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Abstract

The fundamentally quantum mechanical properties of single photons
present an exciting opportunity for the development of new technology.
The fragile nature of quantum states makes this a challenging prospect,
pressing stringent demands on the hardware used to generate and pro-
cess the light. In this context, semiconductor quantum dots are emerging
as a promising platform, enabling the realization of highly-efficient sources
of near-identical single photons. In this thesis, we aim to expand the ca-
pabilities offered by these sources and state-of-the-art photonic technology.
We present novel specialized interferometer architectures developed for the
time-bin encoding naturally produced by quantum-dot single-photon sources
(SPSs), that allow for significant reductions in loss. We proceed to lever-
age the advantageous properties of the time-bin encoding by constructing
a resource-efficient interferometer used in an experimental demonstration
of bosonic suppression laws and postselected entanglement using photons
emitted from a quantum-dot SPS. Shifting the focus to photonic integrated
circuits, we design a lithium-niobate-on-insulator (LNOI) chip tailored to
the emission wavelength of our quantum dots. We perform two-photon
interference experiments on two-mode and four-mode interferometers, car-
rying out the first demonstration of the Hong–Ou–Mandel effect on LNOI.
Furthermore, we leverage the fast electro-optic modulators on LNOI to re-
alize an on-chip demultiplexer, which is used to demonstrate active demul-
tiplexing of the single-photon source. Finally, we extend the scope to larger
scales by analyzing the hardware requirements for a quantum advantage
demonstrations using the boson sampling algorithm with photons emitted
from a quantum-dot SPS, determining it to be within reach for current state-
of-the-art hardware.
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Sammenfatning

Enkelt-fotoners fundamentale kvantemekaniske egenskaber præsenterer
spænende muligheder for udvikling af ny teknologi. Kvantemekaniske til-
standes skrøbelige natur angiver udsigterne som udfordrende, og hard-
waren brugt til at generere og behandle lyset skal derfor være meget effektiv.
Her udviser halvledende kvanteøer et lovende potentiale for at lave nær-
ideelle enkeltfotonskilder (EFKer). I denne afhandling tager vi sigte på at
uddybe kapabiliteterne til EFKer og den nyeste kvantefotoniske teknologi.
Vi præsenterer dugfriske specialiserede interferometerarkitekturer udviklet
til den tidsbøtte-indkoding EFKer naturlig producerer, der fører til store re-
duktioner i tab af lys. Derefter benytter vi tidsbøtte-indkodningens gavnlige
egenskaber for at konstruere et ressource-effektivt interferometer benyttet
i en eksperimentel demonstration af bosonisk undertrykkelse og efterud-
valgt kvantesammenfiltring med fotoner lavet af en kvanteø-EFK. Vi skifter
dernæst fokus til fotoniske integrerede kredsløb på en lithium-niobat-på-
isolator-chip (LNPI-chip) specielt designet til den bølgelængde som foton-
erne udsendt fra kvanteørne har. Vi udfører to-foton-interferens-eksperimenter
i et toarmede og firearmede interferometere, og laver så den første demon-
stration af Hong–Ou–Mandel-effekten i LNPI. Videre benytter vi de hurtige
elektro-optiske modulatorer på LNPI for at realisere en on-chip demulit-
plekser der bruges til at demonstrere demultipleksering af en EFK. Til slut
udvider vi omfanget til større skalaer ved at analysere hardware-krav for en
demonstration af quantum advantage ved boson sampling af en kvanteø-
EFK, og bestemmer at det er opnåeligt med nutidens bedste hardware.
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1 Introduction

Scientific progress serves the dual-purpose of expanding what we know,
in the form of knowledge, and what we can do, in the form of technol-
ogy. These two aspects exist in a symbiotic relationship, where an initial
understanding of nature enables the creation of technology, after which the
limitations of this technology will direct and fund future research.

Quantum mechanics, since its advent in the early 20th century, has trans-
formed our understanding of a variety of scientific disciplines—spawning
several new fields—and fundamentally changed the technological landscape.
In the first quantum revolution, a quantum mechanical description of nature
was leveraged in a classical framework to enable the creation of computers
and information processing. As these technologies have been developed to
produce increasingly powerful devices, their fundamental limitations have
become increasingly evident.

One such limitation, the apparent inability to simulate large quantum
mechanical systems, has inspired the field of quantum information process-
ing. Here, information is stored in the form of quantum bits, commonly
shortened to qubits, that behave according to quantum mechanics, allowing
for fundamentally different capabilities. In addition to the prospects of sim-
ulating large quantum systems, theoretical work from the 90s leveraged the
properties of ideal qubit systems to develop novel quantum algorithms that
surpassed the limitations of classical information processing, e.g. Shor’s al-
gorithm (Shor 1999). These developments marked the onset of a potential
second quantum revolution, sparking an intense research effort across mul-
tiple potential material platforms—e.g. trapped ions, superconducting cir-
cuits, and quantum dots—and computing paradigms, each with distinctive
strengths and drawbacks.

Photons play an important role in quantum technologies, as they can tra-
verse vast distances at the speed of light and do not readily interact with one
another or their environment, making them ideal information carriers. As
such, quantum photonics is foundational to quantum communication and
quantum cryptography (Bennett et al. 1984; Zahidy et al. 2023). However,
though the lack of interaction allows for excellent transmission of quantum
information, it also makes it exceedingly difficult to implement the con-
trolled operations required for quantum computing. A turning point for
photonic quantum computing came in 2001, when Knill, Laflamme, and
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Milburn (Knill et al. 2001) showed that these interactions could be synthe-
sized through photonic interference and detection. Photonic quantum com-
puting has since matured to more advanced computing paradigms (Bourassa
et al. 2021; Bartolucci et al. 2023) that incorporate protocols to correct the in-
evitable errors that will occur in any physical quantum computer. One such
computing paradigm, fusion-based quantum computing (FBQC), provides a
roadmap for fault-tolerant quantum computation using entangled states of
single photons (Bartolucci et al. 2023).

A central requirement for quantum photonic technologies is the abil-
ity to prepare photons in a desired state with high efficiency and fidelity.
Though lasers and light bulbs allow for easy generation of light in a co-
herent state or a thermal state, generating light in a quantum state that is
useful for information processing is notoriously difficult. One approach
is to generate single photons—indivisible particles of light—which can be
produced either through nonlinear optical processes or the light–matter in-
teraction of a single quantum emitter. The former approach allows for the
probabilistic generation of correlated photon pairs where the detection of
one photon can be used to herald the presence of the other. This probabilis-
tic process can be made quasi-deterministic by multiplexing many sources
with active feed-forward and high-speed switches, introducing an immense
amount of resource overhead. Alternatively, single photons can be gener-
ated on-demand by employing single quantum emitters such as semicon-
ductor quantum dots. Embedding such a quantum emitter into a nanopho-
tonic structure provides a way to control the charge environment of the
emitter and to enhance the light–matter interaction, enabling low-noise and
highly-efficient operation. Recent experiments have demonstrated that on-
demand single-photon sources (SPSs) based on semiconductor quantum
dots are capable of producing long strings of highly indistinguishable pho-
tons (Uppu et al. 2020), with rapidly improving system efficiencies (Ding
et al. 2023).

As fault-tolerant quantum computing is beyond the reach of current
state-of-the-art hardware, quantum advantage marks an important interme-
diate milestone. A quantum system can demonstrate a quantum advantage
by solving a specialized task with an insurmountable speedup compared to
a classical computer. For single photon sources, this could be achieved by
running the boson sampling algorithm (Aaronson et al. 2011), which replaces
sophisticated controlled qubit transformations with a randomized linear op-
tical interferometer.

With quantum-dot SPSs as a starting point, FBQC as a roadmap and
quantum advantage as an intermediate milestone, there are still many steps
and challenges that remain before we can realize the end goal of build-
ing a quantum computer. In this thesis, we aim to take a few steps for-
ward. We develop novel interferometer architectures in the time-bin en-
coding that play to the strengths of on-demand SPSs, and showcase an
advantageous combination of time-bin interferometers and quantum-dot
SPSs in a resource-efficient experimental demonstration of bosonic suppres-
sion laws. Proceeding, we combine low-loss and rapidly reprogrammable
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photonic integrated circuits in lithium-niobate-on-insulator (LNOI) with a
quantum-dot SPS to realize a combined platform capable of demonstrating
key functionalities required for FBQC. Lastly, we determine concrete hard-
ware requirements for demonstrating quantum advantage, to evaluate how
this milestone may be reached with near-term hardware.

1.1 Thesis outline
This thesis is structured as follows:

• Chapter 2 introduces the necessary background for the thesis. The
chapter starts by introducing the working principles of a quantum-
dot single-photon source and the key figures of merit for single pho-
ton states. We then proceed to introduce how the linear optical circuits
used to transform our photonic states can be constructed, and the for-
malism of photonic qubits.

• Chapter 3 details interferometers encoded in the time-bin encoding
that is naturally produced by on-demand single-photon sources. After
an introduction of already-established architectures, we show how the
time-bin encoding is particularly well-suited to implementing mode-
permutations that enable novel interferometer architectures.

• Chapter 4 presents an experimental demonstration of bosonic sup-
pression laws using a resource-efficient time-bin interferometer.

• Chapter 5 shows experimental results from single photons processed
using photonic integrated circuits on a thin-film LNOI chip. The chap-
ter introduces design considerations and experimental challenges that
had to be addressed, and presents the results of experiments with
single-photons using the fabricated devices.

• Chapter 6 establishes concrete hardware requirements for quantum
advantage demonstrations of boson sampling using on-demand single-
photon sources.

• Finally, Chapter 7 provides concluding remarks and outlook for future
experiments.
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2 Background

2.1 An introduction to single photons
In order to understand how single photons can be created and employed

in quantum information processing, it’s important to establish exactly what
a single photon is, and how its behavior is different from the much-more
readily available coherent states produced by lasers. To this end, we will
examine three setups illustrated in Fig. 2.1, which will demonstrate how
single photons manifest both sides of the famous wave–particle duality of
quantum mechanics, and lay the foundation for evaluating the quality of
a single-photon source. First, a mathematical framework of quantum me-
chanical multimode Fock states is introduced. The framework is introduced
in multiple parts, starting with the properties of quantum mechanical states,
followed by an introduction of how Fock states in a single mode and in
multiple modes can be represented using bosonic operators, and how these
states are transformed by beamsplitters and phase-shifters. After establish-
ing the properties of single-photons, the same framework is used to repre-
sent coherent states, allowing for the introduction an experimental protocol
to discriminate single-photon states from coherent states.

Before diving into a mathematical framework, consider that a single
photon is a single quantized particle of light. This statement doesn’t have
to be assumed or accepted, but can (and should!) be verified experimen-
tally. In order to do so, we can employ the experimental setup illustrated
in Fig. 2.1a. Prospective single photons are sent into a 50/50 beamsplitter,
and the two output ports are connected to detectors that register a detection
event, i.e. "click", if there is any amount of light. The 50/50 beamsplitter
will split incoming light equally between the two outputs, which means
that, on average, both detectors should detect the same amount of light.
However, if the light is truly composed of a single quantized particle, which
cannot be split into smaller pieces, we should never observe the two de-
tectors clicking at the same time, i.e. a coincidence. This effect, which is
observed experimentally, is known as the Hanbury Brown and Twiss (HBT)
effect (brown1954lxxiv), and relates more generally to the second-order au-
tocorrelation function, g(2)(t = 0), which can be used to discriminate various
photon states as will be shown in more detail later.
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2.1.1 Quantum mechanical states

The following section will give a brief overview of the parts of quantum
mechanics that are relevant to our calculations. A quantum mechanical state
is described by a vector in Hilbert space, which spans all possible states that
our system can take. For instance, in the simple case of the previous exam-
ple of a single photon in two modes, the Hilbert space has two basis states,
one where the photon is in the top mode, and one where the photon is in the
bottom mode, which we will denote as |0⟩ and |1⟩. These states are vectors
in Hilbert space in the bra-ket notation, where the Hermitian conjugate, i.e.
the complex transpose is denoted as |i⟩† = (|i⟩T )∗ = ⟨i|. Furthermore, basis
states of the Hilbert space, |si⟩, are required to be orthonormal, i.e. subject
to the constraint that the inner product between two states ⟨si|sj⟩ is equal to

⟨si|sj⟩ = δij,

where δij is the Kronecker delta, defined as

δij =

{
1, i = j,

0, i ̸= j.

The state of our system, |ψ⟩, is allowed to take a linear combination of the
basis states, |si⟩, commonly referred to as a superposition

|ψ⟩ =
∑
i

ci |si⟩
simple case

= c0 |0⟩+ c1 |1⟩ , (2.1)

where the coefficients ci are subject to the constraint∑
i

|ci|2
simple case

= |c0|2 + |c1|2 = 1. (2.2)

To see why, we first note that the expectation value of an operator Ô in
quantum mechanics is given by the inner product

⟨O⟩ = ⟨ψ| Ô |ψ⟩ . (2.3)

We then consider the projection operator P̂0 = |0⟩ ⟨0|. Due to orthonormal-
ity, acting upon the state of the system yields

P̂0 |ψ⟩ = c0 |0⟩ ⟨0|0⟩+ c1 |0⟩ ⟨0|1⟩ = c0 |0⟩ , (2.4)

i.e. the system is left in the basis state |0⟩. As such, the expectation value of
P̂0 corresponds to the probability of finding the system in the state |0⟩:

⟨ψ| P̂0 |ψ⟩ = ⟨ψ|0⟩ ⟨0|ψ⟩ = c∗0c0 = |c0|2. (2.5)

Thus, the complex coefficients ci, corresponds to probability amplitudes, the
absolute square of which correspond to the probability of finding the system
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in the associated state.
The constraint on the probability amplitudes imposes a constraint on all

transformations on the system. Transformations on the system should leave
the system in a normalized state where the absolute squares of the probabil-
ity amplitudes still sum to 1. Thus, transformations UT on the system must
be unitary, meaning

| det(UT )| = 1,

U−1
T = U †

T ⇔ UTU
†
T = U †

TUT = 1,
(2.6)

where 1 is the identity matrix.

2.1.2 Mathematical framework

We typically represent single photons, or more generally Fock states of
photons, using bosonic creation operators. The bosonic creation operator
â†, acting on the vacuum, |0⟩, i.e. a state containing no photons, produces a
state with a single photon, â† |0⟩ = |1⟩. In a similar manner, we can create
a state with two photons by acting on the single-photon state with another
creation operator, which behaves like â† |1⟩ =

√
2 |2⟩, with a prefactor

√
2.

The Hermitian conjugate of the creation operator, i.e. â, will annihilate one
excitation from the state, i.e. â |2⟩ =

√
2 |1⟩, and is accordingly called an

annihilation operator. The general transformations of the creation and anni-
hilation operators acting on a Fock state |n⟩, as well as their commutation
relation can be defined as

â |n⟩ =
√
n |n− 1⟩ ,

â† |n⟩ =
√
n+ 1 |n+ 1⟩ ,[

â, â†
]
= 1,

(2.7)

where [a, b] = ab− ba. The prefactors,
√
n and

√
n+ 1, lead to two important

properties. First, they define the behavior of the annihilation operator acting
on the vacuum state as â |0⟩ = 0, which prevents Fock states with a negative
number of photons. Second, they allow for the definition of the Hermitian
number operator as n̂ = â†â, for which the Fock states |n⟩ are eigenstates with
eigenvalues n̂ |n⟩ = n |n⟩.

This description only allows for the photons to occupy a single mode. A
mode corresponds to a degree of freedom of the photon that is fixed. For
instance, for photons occupying different spatial modes, the photons in the
same mode have the same position and direction of propagation. If we want
to describe two photons propagating in different directions, as will be the
case after a beamsplitter, we must generalize to a multimode description.
To this end, we associate a vacuum state to each mode we want to repre-
sent, such that for a two mode case, the vacuum state can be written as
|0⟩ → |0⟩0 |0⟩1, where the subscript denotes the mode. Each vacuum is as-
sociated to distinct creation and annihilation operators, â†i and âi, subject to
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the following relations

âi |n⟩i |ψ
′⟩ =

√
n |n− 1⟩i |ψ

′⟩ ,
â†i |n⟩i |ψ

′⟩ =
√
n+ 1 |n+ 1⟩i |ψ

′⟩ ,[
âi, â

†
j

]
= δij.

(2.8)

Here, the photonic state is given by |ψ⟩ =
∏

i |n⟩i, which we represent as
|n⟩i |ψ′⟩ = |n⟩i

∏
j ̸=i |n⟩j for notational convenience.

Using this formalism, we define the operation of the beamsplitter as a
transformation of the creation and annihilation operators. The 50/50 beam-
splitter should take a photon incident in one of the modes, and split it into
an equal superposition of the two modes:

â†0
BS→ αâ′†0 + βâ′†1 , |α|2 = |β|2 = 0.5. (2.9)

Here, the output modes are represented by creation operators with primes,
â′†i . For notational convenience, we will omit these primes. We can represent
this as a unitary transformation acting on a vector of the form

|ψ⟩ =
(
c0â

†
0 + c1â

†
1

)
|0⟩0 |0⟩1 =

[
c0
c1

]
, (2.10)

where we can define the unitary transformation as

UBS =

[
α β
γ δ

]
. (2.11)

For a 50/50 beamsplitter which splits an input in one mode equally across
the two outputs we know that,

|α|2 = |β|2 = 0.5,

and we know from Eq. (2.6) that | det(UBS)| = 1, implying

|γ|2 = |δ|2 = 0.5.

There are (infinitely) many choices of parameters that satisfy these require-
ments. We will fix the beamsplitter transformation as

UBS =
1√
2

[
1 1
1 −1

]
. (2.12)

In order to analyze the setup in Fig. 2.1b, we also have to define the
transformation of the phase-shifter. This component shifts the phase of the
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a BS
or

c BS
or

b

BS BS

or

φ

FIGURE 2.1: a A single-photon scattering on a beamsplitter. b
A single-photon scattering on a Mach–Zehnder interferometer
(MZI) comprised of two beamslpitters with a phase-shifter in
the middle. c Two photons scattering on a beamsplitter.

probability amplitude in one mode, and does nothing to the probability am-
plitude in the other mode. As such, if we have two modes and the phase-
shifter acts on the first mode, we can define its unitary transformation as

UPS(ϕ) =

[
eiϕ 0
0 1

]
. (2.13)

2.1.3 Single photons scattering on beampslitters

In Fig. 2.1a, we have the input state

|ψ⟩input, a =

[
1

0

]
. (2.14)

Applying the beamsplitter transformation defined in Eq. (2.12) results in the
output state

|ψ⟩output, a = UBS |ψ⟩input =
1√
2

[
1

1

]
. (2.15)

Upon detection, the photon will be found in either the top mode or the
bottom mode, with equal probability 1/2. In other words, as it is a single
photon only one of the detectors can click at a time, i.e. the HBT effect.

In the second setup, we add a phase-shifter to one of the modes and add
another beamsplitter between the two modes to construct a Mach–Zehnder
interferometer (MZI). The transformations of the phase-shifter and beam-
splitter given by Eq. (2.12) and Eq. 2.13, respectively, yields

|ψ⟩output, b = UBSUPS(ϕ) |ψ⟩output, a =
1

2

[
eiϕ + 1
eiϕ − 1

]
= eiϕ/2

[
cos(ϕ/2)

i sin(ϕ/2)

]
. (2.16)

The phase-shifter in the top mode leads to interference after the beamsplit-
ter, where the exact value of the phase-shift determines the coefficients in
the superposition. For instance, for the settings ϕ = 0 and ϕ = π, the photon
will be found in the top mode or bottom mode, respectively, with probabil-
ity 1, whereas for ϕ = π/2 we get an equal probability of detecting the pho-
ton in either mode at the output. This showcases the wave–particle duality
of single photons, with wave-like interference determined by the relative
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phase between the two modes and particle-like detection, with the photon
only being detected in a single mode at a time.

In the setup shown in Fig. 2.1c, two single-photons are incident on the
beamsplitter. We can represent the initial state of these photons as the direct
product of each single-photon

|ψ⟩input, c = â†0â
†
1 |0⟩0 |0⟩1 . (2.17)

The beamsplitter will act on each photon independently to produce the out-
put state

|ψ⟩output, c =
1

2
(â†0 + â†1)(â

†
0 − â†1) |0⟩0 |0⟩1

=
1

2
(â†0â

†
0 − â†1â

†
1) |0⟩0 |0⟩1

=
1√
2
(|2⟩ |0⟩ − |0⟩ |2⟩). (2.18)

Similarly to the first setup, coincidences will not occur, however, in this
case they are prohibited by interference between the two input photons.
This effect is known as the Hong–Ou–Mandel (HOM) effect (Hong et al.
1987), and requires that the two photons are indistinguishable, meaning that
apart from being initialized in different modes, their internal degrees of free-
dom like polarization, wavelength, temporal shape are all exactly the same
and that they overlap perfectly in time. To see why indistinguishability is
crucial for the HOM effect, we can consider the case where the first photon
is described by creation operators â†i and the second photon is described by
creation operators â′†i . The resultant output state will be

|ψ⟩output =
1

2
(â†0 + â†1)(â

′†
0 − â′†1 ) =

1

2
(â†0â

′†
0 + â†0â

′†
1 − â†1â

′†
0 − â†1â

′†
1 )

=
1

2
(|1, 1′⟩ |0⟩+ |1⟩ |1′⟩ − |1′⟩ |1⟩ − |0⟩ |1, 1′⟩). (2.19)

As the two photons do not interfere with one another, the two detectors will
click simultaneously to produce a coincidence with a probability of 50%.

2.1.4 Fock basis representation of coherent states

The Fock states can also be used as a basis to represent other types of
states, such as coherent states and thermal states. We often make use of co-
herent states in experiments, as they can be generated using lasers. As such,
it’s useful to cover the description of coherent states in our framework, as
we can see how their properties differ from the Fock states we’re interested
in. Coherent states |α⟩, are eigenstates of the annihilation operator, meaning
that â |α⟩ = α |α⟩. This is possible because coherent states are superpositions
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of an infinite number of photons, which can be seen from its Fock-basis rep-
resentation:

|α⟩ = e−|α|2/2
∞∑
n=0

αn√
n!

|n⟩ . (2.20)

To get a physical intuition for the complex number α, we can take the ex-
pectation value of the number operator for a coherent state:

⟨α| n̂ |α⟩ = (⟨α| â†) · (â |α⟩) = α∗ · α ⟨α|α⟩
= |α|2. (2.21)

As such, |α|2 corresponds to the average number of photons in the coherent
state. The number α is allowed to take any complex value, which means
that the average number of photons can be any real number larger than or
equal to zero. If α ≪ 1, then we can approximate the coherent state as

|α⟩ ≈ |0⟩+ α |1⟩+ α2

√
2
|2⟩+O(α3). (2.22)

In other words, mostly vacuum with a small probability of a single pho-
ton and a much smaller probability of two or more photons. However, no
matter how low the number α is, we will not observe the HBT effect for a
coherent state.

To outline why, we will first look at a coherent state impinging on one
mode in a beamsplitter, and relate this experiment to the measurement of
the second-order autocorrelation function g(2)(t = 0).

2.1.5 Coherent state scattering on a beamsplitter

Suppose we initialize a weak coherent state to the top input mode of the
beamsplitter. We approximate the input state as

|α⟩ ≈
(
1 + αâ†0 +

α2

√
2
â†0â

†
0 +O(α3)

)
|0⟩ . (2.23)

In the same manner as in the HOM setup, the beamsplitter will act on each
creation operator independently, yielding

|α⟩ ≈
(
1 +

α√
2
(â†0 + â†1) +

α2

2
√
2
(â†0 + â†1)(â

†
0 + â†1) +O(α3)

)
|0⟩

=

(
1 +

α√
2
(â†0 + â†1) +

α2

2
√
2
(â†0â

†
0 + 2â†0â

†
1 + â†1â

†
1) +O(α3)

)
|0⟩ . (2.24)

The term proportional to α2 will invariably lead to the coincidental detec-
tor clicks. In an experiment, the rate at which coincidences are detected is
proportional to α2, i.e. a small number, which means the number of coinci-
dences will depend on the integration time of the experiment, i.e. how long



12 Chapter 2. Background

we wait for coincidences to be detected. In order to be able to compare the
statistics recorded in different experiments, one typically measures a nor-
malized quantity, called the normalized second-order correlation function
g(2)(τ), which takes the lower overall detection rate into account by divid-
ing by the square of the intensity. For this experiment, we allow for one
detector to be delayed by τ and record the normalized coincidence count
at the given time. It can be shown (Gerry et al. 2005) that this measure can
be expressed in terms of creation and annihilation operators of the initial
single-mode state before the beamsplitter as

g(2)(τ) =
⟨â†(t)â†(t+ τ)â(t+ τ)â(t)⟩
⟨â†(t)â(t)⟩⟨â†(t+ τ)â(t+ τ)⟩

, (2.25)

where the parameter τ corresponds to the time-delay between the detec-
tors. The most interesting point is at zero time-delay τ = 0. Assuming no
time-dependence for the coherent state, i.e. an equal probability of detect-
ing a photon at any given time, we can omit the time-dependence of the
operators, such that

g(2)(0)coherent-state =
⟨α| â†â†ââ |α⟩

⟨α| â†â |α⟩ ⟨α| â†â |α⟩

=
|α|4

|α|2 · |α|2
= 1 (2.26)

Assuming a similar time dependence for a single-photon state yields

g(2)(0)single-photon =
⟨1| â†â†ââ |1⟩

⟨1| â†â |1⟩ ⟨1| â†â |1⟩

=
0

1 · 1
= 0, (2.27)

which is in perfect agreement with the HBT effect.

2.1.6 Figures of merit for single-photon states

The power of single photons comes from their uniquely quantum me-
chanical behavior, which is manifestly different from that of other states
of light such as coherent states emitted by lasers. The quantized nature of
single photons can be validated experimentally by measuring the normal-
ized second-order correlation function at zero time-delay, g(2)(0). Due to
the HBT effect, the value of this function should be measured as zero for
single-photon sources. A finite g(2)(0) implies the existence of multipho-
ton components in the photonic state, as showcased by coherent states for
which we will always measure g(2)(0) = 1, regardless of how low the aver-
age number of photons is. Furthermore, in order to make use of interference
between multiple single-photons, the photons have to be indistinguishable
over all internal degrees of freedom. This can be validated experimentally
through the verification of the HOM effect, whereby the interference of two
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single photons impinging on each input arm of a beamsplitter prohibits the
measurement of a coincidence detection in the two output modes.

2.2 Operating principle of a quantum-emitter single-
photon source

A quantum emitter is a system with an optically active transition be-
tween discrete energy levels allowing for the excitation of a single quantum,
whereupon radiative decay will produce a single photon. In order to un-
derstand how this system can be operated as an on-demand single-photon
source, we need to understand

1. How the quantum emitter can be prepared in the excited state.

2. How the excited state produces a single photon.

3. How the emitted single photon can be collected.

For each step, it is instrumental that the efficiency is as close to unity as
possible to ensure deterministic generation of single photons. Insight into
the principles behind each step will also allow us to understand the origins
of specific errors that manifest in the measurements of g(2)(0) and the HOM
effect.

2.2.1 Deterministic preparation of a quantum emitter using
resonant excitation

There are various ways in which the quantum emitter can be prepared in
an excited state, each with their own advantages and drawbacks. In the ex-
periments covered in this thesis, we make use of an approach called resonant
excitation, where we excite the system by driving it with a laser pulse that
is resonant with the quantum emitter transition. The physics of resonant
excitation can be understood from how a two-level system interacts with a
driving light in the absence of damping. The details of the derivation will
not be covered here, and we will instead make use of the results from Gerry
et al. 2005. This derivation takes the semiclassical approximation by treating
the light field as classical, which is reasonable for the laser pulses we want
to drive the system with, and treats the light–matter interaction in the rotat-
ing wave approximation, which is valid as long as the interaction is not in
the strong-coupling regime 1. Furthermore, the derivation assumes that the
two-level system has a dipolar interaction with the light field, with a dipole
moment of deg. When this two-level system interacts with a light field with
electric field amplitude E0 and detuning ∆ with respect to the transition,

1This means that the rate of exchange of energy between the two-level system and light
field should be much slower than the resonance frequency of the transition.
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FIGURE 2.2: Illustration of the time-evolution of the state of a
quantum emitter (QE) (top panels) upon interaction with three
different kinds of laser fields (bottom). In the leftmost panel,
the intensity of the laser is constant in time, leading to the state
of the emitter oscillating between the ground state and excited
state. In the middle panel and right-most panel, the laser is
a pulse in time, where the pulse area leaves the system in the
excited state for the middle panel, and back in the ground state
in the rightmost panel.

the state of the system at time t will be given by (Gerry et al. 2005)

|ψ⟩ = ei∆t/2
[
cos(ΩRt/2)− i

∆

ΩR

sin(ΩRt/2)

]
|g⟩+ i

V
ΩRℏ

ei∆t/2 sin(ΩRt/2) |e⟩ ,

(2.28)

where V = −deg ·E0 i.e. the strength of the interaction between the light field
and the two-level system, and where ΩR =

√
∆2 + V2/ℏ2, which is known

as the Rabi frequency. When the light field is resonant with the transition,
such that the prefactors V

ΩRℏ = 1 and ∆
ΩR

= 0, the state of the two-level
system oscillates coherently from being completely in the ground state to
being entirely in the excited state, as illustrated in Fig. 2.2. These oscillations
are known as Rabi oscillations. If the driving light is in the form of a pulse,
the two level system will be left at a certain point in the fringe after the
interaction. This end point is determined by the pulse area, which depends
on the pulse length and amplitude. Fig. 2.2 shows two examples, one where
the pulse area leads to half a period of oscillation, i.e. a phase of π, and one
where the pulse area leads to a whole period of oscillation, i.e. a phase of 2π.
The former pulse, which is called a π-pulse, can be used to deterministically
invert the population of the quantum emitter from the ground state to the
excited state.
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FIGURE 2.3: Spontaneous emission of a single-photon. The
plot in the bottom panel shows the probability for the quan-
tum emitter to remain in the excited state as a function of time.

2.2.2 Producing a single photon through spontaneous emis-
sion

The quantum emitter is not an isolated system, and our excited state will
inevitably decay to lower energy levels through various channels, such as
radiative emission of a single photon or nonradiative emission of a phonon,
as illustrated in Fig. 2.3. This process can be described quantitatively by
modeling the system accurately and treating the equations of motion for
the system connected to thermal baths. Here, we will make use of results
presented in Lodahl et al. 2015 to provide a qualitative picture of the process
and see the sources of error that can arise.

We start by considering a quantum emitter that can only decay to the
ground state radiatively by spontaneously emitting a single photon at a rate
of γ, as seen in Fig. 2.3. Supposing this emitter is initialized in the excited
state, we can express the state of the quantum emitter and the electromag-
netic field at time t as

|ψ⟩ (t) = e−γt/2 |e⟩ |0⟩+
√
1− e−γt |g⟩ |1⟩ , (2.29)

where |e⟩ (|g⟩) is the excited (ground) state of the quantum emitter. As time
passes, it will be more and more likely for the quantum emitter to have
decayed to the ground state by emitting a photon.

Though this example assumed the emitter was prepared in the excited
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state, our preparation scheme of applying a π-pulse did not take sponta-
neous decay into consideration. As the π-pulse used for the preparation of
the quantum emitter interacts with the emitter for a finite amount of time,
it is possible for the system to spontaneously decay within the pulse dura-
tion, at which point it can be partially excited by the remainder of the pulse
and emit an additional photon. As such, a single π-pulse can lead to the
emission of multiple photons, which will manifest in the measurement of a
nonzero g(2)(t = 0) value. As the probability for the system to have sponta-
neously decayed grows with time, the magnitude of the multiphoton noise
will be higher for longer π-pulses. Accordingly, we typically restrict pulse
lengths to be much shorter than the average time it takes for the system to
emit a photon, characterized by the radiative decay rate, i.e.

τπ-pulse ≪ 1/γ. (2.30)

For a quantum emitter connected to multiple decay paths, we associate
a decay rate for each decay path. The total decay rate γ will be equal to the
sum of individual decay rates γi

γ =
∑
i

γi. (2.31)

We typically separate the decay rate into a radiative decay rate γrad for which
the decay produces a single photon, and a nonradiative decay rate γnonrad,
where no photon is produced. The decay rate of the emitter will then be
equal to

γ = γrad + γnonrad. (2.32)

Thus, upon excitation, the quantum emitter will produce a single photon
with probability equal to

γrad

γrad + γnonrad
. (2.33)

2.2.3 Enhancing and collecting single-photon emission

Producing a single photon is not sufficient by itself. In order to use the
single photon it will have to be collected into a well-defined mode, at which
point it can be routed where it is needed, i.e. into an interferometer or a pho-
tonic circuit. If we consider a quantum emitter in a bulk material, the emitter
can decay by emitting a photon in any direction, and it becomes practically
impossible to collect all of the emission. Thus, in order to produce single
photons with close to unity efficiency we have to ensure as high of a ra-
diative decay rate as possible, and direct the emission into a well-defined
mode. To this end, it’s instructive to look at how the radiative decay rate is
determined. We make use of a result from Lodahl et al. 2015, which derives
the following expression for the radiative decay rate of a dipole emitter in
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γtargetγtarget

FIGURE 2.4: Enhancing the target emission of a quantum emit-
ter (red pyramid) by altering the photonic environment

the Wigner–Weisskopf approximation:

γrad =
πd2

ϵ0ℏ
ω0ρ, (2.34)

where d is the dipole moment of the optical transition and ρ is the local
density of states (LDOS). The LDOS is determined by the electromagnetic
properties of the environment around the emitter and can be increased by
placing the emitter in a photonic structure, such as an open microcavity
(Ding et al. 2023) or a photonic crystal waveguide (Zhou et al. 2022). By
sculpting the environment around the emitter, we can also ensure that the
quantum emitter preferentially emits a photon into a specific mode, such as
the guided mode of a photonic crystal waveguide. If we define the decay
rate of the emitter into the mode we collect as γtarget, as illustrated in Fig. 2.4,
we can define the probability of the quantum emitter producing a single-
photon upon excitation, which we refer to as the β-factor, as

β =
γtarget

γ
. (2.35)

Collection concerns itself with directing the photon emission into a spe-
cific spatial mode. However, we know from the HOM effect that photons
have to be indistinguishable across all internal degrees of freedom to ex-
hibit quantum interference. A source of error for the indistinguishability
of photons emitted from solid-state quantum emitters, e.g. semiconduc-
tor quantum dots, is that the coupling to phononic modes in the solid-
state material allows for phonon-assisted radiative decay. In this process, the
emitter decays by emitting a photon with a lower (higher) energy than the
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a b

FIGURE 2.5: a Emission spectrum for an InGaAs quantum dot
emitter for varying temperature. Adapted from Lodahl et al.
2015. b Measured emission spectrum from an InGaAs quan-
tum dot emitter. Note that the x-axis is different compared to
a, such that the red-detuned side-band is on the right-hand
side. Adapted from Uppu et al. 2020.

excited-state–ground-state transition by simultaneously creating (annihilat-
ing) a phonon. This leads to an emission spectrum as shown in Fig. 2.5,
where in addition to the sharp line corresponding to the emission of a pho-
ton resonant with the transition there is a phonon sideband. The blue-detuned
part of the spectrum, requiring the annihilation of a phonon, will be pro-
portional to the number of phonons present in the material, which will de-
crease with temperature. However, even as the number of phonons goes to
zero, it is always possible for the emitter to produce a lower energy pho-
ton by simultaneously creating a phonon. In other words, the red-detuned
phonon sideband will persist even as the temperature approaches absolute
zero. To remove the error from phonon-assisted decay, we can send the
emitted light through a narrow-band wavelength filter that admits the zero-
phonon line and filters out the phonon sideband. This will, however, limit
the efficiency of the single-photon source. Resultantly, quantum emitters
with higher yield into the zero-phonon line, i.e. lower-amplitude phonon
sideband are favored for use as on-demand single-photon sources.

It is crucially important when collecting single-photon emission that it
is separated from the laser light used to prepare the quantum emitter in the
excited state. Suppose we were to resonantly excite the emitter by send-
ing a pulse into the mode used for collection of single-photon emission. In
that case, it would be impossible to efficiently filter out the pump light, as
it would be spectrally and temporally overlapped with the single-photon
emission. For certain photonic structures, such as micropillar cavities, this
renders efficient resonant excitation infeasible. Instead, one has to resort to
non-resonant excitation schemes where wavelength filters can be used to
separate the driving light from single-photon emission. In the case of an
emitter embedded in a photonic crystal waveguide, this issue can be cir-
cumvented by driving the system from the out-of-plane emission mode and
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collecting emission through the waveguide, as illustrated in Fig. 2.6. This is
possible even if the system is only weakly coupled to the out-of-plane mode,
as we can compensate for the weaker coupling by increasing the power of
the driving pulse. Furthermore, as the out-of-plane mode is perpendicu-
lar to the propagating mode in the waveguide, there is little-to-no coupling
from the out-of-plane pulse into the waveguide mode itself. However, as
this excitation scheme relies upon the emitter being weakly coupled to the
out-of-plane mode, characterized by the decay rate of the system to out-of-
plane radiation, it is also inherently reliant on a nonunity β-factor.

