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Abstract
The study of the interaction between light and matter has revolutionised our under-
standing of the modern world, with applications as far-reaching as the development
of semiconductors to quantum technology for communication and cryptography. In
this thesis, we theoretically analyse light-matter interaction using quantum emitter
systems that span a range of scales, from individual quantum dots to ensembles of
millions of atoms. By combining our theoretical modelling with experimental exper-
tise at the Niels Bohr Institute, we further deepen our understanding of the effects
of experimental losses in these diverse light-matter systems.

At an emitter number N = 1, we study the nonlinear scattering of individual
photons off a quantum dot embedded in a photonic crystal waveguide. We use this
single-photon nonlinearity to generate time-energy entanglement, which is of practi-
cal importance in opening opportunities for quantum computing and cryptography,
as well as quantum optical information processing, communication and measurement
protocols.

We add another quantum dot to reach N = 2, investigating the entirely new
physics arising from the ability to absorb, re-emit and then re-absorb the re-emitted
light field. We show how super- and subradiance arises from this coupled system
and find our theoretical model can describe the first experimental demonstration of
emitter-emitter coupling in waveguide coupled quantum dots.

We then study N = 10 − 100 quantum emitters, arranged periodically in an
atomic lattice. We propose a novel quantum sensing protocol that exploits the coop-
erative enhancement arising from the coherent interaction of the lattice atoms with
impurities embedded at some lattice sites. Our protocol is several orders of magni-
tude more sensitive in the lattice than in free space and is robust to noise introduced
by lattice disorder.

Finally, we use an atomic ensemble with N ∼ 1 million to investigate the pro-
duction of frequency dependent squeezing. This is of interest for gravitational wave
interferometers, as it can improve sensitivity beyond the so-called standard quantum
limit. By exploiting electromagnetically induced transparency (EIT) and motional
averaging, we can produce a broadband suppression of the quantum noise in a grav-
itational wave interferometer, even when accounting for experimental losses. Lower
noise opens the door to more sensitive gravitational wave astronomy, allowing us to
see further than ever before.
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Resumé
Undersøgelserne af interaktionen mellem stof og lys har revolutioneret forståelsen af
den moderne verden med vidtgående applikationer som udviklingen af halvledere to
kvanteteknologier for kommunikation og kryptografi. I denne afhandling, analyserer
vi interaktionen mellem stof og lys teoretisk, ved hjælp af kvanteudsendere, som
dækker over en lang række forskellige størrelser, fra individuelle kvanteprikker til
ensembler af millioner af atomer. Ved at kombinere vores teoretiske modellering
med eksperimentel ekspertise ved Niels Bohr Instituttet, forøger vi yderligere vores
forståelse af effekterne ved eksperimentelle tab i disse forskelligartede systemer.

Ved udsendertallet N = 1, undersøger vi den ikkelineære spredning af enkelte
fotoner fra en kvanteprik indlejret i en fotonisk krystal bølgeleder. Vi bruger denne
enkelt fotons ikke-linearitet til at generere tid-energi forvikling, hvilket er af praktisk
betydning, da det åbner muligheder for kvantekomputering, kryptografi og kvanteop-
tisk informationsbehandling, kommunikation af måleprotokoller.

Vi tilføjer yderligere en kvanteprik, for at opnå N = 2, og undersøger den kom-
plet nye fysik, som opstår fra muligheden for absorption, genudsendelse og så gen-
absorption af det genudsendte lys. Vi viser hvordan super- og subradiant opstår fra
det koblede system og vi finder at vores teoretiske model passer godt på den første
eksperimentelle demonstration af udsender-udsender kobling i bølgeledere koblet til
kvanteprikker.

Vi undersøger så N = 10 − 100 kvanteudsendere, ordnet periodisk i et atom-
art gitter. Vi forslår en hidtil ukendt kvanteregistreringsprotokol, som udnytter
forstærkningen, der kommer fra den kohærente interaktion mellem atomerne i git-
teret og urenhederne ved nogle af gitterpladserne. Vi finder ud af, at vores protokol
er flere størrelsesordner mere følsom i gitteret end i vakuum og er robust imod støj
fra uorden i gitteret.

Endelig, undersøger vi atomiske ensembler med N ∼ 1 million til at under-
søge produktionen af frekvensafhængigt sammentrykning. Dette er interessant for
tyngdebølgeinterferometre, da det kan øge følsomhed udover den såkaldt normale
kvantegrænse. Ved at udnytte elektromagnetisk induceret transparens (EIT) og
bevægelsesgennemsnit finder vi, at vi kan fremstille en bredbåndet undertrykkelse
af kvantestøjen i et tyngdebølgeinterferometer, selv hvis vi tager hensyn til eksperi-
mentelle tab.
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4.12 2D lifetime measurements sweeping θ. a. The theory and corre-
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Chapter 1 | On matters of light

1.1 Quantum light, quantum matter: pioneers to
present

The study of light-matter interaction in quantum mechanics has been one of the
most transformative areas of research in modern science. It has revolutionized our
understanding of the microscopic world and has had significant applications in tech-
nology, from enabling the development of semiconductors to propelling the rise of
quantum technology for communication and cryptography.

At the turn of the 20th century, the classical understanding of physics was chal-
lenged by the revelations of quantum mechanics. Early pioneers like Max Planck,
Niels Bohr and Albert Einstein made groundbreaking discoveries that marked the
dawn of a new era in physics.

Max Planck’s investigation of black-body radiation led to the formulation of
quantum theory, introducing the concept of quantization of energy. This development
laid the foundation for wave-particle duality, suggesting light can exhibit both wave-
like and particle-like behaviour. Niels Bohr gave the electron a wave-like nature,
producing a model of the atom that did not collapse by radiating energy, as predicted
by classical physics. His model additionally provided a microscopic understanding for
the empirical Rydberg formula for the spectral emission lines of hydrogen. Albert
Einstein’s work on the photoelectric effect further supported the idea of a wave-
particle duality by demonstrating light could behave as discrete packets of energy,
later called photons.

The concept of wave-particle duality not only helped to reconcile classical physics
with quantum phenomena but also played a crucial role in various scientific advance-
ments. For instance, understanding the dual nature of light and matter has been
pivotal in comprehending semiconductor physics, leading to the development of elec-
tronic devices that power our modern technology.

In contemporary research, a shift is taking place, with a focus on harnessing
quantum mechanics to create advanced technologies. Instead of being passive ob-
servers simply understanding the quantum world, we are now working to produce
and manipulate quantum states to our own ends. In other words, we are making the
transition to engineering. As Dowling and Milburn put it, “we are currently in the
midst of a second quantum revolution. The first quantum revolution gave us new
rules that govern physical reality. The second quantum revolution will take these
rules and use them to develop new technologies" [6].

Quantum computers, quantum communication, quantum cryptography, quan-
tum sensing and metrology, quantum simulation and quantum networking are all
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Chapter 1 | On matters of light

examples of advancements that we hope will arise out of this revolution. These tech-
nologies will harness both light and matter in various capacities, building on the
strengths of each.

Light is ideal for information transport, due to its high propagation speed, low
loss and dispersion, minimal interference, and ease of detection. Exploiting these
advantages, light in linear media has become the foundation for various commu-
nication systems, including fiber-optic communication, laser-based communication
and free-space communication. While linear light is excellent for efficient informa-
tion transport, the processing of information requires nonlinear media [7]. Nonlinear
media refers to materials or systems in which the output response is not directly
proportional to the input signal. Classically, it is only high intensity light beams
that can produce such a power-dependent response. This is why early experimental
realisations of nonlinear optical phenomena were only possible with the development
of powerful lasers [8]. However, there have been both theoretical [9, 10, 11] and
experimental [12, 13] advances in nonlinear optics in the quantum regime, where
nonlinearities are present at the level of only a few photons. Such nonlinearities have
the potential to unlock photonic information processing and storage at the quantum
level.

On the other hand, matter-based quantum systems, such as trapped ions [14, 15,
16], superconducting qubits [17, 18, 19] and quantum dots [20, 21], provide excellent
platforms for encoding and processing quantum information. These systems can
represent quantum bits (qubits) and perform quantum operations with high fidelity,
forming the foundation for quantum computing and quantum information processing.

