
the particle distributions. Instead of detecting a particle with its precise azimuth ¢,
a detector consisting of N segments can only resolve a hit within the azimuthal width
dp = 2mw/N of one element. The filter function is therefore a rectangular function
rect(p/dp) of width dp. The observable single-particle probability distribution is thus
given by

PP () = rect ((;;) % PTUth () (7.17)

The Fourier transformation of Eq. (7.17) is given by

Fpe) = F [rect (¢ )| - 7 [P (7.18)
= |dp|sinc <7”L2<i:0) - F {meth(go)} (7.19)
= |8¢p|sinc (%) F [Pfruth(go)} (7.20)

where sinc(z) is defined as ~—_
This derivation assumes that Pf“‘th has no modes above the sampling frequency
of N/2 where N is the number of detector elements in the azimuth. This result is in
agreement with a more general derivation found in Ref. [42].
The FMD has a minimal segmentation of N = 20. Thus, the detector segmentation
reduces the observed Vm_n by 3.2% if both particles are within the FMD acceptance.
However, the segmentation affects each particle independently and therefore does not

affect the factorization ratio.

7.4 Factorization procedure

Model A and Model B described in Sec. 3.3 are both non-linear equation systems. The
solution of the equation system is complicated by various factors:

e Neither model includes a description of the non-flow contribution in An < 2
e Each point in Vm_n (na, M) has an associated statistical uncertainty oy, —r (14, 7p)
e The acceptance in the (74, 7)-plane exhibits large gaps

e v,(n) dependents on zyty (due to secondary particles) whereas F! does not. It is
desirable to find the best fit v, () per zy-bin, but one common F;; for the entire
Zytx-acceptance.
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The approach taken in this analysis is a weighted least-square-optimization which ac-
commodates all of the above points. Using the bin-index notation from Sec. 3.3, the
weighted sum of squares S is given by

Na, N, ~ . . . : 2
Vn,—n(nZLv 77]) B M(név 77])
S = Z < b — b (7.21)
Un,fn(navnb)

ig=1

where N, (Np) is the number of bins in 7, () and M represents either Model A or
Model B. Points outside of the acceptance in the (74, 75)-plane or pairs with a |An|
separation of less than Anyi, can be removed from the sum. The best fit of the chosen
model is found by minimizing S with respect to the parameters of the model; namely
the values of v,(n’) and additionally F}; in case of Model B.

7.5 Error propagation

An analytical description of the error-propagation through the Fourier Transforma-
tion and the non-linear fits in the optimization procedure is complicated. Instead,
a bootstrapping-like scheme is chosen to propagate the statistical uncertainties from
792 (Na, My Pas Pp) to the desired observable. The procedure is as follows:

1. A new sample TZZ’OOt(na,nb,goa, vp) is created by randomly varying each point in

72(Nas My, Pas ) by a Gaussian distribution with a width according to the statistical
uncertainty of each point

2. The full analysis is performed on TIQ’OOt

(Vn,—n(naynb)a F2n7 f(An)a .. )

3. The result of the sample is recorded

yielding the desired final observable

4. Step 1-3 is repeated approximately 100 times

5. The variance between the recorded results is used as an estimate of the statistical
uncertainty

While numerically expensive, this procedure provides a good approximation of the final
statistical uncertainties.

7.6 Monte Carlo closure test

In the previous sections of this chapter it was argued that the factorization ratio given
by Eq. (3.11) is robust with respect to detector effects and requires no further correction,
with an exception for short-range pairs between hits in the FMD. This section presents
a MC-closure test to confirm the previously made assumptions. Such a test is based
on two simulated data sets: One which includes only the charged primary particles of
the collision (¢ruth) and one which uses the same simulated events but also includes
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7.6. MONTE CARLO CLOSURE TEST

a simulation of the detector response (reconstructed). The reconstructed event sample
only includes events which fulfilled all event and tracklet selection requirements otherwise
applied to the measured data. If the assumptions made concerning the robustness of
ro and the understanding of the effect of secondary particles is correct, one expects the
factorization ratios of both data sets to be identical. Using a simulated data set with a
flow signal® and a simulated detector response it is possible to test this expectation. The
factorization ratio is computed for the truth and the reconstructed sample and compared

in a ratio
f’rrzec (7711 ’ nb)
St (1g, 1)

Fig. 7.6 shows the result of the MC-closure test in the (74, 75)-plane along with the
associated relative uncertainties of each bin. A visual aid for the different detector
combinations encountered in the (7,4, 7)-plane is provided in Fig. 7.7. Due to poor
statistics in the given data set, the centrality bin had to be chosen to span the large
interval of 10 — 60%. The factorization was performed on pairs of particles with |An| >
2 using Model A. As expected, the ratio is approximately 1 for most regions of the
phase space, even for points well within An < 2 - the region excluded during the fit.
Most notably, the ratio deviates from unity in the short range region of the FMD due
to correlated pairs of secondary particles from material interaction. These particles
break the factorization assumption and are only present in the reconstructed sample.
Therefore, the reconstructed and the MC-truth sample deviate from each other for short-
range pairs of hits in the FMD.

In order to asses which points of Fig. 7.6 (top) are compatible with unity within their
uncertainties, it is helpful to plot the residuals of each point. The residual R of a point
at (nq,mp) is defined as

Closure = (7.22)

Closure — 1

R(T/a’ nb) = o—closure(

s ) (729

where ose ig the uncertainty at the respective point. The residual thus expresses
deviations from the expected value in units of standard deviations. Fig. 7.8 depicts the
residuals of the MC-closure test (top). The bottom plot in the same figure is based on
the same data, but excludes all points within 20 in order to make outliers more visible.
The short-range non-closure in the FMD is significant with respect to the statistical
uncertainties; as was expected. The remaining phase space is found to be in agreement
with a successful MC-closure.

The small statistics and the large multiplicity binning make a MC-closure test with
respect to Fy infeasible at this point. A larger MC production with anisotropic flow and
a reconstructed detector response in the forward region is currently being prepared by
the ALICE collaboration.

2LHC12allg further described in Appendix B.4
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Figure 7.6: Top: MC-closure test for the factorization ratios base on Model A in the (74, 75)
plane. Bottom: Relative statistical uncertainties of the MC-closure test.
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Figure 7.7: Schematic drawing of detector combinations in the (14, n5)-plane.
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Figure 7.8: Top: Residuals of the MC closure test. Bottom: The same data as in the top panel,
but all points within 20 were removed.
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Chapter 8

Event and tracklet selection

This chapter describes the event and tracklet selection performed on each individual
event prior to using it in the analysis. While most of the deployed selection criteria
are considered standard within the ALICE collaboration the FMD exhibits a particu-
lar susceptibility to out-of-bunch pile-up effects which required an additional cut using
correlations between the FMD and the VO detectors.