2.2.4 Experimental realization of a quantum-dot single-photon
source in a photonic crystal waveguide

To conclude this section, we will examine the single-photon source used
for the experiments described in this thesis, which is based on an InGaAs
quantum dot embedded in a one-sided photonic crystal waveguide. This
source is the result of a long-standing collaboration between three academic
groups in Copenhagen, Basel, and Bochum. The current device is based
on an InGaAs wafer grown by Nikolai Bart in the group of Arne Ludwig
and Andreas D. Wieck in Bochum, with nanophotonic devices fabricated by
Ying Wang and Leonardo Midolo in Copenhagen, and builds on years of
research and effort by previous group members.

An SEM image of the source is shown in Fig. 2.6a. To drive the source,
short laser pulses with a pulse duration of 22 ps are sent orthogonally to the
waveguide from the top, and single-photon emission is directed towards
a grating coupler, which couples light out of the chip into a fiber. After
fiber collection, the photons are routed into an narrowband etalon cavity
that admits the zero-phonon line and filters out the phonon sideband. The
efficiency of the etalon depends both on the transmission of the cavity at
resonance, as well as the yield of the zero-phonon line. The zero-phonon
line was not estimated for the source used here but has been estimated to be
around 95% for previous sources developed in the group (Uppu et al. 2020).
The efficiency of the source after the etalon was estimated as 21.7%. The
β-factor was not estimated directly for this source, however it is included
in the efficiency associated with reaching the shallow-etched grating, which
is estimated to be over 90% (Wang et al. 2023). For previous quantum dot
sources used in the group, the β-factor has been estimated to range from
92% (Uppu et al. 2020) to 95% (Zhou et al. 2022).

By sending the single-photon emission onto a beamsplitter and record-
ing coincidences, as shown in Fig. 2.6c i, a g(2)(0) value of 0.008 was mea-
sured. To extract this value from the measured coincidences, the area of the
peak at zero time-delay was normalized by the area of the peak at a time
delay of 13.8 ns, i.e. the separation to the subsequent photon.

To quantify the indistinguishability of the photons, the Hong–Ou–Mandel
interference visibility was measured by recording coincidences for two co-
polarized single-photons interfering on a 50/50 beamsplitter, and normaliz-
ing by the coincidences for the interference of two cross-polarized photons,
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i.e. completely distinguishable photons. This HOM visibility is a lower
bound of the overlap integral of the wavefunction of the two photons, i.e.
their mutual indistinguishability. The setup used to do so is schematically
illustrated in Fig. 2.6d. In order to interfere two subsequent photons, the
output photons are sent into an asymmetric MZI, where the lower arm con-
tains a delay to synchronize the two photons. Supposing that the first of two
photons is delayed in the bottom arm, and the second photon enters the top
arm, they will coincide on a second beamsplitter. This has an overall success
probability of 25%. In order to calibrate the number of recorded coincidence
counts, a HWP in the upper arm can be set to π/4 radians to cross-polarize
the photons, in which case the two photons entering the beamsplitter are
completely distinguishable. The recorded coincidences for co- and cross-
polarized photons are both shown in Fig. 2.6d. A HOM visibility of 94.5%
± 1.7% was measured.

2.3 Linear optics and photonic quantum comput-
ing

Single photons can enable quantum technologies with diverse applica-
tions, including quantum communication and networks, and quantum in-
formation processing (Degen et al. 2017; O’brien et al. 2009; Wang et al.
2020). Central to all of these applications is the ability to manipulate the
state of the photons. This manipulation is typically performed using lin-
ear optical components, such as the MZI used to control the state of a single
photon in two modes in the previous chapter. We will introduce how large
multimode interferometers can be constructed by arranging a fixed number
of MZIs to allow for the implementation of any linear optical transformation
and introduce a mathematical formalism to translate this into a transforma-
tion on a general multimode multiphoton state.

In practice, we manipulate the photonic state using a variety of experi-
mental components. We will give an overview of the components used in
both bulk optics and photonic integrated circuits and how they relate to our
mathematical formalism.

To understand how single photons can be used for quantum informa-
tion processing, we give a basic introduction to and an overview of pho-
tonic quantum computing, and the requirements posed by photonic quan-
tum computing on the optical circuitry.

2.3.1 Universal multimode interferometers

Linear optical components are components that perform the same op-
tical transformation regardless of the number of photons. Linear optics is
contrasted by nonlinear optics, where the transformation itself depends on
the number of photons present. Nonlinear optical effects are typically too
weak to make use of in the regime of single photons, and as such, most of
our experimental setups will be composed of linear optical components.
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FIGURE 2.6: Experimental setup and results for the SPS used
for the experiments detailed in this thesis. a SEM image of the
quantum dot and single-sided photonic crystal waveguide.
Adapted from Wang et al. 2023. b Illustration of the experi-
mental setup used to operate a quantum dot as an on-demand
single-photon source. c-d (Left) Schematic of the experimen-
tal setup used to measure g(2)(t) (c) and HOM visibility (d) for
the single-photon source using a balanced beamsplitter (BS),
superconducting nanowire single-photon detectors (SNSPDs)
and a time tagger (TT). The setup in d has an additional beam-
splitter with a half-wave plate (HWP) added to one arm and a
delay added to the other (allowing for passive demultiplexing
of pairs of photons). The HWP allows for the HOM visibility
to be measured both in the co- and cross-polarized case, i.e.
with indistinguishable and completely distinguishable pho-
tons.(Right) Experimentally measured data for g(2)(t) (c) and
HOM visibility (d), adapted from Wang et al. 2023.
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Linear optical transformations are described by unitary transformations
that act on the modes of the photons. In the case of a single-photon state
this is equivalent to the Hilbert space of the system. For multiple photons,
however, as we examined in the setup used to demonstrate the HOM effect,
each creation operator has to be transformed independently, i.e. the trans-
formation on each photon is independent of the other photons present. We
will cover how a unitary transformation on the modes can be mapped to a
unitary transformation on the Hilbert space of a multiphoton state in a later
section. For now, we restrict the focus to how we can construct arbitrary
linear optical transformations.

The starting point for our foray is a modified MZI, as illustrated schemat-
ically in Fig. 2.7. As before, we have two beamsplitters with a phase-shifter
in the middle, but we have now added a phase-shifter before the first beam-
splitter and one after the second beamsplitter. Multiplying the transforma-
tion for each component together yields

UMZI(ϕ1, ϕ2, ϕ3) = UPS’(ϕ3)UPS(ϕ2)UBSUPS(θ)UBSUPS(ϕ1)

= eiθ/2
[

ei(ϕ1+ϕ2) cos(θ/2) ei(ϕ2+π/2) sin(θ/2)
ei(ϕ1+ϕ3+π/2) sin(θ/2) eiϕ3 cos(θ/2)

]
. (2.36)

Here, the transformation UPS’ denotes a phase-shifter on the bottom mode.
By specifying the phases ϕ1, θ, and ϕ2, we can perform an arbitrary unitary
transformation up to a global phase, whereas control of the phase ϕ3 allows
for the specification of the global phase as well. As the global phase does
not lead to any measurable difference in the unitary transformation, this
phase-shifter will often be omitted.

Universal unitary transformation on two modes

To illustrate the universality of the unitary transformation, we consider
the example of transforming from an arbitrary input state |ψ⟩in to an arbi-
trary output state |ψ⟩out, defined as

|ψ⟩in = |α|eiϕα |1⟩ |0⟩+ |β|eiϕβ |0⟩ |1⟩
|ψ⟩out = |γ|eiϕγ |1⟩ |0⟩+ |δ|eiϕδ |0⟩ |1⟩ .

We start by rewriting the input state as

|ψ⟩in = eiϕβ
(
|α|ei(ϕα−ϕβ)| |1⟩ |0⟩+ |β| |0⟩ |1⟩

)
. (2.37)

Setting the phase ϕ1 = (ϕβ−ϕα)+π/2 and transforming by the phase-shifter
unitary, Eq. (2.13), yields

|ψ⟩1 = eiϕβ (i|α| |1⟩ |0⟩+ |β| |0⟩ |1⟩) . (2.38)

Here, the term (ϕβ − ϕα) removes the relative phase difference, whereas the
purpose of the π/2 term is to compensate for a phase offset introduced by
the MZI transformation that will be applied next. The unitary matrix for an
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FIGURE 2.7: Universal two mode interferometer

MZI containing a single phase-shifter characterized by a phase shift of θ is
equivalent to

UMZI(θ) = UBSUPS(θ)UBS = eiθ/2
[
cos(θ/2) i sin(θ/2)
i sin(θ/2) cos(θ/2)

]
. (2.39)

Thus, after the MZI transformation, the photonic state is equal to

e−i(ϕβ+θ/2) |ψ⟩2 = i [|α| cos(θ/2) + |β| sin(θ/2)] |1⟩ |0⟩ (2.40)
+ [|β| cos(θ/2)− |α| sin(θ/2)] |0⟩ |1⟩ . (2.41)

We want the absolute value of the first and second prefactors to be equal
to |γ| and |δ|, respectively. As we know that |c1|2+ |c2|2 = |γ|2+ |δ|2 = 1, this
is equivalent to the ratio of the prefactors being equal, i.e.

|α| cos(θ/2) + |β| sin(θ/2)
|β| cos(θ/2)− |α| sin(θ/2)

=
|γ|
|δ|
, (2.42)

which can be solved for θ to find

θ = 2arctan

(
|β||γ| − |α||δ|
|β||δ|+ |α||γ|

)
, (2.43)

yielding the state

|ψ2⟩ = ei(ϕβ+π/2)|γ| |1⟩ |0⟩+ ei(ϕβ)|δ| |0⟩ |1⟩ . (2.44)

By setting the last phase-shifters to implement phase shifts of ϕ2 = ϕγ −
ϕβ − π/2 and ϕ3 = −ϕβ the output state will be equal to

|ψ⟩out = γ |1⟩ |0⟩+ δ |0⟩ |1⟩ , (2.45)

completing the desired transformation.

Multimode interferometers

A natural follow-up question is: "what if we want a unitary transfor-
mation on more than two modes?" The answer to this question is that we can
construct any unitary matrix by combining MZIs consisting of two beam-
splitters and two phase-shifters, in addition to a phase screen. In practical
terms, we take MZIs as shown in Fig. 2.7, chuck out the phase-shifter at the
start and the one in the bottom mode at the end, weave these MZIs together
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in a specific configuration, and then add phase-shifters to each of the out-
put modes. The first universal interferometer architecture was introduced
in a seminal paper by Reck and colleagues. The key insight of the approach
is that a single MZI connected to an interferometer can be configured to
zero out an element in the unitary matrix implemented by the interferom-
eter. Suppose we have an m mode interferometer described by an m × m
unitary matrix, which has m(m − 1)/2 elements beneath the diagonal. By
successively applying m(m− 1)/2 MZI transformations in a cleverly chosen
manner, all elements beneath the diagonal can be zeroed out. Due to the
unitarity of the matrix, the result will be a diagonal matrix, where every el-
ement generally has a complex phase. By applying a phase shift on each of
the modes, i.e. a phase screen, we can then transform the diagonal matrix
to the identity matrix. As such, if we call the initial arbitrary unitary ma-
trix U †, our network of MZIs will produce the Hermitian conjugate of this
matrix, U . To give a better understanding of how this can be achieved, we
will explain the decomposition method used in the Reck architecture, as the
explanation is relatively straightforward.

Reck interferometer

The working principle behind the Reck architecture is most easily un-
derstood in terms of diagonal lines of MZIs and how they relate to columns
in the unitary matrix. Suppose that we have a photon incident in the first
mode of a four mode interferometer. The state at the output,

|ψ⟩out,1 =


c0
c1
c2
c3

 (2.46)

will be equal to the first column of the unitary matrix implemented by the
interferometer. Such a state can alternatively be produced using a diagonal
line of MZIs, as shown on the right side of Fig. 2.8, with the following ap-
proach. For each MZI in the diagonal line, only the top mode of every MZI
will have an incoming probability amplitude, such that the output proba-
bility amplitude in the top (bottom) mode will be equal to2 the incoming
probability amplitude multiplied by cos(θ/2) (sin(θ/2)) where θ is the inner
phase of the MZI. For the first MZI (M1) we set θ to be equal to arccos(|c0|),
such that we have a probability amplitude of magnitude |c0| in the top out-
put mode, and an amplitude of magnitude

√
c21 + c22 + c23 in the bottom out-

put mode. The bottom output of the first MZI is connected to the top input
mode of the second MZI (M2). We set the inner phase of this MZI to be
equal to arccos

(
|c1|/

√
c21 + c22 + c23

)
, such that the top output mode contains

a probability amplitude of magnitude |c1| and the top mode a probability
amplitude of magnitude

√
c22 + c23. For the final MZI (M3)of the diagonal

2in addition to a phase
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line, we set the inner phase equal to arccos
(
|c2|/

√
c22 + c23

)
, ensuring an out-

put of

|ψ⟩out =


|c0|eiϕ0
|c1|eiϕ1
|c2|eiϕ2
|c3|eiϕ3

 , (2.47)

where the phases ϕ0, ϕ1, and ϕ2 are determined by the outer phase-shifters
of each of the three MZIs. We set the phase shifters to ensure the correct
relative phase shift between the four elements. It will then be possible to
compensate for any added phase by setting the phase shifter applied to the
first mode in the phase screen at the start of the interferometer. Thus, we
ensure |ψ⟩out = |ψ⟩out,1. To see how we can proceed, consider the inverse of
the circuit M †

3M
†
2M

†
1 . The inverse circuit corresponds to running the circuit

in reverse with all phases inverted ϕ → −ϕ, i.e. the time-reversal of the
circuit. Considering our circuit in reverse, we have fixed our last diagonal,
and running the circuit in reverse yields

M †
3M

†
2M

†
1U4 =


1 0 0 0
0
0
0

U ′
3

][
i.e. the first column and row has been replaced with the first column and
row of the identity matrix. This reduces the problem to three modes, and we
can proceed by repeating the procedure with a three-mode diagonal line of
MZIs addressing the first column in U3 in the same way we did with the first
column of U4. By applying the Hermitian conjugate of this line of diagonals,
i.e. M ′†

2 M
′†
1 , to the circuit we get

M ′†
2 M

′†
1 M

†
3M

†
2M

†
1U4 =


1 0 0 0
0 1 0 0
0 0
0 0

U ′
2

][
We can repeat this once more with a "diagonal line" consisting of a single
MZI to yield

M ′′†
1 M

′†
2 M

′†
1 M

†
3M

†
2M

†
1U4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (2.48)

By combining all of the diagonals in the correct order, we have constructed
an interferometer that can implement an arbitrary four mode unitary matrix
using 6 MZIs. This procedure can be generalized tommodes usingm−1 di-
agonal lines of MZIs, i.e. m(m−1)/2 MZIs. An illustration of the completed
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FIGURE 2.8: Reck decomposition for a four-mode unitary ma-
trix. The decomposition is explained in detail in the main text.

Reck interferometer is shown in Fig. 2.8.

Clements interferometers

The Reck interferometer architecture is not the only valid configuration
of MZIs. Clements et al. 2016 showed that one can make use of a more
compact square layout of the same number of MZIs by making use of a dif-
ferent decomposition algorithm for the phases in the unitary. The smaller
footprint means that the circuit leads to lower propagation loss, and the
square configuration allows for more balanced loss for all input and out-
put configurations. Thus, this architecture is more commonly employed in
current-day experiments.

An illustration of both a Reck and a Clements interferometer for six
modes is shown in Fig 2.9.

2.3.2 Linear optics with multiple photons

The unitary transformation of an interferometer describes the transfor-
mation on a single photon perfectly. However, this is not the case for states
containing more than one photon. As the number of photons increases, so
does the number of distinct configurations we can measure our photons in.
All possible configurations are equivalent to basis states of the Hilbert space
of our system. To describe the transformation of a multiphoton state, we
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FIGURE 2.9: Clements and Reck interferometers for six modes.

need to map the interferometer’s unitary matrix on the modes of the system
to a unitary transformation on the multiphoton Hilbert space.

The Hilbert space for multiple photons

The Hilbert space for p photons in m modes is comprised of all possible
configurations, i.e. the number of ways one can put p photons intommodes.
This is equivalent to a well known result from combinatorics: p choices from
m options with replacements, for which the number of combinations is:

dim(Hilbert space)(p,m) =

(
m+ p− 1

p

)
, (2.49)

where
(
a
b

)
is the binomial coefficient between a and b, otherwise known as

"a choose b".
It is often useful to define two other subspaces, the collision-free space,

and the computational space. In the collision-free space, we discard all states
containing more than one photon in any given mode, i.e. any "collisions"
between two photons. The size of this space is equal to the number of ways
one can make p choices from m options without replacements

dim(Collision-free space)(p,m) =

(
m

p

)
. (2.50)

The collision-free space is important in certain applications like boson sam-
pling for reasons to do with the computational complexity of classical sim-
ulation. We will come back to this in Chapter 6. Another reason for why
the collision-free space is important has to do with the detectors that are
typically used in experiments. Some types of detectors, such as most super-
conducting nanowire single-photon detectors (SNSPDs), which are used for
the experiments in this thesis, can only resolve the difference between any
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number of photons and vacuum, and as such are often referred to as thresh-
old detectors. Using such detectors, it is impossible to resolve the difference
between states like |2, 0⟩ and |1, 0⟩. As photon loss will inevitably be present
in the system, the only way we can make sure that our measurements have
the right number of photons when using threshold detectors is to postselect
the results to only include collision-free states with the correct number of
photons, discarding all other measurement results as noise.

Finally, the computational space is related to the dual-rail encoding of
photonic qubits, which will be explained further in Section 2.3.8. For now,
we note that this encoding contains p photons in 2pmodes, where each pho-
ton is restricted to two distinct modes. As we have two choices of modes
for every photon, the size of the computational Hilbert space is

dim(Computational space) = 2p, (2.51)

where the number of modes is fixed to m = 2p. The computational space
is thus increasingly smaller than the collision-free space and full Hilbert
space for an increasing number of photons and modes, as the latter two scale
combinatorially with the numbers of photons and modes. To see an example
of how the size of the collision-free Hilbert space and the computational
Hilbert space compares to the full Hilbert space, see Table 2.1.

(p, m) Full Collision-free Computational
(2, 4) 10 6 4
(4, 8) 330 70 16

(8, 16) 490314 12870 256

TABLE 2.1: The size of the full Hilbert space, the collision-free
Hilbert space, and the computational Hilbert space for a given
number of photons and modes.

2.3.3 Unitary transformation on the full Hilbert space

We now focus the attention on transforming the unitary matrix described
by an interferometer, which transforms creation operators on the input modes
into linear combination of creation operators on the output modes. We
will make use of the matrix-permanent formalism popularized in Aaron-
son & Arkhipov’s seminal paper introducing the boson sampling algorithm
(Aaronson et al. 2011). To give an intuitive understanding of the approach,
we start with a small-scale example of two photons incident on a four mode
interferometer.
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The Hilbert space for two photons in four modes is spanned by the fol-
lowing basis states

basis(p = 2,m = 4) =



|0, 0, 1, 1⟩cf

|0, 1, 0, 1⟩cf, c

|0, 1, 1, 0⟩cf, c

|1, 0, 0, 1⟩cf, c

|1, 0, 1, 0⟩cf, c

|1, 1, 0, 0⟩cf

|0, 0, 0, 2⟩
|0, 0, 2, 0⟩
|0, 2, 0, 0⟩
|2, 0, 0, 0⟩


. (2.52)

where the superscript cf denotes a collision-free state, and the superscript c
denotes a computational state. As there are ten states in the Hilbert space,
the transformation of the interferometer on the multiphoton state should be
described by a 10 × 10 unitary matrix. We write the 4 × 4 unitary matrix
describing the interferometer transformation as

U =


u11 u21 u31 u41
u12 u22 u32 u32
u13 u23 u33 u43
u14 u24 u34 u44

 . (2.53)

Here, the matrix element uij corresponds to the probability amplitude
associated with going from mode i to mode j, which we will call a transition
amplitude. We can take a similar approach to define the unitary matrix on
the full Hilbert space. In order to define the unitary transformation, we
simply need to find the transition probability amplitudes between all basis
states.

Suppose we want to find the transition amplitudes from state |0, 1, 0, 1⟩
to state |1, 0, 1, 0⟩. As illustrated in Fig. 2.10, this transition can be accom-
plished in two ways:

1. The photon in the second input mode goes to the first output mode
with transition amplitude u21, while the photon in the fourth input
mode goes to the third output mode with transition amplitude u43, or

2. The photon in the fourth input mode goes to the first output mode
with transition amplitude u41, while the photon in the second input
mode goes to the third output mode with transition amplitude u23.

To find the total transition amplitude, all we have to do is sum the two
possible paths, i.e.

U|0,1,0,1⟩→|1,0,1,0⟩ = u21u43 + u41u23, (2.54)

where the large U|i⟩→|j⟩ corresponds to transition elements in the full Hilbert
space unitary matrix. Suppose now that we had three photons, and wanted
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FIGURE 2.10: Transition amplitude of U|0,1,0,1⟩→|1,0,1,0⟩.

to find the transition probability amplitude U|1,1,0,1⟩→|1,1,1,0⟩. Part of this tran-
sition can be accomplished in the same way as before, if the photon in the
second input mode goes to the third output mode, i.e.

U|1,1,0,1⟩→|1,1,1,0⟩ = u12 · U|0,1,0,1⟩→|1,0,1,0⟩ + Other paths. (2.55)

The other paths can also be represented in terms of other two photon
transition amplitudes, i.e.

U|1,1,0,1⟩→|1,1,1,0⟩ = u12 · U|0,1,0,1⟩→|1,0,1,0⟩ + u11 · U|0,1,0,1⟩→|0,1,1,0⟩ + u13 · U|0,1,0,1⟩→|1,1,0,0⟩.
(2.56)

If we exchange the first two terms, the resulting expression is the same as
the determinant of the following matrix

Λ|1,1,0,1⟩→|1,1,1,0⟩ =

u11 u12 u13
u21 u22 u23
u41 u42 u43

 , (2.57)

only with all negative signs replaced with positive signs. This operation is
called a permanent, such that we can (for collision-free states) find transition
amplitudes according to

U|i⟩cf→|j⟩cf = perm(Λ|i⟩cf→|j⟩cf). (2.58)

Before giving a general description for arbitrary numbers of photons and
modes,let us consider what happens for collisional (i.e. not collision-free)
states. Suppose we want to find the transition amplitude U|2,0,0,0⟩→|1,1,0,0⟩.
Similarly to the case for U|0,1,0,1⟩→|1,0,1,0⟩, we can consider there to be two
paths, as the first input photon can choose to go to the first mode or the
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second mode, whilst our second input photon has to make the opposite
choice. In addition to this, we need to account for the normalization of our
initial state, which is written in terms of creation operators as

|2, 0, 0, 0⟩ = â†0â
†
0√
2

|0, 0, 0, 0⟩ . (2.59)

As the unitary matrix of the interferometer does not take this prefactor into
account, we have to include a term in to find the transition amplitude for
the full Hilbert space. Thus, we can write

U|2,0,0,0⟩→|1,1,0,0⟩ =

perm
[
u11 u12
u11 u12

]
√
2

. (2.60)

We can describe the transition amplitudeU|1,1,0,0⟩→|2,0,0,0⟩ in a similar manner.
The first photon and second photon both have to go into the second mode.
However, since there are two photons in the first mode of the output state,
we include two terms as a way to describe how the first and the second
output photon can originate from either of the two input photons. We have
to include the same normalization factor in order for the output state to be
normalized. As such, we can write

U|1,1,0,0⟩→|2,0,0,0⟩ =

perm
[
u11 u21
u11 u21

]
√
2

. (2.61)

The generalization to transition amplitudes for an arbitrary number of
photons and modes with an arbitrary number of collision is this. To find the
columns in matrix Λ|i⟩→|j⟩, we first inspect the input state |i⟩ = |n1n2n3...nm⟩
and take n1 copies of the first column of the interferometer unitary matrix,
n2 copies of the second column, n3 copies of the third column, and so on. For
an output state |j⟩ = |k1k2k3...km⟩ we similarly take k1 copies of the first row,
k2 copies of the second row, k3 copies of the third row, and so on. In order
for our output state to be normalized, we need to multiply by the prefactor

1√
n1! · n2! · · ·nm!

=
1√∏
l nl!

(2.62)

for the input state and

1√
k1! · k2! · · · km!

=
1√∏
l kl!

(2.63)

for the output state.
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Thus, we can define the generalized expression for a transition ampli-
tude from the input state |i⟩ to the output state |j⟩ as

U|i⟩→|j⟩ =
perm(Λ|i⟩→|j⟩)√∏
l nl!nl∈|i⟩

√∏
l kl!kl∈|j⟩

(2.64)

A brief note on postselection

As mentioned, experiments may restrict the Hilbert space to the collision-
free subspace or the computational subspace by discarding all measure-
ments of basis states that are not within the desired subspace. We can repre-
sent postselection mathematically as discarding certain parts of the output
state and renormalizing the remaining probability amplitudes. For exam-
ple, for the two-photons in four modes case, we start with the vector

|ψ⟩out =



c0
c1
c2
c3
c4
c5
c6
c7
c8
c9


, (2.65)

where the corresponding basis states is shown in Eq. 2.52. For the collision-
free basis, we only keep the elements with the superscript ’cf’ in Eq. 2.52,
and renormalize by the total probability of a collision-free output such that
the total probability of our state is 1:

|ψ⟩out, cf =
1√

|c0|2 + |c1|2 + |c2|2 + |c3|2 + |c4|2 + |c5|2


c0
c1
c2
c3
c4
c5

 . (2.66)

As the renormalization of elements depends on the probability ampli-
tudes of the output state, which depend on the probability amplitudes of
the input states, the unitary transformation in the collision-free subspace
will depend on the input state, and as such we cannot represent it with a
single unitary matrix.

2.3.4 Loss in quantum photonic experiments

Loss of photons plays a uniquely important role in experiments dealing
with quantum states of light. As all optical components are associated with
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some probability of an input photon being lost, we are by no means guar-
anteed that all of the photons produced at the start of our experiment will
reach the detectors. Accordingly, loss is a big source of error for experiments
and requires error mitigation or correction strategies. Classical information
processing mitigates the effect of loss by making use of repeater stations,
where the information stored in a lossy input state is copied over to a new
output state. For quantum information processing however, this type of er-
ror mitigation strategy is much harder due to the no-cloning theorem (Nielsen
et al. 2000) which prohibits direct copying of information from one state
to another. Quantum repeater schemes (Borregaard et al. 2020) and error
correction schemes (Bartolucci et al. 2023) are active areas of research, but
current state-of-the-art proposals pose stringent requirements on hardware
beyond state-of-the-art performance.

For experiments where Fock states are used, we can make use of the
property that the total number of photons is fixed. Thus, by postselecting
events where we detect the same number of output photons as input pho-
tons, we can mitigate the effect of loss at the output. This property is also
referred to as loss being heralded, meaning that though loss has a certain
‘success’ probability, you know the events where a success has occurred.

Mathematical model

In order to see what happens to a photonic state upon loss and postse-
lection, we need to be able to model it. A mathematical description of posts-
election was already introduced in the formalism of unitary transformation
on the multiphoton Hilbert space. Thus, we need to be able to model loss in
this formalism. We model loss for a given component by adding variable-
reflectivity beamsplitters (i.e. MZIs) at the output of the component con-
nected to ancillary modes. Recall that this transformation is written as

Uloss =

[
cos(θloss/2) i sin(θloss/2)
i sin(θloss/2) cos(θloss/2)

]
. (2.67)

Here, we can find the value for θloss by considering the probability that a
photon is lost should be Ploss, such that sin2(θloss/2) = Ploss. Thus, we can
describe any level of loss by fixing the value of θloss.

In this model, it is important that every loss-beamsplitter is connected to
its own separate loss-mode. Otherwise, it would be possible for a photon
to be lost at one point through one loss-beamsplitter, and then re-enter the
circuit at a later point through a different loss-beamsplitter. This leads to an
important property: statistical independence. As the beamsplitter is a linear
optical component, it treats every photon independently, and as a result, the
loss of two different photons are statistically independent events. Moreover,
as the other input port of the loss-beamsplitter is always connected to the
vacuum, and since the output port is never connected back to the interfer-
ometer, interference will never play a role. Thus, it does not matter if the
photons are indistinguishable or not.

A potential downside of this description is that adding an additional
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mode for every component in our experiment results in a lot of additional
modes, which quickly increases the size of our Hilbert space. However,
we note that the output is postselected to not include the cases where pho-
tons are lost. As the first step of the postselection procedure is to discard
all elements that we don’t want, we can simply model loss by multiplying
each component by the factor cos(θloss), disregarding all modes we are not
interested in. As a result, the matrix describing the interferometer, and the
matrix describing the transformation on the full Hilbert space will no longer
be unitary, and we again have to ensure unity probability of the output state
by renormalizing the initial output state, |ψ⟩′out, as

|ψ⟩out =
1√∑
i |ci|2 ci∈|ψ⟩′out

|ψ⟩′out . (2.68)

This has an important consequence: if there are multiple optical paths
with an unequal number of optical components, i.e. such that loss is not
balanced for all paths, the measured output distribution will be different
from the case where there is no loss. Thus, the effect of unbalanced losses
cannot be completely mitigated using postselection. An example of an un-
balanced setup is the Reck interferometer. For an m-mode interferometer,
the shortest path traverses a single MZI, whereas the longest path has to go
through 2m−1 MZIs. This makes the Clements interferometer more suitable
for experiments.

Propagation loss

Up until now, we have talked about optical loss in terms of components,
however, it is important to note that propagation through any medium
except for vacuum will incur propagation loss. For a bulk material, prop-
agation loss occurs due to the photon being absorbed, and if the mate-
rial is shaped into a waveguide, surface roughness will lead to additional
scattering-induced losses. We can model losses due to propagation in the
exact same way, where we associate a probability of survival for every unit
of length. As an example, if there is a 1 − Pprop = 10% probability of los-
ing a photon after 1 cm of propagation, then the probability of the photon
surviving after 2 cm of propagation will be P 2

prop = 81%. It is usually more
practical to express propagation loss, and indeed other losses, in units of
decibel. The decibel loss, which we will denote with the Greek letter ρ, is
defined as

ρ = 10 · log10(P ), (2.69)

where P is the probability of survival. For the rest of the thesis, we will refer
to percentage survival probabilities as efficiencies and decibel probabilities as
losses for convenience. In units of decibel, we can define a propagation loss
per unit length. Continuing our example where 90% of the initial amount of
light remains after one centimeter of propagation, the per-cm propagation
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loss would be

ρprop = 10 · log10(0.9)dB/cm ≈ 0.46dB/cm.

To find the loss for any given length, we simply multiply this value by the
length of propagation we’re interested in. This can be done as products of
efficiencies translate into sums of losses, as losses are logarithmic. Simi-
larly, exponents translate into multiplication. Thus, instead of multiplying
together the efficiency of every component, we can simply sum their decibel
losses and translate this back into a probability at a later point.

2.3.5 Optical components

As we have established in a previous section, only two types of compo-
nents—beamsplitters and phase-shifters—are needed to construct interfer-
ometers capable of implementing any linear optical transformation. The ex-
perimental implementation of these transformations differs depending on
the degree of freedom used to encode the modes, i.e. we may use different
components for the polarization encoding compared to the path encoding.
Before introducing specific components, we will examine how the phase
of light can be altered by altering the media in which it propagates. Pro-
ceeding, the focus is restricted first to the path encoding and then to the
polarization encoding, introducing important optical components used in
the construction of experimental setups. We round off by talking about the
demultiplexer, which is used to convert from the time-bin encoding to the
spatial encoding, which is instrumental for the use of single quantum emit-
ters with path encoded interferometers. Note that time-bin encoded inter-
ferometers will be introduced later in Chapter 3.

The phase of a photon

The phase of a photon is related directly to its wave-like nature, and is
best understood in this picture. As illustrated in Fig. 2.11, the phase of a
photon changes along the propagation direction proportionally to the re-
fractive index, n of the material. The refractive index is defined according
to the speed of light, v in the material, such that

v = c/n, (2.70)

where c is the speed of light in vacuum. Specifically, for light propagating
in the direction z, we can describe the phase of the light according to the
electric field, which evolves in space according to

E(z) ∝ eikz, (2.71)

where k, the wavenumber, is defined as

k = 2πn/λ, (2.72)
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FIGURE 2.11: Illustration of how a phase-shifter can be im-
plemented by letting one mode propagate through a medium
with a different refractive index n2. In the illustration, the
length of the phase-shifter has been set to a specific value,
zπ, to implement a specific relative phase-shift of π on the
top mode compared to the bottom mode. z is the direction
of propagation for both modes.

where λ is the vacuum wavelength of the light.
A phase-shifter between two modes can be implemented by altering the

refractive index of one mode compared to the other, as indicated in Fig. 2.11.
For instance, implementing a phase shift of π between the two modes is
equivalent to finding a length of propagation, zπ such that

k1zπ − k2zπ =
2π

λ
(n1 − n2)zπ = π. (2.73)

Path encoding in bulk optics and photonic integrated circuits

In path encoding, where different modes correspond to the photon prop-
agating in different spatial paths, there are two main approaches used to
implement phase-shifters.

The first option, which is exclusively used in bulk optics experiments,
is to alter the relative length difference between different paths. To under-
stand how this happens, consider that paths in bulk optics experiments are
defined with mirrors, as seen in Fig. A.1 in Appendix A.1. Small perturba-
tions to the angle and position of these mirrors, induced e.g. by vibrations,
can easily lead to sufficient path length difference for significant phase shifts
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(i.e. hundreds of nanometers). In order to stabilize such setups, one typi-
cally has to make use of piezoelectric mirrors that allow for electrical tuning
of their position and angle. By implementing a feedback control protocol,
one can maintain a fixed phase between the modes. Specifying this fixed
phase amounts to specifying a specific phase shift within the interferome-
ter.

The second option, which is the main method used in photonic inte-
grated circuits, is to send the modes through materials with a tunable re-
fractive index. By using media with electro-optic or thermo-optic effects,
the refractive index of the material can be tuned by applying a voltage
or changing the temperature, allowing for the specification of an arbitrary
phase. Such electro-optic phase-shifters are used in the experiment detailed
in Chapter 5.

To implement a beamsplitter in path encoding, we need an optical com-
ponent that splits incoming light between two modes. In bulk optics, this
is typically achieved by making use of beamsplitter prisms, which have a
partially reflective coating. In photonic integrated circuits, on the other
hand, we make use of the waveguides the light is already confined in to con-
struct directional couplers. Directional couplers make use of the fact that the
mode profile of the light confined in the waveguide has an evanescent tail
outside of the waveguide. This means there’s an exponentially decreasing
component of the mode that exists outside of the waveguide. By bringing
two waveguides together to a very small separation for a fixed length, the
evanescent tail of the mode confined in one waveguide will enter into the
other waveguide. This leads to the mode slowly leaking from one waveg-
uide to the other. By fixing the length and separation of the directional cou-
pler to suitable values, we can implement a beamsplitter with a perfect 50%
splitting ratio described by the matrix

UDC =
1√
2

[
1 i
i 1

]
. (2.74)

Additional considerations in the path encoding, such as alignment and
coupling into and out of photonic integrated circuits is covered in Appendix A

Polarization encoding

In free-space, i.e. bulk optics experiments, the electric field of any photon
is only restricted to be polarized3 perpendicularly to the direction of propa-
gation, such that we can always represent it as a linear combination of two
perpendicular polarizations. Thus, we can encode two modes, correspond-
ing to the photon being polarized either along a horizontal or along a verti-
cal axis. For the polarization encoding, we have to make use of a different
approach to implement phase shifts as the two modes share the same spatial
path. To this end, we can exploit a material property called birefringence.

3One can also have unpolarized light, in which case the polarization is a statistical mix-
ture.
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For birefringent media, the refractive index is higher along the so-called or-
dinary axis than along the perpendicular extraordinary axis. As such, by
aligning the ordinary axis of a birefringent material with the horizontal or
vertical polarization axis, we can implement a phase shift between the two
modes by letting them propagate through a specific length of material, or
by tuning the strength of the birefringence with a fixed length of material.
In the former approach, if the length of material leads to a phase shift of π
(π/2), we call the resulting optical component a half-wave plate (quarter-wave
plate). These components can also be used to implement beamsplitters, by
rotating the orientation of the ordinary and extraordinary axis with respect
to our horizontal and vertical modes. Specifically, rotating a half-wave plate
π/8 radians with respect to the horizontal or vertical axis, results in a trans-
formation described by the matrix

UHWP(π/8) =
1√
2

[
1 1
1 −1

]
, (2.75)

i.e. a 50/50 beamsplitter Hecht 2002. Thus, in polarization encoding, we
can implement either a phase-shifter or beamsplitter between two modes
by making use of birefringent materials with ordinary and extraordinary
axes in specific orientations with respect to the horizontal and vertical axes
defining the modes.