In order to achieve the ambitious goals of quantum technology, scientists are
working to interface light with individual quantum systems, enabling operations
such as photonic gates and Bell state analysis. Such capabilities would pave the way
for secure communication and quantum computing. Consequently, research in the
field of light-matter interaction is experiencing a resurgence.

Researchers are now pushing the boundaries of nonlinear optics into the quan-
tum regime. Nonlinear interactions at the level of a single photon have demonstrated
several advantages. For instance, they can be employed for ultra-sensitive measure-
ments, quantum state engineering and quantum simulation. Incorporating nonlinear
optics into quantum systems necessitates a toolbox of highly controllable light-matter
systems, where light and matter are strongly correlated. Novel phenomena like super-
radiance and subradiance, as well as entanglement, come into play in these systems.
Moreover, advances in quantum technologies have shifted entanglement generation
from individual atoms to solid-state devices, offering scalability and better control,
such as in superconducting qubits and quantum dots.
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In recent years, the exploration of quantum systems has opened new frontiers
in the field of quantum information processing and quantum sensing. The ability
to manipulate and control individual quantum emitters has led to groundbreak-
ing discoveries in various quantum phenomena. Building on these discoveries, this
thesis aims to investigate the behaviour and applications of quantum emitters in
systems across various scales, from individual quantum dots to ensembles of millions
of atoms. Through collaboration with experimentalists in conjunction with our the-
oretical modelling, we study the properties and potential applications of quantum
emitters in diverse contexts. In this research, we have positioned ourselves to take
advantage of new technological capabilities in modern experiments. We exploit the
newfound ability to couple quantum dots in photonic crystal waveguides [22], con-
trol atoms to produce arrays [23] and interface light with atomic ensembles [24]. The
research presented herein not only contributes to our fundamental understanding of
quantum phenomena, but also opens up exciting possibilities for practical quantum
technologies and precision sensing applications.

1.2 The structure of this thesis
This thesis is organised as a collection of manuscripts, with an introductory chapter
giving theoretical background where needed to understand the content in the coming
chapter.

In Chapter 2, we develop the necessary theoretical background for the proceeding
two chapters investigating quantum dots in photonic crystal waveguides. We derive
the Hamiltonian and equations of motion for relevant operators in this system, and
write down a useful effective operator formalism. We additionally describe the quan-
tum regression theorem, which is extensively used to compute two-time correlation
functions, most notably the second order correlation function g(2)(τ).

In Chapter 3, we theoretically investigate the generation of time-energy entan-
glement via the scattering off a single quantum dot embedded in a photonic crystal
waveguide. The entanglement that is produced is evidence of a single-photon nonlin-
earity induced by the scattering. This type of optical response, occurring at the level
of a single quantum of light, opens the door to improved classical nonlinear optics,
as well as quantum information processing and communication.

We then shift our focus to a system with N = 2 quantum emitters in Chapter 4.
We introduce a second quantum dot into the system and show we can generate
coupling between the emitters. We explore the phenomena of super- and subradiance
arising from this coupled quantum dot system. A theoretical model is presented
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to describe the behaviour of the two interacting emitters, generating insights into
quantum coherence and correlated emission.

Next, in Chapter 5 we investigate a setting where N ∼ 10− 100 – arrays of peri-
odically spaced atoms in a so-called atomic lattice. In this context, a novel quantum
sensing protocol is proposed, involving the embedding of two impurity atoms in a
sub-wavelength atomic array. Through dipole-dipole coupling with the array, the
emitters exhibit long-range collective coupling, leading to heightened sensitivity to
detuning, suggesting potential applications for sensing electric and magnetic fields.
We show that this model is not only several orders of magnitude more sensitive
than coupled emitters in free space, but is also robust to the noise introduced by
lattice disorder. The protocol’s generality suggests potential applications in diverse
quantum systems, including the previously discussed coupled quantum dot system.

Finally, in Chapters 6 and 7 we investigate an atomic ensemble where N ∼
1 million quantum emitters are considered. Here, we explore the utilization of
electromagnetically induced transparency (EIT) in an atomic ensemble to produce
frequency-dependent squeezing. In Chapter 6, we show how this phenomenon can
significantly enhance the sensitivity of gravitational wave detectors, such as the Laser
Interferometer Gravitational-Wave Observatory (LIGO). In Chapter 7, we demon-
strate how motional averaging inside the cell containing the ensemble atoms facili-
tates the desired squeezing rotation. This leads to a broadband suppression of noise
in a way that can be integrated into LIGOs existing infrastructure without major
redesigns.
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Despite many decades of study [25, 26] and a plethora of applications [27], the
interaction between light and N quantum emitters is still producing novel and sur-
prising results. One of the most well-known of these phenomena is Dicke super-
radiance [28] which has been extensively studied [29] since Dicke’s seminal 1954
paper. Recent developments [24, 7] have led to the development of waveguides
(see Fig. 2.1), platforms that allow for the ordered arrangement of quantum emitters,
which allows the underlying collective effects to be seen more clearly. The confine-

Figure 2.1: Quantum emitters embedded in a photonic crystal waveguide.
We write a description for N quantum emitters with label n inside a waveguide.
Each emitter is a two level system with excited state |e〉n and ground state |g〉n. The
decay rate from excited to ground is Γn, which is then emitted into the waveguide,
to the left with rate γwg

n,L, to the right with rate γwg
n,R or to the side (as a loss) with

rate γsn. The dots are driven with the input fields Ein
L/R, which are shown here going

through the waveguide. In principle, driving through the top is also possible, such
that the detected fields EL and ER do not contain a contribution from the input
light.

ment of the emitters inside the waveguide also drastically increases the coupling
between emitter and photon to levels much higher than in free space, similar to the
coupling enhancement found in cavity QED [30]. The following two chapters will
investigate systems of quantum dots embedded in a photonic crystal waveguide. We
begin with the case N = 1, where we exploit the single-photon nonlinearity produced
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by photonic scattering off a single quantum dot to produce quantum states entangled
in time and energy. We then analyse the case N = 2, where we couple two dots and
demonstrate super- and sub-radiance arises from the system.

In this chapter, we will outline the theoretical background for these two pro-
ceeding chapters. First, by modelling the dipole-dipole interaction between the light
fields and quantum emitters, we write down an effective Hamiltonian description of
the dynamics of waveguide quantum dots, within the master equation framework.
We then outline the Quantum Regression Theorem, which will be used to evaluate
expectation values in the developed framework. This primarily allows us to compute
correlation functions, particularly the second order correlation function g(2)(τ).

2.1 Dipole-dipole coupling between light fields and
quantum dots

We describe a system of N emitters inside a waveguide, as shown in Fig. 2.1. The
Hamiltonian describing the dipole-dipole interaction between a quantised electro-
magnetic field and matter is

H = HF +HQD +HI, (2.1)

where the Hamiltonian describing the electromagnetic field is

HF =

∫
dk~ωka

†
kak (2.2)

for bosonic creation and annihilation operators a†k and ak with wavenumbers k and
corresponding frequencies ωk. Each quantum dot is described as a two-level system
where

HQD =
∑
j

~ωegσ
(j)
ee , (2.3)

where σee = |e〉 〈e| and ωeg = ωe − ωg, the frequency difference between the ground
and excited state of the dipole transition |g〉 ↔ |e〉. The interaction between the
light fields and quantum dots is given by

H
(j)
I = −~

∑
m

∫
dkG(j)

m,kσ
(j)
eg ame

ikzj(−1)m +H.c. (2.4)
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where m = 0 corresponds to the right-going field to the right and m = 1 corresponds
to the left-going field. The coupling constant G(j)

m,k describes the directional coupling
to the jth dot. We assume the frequency components of the field addressing the dots
are centred on a narrow frequency interval about ω0, with corresponding wavenumber
k0. We can expand the frequencies as ωk ≈ ω0 + vg(k− k0) where vg = ∂ω/∂k is the
group velocity. We approximate the coupling constant independent of frequency on
this frequency range, i.e., G(j)

m,k ≈ G(j)
m . We now transform into a rotating frame with

respect to the drive frequency ω0, obtaining the interaction picture Hamiltonian

H̃(j) = ~∆σ(j)
ee + ~

∫
dk(ωk − ω0)a

†
kak

− ~
∑
m

G(j)
m

∫
dk
(
σ(j)
eg ake

ikzj(−1)m +H.c.
)