8.1 Event selection

Events used in this analysis fulfill all of the requirements below.

e The analysis was performed using a minimum bias trigger! which requires a
coincidence in the VOA and VOC or a hit in either layer of the SPD.

e Vertex selection

— A SPD-vertex was successfully reconstructed based on SPD tracklets

— A TPC-vertex was successfully reconstructed based on TPC tracks

— The SPD and the TPC-vertex are compatible within their uncertainties

— The resolution of SPD-vertex is better than 0.25cm

— The primary vertex was is located within —5cm < zy1x < 6cm. The asym-

metric interval was chosen due to an offset of the mean zy-position

e Events with more than one reconstructed primary vertex were identified as multi-
vertex pile-up and discarded

¢ DAQ readout was complete

e FMD was read out successfully

1Referred to as kKINT7 within the ALICE collaboration
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8.2. TRACKLET SELECTION

e SPD background events were rejected. Background events exhibit a large num-
ber of clusters in the SPD (N.) compared to the number of reconstructed tracklets
Ni;. Events are considered as background if Ng > 65 + 4Ny,

e FMD-VO correlations were used to discard out-of-bunch pile-up as described in
Sec. 8.1.1

Due to technical issues at the time of the data collection, the FMD was only included
in late stages of each fill of the LHC when the luminosity had decreased significantly.
The most restrictive criteria was therefore the availability of the FMD. The second most
restrictive criteria was the minimum bias trigger. Out of the initial 36 million events,
8.4 million were selected for the analysis.

8.1.1 Out-of-bunch pile-up

The FMD’s long integration time of 2 ps make it susceptible to additional out-of-bunch
pile-up and beam-halo effects (particles traveling parallel to the beam). The cut to
discard such events is based on the overlap of the slow FMD with the fast VO detector
in pseudorapidity. In the absence of pile-up, the two detectors are highly correlated.
Out-of-bunch pile-up events may cause a large multiplicity in the FMD while the VO
is unaffected due to its fast integration time. Thus, pile-up events can be identified as
having an uncommonly large multiplicity in the FMD compared to the VO.

Fig. 8.1 displays the correlation between the FMD and the VO detectors on either
side of the interaction point after all other event selections were applied but before any
cuts on the FMD-V0 correlation were performed. Out out-of-bunch pile-up events were
removed if they met the following empirical criteria

Avoa+ Avos < 1.5(Npyvps + Nrmpiee2) (8.1)

The correlations, after this cut was applied, are shown in Fig. 8.2. Even though this
cut only removed a small number of events it proved crucial to this analysis. The high
multiplicity events which are removed by this cut carry a large weight in the computed
pair histograms since the number of pairs scales quadratic with the number of hits
recorded by the FMD.

8.2 Tracklet selection

The tracklets used in this analysis are formed between one cluster in each SPD layer and
the primary vertex. Based on these three points it is possible to compute an azimuthal
bending Ay, which can be used as a tracklet selection criteria. A bending of Ay, <
5 mrad is required for each tracklet in order to minimize the contribution from secondary
particles. This cut has been shown in MC simulations to also effectively impose a pp-
cut of pyr > 0.75GeV/c on the selected tracks [49]. Since low momentum particles
generally exhibit a smaller anisotropic flow, this cut is expected to increase the observed
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8.2. TRACKLET SELECTION

Figure 8.1: Correlation of the FMD3 multiplicity and the VOA amplitude (top) and the
FMD1+4+FMD2 vs. VOC multiplicity (bottom) after all other event selection criteria were ap-
plied, except the cut on the FMD-VO0 correlations. Out-of-bunch pile-up causes events with a
large multiplicity in the FMD while the VO detectors are able to resolve events separately.
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Figure 8.2: Correlation of the FMD3 multiplicity and the VOA amplitude (top) and the
FMD1+FMD2 vs. VOC multiplicity (bottom) after all other event selection criteria were ap-
plied, including the cut on the FMD-VO0 correlations.
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8.2. TRACKLET SELECTION

Via,—n(Na, M) within the SPD acceptance. Furthermore, tracklets were required to be
within —1.7 < n < 1.7 in order to avoid an overlap with the FMD across different zyx
slices.
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Chapter 9

Results

This section presents the results of this analysis at each step, starting from the particle
distributions, to the computation of the Fourier coefficients and the final factorization.
The single- and two-particle distributions are presented in various projections in Sec. 9.1
and Sec. 9.2. Subsequently, the reduced two-particle distribution, 79, is formed and
again presented in various projections in Sec. 9.3. The two-particle Fourier coefficients
Vn,_n(na, m) are then computed from ro and presented in Sec. 9.4. The centrality and
|An|-gap-dependence of the factorization with Model A is described in Sec. 9.5. The
decorrelation parameter Fy of Model B is presented in Sec. 9.6. Lastly, the systematic
uncertainties are discussed in Sec. 9.7.

All results in this section are for Pb—Pb collisions at a center of mass energy of
V/SNN = 5.02TeV. The data set, which was recorded in 2015, is described in detail in
Appendix B. A discussion of the results and a comparison to simulations is deferred to

the Chapter 10.

9.1 Single-particle distributions

The single-particle distributions pi(n, @) are measured in 0.5cm wide zyg-bins from
—5cm to 6cm as well as in centrality bins of varying size. The acceptance map, which
excludes bins that overlap with inactive regions of the detectors as described in Sec. 7.2,
was applied to all figures shown in the following.

p1 in the (7, zytx)-plane

Fig. 9.1 presents the 0-5% centrality bin and is averaged over the ¢-dimension; thereby
reducing the histogram to the (7, zytx)-plane. The color dimension denotes the average
number of observed particles within the given bin and gray areas represent regions of
the phase-space which are not covered by any active detector. The observed particle
density is lower in the SPD region (—1.7 < n < 1.7) than in the FMD. This is due to the
secondary particles from material interactions as discussed in Sec. 7.3.1. Furthermore,
it is apparent that the acceptance of the involved detectors depends on the zytx position
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9.2. TWO-PARTICLE DISTRIBUTIONS

Pb—Pb /s\n = 5.02TeV 10-20%

I No acceptance
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Figure 9.1: Single-particle distribution for Pb-Pb collisions at \/syy = 5.02 TeV as a function of
1 and zy4x averaged over . Each slice in zy4x is normalized by the respective number of events
in this bin. The distribution shows the dependence of the detector acceptance on these variables.
The acceptance of the SPD exhibits a stronger dependence on zytx than the FMD. The forward
and backward regions exhibit a large number of secondary particles from material interactions.

of the collision. This dependence is more significant for the central SPD than for the
FMD.

p1 in the (7, p)-plane

Fig. 9.2 presents the single-particle distribution in the (7, ¢)-plane for Ocm < zyx <
0.5cm. Both the SPD and the FMD exhibit a non-uniform acceptance and a -
dependence. Based on the results of Sec. 4.2.1, any anisotropy in ¢ is due to detector
effects.

9.2 Two-particle distributions

The two-particle distributions, po, were measured as functions of 14, My, ©a, s, centrality,
and zytx. This large dimensionality makes the visual representation of the measured re-
sults challenging since numerous two-dimensional projections are possible. The following
focuses on the (14, np)-plane and (g, @p)-plane.

p2 in the (14, m)-plane

Fig. 9.3 shows a projection gy onto the (14, 7m)-plane. The data in the figure is restricted
to zytx-positions from 0 cm to 0.5 cm and the azimuthal coordinates were chosen as ¢, = 0
and ¢, = 0. The distribution is normalized such that it reflects the average number of
pairs in any given bin. The different detector combinations! are easily distinguishable.

!See Fig. 7.7 for a visual guide to the various detector combinations covering the (1, 7s)-plane.
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9.2. TWO-PARTICLE DISTRIBUTIONS

Pb—Pb ,/syn = 5.02TeV 10-20%
0.0cm < z,4 < 0.5cm

I No acceptance
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Figure 9.2: Single-particle distribution as a function of 77 and ¢ for primary vertex positions zy4x
from Ocm to 0.5 cm in Pb—Pb collisions at /syny = 5.02 TeV. Bins which overlap with inactive
detector regions were removed.