The polarization encoding is restricted to two modes per spatial path.
If more modes are desired, we have to make use of a different degree of
freedom, like spatial modes or time-bins. Here, we will consider the use
of multiple paths, which is also a key requirement for time-bin interferom-
eters based on polarization-and-time-bin encoding as will be explained in
more detail in Chapter 4. We associate each spatial path with two polariza-
tion modes and can convert between polarization modes in a given path by
using wave-plates. However, in order to implement multimode interferom-
eters, we also have to be able to interfere specific modes that are not initially
found in the same path. To this end, we can make use of polarizing beamsplit-
ters (PBSs), which transmit one polarization and reflect the perpendicular
polarization. This allows us to convert back and forth between polarization
and path degrees of freedom. An example of how this works in practice is
shown for a four mode interferometer in Fig. 2.12. For the third and sixth
MZIs, the vertical polarization from the first spatial path is switched into
the second spatial path using two PBSs, and after the MZI, another set of
PBSs reverts the vertical polarizations back to their original paths.

Constructing a demultiplexer using time-dependent wave-plates

Birefringent media and PBSs allow for the easy construction of time-to-
path demultiplexers, which are used to convert from a time-bin encoding to
a path encoding. Recall that using a single quantum emitter, we can pro-
duce strings of single-photons in the same mode with a fixed temporal spac-
ing. This is equivalent to a time-bin encoded state with one single-photon
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FIGURE 2.12: Schematic of an experimental setup to imple-
ment a universal four mode Clements interferometer with
path-and-polarization encoding. a A schematic of the circuit
in terms of MZIs (crosses). b Schematic of how an MZI can be
implemented in the polarization, using two half-wave plates
(HWPs) rotated by π/8 radians with respect to the horizontal
polarization axis, and two birefringent electro-optic modula-
tors (EOMs) with the fast axis oriented parallel to the hori-
zontal polarization axis. c Circuit schematic of the four-mode
Clements interferometer implemented in the polarization–
path encoding using MZIs, polarizing beamsplitters (PBSs)
and mirrors.



40 Chapter 2. Background

per time-bin. To be able to make use of this source in multiphoton exper-
iments with path-encoded interferometers, we first need to use a demulti-
plexer to convert the input state to the path encoding. The most efficient
way to construct a demultiplexer is to use a binary tree of optical switches, as
illustrated for four modes in Fig. 2.13, after which the photons can be syn-
chronized by adding an appropriate delay to each mode except for the last.
Each optical switch should be able to switch photons coming in at differ-
ent times into different modes, reconfiguring its transformation in-between
time-bins. One option would be to use a completely path encoded MZI
with time-dependent phases, however, it would have to be phase-stable.
Instead, in our experiments, we make use of birefringent media, where the
birefringence, i.e. the difference in refractive index between the ordinary
and extraordinary axis, is proportional to an applied electric field. This
effect is known as the Pockels effect (Saleh et al. 2007). Thus, by rotating
the extraordinary axis π/8 radians with respect to the reflected polarization
axis of a PBS, and applying either a half-wave voltage or a full-wave volt-
age, we can choose whether photons entering our device are transmitted or
reflected, thus implementing an optical switch without the need for phase-
stabilization. Thus, we can construct a demultiplexer by chaining together
such electro-optic modulators and PBSs.

2.3.6 Building blocks for photonic quantum computing

The framework we have introduced serves to explain the properties of
single photons and how they behave in a linear optical circuit. In this section
we will contextualize this information by introducing the building blocks of
quantum information processing, and how they can be realized in the pho-
tonic approach to quantum computing. We start with a description of the
fundamental unit of a qubit and key properties of multiqubit states. We then
show how linear optics with single-photons is well-suited to certain qubit
operations, and less suited to others. To end the chapter, we introduce the
building blocks required to implement fusion-based quantum computing
(Bartolucci et al. 2023), a paradigm tailor-made for photonic quantum com-
puting, and introduce the building blocks that are needed in this approach.

2.3.7 Qubits

A qubit is a system described by a quantum state |ψ⟩ which can exist
either in the mode |0⟩, |1⟩, or any superposition of the two

|ψ⟩single-qubit = α |0⟩+ β |1⟩ , (2.76)

subject to the constraint |α|2+|β|2 = 1, i.e. α and β are complex-valued prob-
ability amplitudes. The state of a single-qubit can be visualized by mapping
it onto the surface of the so-called Bloch sphere, illustrated in Fig. 2.14. With
this mapping, the quantum state is described by vector pointing to a posi-
tion on the surface of this sphere. The states |0⟩ and |1⟩ are mapped to the
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FIGURE 2.13: A four mode temporal-to-spatial demultiplexer
based on a binary tree of reconfigurable switches. The
switches can be configured to either switch photons to the top
or bottom mode, as indicated for each time-bin. Color has
been added to the photons for visual clarity, where the color
corresponds to the arrival time of the photon. This color is not
representative of the wavelength of the photons. The photons
can be synchronized by adding a delay of 3τ to the first mode,
2τ to the second mode, and τ to the third mode.
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north pole and the south pole, respectively, such that the polar angle θ de-
termines the ratio between |α|2 and |β|2, whereas the azimuthal angle ϕ de-
termines the phase between α and β. Single-qubit transformations will shift
the state from one point on the surface to another, which can be achieved
by rotating the vector about some axis. As such, it is common to refer to
single-qubit transformations as rotations.

Measuring the qubit will yield a result of |0⟩ with a probability of |α|2 or
|1⟩ with a probability of |β|2, which, in terms of the Bloch sphere, only gives
information about the polar angle θ. This corresponds to a projection on the
z-axis of the Bloch sphere, and as such is commonly referred to as a z-basis
measurement. In order to characterize the complete state of the system, we
have to additionally measure the state in two bases that are both mutually
orthogonal and orthogonal to the z-basis, such as the x-basis and the y-basis.
To this end, we can apply single qubit rotations to rotate 90 degrees about
either the y-axis or x-axis. If a state were to point to one of the poles on the
x-axis or y-axis, respectively, it would be transformed to a state pointing at
the one of the poles on the z-axis. By measuring the now-altered state in
the z-basis, we will effectively measure the original state in the x-basis or y-
basis. This technique will be used to characterize the fidelity of a generated
state with respect to a target state in Chapter 4.

An important property of quantum mechanical systems emerges for states
of two qubits or more. The two-qubit state can be written as

|ψ⟩two-qubit = α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩ , (2.77)

where the first entry in the state vector refers to the state of the first qubit,
and the second entry refers to the state of the second qubit. We can cate-
gorize two-qubit states as being either separable or nonseparable, determined
by whether or not the state can be written as a product of two single-qubit
states. An example of a separable state could be

|ψ⟩separable =
1

2
|00⟩+ 1

2
|01⟩+ 1

2
|10⟩+ 1

2
|11⟩ = 1√

2
(|0⟩0 + |1⟩0)

1√
2
(|0⟩1 + |1⟩1) .

(2.78)

An example of a nonseparable state, on the other hand, is

|ϕ+⟩ =
|00⟩+ |11⟩√

2
. (2.79)

Nonseparable states exhibit a uniquely quantum mechanical property known
as entanglement. For entangled two-qubit states, measuring the state of one
qubit gives information of the state of the other qubit. For instance, by mea-
suring the first qubit of the state |ϕ+⟩, we can predict the state of the second
qubit with certainty. Operations that transform separable states into non-
separable states are known as entangling gates, and play an instrumental role
in quantum information processing.
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Y-basis measurement

Z-basis measurement

FIGURE 2.14: Top A z-basis measurement on a qubit. Asso-
ciating a measurement of |0⟩ with a value of 1 and a mea-
surement of |1⟩ with a value of -1, the expectation value of
our measurement corresponds to the projection of the state
|ψ⟩ = α |0⟩ + β |1⟩, indicated by the red vector, along the z-
axis to the coordinate z = |α|2 − |β|2. Bottom A y-basis mea-
surement on a qubit. The qubit is first transformed by rotating
the vector by π/2 about the x-axis, as indicated by the pur-
ple vector, effectively rotating the y-axis of the Bloch sphere to
point along what was previously the z-axis. Thus, performing
a z-axis measurement after the rotation effectively performs a
y-axis measurement on the state before the rotation.
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2.3.8 Photonic qubits

The attentive reader might have found the single-qubit state in Eq.(2.76)
familiar, as it is equivalent to the state of a single photon in two modes with
the following substitutions

|0⟩qubit = |1, 0⟩single-photon ,

|1⟩qubit = |0, 1⟩single-photon .
(2.80)

This encoding is called the dual-rail encoding, where each qubit is encoded
as a single-photon in one of two modes. As was mentioned earlier in Sec-
tion 2.3.2, for larger numbers of photonic qubits there is a discrepancy of the
Hilbert space of the qubits, referred to as the computational Hilbert space,
and the full photonic Hilbert space. Moreover, linear optics is limited in
the types of operations that can be performed. For operations on individual
qubits, we know from Section 2.3.1 that an MZI with a sufficient number
of phase-shifters on the two photonic modes of the qubit is sufficient for
any transformation. As linear optical components always transform each
photon independently, it is impossible to use them to transform a separable
state into a nonseparable state, i.e. there are no entangling gates.

However, this is only the case if we consider the whole output state.
We can rewrite separable states as superpositions containing nonseparable
states. Take, for instance, the separable state in Eq. (2.78). This state can be
written as

|ψ⟩separable =
|00⟩+ |11⟩√

2
+

|01⟩+ |10⟩√
2

, (2.81)

i.e. a superposition of two nonseparable states. As such, linear optics can
be used for the probabilistic generation of entangled state. This probabilistic
generation can be done either in a heralded manner or an unheralded (also
called postselected) manner. In a heralded scheme, a successful event in the
probabilistic scheme is accompanied by a specific measurement outcome of
an ancilla photon. As this ancilla photon can be measured separately and
independently from the photons used for the photonic qubit, it will herald
the presence of an entangled state in the remaining unmeasured qubits, af-
ter which the state can be used e.g. in a computation. As for the unheralded
case, the success is known upon the measurement of the photonic qubits,
and as such, one typically has to remove unsuccessful events through post-
selection.

Heralded generation of entanglement originates in a seminal paper by
Knill, Laflamme, and Milburn (Knill et al. 2001), which introduced a scheme
for universal quantum computing using linear optics and single-photons.
In this scheme, named the KLM scheme after the initials of the authors,
nonlinear operations (which are required for entangling operations) are im-
plemented by introducing additional ancillary modes containing an addi-
tional ancilla photon. A small interferometer is used to interfere the ancilla
photon with the computational photons, after which the state in the ancilla
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modes is measured. The detection of a specific output state in the ancilla
modes heralds a nonlinear phase shift on the photonic state in the com-
putational mode. Though the success probability of the scheme with one
ancilla photon is limited to 1/4, additional ancillary photons and modes
can be introduced to increase the success probability close to unity using
a protocol called gate teleportation (Knill et al. 2001). The downside of the
KLM scheme is that it does little to introduce resilience to errors, which be-
come increasingly dominant as the system is scaled up. However, heralded
entanglement generation provides an excellent way to generate entangled
resource states of a limited number of qubits, which are the starting point
for fusion-based quantum computing.

In fusion-based quantum computing (FBQC), error correction and com-
putation are performed by arranging a large number of entangled resource
states of a small number of qubits and fusion gates between them in a fusion
network (Bartolucci et al. 2023). A fusion gate is a probabilistic entangling
operation performed on two qubits in two separate entangled states. Both
computations and error correction require the use of a photonic circuits and
switches that can be reconfigured to implement various fusion gates, and
single-qubit measurements in a set of different bases. As such, the hard-
ware required for FBQC is:

1. An entangled resource state generator.

2. Rapidly reconfigurable linear optical interferometers to perform fu-
sion switching, fusion gates, and single-qubit measurements.
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3 Time-bin interferometer
architectures

An on-demand single-photon source can be triggered periodically to
produce a string of single photons with a fixed temporal separation. Con-
sidering the creation time of each single photon as a mode, this approach
produces a time-bin encoded multimode state. As the time-bin encoding
is the natural encoding of on-demand single-photon sources, we will ex-
plore how interferometers can be implemented in this encoding. We start
by introducing the single-path and two-path time-bin encodings, and show
how they are well-suited to implement time-bin versions of the Reck and
Clements architecture, respectfully. We proceed to show that the time-bin
encoding is uniquely well-suited for the implementation of mode crossings
and identify how this can be used to implement a variety of permutation
matrices on the modes. With this knowledge, we develop novel interfer-
ometer architectures with the aim of reducing optical depth and time-delay,
resulting in specialized architectures where the optical depth scales loga-
rithmically with the number of modes. We show how a similar approach
allows for a demultiplexing (multiplexing) architecture, taking a time-bin en-
coded (path encoded) input state and producing a path encoded (time-bin
encoded) output state. We end by showing how logarithmic-depth interfer-
ometer architectures can be used to enact discrete Fourier transform matri-
ces up to a relabeling of inputs and outputs when the number of modes is a
power of two.

3.1 Time-bin interferometers with one or two spa-
tial paths

In Section 2.3.1 we saw how multimode interferometers can be constructed
using the basic building block of two-mode MZIs, consisting of two beam-
splitters and two phase shifters. For spatially encoded states, where each
state occupies its own spatial path, interferometers can be constructed by
arranging MZIs in either a triangular (Reck) or square (Clements) architec-
ture. For temporally encoded states, where modes occur at different times,
the construction is slightly more complicated, and the ideal architecture de-
pends on the exact number of spatial paths used in the time-bin encoding.
In the following we will focus on two distinct time-bin encodings: 1. The
single-path encoding, where all modes occupy individual time-bins in the
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same spatial path, and 2. The two-path time-bin encoding, where every time-
bin contains two modes defined by corresponding spatial paths.

A brief comment on the symbols used in the figures

The figures in this chapter represent time-bins using ⊔ symbols. The
time-bins travel at the speed of light toward the right. As such, time-bins to
the right will be earlier than time-bins to the left. The colors of the time-bins
are added for visual clarity.

3.1.1 MZIs in the single-path time-bin encoding

We start by considering in the single-path time-bin encoding, where all
of the modes are encoded using the temporal degree of freedom, for which
the first interferometer architecture was proposed by Motes et al. 2014, and
has been experimentally implemented in Carosini et al. 2023. In order to
implement an MZI on such a state, we need a phase shifter that can be re-
configured between time-bins, as well as a beamsplitter taking two inputs
only separated by time. There is no single component that acts like a beam-
splitter in time, but we can construct one from three configurable MZIs con-
nected by a delay, as shown in Fig. 3.1b. Here, we temporarily add an
additional spatial path. The first time-bin is switched into the newly-added
bottom mode by enacting a swap transformation with the first MZI, after
which the MZI is reconfigured to enact a unity transformation to let the sec-
ond time-bin into the top mode. The bottom mode contains a delay of one
time-bin such that the two modes arrive at the middle MZI simultaneously.
At this point, we have converted the first two modes to a spatial encoding,
such that we can use a spatially encoded MZI to enact the desired unitary
transformation, i.e. the same transformation as is used in Fig. 3.1a. The
top output mode of the second MZI is connected to a delay, restoring the
temporal separation between the modes. The final MZI then switches the
first output time-bin into the top output mode with a swap transformation
and lets the second time-bin pass into the top output mode with a unity
transformation, restoring the original time-bin encoding to a single spatial
path.

The same result can be achieved by using only a single MZI, by connect-
ing one of the output modes of the MZI to an input mode through a delay,
as is shown in Fig. 3.1c. This MZI plays the role of all three MZIs, enacting
a swap transformation during the first and last time-bins, and enacting the
desired transformation during the middle time-bin. If we add an additional
third time-bin to this looped MZI, then top output of the interference be-
tween the first two time-bins will meet the third time-bin after being looped
back through the delay to meet the third time-bin. As such, a single looped
MZI allows for the implementation of a diagonal of MZIs. This makes the
single-path time-bin encoding particularly suitable for the implementation
of the Reck architecture. We identify this as a building block which we will
call the "Reck MZI". In order to construct a complete Reck-style interferom-
eter, as shown in Fig. 2.9, we need to implement multiple diagonals.
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3.1.2 Loop interferometers and cascaded interferometers.

There are two main approaches to implementing multiple diagonals which
will result in either a loop time-bin interferometer, used in Motes et al. 2014
and He et al. 2017, or a cascaded time-bin interferometer, as introduced in Qi
et al. 2018 for single-path encodings and Sund et al. 2023b for two-path en-
codings1. Both approaches are illustrated in Fig. 3.2a. In the loop approach,
we connect the output of a Reck MZI to its own input through a delay loop,
which we will call the outer loop. In order to get time-bins into and out of the
interferometer, we have to add an extra switch to the input, and ideally the
output of the Reck MZI. It is crucial that the delay in the outer loop is suf-
ficient to delay the first output mode from the Reck MZI to arrive after the
final input mode to the Reck MZI2. For convenience, we will set the delay in
outer loop to delay the first output time-bin to arrive back at the input of the
MZI exactly one time-bin after the first input time-bin, i.e. M − 1 time-bins
of delay, where M is the number of modes/time-bins.

In the cascaded approach, additional diagonals are added by routing the
output of one Reck MZI to the input of another, as shown in the right side
of Fig. 3.2a. The total number of Reck MZIs required is then equivalent to
the number of diagonals in the Reck architecture, which is equal to M − 1.
This requires a number of MZIs which scales with the number of modes, but
comes with the benefit of shorter delay lines, as each Reck MZI only needs
a delay line with one time-bin of delay. As such, there is a tradeoff3 between
resource requirements and propagation loss, where loop architectures allow
for the use of fewer resources at the expense of higher propagation loss. An
additional downside of loop architectures is that the interferometer is only
able to process one multimode at a time, and one has to wait for it to be
finished before it can process another multimode state. As there are M − 1
diagonals that are connected by delays of M − 1 time-bins, the repetition
rate of the time-bin interferometer scales ∝ 1/M2. Cascaded time-bin inter-
ferometers, on the other hand, don’t require any waiting time, and you can
insert an additional state immediately after the first one. One still needs to
wait for the whole state to get into the interferometer, so the repetition rate
in this case scales ∝ 1/M.

3.1.3 Interferometers in the two-path time-bin encoding

In the two-path time-bin encoding, M modes are encoded across two
spatial paths and M/2 time-bins. This encoding allows for the natural en-
coding of dual-rail qubits using a single on-demand single-photon source.

1However, it should be noted they were implemented in the experiment detailed in
Chapter 4 and Nielsen 2022 before this paper was published.

2Technically you could have delayed time-bins arriving in-between the input time-bins,
but that gets really messy.

3It is also possible to do a "partial" cascade, where a fraction of the MZIs (i.e. fewer
than the full cascade, 1/2, 1/3, etc.) are cascaded with the output mode of the final MZI
connected to the input of the first MZI with a shorter time-delay compared to the single-
MZI loop architecture.
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The on-demand source will emit a single photon per time-bin into the same
path, such that every time-bin contains a photonic qubit initialized in the
same state. The two-path time-bin encoding is particularly well-suited for
implementing interferometers with a Clements architecture. Contrary to the
single-path encoding, the two path encoding already has two spatial modes
that MZIs can be implemented on, so no ancillary modes are needed. One
output mode has to be connected to a delay before both output modes are
connected to the input modes of the next MZI either through a loop or cas-
caded approach, as illustrated in Fig. 3.2b.

Fig. 3.3a shows a cascaded implementation of a four mode interferom-
eter, where each physical MZI acts like a column of MZIs in the Clements
scheme. The delay in the bottom output mode of the Clements MZI al-
lows for the columns to alternate which pairing of neighboring modes in-
terfere. However, as a consequence of the asymmetric delay, the output
state from odd-indexed columns is asymmetrically distributed across time-
bins and contains an additional time-bin compared to the input state. To
ensure a fixed number of output modes from the interferometer, each even-
numbered physical MZI must enact a swap transformation on the first and
last time-bins, where only one of the input modes is occupied, as shown
in Fig 3.3e. A Clements interferometer with an arbitrary even number of
modes M can be constructed by combining M/2 pairs of an odd and an
even column.

It is also possible to implement a full interferometer using a loop ap-
proach, as illustrated in Fig. 3.2b. In the loop approach, two outer delay
loops are added to connect both output modes to their corresponding in-
put mode, through a delay of M/2. The factor of 1/2 compared to the Reck
architecture comes from the property that there are half as many time-bins
for any given number of modes. This results in a lower amount of prop-
agation loss compared to the Reck case. As the total number of modes is
equal to the number of paths multiplied by the number of time-bins, which
will always be an even number, the two-path time-bin encoding is suitable
for interferometers with an even number of modes. It is possible to omit
one input and output mode to realize a two-path time-bin interferometer
with an odd number of modes, and this naturally lends itself to a peculiar
(although seemingly not very useful) architecture for loop time-bin interfer-
ometers where the modes effectively have periodic boundary conditions, as
detailed in Appendix B.2.

Using the polarization modes in two-path time-bin interferometers

The polarization degree of freedom provides an alternative way to im-
plement beamsplitter transformations, as waveplates and birefringent electro-
optic modulators can be used to implement beamsplitter and reconfigurable
phase-shifter transformations. As such, two-path time-bin interferometers
can also be implemented using two polarization modes for every time-bin.
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It should be noted that the asymmetric delay between Clements MZIs re-
quires the use of separate paths4, which can be achieved by employing po-
larizing beamsplitters to convert back and forth between polarization en-
coding and path encoding. An example of an experimental implementation
of such an interferometer can be seen in He et al. 2017 and in Chapter 4.

3.2 Mode-crossings in time
A unique feature of time-bin interferometers is that they allow for a sim-

ple way to implement mode crossings. In the path encoding, crossing two
modes requires the use of specialized components such as waveguide cross-
ings, or additional pathing for every mode-crossing. In the time-bin en-
coding, however, mode crossings can be implemented by letting two time-
bins cross one another in delay lines in separate spatial modes. The most
versatile way5 to add mode crossings is to add additional MZIs acting as
switches connected to ancillary spatial paths in the middle of the interfer-
ometer. These mode crossings can be configured to implement a permuta-
tion matrix on the modes. Fig. 3.4 and Fig. 3.5 show two different types of
permutations, which we will call exchange permutations and alternating per-
mutations, respectively.

An exchange permutation exchanges the chronological order of two sets
of modes, one consisting of the first T modes and the other consisting of the
remaining (M − T) modes. We will start by considering the example shown
in Fig. 3.4a, where the first mode (T = 1) of three is exchanged with the latter
two. To this end, we use a switch—which can be constructed using an MZI
with time-dependent phase shifters—where the top output is connected to
the top input through a delay loop of length 3τ , where τ is the separation
between time-bins. At time t = 0, the switch is configured to swap the first
mode into the delay loop. At time t = τ and t = 2τ , the switch is set to unity,
such that the input modes are passed through without delay. Finally, at time
t = 3τ , the delayed mode arrives back at the switch, which is configured to
swap the mode out of the delay loop, completing the permutation.

The general algorithm for exchange permutations is illustrated in Fig. 3.4b.
The algorithm to implement a permutation is split into three parts. For the
first T time-bins, the switch is configured to implement a swap transforma-
tion, sending the incoming mode into a delay loop of length M. After this,
the second stage of the algorithm sends the remaining modes through the
switch with no delay. In the third stage, which starts at time t = M, the
switch is again to enact a swap transformation such that the delayed modes
from the first stage are sent back out of the delay loop. This stage has the
same duration as the first stage, such that all of the delayed time-bins are
switched out of the delay loop.

The exchange permutation swaps the order of only two sets of modes.
However, it is also possible to split the modes into a larger number of sets

4In order to be feasible, birefringence is not strong enough for the delay we want.
5Mode crossings can also be added without additional MZIs or paths in certain special

cases, as detailed in Appendix B.2
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main text.

and swap the position of subsequent pairs of sets. The alternating permu-
tation, illustrated in Fig. 3.5, splits the M modes into groups of modes of
size s1 + s2, and applies an exchange permutation between the first s1 and
last s2 modes in each group. This is possible because the third stage of the
exchange permutation for one group overlaps perfectly with the first stage
of the exchange permutation of the next group. It is also possible to have
groups of varying sizes as long as the value for s1 is always greater or equal
to the value for s1 in the previous group.

An example of an alternating permutation with four modes and s1 = 1
is shown in Fig. 3.5a. The switch alternates between swap and unity, such
that the first and third time-bins are both delayed, while the second and
fourth time-bin are transmitted with no delay. The procedure for a single
group of a general alternating permutation is shown in Fig. 3.5b. It should
be noted that the third section shown in the bottom panel overlaps with the
first section of the next group.
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3.3 Logarithmic-depth time-bin interferometers
In order to make use of these permutations, we need to develop new in-

terferometer architectures. There are two main aspects that determine the
merit of an interferometer architecture. First, for the interferometer to be
useful, it needs to be able to implement a desired unitary transformation.
Second, it is crucial that the interferometer introduces as little loss as pos-
sible, as this ultimately determines the scale (i.e. the numbers of photons
and modes) at which it can be used. Thus, in our development of new ar-
chitectures, we should minimize the amount of loss caused by propagation
through MZIs and delay lines, and show that the developed architectures
can implement useful unitary transformations.

This section will focus on interferometer architectures that make use of
permutations with increasing sizes T of exchanged sets. Each unique per-
mutation requires a distinct amount of delay, which is impractical to im-
plement in a loop architecture, Thus, we will restrict the focus to cascaded
architectures. For novel loop-architectures, including an architecture con-
jectured to be universal with improved depth and delay loss compared to
the loop-Clements scheme, the reader is referred to Appendix B.3.

The optimal number of MZIs for a fully populated unitary matrix

The Reck and Clements architectures do not make use of permutations,
and instead implement MZIs between nearest-neighboring modes for each
diagonal or column. As a result, it takes (M-1) columns or diagonals until
the unitary matrix describing the interferometer can be fully populated, i.e.
where no element in the matrix is equal to zero. However, an optimal archi-
tecture should be able to produce a fully-populated unitary matrix, also re-
ferred to as a fully connected interferometer, by sending each mode through
only ⌈log2(M)⌉ MZI. To understand why this is the case, we can examine the
maximum number of modes encountered after three layers of MZIs, as illus-
trated in Fig. 3.6. Each MZI has two inputs and two outputs. After the first
MZI, all output modes can contain contributions from at most two modes.
If we send two modes containing contributions from different modes into
a second MZI, then the output modes from the second MZI can contain at
most contributions from four modes. Similarly, output modes from a third
MZI can contain contributions from at most eight modes. In conclusion, ev-
ery set of MZIs doubles the maximal number of modes connected. As such,
⌈log2(M)⌉ layers of MZIs are required to connect all modes.

Thus, in order to implement a fully-connected time-bin interferometer
with as low depth as possible, we want to permute the modes between time-
bins such that we double the number of modes encountered for each layer,
as this enables the construction of interferometers with optimal depth.

There are two additional considerations we will take into account, one
having to do with MZI diagonals, and the other having to do with optimal
delay. Single-path time-bin interferometers are constructed from MZI diag-
onals, for which the optical depth is hard to determine as different paths
through the interferometer will encounter a different number of MZIs. To
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FIGURE 3.6: An illustration of how the number of modes con-
nected in an interferometer consisting of layers of MZIs can
be doubled for every layer. The number of connected modes
is denoted with curly brackets, meaning that a mode labeled
with a,b contains contributions from the initial modes a and b,
or in other words, the mode is connected to modes a and b.

avoid this complication, we will restrict the focus to two-path interferome-
ters, where every MZI column introduces an additional component in every
path.

Optimal delay for a time-bin interferometer

The only way for an earlier time-bin to interfere with a later time-bin
is to synchronize the two by delaying the earlier time-bin. As such, for a
fully connected interferometer, the first output time-bin can at the earliest
occur simultaneously with the last input time-bin. Conversely, if the first
output time-bin were to exit the interferometer before the last input time-bin
enters the interferometer, it would be impossible to connect the two modes.
Thus, we can say that interferometers have an optimal delay if the first out-
put time-bin happens at the same time as the last input time-bin. This is
the case for a cascaded single-path Reck-style interferometer, consisting of
M−1 diagonals of MZIs, each of which delays the state by one time-bin, i.e.
delaying the output state with M − 1 time-bins—which is equal to the tem-
poral separation between the first and last input modes. As for the cascaded
Clements interferometer, it consists of M/2 pairs of MZI columns, each de-
laying the state by one time-bin. As the separation between the first and last
time-bin is M/2 − 1, this means that the cascaded Clements interferometer
is one time-bin short of optimal delay.

Regardless of the delay configuration, there will be a delay loss associ-
ated with every path through the interferometer. Each element in the uni-
tary matrix, describing the probability amplitude for going from a specific
input to a specific output, can be associated with a delay that is equal to the
temporal separation between the input mode and the output mode. In other
words, every path through the interferometer that starts in the same input
mode and ends in the same output mode will necessarily go through the
same amount of delay. Thus, for the purposes of optimizing delay, we only
have to concern ourselves with the time difference between input modes
and output modes.



3.3. Logarithmic-depth time-bin interferometers 59

3.3.1 Time-bin interferometer architectures with logarithmic
depth and optimal delay

To construct time-bin interferometer architectures with as low optical
depth as possible, we want to double the number of modes encountered
for every layer of MZIs. A layer of MZIs consists of an MZI followed by
a permutation, which itself contains a switch. The switch is omitted for
the last layer of MZIs, as it is unnecessary to permute the output modes.
For two-path time-bin encodings, we need to generalize the permutations
introduced in the previous section to two modes. We will make use of the
permutation algorithms shown in Fig. 3.7 and Fig. 3.8.

Two-path permutations

The exchange permutation for two paths applies a single-path exchange
permutation on the top mode, and delays the bottom mode by T · τ time-
bins. This ensures that the bottom-modes from the first T time-bins overlap
perfectly with the top time-bins from the subsequent set of M/2 − T time-
bins. Thus, the sets of top modes are exchanged, and all top modes are
synchronized with a bottom mode. An example for six modes with set-size
T = 1 is shown in Fig. 3.7a, and the procedure for a general number of
modes and set-size, ExchangePermutation(M, T), is illustrated in Fig. 3.7b.

As for the alternating permutation, we again apply the permutation to
only the top mode, and delay the bottom mode. In this case, we set the
numbers s1, s2 to be equal to a power of two, i.e. s1 = s2 = 2c−1 for a positive
integer c. This is motivated by the argument illustrated in Fig. 3.6, as we
want to double the size of the groups we’re exchanging for every layer of
MZIs. This requires that the number of time-bins M/2 is divisible by the
group size s1 + s2 = 2c, which ultimately requires that the number of modes
is a power of two. Similarly to the exchange permutation, the delay in the
bottom mode is set to be equal to the size of the exchanged set, i.e. τ ·2c−1. In
this case, this ensures that the bottom modes from one set are synchronized
with the top modes from the exchanged set. An example with eight modes
and order c = 1 is shown in Fig. 3.8, and the procedure for the first group of
a general number of modes and order, Pow2Permutation(M, c), is illustrated
in Fig. 3.8b.

Cascaded logarithmic-depth interferometers for power-of-two numbers
of modes

As the number of modes connected can maximally double for every MZI
layer, the most simple case has the number of modes equal to a power of
two. In this case, doubling the number of modes connected for every layer
will eventually result in a fully connected interferometer.

After an MZI, the top and bottom modes in a given time-bin will contain
contributions from the same modes, as illustrated in Fig. 3.6. Therefore,
we should make sure that the paths the top and bottom modes take never
overlap for the rest of the interferometer. To ensure that this happens, the
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FIGURE 3.7: Two-path exchange permutation, consisting of a
single-path exchange permutation in the top mode and a de-
lay in the bottom mode. The delay ensures that all top modes
are synchronized with a bottom mode. a A two-path exchange
permutation with three time-bins, exchanging the order of the
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cedure for a two-path exchange permutation with M/2 time-
bins. The ordering of the set containing the top modes in the
first T time-bins and the top modes in the last M − T time-bin
is exchanged.
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all top modes are synchronized with a bottom mode. The
number of modes is assumed to be divisible by 2c+1. a A two-
path alternating permutation with four time-bins, exchanging
the order of the top modes in the first pair of time-bins and the
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a series of exchange permutations between pairs of time-bins.
The separation between time-bins in both input and output
states is equal to τ . b The general procedure for a two-path
power-of-two permutation with M/2 time-bins. For every set
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delay in the bottom mode will be set to a fixed value for a given MZI layer.
If we index the MZI layer as L (for “layer”), we want the bottom delay to be
equal to 2L−1. This corresponds to ExchangePermutation(M, T = 2L−1), and
Pow2Permutation(M, c = L).

In the exchange permutation, the top mode will either not be delayed, or
be delayed by M/2 = 2log2(M)−1 time-bins, which only happens once for the
case of power-of-two number of modes. The bottom modes will go through
a delay of

∑log2(M)−1
L=1 2L−1 = 2log2(M)−1 − 1, where we note again that there

is no permutation in the final MZI layer. As such, the path taken by the
top mode and the bottom mode will never overlap for the first log2(M) MZI
layers.

For the power-of-two permutation, a slightly different approach is taken.
Between the MZI and the permutation in the Lth MZI layer, we can split the
time-bins into 2log2(M)−1−L contiguous groups where all of the modes in each
group are connected to one another. As the number of modes is equal to a
power of two, we can use the permutation layer to merge pairs of groups
together, doubling the number of modes connected. As the number of time-
bins in each group is 2L−1, this can be accomplished with the permutation
Pow2Permutation(M, c = L).

Examples of cascaded interferometers with power-of-two numbers of
modes using exchange permutations or power-of-two permutations are shown
in Fig. 3.9 and Fig. 3.10, respectively. These figures also show how zero el-
ements are eliminated from the unitary matrix associated with the interfer-
ometer for every MZI layer.

Before proceeding, we should evaluate if these interferometers have op-
timal delay by checking whether or not the first output time-bin is syn-
chronous with the last input time-bin. As the modes should be fully con-
nected, this corresponds to the case where there is a path from the last in-
put time-bin to the end of the interferometer which goes through no delay.
As the bottom mode is always delayed between MZI layers, we only need
to consider the top modes. Every permutation delays the current first 2L−1

time-bins. By summing the number of time-bins delayed for every layer, we
can find how many of the initial time-bins have been delayed at the output
of the interferometer as

log2(M)−1∑
L=1

2L−1 = 2log2(M)−1 − 1 = M/2− 1.

As such, the first M/2−1 out of all M/2 time-bins have been delayed, which
means that the final input time-bin has not been delayed, verifying that
the exchange-permutation-based approach allows for the construction of
optimal-delay time-bin interferometers with logarithmic depth.

We have to use a slightly different approach for the power-of-two per-
mutation. For every 2L time-bins, this permutation delays the first 2L−1. If
we index time-bins starting from 1, then every input time-bin that has an
index not divisible by 2L will have been delayed after layer L, up to the last
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FIGURE 3.9: Circuit schematic for a logarithmic depth cas-
caded time-bin interferometer based on exchange permuta-
tions for power-of-two numbers of modes. a Example of
an implementation for eight modes consisting of three MZIs
and two two-path exchange permutations with increasing set-
size T. The plots above the circuit show how the number of
nonzero elements in the unitary matrix increases for each step
in the circuit. A nonzero element for row i and column j cor-
responds to a connection from input mode i to output mode
j. b Circuit schematic for a general power-of-two number of
modes, consisting of log2(M) MZIs sandwiching log2(M) − 1
two-path exchange permutations.
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FIGURE 3.10: Circuit schematic for a logarithmic depth cas-
caded time-bin interferometer based on power-of-two permu-
tations for power-of-two numbers of modes. a Example of an
implementation for eight modes consisting of three MZIs and
two two-path power-of-two permutations with increasing or-
der c. The plots above the circuit show how the number of
nonzero elements in the unitary matrix increases for each step
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responds to a connection from input mode i to output mode
j. b Circuit schematic for a general power-of-two number of
modes, consisting of log2(M) MZIs sandwiching log2(M) − 1
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layer where there is no permutation. At the second to last layer our time-
bin index has to be divisible by 2log2(M−1) = M/2, i.e. the index of the final
input time-bin. As such, at the output of the interferometer the only input
time-bin that has not been delayed is the final input time-bin, verifying that
the power-of-two-permutation-based approach allows for the construction
of optimal-delay time-bin interferometers with logarithmic depth.

3.3.2 Exchange based permutations vs power-of-two based
permutations

Thus far, the exchange permutation and power-of-two permutation seem
to accomplish the same thing. However, their differing properties lead to
unique advantages. The exchange permutation is particularly well-suited
to the case where the number of modes is not equal to a power of two. The
approach is the same for the first ⌊log2(M)⌋ columns, after which more than
half of the modes have been connected, meaning the number of connec-
tions can not be doubled again. The first output time-bin from this layer
is 2⌊log2(M)⌋−1 − 1, whereas the last input time-bin is M/2 − 1. Furthermore,
all unconnected modes will be found in this section. Thus, we can fully
connect the interferometer with optimal delay by adding the permutation
ExchangePermutation(M, T = M/2−2⌊log2(M)⌋−1). As the connected number
of modes cannot be doubled, this means that there will be a finite number
of overlapping paths in the interferometer. This is illustrated in Fig. 3.11,
where having two connections is indicated with an orange color. Thus,
using exchange permutations, we can implement a fully connected inter-
ferometer for any even number of modes with optimal delay and optical
depth of ⌈log2(M)⌉.