(2.5)

where the detuning ∆ = ωeg − ω0 is now defined with respect to the drive. We can
then use the slowly-varying field operator to describe the light-matter interaction

Em(z) =

√
vg√
2π

∫ ∞

0

dkake
i(k−k0)z(−1)m , (2.6)

which obeys the bosonic commutation relation
[
E(z), E†(z′)

]
= vgδ(z − z′). We can

therefore write the total Hamiltonian as

H̃ =
∑
j

~∆σ(j)
ee − i~

∑
m

∫
dz(−1)mE†

m(z)
∂Em(z)

z

− ~
∑
j

∑
m

√
2π/vgG(j)

m

(
σ(j)
eg Em(zj)e

ik0zj +H.c.
)

(2.7)

We assume a symmetric dispersion relation such that |vLg | = |vRg | = vg, i.e., the left
and right-going group velocities have the same magnitude. The integral over k is
thus split into a left and right block, centred about ±k0, i.e.,∫

dk ω(k)a†kak ≈
∫ −k0+∆k

−k0−∆k

dk ω(k)a†k,Lak,L︸ ︷︷ ︸
Left−going

+

∫ k0+∆k

k0−∆k

dk ω(k)a†k,Rak,R︸ ︷︷ ︸
Right−going

. (2.8)

We are interested in driving the emitters with coherent light, with a field we will call
E(t). This driving can be achieved either through the waveguide, in which case the
coherent field will be included as an input to the detected field, or from above, such
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that we only need to treat the effect of the field on the atomic operators. We take
the initial state of the system to be a tensor product of this coherent state with the
emitters all in their respective ground states [31]

|ψ0〉 = D̂(αk) |∅〉 ⊗
∏
j

(
|g〉j
)
, (2.9)

where D(αk) is the displacement operator acting on the photonic vacuum state |∅〉.
We are interested in coherent light as an input and thus wish to apply a displacement
to the interaction Hamiltonian with the operator D̂(αk) = exp

[∫
dk(â†kαk−âkα∗

k)
]

so that

H̃ ′ = D†(α̃k)H̃D(α̃k)− i~D†(α̃k)
dD(α̃k)

dt
, (2.10)

where ãk = αke
−i(ωk−ω0)t, such that the displaced state |ψ′(t)〉 = D†(α̃) |ψ(t)〉 obeys

the interaction picture Schrödinger equation

i~∂t |ψ′(t)〉 = H̃ ′ |ψ′(t)〉 . (2.11)

The quantum dot HQD and field HF Hamiltonians are invariant under this displace-
ment, but the interaction Hamiltonian in the rotating frame changes to

H ′
I = −~

∑
j

√
2π/vg

∑
m

g(j)m

[
σ(j)
eg Em(zj)e

ik0zj(−1)m + σ(j)
ge E

†
m(zj)e

−ik0zj(−1)m
]

+
Ωj

2

(
σ(j)
eg e

ik0zj − ~σ(j)
ge e

−ik0zj
)
, (2.12)

where Ωj = 2
√
2πE (j)G and

E (j)(t) =
1√
2π

∫
dkαke

i[(k−k0)zj−(ωk−ω0)t] , (2.13)

is the coherent input field. We can obtain equations of motion using Ȧ = − i
~ [A,H].

For the jth quantum dot de-excitation operator σge, we have

σ̇(j)
ge =

√
2π/vgi

∑
m

g(j)m σ(j)
z Em(zj)e

ik0zj(−1)m + i
Ωj

2
σ(j)
z eik0zj (2.14)

=
√

2π/vgi
[
g
(j)
L σ(j)

z EL(zj)e
−ik0zj + g

(j)
R σ(j)

z ER(zj)e
ik0zj

]
+ i

Ωj

2
σ(j)
z eik0zj (2.15)
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The equations of motion for the field operators EL and ER are

Ėm(zj) = −vg(−1)m
∂Em(z)

∂z
− i
√

2πvg
∑
j

δ (z − zj) e
ik0zj(−1)mg(j)m σ(j)

ge (t) (2.16)

⇒
(
∂

∂z
+

(−1)m

vg

∂

∂t

)
︸ ︷︷ ︸

Directional derivative

Em(z, t) = −i
√
2π
∑
j

δ ((z − zj)(−1)m) eik0zj(−1)m g
(j)
m√
vg
σ(j)
ge (t)

(2.17)

The left hand side is a directional derivative and produces time-retarded solutions
of the form Em(z, t) = f(t ± z/vg), corresponding to left- and right-going waves,
respectively. This time-retardation can be neglected, i.e., t ± z/vg ≈ t, since the
system size Lsys � vg/Γ. This results in a Markov approximation [32]. By making
this approximation we are making the claim that the propagation speed of light in the
waveguide is effectively instant compared to the decay timescales Γ that are present
in the system, i.e., the interesting dynamics occur on a timescale much slower than
the speed of light, and thus its propagation can be neglected. We can then formally
integrate our equations and obtain

EL = −
√
2πi
∑
j

g
(j)
L√
vg
σ(j)
ge θ(zj − z)eik0zj + Ein

L (2.18)

ER = −
√
2πi
∑
j

g
(j)
R√
vg
σ(j)
ge θ(z − zj)e

−ik0zj + Ein
R , (2.19)

where θ(z) is the Heaviside step function, which ensures the correct coupling only to
the left (right). Inserting these into the equation of motion for σge we obtain

σ̇(j)
ge = 2πi

∑
`

[
g
(j)
L σ(j)

z σ(`)
ge

g
(`)
L

vg
θ(z` − zj)e

ik0(z`−zj) + g
(j)
R σ(j)

z σ(`)
ge

g
(`)
R

vg
θ(zj − z`)e

−ik0(z`−zj)

]

+ i

(
Ein

L

g
(j)
L

√
2π

√
vg

e−ik0zj + Ein
R

g
(j)
R

√
2π

√
vg

eik0zj +
Ωj

2
eik0zj

)
σ(j)
z , (2.20)

where when evaluating the sum, we use θ(0) = 1/2 + iδω. The imaginary term iδω
is the Lamb shift that we neglect since we can include it directly in the reference
frequency ω0 which can be measured experimentally.

The above is a rather general treatment that includes the possibility of a chiral
waveguide [33]. We will henceforth treat the non-chiral case, where the coupling to

11



Chapter 2 | Quantum dots in photonic crystal waveguides

the left and the right is equal, i.e., g(j)L = g
(j)
R = g(j). We can thus write

σ̇(j)
ge =

i

2
Γjβjσ

(j)
z σ(j)

ge + i
∑
` 6=j

√
βjβ`ΓjΓ`e

ik0|z`−zj |σ(j)
z σ(j)

ge

+ i

[√
βjΓj

2

(
Ein

L e
−ik0zj + Ein

R e
ik0zj

)
+

Ωj

2
eik0zj

]
σ(j)
z , (2.21)

where we have written Γjβj = 4π(g(j))2/vg. To account for dephasing γd and decay
to the side γs, we write our equations of motion in a master equation (~ = 1)

ρ̇ = Ltot[ρ] = −i [H, ρ] + Lcoup[ρ] + Ldecay[ρ] + Ldeph[ρ]. (2.22)

Here the Hamiltonian H =
∑

m ∆mσ
z
m/2+Ωm(e

iθmσ+
m+e−iθmσ−

m)/2 accounts for the
detuning and potential driving of the involved emitters with relative phases θm− θn.
We have written three different Liouvillians: a Liouvillian corresponding to decay of
the emitters to modes other than the waveguide (side modes)

Ldecay[ρ] =
∑
m

γsmσ
−
mρσ

+
m (2.23)

with a decay rate γsm for the mth emitter. We also include dephasing described by

Ldeph[ρ] =
γd
2

∑
m

[σz
mρσ

z
m − ρ] , (2.24)

where the dephasing rate γd is assumed similar for all emitters for simplicity. This
is the standard description of pure dephasing acting individually on each emitter.