The FMD exhibits a large number of secondary particles from material interactions
compared to the central region covered by the SPD. This causes the regions where both
particles were detected in the FMD to have the largest number of pairs. Combination of
the SPD and FMD exhibit significantly fewer pairs while the case of both particles being
detected in the SPD is the least common. Depending on the zytx position, some regions
of the phase space are not covered by the detector acceptance. This manifests itself in
horizontal and vertical stripes in the (7,4, 7)-plane. The areas outside of the detector
acceptance in Fig. 9.3 correspond to the acceptance map presented in Fig. 7.1.

Note that the diagonal (n, = m) is also excluded. This is due to the fact that
the FMD is a hit based detector which provides the most likely number of particles
per channel as a decimal number. This makes the definition of a pair ambiguous if a
channel is paired with itself. However, this limitation is of no further consequence to
this analysis. The phase-space of the two-particle distribution for n, ~ 7 is known to
be dominated by non-flow effects and is excluded in the factorization procedure with a

| Anl-gap.

p2 in the (g, ¢p)-plane

Fig. 9.4 shows po as a function of (y,,p) where the first particle was chosen from
the central region (7, = 0) and the second particle from the forward region (n, = 4).
The distribution is normalized to represent the average number of particle-pairs in each
histogram bin. In the absence of detector effects, Fig. 9.4 would exhibit diagonal strips
as in Fig. 4.4 (left). The anisotropy from the underlying particle distribution is expected
to be in the order of 0.5% of the average number of pairs. The detector effects are found
to cause anisotropies which are several orders of magnitude larger than the expected
signal.
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Pb—Pb ,/snn = 5.02TeV 10-20%
0.0cm < Z,4 < 0.5cm

This work
I No acceptance

Figure 9.3: Two-particle distribution in the (74, 7)-plane for Ocm < 2y < 0.5c¢m and ¢, =
pp = 0. The color-scale represents the average number of pairs per bin. Bins which partly lie
outside of the detector acceptance are removed. Pairs between hits in the FMD are the most
likely combination due to the large number of secondary particles from material interactions.

Pb—Pb ,/syn = 5.02TeV 10-20%
0.0cm <z, < 0.5cm
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Figure 9.4: Two-particle distribution ga in the (¢4, vp)-plane for events occurring at Oem <
Zvtx < 0.5cm and the 7, and 7 values specified in the label. Detector effects are clearly evident.

The distribution is normalized such that it reflects the average number of pairs detected in each
bin.
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Pb—Pb ,/syn = 5.02TeV 10-20%
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Figure 9.5: Normalized two-particle distribution 7o in the (pg, @p)-plane within Ocm < zypy <
0.5cm for 5 — 10% centrality. Each pair is formed from a tracklet in the SPD (n, ~ 0) and a
hit in the FMDI (g, ~ 4). The detector induced anisotropies seen in Fig. 9.4 have canceled out
revealing the underlying anisotropy of the particles created in collisions.

9.3 Reduced two-particle distributions

The reduced two-particle distribution is formed from p; and pa as defined in Eq. (3.3).
Uncorrelated detector efficiencies are expected to cancel out making 7o the basis for the
later Fourier decomposition. This section presents ro as projections onto the (g, @p)-

plane and, after applying the coordinate transformation described in Sec. 4.4.3, onto
Ap.

ro in the (¢4, vp)-plane

Fig. 9.5 depicts ry in the (¢4, vp)-plane where pairs are formed between SPD-tracklets
at 1, =~ 0 and hits in the FMD1 at 7, ~ 4. The shown distribution is computed for
events with 0 < zytx < 0.5cm. The presented phase-space is therefore identical to the
one shown in Fig. 9.4 for pa(n.,m). The diagonal stripes expected for an averaged
two-particle distribution are clearly visible.

Ayp-projections of ro

Fig. 9.6 depicts r5; the Ay projection of ro(na, M, ©a, pp) for all studied centralities.
The particle-pairs were again formed from SPD-tracklets (1, ~ 0) and hits in the FMD1
(ny = 4) to be compatible with the previous figures. Each centrality exhibits a clear
azimuthal anisotropy corresponding to vs. The magnitude of the anisotropies is smallest
for the most central collisions and reaches a maximum in the 40-60% centrality bin.
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Figure 9.6: Projection of ro onto Ay (labeled as rf) for various centralities. Azimuthal
anisotropies are clearly visible for each centrality.

9.4 Two-particle Fourier coefficients Vm_n(na,nb)

The Fourier coefficients Vm_n(na,nb) are computed from the Ap-projection of ro. The
results of that computation are shown for n = 2 in Fig. 9.7 (left) for events with 0 <
zvtx < 0.5 cm. The respective relative statistical uncertainties are shown in the right hand
panel. Pairs between SPD-tracklets exhibit a significantly larger anisotropy than pairs
from other regions of the phase-space. This is expected for several reasons. Firstly, the
flow coefficient v2(n) is known to decrease with increasing |n| [30]. Secondly, the pp-cut
imposed during the SPD-tracklet selection biases toward larger values of vy [50]. Lastly,
the SPD exhibits considerably fewer secondary particles from material interactions.

9.5 Factorization of Vn,_n(na, my) using Model A

The factorization of Vi, _p(7a,m) with Model A (see Sec. 3.3.1) focuses primarily on
finding the minimal value of Anyin below which non-flow effects significantly break the
factorization assumption.

9.5.1  fo(na,m) as a function of Anyi,

Fig. 9.8 depicts the factorization ratio as defined in Eq. (3.11) for four different |An|-
gaps: 1, 2, 2.6 and 3 for events of 0 — 5% centrality. Pairs with a separation smaller than
the required one were excluded from the fitting procedure (indicated by orange vertical
lines). Furthermore, short-range pairs between hits in the FMD were also excluded
from the factorization procedure due to possible contributions from pairs of secondary
particles from material interactions (indicated by diagonal red lines).
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9.5. FACTORIZATION OF Vy,_n(n4,75) USING MODEL A

ALICE Preliminary This work
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Figure 9.7: Left: Fourier coefficients \72,_2(77(1, ny) of the normalized two-particle distribution 5.
Right: Relative uncertainties of the coefficients. Both slices depict 0 cm < zytx < 0.5 cm. Pairs
of SPD-tracklets exhibit a larger anisotropy than pairs involving a hit in the FMD.

The relative statistical uncertainties do not differ significantly between the different
|An|-gaps since they primarily represent the uncertainties of statistical uncertainty of
Va._2(Ma,mp). Fig. 9.9 depicts the uncertainties for the |An| > 2.6 case which can be
taken as representative for all four cases.

A deviation from unity indicates that Model A does not describe the observed data
in those regions with respect to the region used in the fitting procedure. For all |An|-
gaps the region along the diagonal of the (74, m)-plane is not in agreement with the
factorization found from the long-range pairs. This finding is expected: the short-
range region of the phase-space is known to exhibit a large contribution from non-flow
effects such as jets and weak decays. A deviation from unity is also observed along the
edges of the involved sub-detectors which coincide with regions of increased statistical
uncertainties shown in Fig. 9.9.

The factorization ratio for |An| > 1 fails to describe the long-range region of |An| 2 2.
Increasing the |An|-gap from 1 to 2 improves the agreement in the long-range region
significantly. A further increase from 2 to 2.6 yields additional minor improvements
while a change from 2.6 to 3 does not cause any significant further changes to the
factorization ratio. Le., |An|-gaps of 2.6 and 3 yield almost identical vé“(n).