The power-of-two permutation, on the other hand, has a different prop-
erty that we can exploit. After each interferometer layer, the modes can be
split into 2log2(M)−c groups where all of the modes in each group are con-
nected to one another. Thus, we should be able to split the groups into
2log2(M)−c paths, where each path contains one mode from each group. In
other words, we can double the number of spatial paths for each layer of
MZIs, thereby allowing for the construction of a demultiplexing interferome-
ter. A schematic for how this can be accomplished is illustrated in Fig. 3.12.
The permutation here is slightly different, as top modes (bottom modes)
are permuted to interfere with top modes (bottom modes). By operating a
demultiplexing interferometer in reverse, it is also possible to make a multi-
plexing interferometer. As the output modes must be synchronized at the end
of a demultiplexing interferometer, the overall delay loss will also be lower
for later output time-bins compared to the case of a non-demultiplexed in-
terferometer where they must be delayed to have a temporal separation
with respect to the first output time-bin.

Demultiplexing (multiplexing) interferometers can also be extended to
single-path time-bin encodings by sending the single-path into a reconfig-
urable switch at the start (end) of the interferometer, where one path is
connected to a delay of the time-bin separation τ . This requires that all
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FIGURE 3.11: Circuit schematic for a logarithmic depth cas-
caded time-bin interferometer based on exchange permuta-
tions for even numbers of modes not equal to a power of two.
a Top: Example of an implementation for ten modes consisting
of four MZIs and three two-path exchange permutations with
varying set-size T. The plots above the circuit show how the
number of nonzero elements in the unitary matrix increases
for each step in the circuit. A nonzero element for row i and
column j corresponds to a connection from input mode i to
output mode j. For certain input–output combinations there
will be two connecting paths through the interferometer as op-
posed to one, indicated by an orange color. b Circuit schematic
for a general even number of modes not equal to a power
of two, consisting of ⌈log2(M)⌉ MZIs sandwiching ⌊log2(M)⌋
two-path exchange permutations.
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other delays in the two-path demultiplexing (multiplexing) interferometer
are multiplied by a factor of two.

3.3.3 Specialized unitary matrices with logarithmic-depth in-
terferometers

The utility of the logarithmic-depth interferometer architectures only ex-
tends as far as the utility of the unitary matrices they can implement6. To
this end, we will show in this section that for power-of-two numbers of
modes, we can implement discrete Fourier transform (DFT) matrices using
a single cascaded interferometer.

DFT matrices using demultiplexing interferometers

In the following we will focus on the use of demultiplexing interfer-
ometers, as this maps naturally onto the algorithm introduced by Barak et
al. 2007. This is fairly simple to translate into a cascaded power-of-two-
permutation-based time-bin interferometer, by implementing a swapped
beamsplitter instead of a beamsplitter for every MZI layer, i.e.

Uswap-bs = UbeamsplitterUswap =
1√
2

[
1 1
−1 1

]
.

The procedure introduced by Barak et al. 2007 provides a way to im-
plement a DFT matrix using linear optical components. Multimode pho-
tonic Fock states exhibit specific bunching and antibunching behavior simi-
lar to the HOM effect when scattering on a DFT matrix, which is denoted as
bosonic suppression laws. This has been demonstrated in a number of exper-
iments Crespi et al. 2016; Wang et al. 2023, one of which is detailed in the
next chapter of this thesis.

An example of the DFT interferometer algorithm for eight modes is il-
lustrated in Fig. 3.13, reproduced from Barak et al. 2007.

If we ignore the labels and start at the bottom, we can see that the inter-
ference pattern is identical to that of a demultiplexing interferometer. The
interference between modes is given by the beamsplitter matrix

Ubeamsplitter =
1√
2

[
1 1
1 −1

]
.

Thus if we set the MZIs to implement a beamsplitter transformation in ad-
dition to a time-dependent phase for the modes requiring a phase-shift, we
can implement a DFT matrix up to relabeling the input and output modes.
The elements in the DFT matrix all have the same absolute value, such that
the only difference between the elements is their phase. The phases of DFT
matrices of increasing sizes are shown in the leftmost column in Fig. 3.14.

6For certain applications, such as running the boson sampling algorithm, they might
prove advantageous without the need to dial specific unitaries, as will be discussed in
more detail in Chapter 6
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FIGURE 3.12: Circuit schematics for demultiplexing interfer-
ometers. Multiplexing interferometers can be constructed by
running the circuit in reverse. Modes with primes denote the
ordering of modes after interference and permutation. The
color of each bin corresponds to the end position of the in-
put time-bins for the case where all MZIs are set to enact the
unity transformation. a Schematic for the basic building block
which we call a ‘DemuxMZI’. The DemuxMZI takes incom-
ing sets of four modes in two time-bins where the time-bins
have a temporal separation of τ · 2L−1. The two modes in
each time-bin interfere at the MZI and the outputs are demulti-
plexed and synchronized to four modes. b Example schematic
of a demultiplexing interferometer with eight modes, requir-
ing three layers of MZIs, where the first two layers are De-
muxMZIs demultiplexing and permuting the modes after in-
terference. c A schematic for a demultiplexing interferometer
with a general number of modes. The black time-bins corre-
spond to modes that were not illustrated in the input state.
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FIGURE 3.13: Schematic of a linear optical implementation
of the Cooley–Tukey algorithm for the DFT matrix in eight
modes. The crosses represent beamsplitter transformations
between the two incident modes. The operators âi denote in-
put modes, whereas the operators b̂i denote output modes.
The values i, u and u3 correspond to phase shifts applied to
the corresponding modes. Adapted from Barak et al. 2007.

The middle column in Fig. 3.14 shows the phase of the corresponding uni-
tary matrix made by running the DFT matrix algorithm with a demultiplex-
ing interferometer without relabeling the input and output modes. This
relabeling corresponds to permuting rows and columns and can be imple-
mented by permuting the input and output modes before and after the in-
terferometer. The rightmost column in Fig. 3.14 shows the unitary imple-
mented by the demultiplexing interferometer with the correct permutation
matrix applied to the input and output. The code used to generate the DFT
matrix and the permutation matrix for the input and output is provided in
Appendix B.5.

3.4 Conclusion and outlook
In summary, we have shown various time-bin interferometer architec-

tures using either loop or cascaded approaches in the single-path and two-
path time-bin encodings. We have demonstrated how the time-bin encoding
is uniquely suited to employing permutation matrices between the modes,
and how this can be used to construct specialized interferometer architec-
tures with a significant reduction in the optical depth. Though these special-
ized interferometers cannot implement arbitrary unitary matrices, we have
shown that they are capable of implementing discrete Fourier transform ma-
trices, which have been used in several quantum optics experiments, includ-
ing the one detailed in the next chapter.
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FIGURE 3.14: Heatmaps of the phase of the complex elements
of unitary matrices with numbers of modes equal to increas-
ingly higher powers of two. The first column shows the phase
of the elements of the discreet Fourier transform. The second
column shows the result of the implementation of the reverse
circuit from Barak et al. 2007 implemented with a demultiplex-
ing time-bin interferometer. The third column is the result
from the second column with a specific permutation matrix
applied to the input and output modes.
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For the two-path time-bin encoding, we have demonstrated two dif-
ferent types of permutation matrices, the exchange permutation and the
power-of-two permutation, each of which has unique advantages. Specifi-
cally, the exchange permutation can be used for the construction of logarithmic-
depth interferometers with optimal delay for any even number of modes.
Power-of-two-permutations on the other hand, which are restricted to power-
of-two numbers-of-modes, enable the construction of demultiplexing (mul-
tiplexing) interferometers, which take time-bin encoded (path encoded) in-
put states and produce path encoded (time-bin encoded) output states. The
resource cost for implementing demultiplexing interferometers is similar to
that of a demultiplexer, as both consists of binary trees of switches. Specifi-
cally, the interferometer variant requires the addition of one MZI per switch,
where all MZIs apart from the last set generally has to be reconfigurable in
time. As such, the resource requirements are approximately a factor of two
higher for any power-of-two number of modes.

The demultiplexing interferometer allows for a reduction in propagation
loss compared to other optimal-delay architectures, as no temporal separa-
tion is required between output modes. Multiplexing interferometers, on
the other hand, provide a way to interface path-encoded devices with quan-
tum emitters, which could be useful e.g. in experiments aiming to use a
quantum dot as a nonlinearity.

There are a number of ways in which the work presented here could be
expanded upon, some of which are outlined in Appendix B. By counting the
resources required to construct universal interferometer architectures, we
can conjecture improved architectures for the two-path time-bin encoding,
both with a loop approach and with a cascaded approach. However, these
result are only useful if we know how to implement unitary matrices of
interest using these architectures. To verify that the conjectured universal
architectures are, in fact, universal, a decomposition method would have to
be developed, as was done by Reck et al. 1994 and Clements et al. 2016 for
their respective architectures.

Alternatively, we could expand the scope to architectures for time-bin
encodings with n paths, which would be the natural encoding of n or n/2
on-demand single-photon sources, for which specialized interferometer ar-
chitectures have already been developed (Su et al. 2019).

As demonstrated by the results presented in Chapter 4 and Fig. 6.6 of
Chapter 6, specialized interferometer architectures have practical advan-
tages in a variety of experiments. To establish the full utility of these ar-
chitectures, we would have to:

1. Find the full range of unitary matrices that can be implemented.

2. Develop a decomposition method to implement any specific possible
unitary matrix.

On a final note, demultiplexing interferometers can be developed for any
even number of modes by making use of MZIs, permutations, and possibly
Reck MZIs in each mode at the start or in the middle of the interferometer.
In the worst case, you could always combine a cascaded exchange-based
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logarithmic-depth interferometer with a standard demultiplexer. This would
have a logarithmically scaling depth but would have twice as much delay
compared to the optimal delay. As of yet, it is uncertain how much delay
and how many switches and MZIs would be required for an optimized ar-
chitecture.
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4 Demonstration of bosonic sup-
pression and postselected en-
tanglement using a time-bin
interferometer

Statement of work

The experiment was conceived of and designed by Stefano Paesani and
I. We built the time-bin interferometer together with Kasper H. Nielsen. The
experiments and data analysis were conducted by Kasper and I with super-
vision from Stefano. The single-photon source was set up and characterized
by Ying Wang.

Although the results presented in this chapter are original, the meth-
ods and classical characterization of this work was presented in Kasper H.
Nielsens master thesis (Nielsen 2022), and much of this chapter draws upon
chapters 6 and 7 of his thesis.

4.1 Introduction
As the time-bin encoding is the natural encoding of on-demand single-

photon sources, no mode-conversion (e.g. using a demultiplexer) is re-
quired for experiments employing time-bin interferometers. Additionally,
time-bin interferometers allow for a further reduction in the number of re-
quired physical components compared to the path encoding, as a single
physical resource can be reused over multiple time-bins in place of mul-
tiple components. However, this typically requires the use of more complex
resources that can be reconfigured rapidly between time-bins. In this ex-
periment we construct a cascaded time-bin interferometer which is used to
demonstrate bosonic suppression laws and postselected entanglement us-
ing only a single reconfigurable electro-optic modulator, showcasing how
the time-bin encoding is particularly advantageous for certain specialized
tasks. We start the chapter by introducing a simple four-mode photonic cir-
cuit that can be used both to demonstrate bosonic suppression laws and
postselected entanglement. Proceeding, we explore how this circuit can
be implemented in the two-path time-bin encoding using two polarization
modes in place of the two paths. The experimental setup is used to demon-
strate bosonic suppression laws with a fidelity of 0.934 ± 0.001 and postse-
lected generation of Bell states with a fidelity of 0.963± 0.001.
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4.2 Background
The HOM effect is the cornerstone of photonic quantum computing and

is the gold-standard in quantifying the indistinguishability of two photons.
The HOM effect can be considered a special two-mode two-photon case of
of so-called bosonic suppression laws. The following explanation is adapted
from Crespi et al. 2016, drawing upon results from Tichy et al. 2010 and
Tichy et al. 2012. Bosonic suppression laws occur when Fock states com-
posed of p photons in a cyclic collision-free input state are transformed by
interferometers enacting DFT matrices with m = pn modes for an integer n.
For a cyclic input states, the occupied modes jsr satisfy the rule

jsr = s+ (r − 1)pn−1,

where r = 1, · · · , p and s = 1, · · · , pn−1. For the purposes of this chapter,
where we have p = 2 photons in m = 22 = 4 modes, there are only two
possible cyclic input states, |1, 0, 1, 0⟩ and |0, 1, 0, 1⟩. After evolution by the
DFT matrix, the output states with a finite probability amplitude have to
fulfill the following condition

mod

(
p∑
l=1

kl, n

)
= 0, (4.1)

where kl is the output mode of the lth photon. As all other outputs have
been suppressed, we call this effect a bosonic suppression law. This has been
demonstrated in a number of experiments, e.g. Crespi et al. 2016, Carolan
et al. 2015a, and Wang et al. 2023.

In order to observe bosonic suppression, we will make use of the cir-
cuit illustrated in Fig. 4.1a. Though the unitary matrix this circuit produces
is not exactly the same as the DFT matrix, it reproduces the same bosonic
suppression laws. This circuit bears a striking resemblance to the circuit
for a postselected Bell-state generator, illustrated in Fig. 4.1b, which is also
equivalent to a circuit representation of the type-II fusion gate introduced
in Browne et al. 2005. The bosonic suppression law circuit is equivalent to
the XX-basis configuration (i.e. both photonic qubits are measured in the
X-basis). The circuit for a generalized postselected GHZ state generator is
illustrated in Fig. 4.1c (This type of circuit has seen implementation in e.g.
Pont et al. 2022 and Li et al. 2020).

These circuits have the useful property that the output statistics are in-
sensitive to phase shifts between the elements in the circuit as long as they
are applied to both the first and third mode, or the second and fourth mode,
as shown in more detail in Appendix C.1. These pairs of modes are only sep-
arated in time, meaning that the interferometer only has to be phase-stable
between pairs of time-bins, i.e. on a nanosecond timescale. As mechanical
fluctuations are significantly slower than this, an interferometer implement-
ing these circuits will not have to be phase-stabilized.

The circuits in Fig 4.1 are similar to specific instances of a Clements
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FIGURE 4.1: a Schematic of a circuit implementation of a four-
mode DFT matrix. b Schematic of a circuit implementation
of a postselected Bell state generator. c Schematic of a circuit
implementation of a postselected GHZ state generator. d A
component that can be reconfigured between three settings to
project the measurement in the X, Y, and Z bases.
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scheme in four modes, where the last column of MZIs have been removed.
As such, we can implement the circuits using a cascaded two-path time-
bin interferometer with three physical MZIs. From Fig. 3.3, we know that
for even numbered time-bins, the physical MZI has to implement a swap
transformation on the first and last time-bin. However, no such restriction
is placed on the first and third column, and as our schematic has the same
unitary operation applied across the whole column, we can implement these
columns using a fixed unitary transformation for all time-bins. As such,
both the boson suppression circuit and the postselected Bell state generator
can be implemented using the circuit schematic shown in Fig. 4.2b, using
two static (i.e. not time-dependent) unitary transformations and one time-
dependent unitary transformation.

4.3 Setup
The two-path time-bin circuit shown in Fig. 4.2b is implemented using

the polarization degree-of-freedom in bulk optics in place of the two paths,
resulting in an effective circuit schematic shown in Fig. 4.2a. The polariza-
tion degree-of-freedom in bulk optics has the advantage that static unitary
transformations can be implemented using wave plates for which the two
polarizations share the same path. It will be necessary to convert back-and-
forth with a two-path encoding to selectively delay one of the modes, which
is achieved by inserting polarizing beamsplitters (PBSs). As all modes prop-
agate in free-space, they should in principle not experience any propagation
loss. However, the dealyed paths should ideally be perfectly aligned with
the undelayed paths after recombination on the PBS. In practice, imperfect
alignment will result to an imbalanced fiber coupling efficiency at the end
of the interferometer for different paths.

The full experimental setup is shown in Fig. 4.3, where three sections
have been outlined: the source, the interferometer, and measurement.

The Source consists of a pulsed laser (Coherent Mira) periodically excit-
ing the quantum dot to produce a string of polarized single-photons sep-
arated by 13.8 ns. This initializes the input state of the two-path time-bin
interferometer to |1, 0, 1, 0⟩ = |HE,HL⟩. Part of the laser is split off into a
separate path using a beamsplitter, where it is detected using a photodiode
to provide a clock signal used for synchronization of the experiment and
measurement.

The Interferometer employs sets of wave plates (U1 and U3) for static
unitary transformations, and employs an electro-optic modulator (U2(t)) to
perform a time-dependent unitary transformation.

As the desired time-dependent unitary transformation oscillates between
two settings, we use a resonantly enhanced EOM from QUBIG with resonant
frequency tuned to half of the repetition rate of the laser, i.e. around 36MHz.
Resonantly enhanced EOMs can take higher-frequency driving signals than
their nonresonant counterparts, but are limited to sinusoidal driving signals
at their resonant frequency. To alternate between a maximum and mini-
mal driving signal for every time-bin, we want to apply a sinusoidal signal
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FIGURE 4.2: a Schematic of a time-bin circuit implementation
used to implement a four-mode DFT matrix and postselected
Bell-state generator. Horizontal and vertical modes are de-
noted by color. “E” denotes the “early” time-bin, and “L”
denotes the “late” time-bin. b Schematic of the physical cir-
cuit implementation of a postselected Bell state generator. The
first beamsplitter (BS) and the reconfigurable basis projection
unitary (U2) are implemented using wave plates, whereas the
unitary matrix (U1(t)) is implemented using a reconfigurable
electro-optic modulator. As indicated in a, the electro-optic
modulator alternates between applying a swap transforma-
tion (H → V, V → H) and a identity transformation (H → H,
V → V).
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FIGURE 4.3: Schematic of the setup used for the experiments.
An explanation of the schematic is provided in the main text.
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with frequency equal to half of the repetition rate of the pulsed laser driv-
ing the source. The driving signal is produced by our EOM driver, which
is phase-locked to the pulsed laser through a clock signal produced by the
photodiode in the source section. By aligning the phase of the EOM driving
signal precisely to the arrival time of the photons at the EOM, we can alter-
nate between applying the maximum and minimum of the driving signal on
every other time-bin. By setting the appropriate maximum and minimum
values, we can then alternate between a swap transformation and a identity
transformation, satisfying the requirements for the time-dependent unitary
transformation.

After the first and second unitary transformations, a PBS is used to send
vertically polarized light into a delay of exactly one time-bin, which cor-
responds to approximately four meters of propagation in free-space. The
length of the delay was tuned by interfering laser pulses from the pulsed
laser. The laser pulses have a pulse-length of around 6 ps, and we only ob-
serve interference when they are overlapped. As the lifetime of the quantum
dot was measured to be 917 ps (Wang et al. 2023), this ensures that any tem-
poral mismatch between a delayed early input photon and an undelayed
late input photon is negligible, ensuring that the delay does not introduce
any partial distinguishability. A lens is added to each delay to correct for
divergence of the beam waist. The delays are aligned such that the verti-
cal polarization is aligned with the transmitted polarization after a second
reflection on the PBS. The lens and alignment allows us to decrease the mis-
match between the fiber coupling efficiencies of delayed and transmitted
paths. After the third unitary transformation, a PBS is used to split the hori-
zontal and vertical polarization into different modes for detection. The fiber
coupling efficiencies for each path through the interferometer, characterized
by configuring the wave plates in the interferometer with the EOM turned
off, are shown in Table 4.1.

The wave plates in U3 can be configured to implement measurements
in the XX-basis, the YY-basis, or the ZZ-basis. For the XX and YY basis,
the half-wave plate is rotated by π/2 with respect to the horizontal polar-
ization, such that it implements a beamsplitter transformation on the two
polarization modes. The quarter-wave plate is rotated by π/2 between the
two bases, resulting in a relative phase difference of π added between the
modes. For the ZZ-basis measurements, the ordinary axis of the half-wave
plates was aligned with the horizontal polarization, resulting in an effective
identity transformation1.

For the Measurement of the state, the two polarized outputs are split
using fiber beamsplitters and each of the four outputs are sent into a cor-
responding detectors. The fiber beamsplitters serve two purposes. First,
they allow for measuring coincidences between early and late time-bins of
the same polarization mode, which would otherwise be difficult due to the
deadtime of the detectors, which has been measured to be 55 ps by a former

1In principle this adds a phase shift of π to the horizontal mode, but as there is no more
interference before detection, it cannot affect the output statistics.
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Path configuration Measured fiber coupling
TTH 0.89
TTV 0.82
DTH 0.80
DTV 0.81
TDH 0.78
TDV 0.77
DDH 0.75
DDV 0.75

TABLE 4.1: Measured fiber coupling efficiency for each path
through the interferometer illustrated in Fig. 4.3. The two first
letters in the path configuration indicates whether the light
was delayed in the first or second delay loop (with “T” de-
noting the path being transmitted at the PBS and “D” denoting
the path being delayed by being reflected at the PBS). The final
letter corresponds to the output detector the output coupling
was measured at, with “H” (“V”) denoting the fiber coupling
to the horizontal (vertical) polarization detectors.

member of the group (Appel 2021). Second, the fiber beamsplitters in con-
junction with two detectors allow for probabilistic resolution of two-photon
Fock states as an output state containing two-photons in the same mode will
antibunch on the fiber beamsplitter with a probability 50%. We can correct
for this probabilistic detection by doubling the number of detected counts
for each state with two photons in the same mode.

All detectors, as well as a clock signal from the EOM driver, are con-
nected to the time-tagger used to measure two-fold photon coincidences
between various pairs of detectors. The clock signal from the EOM allows
for us to define the time-bin of two detector coincidences. By adding a dead-
time to the clock signal channel on the time-tagger, we can effectively down-
sample the clock signal by a factor of two to produce a clock signal for the
time-bin interferometer. Table 4.2 shows the appropriate detector configu-
ration and time-delay for coincidence measurements for each basis state of
the full Hilbert space.

4.3.1 Sources of error in the experimental setup

Before proceeding to the results, we will introduce two important sources
of errors, and a model used to simulate the experimental setup with imper-
fections. We will consider two types of errors: 1. Partial distinguishability
between the two photons in our input state, and 2. Finite extinction of the
EOM leading to leakage between earlier and later time-bin interferometers.

Partial distinguishability is a model used to explain nonunity HOM vis-
ibility. A set of partially distinguishable photons are considered as a sta-
tistical mixture of two fully indistinguishable photons, which do interfere
with one another, and two fully distinguishable photons, which transform



4.3. Setup 81

State Detector configuration
|2, 0, 0, 0⟩ HH:E1E∗

2

|1, 1, 0, 0⟩ HV:E1E2

|1, 0, 1, 0⟩ HH:(E1L2 + L1E2)
|1, 0, 0, 1⟩ HV:E1L2

|0, 2, 0, 0⟩ VV:E1E∗
2

|0, 1, 1, 0⟩ HV:L1E2

|0, 1, 0, 1⟩ VV:(E1L2 + L1E2)
|0, 0, 2, 0⟩ HH:L1L∗

2

|0, 0, 1, 1⟩ HV:L1L2

|0, 0, 0, 2⟩ VV:L1L∗
2

TABLE 4.2: Detector coincidence configuration settings to
measure a specific output state. The two first letters in the
detector configuration corresponds to the polarization of each
detector, with H denoting horizontal polarization and V de-
noting vertical polarization. Two detectors are available per
polarization. The two last letters denote the measured time-
bin for the corresponding detector, such that HV:E1L2 denotes
a coincidence between an H detector and a V detector, where
the H detector clicks in the early time-bin whereas the V de-
tector clicks in the late time-bin. The states |1, 0, 1, 0⟩ and
|0, 1, 0, 1⟩ are measured by two different detector configura-
tions each. All basis states containing two photons in the same
mode, marked with the ∗ superscript, will have a 50% lower
chance of being detected.

independently of one another. In our model, we set the proportion of in-
distinguishable photons equal to the HOM visibility of the source. As the
HOM visibility was measured to be 94.5% (Wang et al. 2023), the output
statistics should correspond to 0.945 multiplied with the output probability
distribution from an input state of two indistinguishable photons in addi-
tion to 0.055 multiplied by the output probability distribution from an input
state of two distinguishable photons.

The second source of error that we consider is that of nonunity extinc-
tion of our EOM. The extinction of the EOM was measured by sending hori-
zontally polarized single photons through the EOM with the delayed paths

= + ×( (
FIGURE 4.4: An illustration of how partial distinguishability
is modeled. A set of partially distinguishable photons in an in-
terferometer are considered as a statistical mixture of two fully
indistinguishable photons interfering with one another and
two fully distinguishable photons scattering independently
(as indicated with the tensor product).
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t1 (arb.)

FIGURE 4.5: Measurement of the extinction of the electro-optic
modulator used in the time-bin interferometer. The measure-
ment is a coincidence measurement between the clock signal
from the pulsed laser used to excite the source and one of
the horizontal polarization detectors. Peak areas are indicated
with a yellow color. An extinction of 51 was calculated by di-
viding the low intensity peak areas and the high intensity peak
areas.

blocked. As every other photon should be swapped to vertical polariza-
tion, we should ideally only see peaks for every other time-bin. However,
as we can see from the measurement shown in Fig. 4.5, we will instead see a
strong suppression at every other time-bin. The result of this is illustrated in
Fig. 4.6. From this measurement, we can estimate an extinction of 51. How-
ever, we note that this extinction was not stable, and drifted on a timescale
of minutes. As the experiments required integration times of ten minutes, it
is likely that the average extinction throughout the experiment was lower.

As finite extinction leads to some of the light being transmitted when it
should be delayed and vice versa, light in the first (last) time-bin of an in-
terferometer can be exchanged with the late (early) time-bin of the previous
(subsequent) interferometer. We can model this by considering all combina-
tions of the four photons highlighted in Fig. 4.6, where we use the inverse
of the extinction as the transmission between interferometers. Each pair of
photons are also modeled as partially distinguishable.

A brief comment about relabeling of outputs in the measurement

In our experiments we measured suppression of the states |1, 0, 1, 0⟩ and
|0, 1, 0, 1⟩ instead of the expected states |1, 0, 0, 1⟩ and |0, 1, 1, 0⟩. Though this
is not consistent with the output statistics expected from the circuit shown
in Fig. 4.1a, it would be consistent with a circuit where the EOM applies an
additional phase of π/2 to both modes when implementing only the swap
or identity operation (or a phase shift of π to one mode for only one of the
operations). Therefore, we attribute this discrepancy to such a phase shift,
and proceeding we will compare with a relabeled distribution, i.e. one with
suppression of |1, 0, 1, 0⟩ and |0, 1, 0, 1⟩.
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FIGURE 4.6: An illustration of how finite extinction leads to
multiple connected time-bin interferometers. The dashed grey
lines correspond to the EOM not implementing a perfect swap
operation which would isolate each interferometer, instead
scattering small portions of light between two interferome-
ters. The filled red circles correspond to the input photons that
contribute to detection events considered for Interferometer 2.
The circles with a red outline correspond to input photons that
do not contribute to the output statistics measured for Interfer-
ometer 2.
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4.4 Results
A three-fold coincidence measurement between two photon clicks as

well as the time-bin clock signal is shown in Fig. 4.7 for the two horizon-
tal polarization detectors. This 2D histogram has the time-delay t1 between
the first detector and time-bin clock on the x-axis, and the time-delay t2 be-
tween the second detector and the time-bin clock on the y-axis. In this mea-
surement, the deadtime on the time tagger had to be set to downsample
the clock signal by a factor of 122 as the time tagger had a maximum count
rate of 8MHz. As a result, we can see six separate time-bin interferome-
ters along the diagonal of the 2D histogram. Each point on the diagonal
corresponds to the two detectors clicking at the same time with some time-
delay compared to the time-bin interferometer clock. Moving up along the
y-axis from the diagonal corresponds to the first detector clicking early and
the second detector clicking late, and moving to the right along the x-axis
from the diagonal corresponds to the first detector clicking late and the sec-
ond detector clicking early. In Fig. 4.7 all interferometers along the diagonal
have been summed together, effectively reversing the effect of the time-bin
clock downsampling on the 2D histogram. The outlined areas are labeled
according to which time-bin combinations they correspond to.

In order to reconstruct the output probability distribution for all basis
states in the full Hilbert space, we have to combine the results of all detector
configurations outlined in Table 4.2. We can then find the probability for a
given output configuration by dividing by the total number of counts for all
basis states considered. In order to correct for uneven coupling and detector
efficiency, we normalize the coincidence counts for a given pair of detectors,
d1 and d2 as

coincidencesnormalized(d1, d2) = coincidences(d1, d2)/
√

counts(d1) · counts(d2),

where counts(di) is the total number of detected counts for detector i over
the whole integration time.

The results of the measurements are shown in Fig. 4.8. This figure also
shows a comparison to a simulation of the setup taking partial distinguisha-
bility and finite EOM extinction into account. The uncertainty of the mea-
sured results and the measured fidelity is estimated using Monte Carlo sim-
ulation where the number of detected counts have been assumed to follow a
Poissonian distribution. The uncertainties of the measurements are shown
in Table 4.3 for the bosonic suppression law and Table 4.4 for the postse-
lected Bell state generator.

The fidelity of the measurements compared to the target probability dis-
tributions is estimated using two different approaches for the bosonic sup-
pression law measurement and the postselected Bell state generator. To
estimate the fidelity of the bosonic suppression law, we use the statistical

2Technically, a factor of 10 would have been sufficient.
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FIGURE 4.7: a 2D histogram measured for the HH detector
configuration. Separate interferometers are labeled along the
diagonal. The x-axis (y-axis) corresponds to the delay between
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time-bin detection configurations where the first (second) let-
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Bosonic suppression
State ± uncertainty

|2, 0, 0, 0⟩ 0.0020
|1, 1, 0, 0⟩ 0.0006
|1, 0, 1, 0⟩ 0.0004
|1, 0, 0, 1⟩ 0.0019
|0, 2, 0, 0⟩ 0.0020
|0, 1, 1, 0⟩ 0.0020
|0, 1, 0, 1⟩ 0.0004
|0, 0, 2, 0⟩ 0.0019
|0, 0, 1, 1⟩ 0.0006
|0, 0, 0, 2⟩ 0.0019

TABLE 4.3: 95% confidence interval for the measured counts
in the bosonic suppression law measurement, estimated using
Monte Carlo simulation assuming a Possonian distribution of
detected counts.

fidelity between two distributions, defined as

F =

(∑
i

√
piqi

)2

, (4.2)

for distributions p and q. For the Bell state generator, we use the same
approach as Vigliar et al. 2021, where the fidelity is defined as

F =
1

2

(
FXX +

1

2
(FY Y + FZZ)

)
, (4.3)

where Fii is the statistical fidelity for the computational ii-basis calculated
using Eq.(4.2).

We measure a fidelity of 0.934 ± 0.001 for the bosonic suppression law,
and a fidelity of 0.963±0.001 for the postselected Bell state generator, where
the uncertainties have been estimated using a Monte Carlo approach. Ad-
ditionally, we estimate fidelities of 0.992 and 0.995 compared to simulations
for the bosonic suppression law circuit and postselected Bell state generator,
respectively.

4.5 Conclusion and outlook
In summary, we have demonstrated bosonic suppression laws and post-

selected Bell state generation with fidelities exceeding 90%, using a resource-
efficient time-bin interferometer. Our results are limited by finite EOM ex-
tinction and partial photon distinguishability, as corroborated by simula-
tions taking these effects into account showing a high fidelity compared to
the measured results. Our experiments make it clear that time-bin interfer-
ometers can be particularly well-suited for the implementation of specific



4.5. Conclusion and outlook 87

b

c

d

a

P
ro
ba
bi
lit
y

P
ro
ba
bi
lit
y

P
ro
ba
bi
lit
y

P
ro
ba
bi
lit
y

XX-basis YY-basis ZZ-basis

XX-basis YY-basis ZZ-basis

FIGURE 4.8: Measured output probability distributions com-
pared to the ideal case and a simulation of the experimental
setup. a The measured output probability distribution of the
bosonic suppression law compared to the ideal case. The mea-
sured distribution reach a fidelity of 0.934 ± 0.001 compared
to the ideal distribution. b The measured output probabil-
ity distribution of the bosonic suppression law compared to
a simulation of the experimental setup. The simulated distri-
bution displays a fidelity of 0.992 compared to the measured
distribution.c The measured computational output probabil-
ity distribution of the postselected Bell state generator in the
XX, YY, and ZZ basis compared to the ideal case. The mea-
sured result reach a fidelity of 0.963 ± 0.001 compared to the
ideal case. d The measured computational output probability
distribution of the postselected Bell state generator in the XX,
YY, and ZZ basis compared to a simulation of the experimen-
tal setup. The simulation displays a fidelity of 0.995 compared
to the measurement.
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Postselected Bell-state generation
State +/- uncertainty

XX-basis
|00⟩ 0.0008
|01⟩ 0.0032
|10⟩ 0.0032
|11⟩ 0.0008

YY-basis
|00⟩ 0.0017
|01⟩ 0.0072
|10⟩ 0.0017
|11⟩ 0.0008

ZZ-basis
|00⟩ 0.0018
|01⟩ 0.0336
|10⟩ 0.0329
|11⟩ 0.0025

TABLE 4.4: 95% confidence interval for the measured counts
in the postselected Bell state generator measurement, esti-
mated using Monte Carlo simulation assuming a Possonian
distribution of detected counts.

unitary transformations.
Our results highlight particular advantages and disadvantages of con-

structing time-bin interferometers in free-space using bulk optics. Bulk op-
tics has the advantage that long delays can be implemented with low loss.
However, as each delay introduces additional paths through the interferom-
eter, all of which have to be coupled into the same detectors, it is difficult to
achieve balanced coupling efficiency, as shown in Table 4.1.

Scaling up to larger experiments will face additional challenges. For our
particular circuit, we were able to exploit the structure of the target circuit
to limit the number of time-dependent components to one, using a single
resonantly enhanced EOM. Future larger-scale experiments could similarly
target larger-scale circuits with a similar structure. The postselected GHZ
state generator3 shown in Fig. 4.1c is an example of one such circuit, which
could be implemented with the same experiemntal setup used here with
a crucial substitution. In order for the EOM used for the second MZI col-
umn to implement swap transformations (or more likely, identity opera-
tions) on all time-bins except the first and the last, one would have to use a
nonresonant EOM, also known as a broadband EOM. However, the use of
broadband EOMs typically require the use of more sophisticated electron-
ics, and the EOMs typically cannot operate at sufficiently high repetition
rates. Experiments employing broadband EOMs instead rely on grouping

3It is important to note that postselected entanglement is more limited in utility than
heralded entanglement, as detailed in Adcock et al. 2018.
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multiple copies of the same time-bin into sequences where the same oper-
ation is applied to all time-bin in a given sequence. As the EOM only has
to be reconfigured between each sequence, one can effectively lower the re-
quirements on how rapidly it needs to be reconfigured by increasing the
number of time-bins in each sequence. In this approach, each time-bin in
the sequence only sees one time-bin from other sequences, as is done in e.g.
Li et al. 2020 and Hummel et al. 2019. This has the consequence that the sep-
aration between interfering time-bins has to be increased, requiring longer
delays.

Another disadvantage of bulk-optics setups is that they require a large
amount of physical space. In the path encoding, this issue can be over-
come by integrating all optical components onto a photonic chip, allow-
ing for large-scale experimental setups on a small footprint, with the addi-
tional advantage that the interferometer stays phase-stabilized. However,
the prospects of integrating time-bin interferometers on chips is limited by
their excessive propagation loss, where even the best integrated photon-
ics platforms exhibit propagation loss orders of magnitude worse than the
standard propagation loss in optical fibers. One way to overcome this is-
sue could be to route photons into off-chip fiber delays, however, typical
current-day fiber-to-chip coupling loss is too high for this approach to be
viable.
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5 High-speed thin-film lithium
niobate quantum processor

Statement of work

The work presented in this chapter is the result of a collaboration with
Emma Lomonte and Francesco Lenzini who were working in Wolfram Per-
nice’s group at the University of Münster, and Stefano Paesani and I from
the Quantum Photonics group at the Niels Bohr Insitute in Copenhagen.
The photonic integrated circuits were designed by Stefano and I using com-
ponents developed by Francesco and Emma, and were fabricated in Mün-
ster by Francesco and Emma. Francesco and Emma also carried out clas-
sical characterization of the bandwidth of the on-chip EOMs, and took the
beautiful microscope images of the chip shown in the figures in this chap-
ter. The rest of the measurements were carried out by Stefano and I at the
Niels Bohr Institute, using a single-photon source setup and characterized
by Ying Wang. The work resulted in a publication (Sund et al. 2023a) and
much of this chapter, particularly the introduction, results, and conclusion
and outlook, will be reproduced from this manuscript with minor adjust-
ments.

5.1 Introduction
Through substantial effort, quantum technologies are steadily advanc-

ing toward the promise of surpassing the limitations of classical information
processing. Quantum photonics stands out as a promising candidate plat-
form, with computing paradigms such as fusion-based quantum comput-
ing (FBQC) providing roadmaps for the realization of fault-tolerant quan-
tum computing (Bartolucci et al. 2023). FBQC poses stringent requirements
on the capabilities of the photonic hardware utilized, and although many
key functionalities are satisfied by individual platforms, a singular plat-
form satisfying every requirement has yet to emerge. Two key function-
alities stand out as particularly challenging: the efficient generation of a
large number of indistinguishable photons and rapidly-reconfigurable low-
loss circuit for their routing and processing. In recent years, on-demand
single-photon sources based on semiconductor quantum dots have demon-
strated impressive progress, enabling highly efficient generation of near-
ideal single-photons. Concurrently, thin-film lithium-niobate-on-insulator
(LNOI) has rapidly matured as a platform for photonic integrated circuits
(PICs) owing to a wide transparency window, low loss waveguides, and fast
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and cryogenically compatible electro-optic modulators (Zhang et al. 2017;
Wang et al. 2018a; Lomonte et al. 2021b). In this chapter, we combine the
advantageous properties of a quantum-dot single-photon source with low-
loss and rapidly reconfigurable circuits on LNOI to realize a device capable
of demonstrating key functionalities for photonic quantum computing. The
chapter is structured as follows. The first section introduces the LNOI plat-
form and covers the design of the photonic chip. The proceeding sections
cover the experimental setup, including workarounds of issues uncovered
in classical characterization of the device. Finally, the results, discussion and
outlook are presented as they appear in Sund et al. 2023a.