Finally, we include a term Lcoup[ρ] which describes the waveguide mediated cou-
pling [34, 35, 36]

Lcoup[ρ] = i
∑
mn

Jmn[σ
+
n σ

−
m, ρ]−

∑
mn

Γmn

[
σ−
mρσ

+
n − 1

2
{σ+

n σ
−
m, ρ}

]
(2.25)

with the couplings

Γmn =
4πg(m)g(n)

vg
Re{eiφmn} and Jmn =

2πg(m)g(n)

vg
Im{eiφmn}, (2.26)

which, by writing Γmβm = 4π(g(m))2/vg, corresponds to Jmn = 1
2

√
βmβnΓmΓn sinφmn

and Γmn =
√
βmβnΓmΓn cosφmn, which can now be identified as the dispersive and

12



Chapter 2 | Quantum dots in photonic crystal waveguides

dissipative coupling rates connecting QDm with QDn. With these identifications, we
can write the fields as

EL = Ein
R +

∑
n

−i
√
βnΓn/2σ

−
n e

iφn (2.27)

ER = Ein
R +

∑
n

−i
√
βnΓn/2σ

−
n e

−iφn (2.28)

where φn = k0zn is the accumulated, relative phase to the left (right) of the field
emitted at position z. In order to analytically understand the basic physics, we
can neglect dephasing and work in the single-emitter subspace, where the dynamics
reduce to

ρ̇ = −i
[
Heffρ− ρH†

eff

]
(2.29)

with an effective Hamiltonian Heff (frame rotating at the excitation field frequency
and ~ = 1) [35, 36]

Heff =
N∑

m,n=1

(
Jmn − i

Γmn

2

)
σ+
n σ

−
m +

N∑
n=1

(
∆n − i

γsn
2

)
σ+
n σ

−
n . (2.30)

The evolution with the effective Hamiltonian corresponds to the so-called no jump
quantum Monte-Carlo wavefunction approach. The omitted jump terms, represent-
ing the state after a decay, prepare the system in the non-radiative joint ground
state of the system. Since this state is non-radiative, the full system dynamics
of the emitted light can be understood within this no-jump framework. However,
once the system undergoes dephasing, re-excitation or is excited beyond the single-
excitation subspace, these jump terms are important, and we revert to the full mas-
ter equation (2.22) to solve the system dynamics. The decay rate Γm = γwg

m + γsm
contains the decay rate into (out of) the waveguide γwg

m (γsm), corresponding to β-
factors βm = γwg

m /Γm. ∆m is the detuning of QDm with respect to the excitation
field frequency, such that ∆mn = ∆m − ∆n is the detuning between the two QDs,
φmn = k0|zmn| is the phase lag due to the emitter separation zmn = zm − zn with k0
being the resonant wavenumber of the waveguide mode. φmn determines the charac-
ter of the coupling between dispersive (Γmn = 0), which modifies the energy levels,
to dissipative (Jmn = 0), which affects the decay dynamics.

13
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2.2 The Quantum Regression Theorem
Given two operators acting at times t1 and t2, we want to compute two time corre-
lation functions of the form [37, 38, 39]

〈O2(t2)O1(t1)〉 = TrSE
(
O2U(t2, t1)O1U(t1, t0)ρSEU

†(t1, t0)U
†(t2, t1)

)
(2.31)

where ρSE is the system + environment density matrix, and U(tb, ta) is the time
evolution operator from ta → tb.

2.2.1 Applying the Markov approximation
The environment can be split into two parts, E1 from t0 → t1 and E2 from t1 → t2.
In the Markov approximation, the trace over the environment E1 affects the time
evolution only from t0 → t1, and is also invariant with respect to the operators O1,2,
since they are system operators. Thus, we can compute the trace over E1 as

〈O2O1〉 = TrSTrE2

(
O2U(t2, t1)O1ρs(t1)U

†(t2, t1)
)

(2.32)

= TrS

O2D(t2, t1)[O1ρs(t1)]︸ ︷︷ ︸
ρUN (t2)

 (2.33)

= TrS (O2ρUN(t2)) (2.34)

here D(t2, t1) = T exp
(∫ t2

t1
L(t)[ρ]dt

)
is the superoperator that evolves from time

t1 → t2 and the Liouvillian L(t)[ρ] defines the evolution of the density matrix via
ρ̇ = L[ρ]. The operator ρUN(t2) is not a true density operator, since it is in general
unnormalised due to the action of the operator O1. In the case that the Liouvillian
is time independent, the time evolution superoperator is written as

D(t2, t1) = eL[ρ](t2−t1) (2.35)

The resulting equation has reduced Eq. 2.31, which includes both system and envi-
ronment, to the form in Eq. 2.34 which involves only the system’s density matrix
and operators.

2.2.2 Practical recipe
In practice, it is unnecessary to construct time evolution operators, etc formally.
Below, I will describe the practical recipe (see Fig. 2.2.2 for a diagrammatic repre-
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sentation of the recipe) that is actually used to compute second order correlation
functions of the form

G(2)(τ) = Tr
(
â(t+ τ)â(t)ρ̂â†(t)â†(t+ τ)

)
(2.36)

0. Solve the equation of motion for ρ.

1. Compute a time evolution from the initial time ρ(t0) → ρ(t). Often this step
is trivial as either t0 = t or the density matrix is initially in the steady state
and has a trivial time evolution.

2. Act with the operators at t, obtaining a new density matrix ρ1(t)

3. ρ1(t) is then evolved to the time t+ τ .

4. Finally, act with the operators at time t2 = t+ τ

G(2)(τ) = Tr
(
â(t+ τ)ρ1(t+ τ)â†(t+ τ)

)
(2.37)

which is simply matrix multiplication and the computation of the trace.

This recipe (and indeed the quantum regression theorem in general) can be phys-
ically thought of as acting with operators at the given times after evolution with the
density matrix.

2.2.2.1 Factoring of traces at long times

Suppose we want to compute the trace Tr (a(t)a(t′)ρss), where ρ̇ = L[ρ], which has
a steady state solution ρss. When t and t′ are sufficiently separated that the system
has had time to relax back into the steady state, the trace factors since

Tr

a(t) a(t′)ρss︸ ︷︷ ︸
=ρUN

 = Tr (a(t)ρUN) (2.38)

= Tr (a(t)Aρss) (2.39)
= Tr (a(t)ρss)A (2.40)
= Tr (a(t)ρss)Tr (a(t′)ρss) (2.41)

i.e., the product ρUN = a(t′)ρss can be thought of as a new, in general unnormalised,
density matrix that will eventually evolve back to Aρss, where A is the normalisation
factor.
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Figure 2.2: The action of the quantum regression theorem in each step of the
recipe. Here, t1 = t, and t2 = t + τ . The squiggly lines represent time evolution of
the density matrix, whereas the vertical lines represent the discrete change to the
quantum state upon the application of the operator Ô(t) at time t. The process of
applying the operators can be thought of as a measurement process that extracts
information from the state and changes it through measurement back-action.
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Chapter 3

Generation of time-energy
entanglement via scattering off a
quantum dot

This chapter will form the basis of a theory paper accompanying our recent experi-
mental work [1]. I was responsible for developing the theory, with input from Björn
Schrinski and Anders Søndberg Sørensen. Shikai Liu, Alexey Tiranov, myself and
Peter Lodahl wrote the manuscript with input from the other authors. The operator
transformations, quantum dot dynamics, spectral diffusion + time jitter and spectral
filtering sections of the appendix that I was responsible for have been reproduced
in this thesis with minimal changes. The figure Fig. 3.9 is a modification of several
figures that appear in the work [1], originally produced by S.L., with input from
myself, A.S.S and P.L.
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3.1 Introduction
Quantum entanglement, or the non-local correlations between the states of two
or more particles, is a fundamental and counterintuitive phenomenon of quantum
mechanics that has far-reaching implications for our understanding of fundamen-
tal physics and the development of next-generation technologies. Its importance in
quantum computing [40], quantum cryptography [41, 42], and quantum teleporta-
tion [43] make it a key focus of ongoing research [44, 45]. The entanglement of light
can be achieved by interaction with matter, although the required nonlinearity is
typically weak. At low optical power, most materials are in the linear optical regime,
exhibiting e.g., reflection and absorption, which can be described by a complex re-
fractive index [7]. With a sufficiently high optical power some materials experience
a modification of the index of refraction [8], such that the response to the light be-
comes power-dependent, i.e., we have a nonlinear response to the number of photons.
Implementing nonlinear effects at progressively lower optical power has been the fo-
cus of a research effort in optical science for some decades. Devices that display
nonlinear interactions at the level of a single photon could improve the performance
of classical nonlinear devices [46], enable quantum optical information processing
and communication [47] and enable quantum measurement protocols making use of
non-classical light fields [48, 49].