9.5.2  fo(na.,m) as a function of centrality

This section investigates a possible centrality dependence of the factorization ratio in
the (14, mp)-plane. Fig. 9.10 depicts the factorization ratio where only pairs with |An| >
2.6 were considered during the factorization procedure. All centralities exhibit a non-
factorizing behavior for pairs with |An| < 1, whereby the exact width depends on the
centrality of the collisions: Central and peripheral collisions show a wider non-factorizing
region than mid-central collisions.

Fig. 9.11 shows the projections onto An for each centrality bin in Fig. 9.10. The
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Figure 9.8: fa(na,m) for various |An|-gaps imposed during the factorization with Model A and
at 0-5% centrality. Factorization does not hold simultaneously for the short and long-range
(JAn| 2 2) regions for any |An|-gap. The |An|-gap of 1 is insufficient to describe either region.
Minor differences are visible between |An| > 2 and |An| > 2.6, while the factorized solution does
not appear to change between |An| > 2.6 and |An| > 3.
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Pb—Pb \/3ny = 5.02 TeV 0-5%
Vo, _2(na, 1b) = V5 (1a) V5 (11p) for |An| > 2.6

This work
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Figure 9.9: Relative statistical uncertainties of fa(n4,7). The factorization was performed
for pairs with |An| > 2.6. The uncertainties for the other |An|-gaps in Fig. 9.8 do not differ
significantly.

factorization ratios of all centralities are observed to be in agreement with unity for
|An| > 2.6. The shape of the factorization breaking for pairs with |An| < 2 exhibits the
centrality dependence also seen in Fig. 9.10.

9.5.3 Uncorrected v5'(n)

The factorization procedure yields the uncorrected flow-coefficients vs'(n). A correction
of the effect caused by secondary particles from material interaction could not be applied
in this analysis due to the lack of a suitable MC simulation to date. The uncorrected
flow coefficients v4'(n) are nevertheless presented in Fig. 9.12. The factorization was
performed on pairs with |An| > 2.6. The observed vs'(n) in the region of the SPD-
tracklets (—1.7 < n < 1.7) is significantly larger than the regions covered by the FMD.
This reflects the minimal pr cut of pr 2 0.75GeV /¢ imposed during the tracklet se-
lection. The relative variation with zytx is approximately identical for the central and
forward /backward region but dependent on centrality. Central (0-5%) and peripheral

(40-60%) events varied by ~ 8% while mid-central collision varied by (~ 2.5%).

9.6 Factorization of v, ,(n,,7,) using Model B

This section presents the results base on Model B as defined in Eq. (3.9). The empirical
decorrelation parameter Fy for various |An|-gaps and centralities is depicted in Fig. 9.13.
The fitting procedure yields unstable results for the most central collisions with |An| >
3; the respective data point was removed. Central and peripheral collisions exhibit a
dependence on the |An|-gap imposed during the fitting procedure.
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Figure 9.10: Factorization ratios in the (74, n,)-plane for various centrality bins. The width of
the non-factorizing region exhibits a centrality dependence.
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Figure 9.11: Projection of f2(n,,n,) onto An for each analyzed centrality bin in Fig. 9.10. Ounly
pairs with |An| > 2.6 were considered during the fitting procedure with Model A. Systematic
uncertainties are shown as shaded gray areas; statistical uncertainties are given as error bars on
each point. Good agreement to the model is observed for all centralities with |An| > 2.6. The
factorization behavior in the region of |An| < 2 exhibits a centrality dependence.
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Figure 9.12: Uncorrected v4'(n) for various centralities. The centrality bin of 60-80% is not shown
due to its large statistical uncertainties. The pp-cutoff imposed on the SPD-tracklets increases the
observed v4' in the central region while secondary particles from material interaction attenuate
the signal in forward/backward regions.
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Figure 9.13: Decorrelation parameter Fy' as a function of centrality. Values are slightly displaced
along the x-axis for better readability. The factorization breaking in central and peripheral events
exhibits a dependence on the applied |An|-gap.

The factorization ratios for Model B with |An| > 2.6 are shown in Fig. 9.14. The
observed factorization ratios bear a strong resemblance to those obtained with Model A
for identical |An|-gaps despite Fy assuming non-zero values for all centrality bins shown
in Fig. 9.13.

9.7 Systematic uncertainties

The discussion of the systematic uncertainties of this analysis is centered around three
main potential sources: The approximation of constant efficiency within each bin of
the one and two-particle distributions, the choice of the centrality estimator, and the
potential effects of pile-up in the high-interaction rate runs of the LHC150 data sample.

The effect of each of these sources is evaluated on the final observables fo(An) and Fy,
since a propagation of systematic uncertainties from Vm_n through the fitting procedure
was deemed unfeasible.

9.7.1  fo(na.,m) dependence on the primary vertex bin width

Ideally, the analysis should be conducted in as small bins as possible while maintaining
sufficient statistical significance to be able to perform a stable Fourier decomposition
in the azimuthal dimensions. A reasonable binning schema which fulfills the above
requirements is 40 bins in each 7 dimension (0.2 bin width), 20 bins in the azimuthal
dimensions (the segmentation of the inner FMDs), 6 centrality bins and 22 bins in zytx
(0.5 cm bin width). This section serves as a justification for the zytx-bin width of 0.5 cm,
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Figure 9.14: Factorization ratios f2(n4,n) using Model B and requiring |An| > 2.6 for all pairs
during the factorization process. Pairs with a large |An|-separation are well described by the

model. The region of |An| < 1.5 is incompatible with the solution of v¥(n) and Fy found for
|An| > 2.6.
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Figure 9.15: Factorization ratio fo(n,,m) for a zyu-bin width of 1em (left) and 0.5 cm (right)
with n, < mp. The fit (Model A) only included particle pairs with |[An| > 3. The smaller binning
leads to better fit results in the mid-range SPD-SPD region, while the fit in the long-range regions
remains largely unaffected.

based on qualitative assessments of fa(7q, 7).

A larger zytx-bin width of 1cm, which is more common in ALICE analyses, was
considered for this work. Fig. 9.15 depicts fa(n4,ns) for the two different zyy bin widths
of 1 cm (left) and 0.5 cm (right). The larger bin width yields large bin-to-bin fluctuations
in the mid-range region of the SPD-SPD (1 < |An| < 3). In comparison, the finer bin
width yields a considerably smoother fit in the same region. The region of |An| > 3
exhibits no significant dependence on the bin width.

Conducting the measurement again with yet smaller bins in zy¢x was found to be un-
feasible due to technical limitations by ROOT and the GRID infrastructure?. Therefore
an alternative method was conceived in order to evaluate if a zytx-bin width of 0.5 cm is
sufficiently small.

The analysis was repeated three times with a zytx bin width of 0.5 cm but with an
overall offset of —0.25cm, Ocm, and 40.25 cm respectively. If the chosen bin width of
0.5 cm is sufficiently small for the detector effects to cancel out as described in Sec. 7, one
expects to find each of the three iteration to yield results compatible within statistical
uncertainties®. If a significantly larger deviation is observed it is attributed to the
approximation of constant efficiency within a given bin.