5.2 Background
This section will focus on the properties of lithium niobate that were

relevant to the design of the photonic integrated circuits and experiments.
For a more detailed account of LNOI fabrication, see e.g. the Ph.D. thesis of
Jeffrey C. Holzgrafe (Holzgrafe 2022).

5.2.1 Electro-optic phase modulators

Lithium niobate (LN) is a material with a high nonlinear χ(2) coefficient,
leading to a strong Pockels effect (Saleh et al. 2007), where application of an
electric field along a specific crystalline axis of the material will change the
refractive index. In LN, the nonlinear coefficient, and hence the change in
refractive index, is strongest along for an electric field is oriented along crys-
talline z-axis of the material.In order to induce a phase shift between modes,
we need to apply an electric field which is perpendicular to the propagation
direction of the light. To this end, we make use of the modulator design
illustrated in Fig. 5.1a, adapted from Lomonte et al. 2021b. Here, two elec-
trodes are deposited on top of a cladding layer on either side of a LN waveg-
uide. By applying a positive voltage to one electrode while grounding the
other, an electric field flowing through the cladding and waveguide to the
other electrode will be created. As there will be an electric field inside the
waveguide aligned with the crystalline z-axis, the resultant electro-optic ef-
fect will alter the refractive index of the material, altering the phase of any
light that propagates through the waveguide.

In order to increase the relative phase shift between two modes, we can
construct push–pull modulators as shown in Fig. 5.1b. Here, a positive elec-
trode is situated in the middle of two waveguide, with ground electrodes
on the other side of each waveguide. By applying a positive voltage to the
middle electrode, the voltage will flow in opposite directions across each
waveguide, applying a positive phase shift to the light in one waveguide
(a phase “push”) and a negative phase shift in the other (a phase “pull”),
effectively doubling the phase shift.
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a b
Epush Epull

Y

Z

FIGURE 5.1: a Electrode configuration allowing for the appli-
cation of an electric field along the z-axis within a thin-film
LN waveguide. The white field lines indicate the direction
and amplitude of the electric field. The heatmap shows the
mode profile of the first-order TE mode in the waveguide.
This figure is adapted from Lomonte et al. 2021b. b A top-view
schematic and cross-section view of a push–pull phase-shifter.
By applying a voltage to the signal eletrode (S), an electric field
will be oriented in the negative z-direction for the left waveg-
uide and in the positive z-direction for the right waveguide.
This results in phase shifts with opposite signs (a “push” and
a “pull”) on the two waveguides. This figure is adapted from
Sund et al. 2023a with modifications.

A brief acknowledgement of DC bias drift

A well-known issue with LN EOMs is DC bias drift, which results in in-
stability of phase shifts when static (DC) voltages are applied to the modula-
tors. The effect this has on our devices mirrors the one described in Lomonte
et al. 2021b for room temperature operation, where upon application of a
DC signal or AC signal with a DC bias the modulated signal returns to the
same state as a zero DC voltage in less than a second. Though this had a
profound impact on the experimental protocols, the origin of the DC bias
drift is beyond the scope of this thesis. The interested reader is directed to
Holzgrafe 2022 and/or Salvestrini et al. 2011. The effect of this DC bias on
our modulators is partly covered in Appendix D.1.

5.2.2 Waveguides

Because of the large refractive index contrast between LN (nLN ≈ 2.24 for
wavelengths around 940 nm) and the silicon oxide bottom cladding ((nSiO2 ≈
1.45 for wavelengths around 940 nm)) and HSQ top cladding (nHSQ ∼ 1.4 for
wavelengths around 940 nm), light can be confined tightly, enabling rela-
tively small waveguide cross-sections and small bending radii, particularly
when compared to titanium-diffused LN which is still widely used in com-
mercial EOMs. The mode profile for the single-mode waveguides used in
our devices, as well as the mode-profile of a titanium diffused LN waveg-
uide, is shown in Fig. 5.2.

A large portion of propagation loss in the waveguides comes as a re-
sult of roughness on the boundary between the LN and cladding materials,
often referred to as waveguide roughness, which leads to scattering of the
light. In order to reduce this source of propagation loss, we can make use
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i
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FIGURE 5.2: (i) A waveguide in bulk titanium-diffused LN.
Adapted from Zhu et al. 2021. The colors indicate electric field
amplitude. (ii) Mode-profiles for the fundamental TE mode in
a a single-mode waveguide with a width of 550 nm. b a mul-
timode waveguide with a width of 1µm. The color indicates
electric field amplitude where darker red is larger. Adapted
from Sund et al. 2023a

of multimode waveguides with a width of 1µm. The mode profile for such
a waveguide (adapted from Sund et al. 2023a) is shown in Fig. 5.2, which
also shows the mode profile for a single-mode waveguide with a width of
550 nm. The mode-profile for the multimode waveguide has a smaller pro-
portion of the mode overlapping with the boundaries between materials
compared to the case for a single-mode waveguide, and hence proportion-
ally less of the mode will be scattered by waveguide roughness. In our fi-
nal device we use 550 nm-wide single-mode waveguides for sections with
bends, where there would be a risk of mode conversion between differ-
ent guided modes for multimode waveguides, and use 1µm-wide multi-
mode waveguides for straight sections. We convert back and forth between
single-mode waveguides and multimode waveguides using tapers of length
30µm.
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FIGURE 5.3: Screenshot of the GDS file used for the fabri-
cation of the LNOI chips employed in this chapter. Struc-
tures used for experiments, i.e. a four-mode interferometer,
a four-mode demultiplexer and an MZI, are highlighted. Sec-
tions with bond-pads, probe-pads and the grating couplers for
the four-mode interferometer structure and demultiplexer are
outlined.

5.3 Device design
A screenshot of the full layout of the chip is shown in Fig. 5.3, with the

three structures used for experiments highlighted. The design of these de-
vices was informed by a number of constraints and experimental consider-
ations. The two most important constraints were: 1. A fixed orientation for
all modulators, and 2. Fixing the relative orientation of all grating couplers
and electronics.

The first constraint was motivated by the higher electro-optic coefficient
for the crystalline z-axis, as previously mentioned. The second constraint,
on the other hand, was put in place to simplify the experimental setup. Plac-
ing all grating couplers on the same side, as seen in Fig. 5.3, allowed for the
coupling to be done with a single fiber-array. Routing all electronics to-
wards the opposite side of the chip, on the other hand, made it simpler to
place and align the optics and electronics using two camera angles, as de-
tailed in Appendix D.2.

To simplify electronic access to all structures, the electronic connection
of all electrodes included elongated pad-sections as outlined in Fig. 5.3, in-
tended for use with electronic probes. For the four-mode interferometer,
all signal electrodes were designed to include a wirebonding pad section,
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whereas all ground electrodes were shorted together, effectively reducing
the number of required bonds by a factor of two. Ultimately, no wirebond-
ing was performed, with electronic probes used to connect to all modulator
electrodes.

A microscope image of a fabricated MZI is shown in Fig. 5.7a and a
microscope image of a fabricated four-mode interferometer and a demul-
tiplexer is shown in Fig. 5.8a. For the four-mode interferometer, there will
be multiple interfering paths between MZIs. The lengths of these different
paths were not matched. The longest on-chip delay between two paths is
approximately 1mm, which would correspond to a time-delay of approx-
imately 3 ps in free-space, which is more than two orders of magnitude
smaller than the measured lifetime of the quantum dot, i.e. the temporal
length of a given single-photon. As such, we neglect the effect of any path-
length mismatch on the indistinguishability of two output photons. This
path-length mismatch instead results in an effective phase-shift, but which
can be compensated for by using the phase-shifters in the interferometer.

5.4 Experimental setup
Many of the decisions made in the construction of the experimental setup

were made to tackle issues that became apparent during classical character-
ization. The procedures and results of this preliminary classical characteri-
zation are presented in Appendix D.1. This section will focus instead on the
final state of the experimental setup with explanations of the issues that had
to be taken into consideration for each component.

Overcoming the DC bias drift

The biggest obstacle in performing experiments on the chip was the elec-
tronic control of the modulators. The first problem was that we needed to
be able to send in DC signals and signals with DC offsets. This problem was
exacerbated by the apparent high impedance of the modulators (see Ap-
pendix D.1). We solved both issues by making use of an arbitrary waveform
generator (AWG) able to drive high load impedances (a Rigol DG 4202). In
order to effectively drive DC signals, we used the AWG to drive 100 kHz
square wave signals, i.e. a signal switching between a high voltage and a
low voltage, and postselected on detected events coinciding with the high
voltage. The demultiplexer required additional workarounds, as we had to
be able to drive fast AC signals with a DC offset. As the DC bias drift re-
moved any DC offsets to AC signals, we implemented the desired AC signal
in pulses with a low duty cycle, i.e. only applying the AC signal containing
the “DC” offset for a short period of time.
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Detector Detector

With jitter Gated to remove jitter

FIGURE 5.4: Experimentally measured demultiplexed signal
with and without jitter filtering. The different colors corre-
sponds to detected events using different detectors. The detec-
tor counts have been normalized, and calibrated background
counts have been subtracted.

Overcoming the limitations of the Rigol AWG

As the repetition rate of the pulsed laser used to drive our single-photon
source is approximately 72MHz, the pulse sequence for a four-photon de-
multiplexer should in principle be the same rate divided by four, i.e. ap-
proximately 18MHz. To introduce a lower duty cycle, we instead pulsed a
single iteration of the pulse sequence with a pulse rate of 5MHz. Thus, in
order to use the Rigol AWG to drive the modulators in the demultiplexer
experiment, we had to be able to trigger low-duty cycle pulses with a repe-
tition rate around 5MHz in-phase with the photon emission at a repetition
rate of around 72MHz. This required downsampling the frequency of the
clock signal from the single-photon source to approximately the repetition
rate of the AWG pulses. To this end, we made use of a complicated scheme
where the clock signal was first downsampled by a factor of two through
an FPGA, and then used to trigger a 5MHz clock signal on a faster AWG
(Active Technologies Arb Rider AWG-5064). This resulted in a downsam-
pled clock signal at approximately 5MHz, but the introduction of an FPGA
and another AWG resulted in substantial jitter on the signal. This jitter was
removed by postselecting on detector coincidences where the synchroniza-
tion signal from the Rigol AWG coincided within a short temporal window
with a clock signal from the SPS. The effect of this postselection can be seen
in Fig. 5.4. This complicated setup was not necessary, and it would have
been much easier to make use of a conventional frequency divider in place
of the FPGA and AWG.

A final challenge with using the Rigol AWG was that only two channels
were available to drive the three EOMs on the demultiplexer or ten EOMs
in the four-mode interferometer. For the demultiplexer, two channels were
sufficient as one channel could be reused for two EOMs. The demultiplexer



98 Chapter 5. High-speed thin-film lithium niobate quantum processor

splits four photons in the same spatial input mode into four separate spatial
output modes in two stages. In the first stage a single EOM is used to split
the incoming photons between two spatial modes, and in the second stage
one EOM per mode is used to route the photons from two spatial modes to
four. The EOM in the first stage applies a transformation to all four photons,
sending the first two photons into one arm through an identity transforma-
tion, and the latter two photons into the other arm with a swap transfor-
mation. The EOMs in the second stage only applies a transformation to two
photons each, and so we can use the same signal to address the first EOM for
the first two photons, and the other EOM for the second two photons. The
pulse sequence implemented in the experiment is illustrated in Fig. 5.8d.

A different approach was taken for the four-mode interferometer. Here,
we use a single channel to drive all of the modulators in reverse by apply-
ing a signal to the ground pad. In this configuration, the push–pull MZIs,
as illustrated in Fig. 5.1, now act as pull–push MZIs where the ground elec-
trodes on the side act as signal electrodes, and the signal electrodes act as
floating ground electrodes. In this configuration, we were able to configure
different unitary matrices with limited programmability.

Modeling of the four-mode interferometer

In order to validate the experimental results from this configuration, we
mathematically modeled the circuit with a single phase being applied to
the internal phase-shifter of all MZIs and individual phases applied to each
external phase-shifters. Though the same phase would be applied to the ex-
ternal phase-shifters, the external phase shifts were kept as free parameters
as path-length mismatch between MZIs within the interferometer also adds
an effective phase shift to the light. We then extrapolated the implemented
unitary by numerically fitting the expected output statistics from the model
to the experimentally measured output distributions.

Two-mode off-chip demultiplexer

As our four-mode interferometer and MZI experiments require spatially
encoded input states with two photons in two separate modes, we have to
make use of a two-mode demultiplexer. To this end we make use of the
experimental setup introduced in Chapter 4, which has the capability of
switching and synchronizing pairs of photons to two different modes. To
this end, the first delay loop was blocked, and the unitary transformations
U1 and U3 shown in Fig. 4.3 were set to identity.

Schematic of the experimental setup

Schematics of the full experimental setup are shown in Fig. 5.5, adapted
from the Supplementary Materials of Sund et al. 2023a. The following is
a quote of the figure caption from the supplementary materials of Sund et
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al. 2023a. a Schematic of the experimental setup used to perform measure-
ments of two-photon interference in two-mode and four-mode interferom-
eters. Optics: A pulsed laser operated at 72MHz is used to drive a quantum-
dot (QD) single-photon source, producing a stream of single photons, which
is routed into a two-mode demultiplexer consisting of an electro-optic mod-
ulator (EOM) and a polarizing beamsplitter (PBS). The demultiplexer splits
subsequently emitted photons into two modes, one of which is delayed such
that the photons are synchronized. The synchronized photons are subse-
quently sent to the chip via a fiber array (FA) and on-chip grating couplers,
and extracted from different grating couplers and coupled to the same fiber
array. The output photons are detected using superconducting nanowire
single-photon detectors (SNSPDs) and the arrival times are recorded on a
time-tagger (TT). Electronics: A fraction of the pulsed laser is split off us-
ing a beamsplitter and measured using a photodiode (PD). The resulting
clock signal is used to trigger the EOM. An arbitrary waveform genera-
tor (Rigol AWG) is used to drive the modulators with an AC signal, and
a synchronization signal is sent to the TT to allow for coincidence mea-
surements between the control signal and single-photon detection events.
b Schematic of the experimental setup used to perform active 1 × 4 demul-
tiplexing of a stream of single-photons produced by a quantum-dot (QD)
single-photon source. Optics: A pulsed laser operated at 72MHz is used to
drive a QD single-photon source, producing a stream of single photons. The
stream of photons is routed directly into the chip via a fiber array (FA) and
on-chip grating couplers, and output photons are extracted from different
grating couplers with the same fiber array. These output photons are de-
tected using superconducting nanowire single-photon detectors (SNSPDs)
and the arrival times are recorded on a time-tagger (TT). Elecronics: A frac-
tion of the pulsed laser is split off using a beamsplitter and measured using
a photodiode (PD). Part of this clock signal is downsampled using a field-
programmable gate array (FPGA) and used to trigger a square waveform
with a repetition rate of ∼5MHz on an arbitrary waveform generator (AT
AWG). This ∼5MHz signal is used to trigger an arbitrary waveform gener-
ator (Rigol AWG) which drives the modulators in an on-chip demultiplexer
structure. A synchronization signal from the Rigol AWG and the other part
of the clock signal from the PD is sent into a time-tagger to enable coinci-
dence detection between the input photon clock signal, the electronic con-
trol signal, and the single-photon detection events.

5.5 Results
The remaining text and figures of this chapter have been quoted from

Sund et al. 2023a with an additional two sentences added to the conclusions
and outlook and minor formatting adjustments.
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FIGURE 5.5: This figure is adapted from the from the supple-
mentary material of Sund et al. 2023a. a Shows the setup used
for two-photon interference, used with the MZI structure and
four-mode interferometer. b Shows the setup used for the de-
multiplexer experiment. The caption is quoted from the sup-
plementary material of Sund et al. 2023a in the main text.

5.5.1 Integrated photonic platform

In Fig. 5.6a we report a schematic of the geometry employed for the re-
alization of single-mode (SM) LNOI waveguides. Optical circuits are im-
plemented as rib waveguides with a 180 nm etching depth, fabricated by
electron-beam lithography (EBL) and argon etching on a 300 nm thick X-cut
LN film bonded on a silica-on-silicon substrate. After etching, the waveg-
uides are clad with a ≃ 550 nm thick electrically cured hydrogen silsesquiox-
ane (HSQ) layer. The angle of the waveguide sidewalls (measured with an
AFM) is ≃ 60◦, and the top waveguide width of 550 nm ensures single-mode
operation around 940 nm wavelength, the typical emission wavelength for
InGaAs QDs employed in this work, for TE-polarized light.

The fabrication of photonic integrated circuits (PICs) operating at the
short emission wavelength of InGaAs QDs comes with the disadvantage
of increased propagation loss due to sidewall scattering, whose magnitude
scales as 1λ3 (Lacey et al. 1990) when compared with the values attainable
for telecom LNOI waveguides. For this reason, we chose to employ SM
waveguides only for the realization of bends and directional couplers—
where it is more likely to excite higher order modes—and to adiabatically
enlarge the waveguide width up to 1 µm in the straight sections of the op-
tical circuitry to reduce the overlap between the TE optical mode and the
waveguide sidewalls (see Fig. 5.6b). By the use of this approach, we were
able to measure a low propagation loss coefficient down to 0.84 dB/cm at
λ = 940 nm.
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FIGURE 5.6: Overview of the platform. a-b Schematics of
the designed waveguide geometry, tailored for the quantum
emitter λ ≃ 940 nm operation wavelengths, for a single-mode
waveguides used in bends and directional couplers, and b
multi-mode straight waveguides. Color-coded is the field in-
tensity of the fundamental TE waveguide mode. c Measured
coupling efficiency of the fabricated grating couplers as a func-
tion of the input laser wavelength, with a peak efficiency of -
3.4 dB. The inset shows a scanning electron micrograph image
of the coupler. d Optical microscope image of an electrically
tunable MZI. e Schematic of the cross-section of the electro-
optic phase-shifter. f Modulation bandwidth of the MZI mea-
sured with a VNA. The data shows a 3 dB cut-off at approxi-
mately 6.5 GHz. Inset: schematic of the setup employed in the
measurement.
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The LNOI PIC is optically coupled to SM fibers by the use of apodized
grating couplers with a negative diffraction angle, designed by following
the approach of Lomonte et al. 2021a. The best coupling efficiency of our
gratings was measured around 930 nm wavelength, and found to be -3.4 dB
(see Fig. 5.6c for further details). This measured value compares well with
the best ones obtained at telecom wavelength for gratings etched on a pure
LNOI platform, i.e., without any use of a back-reflector for improving the
grating directivity or additional material layers for increasing the grating
strength (see, e.g., Chen et al. 2022 for a review on recent progress). We
numerically estimate that with the aid of a metal back-reflector underneath
the buried oxide layer, our couplers can achieve an insertion loss of < 1 dB.
The LNOI PICs demonstrated here can therefore offer an efficient approach
for interfacing fast optical switches and circuits to optical fibers.

For the realization of electro-optically tunable waveguide circuits we use
as a main building block Mach–Zehnder interferometers (MZIs) consisting
of two 50:50 directional couplers and an electrically tunable phase-shifter
(see Fig. 5.6d). The phase-shifter is implemented by patterning three 1.25
mm long gold electrodes in a ground–signal–ground configuration along
the Y axis of the crystal, in order to provide an efficient overlap between the
fundamental TE mode of the waveguide and the z-component of the ap-
plied electric field via the highest electro-optic component (r33 ≃ 30 pm/V)
of the LN susceptibility tensor. Unlike more common implementations of
EOMs in LNOI, where signal and ground electrodes sit at the two sides of
the waveguide (Wang et al. 2018b; Wang et al. 2018a), here we opted to pat-
tern them atop of the HSQ cladding (see Fig. 5.6e). This choice is made to
enable a nearly lossless crossing of the electrodes with the waveguides with-
out any need for additional fabrication steps. The fabricated modulators
displayed a half-wave voltage (Vπ) of approximately 4.5V, corresponding
to a small voltage-length product VπL ≃ 0.6 V · cm, and a high extinction
ratio ≃ 21 dB. The insertion loss of a single MZI, which includes two di-
rectional couplers, propagation loss in the waveguides, and metal-induced
absorption loss due to the presence of the electrodes, was estimated from
measurements to be equal to ≃0.8 dB.

To test the high-speed performance of the modulators, we make use of
the setup schematically depicted in the inset of Fig. 5.6e. The phase-shifter
is driven with a small-amplitude RF signal from port 1 of a vector network
analyzer (VNA), while port 2 is connected to a fast photodiode (Newport -
1544 B) optically coupled to one of the two outputs of the MZI. The resulting
S21 parameter—defined as the ratio between the power measured at port 2,
and the power leaving from port 1—is plotted in Fig. 5.6f normalized to its
maximum value, and provides a direct estimation of the MZI electro-optic
bandwidth. From the data, we record a 3 dB cut-off frequency of the modu-
lator at approximately 6.5 GHz, demonstrating the high-speed capabilities
of the fabricated PICs.
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5.5.2 On-chip quantum interference

A central figure of merit in photonic quantum information processing
is the visibility of multiphoton quantum interference, typically quantified
as the two-photon interference visibility in Hong–Ou–Mandel (HOM) ex-
periments. Incorporating simultaneously the detrimental effects of imper-
fect photonic circuitry, source distinguishability, and purity, this quantity
is essential in determining the dominant stochastic noise in photonic quan-
tum computing schemes (Rudolph 2017) and the computational complex-
ity limits in photonic sampling algorithms (Renema et al. 2018a). We thus
start by performing on-chip HOM experiments to test the performance of
our platform for photonic quantum information processing with the ex-
perimental scheme depicted in Fig. 5.7b. For single-photon generation we
use a self-assembled InAs QD embedded in a GaAs photonic and electronic
nanostructure in a 1.6K cryostat. The device comprises a single-sided pho-
tonic crystal waveguide and a shallow-etched waveguide grating for effi-
cient photon generation, and a hetero-diode to suppress electrical noise and
Stark-tune the emission wavelength (Uppu et al. 2020). We create a two-
photon input state from a stream of single photons emitted by the QD us-
ing an off-chip demultiplexer to split up pairs of consecutive photons into
two distinct paths, one of which is delayed such that the photons arrive at
the chip simultaneously. The photons are sent into an integrated MZI con-
taining a tunable electro-optic phase-shifter. The electrodes constituting the
phase-shifter are connected to an electronic probe, allowing for control of
the internal phase in the MZI. Photons are then routed off-chip to SNSPDs
for coincidence detection. On-chip HOM interference is studied by apply-
ing a varying phase to the high-speed modulator of the MZI interferometer,
and measuring the fringe of the coincidence counts at the output (Rarity et
al. 1990; Adcock et al. 2019; Paesani et al. 2020). The measured HOM fringe
visibility of 92.7% ± 0.7%, see Fig. 5.7c, is consistent with the correspond-
ing HOM visibility measured off-chip. This testifies that the fabricated PIC
does not add stochastic noise on the processed photonic states (e.g., due to
imperfect phase shifting or beam splitting, temporal mismatches, excitation
of higher order modes in the waveguides, or TE-TM intermodal conver-
sion (Kaushalram et al. 2020)), certifying the high quality of the developed
circuits as quantum photonic processing units.

5.5.3 Integrated single-photon router

Fast photon routers play an important role in photonic quantum com-
puting schemes. For example, routers can be used in conjunction with mea-
surement and feed-forward to construct multiplexing schemes, turning in-
herently probabilistic quantum photonic processes into near-deterministic
operations (Migdall et al. 2002; Varnava et al. 2008; Gimeno-Segovia et al.
2015). Alternatively, taking advantage of the capability of deterministic
quantum emitters, streams of emitted photons can be routed into multiple
spatial outputs to enable networking schemes that reduce resource over-
heads in photonic quantum computing architectures (Bombin et al. 2021),
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FIGURE 5.7: Measurement of on-chip quantum interference.
a Optical image of the chip. b Schematic of the experimental
setup. Photons generated by a QD single-photon source (SPS)
are sent into a two-mode demultiplexer consisting of a reso-
nantly enhanced electro-optic modulator (EOM) and a polar-
izing beam-splitter (PBS). The photons are subsequently col-
lected into fibers and injected into the LNOI chip by a fiber
array. Controlling the delay on one of the demultiplexer arms
ensures that the photon pairs arrive at the device simultane-
ously, and fiber polarization controllers are used to optimize
coupling into the TE mode. The output photons are collected
via the same fiber array and routed to SNSPDs for coincidence
detection. c Recorded coincidence data at zero time-delay
(shaded red areas in the insets) for varying applied voltages.
Minima and maxima in the observed HOM fringe correspond
to applied phases of ϕmin = π/2 + kπ and ϕmax = kπ, respec-
tively, with k an integer number. The error bars are estimated
from Poissonian statistics and are smaller than the data points.
The HOM visibility of the quantum interference is determined
from a curve fit (orange line) to be 92.7%± 0.7%. Insets: coin-
cidence histograms for three different applied voltages.
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FIGURE 5.8: Photon processing in multimode high-speed in-
tegrated circuits. a Optical image of the chip. The photon
router structure is highlighted in blue, and the 4 × 4 univer-
sal interferometer in orange. b Schematic of the experimen-
tal setup used to perform active 1 × 4 demultiplexing of a
stream of single-photons produced by the QD. Photons are di-
rectly coupled in and out of the chip using a fiber array, and
their time of arrival recorded via SNSDPs and a time-tagger.
Fast electrical control is performed via a function generator
(FG) connected to the modulators via a probe station, where
a channel is used to individually address the MZI in the first
layer and the other channel is split to drive both MZIs in the
second layer in parallel. c Normalized photon counts in the
four output waveguides within the time interval of a four-
photon sequence. d Associated pulse sequences, with corre-
sponding switching network configurations shown as insets.
e Schematic of the experimental setup for the universal 4×4 in-
terferometer. The optical part is equivalent to that described in
Fig. 5.7. The ten high-speed modulators employed are electri-
cally connected via a probe station and driven by a multichan-
nel function generator. f-g Experimental data (top) and esti-
mated theoretical (bottom) collision-free input–output proba-
bility distributions when programming the interferometer to
implement an approximate permutation matrix (f) and a ran-
domized unitary matrix (g), with estimated statistical fidelities
of 96.3% and 95.5%, respectively. The horizontal index indi-
cates the input configuration in terms of the mode indices of
the first and second photon, and the color corresponds to the
output configuration. Dashed lines separate different input
configurations.
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as well as demultiplexing schemes that turn a single deterministic single-
photon source into multiple sources (Wang et al. 2019).

Making use of the capability to integrate fast phase-shifters on the LNOI
platform compatible with the quantum emitter wavelengths, we demon-
strate a fully on-chip photon router for the QD-emitted photons. In par-
ticular, starting from a stream of single photons emitted from the QD at a
fixed rate, we implement a 1 × 4 demultiplexer. The demultiplexer con-
sists of three fast electro-optic MZI switches, which are cascaded in a tree-
shaped network, as schematised in Fig. 5.8b (see Fig. 5.8a for a device mi-
croscope image). It processes sequences of four single photons emitted by
the QD with a temporal separation of 13.8 ns, switching each photon de-
terministically into its own dedicated spatial mode. Fig. 5.8c shows time
traces for four output detectors with respect to the pulse sequence. The
average probability of switching a photon in the four-photon sequence to
its dedicated mode is measured to be 96.2%, corresponding to an average
suppression of −14.2 dB for unwanted photons. Such success probability
is conditional upon photon detection (i.e. does not include loss) and shows
the performance of rapidly programming the device to implement the de-
sired time-dependent routing transformation. This directly illustrates the
highly promising potential of the LNOI platform for photon routing of de-
terministic resource states produced by QDs.

5.5.4 Universal four-mode interferometer

Programmable multimode quantum photonic interferometers are cen-
tral in the implementation of core functionalities in photonic quantum tech-
nologies, e.g., multi-photon gates and fusion measurements (Carolan et al.
2015b; Bartolucci et al. 2023), and to realize circuits for quantum computa-
tional advantage experiments or analog quantum simulation (Zhong et al.
2020; Madsen et al. 2022; Huh et al. 2014; Sparrow et al. 2018). To showcase
the capabilities of the QD-LNOI platform for this class of tasks, we imple-
ment a universal 4× 4 interferometer constructed from a network of 6 MZIs
containing 10 phase modulators, as shown in Fig. 5.8e. The interferometer
implements a scheme from Clements et al. (Clements et al. 2016), whereby
the unitary transformation enacted by the interferometer is controlled by
the phases applied to the modulators, allowing for the device to implement
any arbitrary linear-optical unitary transformation on the four input waveg-
uides.

We show that the interferometer can be programmed from implement-
ing a structured matrix (an approximate permutation matrix resulting from
applying no voltage to the modulators) to implementing a randomized ma-
trix obtained by driving all the phase-shifters simultaneously. In Figures 5.8f,
g we report the measured input–output probability distributions for the two
cases, obtained by photon coincidence detection for all possible collision-
free two-photon configurations, i.e. combinations with no more than one
photon per mode. The different input states were prepared by demultiplex-
ing a stream of photons from the QD off-chip into two separate fibers and
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routing these two fibers to all possible collison-free two-photon input con-
figurations (see Fig. 5.8e). The measured distributions are compared with
theoretical predictions obtained by reconstructing the unitary matrices from
the experimental data. We find a mean statistical fidelity to the implemented
transformation of 96.3% for the approximate permutation matrix, and of
95.5% for the randomized matrix.

5.6 Discussion
The demonstrated circuits show the promise of the developed LNOI

platform for processing photons from emerging solid-state deterministic
sources. In order to fully enable scalable quantum technologies, further
optimization of the platform is, however, required. Firstly, though lim-
ited reconfigurability was demonstrated with the four-mode interferome-
ter, universal operation and particularly the implementation of fusion gates
are important future milestones. This can either be achieved by upgrading
the electronic circuity used for the experiment, or alternatively by address-
ing the DC bias drift problem of the modulators. Various measures can be
taken to address DC bias drift, such as cooling down the chip to cryogenic
temperatures (Lomonte et al. 2021b), or removing the cladding between the
electrodes and LN (Holzgrafe 2022, Puma et al. 2022). To improve the trans-
mission loss at the relevant wavelengths for quantum-dot sources, besides
improving our current fabrication process to reduce roughness, the use of
a thinner LN film would allow for the width of SM waveguides to be in-
creased while maintaining single-mode operation. As proportionally less
of the mode in such wider waveguides would overlap with the sidewalls of
the waveguide, this would mitigate the effect of sidewall scattering. The use
of a cladding with a higher refractive index than HSQ (e.g., silicon oxyni-
tride) can also be beneficial, at the expense of a larger waveguide footprint
at the expense of a larger footprint as the bend radius would have to be in-
creased. A large improvement in the efficiency of the grating couplers can
be achieved by patterning a metal back-reflector underneath the buried ox-
ide layer. This can, for example, be accomplished via back-side etching of
the silicon handle, with a fabrication process analogous to the one prelimi-
nary demonstrated in Lomonte et al. 2022.

System integration of all the employed quantum devices on LNOI—
sources, circuits, and detectors—provides an additional promising direction
for lowering the overall system loss. In this direction, direct integration of
SNSPDs together with a reconfigurable LNOI component has been recently
experimentally demonstrated using the same material stack employed in
this work (Lomonte et al. 2021b). Heterogeneous integration of quantum
emitters directly onto the LNOI waveguides could be realized with pick-
and-place techniques that has recently emerged as a highly promising ap-
proach (Aghaeimeibodi et al. 2018). Alternatively, photonic wire bonds fab-
ricated by two-photon absorption lithography might be employed for in-
terfacing optical circuits implemented in heterogeneous photonic platforms
(Lindenmann et al. 2012).
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In conclusion, high-speed LNOI quantum processors provide a route to
scale up quantum photonic technologies by leveraging the mature and ad-
vanced on-demand sources realized with solid-state quantum emitters in
photonic nanostructures. Moving forward, further optimization of the plat-
form is required in order to reduce coupling and propagation loss, which
will be realized in a close interplay between device design and PIC fabrica-
tion optimization. Fault-tolerant quantum computing architectures demand
typical loss levels of ≲ 10% per photon (Borregaard et al. 2020; Bartolucci
et al. 2023), which appears feasible with the technology after full-circle op-
timization of source, processor, and detector, and will be an exciting future
research and engineering challenge. With such an approach, only a few tens
of interconnections between individual quantum emitters and GHz-speed
reconfigurable devices suffice for fault-tolerant photonic quantum comput-
ing at scale (Bombin et al. 2021).
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6 Hardware requirements for a
quantum advantage demonstra-
tion using deterministic single-
photon sources

Statement of work

The work presented in this chapter is the result of a collaborative effort
between my former supervisor Ravitej Uppu, Stefano Paesani, Peter Lodahl,
and I.

The work resulted in a manuscript (Sund et al. 2023b), and much of this
chapter will be reproduced from this manuscript. Specifically, the intro-
duction and most of the results, discussion and outlook are presented as
they appear in the manuscript with minor formatting adjustments. Larger
changes were made to the section detailing the boson sampling setup so as
to not repeat information presented in earlier chapters, and hardware re-
quirement benchmarks for the demultiplexing interferometer architecture
presented in Chapter 3.3.2 have been included in the results and discussion.

6.1 Introduction
Devices based on quantum systems can potentially outperform the capa-

bilities of classical computers (Preskill 2012; Preskill 2018). Quantum tech-
nologies are rapidly progressing towards this goal and new computational
regimes are being explored (Arute et al. 2019; Madsen et al. 2022; Morvan et
al. 2023). While fault-tolerance is generally thought to be necessary to reach
most practical applications, reaching this regime necessitates hardware re-
quirements that are far from current capabilities, limiting demonstrations to
small-scale experiments (Maring et al. 2023; Quantum et al. 2020). Quan-
tum advantage (QA), where specialized algorithms can demonstrate speed-
ups over classical computers, has been identified as an intermediate mile-
stone computational regime amenable for near-term hardware using readily
available quantum hardware components (Aaronson et al. 2011; Hamilton
et al. 2017; Boixo et al. 2018). While it is currently not known if any prac-
tical applications are possible in this regime, it serves as an entry point to
beyond-classical capabilities and an important benchmark for developing
scalable platforms that can evolve towards fault-tolerance. In this context,
we analyze the hardware requirements for achieving QA using photonic
quantum hardware, where fusion-based approaches for fault-tolerant quan-
tum computing have been proposed (Bartolucci et al. 2023; Paesani et al.
2023).
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Aaronson and Arkhipov proposed boson sampling of photonic quantum
states (Aaronson et al. 2011) as a route for demonstrating QA with near-term
quantum hardware. The key insight is the connection between the correla-
tions induced by linear interference operations on N indistinguishable pho-
tons in an M -mode linear optical interferometer and the matrix permanent,
a quantity that is #P-hard to compute on a classical machine (Valiant 1979;
Scheel 2004). However, imperfections in photon sources and losses in op-
tical interferometer networks and detectors rapidly diminish the degree of
quantum correlations and overthrow the quantum advantage. This loss of
QA has been captured in models on ‘noisy’ boson samplers that proposed
efficient classical computation algorithms, thereby imposing strict bounds
on the indistinguishability of photons and the overall optical loss (Brod et
al. 2019; Renema et al. 2018a; Renema et al. 2018b). As quantum photonic
hardware continues to rapidly advance (Elshaari et al. 2020; Uppu et al.
2021; Pelucchi et al. 2021; Moody et al. 2022), the formulation of quantitative
benchmarks for realizing QA is a critical need as they provide milestones for
guiding the hardware development.

In this paper, we present a comprehensive analysis quantifying the per-
formance metrics of the constituent building blocks essential for surpassing
efficient classical algorithms with boson sampling. By benchmarking our
framework against state-of-the-art single-photon sources and photonic in-
tegrated circuits, we identify a realistic regime for conducting QA experi-
ments. Our analysis focuses on the case of boson samplers based on single-
photon sources (discrete variable photonic qubits), where several proof-of-
concept experiments have been carried out to date (see e.g. Broome et al.
2013; Spring et al. 2013; Crespi et al. 2013; Tillmann et al. 2013; Wang et al.
2019).