In a recent experimental work, [1], we measured time-energy entanglement gen-
erated via scattering off a quantum dot embedded in a photonic crystal waveguide.
The waveguide works to enhance the radiative coupling of the quantum dot, which
is typically otherwise weak, such that it dominates the decoherence processes. The
basic mechanism works as follows: low power continuous wave (CW) laser light is
shone onto the quantum dot. The coherent interference between the dot field and the
waveguide field results in reflection of single photons, but allows two photon states
to pass through (see Fig. 3.1). In the ideal case, all two photon states are produced
via a single photon exciting the dot, and then a subsequent photon passing through
the dot and stimulating the emission of the dot excitation. This produces a pair
of entangled photons which then travels through a Franson interferometer [8] that
acts as a measurement device quantifying the amount of entanglement. In contrast
to a Hong-Ou-Mandel measurement [50], which is local since it requires both pho-
tons to be present at the same location in spacetime, Franson measurements can be
performed when the two photons are space-like separated [51].

Below, we show in more detail the model used to theoretically describe this
experiment and show some surprising physics that can occur when we deviate from
the specific parameters needed to fit the model to the experiment.
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Figure 3.1: Schematic of the photon scattering process producing a single-
photon nonlinearity. When single photons are incident on the quantum dot in
the waveguide, the destructive interference between the incident and transmitted
field cause perfect reflection. However, when two photons are incident, the dot
saturates, and the second photon causes stimulated emission of the first, resulting in
an entangled pair.

3.2 Model – early early, late late
We describe the system with a density matrix, where we keep the regions correspond-
ing to two detector clicks and trace out the remaining regions (see Fig. 3.2), giving
a representation in terms of early and late photons. The density matrix in terms of
photon numbers is given by (for low power, and thus low photon number) to second
order

ρ = ρ0 + ρ1 + ρ2, (3.1)

where ρn is the density matrix corresponding to n photons. We post select on only the
two photon density matrix ρ2 ≈ |ψ〉 〈ψ| which has two component parts, described
below.
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Figure 3.2: Our density matrix is constructed by tracing out the gray sections, giving
a representation in terms of early and late photons |e〉 and |`〉.

3.2.1 General state
The general state that comes out from the scattering off the dot is

|ψ〉 = g(β)(|e〉+ |`〉)2 − f(β)(|ee〉+ |``〉) (3.2)

for some functions g and f that describe how much light is transmitted vs scattered
by the dot. g(β) is the laser (elastic scattering) component, which should decrease
as a function β as less light leaks into the waveguide. f(β) is the inelastic scattering
function that gives the probability of correlated two photon pairs. Perfect single
photon reflection is only achieved if β = Γ

γs+Γ
= 1, i.e., if all the light from the dot

is emitted into the waveguide. The presence of some γs (decay into non-waveguide
‘side’ modes) allows single photons to leak past the quantum dot, described by the
function g(β). Hence, for β = 1, we expect g(β) = 0. Since scattering off the dot
gives a phase of π, and the |ee〉 and |``〉 photons scatter only once vs twice for the
|e`〉 or |`e〉 photons, there is a relative phase of π between the two, and thus the
minus sign on f(β).

When g(β) = 0 we get the entangled state |ee〉+ |``〉 and and when f(β) = 0, we
get the separable state (|e〉+ |`〉)2. The functions g and f are unknown a priori. At
some value of β, g(β) will have decayed enough for them to cross f(β) = g(β) and
we will obtain the maximally entangled state

(|e〉+ |`〉)2 − (|ee〉+ |``〉) = |e`〉+ |`e〉 . (3.3)

This state picture allows us to treat much of the experimental apparatus (e.g., the
interferometers, detectors, etc) as a measurement device, allowing us to treat the dot
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as the important physical system that prepares the state of interest. Thus, we can
(and do) focus on the interaction of the dot and the incident light to theoretically
analyse the system. An experimentally inclined reader is encouraged to consult [1]
for a more comprehensive description of the experiment itself.

3.2.2 Computation of g(β) and f(β)

First, we will expand the wavefunction (3.2) into one and two photon components.

|ψ〉 = g(β) (|e`〉+ |`e〉) + (g(β)− f(β)) (|ee〉+ |``〉) (3.4)

The (unnormalised) transmission coefficient for the scattering can be computed (in
the low power limit) with [

lim
n→0

〈a〉√
n

]2
= g̃ (3.5)

where the tilde reflects the fact that the coefficient is as yet unnormalised. We
similarly have the coefficient of the two photon component[

lim
n→0

〈a2〉
n

]2
= g̃ − f̃ (3.6)

To evaluate these expectation values, we solve the dynamics in a density matrix
formalism, using the master equation

ρ̇ = −i [H, ρ] + Ldecay[ρ] + Ldeph[ρ], (3.7)

with Hamiltonian

H =
Ω

2
σx +∆σee, (3.8)

corresponding to driving of the quantum dot with Rabi frequency Ω and detuning
∆. σx is the usual Pauli matrix, and σij = |i〉 〈j|. The waveguide field is given by
a =

√
nΓ1−i

√
βΓ/2σ−, where Γ is the decay rate of the quantum dot, n is the photon

number per quantum dot lifetime and 1 is the identity matrix. The standard decay
and dephasing Liouvillians have been given in general in the previous chapter (2.22)
and are discussed in more detail for this specific system in Appendix 3.8.1. Since the
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state picture breaks down with the presence of dephasing, we ignore its effects here.
We obtain

g̃(β) =
Γ(−βΓ + Γ + 2i∆)2

(Γ + 2i∆)2
(3.9)

f̃(β)− g̃(β) = −Γ2(−2βΓ + Γ + 2i∆)2

(Γ + 2i∆)2
, (3.10)

where expectation values have been evaluated with respect to the steady state solu-
tion to Eq. (3.7). When on resonance, the coefficients are both real, and we obtain
the expressions

g̃(β) = (β − 1)2Γ (3.11)
f̃(β)− g̃(β) = −(1− 2β)2Γ2 (3.12)

By ensuring that the state (3.2) is properly normalised, i.e., by dividing by N =
2g̃2 + 2(g̃ − f̃)2, we can also compute the normalised coefficients f(β) and g(β).
We have plotted these coefficients in Fig. 3.3b). As we predicted with our heuristic
arguments, the function g̃ crosses f̃ . As it happens, the value at the crossing is
exactly β = 1

2
. That is, the point at which we expect to obtain the entangled state

|e`〉+ |`e〉 is at β = 1/2.
In Fig. 3.4, we additionally plot the normalisation constant, which is proportional

to the success rate N (β). Interestingly, N does not have an extremal value at
β = 1/2, and the rate is higher for β = 1.

22



Chapter 3 | Generation of time-energy entanglement via scattering off a quantum dot

-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

-2

-1

0

1

2

a)

b)

Figure 3.3: The coefficients of the general scattering wavefunction |ψ〉 given
by Eq. (3.2). In panel a) we show the unnormalised coefficients, and in b) we show
the normalised ones. As predicted by our heuristic arguments, the curves f(β) and
g(β) cross. The vertical black line is placed to show this crossing point.
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Figure 3.4: The normalisation constant N (β).
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3.3 Computation of second order correlation func-
tion (transmission in pairs)

As mentioned earlier, the basic mechanism of action for our protocol is the reflection
of single photons and the transmission of photon pairs. This mechanism can be
measured quantitatively using the second order correlation function g(2)(τ), where
we expect a bunching1 effect at τ = 0 due to the enhanced probability of detecting
photon pairs produced at the same time. Note that in principle the photon scattering
can produce entanglement in frequency due to energy exchange between photon pairs,
however since our detection window is very narrow, this entanglement is erased. Here
we consider imperfections such as laser leaking into the waveguide (corresponding to
non-unity β), as well as dephasing, which destroys the coherence between the dot field
and waveguide field. Both of these effects will reduce the relative probability that
the two collected photons are produced by the desired excitation and spontaneous
emission process, thus suppressing the height of the g(2)(0) peak.