The method chosen for this study is schematically presented in Fig. 9.16. Each row
represents the original and shifted binning respectively, while each rectangle represents

2Decreasing the bin width increases the memory usage of this analysis. Analyses running on the GRID
cannot consume more than 3 GB of memory. Histograms of more than ~ 1 GB cannot be serialized by
ROOT.

3Note that statistical fluctuations are expected to be suppressed by the fact that the three observations
are conducted on the same event sample and because the shifted bins have a 50% overlap with the original
binning. I.e., each of the shifted bins contains approximately 50% of the events found in the original
binning.
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Original binning:

Shifted binning:

Shifted binning:

N
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Figure 9.16: Schema for systematic uncertainty evaluation with respect to zyix-binning. The
analysis is conducted with the default binning in zy, as well as with an offset of +£0.25cm in
Zvtx- Lhe systematic uncertainty for the original bin is estimated based on the measurement in
the negatively shifted, the original bin, and the positively shifted bin (orange bins).

a bin of fa(ng,m) along the zytx dimension. The bins marked in orange represent the
bins used to compute the variance of fa(n,,m) in one given bin due to the shift along
Zvtx- The variance is estimated by comparing the results of the original binning with
that of the respective bins in the shifted binning schema. The estimated variance s is
given by

;N
5= ﬁZ(@ — )2 (9.1)
i=1
where N = 3 is the number of different binning schemata, x; is the value of fa(74, )
for schema ¢ and Z is the mean of V,, _,, over all three schemata. This allows for the
computation of s for each bin in the (14, 7)-plane.
The variance s(n,,1n,) corresponding to each bin fa(n,,7m) was computed on the
LHC150 high interaction rate sample over the range of —5cm < zyx < 6cm. The
estimated variance was found to be in agreement with the statistical uncertainty.

9.7.2 Systematic uncertainties of f3(An)

The following investigates the impact of the zyx offset, the choice of the centrality
estimator, and possible pile-up contributions on the observable fo(An). Depending on
An, f2(An) is composed from data of different detector combinations (see Fig. 7.7).
Therefore, different systematic uncertainties for different values of An are expected.
The following evaluates systematic uncertainties in three distinct An regions:

SPD-SPD dominated (|An| < 1.5) This region is dominated by pairs of SPD track-
lets

FMD-SPD dominated (1.5 < |An| < 4.7) This intermediate region mainly contains
pairs composed of one SPD-tracklet and one hit in the FMD

FMD-FMD dominated (|An| > 4.7) This region exclusively contains pairs of FMD
hits
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Figure 9.17: Ratio of f3(An) computed for the default binning and the binning shifted by 0.25 cm
along zytx. No significant deviation from unity is observed for any of the centrality bins.

zvix-0offset

Fig. 9.17 shows the ratio of fo(An) obtained using the default binning schema divided by
f2(An) computed with the described offset of 0.25 cm along zytx. No significant deviation
is observed for any of the studied centrality intervals and thus no systematic uncertainty
is attributed to the zyix-position or bin width.

Centrality estimator

Generally, it would be preferable to deploy a centrality estimator which does not overlap
with the acceptance used in the measurement, since this may lead to unwanted biases.
However, due to the large n acceptance of this analysis, no estimator which would re-
liably work for all centrality classes is available. The VO detector is commonly used
as a centrality estimator, but its zyix-dependent n-overlap with the FMD made it an
unfeasible choice for this analysis. In order to minimized possible ztx-dependent effects,
this analysis uses centrality estimators based on the SPD. Namely:
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Table 9.1: Summary of systematic uncertainties of fo(An). Individual uncertainties are added
in quadrature to form the final uncertainty.

Assigned uncertainty [%)]
Centrality [%] [|An| < 1.5 1.5 <|An| <4.7 [|An| > 4.7

it 0-20 0.3 0.1 0.1
vix 20-80 0.1 0.1 0.1
0-5 0.5 0.5 0.8
Centrality estimator 5-60 0.3 0.3 0.4
60-80 5 0.5 0.8
_—— 05 0.5 0.2 0.5
P 580 0.2 0.2 0.4

0-5 1 0.4 1
540 0.4 0.4 0.4
Total 40-60 0.6 0.4 0.4
60-80 5 0.4 0.6

CLO (default) Number of clusters in the inner most layer of the SPD
SPD tracklets Number of tracklets reconstructed in the SPD

The impact of the centrality estimator choice on f2(An) is again evaluated by comput-
ing this quantity for both estimators and forming the ratio. The result of this procedure
is depicted in Fig. 9.18. The most significant deviation is observed for short-range pairs
in peripheral events; this region is dominated by pairs of SPD-tracklets. The gray bands
indicate the systematic uncertainties assigned to each region in An. The exact values
can be found in Tab. 9.1.

Pile-up

Pile-up was considered as a final source of uncertainty on fo(An). The results presented
in Fig. 9.11 were computed based on runs with a high interaction rate (HIR). HIR runs
exhibit larger pile-up effects than comparable runs at a low interaction rate (LIR)*.
For a systematic evaluation of pile-up effects, it is desirable to perform this analysis on
the HIR and LIR data set separately. The LIR data set contains approximately ~ 1.3
million events which pass the event-selection criteria (15% of the HIR data set). This
number of events is too small to perform this analysis. Therefore, a comparison was
done between the HIR data set alone and a combined data set (HIR + LIR). The ratios
of fa(An) computed from either data set is shown in Fig. 9.19. The assigned systematic
uncertainties are visualized as gray regions. The precise value assigned to each region
can be found in Tab. 9.1.

4See Appendix B for details on the used data sets
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Figure 9.18: Ratio of fo(An) using the CLO centrality estimator and number of tracklets. Devi-
ations from unity indicate a bias in fo(An) due to the centrality estimator. Gray areas indicate
the assigned systematic uncertainties.
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Figure 9.19: Systematic uncertainty of fo(An) due to pile-up. For these figures fo(An) was
computed on the combined HIR + LIR data set and divided by fo(An) of the HIR data set.
Gray areas indicate the assigned systematic uncertainties.
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Table 9.2: Summary of systematic uncertainties of Fy for various |An|-gaps.

Minimal |An| Systematic uncertainty [%]

2.0 )
2.6 7
3.0 3

9.7.3 Systematic effects on F)

The systematic uncertainties of Fy were estimated by performing the analysis with
variations in the centrality estimator, zytx-offset, and pile-up contributions. Furthermore,
a possible systematic uncertainty due to secondary particles inducing a blurring effect
in the (74, 7p)-plane was investigated.

Centrality estimator, zyix-offset, and pile-up

Analogous to the discussion in Sec. 9.7.2, F is computed with the following variations:
e The combined HIR + LIR data set
e Number of SPD tracklets as the centrality estimator
e Shifted by 0.5 cm along zytx

These three variations are compared to the default configuration (HIR data set, CLO
centrality estimator and no zy offset). The result of each configuration for different
|An|-gaps is shown in Fig. 9.20. Variations between the four configurations are found to
be in the order of their statistical uncertainties make the estimation of the underlying
systematic uncertainties challenging. The deviations with respect to the default analysis
are added in quadrature and fitted with a constant value over all centrality bins. The
resulting values of the systematic uncertainties for each |An|-gap are given in Tab. 9.2.
The fit of the most central bin for |An| > 3 was found to be unstable for the various
systematic checks. Therefore, that point is not included in the final results.