Recent advances in deterministic photon sources employing semicon-
ductor quantum dots have demonstrated the generation of >100 nearly-
identical photons Uppu et al. 2020; Tomm et al. 2021, setting the stage for
scaling up from proof-of-concept experiments. A remaining challenge is to
realize large photonic circuits with sufficiently low loss such that the large
photonic resource can be processed and measured to demonstrate QA Brod
et al. 2019; Pelucchi et al. 2021. As the optical loss in an interferometer circuit
is highly dependent on its design, i.e., the spatial arrangement of Mach-
Zehnder interferometers (MZI), we analyze the requirements of the indi-
vidual MZIs and their integration into an optimal architecture. Combining
the analysis of the source imperfections and optical circuit loss, we identify
two key optimizations, a rectangular circuit architecture and the encoding
of modes in multiple degrees of freedom, that could enable an unequivocal
demonstration of QA. We determine that an insertion loss of 3.5mdB per
MZI interferometer, i.e., a transmittance of 99.92% is sufficient for the op-
timal architecture using state-of-the-art photon sources and detectors. This
sets a clear target metric for ongoing advances in photonic integrated cir-
cuits (Stojanović et al. 2018; Bao et al. 2023), and is already within reach for
the specialized, fixed circuits employed in Wang et al. 2019 and Zhong et al.
2020.
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6.2 The boson sampling algorithm and its valida-
tion

Boson sampling is the task of sampling from the output photon distri-
bution after multiple independent photons have interfered in a multimode
linear optical interferometer. The setup for implementing boson sampling is
schematically illustrated in Fig. 6.1a) highlighting the key components: an
input consisting of multiple indistinguishable photons, a large multimode
interferometer module, and single-photon detectors.

The computational complexity of simulating boson sampling arises from
the connection between multi-photon correlations and the calculation of
matrix permanents. However, the computational hardness of calculating
the matrix permanent decreases when duplicate rows or columns occur
from multiple photons occupying the same input or output mode. To pre-
serve the computational complexity, it is crucial to ensure collision-free states
at both the inputs and outputs (Aaronson et al. 2011), meaning that each
mode contains at most one photon. Collision-free input states can be guar-
anteed by choosing the initial condition, where no more than one photon is
injected into each input mode. Ensuring collision-free outputs demands the
interferometer to possess a large number of modes per photon. Specifically,
the number of modes m must scale at least quadratically with the number
of photons p, i.e., m ∝ p2, a requirement arising from a phenomenon called
the bosonic birthday paradox (Aaronson et al. 2011; Arkhipov et al. 2012). In
experiments, collision-free outputs can be ensured through postselection of
events where photons are detected in the same number of output modes as
input modes while discarding all other events. This postselection strategy
remains applicable even when the detectors lack number-resolving capa-
bilities, thereby enabling near-term implementations of QA with efficient
single-photon detectors (Wang et al. 2019; Zhong et al. 2020; Bulmer et al.
2022).

To demonstrate QA, it is essential that the output samples can be val-
idated as being computationally hard to produce by classical means Brod
et al. 2019. Due to the computational hardness, direct validation of the sam-
ples by comparison with exact distributions is infeasible. Within these con-
straints, the validation of QA through boson sampling requires two steps.
First, we must require that deviations in the experimental setup are small
enough that approximate classical algorithms cannot simulate the output
distribution efficiently. Secondly, instead of validating that the samples
are produced from the exact distribution, one verifies that the outputs are
not reproduced by a computationally efficient distribution (Brod et al. 2019;
Wang et al. 2019). Specifically, statistical tests performed on the output sam-
ples obtained in a boson sampling experiment verify that the experimen-
tally observed distribution differs significantly from a set of efficiently com-
putable distributions. These statistical tests provide a termination condi-
tion for the experiment, whereby the boson sampler is run until a sufficient
number of output samples are generated to establish the statistical tests’
convergence unequivocally. Thus, a QA demonstration will be feasible if a
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FIGURE 6.1: a) A general boson sampling setup, consisting of
a source of multi-photon input states, a multi-port interferom-
eter, and detectors. The associated system losses ρ are indi-
cated for each sub-component. Up to l photons may be lost
in the experiment, illustrated red circles with dashed outlines
in b) and c). b) A boson sampling setup based on a deter-
ministic single-photon source (SPS) and a spatially encoded
interferometer. The SPS and demultiplexer produces spatially
encoded input states of p photons, illustrated as filled red cir-
cles. The input state is transformed using a spatially encoded
interferometer, constructed from a network of MZIs. c) A bo-
son sampling setup employing a time-bin interferometer con-
structed from reconfigurable time-dependent MZIs connected
by delay lines (blue lines) each applying a single time-bin τ of
delay.
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sufficient number of samples can be produced over an experimentally vi-
able integration time, proportional to the sample acquisition rate, rsample.
The sample acquisition rate in an experiment is equal to the product of the
generation rate of the multiple photon input state rinput and the probability
of the state reaching the detectors, Psample:

rsample = Psample · rinput. (6.1)

The probability of sampling a p-photon coincidence at the output is related
to the total per-photon efficiency of the system Psys as

Psample = P p
sys. (6.2)

For convenience, we express these probabilities in decibels, i.e., ρi = −10 log10(Pi).
For brevity, we refer to the decibel probability, ρi as loss, while Pi is referred
to as efficiency.

6.3 Experimental setup and imperfections
As illustrated in Fig. 6.1a), the loss in the boson sampling architecture

can be broken down into component-level losses as

ρsys = ρsrc + ρint + ρdet, (6.3)

where ρsrc is the source loss, ρint is the interferometer loss, and ρdet is the de-
tector loss. In this section, we detail the implementation and requirements
on the components and discuss strategies to tackle experimental limitations
in each component.

6.3.1 Input state preparation

The input state in the boson sampling algorithm consists of multiple in-
distinguishable single photons in a collision-free input state. In the follow-
ing, we discuss how such an input state can be produced, and the imperfec-
tions that are introduced in real experiments.

The pair-wise indistinguishability between photons, here refered to as
x2, is an important figure-of-merit for boson sampling experiments. The in-
distinguishability can be quantified experimentally by measuring the HOM
visibility in an interference experiment (Hong et al. 1987) (e.g. as done in
Chapter 5). To ensure computational hardness, photon indistinguishability
approaching near-unity visibility is necessary.

One approach to generating highly indistinguishable single-photons is
to employ single quantum emitters such as semiconductor quantum dots
in nanophotonic structures to realize on-demand single-photon sources, as
detailed in Chapter 2. However, there is an additional approach that has
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seen widespread use in experiments: using nonlinear optics to make her-
alded single-photon sources. This approach exploits the energy-time corre-
lations in optical processes in nonlinear media like spontaneous paramet-
ric down-conversion and spontaneous four-wave mixing to generate corre-
lated photon pairs. The resulting squeezed state can be used directly for
Gaussian Boson Sampling (Hamilton et al. 2017; Zhong et al. 2020; Madsen
et al. 2022), or alternatively, the detection of one photon in the pair can be
used to herald the presence of the other. Despite being probabilistic, the
heralded nature can be exploited through active feed-forward and multi-
plexing to realize a near-deterministic photon source (Migdall et al. 2002).
As the sources suffer from an intrinsic trade-off between the photon number
purity (the probability of having one and only one photon pair per pulse)
and the photon pair generation rate, this requires massive multiplexing of
many probabilistic sources to reach near-deterministic operation with high
number purity, which is an active area of research (Bartolucci et al. 2021).

On-demand single-photon sources (SPSs) based on quantum emitters do
not suffer from these challenges and tradeoffs. Such sources have recently
been demonstrated to enable the on-demand generation of >100 highly in-
distinguishable single photons operational up to a GHz rate, thus highlight-
ing an avenue for realizing boson sampling in the QA regime (Uppu et al.
2020).

A single on-demand SPS will naturally produce multimode input states
in the time-bin encoding, which can be converted to a spatial encoding by
employing a demultiplexer. In both cases, the repetition rate at which the
source produces new input states, which we will call the input state genera-
tion rate rinput, is limited by the time it takes for the source to produce all of
the photons. If the SPS produces single-photons at a rate of rsingle-photon, the
input state generation rate of p photons will be

rinput ≤ rsingle-photon/p, (6.4)

where the lesser sign can apply to the time-bin encoding, as will be ex-
plained in Section 6.3.5.

We specifically consider and benchmark the case of a single deterministic
source but note that access to multiple deterministic quantum-dot sources
would allow for spatially encoded experiments with higher input state gen-
eration rates and lower demultiplexer losses. The simultaneous use of mul-
tiple sources relies on the development of local tuning methods for over-
coming intrinsic inhomogeneities of quantum-dot sources, and important
progress has recently been reported both for quantum dots in bulk samples
(Zhai et al. 2022) and in nanophotonic waveguides (Papon et al. 2022).

Recall from Chapter 2.3.5 that a time-to-spatial mode demultiplexer can
be realized by sending the emitted photon stream through a binary tree of
switches. Each step in the tree doubles the number of spatial modes, as
illustrated in Fig. 6.1b), such that the full demultiplexer requires a depth
of ⌈log2(p)⌉. Each output mode from the demultiplexer requires a specific
optical delay to synchronize all photons. We associate a loss of ρswitch with
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each switching operation, such that the overall loss of the demultiplexer is:

ρdmx = ⌈log2(p)⌉ ρswitch.

The output of the demultiplexer has to be connected to the input of the
interferometer, which is typically implemented using a different photonic
platform. This incurs a coupling loss, ρcoupling, such that the overall source
loss is

ρsrc = ρsps + ρdmx + ρcoupling,

where ρsps is the loss associated with the single-photon source itself, accom-
modating for inefficiencies associated with the generation of single photons
and subsequent coupling from the cavity or waveguide the source is em-
bedded in (Lodahl et al. 2022).

Photon loss and Aaronson–Brod sampling

We note that the number of photons generated should ideally be kept
as low as possible while maintaining intractability, as the sample acquisi-
tion rate will decrease exponentially with system efficiency for an increasing
number of input photons in accordance with Eq. (6.2). In order to increase
acquisition rates, experimental efforts typically employ a related algorithm
called Aaronson–Brod boson sampling (Aaronson et al. 2016), where an ad-
ditional l photons are added to the p input photons, while the outputs are
postselected to contain the same number of photons as before. The prob-
ability of detecting the correct number of photons, i.e. the probability of
generating a sample, Psample(p, l) can then be expressed as

Psample(p, l) = P p−l
sys (1− Psys)

l

(
p

l

)
, (6.5)

where the factor
(
p
l

)
is the number of combinations in which one can lose

l photons from p input photons. This leads to a speed-up in the sample
acquisition rate, which increases combinatorially with the number of lost
photons l. The downside is that postselection increases the deviation from
the ideal case and lowers the computational complexity. In practice, the
simulation algorithm in Renema et al. 2018a can approximate the output of
such an experiment within an error E bounded by

x2(k+1)(p−l
p
)k+1

1− (x2 p−l
p
)

≥ E2, (6.6)

where x2 is the indistinguishability of the photons. Thus, the number of lost
photons allowed depends on the indistinguishability of the photons in the
input state.
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6.3.2 Interferometer design and operation

So this should in principle be adapted to fit better with the stuff that’s
already in the thesis

The interferometer is constructed from layers of MZIs applied to pairs
of modes arranged according to a specific architecture. The per-photon loss
for an interferometer architecture depends on the number of optical com-
ponents, i.e. MZIs, a photon passes through from the input to the output.
Referring to this number of MZIs as the optical depth, D(m), the interfer-
ometer loss can be written as

ρint = D(m) · ρMZI.

The depth will increase for a higher number of modes where the exact de-
pendence is given by the specific architecture employed.

Ideally, the interferometer should be reconfigurable and constructed us-
ing a universal architecture, such as the Clements architecture (Clements
et al. 2016) in order to facilitate a random sampling of the unitary trans-
formation implemented by the interferometer. Additionally, the number of
modes should scale at least quadratically with the number of photons, i.e.
m = O(p2), to ensure that collision-free output states dominate the output
distribution, which is important to ensure computational hardness. How-
ever, as interferometer losses present a major bottleneck to experimental
demonstrations, two main strategies have emerged to reduce loss: 1. Re-
ducing the number of modes, and 2. Employing interferometer architec-
tures with a lower optical depth for a given number of modes.

6.3.3 Reducing the number of modes

Due to the challenges in scaling up low-loss interferometers, experi-
ments involving a large number of photons (p > 10) have employed inter-
ferometers with the number of modes m smaller than p2. Consequently, this
choice yields a proportionally reduced depth D(m). Although this reduc-
tion in the number of modes mitigates optical loss within the interferometer,
the bosonic birthday paradox no longer holds, i.e., the outputs cannot be as-
sumed to be collision-free. In this scenario, the output event where multiple
photons occupy the same mode will be indistinguishable from photon loss
unless detectors with number-resolving capabilities are utilized. However,
using the framework established in Ref. Chin et al. 2018, it can be shown
that the computational complexity of boson sampling with collisions is at
least as high as the computational complexity of collision-free boson sam-
pling with the same number of nonzero elements. For more details, we refer
to Appendix E.1.

Assuming a postselection criterion where the detection of photons is re-
stricted to d (< p) modes, with p representing the number of input photons,
Eq. (6.5) can be reformulated to derive the total sample efficiency Psample, lin
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for a linear number of modes (m ∝ p)

Psample, lin(p, d) =
d∑
l=0

P (p−l)
sys (1− Psys)

l

(
p

l

)
Pps(p, d, l,m). (6.7)

Here, Pps(p, d, l,m) is the probability of detecting an output state with d − l
collisions and p−l photons from an interferometer withmmodes–essentially
quantifying the effective postselection efficiency. This equation involves
summing the probabilities of all possible collision and photon loss config-
urations that result in photodetection in d modes. These probabilities are
then multiplied by the occurrence probability of the given combination of
losses and collisions. The computation of Eq. (6.7) relies on the knowl-
edge of the effective postselection efficiency Pps(p, d, l,m). To estimate this
quantity, we assume uniform sampling of Haar-random scattering matrices
in the Hilbert space. Thus, we can estimate the effective postselection effi-
ciency as the ratio between the size of the Hilbert space with p − l photons
in m modes with p− l− d collisions—essentially the postselected portion of
the Hilbert space—and the full Hilbert space for p− l photons in m modes.
This is expressed as:

Pps(p, d, l,m) =

(
m
d

)
·
(
p−l−1
p−l−d

)(
m+p−l−1

p−l

)
.
, (6.8)

where
(
a
b

)
represents the binomial coefficient for a and b. For more details,

we refer to Appendix E.2.

6.3.4 Path-encoded boson sampling circuit architectures

The physical design of the interferometer architecture depends on the
mode encoding employed. We will first present the architectures for path
encoding. While theoretical works typically assume the use of universal
interferometer architectures Aaronson et al. 2011, larger-scale experimen-
tal endeavors have so far featured interferometers constructed from non-
universal architectures Wang et al. 2019; Zhong et al. 2020; Madsen et al.
2022 with lower optical depth. Formally, the complexity arguments from
Refs. Aaronson et al. 2011; Aaronson et al. 2016 are valid only in the uni-
versal case, but practically, quantum advantage experiments are hard to
simulate even in nonuniversal cases. To provide an overview of how the
different approaches compare, we will examine three interferometer archi-
tectures: a universal architecture, a fully-connected architecture with single
mode-encoding, and a fully-connected hybrid-mode-encoded architecture.
Here, “fully connected" signifies that all of the output ports of the inter-
ferometer are connected to all of the input ports, generally resulting in a
unitary matrix where all elements are non-zero, but that in general can be
non-universal. In all three cases, the architectures were chosen to balance
the loss per photon to the best possible degree for all input–output config-
urations. In the Clements case, and to a lesser extent the Rectangular case,



118 Chapter 6. Hardware requirements for a quantum advantage
demonstration using deterministic single-photon sources

a

c

Clements

Hybridx

y

θ

=
MZI BS BS

φ
PSPS

b

Rectangular

FIGURE 6.2: a Illustration of the Clements interferometer ar-
chitecture, as detailed in Ref. Clements et al. 2016. Each cross
corresponds to an MZI, which can be constructed from two
50:50 beamsplitters (BSs) and two phase-shifters (PSs). b Illus-
tration of a rectangular interferometer with a larger number of
output modes than input modes, the latter of which is equal
to the number of input photons. The interferometer can be
described by a rectangular matrix, hence the name. c Illustra-
tion of an interferometer with multiple mode-encodings, i.e. a
hybrid mode-encoding. In this case, one mode encoding has
spatial modes separated in the x-direction, while the other has
modes separated in the y-direction.
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paths along the edges traverse fewer MZIs. Since the number of such edge
cases is negligible, we assume uniform loss for all input–output configura-
tions in our analysis.

The Clements architecture (Clements et al. 2016) introduced in Chap-
ter 2.3.1, is constructed from m columns of MZIs, as shown in Fig. 6.1a),
such that the interferometer loss is given by ρint = m · ρMZI.

The interferometer loss can be optimized by employing non-universal
architectures. We propose a non-universal ‘Rectangular’ interferometer ar-
chitecture (see Fig. 6.1b)), which maintains full connectivity but reduces
the depth D. This is achieved by reducing the number of input modes to
be equal to the number of input photons p, while maintaining the same
number of output modes m. The interferometer consists of an initial sec-
tion where two modes are added at the edges of each additional column of
MZIs, and a second section fully connecting every input mode to all out-
put modes. In practice, the Rectangular architecture is equivalent to start-
ing a Clements architecture partway in, distributing input modes starting
from the middle, and removing unused MZIs. The interferometer loss, ρint,
given by the number of MZI columns multiplied by the MZI insertion loss,
is
( ⌈

m
2

⌉
+
⌈
p
2

⌉
−1
)
·ρMZI. Notably, when the number of output modes is much

larger than the number of input modes, i.e. the number of input photons,
such that m ≫ p, ρint is approximately halved compared to the Clements
architecture.

Next, we introduce a ‘hybrid mode interferometer architecture’ inspired
by recent experiments Wang et al. 2019; Zhong et al. 2020; Madsen et al.
2022. These interferometers encode modes over multiple degrees of free-
dom, e.g. path or polarization, resulting in a hybrid mode encoding. For
instance, one degree of freedom might represent spatial modes separated
in the x-direction, while another represents spatial modes separated in the
y-direction as shown in Fig. 6.2c. Concatenating fully connected interfer-
ometers in each direction results in an interferometer that is fully connected
across all modes. The power of this approach lies in the way the number
of modes and the depth scale with degrees of freedom. The total number
of modes in the interferometer is equal to the product m =

∏
imi, where

mi is the number of modes encoded over the ith degree of freedom. The
optical depth, however, is equal to the sum of individual optical depths
ρint =

∑
iDi · ρMZI,i, where Di is the depth for the interferometer connecting

all modes for the ith degree of freedom, and ρMZI,i is the MZI insertion loss
for the ith degree of freedom. As an example, if we encode modes over two
degrees of freedom, with mx =

√
m modes in the x direction and my =

√
m

modes y direction, the total number of modes remains as mx · my = m. A
fully connected interferometer can then be constructed from Clements inter-
ferometers over the mx modes followed by Clements interferometers over
the my modes, as illustrated in Fig. 6.2c. The total optical depth will then be
Dx+Dy = mx+my = 2

√
m. This approach allows for efficient scaling of both

modes and depth, and it’s worth noting that the Clements interferometers
in each mode encoding can be replaced with Rectangular interferometers to
reduce depth further.
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The optical depth scalings for the different architectures can be summa-
rized as follows

ρint =

{ m · ρMZI Clements,( ⌈
m
2

⌉
+
⌈
p
2

⌉
− 1
)
· ρMZI Rectangular,∑

iDi · ρMZI,i Hybrid.
(6.9)

6.3.5 Time-bin encoded interferometer architectures

As detailed in Chapter 3, time-bin interferometers make use of time-
dependent MZIs and fiber delays to implement multimode interferome-
ters with significantly fewer physical resources than their spatially encoded
counterparts. Time-bin interferometer architectures have been both pro-
posed (Motes et al. 2014; Qi et al. 2018) and implemented in (He et al. 2017)
boson sampling experiments. Experiments have implemented both single-
path time-bin interferometers (Carosini et al. 2023) and two-path time-bin
interferometers (Chapter 4 and He et al. 2017). In this chapter we will focus
on cascaded two-path interferometer architectures, such as the one imple-
mented in Chapter 4, due to their lower total propagation loss and higher
input state generation rate. A more detailed comparison between loop ar-
chitectures and cascaded architectures is provided in Appendix E.3. We will
also consider a demultiplexing interferometer architecture and point out po-
tential pitfalls with this approach.

Fig. 6.3 shows how a Rectangular interferometer can be implemented us-
ing a time-bin interferometer. Specifically, we can construct the equivalent
of spatial interferometers by combining three different MZI column types
as shown in Fig. 6.3a. All of the interferometer columns have the exact same
construction for the time-bin interferometer architecture, a time-dependent
MZI with a delay in one of the output modes, with the only difference be-
ing the sequence of transformations. The first MZI column type, labeled C1

interferes all modes pairwise, starting with the first mode. The time-bin im-
plementation of C1 increases the total number of time-bins at the output by
1 due to the time delay, where the first mode and last mode will occupy their
own time-bins. The second interferometer column type, C2 differs from C1

in the nature of the input state, where the first and last time-bins of the input
states are occupied by only one mode, as shown in Fig. 6.3c. The operation
of the MZI on this asymmetric input state results in two additional modes
(time-bins) at the output in addition to the time delay. The final interferom-
eter column type, C3, takes an input state where the first and final time-bins
are only occupied by one of the modes and enacts a swap transformation on
the first and last time-bins, as shown in Fig. 6.3d. This reduces the number
of time bins by one compared to the input state. This type of column ef-
fectively interferes the modes pairwise starting with the second mode, such
that the first and last modes don’t interfere with any other mode.

The type of architecture that is implemented is determined by the order
and type of MZI columns implemented. Recall that a Clements interfer-
ometer can be implemented by combining m/2 pairs of C1(m) and C3(m)
columns, such that the optical depth, i.e. the number of physical MZIs in
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FIGURE 6.3: Illustration of how time-bin interferometers can
be constructed to implement specific features in interferome-
ter architectures. The bin symbols ⊔ correspond to the modes
of the interferometer, and τ is the temporal separation be-
tween photons, which is equal to the inverse of the SPS
emission rate τ = r−1

single-photon. Numbers correspond to in-
put modes, and numbers with primes correspond to output
modes. Colors are added for visual clarity, and the color of
output time-bins correspond to how the time-bins move if the
unitary transformations U(t) are set to identity (except for in
the first and final time-bin). b and d are identical to b and c in
Fig. 3.3, where the latter has been relabeled. c Operation pro-
tocol for a C2 MZI column. This takes in an asymmetric input
state and produces an asymmetric output state with two addi-
tional modes.
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the interferometer, is m. The Rectangular interferometer consists of a C1(2p)
column followed by (m− 2p)/2 C2(m

′) columns where m′ is increased from
2p at the input of the interferometer to m at the interferometer by increasing
the number of modes by 2 for every column. This is followed by p− 1 pairs
of C3(m) and C1(m) columns, resulting in an optical depth of (m+2p)/2−1.
Note that we have increased the number of input modes from p in Eq. (6.9)
to 2p as one SPS can only populate one of the spatial input modes as shown
in Fig. 6.1, i.e. half of the input modes of the Rectangular interferometer.

To account for the effect of delay lines when establishing hardware re-
quirements for time-bin interferometers, we can adjust the MZI insertion
loss to include the propagation loss of the output with the longest delay

ρMZI, time-bin = ρMZI + τ · ρprop + ρcoupling, (6.10)

where τ is the separation between time-bins, ρprop is the propagation loss
per unit time for the delay lines, and ρcoupling is the coupling loss associated
with going from one MZI to the next, i.e. coupling into and out of delay
lines.

The input state generation rate of a single cascaded interferometer is de-
termined by the number of time-bins in the input state, as opposed to the
number of input photons, as we have to wait for the full input state to be
inserted into the time-bin interferometer before sending in the next state.
For two-path interferometers the number of time-bins will be the number of
modes divided by two, yielding

rinput, time-bin =
2rsingle-photon

m
. (6.11)

This rate can be increased by running multiple interferometers in paral-
lel as is discussed in Appendix E.4, which can lead to slightly advantageous
hardware requirements.

In addition to the Clements and Rectangular architectures used in the
spatial encoding, the time-bin encoding allows for the construction of de-
multiplexing interferometers, as detailed in Chapter 3.3.2. The demulti-
plexing architecture, shown in Fig. 3.12, has some important differences
compared to the Clements and Rectangular architecture. The main differ-
ence is that the optical depth is much lower, scaling logarithmically with the
number of photons rather than linearly. However, this also means that the
number of phase-shifters used to specify the unitary transformation imple-
mented by the interferometer is significantly reduced. Though the unitary
matrix will be fully populated, this opens for the possibility that there are
simplifications that could allow for the experimented to be (approximately)
simulated by a classical algorithm with lower computational complexity.
One such example is explained in Appendix E.5. As such, though we will
show benchmarks for the demultiplexing architecture, it should be noted
that these benchmarks represent experiments that are more susceptible to
classical simulation through development of improved classical algorithms.
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6.4 System benchmark for implementing the Aaronson–
Brod boson sampling algorithm

Before delving into the component-level hardware benchmarks, we ad-
dress the overall system requirements, focusing on the two key system pa-
rameters, photon indistinguishability x2 and system loss ρsys. We analyze
the interplay between these two parameters in implementing Aaronson–
Brod’s boson sampling algorithm with lost photons. To provide a practical
assessment of hardware performance, we choose realistic experimental con-
ditions for run time and error rate of approximate classical algorithms for
QA demonstrations with p ≥ 50 photons.

We use the coupon collectors problem Ferrante et al. 2012; Uppu et al.
2020 to estimate the number of samples required for validation

rsample · tintegration ≈ m log(m)/p, (6.12)

where tintegration is the total run time of the boson sampler and rsample · tintegration

is the total number of samples acquired. We set the target for rsample to be
100 samples per day, rsample = 100/(24 · 3600)Hz, which is in line with the
measured 6/3600Hz photon coincidence rate reported in Ref. Wang et al.
2019 that allowed validating the boson sampling experiment.

We analyze the boson sampling experiment for a deterministic single-
photon source at the input that emits photons at a rate of 1 GHz. We con-
sider both the case with a demultiplexer and a spatially encoded interfer-
ometer as well as the case with a time-bin interferometer. In the former,
the p photon input state is generated at a rate of rinput, spatial = 1/pGHz. In
the latter, the input state containing M/2 time-bins is generated at a rate of
rinput, time-bin = 2/mGHz. We consider two circuit architectures of the inter-
ferometer: one with a quadratic number of modes m = (p− l)2 and another
with a linear number of modes m = 10 · (p − l), as detailed in Sec. II.A and
II.C, respectively. By comparing the two cases we can examine the influence
of mode scaling on the trade-off between photon indistinguishability and
system loss tolerance. We combine Eq. (6.1) with Eq. (6.5) (Eq. (6.7))for the
quadratic (linear) case, to find the level of loss that results in an rsample of 100
samples per day.

We choose an error rate of E ≤ 0.01, given by Eq. (6.6), for approxi-
mating the noisy boson sampling output using classically computed per-
manents of order k = 49. We plot this relation for a varying number of
detected photons (p − l), where the number of lost photons l has been set
as high as possible while keeping the error of the approximation below the
threshold of E ≤ 0.01.

Results for mode scalingsm = (p−l)2 andm = 10·(p−l) are shown in the
upper and lower rows of Fig. 6.4, respectively. The lowest indistinguishabil-
ity x2 ≈ 0.805, found by setting l = 0 and p = 50 in Eq. (6.6), corresponds to
the maximal per-photon loss for Aaronson–Arkhipov boson sampling, i.e.
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FIGURE 6.4: Maximum per-photon loss for the full circuit to
perform boson sampling in the QA regime versus degree of
indistinguishability and number of detected photons and for
different values l of lost or colliding photons. The two up-
per plots are for the case where the number of modes scales
quadratically with the number of photonsm = (p−l)2, and the
two bottom plots are for the case where the number of modes
scales linearly with the number of photonsm = 10·(p−l). The
two plots to the left are for spatial interferometers with a de-
multiplexed source, whereas the two plots on the right are for
time-bin interferometers. White contours indicate the added
number of lost photons l, which increases with the indistin-
guishability, and detected number of photons.
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with no photon loss or collisions. Increasing the photon indistinguishabil-
ity allows for a higher number of lost photons with Aaronson–Brod sam-
pling, increasing the per-photon loss that can be tolerated. We find that >
3 dB (i.e. 50%) loss tolerance for realistic degrees of indistinguishability of
quantum-dot SPSs Lodahl et al. 2022 for all four cases. We find the highest
maximal loss values at an indistinguishability of x2 = 0.98 to be, from high-
est to lowest: 3.78 dB for the quadratic spatial case, 3.46 dB for the quadratic
time-bin case, 3.35 dB for the linear spatial case, and 3.20 dB for the linear
time-bin case. For comparison, in the limit of perfect indistinguishability,
x2 = 1 where up to l = 12 photons can be lost with 50 detected photons, the
highest maximal loss values would be 3.96 dB for the quadratic spatial case,
3.65 dB for the quadratic time-bin case, 3.53 dB for the linear spatial case,
and 3.39 dB for the linear time-bin case.

As the number of detected photons increases the total loss of the sys-
tem typically increases, leading to a decreased maximum per-photon loss.
However, for a fixed degree of indistinguishability, gradually increasing the
number of detected photons can lead to abrupt changes when an additional
lost photon can be tolerated according to Eq. (6.6). Thus, the optimum num-
ber of lost photons and the detected photons will both depend on the exact
photon indistinguishability in the experiment.

In comparing the different plots it is evident that quadratic mode scal-
ings and spatial interferometers lead to higher overall loss tolerance com-
pared to the linear mode scaling and time-bin interferometers. The advan-
tage of quadratic mode scaling can be attributed to the added effective post-
selection loss associated with linear mode-scaling, described by Eq. (6.8).
Specifically, the average difference between quadratic and linear mode scal-
ings is 0.430 dB for spatial interferometers and 0.277 dB for time-bin inter-
ferometers, in favor of quadratic interferometers. The advantage of spatial
interferometers can be attributed to the lower input state generation rate
for time-bin interferometers. The average difference between spatial and
time-bin interferometers is 0.298 dB for a quadratic number of modes and
0.145 dB for a linear number of modes, both in favor of spatial interferome-
ters.

Although quadratic mode-scalings allow for higher per-photon loss, the
interferometers consist of more MZIs. As such, there is a trade-off between
lower effective postselection loss for quadratic interferometers and lower
interferometer loss for linear mode scalings where the MZI insertion loss
determines which mode scaling is favored.

Time-bin interferometers have a similar trade-off, as they have a lower
maximal per-photon loss due to the lower input state generation rate, but
do not require the use of a demultiplexer. However, a demultiplexer can
be constructed from the same MZIs that are used to construct a time-bin
interferometer, and as such, this trade-off can also be quantified in terms
of MZI insertion loss. Specifically, a demultiplexer has an optical depth of
⌈log2(p)⌉ = 6, where the equality holds for the optimal number of detected
and lost photons for all indistinguishabilities considered in Fig. 6.4. The de-
multiplexer also involves a delay on all except the last photon, where the
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first photon has to go through the longest delay of (p − 1) time-bins. As
for the time-bin interferometer, all of the D(m) MZIs in the interferometer
will in the worst case include one time-bin of delay which is not present
in the spatial case. If we compare the added per-photon loss from the de-
multiplexer in the spatial case with the added delay and lower maximum
per-photon loss in the time-bin case, we can find the following inequality
for the regime where time-bin interferometers are less favorable implemen-
tations than spatial interferometers:

6 · ρMZI + (p− 1)ρprop ≤ (D(m)− 1)ρprop +∆,

∆ = ρsys, spatial − ρsys, time-bin.
(6.13)

The average of the value for ∆, i.e. the difference between maximal per-
photon loss for spatial and time-bin interferometers, was found to be 0.145 dB
for the case wherem = 10(p−l) and 0.298 dB for the case wherem = (p−l)2.
If we neglect propagation loss, ρprop = 0, and insert the average values we
can estimate this inequality in the two cases considered in Fig. 6.4:

ρMZI ≤ 0.05 dB m = (p− l)2,

ρMZI ≤ 0.024 dB m = 10 · (p− l).
(6.14)

In practice, coupling into the delay between MZIs will inevitably incur loss,
and as such, these inequalities present a best-case scenario in favor of time-
bin interferometers.

6.5 Benchmarking hardware requirements
The requirements on component losses for a given interferometer archi-

tecture can be found by combining Eqs. (6.3), (6.9), with either Eq. (6.5)
or Eq. (6.7). To simplify the analysis, we note that only the interferom-
eter loss scales with the number of modes, and separate the losses into
the interferometer loss, ρint, and the remaining system loss, ρsys − ρint =
ρsps + ρdmx + ρcoupling. We fix the degree of indistinguishability to x2 = 0.96,
which is readily achievable with present-day quantum-dot single-photon
sources Ding et al. 2016, while routes to achieve even higher values have
been laid out Dreeßen et al. 2018. This allows us to fix the number of input
photons to p = 59 with up to l = 9 lost photons in accordance with Eq. (6.6).
We also consider the requirements for Aaronson–Arkhipov sampling where
we postselect on detecting the same number of photons as are sent into the
interferometer, i.e. fixing the number of input and output photons to p = 50.
The hardware requirements on the interferometer can be formulated as spe-
cific requirements on the MZI insertion loss by specifying the architecture
and number of modes used for the interferometer.
Single mode-encoding: The first two columns of Fig. 6.5 show the require-
ments for three different choices of mode scaling for both Clements and
Rectangular interferometer architectures, where the top figures show re-
quirements for Aaronson–Brod Aaronson et al. 2016 boson sampling, and
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FIGURE 6.5: Plot of the requirements on MZI insertion loss
(x-axis) and ρsys − ρint (y-axis) with photon indistinguisha-
bility set to x2 = 0.96. The upper plots show the require-
ments for Aaronson–Brod boson sampling, where the input
state consists of 59 photons with the outputs postselected to
contain 50 photon detection events. The lower plots show the
requirements for Aaronson–Arkhipov boson sampling, where
we send in 50 photons and detect 50 photons, not allowing
for photon loss or collisions. The first, second, and third col-
umn shows hardware requirements for setups where the in-
terferometers are constructed according to the Clements ar-
chitecture, the Rectangular architecture, and a set of Hybrid
architectures, respectively. For the Clements and Rectangular
architectures, the solid lines correspond to the requirements
for spatially encoded architectures, whereas dashed lines cor-
respond to the requirements for time-bin architectures. For
the Hybrid architectures, the solid lines correspond to require-
ments for an interferometer encoded over two spatial mode-
encodings, whereas dashed lines correspond to requirements
for an interferometer encoded over time-bins and two spatial
mode encodings. The dotted vertical lines mark the estimated
MZI loss for a state-of-the-art experimental realization with
static, nonprogrammable MZIs Wang et al. 2019. The dash-
dotted vertical line in the plots for Hybrid interferometers
marks the estimated MZI loss for a state-of-the-art experimen-
tal realization with programmable MZIs Taballione et al. 2023.
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Efficiency Current Best Near-term estimated best
Psps 0.717 (Ding et al. 2023) 0.78 (Uppu et al. 2020)

Pcoupling 0.902 (Wang et al. 2019) 0.902 (Wang et al. 2019)
Pdmx (p) 0.83 (20) (Wang et al. 2019 0.92 (Uppu et al. 2020)
Pdet 0.95 (Madsen et al. 2022) 0.95 (Maring et al. 2023)

Total efficiency 0.510 0.615
x2 0.964 (Ding et al. 2016) 0.985 (Ding et al. 2016, Pedersen 2020)

TABLE 6.1: Table of state-of-the-art system efficiencies. In the
column for demultiplexer efficiency, the number of modes of
the demultiplexer employed is indicated in parentheses. For
the current best indistinguishability, we have used the mea-
sured photon indistinguishability, whereas for the near-term
estimated best we have used the estimated intrinsic photon
indistinguishability which has been corrected for experimen-
tal imperfections.

the bottom figures show requirements for Aaronson–Arkhipov boson sam-
pling Aaronson et al. 2011, i.e. with postselection on the same number of
detected photons as input photons. The figures include a vertical dotted
line corresponding to the state-of-the-art insertion loss for a static MZI, esti-
mated to be −10 · log10(0.987)/(10 + 6) dB ≈ 0.0035 dB, which is the overall
interferometer efficiency in Ref. Wang et al. 2019 divided by the number of
MZIs corresponding to the optical depth of a 10-mode interferometer fol-
lowed by a 6-mode interferometer.

Comparing the requirements on MZI insertion loss with the Eqs. (6.14),
we find that we are in the regime where demultiplexing and spatial mode
encoded interferometers are favorable in terms of loss even with access to
the rapidly reprogrammable MZIs required to construct a time-bin interfer-
ometer.