3.3.1 Second order correlation function before the interfer-
ometer

Since we interpret the interferometer as functioning as a measurement device, it is of
interest to understand the second order correlation function before it passes through
the interferometer. We would like to know g(2)(0), as a function of the imperfections
γd and β. This calculation is relatively straightforward (see Appendix 3.8.1) using
quantum regression theorem, as we only need to calculate the steady state density
matrix, which can be done analytically. Since we are interested in the correlation at
zero time delay (i.e., τ = 0), no time evolution step is necessary.

Because we are interested in the photon nonlinearity produced by the scattering
off the quantum dot, we compute the height of the g(2)(0) peak using the Quantum
Regression Theorem (see 2.2). A large anti-bunching peak is a signature of the
entangled state |ee〉 + |``〉 which will produce a strong violation of the Clauser-
Horne-Shimony-Holt (CHSH) inequality.

g(2)(0) =
(Γ + 4βΓn+ γd)(Γ + 4βΓ(β + n− 1) + γd)

(Γ + βΓ(β + 4n− 2) + γd)2
(3.13)

1By bunching, we refer to a second order correlation function g(2) > 1, which characterises
two photon detection events that have occurred at a higher rate than expected compared with
uncorrelated light.
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which, in the limit of low power is

g(2)(0) =
(Γ + γd)(4(β − 1)βΓ + Γ + γd)

((β − 1)2Γ + γd) 2
(3.14)

Expanding around γd = 0 we have

g(2)(0) =
(1− 2β)2

(β − 1)4
+

2β2(2(β − 3)β + 3)γd
(β − 1)6Γ

+O
(
γd

2
)
, (3.15)

and in the limit of perfect coupling, we have

g(2)(0) =
(Γ + γd)

2

γd2
+

4(β − 1)Γ(Γ + γd)

γd2
+O

(
(β − 1)2

)
(3.16)

Eq. (3.15) clarifies the plot shown in Fig. 3.5. At γd = 0, we have a g(2)(0) that
diverges at β = 1, representing the bunching of the |ee〉 + |``〉 state. At β = 1/2,
g(2)(0) = 0, and corresponds to the antibunching |e`〉+ |`e〉 state which is composed
of single photons.
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Figure 3.5: g(2) peak as a function of β for various values of γd. At γd = 0,
we are able to use the wavefunction picture described by (3.2). Here we find that at
β = 1/2, when we have only single photon states |e`〉 + |`e〉, we see anti-bunching,
as expected. At β = 1, we see strong bunching, since we expect to recover the
two photon entangled state |ee〉 + |``〉. The introduction of dephasing produces a
reduction in the size of both the bunching peak and anti-bunching dip due to the
loss of coherence between the waveguide and scattering modes.
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Figure 3.6: g(2)(0) as a function of γd for various values of β. In the limit of
vanishing dephasing γd = 0, we return to our expected strong bunching at β = 1
and antibunching at β = 1/2. As dephasing is increased, we have more leakage
into the waveguide, and a corresponding loss of coherence, reducing the bunching
(anti-bunching).
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3.4 Bell (standard basis and optimised basis)
To quantify the amount of entanglement, we compute quantum correlations

E(φa, φb) =
G(2)(φa, φb) +G(2)(φa⊥, φb⊥)−G(2)(φa, φb⊥)−G(2)(φa⊥, φb)

G(2)(φa, φb) +G(2)(φa⊥, φb⊥) +G(2)(φa, φb⊥) +G(2)(φa⊥, φb)
(3.17)

after the interferometer, using the central Franson interference peak (see Appendix 3.8.2
for details), such that we can compute the CHSH parameter

S = |E(φa, φb) + E(φa, φb′)− E(φa′ , φb) + E(φa′ , φb′)| (3.18)

where φa⊥ and φa′ represent the orthogonal (differing by π) and diagonal phase
(differing by π/2) basis relative to φa. This is the standard basis for the CHSH
inequality. However, in performing this measurement, we have the freedom to alter
our basis, and in particular to optimise it to produce the maximum violation. Below,
we will show that for β ∼ 1, the standard basis is optimal, but for other values of
β, this is not the case. We will further show that we can saturate (or violate) S for
any value of β, and indeed violate it for almost all values of β.

We can compute an expression for the low power limit with β being the only
imperfection. In this case, we have

lim
n→0

G(2)(φ1, φ2, β)

Ω4
=

(
β2 sin

(
φ1

2

)
sin
(
φ2

2

)
+ ((β − 4)β + 2) cos

(
φ1

2

)
cos
(
φ2

2

))
2

β2Γ2

(3.19)

where we recall that Ω2 = 2βΓ2n, and n is the photon number per lifetime. Using
this G(2) (and noting that the factor β2Γ2 is divided out) we compute an expression
for S as a function of general phase angles φa, φ

′
a, φb, φ

′
b

S =
((β − 4)β + 2)β2 (sin (φb) (sin (φ

′
a) + sin (φa)) + (sin (φa)− sin (φ′

a)) sin (φ
′
b))

β(β((β − 4)β + 10)− 8) + 2
(3.20)

+ cos (φ′
a) (cos (φb)− cos (φ′

b)) + cos (φa) (cos (φ
′
b) + cos (φb)) .

If φ′
a = φa + π/2 and φ′

b = −φb, this expression reduces to

S = 2 cos(φa)

(
((β − 4)β + 2)β2 sin (φb)

β(β((β − 4)β + 10)− 8) + 2
+ cos (φb)

)
(3.21)
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We can fix φa = 0 without loss of generality and find the optimal S by setting

φb = tan−1

(
β2 (β2 − 4β + 2)

β4 − 4β3 + 10β2 − 8β + 2

)
, (3.22)

giving an expression for the optimal S in terms of β

Sopt =
2
√
2
√
β8 − 8β7 + 28β6 − 56β5 + 86β4 − 88β3 + 52β2 − 16β + 2

β4 − 4β3 + 10β2 − 8β + 2
(3.23)

Using the standard basis φa = 0, φ′
a = π/2, φb = −π/4, φb′ = π/4 we obtain the

expression

S =
2
√
2(1− 2β)2

β(β((β − 4)β + 10)− 8) + 2
(3.24)

Expanding about β = 1, we see

Sopt ≈ 2
√
2
(
1− (β − 1)4

)
+O

(
(β − 1)5

)
(3.25)

and similarly, expanding about β = 1/2, we see

Sopt ≈ 2
√
2− 128

√
2

(
β − 1

2

)2

+O

((
β − 1

2

)3
)

(3.26)

The optimal S is obtained both at β = 1 and β = 1/2, however, the series expansions
about β = 1 has a leading order term at 4th order, whereas the expansion at β = 1/2
has a second order term. A similar pattern is observed if we expand the optimal phase
angle φb

φb ≈ −π
4
+ (β − 1)4 +O

(
(β − 1)5

)
(3.27)

φb ≈
π

4
− 64

(
β − 1

2

)2

+O

((
β − 1

2

)3
)

(3.28)

Thus, although in principle an optimal violation can occur at both these values,
β = 1 is significantly more robust to variations in β. In terms of the coefficients of
(3.2), computed above, the maximum violations correspond to g(1) = 0, f(1) = 1,
where the resulting pure state is |ψ〉 = |ee〉 + |``〉 and g(1/2) = f(1/2), where the
pure state is |e`〉 + |`e〉. Note that β = 1/2 and β = 1 are universally the points at
which we can reach maximum S, i.e., this is still true if we have complex scattering
coefficients due to some detuning ∆. In Fig. 3.8, we show the optimal S depends on
∆ and β.
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Figure 3.7: CHSH parameter S as a function of β. In panel a), we plot the
numerically optimised (orange, solid) as well as the analytic expression (3.22) (black,
dashed). We also plot S with the standard basis (blue, solid). The standard basis
is optimal for large values of β, but is poor for small values. The optimal basis has
S ≥ 2 for all β. In particular at β = 1/2, we can see the signature of the maximally
entangled state |e`〉+ |`e〉. b) The optimal phase angle φb (3.22) as a function of β.
The analytic phase agrees exactly with the one found with numerical optimisation.
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Figure 3.8: Optimised CHSH parameter S as a function of ∆ and β. a)
CHSH parameter as a function of β for selected values of the detuning ∆. We can
see that the location of the maxima remain the same, regardless of the value of ∆.
b) S as a function of ∆ for the peak values β = 1 and β = 1/2. The peak at
β = 1 remains high for a much larger range of detunings than the peak at β = 1/2,
reflecting again the robustness to variations of the β = 1 peak in comparison to the
β = 1/2 peak.