Decorrelation effects due to secondary smearing in pseudorapidity

Similar to the blurring of the azimuthal distribution of particles described in Sec. 7.3 it
is reasonable to assume a similar effect in the longitudinal direction. Fig. 9.21 depicts
the An-distribution of particles hitting the FMD with respect to their primary mother
particles created in the collision. The secondary particles from material interaction
create a blurring effect i.e., the observed n value of a particle is randomly distributed
around the 7 value of its primary mother.

If the event-plane ¥,, depends on 7 such a smearing may ultimately affect the event-
plane twist parameter Fy. The successful MC closure test described in Sec. 7.6 indicates
that any such systematic effect must be less than the statistical uncertainties of the
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Figure 9.20: F,' computed under various changes of the experimental conditions. Each figure
presents the data for a different |An|-gaps applied during the fitting process. For all but two
points the variations are found to be in agreement with the default measurement within statistical
uncertainties. Exceptions are the most central bins with |An| > 2 and |An| > 3. Details on the
treatment of these points is given in the text.
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Figure 9.21: Distribution of secondary particles hitting the FMD with respect to their primary
particle produced in the collision. A non-zero mean is observed in the forward and backward
region.

closure test. However, the statistical uncertainties of the MC closure test are large (up
to ~ 20%) and the number of reconstructed events is insufficient to perform a reliable
fit with Model B.

Therefore, a Monte Carlo toy simulation was performed in order to further investigate
the effect of secondary particles on Fy. The premise of the toy model was as follows.
According to Model B each point in the Vn,,n(na, M) is attenuated by the factor

C(’f]a, 776) — €_F2n|77a—77b‘ — e—Fg\Aﬂ (92)

The effect of secondary particles can be thought of as blurring in #: instead of comparing
the event-planes at n, and 7, one compares the planes at 7, + €, and 7, + ¢, where € is
a random, Gaussian distributed, variable simulating the random deflection of a particle
due to material interaction. The distribution has a with of ogmear/2, and a mean of u.

The toy model applies such a random deflection to the n-values in Eq. (9.2) in a
MC-like manner:

1. ¢ is computed for all points in the (n,,n)-plane using the same bin widths as in
the analysis. However, ¢ is not evaluated at the bin center (<", ng®") but at
(nlclent + €a) ngent + €b)-

2. The fitting algorithm for Model B is run on the points computed in step 1 yield-
ing F," - the decorrelation parameter modified by the blurring due to secondary
particles.

3. Step 1 and 2 are repeated 10000 times
4. Step 1, 2, and 3 are repeated for various values of ogpear and p

The distributions shown in Fig. 9.21 suggest values of y = 0.04 and ogpear = 0.5.
Assuming the decorrelation parameter to be F,) = 0.01 the effect of the n-blurring on
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FJ was found to be less than 0.5%. No systematic uncertainties were assigned to the
final results of F due to this effect.
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Chapter 10

Discussion

This chapter discusses the result presented in the previous chapter and compares them
to related studies and simulations. Sec. 10.1 discusses the various factorization ratios ob-
tained for different |An|-gaps and presents the smallest possible longitudinal separation
where the factorization assumption still holds. The knowledge of this minimal separation
is important for various other measurements where factorization is implicitly assumed
to hold and |An|-gaps are routinely applied to suppress di-jet related non-flow contri-
butions. The empirical decorrelation parameter Fy, measured by fitting %’,Q(na, M) to
Model B, is compared to AMPT calculations and CMS results in Sec. 10.2.

10.1 Minimally sufficient pseudorapidity separation Anyi,

The An-projections of fa(n4,7s) shown in Fig. 9.11 shows the agreement of the measured
‘72,_2(7]@, M) to Model A when only considering pairs with |An| > 2.6 during the fitting
procedure. The measured data is found to be in agreement to the model for points with
a larger longitudinal separation than 2.6 + 0.2 for all studied centralities. Performing
the factorization with |An|-gaps larger than 2.6 only includes pairs in the factorization
procedure which were already in agreement to the model for the smaller |An|-gap of 2.6.
Therefore, increasing the |An|-gaps beyond 2.6 is not expected to yield results which
differ from those obtained with |An| > 2.6. Fitting procedures which include pairs of
|An| < 2.6, on the other hand are expected to yield different results since pairs which are
not compatible with the long-range region of the phase-space are included. This behavior
is observed in Fig. 9.8. It is therefore concluded that the minimally sufficient |An|-gap
for which the factorization ansatz holds in the long-range region is Anyin = 2.6 £0.2 for
the kinematic region studied in this analysis.

This result is also reproduced in AMPT calculations at /sy = 5.02TeV. The
An-projection of fa(ne,m) (for |An| > 2.6) obtained from these calculations is depicted
in Fig. 10.1. Pairs with a longitudinal separation larger than 2.6 are found to be in
agreement with Model A for all centralities. Pairs with a smaller separation exhibit a
centrality dependent incompatibility with the factorized result. The centrality dependent
ordering of the factorization breaking in the region of |An| < 2.6 is also found to be in
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Figure 10.1: Projection of fa(na,m) (based on Model A) onto An for AMPT calculations with
string-melting enabled. The factorization was performed using Model A requiring a minimal
pair-separation of |An| > 2 (vertical gray line). Only statistical uncertainties are shown. The
data is in good agreement to the data for |An| > 2.6.

agreement with the measured data. This centrality dependence of the factorization
breaking may be caused by the centrality dependence of v4'(n) as shown in Fig. 9.12.
Central events exhibit the smallest anisotropic flow of all measured centrality classes.
This may make non-flow effects in central events more apparent than in collisions which
exhibit a stronger anisotropic flow.

A required minimal separation of Anyin = 2.64+0.2 may appear to be in contradiction
to previous results. A previous study of the An-dependent factorization of two-particle
distributions performed by the ATLAS collaboration suggested that a |An| > 2 is a suffi-
cient separation [51]. The factorized model was found to be compatible with the observed
two-particle distributions to within 5%-10% percent for particles with pr < 3-4 GeV/c
for the 70% most central collisions. The results presented here have a considerably
smaller uncertainty than the ones quoted by the ATLAS collaboration. Fig. 9.11 shows
that the deviation from unity at An = 2 observed in this work is compatible with the
uncertainties quoted by the ATLAS collaboration.

10.2 Empirical decorrelation parameter F)

This section compares the parameter F' as presented in Fig. 9.13 to AMPT calculation
and measurements conducted by the CMS collaboration on Pb—Pb collisions at /snn =
2.76 TeV as described in Sec. 5. The combination of all data points is shown in Fig. 10.2.
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Figure 10.2: Comparison of the empirical factorization breaking parameter Fy at different |An|-
gaps at 5.02TeV as well as to CMS results at 2.76 TeV. The CMS and ALICE results were
measured from different kinematic regions. AMPT calculations were conducted with string-
melting enabled.

10.2.1 Comparison to AMPT

The analysis procedure used to estimate Fy in AMPT was identical to the one chosen for
the experimental ALICE data. The AMPT sample used in this work (see Appendix B.3)
exhibited issues with respect to the most central events, increasing the statistical un-
certainty for that bin significantly. AMPT with string melting successfully reproduced
the decorrelation effects seen in the experimental data. Since the decorrelation effects
are dominated by the initial state fluctuations, this suggests that the initial stage fluc-
tuations in AMPT (provided by HIJING) are comparable to those present in Pb—Pb
collisions at /sy = 5.02TeV. Compatible findings for AMTP with respect to the
below discussed CMS results have also been published in Ref. [21].