As seen from the figure, a QA demonstration using single-mode-encoding
architectures would be within reach if one could use interferometers with
state-of-the-art efficiency in conjunction with a source and detection effi-
ciency of around Psps · Pdmx · Pcoupling · Pdet ≥ 0.65. This overall efficiency
is currently beyond the state-of-the-art values reported with quantum-dot
sourcesMaring et al. 2023; Wang et al. 2019; Chen et al. 2023; Wang et al.
2023, see Table 6.1 for an overview of parameters already reported in the lit-
erature. Further expected near-term improvements of the approach is also
listed in the table, indicating that explicit QA demonstration with single-
mode encoding is not far outside reach.
Hybrid mode encoding: Hybrid encoding schemes make the algorithms more
robust to optical loss and hence put QA demonstrations within closer reach.
We consider two distinct Hybrid architectures, one with two spatial mode
encodings, like the one employed in Refs. Wang et al. 2019; Zhong et al. 2020
and illustrated in Fig. 6.2c, and one with two spatial mode encodings and
one time-bin encoding. For the former, the number of modes in each en-
coding was chosen to optimize the optical depth, as described by Eq. (6.9).
This optimization procedure allowed for the total number of modes to be
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slightly increased if it led to favorable optical depth. Rectangular interfer-
ometers were employed in each mode encoding to minimize depth. For the
latter encoding, we considered an architecture where the input state is par-
tially demultiplexed, whereby sets of two spatial modes are inserted into
a time-bin interferometer. By ensuring that there are no empty time-bins
in the time-bin interferometer, we avoid the issue of a lowered input state
generation rate for time-bin interferometers. The output modes of the time-
bin interferometers are then sent into a two-spatial-mode-encoding Hybrid
interferometer employing Rectangular interferometers across the two spa-
tial encodings. The total optical depth of this interferometer, including the
initial demultiplexer is equal to:

D(n, p,m1,m2) = n+ 2
⌈ p
2n

⌉
+
⌈m1

2

⌉
+
⌈m2

2

⌉
+

2n

2
, (6.15)

where n is the depth of the demultiplexer, such that there are 2n spatial
modes and

⌈
p
2n

⌉
time-bins after the demultiplexer, and where m1 and m2

correspond to the number of output modes in each spatial encoding. Simi-
larly to the case of the spatial hybrid interferometer, we allow for the num-
ber of modes to be increased if it leads to a lower optical depth, only requir-
ing that

m1 ·m2 ·
⌈ p
2n

⌉
≥ m,

where the left-hand side is the actual number of modes, and the right-hand
side is the target number of modes, calculated from the mode scaling. The
depth of the demultiplexer and the number of spatial modes were opti-
mized in order to minimize Eq. (6.15). For the case of a quadratic number
of time-bins, the ideal demultiplexer depth was found to be n = 3, with
m1 = m2 = 18, whereas for the linear mode scalings, the ideal demulti-
plexer depth was found to be n = 4 with the number of spatial modes equal
to m1 = 11, m2 = 12 and m1 = 8, m2 = 9 for the case where m = 10(p − l)
and m = 5(p− l), respectively.

The resulting hardware requirements for Aaronson–Brod (Aaronson–
Arkhipov) boson sampling are shown in the top (bottom) plot of the right
column of Fig. 6.5, where the solid lines (‘Spatial’) refer to the case with two
spatial mode encodings, and the dashed lines (‘Time-bin’) refer to the case
with time-bin and two spatial encodings. In addition to the dashed line
for the state-of-the-art static MZI insertion loss, the plots include a dashed-
dotted line marking the state-of-the-art insertion loss for a reconfigurable
MZI, estimated from Ref. Taballione et al. 2023 to be 1.1 dB/20 = 0.055 dB,
which is the interferometer insertion loss divided by the number of MZIs.

The hybrid encoding with the time-bin encoding performs better at larger
mode-scalings but seems to perform comparably or slightly worse for the
case wherem = 5(p−l). The advantage at higher mode-scalings comes from
the fact that the number of modes is distributed over three encodings, which
means that the sum of the number of modes can be smaller. This is less of
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an advantage for the case where m = 5(p− l), where the additional demul-
tiplexer loss included in the time-bin case gives a higher overall depth. It
should be noted that the spatial hybrid interferometer requires the addition
of a demultiplexer at a depth of n = ⌈log2(p)⌉, which should be included
as part of the source efficiency. As such, the time-bin hybrid interferometer
would be expected to perform advantageously even for low mode-scaling.

Figure 6.5 clearly shows that the MZI insertion loss determines whether
a quadratic mode scaling or linear mode scaling is favorable. Specifically,
at the state-of-the-art static MZI insertion loss, employing an interferome-
ter with a quadratic mode-scaling is best, whereas linear mode scalings are
favored when using MZIs with the state-of-the-art reconfigurable MZI in-
sertion loss. This is not the case for Clements or Rectangular architectures
except for the case where the MZI insertion loss is vanishingly low. The
discrepancy between the Clements and Rectangular architectures and the
Hybrid architecture is attributed to how the optical depth scales with the
number of modes, as shown in Eq. (6.9). With modes distributed across two
mode-encodings, the optical depth of Hybrid interferometers scales with
∼

√
m, as opposed to linearly in m. As increasing the number of modes

has a smaller impact on interferometer loss, the added effective postselec-
tion loss associated with linear mode-scalings has a proportionally higher
impact on the system loss for hybrid interferometers.
Demultiplexing time-bin interferometer: Demultiplexing interferometers allows
for the construction of interferometers where the optical depth scales loga-
rithmically with the number of modes, allowing for the optical depth to be
reduced even further compared to Hybrid architectures. For the require-
ments shown in Fig. 6.6, we have set the number of modes to a power of
two larger than the corresponding mode-scaling for the hybrid interferom-
eter architecture. The number of MZI layers, where each MZI layer except
for the last requires two switches (as shown in Fig. 3.12), will then be equal
to the logarithm of the number of modes such that

m = 2c, D(m) = 2c− 1,

where c is an integer. This allows for the requirements of MZI insertion loss,
as shown in Fig. 6.6, to be relaxed substantially, particularly if the other
sources of loss are kept low.

Much like time-bin interferometer architectures, it is important to keep
in mind that demultiplexer loss has not been included for the hybrid inter-
ferometer architecture, and that propagation loss has not been taken into
account for either interferometer. The propagation loss will scale propor-
tionally to the number of modes in the demultiplexing time-bin interfer-
ometer, whereas it will scale with the number of photons for a spatially
encoded Hybrid interferometer. Additionally, the demultiplexing interfer-
ometer will have to couple into delay lines one time per MZI (except for
the very last one), as opposed to only once for the spatially encoded hybrid
interferometer.

Though the hardware requirements for demultiplexing interferometers
are attractive and promising for future research endeavors, they require the
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FIGURE 6.6: Plot of the requirements on MZI insertion loss
(x-axis) and ρsys − ρint (y-axis) with photon indistinguisha-
bility set to x2 = 0.96. The plot to the left shows the re-
quirements for Aaronson–Brod boson sampling, where the in-
put state consists of 59 photons with the outputs postselected
to contain 50 photon detection events. The plot to the right
shows the requirements for Aaronson–Arkhipov boson sam-
pling, where we send in 50 photons and detect 50 photons,
not allowing for photon loss or collisions. The solid lines cor-
respond to the requirements for Hybrid architectures encoded
over two spatial mode-encodings, whereas dashed lines cor-
respond to the requirements for demultiplexing time-bin ar-
chitectures. The dotted vertical lines mark the estimated MZI
loss for a state-of-the-art experimental realization with static,
nonprogrammable MZIs Wang et al. 2019. The dash-dotted
vertical line marks the estimated MZI loss for a state-of-the-art
experimental realization with programmable MZIs Taballione
et al. 2023.

integration of low-loss electro-optic modulators and delay lines beyond the
capabilities of state-of-the-art hardware. As such, the next section will re-
strict the focus to Hybrid spatial interferometer architectures.

6.6 Hardware requirements for near-term QA demon-
strations

From Fig. 6.5 we observe that an explicit QA demonstration is within
reach with a deterministic quantum-dot source. Indeed using state-of-the-
art static interferometers would imply that QA can be reached for Psps ·Pdmx ·
Pcoupling · Pdet ≥ 0.45, where the required efficiency of each sub-component
was already realized experimentally, see Table 6.1. As time-bin interferome-
ters require the use of reprogrammable MZIs, one could not make use of hy-
brid architectures with time-bin encoding in this case. As for state-of-the-art
reconfigurable interferometers, this would require a setup with combined
source and detection efficiencies around 0.65 (0.7) for the time-bin (spatial)
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FIGURE 6.7: Requirements on source efficiency for a given
indistinguishability with a hybrid interferometer encoded in
two mode-encodings. Rectangular interferometers have been
used within both mode encodings. The requirements are de-
fined to allow for 100 samples to be obtained per day with a 1
GHz single-photon generation rate. For each value of indistin-
guishability, the number of photons detected and lost has been
optimized to increase the loss tolerance while maintaining an
error bound higher than 1% for the approximation algorithm.
The purple line corresponds to a quadratic mode scaling, and
the red line corresponds to a linear mode scaling

Hybrid architectures. These values are reachable with the estimated near-
term values of the approach, cf. Table 6.1. It is important to note that the
state-of-the-art values of MZIs hold for thermo-optic phase-shifters, which
are unsuitable for realizing time-bin interferometers due to their slow re-
sponse time. Consequently, this would limit the present implementations
of Hybrid time-bin architectures. On the other hand, Hybrid interferom-
eters with spatial mode encodings appear to be promising candidates for
near-term QA demonstrations with quantum-dot single-photon sources.

It is clear from Table 6.1 that the source efficiency is the main bottleneck
in realizing a demonstration of QA. In the following, we restrict the focus
to the exact requirements for the single-photon source by fixing other losses
to state-of-the-art values. We fix the MZI insertion loss to the state-of-the-
art value for static MZIs shown in Fig. 6.5. The demultiplexer efficiency
and coupling losses are fixed to realistic parameters extrapolated from Refs.
Zhong et al. 2020; Uppu et al. 2020:

ρdmx =
0.458

5
⌈log2(p)⌉ dB,

ρcoupling = 0.458 dB.

We examine how the requirements on the source efficiency change as a
function of the photon indistinguishability. The resulting curves for quadratic
and linear mode-scalings are shown in Fig. 6.7. It is clear from the figure
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that quadratic mode-scaling is favored regardless of photon indistinguisha-
bility. For realistic photon indistinguishability, x2 ≥ 0.96, the results show
that a QA demonstration is within reach for single-photon source efficien-
cies greater than 0.6, which has been demonstrated experimentally Chen et
al. 2023. The challenge will be to construct a demultiplexer and an inter-
ferometer that are sufficiently large while maintaining sufficiently low loss,
and connecting them to an exceedingly large number of low-loss detectors.

6.7 Conclusion
In conclusion, we have presented an in-depth analysis of the hardware

requirements for realizing boson-sampling in the QA regime with determin-
istic single-photon sources, notably quantum dots in nanophotonic cavities
and waveguides. The estimated benchmarks provide precise requirements
on optical circuits and single-photon sources that must be reached, thereby
offering a roadmap for future engineering efforts to realize that goal. Our
analysis elucidates the precise advantages and disadvantages of strategies
that are commonly employed in experiments to lower hardware require-
ments, such as making use of specialized interferometer architectures and
employing interferometers with linear mode scaling. We have identified in-
terferometers with hybrid mode encoding and quadratic mode scaling as
a key strategy to demonstrating QA, an approach that has yet to see real-
ization in experiments. Specifically, we have shown that a QA experiment
based on single-photon boson sampling is within reach of current state-of-
the-art hardware, provided that one can reach source efficiencies as high as
60%-70%.

In examining the requirements for time-bin encoded interferometers, we
have found time-bin interferometers utilizing the Clements and Rectangu-
lar architectures to be inferior to equivalent spatial interferometers for QA
demonstrations. This is due to the disadvantages associated with empty
time-bins in the input state in the regime where MZI insertion loss is low
enough for a QA demonstration to be feasible. For hybrid interferometer
architectures, however, encoding a subset of the modes in time-bins leads
to improved hardware requirements on MZI insertion loss. As such, devel-
oping rapidly reconfigurable photonic integrated circuits with bandwidth
to support time-bin-compatible MZIs with sufficiently low loss is a promis-
ing direction to enable QA demonstrations.

Our analysis has focused on the requirements of the interferometers and
single-photon sources, however, an underlying assumption for parts of the
analysis was that the loss associated with coupling photons from the source
and into the interferometer were comparable with the losses quoted in Wang
et al. 2019 and Zhong et al. 2020. Achieving ultra-low-loss chip-to-fiber cou-
pling is an important engineering challenge and an area of active research
(see e.g. Tiecke et al. 2015; Notaros et al. 2016; Marchetti et al. 2019). Ulti-
mately coupling losses could be further mitigated by a partial or full-scale
system integration, whereby sources, demultiplexer, interferometers, and
detectors would be combined in a single device (Uppu et al. 2021), which
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constitutes an important future research direction.
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7 Conclusion

At the start of this PhD project three years ago, the promising prospects
of quantum-dot single-photon sources were becoming increasingly evident
(Uppu et al. 2020; Wang et al. 2019). This thesis presents developments
and experiments that utilize and further expand the capabilities offered by
these sources and state-of-the-art photonic technology. In Chapter 3, we ex-
ploited the unique properties of the native time-bin encoding of on-demand
single-photon sources to introduce novel interferometer architectures allow-
ing for the implementation of specialized unitary transformations with a
substantial reduction in optical depth. In Chapter 4, we employed a time-
bin interferometer in an experimental demonstration of bosonic suppres-
sion laws and postselected entanglement with photons emitted from our
quantum-dot SPS. Our experimental setup leveraged the properties of both
the time-bin encoding and the desired transformation to simplify the ex-
perimental requirements, resulting in an interferometer constructed from
only one active component with no need for phase stabiliziation. In Chap-
ter 5, we designed photonic integrated circuits on thin-film LNOI for use
with single photons emitted by the quantum dot, enabling the first exper-
imental demonstration of the HOM effect on LNOI. Two additional exper-
iments were carried out, demonstrating two-photon interference in a four-
mode interferometer, and employing the fast electro-optic modulators of-
fered by LNOI to show on-chip demultiplexing of the single-photon source.
Finally, in Chapter 5 we determined concrete hardware requirements for
a demonstration of quantum advantage using boson sampling of single-
photons from an on-demand single-photon source, establishing that a demon-
stration of quantum advantage is within reach using current state-of-the-art
hardware. Our comprehensive analysis highlighted key strategies in inter-
ferometer architecture design and choice of mode encoding that lead to sub-
stantially reduced demands on hardware performance.

7.1 Outlook
The presented results highlight a variety of improvements and prospects,

both in the near-term and in the longer term.
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Near-term improvements

Chapter 3 explored time-bin interferometers with two or fewer spatial
paths. Expanding the scope to additional paths would allow for interferom-
eter architectures tailored to multiple on-demand sources, and might reveal
more unique properties. Additionally, determining the full range of unitary
transformations that can be implemented with the newly developed archi-
tectures would firmly establish their utility.

A natural follow-up to our time-bin interferometer experiment in Chap-
ter 4 is to demonstrate postselected entanglement with an increased number
of photonic qubits. For the optical setup, this would only require a single
substitution, exchanging the resonant EOM with a broadband EOM, which
would allow for the interferometer to be scaled to an arbitrary number of
qubits. Alternatively, identifying other transformations with similar prop-
erties could expand the versatility of similarly resource-efficient time-bin
interferometers. Circuits that can be used for heralded entanglement gen-
eration would be of a particular interest as they have greater utility, e.g.
enabling the generation of resource states for FBQC.

The main challenge we faced in the experiments on LNOI was the elec-
tronic control of the modulators, which limited the programmability of the
four-mode interferometer. Addressing this challenge is crucial for enabling
more complex and larger-scale experiments. To this end, we could e.g. alter
the design and fabrication of the electrodes as outlined in Puma et al. 2022,
or cool the chip down to cryogenic temperatures, as explained in Lomonte
et al. 2021b.

Long-term prospects

The results presented in the thesis span a variety of platforms for pho-
tonics, and highlight the strengths of each. Gallium arsenide enables the re-
alization of on-demand single-photon sources through the growth of quan-
tum dots and fabrication of nanophotonic structures. Bulk-optics allows for
the integration of megahertz-bandwidth electro-optic modulators and low-
loss delay for resource-efficient time-bin interferometers, and is compatible
with high-efficiency fiber-coupled detectors. LNOI enables the miniaturiza-
tion of large-scale photonic circuits that can be operated and reconfigured
with gigahertz bandwidths. The main challenge that limits the scale of our
experiments to proof-of-principle demonstrations is the high amount of loss
related to connecting these different platforms together. Though the pla-
nar SPS platform enables efficient emission into waveguides, a significant
proportion is lost when the photons are routed off-chip to a fiber. Simi-
larly, though LNOI enables fast switches that would be ideal for time-bin
interferometers, this prospect would require either ultra-low propagation
loss for on-chip delay, or highly-efficient fiber-to-chip interfaces. In the ab-
sence of a monolithic material platform capable of all desired functional-
ities, the efficient integration of distinct platforms is vital. There are two
main approaches that are pursued to tackle this challenge, increasing the
efficiency of fiber-to-chip interfaces (Tiecke et al. 2015; Notaros et al. 2016;
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Marchetti et al. 2019), and heterogeneous integration (Lau 2019; Uppu et al.
2021), where light is coupled directly from one platform to another without
going through fiber interfaces. As this technology matures, future endeav-
ors can combine the strengths of the individual platforms to unlock the full
potential of photonic technology, which is crucial to meet the extreme de-
mands posed by fault-tolerant quantum computers.

Ultimately, there are many difficult challenges ahead, and it’s not yet
clear exactly how or even if they can be overcome. For the time being, the
best that we can do is to leverage, adapt and improve our knowledge and
technological capabilities one step at a time.
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A Appendices for Chapter 2

A.1 Alignment in the path encoding
The alignment of optical paths is crucial in bulk optics experiments for

two main reasons:

1. Increasing the probability that the output of the bulk optics setup reaches
the detectors to minimize loss

2. Aligning reflected and transmitted paths from beamsplitters to ensure
they occupy the same mode.

We note that bulk optics setups are commonly only part of the experimental
setup, where light is routed into and out of the setups through fiber cou-
pling. As such, the extraction of photons out of the bulk optics setup is
dependent on how well the optical modes are coupled into the fibers. This
requires that the angle and position of the light beam, as well as its beam
profile, i.e. it’s size, is as aligned with the fiber mode as possible, as illus-
trated in Fig. A.1. The second experimental challenge has to do with the fact
that we want to interfere initially separate paths on beamsplitters. Beam-
splitters can be considered mathematically as having two input modes and
two output modes, where a given output mode will contain a contribution
from the transmission of one input mode and a contribution from the reflec-
tion of the other input mode. In order for photons from reflection and trans-
mission to interfere, they need to overlap perfectly. As we typically want to
route this linear combination of modes into the same fiber coupling at the
end of the setup, it’s also crucial that they overlap to achieve a high coupling
efficiency. In order to solve both challenges, we use mirrors to align the po-
sitions and angles of our light beams, and we use lenses to adjust the beam
profile, i.e. the size of the beam spot and rate of convergence/divergence.

A.2 Coupling into and out of photonic integrated
circuits

In the experiments with photonic integrated circuits described here, as
well as most current-day experiments in integrated quantum photonics, we
have to be able to couple light into and out of the chip. This is because we
make use of separate platforms for the generation of light, the construction
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FIGURE A.1: Illustration of the process of alignment. As
shown in the second panel, the ideal alignment would overlap
perfectly with the case where light is inserted in the reverse di-
rection.

FIGURE A.2: Illustration of the operation of a grating coupler.
Adapted from Zhou et al. 2018.

of interferometers, and for detection. Also here, fibers are employed to route
the photons between components, and as such, what we need is a fiber-to-
chip interface. In the experiments covered in this thesis, this is achieved by
the use of grating couplers, illustrated in Fig. A.2. These photonic structures
are gratings that scatter light from waveguides out of the plane of the chip,
or the inverse, scattering out-of-plane light into the chip. In order to direct
the light in a specific out-of-plane direction, i.e. up rather than both up
and down, we also require a reflective layer beneath the grating coupler.
Otherwise, the maximum efficiency of a grating coupler is 50%. Another
common coupling strategy is to couple light directly into the waveguide
from the side, also known as butt coupling. This does not require the use of
reflectors to direct the coupling, but comes with the disadvantage that light
has to be coupled in from the side, which means light has to be routed from
the side of the chip to the desired structure. With side-couplers we have one
dimension of access around the circumference of the chip, whereas grating
couplers allow for two-dimensional access across the surface of the chip.
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B Appendices for Chapter 3

These appendices present a variety of results that either haven’t been
fully developed, or don’t present any obvious utility for experiments and
applications. I nevertheless think the results are interesting, and worth
presenting in some form. The first section introduces line-and-circle dia-
grams that are useful for representing time-bin interferometer architectures
quickly and easily. In the second section we present loop and partially cas-
caded time-bin interferometer architectures that exhibit peculiar periodic
boundary conditions even without the permutation matrices we introduced
in the main chapter. Though these architectures have interesting geome-
tries, it’s hard to see any obvious use cases for them, so they are presented
without much discussion of utility or outlook. The rest of the appendices
for this chapter concern results that have not been fully developed. Using
a resource counting argument as a basis for constructing a universal archi-
tecture, I develop potentially improved universal cascaded and loop inter-
ferometer architectures for the two-path time-bin encoding, as well as one
for the path encoding. The final section presents a potential starting point
for developing interferometer architectures for time-bin encodings with an
arbitrary number of paths.

B.1 Line-and-circle diagrams
To illustrate many of the two-path time-bin interferometer architectures

we will present here, we will make use of the graphical representation intro-
duced in He et al. 2017. An example of the representation for a four-mode
Clements interferometer is shown in Fig. B.1. This representation divides
the interferometer into separate columns of MZIs (column i is labeled as Ci

in the figure). For loop interferometers, as illustrated in we can go from
one column to the next by going through the delay loop, and as such, the
column index corresponds to the number of times a photon has travelled
through this delay loop. In this case, the number in the circles representing
the MZIs in Fig. B.1b denotes the time-bin the MZI occurs at, i.e. an MZI
event. As such, time increases both along the horizontal and vertical axis.
For cascaded interferometers, each column is implemented using separate
MZIs, and in this case the column index corresponds to which physical MZI
is implementing the column. In the cascaded case, time only increases along
the vertical axis.
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FIGURE B.1: Line-and-circle representation of a two-path
time-bin encoded four-mode Clements interferometer. The ith
MZI column is labaled as Ci starting with 0, and the two colors
correspond to specific spatial modes. a Schematic of a four-
mode Clements interferometer. b Line-and-circle diagram of
the circuit shown in a. c Cascaded implementation of the four-
mode interferometer. d Loop implementation the four-mode
interferometer.
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B.2 Time-bin interferometers with interesting ge-
ometries and dubious utility

The diagram in Fig. B.1c shows how different MZI events are connected
for specifically Clements interferometers. As shown in Fig. 3.3 in the main
text, the MZIs will specifically implement swap transformations on the first
and last time-bins of even columns (odd columns in this case since we start
counting them at 0). It is natural to wonder what would happen if we al-
lowed the MZI to implement an arbitrary unitary transformation instead?
The answer to this question is different for cascaded and loop interferom-
eters. In the cascaded case, this adds more modes to the interferometer,
as shown in Fig. 6.3c. In the case of loop interferometers, however, this
causes the first delayed mode to overlap with one of the last input modes, as
shown in Fig. B.2 creating an odd-numbered time-bin interferometer with
periodic boundary conditions. This architecture is similar to the optimal-
delay loop-architecture with an even number of modes, shown in Fig. B.5
we will present later in Section B.3.2, with two key differences:

1. The odd-numbered interferometer does not require any extra switches
to introduce periodic boundary conditions.

2. The odd-numbered interferometer connects the first mode to the last
mode in the same column, where as the even-numbered interferometer
connects to the last mode in the subsequent column.

The second property in particular is quite peculiar, and makes the con-
cept of an MZI column ill-suited to describe the interferometer architecture.

Similar properties can be found for partially cascaded interferometers. Here,
rather than cascading as many MZIs as there are columns, only a subset P
of the MZI columns are cascaded as physical MZIs, as shown in Fig. B.3a.
Though this approach can be used to implement Clements interferometer
architectures by setting the right delay and enacting swap transformations
on the first and last time-bins of every other MZI columns, Fig. B.3b illus-
trates what happens if an arbitrary unitary transformation is enacted for ev-
ery MZI event. Whereas the loop interferometer connected the first output
mode to the last input mode of every MZI “column”, the partially cascaded
interferometer instead connects the last “column” of the cascade back to the
first “column” of the cascade. For the first two “columns” there is also a
new connection in the lastd time-bin of every column that connects to the
first time-bin P + 1 columns in advance.

B.3 Resource counting conjecture for universal in-
terferometer architectures

A unitary matrix with M modes contains M2 elements. Using the uni-
tary constraint, we can reduce this toM2−1 unique elements, and as such, a
universal interferometer architecture should be able to specify at leastM2−1
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FIGURE B.2: A five-mode example of an odd-numbered two-
path time-bin interferometer with periodic boundary condi-
tions. a Line-and-circle representation of a five-mode interfer-
ometer. b Schematic showing how different MZI events are
connected. c Physical implementation as a loop interferome-
ter for an arbitrary odd number of modes M .
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FIGURE B.3: A six-mode example of a two-path partially-
cascaded interferometer architecture with three physical
MZIs. a Physical implementation of the interferometer.
b Line-and-circle representation of the interferometer. c
Schematic showing how different MZI events are connected.
The index n refers to the the time-bin whereas the index m
refers to the physical MZI. the connection for the last physi-
cal MZI is different, as this connects to the first physical MZI
through a delay loop.
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numbers to be able to specify an arbitrary unitary transformation. This is
indeed the case for both the Reck architecture and Clements architecture,
comprised of M(M − 1)/2 MZIs each containing two phase-shifters and a
phase-screeen comprised of M phase shifters at the start or end of the in-
terferometer (depending on the position of the external phase-shifter in the
individual MZIs) for a total of

M(M − 1) +M =M2

phase-shifters, allowing for a single phase-shifter to be removed. As a phase-
screen can always be added to the input or output, then an interferometer
architecture with M(M − 1)/2 MZIs should, from a resource counting per-
spective, be able to specify an arbitrary M -mode unitary transformation.
It should be noted that there are some additional constraints that are not
captured by this conjecture. For instance, placing M2 phase-shifters in a
row in a single-mode will effectively implement a single-phase shift. Sim-
ilarly, any two-mode unitary transformation can be described by a single
MZI with two external phase-shifters, and thus chaining together two MZIs
in the same two modes effectively only implements a single MZI. Thus, the
geometry of the architecture plays an important role, and such considera-
tions must be taken into account before claiming that an interferometer ar-
chitecture is universal. The rest of the section will assume that the resource
counting conjecture holds for all cases except for one where there are other
reasons to believe that it doesn’t.

B.3.1 A conjectured optimal path-encoded universal inter-
ferometer architecture

If an interferometer architecture makes use of MZIs arranged as a series
of columns, as is done e.g. in the Clements architecture, then every col-
umn can at most contain M/2 MZIs. This is indeed the case for every other
column in the Clements architecture, however, half of the columns in this
architecture contains one fewer MZI, where the first and last modes do not
interfere with any other modes. If we were to have periodic boundary con-
ditions however, we could implement the same number of MZIs in every
column by interfering the first mode with the last mode when appropriate.
As every column would contain M/2 MZIs, this would allow for an inter-
ferometer with (M−1) columns, exactly one less than in the Clements inter-
ferometer. Fig. B.4 shows an example of how such an interferometer could
be implemented with six modes. By arranging the modes radially rather
than in a line, every mode will have two nearest-neighbors. A downside of
this architecture is that it requires the ability to construct the interferometer
in three dimensions, or on the two-dimensional surface of e.g. a cylinder,
which is incompatible with conventional photonic integrated circuits.
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FIGURE B.4: A six-mode example of a conjectured opti-
mal path-encoded interferometer architecture with periodic
boundary conditions. The interferometer has six modes ar-
ranged in a hexagonal shape, as shown in a and b. In the
illustration in a the modes extend into the plane. Both even
and odd columns enact M/2 MZIs, according to the congfig-
urations illustrated in the right panel of a, where MZIs are
represented using ↔ symbols, as shown in c. d Schematic of
the implemented interferometer architecture. The two dashed
crosses in every odd column (counting from 0 and up) repre-
sent a single MZI between the first and last mode.
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FIGURE B.5: A six-mode example of a two-path loop interfer-
ometer architecture with periodic boundary conditions. An
exchange permutation is used after every MZI column to per-
mute the first input time-bin in the top mode to occur after
the last input time-bin. a Line-and-circle representation of a
six-mode interferometer. b Schematic showing how different
MZI events are connected. c Physical implementation for an
arbitrary even number of modes M .

B.3.2 Conjectured optimal loop interferometer architecture
for the two-path time-bin encoding

As was established in the main text, time-bin interferometer architec-
tures allow for permutations between MZI columns, which we can use to
introduce periodic boundary conditions to our interferometer architecture.
Fig. B.5 shows an example of a loop interferometer with six modes. As
before, this allows for fewer MZI columns, which in the case of the loop
interferometer translates to less propagation in the delay loop connecting
the output to the input. The number of MZI events are reduced further as
every column now consists of M/2 MZI events compared to the Clements
case where the number alternates between M/2 and M/2 + 1 MZI events.
However, it is important to note that the exchange permutation requires the
addition of an MZI in the top mode, which is not necessary for the Clements
architecture. Thus, the exact benefit depends on how the MZI insertion loss
required for the additional switch compares to the higher propagation loss
of the Clements interferometer.
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B.3.3 Conjectured optimal-delay cascaded interferometer ar-
chitecture for the two-path time-bin encoding

For cascaded interferometers, the periodic boundary conditions lead to
higher propagation loss compared to the Clements architecture. This is
because the architecture with periodic boundary conditions adds a single
time-bin of delay for every column, whereas the Clements architecture adds
a single time-bin of delay for every pair of columns. Though the cascaded
Clements architecture has significantly lower delay than the cascaded ver-
sion of the interferometer in Fig. B.5, it is still one time-bin short of optimal
delay, as explained in Section 3.3. To improve upon the architecture, we can
take inspiration from the Reck time-bin architecture, which we know does
have optimal delay. Indeed, if we implement a single Reck MZI in each spa-
tial path after the first MZI, we can implement exactly M(M − 1)/2 MZIs
with optimal delay. To see this, consider than each of the two physical Reck
MZIs implementsM/2−1 MZI events for a total ofM−2 MZI events, while
adding one time-bin of delay. Additionally, we can sandwich the Reck MZI
between two MZIs with no additional delay to implement an additional M
MZI events. After this, we need to implement an additional

M(M − 1)

2
− 2(M − 1)

MZI events while adding M/2 − 2 time-bins of delay. As every pair of odd
and even MZI columns will add (M − 1) MZIs for every time-bin, we can
see that adding M/2− 2 pairs results in a total number of MZIs equal to

2(M − 1) + (M − 1)(M/2− 2) = 2(M − 1)− 2(M − 1) +
M(M − 1)

2
,

i.e. the desired number of MZIs with optimal delay. An illustration of the
interferometer for six modes is shown in Fig. B.6.

Curiously, we could have added an even higher number of MZIs to the
architecture presented in Fig. B.6 for the same amount of delay by repeating
the first two columns and adding a single physical MZI at the end. Every
pair of MZI and double Reck MZI would add M − 2 +M/2 MZIs while de-
laying the state by one time-bin. Including the MZI at end, the total number
of MZIs for p pairs would be

p
3M − 4

2
+M/2,

allowing for the desired number of MZIs to be reached with a total delay of

p =
M2

3M − 4
.

For M > 10 this allows for the sufficient amount of MZIs to be reached
before the last input time-bin has reached the first output time-bin, which
could not possibly allow for the implementation of an arbitrary unitary
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FIGURE B.6: A six-mode example of a cascaded two-path loop
interferometer architecture with optimal delay. a Line-and-
circle representation of a six-mode interferometer. b Schematic
showing how different MZI events are connected. c Physical
implementation for an arbitrary even number of modes M .
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transformation. Thus, we can conclude that the resource counting conjec-
ture does not hold for this modified interferometer architecture.

B.4 Towards time-bin interferometer architectures
with more than two spatial paths

The single-path and two-path interferometer architectures are well-suited
for use with a single on-demand source. What if we want to add more
sources? For n sources it would be ideal to have a time-bin interferometer
with n or 2n paths. To this, end we need an interferometer architectures
with n paths, where we can insert delays in order to interfere modes across
time-bins. Here, I would like to highlight to potential types of interferome-
ter architectures, the spatial architecture with periodic boundary conditions
shown in Fig. B.4, which makes use of three dimensions, and a new type of
architecture, sketched in Fig. B.7, which makes use of two dimensions. The
former seems ideal to implementing cascaded architectures, which could be
achieved by judiciously delaying modes in-between the layers of a path-
encoded interferometer. In the latter approach, two-path time-bin interfer-
ometers (TBIs) are applied to alternating configurations of spatial paths to
facilitate interference across all spatial and temporal degrees of freedom.
This approach can also be readily extended to larger even number of paths
where for every two additional two paths, an additional two two-path TBIs
are added (one for input and one for output). By arranging the input and
output TBIs in an alternating order (as illustrated for four modes in Fig B.7),
all modes should be able to see one another provided a sufficient number
of loop iterations. The optimal arrangement of interferometers and delays,
which may include mode permutations, and whether or not this results in a
useful interferometer remains to be discovered.

B.5 Python code for generating DFT matrices with
logarithmic time-bin interferometers for power-
of-2 numbers of modes

1 import numpy as np
2 import scipy as sp
3 import matplotlib.pyplot as plt
4 from scipy.special import factorial
5 import seaborn as sns
6

7 def dft_matrix(N):
8 # Create an empty N x N matrix
9 F = np.zeros((N, N), dtype=complex)

10

11 # Populate the matrix with DFT coefficients
12 for n in range(N):
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FIGURE B.7: A sketch of a four-path loop interferometer archi-
tecture. The interferometer applies two-path time-bin interfer-
ometers to alternating configurations of paths.
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13 for k in range(N):
14 F[n, k] = np.exp(-2j * np.pi * n * k / N) /

np.sqrt(N)↪→

15

16 return F
17

18 def bba_phase(number, k):
19 # Inverted with respect to BBA as this goes in

reverse order↪→

20 # Convert the number to its binary representation
21 binary_representation = bin(number)[2:]
22

23 # Calculate the number of bits to add (if necessary)
24 num_missing_bits = k - len(binary_representation)
25

26 if num_missing_bits > 0:
27 # Add leading zeros to make it k bits long
28 binary_representation = '0' * num_missing_bits +

binary_representation↪→

29

30 # reverse the indices and turn it back into decimal
31 new_number = int(binary_representation[::-1], 2)
32

33 return np.exp(-1j*np.pi*new_number/2**(k))
34

35 def bba_phase_screen(num_modes, current_k):
36 max_k = int(np.log2(num_modes))
37 group_size = 2**(max_k-(current_k-1))
38 group_idx = 0
39 current_group = 0
40 phase_mat = np.eye(num_modes, dtype=complex)
41 for idx in range(num_modes):
42 if idx%2 == 0:
43 group_idx+=1
44 else:
45 phase_mat[idx, idx] =

bba_phase(current_group, current_k)↪→

46 group_idx+=1
47 if group_idx == group_size:
48 current_group+=1
49 group_idx=0
50 return phase_mat
51

52 def bba_even_screen(num_modes):
53 M = np.eye(num_modes, dtype=complex)
54 for i in range(int(num_modes/2)):
55 BS_mat = np.ones((2,2), dtype=complex)
56 BS_mat[1, 1] = -1
57 M[i*2:i*2+2, i*2:i*2+2] = BS_mat/np.sqrt(2)
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58 return M
59

60 def demux_permutation_matrix(num_modes, column):
61 permutation_matrix = np.zeros((num_modes,

num_modes), dtype=complex)↪→

62 if column == 1:
63 return np.eye(num_modes)
64 jump = 2**(column-1)
65 group_size = 2**(column)
66 for group_idx in range(int(num_modes/group_size)):
67 for idx in range(0, int(group_size/2)):
68 pre = group_idx*(group_size)
69 permutation_matrix[pre+2*idx, pre+idx] = 1
70 permutation_matrix[pre+2*idx+1,

pre+idx+jump] = 1↪→

71 return permutation_matrix
72

73 def bba_input_output_matrix(num_modes):
74 permutation_matrix = np.zeros((num_modes,

num_modes))↪→

75 jump = int(num_modes/2)
76 for row_idx in range(0, int(num_modes/2), 2):
77 permutation_matrix[row_idx, row_idx] = 1
78 permutation_matrix[row_idx+1, row_idx+jump] = 1
79 for row_idx in range(1, int(num_modes/2), 2):
80 permutation_matrix[jump+row_idx-1, row_idx] = 1
81 permutation_matrix[jump+row_idx, row_idx+jump] =

1↪→

82 return permutation_matrix
83

84 def convert_phase(arr):
85 """ Sets all elements with phase -pi to have phase

pi """↪→

86 # Find elements with phase -pi
87 mask = np.isclose(np.angle(arr), -np.pi)
88

89 # Change phase to pi while preserving the magnitude
90 magnitudes = np.abs(arr)
91 arr[mask] = magnitudes[mask] * np.exp(1j * np.pi)
92 return arr
93

94 def double_matrix(old_mat):
95 new_size = 2*len(old_mat)
96 new_mat = np.zeros((new_size, new_size))
97 for row_idx in range(len(old_mat)):
98 for col_idx in range(len(old_mat)):
99 new_mat[2*row_idx, 2*col_idx] =

old_mat[row_idx, col_idx]↪→

100 return new_mat
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101

102 def fourier_input_output_permutation(num_modes):
103 if num_modes==1:
104 return np.array([[1]])
105 if num_modes==2:
106 return np.eye(2)
107 else:
108 f1 = double_matrix(
109 fourier_input_output_permutation(
110 int(num_modes/4)
111 )
112 )
113 full_perm = np.zeros((num_modes, num_modes))
114 half_length = int(num_modes/2)
115 # top left
116 full_perm[:half_length,:half_length] = f1
117 # bottom right
118 full_perm[half_length+1:, half_length+1:] =

f1[:-1, :-1]↪→

119 # top right
120 full_perm[1:half_length+1, half_length:] = f1
121 # bottom left
122 full_perm[half_length:, 1:half_length+1] = f1
123 return full_perm
124

125 def demux_dft_matrix(num_modes, permuted = True):
126 max_k = int(np.log2(num_modes))
127 M = np.eye(num_modes, dtype=complex)
128 for k in range(1, max_k+1):
129 phase_screen = bba_phase_screen(num_modes,

(max_k-k)+1)↪→

130 perm_mat = demux_permutation_matrix(num_modes,
k)↪→

131 M =
phase_screen@bba_even_screen(num_modes)@perm_mat@M↪→

132 if permuted:
133 permutation =

fourier_input_output_permutation(num_modes)↪→

134 return permutation@M@permutation
135 else:
136 return M
137

138 if __name__ == "__main__":
139 num_modes=64
140

141 A = convert_phase(dft_matrix(num_modes))
142 B = convert_phase(demux_dft_matrix(num_modes,

permuted=False))↪→
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143 C = convert_phase(demux_dft_matrix(num_modes,
permuted=True))↪→

144

145 print("A and C are the same", np.isclose(A,
C).all())↪→

146

147 # permutation =
fourier_input_output_permutation(num_modes)↪→

148 fig, ax = plt.subplots(1,3)
149 im = ax[0].imshow(np.angle(A), cmap="rocket",

vmin=-np.pi, vmax=np.pi)↪→

150 ax[1].imshow(np.angle(B), cmap="rocket",
vmin=-np.pi, vmax=np.pi)↪→

151 ax[2].imshow(np.angle(C), cmap="rocket",
vmin=-np.pi, vmax=np.pi)↪→

152 # fig.colorbar(im)
153 fig.savefig('dft_fig_'+str(num_modes)+'modes.svg')
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C Appendix for Chapter 4

C.1 Phase insensitivity of the postselected Bell state
generator

In this appendix we will show that our target two-photon experiments
using the interferometers shown in Fig. 4.2 are insensitive to the phase in-
stability that will occur for this type of interferometer. As pointed out in
the main chapter, phase-drifts will mainly affect different paths. Thus, we
only need to concern ourselves with phase drifts between undelayed and
delayed paths.