32



Chapter 3 | Generation of time-energy entanglement via scattering off a quantum dot

-2 -1 0 1 2
τ (ns)

0

50

100

150

200

g
τ

(2
) (
)

Figure 3.9: Comparison between experimental data [1] and theory. a. The
coincidence counts as the phase φb is swept, for φa = 0 (red) and φa = −π/2 (blue).
The points are the data from the experiment [1], and the solid lines are the theoretical
model given by Eq. (3.19). b. The second order correlation function g(2)(τ) for the
filtered data (orange points) along with the theory (blue line). We obtain a bunching
peak with a height > 200, showing strong evidence of a single-photon linearity. c.
The CHSH parameter as a function of photon number per wavelength n. In the
low power limit, we observe a pronounced violation of the CHSH Bell inequality
S = 2.67(16) > 2 by more than four standard deviations. In b and c, we use the full
model with spectral diffusion and time jitter included.
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3.5 Filtering and experimental imperfections

3.5.1 Spectral diffusion and detector time jitter
Below, we consider two important effects relevant to modelling experimental im-
perfections of QD spectral diffusion and time jitter of the single-photon detector.
Spectral diffusion corresponds to a slow (compared to the QD lifetime) frequency
drift of the QD that can be modelled as a normal distribution of QD detunings:

PSD(∆, σSD) =
1√

2πσ2
SD

exp

(
− ∆2

2σ2
SD

)
, (3.29)

where σSD is the standard deviation of the spectral diffusion. We compute the
effect of spectral diffusion on G(2) by taking the integral over all possible detunings

G(2)(σSD, t,Γ, n, β, γd) =

∫
PSD(∆, σSD)G

(2)(∆, t,Γ, n, β, γd)d∆. (3.30)

Similarly, we consider the instrument response function (IRF) due to the time
jitter of the single-photon detector, which is modelled as a Gaussian distribution:

PIRF(t, σIRF) =
1√

2πσ2
IRF

exp

(
− t2

2σ2
IRF

)
, (3.31)

that influences the correlation function G(2) according to

G(2)(σSD, τ, σIRF,Γ, n, β, γd) =

∫
PIRF(t− τ, σIRF)G

(2)(σSD, t,Γ, n, β, γd)dt (3.32)
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Figure 3.10: The effect of spectral diffusion on the CHSH parameter S
All plots use the standard basis. a) S as a function of the photon number per
lifetime n. We set an experimentally realistic β = 0.92. At very low n the spectral
diffusion degrades the entanglement quality, whilst at higher n it is actually slightly
improved. b) S as a function of β. We set n = 0.0001 and find that again in this low
power limit, the spectral diffusion degrades the entanglement. Since we are using
the standard basis here, S increases at β = 1/2. Using an optimised basis, we would
see a suppression of S at β = 1/2, similar to what we observed in Fig. 3.8.

3.6 Filtering and the effects of dephasing
Due to imperfections not present in the perfect world of theoretical physics, it was
necessary to introduce a spectral filter in the experiment. In the experiment, we have
some laser leakage into the waveguide, coming from a combination of non-unity β,
spectral diffusion (discussed below), and dephasing. In [1], we argue that the effect
of the filter can be effectively captured by re-fitting the spectral diffusion and the
coupling rate β, whilst keeping the dephasing rate γd fixed.

This can be justified by considering the illustrative spectra of the outgoing light
presented in Fig. 3.11. As seen in the figure, the outgoing spectrum consists of a
narrow elastic peak and a broad inelastic emission. The narrow peak (see Eq. (3.38))
comes from laser leakage and vanishes in the ideal limit of vanishing imperfections
(β = 1, γd = σSD = 0 and n→ 0). Under non-perfect conditions, the central narrow
peak appears to quadratic order in the imperfection parameters (1−β, σSD/Γ, n and
γd/Γ) or through products of them. Since for typical parameters, n and γd/Γ (∼ 0.01)
are much smaller than 1 − β and σSD/Γ (∼ 0.1), the latter have a much stronger
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influence on the coherent peak. In contrast to the narrow peak, the pure dephasing
induces (via the quantum jump operator c =

√
γd/2σz) a spectrally broad inelastic

emission linear in γd/Γ (with width ∼ Γ+γd) from the QD’s excited state [52, 53] and
so does inelastic multi-photon scattering controlled by n. Upon application of the
spectral filter, the narrow peak from the laser light is strongly affected, but the broad
peak produced by pure dephasing and multi-photon scattering is largely unchanged.

The decoherence caused by dephasing can be thought of in two ways. Firstly, as
a measurement by a photon (a mechanical excitation of the waveguide) that prepares
the system in the excited state. The loss of coherence is due to the phase information
being carried away by the phonon, which is not captured in our model. We can
alternatively think of dephasing as an uncorrelated (white) noise process that shakes
the energy levels of the emitter rapidly in time. This destroys phase coherence by
producing a rapidly oscillating, random phase. The average of this process produces
an exponential decay in the off diagonal elements of the density matrix. Spectral
diffusion similarly produces decoherence by oscillations of the energy levels, but
this noise is correlated and occurs at much slower time-scales, so its effects appear
primarily in the spectrum at small frequencies around ω = 0. The influence of the
filter can thus be effectively captured by adjusting β and the spectral diffusion σSD
(see Fig. 3.11).

Below, we show how to compute the spectrum used to justify this conclusion and
discuss the justification with the help of our analytics.

3.6.1 Computation of spectrum
The goal is to find an expression for 〈a†(ω′)a(ω)〉 /n, the emission spectrum for the
system normalised by the photon number per lifetime n. This is the Fourier transform
of 〈a†(t+ τ)a(t)〉 /n. Since we compute the time dynamics (i.e., we propagate aρ from
t→ t+τ) with a matrix exponential eM|t| via Eq. (3.49), we can compute the Fourier
transform at this step. We write

1√
2π

∫ ∞

−∞
eMMM |t|eiωtdt =

1√
2π

∫ ∞

0

eMt+iωtdt+
1√
2π

∫ 0

−∞
eMt+iωtdt (3.33)

=
1√
2π

[
(−M+ iω)−1 − (M+ iω)−1

]
(3.34)

where (·)−1 is the matrix inverse and iω is understood to be multiplied by the identity
matrix with the same dimension as M. We can now compute

aρρρ(ω) =
1√
2π

[
(−M+ iω)−1 − (M+ iω)−1

]
aρssρssρss (3.35)
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Figure 3.11: Illustrative spectra 〈a(ω)a†(ω′)〉 with various imperfections. Ex-
cept when otherwise stated, we use the values n = 0.0024, β = 1, σSD = 0 and
γd = 0. (a) Spectra where the spectral diffusion σSD is gradually increased. The
narrow peak at ω = 0 is strongly affected, whilst the broad peak remains unchanged.
(b) Spectra for various values of n. Both the central narrow peak and the broader
peak are scaled up with increasing n. (c) Spectra with decreasing β. As with spectral
diffusion, the dominant contribution is to increase the height of the central narrow
peak, whilst the broader peak is relatively unchanged. (d) Spectra with gradually
increasing dephasing rate γd. The dominant effect is to increase and broaden the
wide peak. The central narrow peak remains relatively unaffected. Note that in
all plots, the width of the central peak has been scaled by a factor of 100 whilst
conserving the total area so that the effect can be seen more clearly.

where the boldface characters, e.g., ρρρ should be understood as the vectorised version
of the same operator ρ. In this case, ρ is a 2 × 2 density matrix, but ρρρ is a vector
with length 4. We obtain, in the low power limit,

lim
n→0

Tr(aρ(ω)a†)

n
=

4
√

2
π
β2Γ2γd

(Γ + 2i∆+ 2γd) (4ω2 + (Γ− 2i∆+ 2γd)2)
, (3.36)

where now the unbolded operator aρ(ω) represents the reshaping of the vector aρaρaρ(ω)
back into density matrix form. This method computes the broad part of the spectrum
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dominated by dephasing but misses the constant term at ω = 0 that produces a
narrow peak with the width of the laser light.