10.2.2 Comparison to CMS results

This section compares the measurements of this analysis to published results from
CMS [6] based on the non-factorizing Model B introduced in Sec. 3.3.2. The two meth-
ods differ significantly from each other and are conducted in different kinematic regions.
Furthermore, the CMS results are based on Pb—Pb collision at /syny = 2.76 TeV. The
published CMS results correspond approximately to a |An|-gap of 2.9 in this analysis.
Despite the difference between the two analyses, good quantitative agreement with the
CMS results is observed in all centralities when applying a |An|-gap of 2.6. This suggests
that the decorrelation effects exhibit only a minor energy dependence. A recent study
by the ATLAS collaboration studying the energy dependence of F) corroborates this
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observation [7].

The decorrelation effect observed for events of 0-5% centrality exhibits a depen-
dence on the applied |An|-gap. With respect to the observed centrality dependence of
the factorization breakdown discussed in Sec. 10.1, it appears likely that the |An|-gap
dependence originates from non-flow effects.
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Chapter 11

Conclusion and outlook

This work presents a study of fluctuation and decorrelation effects in the two-particle
Fourier coefficients Vg,,g(na, Mp). The study was conducted using a robust method which
enables precise measurements even in the presence of large numbers of secondary par-
ticles from material interactions, a non-uniform acceptance, and the lack of precise MC
simulations of the detector response. Two common models describing the Fourier coef-
ficients in the (n,,m)-plane were investigated:

Model A assumes that Vn,_n(na, my) can be written as the product of two identical func-
tions of . This model is defined in Eq. (3.7). It is commonly assumed to hold true
in various analyses studying azimuthal anisotropies in multi-particle distributions.

Model B was recently suggested by the CMS collaboration to study decorrelation ef-
fects which depend on the longitudinal distance between particle pairs [6]. The
decorrelation effect is empirically quantified with the parameter F,;. This model
is defined in Eq. (3.9)

Model A was used to investigate the minimal An-separation required between par-
ticles in order for short-range non-flow effects to be negligible with respect to the fac-
torization assumption. For the kinematic regions studied in this analysis, that value
was found to be Anyin = 2.6 £ 0.2. Analyses which implicitly rely on the factorization
assumption to hold true should ideally apply Anmyin as their |An|-gap.

Model B was used to measure Fy for various centrality bins. Agreement to measure-
ments performed by the CMS collaboration for Pb-Pb collisions at /syn = 2.76 GeV
was observed over all centrality bins provided the factorization procedure was performed
on pairs with |An| > 2.6. This corroborates previous observation by the ATLAS collabo-
ration suggesting that the observed decorrelation effect exhibits only a minor dependence
on the center-of-mass energy [7]. A dependence on the size of the applied |An|-gap for the
0-5% centrality bin was observed raising the question of possible non-flow contributions
to the results obtained in that centrality bin.

Future research deploying the here presented method should be extended to smaller
collision systems such as pp and pPb collisions and to Fourier modes other than n = 2.
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Decorrelation effects in pPb collisions were already studied by the CMS and ATLAS
collaboration [6, 7] while a similar study of the collective effects observed in pp colli-
sions [52] has not yet been conducted. Understanding if the factorization assumption
holds for two-particle distributions of pp collisions would provide valuable insight into
the mechanisms creating the observed correlations.

Furthermore, the method presented here allows for a simultaneous factorization in
pr as well as n with minimal modifications. A future analysis could therefore measure
the flow coefficients v, (n, pr) as suggested by Eq. (2.7). A proof-of-concept of such an
analysis is presented in Appendix D.
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Abbreviations

CERN European Organization for Nuclear Research.
DPG Data Preparation Group.

IP Interaction Point.

FMD Forward Multiplicity Detector.
TPC Time Projection Chamber.

ITS Inner Tracking System.

SPD Silicon Pixel Detectors.

SDD Silicon Drift Detectors.

SSD Silicon Strip Detectors.

QGP Quark-Gluon-Plasma.

QCD Quantum-Chromodynamics.

CGC Color-Glass-Condensate.

ALICE A Large Ion Collider Experiment.
LHC Large Hadron Collider.

RHIC Relativistic Heavy Ion Collider.
SM Standard Model.

MC Monte Carlo.

HI Heavy Ion.

FFT Fast Fourier Transform.

PDF Probability Pensity Function.

AOD Analysis Object Data.
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Abbreviations

ESD Event Summary Data.

AMPT A Multi Phase Transport model.

HIJING Heavy Ion Jet Interaction Generator.

ZPC Zhang’s Parton Cascade.

ART A Relativistic Transport.
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Appendix A

\72,_2(77&, n,) for all centralities

This appendix presents V27_2(77a, 1) and the associated statistical uncertainties for 0 <
Zvtx < 0.5 cm.
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Figure A.1: 172,_2(77(1, 1) for various centralities and primary vertex positions within 0 < zygy <
0.5 cm.
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Figure A.2: Relative statistical uncertainties of ‘72,—2(%, 7p) for various centralities and primary
vertex positions within 0 < zy¢x < 0.5 cm.
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Appendix B

Data sets

This analysis is performed on data sets of Pb-Pb collisions at /syn = 5.02 TeV recorded
in 2015 by ALICE. All runs listed below are marked as “good” by ALICE’s data prepa-
ration group and the FMD is marked as “good” in the loghbook. Furthermore, the
reconstructed data is available in the Analysis Object Data (AOD) format. This results
in all good runs having at least the VO, ITS, and FMD detectors available.

B.1 LHC150 pass5 low interaction rate

The runs in this data set were recorded at a low interaction rate (LIR) with respect
to the considerably larger high interaction rate sample. The LIR data set is expected
to have negligible pile-up and is therefore used to asses the pile-up effects in the high
interaction rate sample. This data set contains approximately 5 million events of which
1.3 million pass the event selection criteria.

data directory /alice/data/2015/LHC150/
data pattern pass5 1owIR/A0D194/*/A1iA0D.root
data type aod

run list 245068, 245066, 245064, 244983, 244982, 244980, 244975, 244918, 244917

B.2 LHC150 passl high interaction rate

This data set is composed of runs which were recorded at a high interaction rate (HIR).
However, the FMD was not included in the data taking at the beginnings of each fill
of the LHC. Instead, the FMD was only included once the luminosity had decreased
sufficiently for the FMD to work reliably. Nevertheless, HIR runs including the FMD
may still exhibit larger pile-up effects than runs in the LIR data set. The large luminosity
at the beginning of the fills lead to the FMD being excluded from the majority of the
runs in this data sample which is reflected in the small number of analyzed runs. This
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B.3. LHC1712

data set contains approximately 36 million events of which 8.5 million pass the event
selection criteria.

data directory /alice/data/2015/LHC150/
data pattern pass1/A0D194/%/A1iA0D.root
data type aod

run list 246276, 246275, 246185, 246153, 246089, 245963, 245954, 245833, 245705,
245683

B.3 LHC17i2

The AMPT event generator (version 2.26t7) anchored to the LHC150 period was used to
generate this data set of Pb-Pb collisions at /sy = 5.02 TeV data set with the string
melting option enabled. A technical issue in AMPT reduced the number of central events
in the 0-5% centrality class. Furthermore, an unrelated technical issues caused the FMD
to not be available in the produced AODs data set. Thus, this data set could not be
used in the MC closure test described in Sec. 7.6, but provided the data for the model
comparison in Sec. 10. The total number of events in this data set is approximately
7.4 M.