At the start of the interferometer, the photons will be in the same polar-
ization of two different time-bins, i.e.

|psi⟩in =
1√
2
â†0â

†
2. (C.1)

Transforming the creation operators with the first set of beamsplitters yields

1

2
√
2
(â†0 + â†1)(â

†
2 + â†3) (C.2)

where modes 1 and 3 are delayed, introducing the same, arbitrary phase
shift, ϕ0, on both modes with regard to modes 0 and 2

1

2
√
2
(â†0 + eiϕ0 â†1)(â

†
2 + eiϕ0 â†3). (C.3)

after the swap transformation we have

1

2
√
2
(â†0 + eiϕ0 â†2)(â

†
1 + eiϕ0 â†3). (C.4)

at which point modes 0 and 2 are delayed, introducing a global phase shift
that can be neglected. For the ZZ-basis, this is already the end-point, and
we can write out the entire output state as

|ψ⟩out, ZZ =
1

2
√
2
(â†0â

†
1 + eiϕ0 â†0â

†
1 + eiϕ0 â†2â

†
1 + ei2ϕ0 â†2â

†
3). (C.5)

As all terms contain unique combinations of creation operators, the phases
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do not affect the output statistics. In the XX and YY basis, an additional
beamsplitter transformation is added. The difference between the two bases
comes down to a phase shift added to the first and third mode, which as
before leads to a global phase on our state, which we neglect. Thus, in both
of these bases we get

|ψ⟩out, XX =
1

4

(
(â†0 + â†1) + eiϕ0(â†2 + â†3)

)(
(â†0 − â†1) + eiϕ0(â†2 − â†3)

)
(C.6)

=
1

4
(â†0â

†
0 − â†1â

†
1 + ei2ϕ0 â†2â

†
2 − ei2ϕ0 â†3â

†
3 + eiϕ0 â†0â

†
2 − eiϕ0 â†1â

†
3).

(C.7)

In the final expression all terms again contain unique combinations of cre-
ation operators, and as such, phase-instability does not affect the output
probability distributions.



159

D Appendices for Chapter 4

D.1 Classical characterization of electro-optic mod-
ulators on the LNOI chip

There were two main issues encountered in using the electro-optic mod-
ulators on the LNOI chip: 1. The DC bias drift preventing any DC signals
or DC biased AC signals and 2. Seemingly high load impedance. We will
tackle the two issues in order.

The DC bias drift problem was characterized in two different ways, shown
in Fig. D.1. First, the effective high-pass filter effect can be seen by recording
the modulated signal low-frequency square waves. As a square wave stays
on the high or low voltage for an extended period of time, the bias drift
starts to kick in, reverting the modulated signal back towards that for 0 ap-
plied voltage, as seen in Fig. D.1a. This effect can alternatively be measured
by measuring the modulation depth of an optical signal modulated using
sine-waves with increasing frequency. Fig. D.1b shows how the modulated
amplitude changes for a sine-wave frequency spanning from 1 kHz to over
10MHz, measured using a lock-in amplifier from Zurich Instruments. The
behavior towards the higher frequencies is attributed to the limited band-
width of the lock-in amplifier. As can be seen from the plot, sine-wave sig-
nals with frequencies less than approximately 20 kHz are attenuated. Thus,
square waves with a frequency of 100 kHz were used to simulate DC signals
in the experiments detailed in Chapter 5.

The second problem became clear when we tried to drive the modu-
lators on either the MZI or demux structure using the AWG from Active
Technologies (Arb Rider AWG-5064). Once the amplitude of the applied
signal passed a certain threshold, the waveform of the modulated signal
would distort, as shown in Fig. D.2. This AWG had a setting for expected
load impedance, which attenuated the voltage that the AWG outputted. We
found that operating the AWG with the attenuated voltages did not result
in any distorted modulated waveforms, indicating that the modulators had
a high impedance. Thus, we chose to use a different AWG (Rigol DG 4202)
capable of driving the high-impedance modulators at sufficiently high volt-
ages in the final experiments.
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a

1 KHz 50 KHz

b

FIGURE D.1: Experimental characterization of the DC bias
drift effect on electro-optic modulation on our chip. a The two
graphs show a modulated optical signal obtained by apply-
ing a square wave signal with two different frequencies to the
modulator of an MZI and recording the modulated signal with
a photodioide. b Recorded amplitude (y-axis, top) and phase
(y-axis, bottom) of a modulated optical signal for sinusoidal
drive signals with increasing frequency (x-axis).
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Low-amplitude
sine wave

High-amplitude
sine wave

FIGURE D.2: Experimental observation of high load-
impedance of electro-optic modulators. The two graphs show
a modulated optical signal obtained by applying a sinusoidal
signal to the modulator of an MZI and recording the modu-
lated signal with a photodioide. The left panel shows the ob-
served modulation for a low-amplitude sine wave, whereas
the right panel shows modulation for a high-ampltiude sine
wave, where the modulated waveform is heavily distorted
and attenuated. Note that the y-axis on the right plot has
lower values than on the left plot.

D.2 Alignment procedure for the LNOI chip
In order to align the fiber array and electrodes to the correct positions,

we made use of a setup illustrated in Fig. D.3. By switching between the top
view and side view, all angles of the fiber array could be coarsely aligned
to the grating couplers on the chip. We could also ensure that no optics
crashed into the chip from the side view. As visible in the photo from the
side view shown in Fig. D.3d, the fiber array will block the position of the
light on the chip as seen from the top if it is close to be well-aligned. In
order to position the fiber array, we first moved the fiber array far up from
the chip such that the laser spot on the chip could be seen on the camera
from the top view. This allowed for us to weakly couple the fiber arrays to
the grating couplers. The coupling could then be improved by iteratively
moving the fiber array downwards and laterally towards the grating cou-
pler. The lateral movement of the fiber array was necessary to compensate
for the lateral displacement of the beam due to the angle of the fiber-array.
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a b

Probe

Probe

Fiber array

Fiber array

Camera
Camera

Mirror prism

Mirror prism

Chip

Chip

c d

FIGURE D.3: Schematics and photos of the chip setup from
a top view (a and c) and side view (b and c). The top view
can be recorded by focusing camera on the chip from the top,
whereas the side-view was obtained by focusing the camera
on the mirror prism to the side of the chip. c Photo taken from
the top view during the alignment of an electronic probe con-
nected to the modulators of the on-chip demultiplexer struc-
ture. d Photo taken from the side view during the alignment
of an electronic probe to the modulator on an on-chip MZI.
The fiber array is also visible on the right-hand side.
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E Appendices for Chapter 5

E.1 On the computational complexity of boson sam-
pling with collisions

Here we will evaluate the computational complexity of boson sampling
with collisions, which is relevant in the case of boson sampling with added
lost photons where photon collisions and photon loss are indistinguishable
due to the use of threshold detectors. To do so, we employ the approach
used in Ref. Chin et al. 2018 which we summarize below. In this approach,
the minimal computation time Tmin(n⃗, m⃗) is given as a function of the input
state n⃗ and output state m⃗ in the Fock basis, where a state is defined as

n⃗ = (n1, n2, ..., nM),
∑
i

ni = N (E.1)

where ni is the number of photons in the ith mode, M is the total number of
modes, and N is the total number of photons.

The minimal computation time, Tmin(n⃗, m⃗) with input state n⃗ and output
state m⃗ is found to be

Tmin(n⃗, m⃗) = O

(
min

{
αn⃗∑
k=0

Xk(n⃗),

αm⃗∑
l=0

Xl(m⃗)

}
αn⃗αm⃗

)
. (E.2)

Here, αn⃗ is the number of nonzero elements in the Fock state vector n⃗, called
the Fock state coherence rank, and Xk(n⃗) is the k-th elementary symmetric
potential defined as

Xk(n⃗) =

αn⃗∑
i1<i2<...<ik=1

ni1ni2...nik, (0 ≤ k ≤ αn⃗ ≤M). (E.3)

The minimal computation time is then determined by the quantity
∑αn⃗

k=0Xk(n⃗)
for the input state and the output state. The input state will be collision-free,
n⃗collision-free for which the following holds Chin et al. 2018

αn⃗∑
k=0

Xk(n⃗collision-free) = 2N = 2αn⃗ . (E.4)



164 Appendix E. Appendices for Chapter 5

Adding a collision to a collision-free state corresponds to increasing one
of the nonzero numbers ni in n⃗. From the definition of Eq. (E.3), we can see
that the value of

∑αn⃗

k=0Xk(n⃗) then has to increase. As such, the following
inequality will be true for any state n⃗

αn⃗∑
k=0

Xk(n⃗) ≥ 2αn⃗ . (E.5)

Thus we can say that the minimal computation time has to scale at least
as O(2αm⃗αn⃗αm⃗). Accordingly, we can conclude that the computational com-
plexity of boson sampling with collisions is not diminished compared to the
computational complexity of collision-free boson sampling with the same
number of nonzero elements.

E.2 The size of the Hilbert subspace for a given
number of photon collisions.

The number of basis states in the Hilbert space with a given number of
collisions is equal to the product of the number of ways one can distribute d
nonzero modes in m modes, and the number of ways one can place p− l− d
collisions into d nonzero modes. The first number is equal to the number of
combinations without replacements with d choices from m possibilities:(

m

d

)
.

The second number is equal to the number of combinations with replace-
ments with p− l − d choices from d possibilities(

(p− l − d) + d− 1

p− l − d

)
=

(
p− l − 1

p− l − d

)
Consequently the size of the Hilbert subspace with p − d − l collisions,
ncollisions(p, d, l,m), will be

ncollisions(p, d, l,m) =

(
m

d

)
·
(
p− l − 1

p− l − d

)
. (E.6)

The size of the full Hilbert space, nfull will be the number of ways one
can place p − l photons into m modes. This is equivalent to the number of
combinations with replacements of p− l choices with m possibilities:

nfull(m, p, l) =

(
m+ p− l − 1

p− l

)
. (E.7)

We can then take the ratio between Eqs. (E.6) and (E.7) to find Eq. (6.8)
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E.3 The downsides of using loop architectures for
time-bin interferometer

Though it is possible to implement large multimode interferometers us-
ing only a single physical MZI connected to fiber delay loops, as in Refs.
Motes et al. 2014; He et al. 2017, this has two major downsides: higher prop-
agation loss and severely reduced input state rate. Much in the same way
as in the cascaded case, a column of MZIs in the Clements or Rectangular
scheme can be implemented by sending the time-bins through the MZI one
by one and reconfiguring the MZI transformation for each time-bin. In or-
der to reuse the same physical MZI to implement additional columns, we
can connect the outputs to the inputs through a delay loop, where the delay
is sufficiently long that all output modes back at the input after the previous
MZI column has been finished. As each column processes up to m/2 time-
bins, this requires that the loops have a delay of at least m/2 time-bins. This
is in comparison to the cascaded scheme where no such delay is necessary
apart from the delay of one time-bin in one of the modes, which will still be
present in the loop architecture. To see the difference, we can compare the
total delay, tdelay for the worst case of the Clements scheme with a cascaded
architecture and a loop architecture

tdelay, cascaded =
m

2
− 1 · τ, (E.8)

tdelay, loop = (m− 1)(
m

2
− 1) · τ, (E.9)

where τ corresponds to the separation between time-bins. In other words,
the total propagation loss scales linearly with the number of modes for
cascaded time-bin interferometers, whereas it scales quadratically with the
number of modes for loop time-bin interferometers.

The second downside is that one has to wait for the full output state to
come out of the interferometer before processing a new input state. The time
difference between the first time-bin in the input state and the last time-bin
of the output state is equivalent to the delay in Eq. (E.9). As the time-
bin separation is related to the rate of the single-photon source, the input
generation rate, rinput for the loop time-bin interferometer will be given by

rinput =
2rsingle-photon

m(m− 1))
. (E.10)

This is approximately a factor 1/m worse than the corresponding rate for a
cascaded interferometer.
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E.4 Increasing the input state generation rate by
running multiple time-bin interferometers in
parallel

Though the input state generation rate given by Eq. (6.11) applies to a
single time-bin interferometer, we can increase this rate by employing multi-
ple time-bin interferometers in parallel. In this approach, the single-photon
source first produces all photons for one interferometer, and produces input
state for other interferometers while waiting for the first interferometer to be
available for a new input state. The number of interferometer required for
this approach will be equal to ⌈m/2p⌉. Additionally, a switch—equivalent
to a demultiplexer without delays at the end—will be required to configure
which interferometer the single-photon source addresses at any given time.
This approach should only be considered for the demultiplexing interfer-
ometer architecture, as the main benefit of the other architectures is that a
demultiplexer is not required. Fig. E.1 shows the MZI hardware require-
ments for a single demultiplexing time-bin interferometer compared to a
series of interferometers run in parallel.

E.5 The importance of distributing input photons
for demultiplexing interferometers

A consequence of the lower optical depth of demultiplexing interfer-
ometers is that we have access to fewer phase shifters to specify the uni-
tary transformation, limiting the unitary transformations that can be imple-
mented using the interferometer. As an example of how this can reduce
the computational hardness of simulation, consider the case where the in-
put photons occupy the first p time-bins, such that only the first 2p modes
are occupied in the input state. After l = ⌈log2(2p)⌉ layers of MZIs, every
input photon will have seen every other input photon, and all modes con-
taining photons will only encounter new empty modes. This means that
there will be no more interference for the remainder of the interferometer.
Thus, this case is equivalent to applying a smaller l × l interferometer with
p input photons, and distributing the resulting probability output distribu-
tion across the remaining modes. However, as this second distribution stage
does not involve any interference, we can model it classically by considering
the probabilities (as opposed to the complex probability amplitudes), which
is classically trivial. Thus, in practice the problem only as hard as simulating
a boson sampling experiment with p input photons in 2p ≤ 21+⌈log2(p)⌉ < 4p
modes, where we cannot post-select on collision-free outputs (as collisional
outputs from the first stage could become collision-free in the second distri-
bution stage). In order to avoid this reduction of computational hardness,
the input photons should be uniformly distributed among the input modes.
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Aaronson–ArkhipovAaronson–Brod

State-of-the-art
reconfigurable MZI

State-of-the-art
reconfigurable MZI

FIGURE E.1: Plot of the requirements on MZI insertion loss (x-
axis) and ρsys − ρint (y-axis) with photon indistinguishability
set to x2 = 0.96. The plot to the left shows the requirements for
Aaronson–Brod boson sampling, where the input state con-
sists of 59 photons with the outputs post-selected to contain
50 photon detection events. The plot to the right shows the
requirements for Aaronson–Arkhipov boson sampling, where
we send in 50 photons and detect 50 photons, not allowing
for photon loss or collisions. The solid lines correspond to
the requirements for a single demultiplexing interferometer,
whereas dashed lines correspond to the requirements for a se-
ries of demultiplexing time-bin interferometers run in parallel
in conjunction with a switch. The dotted vertical lines mark
the estimated MZI loss for a state-of-the-art experimental real-
ization with static, nonprogrammable MZIs Wang et al. 2019.
The dash-dotted vertical line marks the estimated MZI loss for
a state-of-the-art experimental realization with programmable
MZIs Taballione et al. 2023.
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(2018). “Integration of quantum dots with lithium niobate photonics”.
Applied Physics Letters 113.22, 221102. DOI: https://doi.org/10.
1063/1.5054865 (cited on p. 107).

APPEL, M. H. (2021). “A Quantum Dot Source of Time-Bin Multi-Photon
Entanglement”. PhD thesis. University of Copenhagen (cited on p. 80).

ARKHIPOV, A. and G. Kuperberg (2012). “The bosonic birthday para-
dox”. Geometry & Topology Monographs 18.1, 10–2140 (cited on p. 111).

ARUTE, F., K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R.
Biswas, S. Boixo, F. G. Brandao, D. A. Buell, et al. (2019). “Quantum
supremacy using a programmable superconducting processor”. Nature
574.7779, 505–510. DOI: https://doi.org/10.1038/s41586-019-
1666-5 (cited on p. 109).

BAO, J., Z. Fu, T. Pramanik, J. Mao, Y. Chi, Y. Cao, C. Zhai, Y. Mao, T.
Dai, X. Chen, et al. (2023). “Very-large-scale integrated quantum graph
photonics”. Nature Photonics, 1–9 (cited on p. 110).

BARAK, R. and Y. Ben-Aryeh (2007). “Quantum fast Fourier transform
and quantum computation by linear optics”. JOSA B 24.2, 231–240 (cited
on pp. 67, 69, 70).

BARTOLUCCI, S., P. Birchall, H. Bombin, H. Cable, C. Dawson, M.
Gimeno-Segovia, E. Johnston, K. Kieling, N. Nickerson, M. Pant, et al.
(2023). “Fusion-based quantum computation”. Nature Communications

https://doi.org/https://doi.org/10.1038/s41467-019-11489-y
https://doi.org/https://doi.org/10.1038/s41467-019-11489-y
https://doi.org/https://doi.org/10.1063/1.5054865
https://doi.org/https://doi.org/10.1063/1.5054865
https://doi.org/https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/https://doi.org/10.1038/s41586-019-1666-5


170 Bibliography

14.1, 912. DOI: https://doi.org/10.1038/s41467-023-36493-1
(cited on pp. 2, 33, 40, 45, 91, 106, 108, 109).

BARTOLUCCI, S., P. Birchall, D. Bonneau, H. Cable, M. Gimeno-Segovia,
K. Kieling, N. Nickerson, T. Rudolph, and C. Sparrow (2021). Switch
networks for photonic fusion-based quantum computing. arXiv: 2109.13760
[quant-ph] (cited on p. 114).

BENNETT, C. H. and G. Brassard (1984). “Quantum cryptography: Public
key distribution and coin tossing”. Proceedings of the IEEE International
Conference on Computers, Systems, and Signal Processing (cited on p. 1).

BOIXO, S., S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang,
M. J. Bremner, J. M. Martinis, and H. Neven (2018). “Characterizing
quantum supremacy in near-term devices”. Nature Physics 14.6, 595–600
(cited on p. 109).

BOMBIN, H., I. H. Kim, D. Litinski, N. Nickerson, M. Pant, F. Pastawski,
S. Roberts, and T. Rudolph (2021). “Interleaving: Modular architectures
for fault-tolerant photonic quantum computing”. arXiv preprint arXiv:2103.08612.
DOI: https://doi.org/10.48550/arXiv.2103.08612 (cited on
pp. 103, 108).

BORREGAARD, J., H. Pichler, T. Schröder, M. D. Lukin, P. Lodahl, and
A. S. Sørensen (2020). “One-Way Quantum Repeater Based on Near-
Deterministic Photon-Emitter Interfaces”. Phys. Rev. X 10 (2), 021071.
DOI: 10.1103/PhysRevX.10.021071 (cited on pp. 33, 108).

BOURASSA, J. E., R. N. Alexander, M. Vasmer, A. Patil, I. Tzitrin, T.
Matsuura, D. Su, B. Q. Baragiola, S. Guha, G. Dauphinais, et al. (2021).
“Blueprint for a scalable photonic fault-tolerant quantum computer”.
Quantum 5, 392 (cited on p. 2).

BROD, D. J., E. F. Galvão, A. Crespi, R. Osellame, N. Spagnolo, and
F. Sciarrino (2019). “Photonic implementation of boson sampling: a re-
view”. Advanced Photonics 1.3, 034001 (cited on pp. 110, 111).

BROOME, M. A., A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson,
T. C. Ralph, and A. G. White (2013). “Photonic boson sampling in a
tunable circuit”. Science 339.6121, 794–798 (cited on p. 110).

BROWNE, D. E. and T. Rudolph (2005). “Resource-efficient linear opti-
cal quantum computation”. Physical Review Letters 95.1, 010501 (cited on
p. 74).

BULMER, J. F. F., S. Paesani, R. S. Chadwick, and N. Quesada (2022).
“Threshold detection statistics of bosonic states”. Phys. Rev. A 106 (4),
043712. DOI: 10.1103/PhysRevA.106.043712 (cited on p. 111).

CAROLAN, J., C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell,
J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, et
al. (2015a). “Universal linear optics”. Science 349.6249, 711–716 (cited on
p. 74).

https://doi.org/https://doi.org/10.1038/s41467-023-36493-1
https://arxiv.org/abs/2109.13760
https://arxiv.org/abs/2109.13760
https://doi.org/https://doi.org/10.48550/arXiv.2103.08612
https://doi.org/10.1103/PhysRevX.10.021071
https://doi.org/10.1103/PhysRevA.106.043712


Bibliography 171

— (2015b). “Universal linear optics”. Science 349.6249, 711–716. DOI: https:
//doi.org/10.1126/science.aab3642 (cited on p. 106).

CAROSINI, L., V. Oddi, F. Giorgino, L. M. Hansen, B. Seron, S. Pia-
centini, T. Guggemos, I. Agresti, J. C. Loredo, and P. Walther (2023).
“Programmable multi-photon quantum interference in a single spatial
mode”. arXiv preprint arXiv:2305.11157 (cited on pp. 48, 120).

CHEN, B., Z. Ruan, X. Fan, Z. Wang, J. Liu, C. Li, K. Chen, and L.
Liu (2022). “Low-loss fiber grating coupler on thin film lithium niobate
platform”. APL Photonics 7.7, 076103. DOI: https://doi.org/10.
1063/5.0093033 (cited on p. 102).

CHEN, S., L.-C. Peng, Y.-P. Guo, X.-M. Gu, X. Ding, R.-Z. Liu, X. You,
J. Qin, Y.-F. Wang, Y.-M. He, J. J. Renema, Y.-H. Huo, H. Wang,
C.-Y. Lu, and J.-W. Pan (2023). Heralded three-photon entanglement from
a single-photon source on a photonic chip. DOI: https://doi.org/10.
48550/arXiv.2307.02189. arXiv: 2307.02189 [quant-ph] (cited
on pp. 128, 133).

CHIN, S. and J. Huh (2018). “Generalized concurrence in boson sampling”.
Scientific reports 8.1, 6101 (cited on pp. 116, 163).

CLEMENTS, W. R., P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer,
and I. A. Walmsley (2016). “Optimal design for universal multiport in-
terferometers”. Optica 3.12, 1460–1465 (cited on pp. 26, 71, 106, 116, 118,
119).

CRESPI, A., R. Osellame, R. Ramponi, M. Bentivegna, F. Flamini, N.
Spagnolo, N. Viggianiello, L. Innocenti, P. Mataloni, and F. Sciarrino
(2016). “Suppression law of quantum states in a 3D photonic fast Fourier
transform chip”. Nature communications 7.1, 10469 (cited on pp. 67, 74).

CRESPI, A., R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spag-
nolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino (2013). “In-
tegrated multimode interferometers with arbitrary designs for photonic
boson sampling”. Nature photonics 7.7, 545–549 (cited on p. 110).

DEGEN, C. L., F. Reinhard, and P. Cappellaro (2017). “Quantum sensing”.
Reviews of modern physics 89.3, 035002 (cited on p. 20).

DING, X., Y.-P. Guo, M.-C. Xu, R.-Z. Liu, G.-Y. Zou, J.-Y. Zhao, Z.-X.
Ge, Q.-H. Zhang, H.-L. Liu, M.-C. Chen, et al. (2023). “High-efficiency
single-photon source above the loss-tolerant threshold for efficient linear
optical quantum computing”. arXiv preprint arXiv:2311.08347 (cited on
pp. 2, 17, 128).

DING, X., Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber,
S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W.
Pan (2016). “On-Demand Single Photons with High Extraction Efficiency
and Near-Unity Indistinguishability from a Resonantly Driven Quan-
tum Dot in a Micropillar”. Phys. Rev. Lett. 116 (2), 020401. DOI: 10.1103/
PhysRevLett.116.020401 (cited on pp. 126, 128).

https://doi.org/https://doi.org/10.1126/science.aab3642
https://doi.org/https://doi.org/10.1126/science.aab3642
https://doi.org/https://doi.org/10.1063/5.0093033
https://doi.org/https://doi.org/10.1063/5.0093033
https://doi.org/https://doi.org/10.48550/arXiv.2307.02189
https://doi.org/https://doi.org/10.48550/arXiv.2307.02189
https://arxiv.org/abs/2307.02189
https://doi.org/10.1103/PhysRevLett.116.020401
https://doi.org/10.1103/PhysRevLett.116.020401


172 Bibliography

DREESSEN, C. L., C Ouellet-Plamondon, P Tighineanu, X Zhou, L Mi-
dolo, A. S. Sørensen, and P Lodahl (2018). “Suppressing phonon de-
coherence of high performance single-photon sources in nanophotonic
waveguides”. Quantum Science and Technology 4.1, 015003. DOI: 10.1088/
2058-9565/aadbb8 (cited on p. 126).

ELSHAARI, A. W., W. Pernice, K. Srinivasan, O. Benson, and V. Zwiller
(2020). “Hybrid integrated quantum photonic circuits”. Nat. Photon. 14.5,
285–298 (cited on p. 110).

FERRANTE, M. and N. Frigo (2012). “A note on the coupon-collector’s
problem with multiple arrivals and the random sampling”. arXiv preprint
arXiv:1209.2667 (cited on p. 123).

GERRY, C. and P. L. Knight (2005). Introductory quantum optics. Cambridge
university press (cited on pp. 12–14).

GIMENO-SEGOVIA, M., P. Shadbolt, D. E. Browne, and T. Rudolph
(2015). “From Three-Photon Greenberger-Horne-Zeilinger States to Bal-
listic Universal Quantum Computation”. Phys. Rev. Lett. 115 (2), 020502.
DOI: 10.1103/PhysRevLett.115.020502 (cited on p. 103).

HAMILTON, C. S., R. Kruse, L. Sansoni, S. Barkhofen, C. Silberhorn, and
I. Jex (2017). “Gaussian boson sampling”. Physical review letters 119.17,
170501 (cited on pp. 109, 114).

HE, Y., X Ding, Z.-E. Su, H.-L. Huang, J Qin, C Wang, S Unsleber, C Chen,
H Wang, Y.-M. He, et al. (2017). “Time-bin-encoded boson sampling
with a single-photon device”. Physical review letters 118.19, 190501. DOI:
https://doi.org/10.1103/PhysRevLett.118.190501 (cited on
pp. 50, 54, 120, 141, 165).

HECHT, E. (2002). Optics. Addison Wesley (cited on p. 38).

HOLZGRAFE, J. C. (2022). “Cavity electro-optics in thin-film lithium nio-
bate”. PhD thesis. Harvard University (cited on pp. 92, 93, 107).

HONG, C.-K., Z.-Y. Ou, and L. Mandel (1987). “Measurement of sub-
picosecond time intervals between two photons by interference”. Phys-
ical review letters 59.18, 2044. DOI: https://doi.org/10.1103/
PhysRevLett.59.2044 (cited on pp. 10, 113).

HUH, J., G. G. Guerreschi, B. Peropadre, J. Mcclean, and A. Aspuru-Guzik
(Dec. 2014). “Boson Sampling for Molecular Vibronic Spectra”. Nature
Photonics 9. DOI: 10.1038/nphoton.2015.153 (cited on p. 106).

HUMMEL, T., C. Ouellet-Plamondon, E. Ugur, I. Kulkova, T. Lund-
Hansen, M. A. Broome, R. Uppu, and P. Lodahl (2019). “Efficient de-
multiplexed single-photon source with a quantum dot coupled to a nanopho-
tonic waveguide”. Applied Physics Letters 115.2 (cited on p. 89).

KAUSHALRAM, A., G. Hegde, and S. Talabattula (2020). “Mode hy-
bridization analysis in thin film lithium niobate strip multimode waveg-
uides”. Scientific Reports 10.1, 1–13. DOI: https://doi.org/10.1038/
s41598-020-73936-x (cited on p. 103).

https://doi.org/10.1088/2058-9565/aadbb8
https://doi.org/10.1088/2058-9565/aadbb8
https://doi.org/10.1103/PhysRevLett.115.020502
https://doi.org/https://doi.org/10.1103/PhysRevLett.118.190501
https://doi.org/https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1038/nphoton.2015.153
https://doi.org/https://doi.org/10.1038/s41598-020-73936-x
https://doi.org/https://doi.org/10.1038/s41598-020-73936-x


Bibliography 173

KNILL, E., R. Laflamme, and G. J. Milburn (2001). “A scheme for efficient
quantum computation with linear optics”. nature 409.6816, 46–52 (cited
on pp. 2, 44, 45).

LACEY, J. and F. Payne (1990). “Radiation loss from planar waveguides
with random wall imperfections”. IEE Proceedings J (Optoelectronics) 137.4,
282–289. DOI: 10.1049/ip-j.1990.0047 (cited on p. 100).

LAU, J. H. (2019). Heterogeneous integrations. Springer (cited on p. 137).

LI, J.-P., J. Qin, A. Chen, Z.-C. Duan, Y. Yu, Y. Huo, S. Höfling, C.-Y.
Lu, K. Chen, and J.-W. Pan (2020). “Multiphoton graph states from a
solid-state single-photon source”. ACS Photonics 7.7, 1603–1610 (cited on
pp. 74, 89).

LINDENMANN, N, G Balthasar, D Hillerkuss, R Schmogrow, M Jordan,
J. Leuthold, W Freude, and C Koos (2012). “Photonic wire bonding: a
novel concept for chip-scale interconnects”. Optics Express 20.16, 17667–
17677. DOI: 10.1364/OE.20.017667 (cited on p. 107).

LODAHL, P., A. Ludwig, and R. J. Warburton (2022). “A deterministic
source of”. Physics Today 75, 3–44. DOI: https://doi.org/10.1063/
PT.3.4962 (cited on pp. 115, 125).

LODAHL, P., S. Mahmoodian, and S. Stobbe (2015). “Interfacing single
photons and single quantum dots with photonic nanostructures”. Re-
views of Modern Physics 87.2, 347. DOI: https://doi.org/10.1103/
RevModPhys.87.347 (cited on pp. 15, 16, 18).

LOMONTE, E, M Stappers, F Lenzini, and W. Pernice (2022). “Highly
efficient silicon nitride grating couplers with metal back-reflector en-
abled by cryogenic deep silicon etching”. Integrated Photonics Platforms
II. Vol. 12148. SPIE, 14–18. DOI: https://doi:10.1117/12.2621230
(cited on p. 107).

LOMONTE, E., F. Lenzini, and W. H. Pernice (2021a). “Efficient self-
imaging grating couplers on a lithium-niobate-on-insulator platform at
near-visible and telecom wavelengths”. Optics Express 29.13, 20205–20216.
DOI: https://doi.org/10.1364/OE.428138 (cited on p. 102).

LOMONTE, E., M. A. Wolff, F. Beutel, S. Ferrari, C. Schuck, W. H. Per-
nice, and F. Lenzini (2021b). “Single-photon detection and cryogenic re-
configurability in lithium niobate nanophotonic circuits”. Nature Com-
munications 12.1, 1–10. DOI: https://doi.org/10.1038/s41467-
021-27205-8 (cited on pp. 92, 93, 107, 136).

MADSEN, L. S., F. Laudenbach, M. F. Askarani, F. Rortais, T. Vincent,
J. F. Bulmer, F. M. Miatto, L. Neuhaus, L. G. Helt, M. J. Collins, et al.
(2022). “Quantum computational advantage with a programmable pho-
tonic processor”. Nature 606.7912, 75–81. DOI: https://doi.org/10.
1038/s41586-022-04725-x (cited on pp. 106, 109, 114, 117, 119, 128).

https://doi.org/10.1049/ip-j.1990.0047
https://doi.org/10.1364/OE.20.017667
https://doi.org/https://doi.org/10.1063/PT.3.4962
https://doi.org/https://doi.org/10.1063/PT.3.4962
https://doi.org/https://doi.org/10.1103/RevModPhys.87.347
https://doi.org/https://doi.org/10.1103/RevModPhys.87.347
https://doi.org/https://doi:10.1117/12.2621230
https://doi.org/https://doi.org/10.1364/OE.428138
https://doi.org/https://doi.org/10.1038/s41467-021-27205-8
https://doi.org/https://doi.org/10.1038/s41467-021-27205-8
https://doi.org/https://doi.org/10.1038/s41586-022-04725-x
https://doi.org/https://doi.org/10.1038/s41586-022-04725-x


174 Bibliography

MARCHETTI, R., C. Lacava, L. Carroll, K. Gradkowski, and P. Minzioni
(2019). “Coupling strategies for silicon photonics integrated chips”. Pho-
tonics Research 7.2, 201–239 (cited on pp. 133, 137).

MARING, N., A. Fyrillas, M. Pont, E. Ivanov, P. Stepanov, N. Margaria,
W. Hease, A. Pishchagin, T. H. Au, S. Boissier, et al. (2023). A general-
purpose single-photon-based quantum computing platform. DOI: https://
doi.org/10.48550/arXiv.2306.00874. arXiv: 2306.00874
[quant-ph] (cited on pp. 109, 128).

MIGDALL, A. L., D. Branning, and S. Castelletto (2002). “Tailoring single-
photon and multiphoton probabilities of a single-photon on-demand source”.
Phys. Rev. A 66 (5), 053805. DOI: 10.1103/PhysRevA.66.053805
(cited on pp. 103, 114).

MOODY, G., V. J. Sorger, D. J. Blumenthal, P. W. Juodawlkis, W. Loh,
C. Sorace-Agaskar, A. E. Jones, K. C. Balram, J. C. F. Matthews, A.
Laing, et al. (2022). “2022 Roadmap on integrated quantum photonics”.
J. Phys. Photonics 4, 012501. DOI: 10.1088/2515-7647/ac1ef4 (cited
on p. 110).

MORVAN, A, B Villalonga, X Mi, S Mandrà, A Bengtsson, P. Klimov, Z
Chen, S Hong, C Erickson, I. Drozdov, et al. (2023). “Phase transition
in Random Circuit Sampling”. arXiv preprint arXiv:2304.11119 (cited on
p. 109).

MOTES, K. R., A. Gilchrist, J. P. Dowling, and P. P. Rohde (2014). “Scal-
able boson sampling with time-bin encoding using a loop-based archi-
tecture”. Physical review letters 113.12, 120501. DOI: https://doi.org/
10.1103/PhysRevLett.113.120501 (cited on pp. 48, 50, 120, 165).

NIELSEN, K. H. (2022). “Towards programmable nonlinear photonic quan-
tum simulation”. Master thesis. University of Copenhagen (cited on pp. 50,
73).

NIELSEN, M. A. and I. L. Chuang (2000). Quantum information and quantum
computation (cited on p. 33).

NOTAROS, J., F. Pavanello, M. T. Wade, C. M. Gentry, A. Atabaki, L.
Alloatti, R. J. Ram, and M. A. Popović (2016). “Ultra-efficient CMOS
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