data directory /alice/sim/2017/LHC17i2/
data pattern A0D/*/A1iAQOD.root
data type aod

run list 244918, 244975, 244980, 244982, 244983, 245061, 245064, 245066, 245068,
245145, 245146, 245148, 245151, 245152, 245231, 245232, 245259, 245343, 245345,
245346, 245347, 245349, 245353, 245396, 245397, 245401, 245407, 245409, 245410,
245411, 245439, 245441, 245446, 245450, 245452, 245454, 245496, 245497, 245501,
245504, 245505, 245507, 245535, 245540, 245542, 245543, 245544, 245545, 245554,
245683, 245692, 245700, 245702, 245705, 245729, 245731, 245738, 245752, 245759,
245766, 245775, 245785, 245793, 245829, 245831, 245833, 245923, 245949, 245952,
245954, 246001, 246003, 246012, 246036, 246037, 246042, 246048, 246049, 246052,
246053, 246087, 246089, 246113, 246115, 246151, 246152, 246153, 246178, 246180,
246181, 246182, 246185, 246217, 246222, 246225, 246271, 246272, 246275, 246276,
246390, 246391, 246392, 246424, 246428, 246431, 246434, 246487, 246488, 246493,
246495, 246553, 246575, 246583, 246648, 246675, 246676, 246750, 246751, 246757,
246758, 246759, 246760, 246763, 246765, 246766, 246804, 246805, 246807, 246808,
246809, 246810, 246844, 246845, 246846, 246847, 246851, 246865, 246867, 246870,
246871, 246928, 246945, 246948, 246980, 246982, 246984, 246989, 246991, 246994
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B.4 LHC12all

This data of Pb-Pb collisions is generated with AMPT at ,/syny = 2.76 TeV. The
reconstruction was anchored to the LHC10h! period. There are no known issues with
this data set at the time of writing and the FMD is fully reconstructed and available in
the AOD format. Until the technical issues with the LHC17i2 data set are resolved this
is the only data set which includes flow-like azimuthal anisotropies, a reconstruction of
the forward detectors and where the data is available in the AOD format. Therefore, this
data set was chosen despite its small statistics of only 900k events for the MC-closure
test described in Sec. 7.6.

data directory /alice/sim/2012/LHC12ail{a-g}
data pattern AOD157/*/A1iA0D.root

data type aod

run list 137686, 138534, 138653, 139038, 139437

!The 2010 Pb-Pb data taking period
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Appendix C

Fourier transformations and
Convolutions

C.1 Fourier transformations

The Fourier transformation is a central tool in this analysis and therefore warrants
a short summary. Throughout this analysis, the following definition of the Fourier
transformation is used

F (@) = f) [ " fe)e e d (1)

where f is any integrable function and w denotes the angular frequency. For the purpose
of this analysis, the Fourier transformation will only be applied to azimuthal dimensions
which are defined on the interval [0,27[. The function f may have arbitrarily many
other dimensions.

Due to the limited ¢-interval, w can only assume integer values n. Therefore, one

can write each complex Fourier coefficient A,, as
A= (@) = = [ e ©2)
" on 2r ), ’

If f(x) is a real function, as is the case for particle densities, the positive and negative
frequencies are each others complex conjugate

A, =A%, (C.3)

Multidimensional Fourier transformations can be performed independently of each
other. Therefore, the coefficients A,, ,,, of a two-dimensional transformation of a function
f(z,y), defined over [0, 27| in both dimensions is given by

1 2 27 27 ) )
Apm = (271-> /0 ; flz,y)e e "™ dady (C.4)

The integration order in Eq. C.4 can be exchanged i.e., the order in which multiple
transformations are applied can be changed.
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C.2 Convolutions

This section provides a non exhaustive summary of the properties of convolutions. A
convolution of two function can be thought of as computing their “overlap” at a given
separation. The convolution of two functions g(¢) and h(yp) is defined by

o) hie) = [ " gl — ()’ (C5)
= /OO g(@)h(ep — ¢")dy' (C.6)

Eq. (C.5) serves as the origin of many useful properties of convolutions. The properties
which are used in this analysis are:

Commutative The order of elements in a convolution may be inverted, as is immedi-
ately clear from the definition in Eq. (C.5)

frg=gxf (C.7)
Associative A series of convolutions may be evaluated in any order
(fxg)xh=[x(gxh) (C.8)

Associative with scalar multiplication A scalar multiplication with a real or com-
plex number a may be applied before or after the computation of the convolution

a(g*h)=(ag)*h (C.9)

Integration of convolutions The integral over a convolution becomes the product of
the integral of the two convoluted functions

/Z(g *h)(p)de = (/O; g(<p)d<p> (/O; h(cp)dcp) (C.10)

Convolution theorem A consequence of the previous property is that a Fourier trans-
form F of a convolution becomes the product of the Fourier transforms of the
convoluted functions.

F{g=*h}=F{g}F{h} (C.11)
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Appendix D

Simultaneous factorization in 7
and rT

The following describes a proof-of-concept of how an analysis based on Model A can be
extended to simultaneously perform the factorization procedure in 1 and pp. Such an
analysis can be used to disentangle possible decorrelation effects which simultaneously
depend on 7 and pr.

The original definition of Model A given in Eq. (3.7) has to be modified to include
the pr dimension according to the flow ansatz in Eq. (2.6). The modified Model A is
given by

Viren(Nas Mo PT.as PT) = 05 (Nay 7.0 )02 (M6, PT.0) (D.1)

The factorization procedure is identical to the one described in Sec. 7.4, with the excep-
tion that the best fit solution is not given by an array of values along n but by a matrix
representing the (7, pr)-plane.

The reduced two particle distribution is also extended by the respective pr dimen-
sions making ro a function of (94,7, Ya, @b, PT.a,PTp) Which should be measured in
separate zytx and centrality bins as well. The additional resolution in pt is expected to
improve the robustness of the reduced two-particle distribution 7. A |An|-gap or a cut
on the pp-range can be applied prior to the factorization.

As a proof-of-concept the here presented analysis is conducted on the publicly avail-
able ALICE Open Data [53] which provides approximately 3.5 million Pb—Pb collisions
at \/snn = 2.76 GeV from the 2010 data-taking period. The analysis is performed on
tracks in the central barrel which provides the necessary pr resolution but limits the 7-
acceptance to |n| < 0.9. The factorization was performed for pairs with |An| > 0.8. The
resulting vo (1, pr) for the 20-30% centrality bin is shown in Fig. D.1. The pp-dependence
of va(n, pr) is clearly visible, while the 7-dependence is not statistically significant for
this data set. An analysis on a larger data set and potentially over a larger n-acceptance
my reveal if va(n, pr) itself can be factorized into v (n)vh™ (pr).
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Figure D.1: Flow coefficients v2(n, pr) in Pb—Pb collisions at 2.76 TeV measured for pairs with
|An| > 0.8. The factorization was performed simultaneously in 7 and pr.

Performance considerations

Performing this analysis using the ALICE software stack (ROOT, AiIROOT, and Ali-
Physics) poses significant technical complications due to the high dimensionality of the
involved histograms. Therefore, this proof-of-concept was performed using the milli-
ALICE (mALICE) framework, a custom, open source analysis framework for the ALICE
Open Data [54]. The performance improvements of mALICE compared to the default
software stack make this analysis easily accessible. The analysis can be performed on
the entire public data set on a commodity desktop computer within approximately 4 h.
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