This constant value is the value 〈a†a〉 at t → ∞. Such expectation values factor
at long times (see 2.2.2.1), so we may compute

lim
t→∞

Tr(aρ(t)a†)

n
=

1

n
〈a〉 〈a†〉 (3.37)

=
Γ
(
16∆4+4∆2

(
Γ2(β(β+8n−2)+2)+4Γγd(β(4n−1)+2)+8γd

2
)
+(Γ+2γd)

2(Γ+βΓ(4n−1)+2γd)
2
)

(
4∆2+(Γ+2γd)(Γ+4βΓn+2γd)

)
2

(3.38)

To incorporate this narrow peak into the spectrum, we multiply by a Lorentzian with
area 1 and with γ = Γlaser, i.e., the full spectrum is given by

〈a†(ω)a(ω)〉
n

=
Tr(aρ(ω)a†)

n
+

1

n
〈a〉 〈a†〉 1

π

(
Γlaser

ω2 + Γ2
laser

)
︸ ︷︷ ︸
normalised Lorenzian

(3.39)

Taking the limit of the narrow peak n→ 0, we obtain

lim
n→0

1

n
〈a〉 〈a†〉 = Γ (4∆2 + ((β − 1)Γ− 2γd)

2)

4∆2 + (Γ + 2γd)2
(3.40)

Since γd/Γ � 1, we can see that the term (β−1)Γ−2γd = Γ
(
β − 1− 2γd

Γ

)
≈ (β−1)Γ,

i.e., the dephasing plays a minimal role in the narrow peak and will not be strongly
influenced by the spectral filtering.

3.7 Conclusions and outlook
We have analysed the scattering off a quantum dot in order to investigate the single-
photon nonlinearity present in this system. We made use of this nonlinearity to
experimentally generate time-energy entanglement, and measured this entanglement
by violating a CHSH inequality. We theoretically investigated the underlying physics
with a simplified model in the state picture, where we were able to compute the one-
and two-photon scattering components explicitly using the full solution to the sys-
tem’s master equation. We showed that reducing the coupling to the waveguide may
enhance the measured CHSH violation, since there is another perfectly entangled
state that appears when β = 1/2, alongside the state that appears at β = 1. We
validated these findings by using the full model to compute the CHSH S parameter,
and found that the standard basis only produces a violation for β = 1. We found
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an analytic formula for the optimal basis, and showed that it agrees with numerical
optimisation for all values of β. We thus found that the CHSH inequality can be at
least saturated for all values of β, and is violated for almost all values. We further
explored the origin of this violation by computing the second order correlation func-
tion g(2)(0). When dephasing is zero, we can see strong signatures of anti-bunching
(when β = 1/2 and we have the single photon entangled state) and bunching (when
β = 1 and we have the two-photon entangled state). We investigated the effects
of spectral diffusion and detector time jitter, as these are two imperfections that
are of crucial importance to modelling the experiment. By computing the emission
spectrum 〈a†(ω′)a(ω)〉, we were able to reason that the spectral filter used in the
experiment would affect the effective spectral diffusion and coupling rate β, whilst
keeping the dephasing rate fixed. We do not produce a full model of the filter, only
try to reproduce the effects in our fitting. A possible theoretical step that would give
some interesting insights is to filter the spectrum ‘by hand’ through adding some
transformation T (ω) that would simulate the filter by suppressing the central peak.
It would then in principle be possible to fit a new β analytically.

3.8 Appendix

3.8.1 Quantum dot dynamics
The QD is described by the Lindblad master equation for the system which reads
(~ = 1)

ρ̇ = −i [H, ρ] + Ldecay[ρ] + Ldeph[ρ]. (3.41)

Here, the unitary part of the time evolution is given by the Hamiltonian

H =
Ω

2
σx +∆σee, (3.42)

which accounts for the driving of the QD with Rabi frequency Ω and detuning ∆.
The Rabi frequency Ω = Ω(t) may in general be time-dependent, σx is the usual
Pauli matrix and σij = |i〉 〈j|. The decay Liouvillian

Ldecay[ρ] = Γ

[
σ−ρσ+ − 1

2
{σ+σ−, ρ}

]
(3.43)
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models the total decay of the emitter Γ = γ+γs into both the waveguide mode γ and
other modes γs (referred to as side modes). We additionally include a Liouvillian
modelling dephasing

Ldeph[ρ] =
γd
2
[σzρσz − ρ] , (3.44)

where γd is the dephasing rate and σz, σ+ and σ− are the Pauli operators. The ratio
of the waveguide decay to the total decay defines the β-factor β = γ

Γ
= γ

γ+γs
. The

transmitted field operator entering the G(2) calculations is a = ainI −
√
βΓ/2σge,

where the input field ain is a coherent state of amplitude α(t), and mean photon flux
|α(t)|2. The coherent field is related to the Rabi frequency by Ω/2 =

√
βΓ/2α(t)

and thus the mean photon number per lifetime is n = |α|2
Γ

= Ω2

2βΓ2 . In matrix form,
the master equation reads

ρ̇ =

(
−Γρee +

1
2
iΩ(ρeg − ρge)

1
2
iΩ(ρee − ρgg)− 1

2
ρeg(Γ + 2i∆+ 2γd)

−1
2
ρge(Γ− 2i∆+ 2γd)− 1

2
iΩ(ρee − ρgg) Γρee − 1

2
iΩ(ρeg − ρge)

)
(3.45)

The QD is continuously driven by a laser field, eventually reaching an equilibrium
state described by the steady state density matrix ρss. To find ρss, we write the
master equation in the form

ρ̇ρρ = Mρρρ, (3.46)

where

M =


−Γ iΩ

2
− iΩ

2
0

iΩ
2

−Γ
2
− i∆− γd 0 − iΩ

2

− iΩ
2

0 −Γ
2
+ i∆− γd

iΩ
2

Γ − iΩ
2

iΩ
2

0

 (3.47)

is the coefficient matrix and

ρρρ = (ρee, ρeg, ρge, ρgg)
T . (3.48)
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The master equation has a general time-dependent solution in terms of the matrix
exponential

ρρρ(t) = exp (Mt)ρρρ(0). (3.49)

Taking t → ∞ leads to an expression for ρss. Alternatively, we can find the steady
state (obtained when ρ̇ρρ = 0) by taking the null space of M and normalizing it so
that it has unit trace, which gives

ρss =

 Ω2(Γ+2γd)
Γ(4∆2+(Γ+2γd)2)+2Ω2(Γ+2γd)

− iΓΩ(Γ−2i∆+2γd)
Γ(4∆2+(Γ+2γd)2)+2Ω2(Γ+2γd)

iΓΩ(Γ+2i∆+2γd)
Γ(4∆2+(Γ+2γd)2)+2Ω2(Γ+2γd)

1
Ω2(Γ+2γd)

Γ
(
4∆2+(Γ+2γd)

2
)
+Ω2(Γ+2γd)

+1

 . (3.50)

3.8.2 Interferometer transformation
Using an input-output formalism, we find the field that comes out of the interferom-
eters a and b to be

â
(a)
out =

1√
2

(
ain(t) + ain(t− L/c)e−iφa

)
, (3.51)

â
(b)
out =

1√
2

(
ain(t) + ain(t− L/c)e−iφb

)
, (3.52)

where a phase φa,b and a time delay L/c is picked up when travelling through the long
arm of the interferometer with length difference L and speed of light c. Here ain is the
state that enters the interferometer, i.e., the field from the QD. The (unnormalised)
second-order correlation function after the interferometer

G(2)(τ) = Tr
(
â(a)(t+ τ)â(b)(t)ρ̂â(b)(t)†â(a)(t+ τ)†

)
, (3.53)

can be calculated using the quantum regression theorem, so that G(2)(τ) inherits
its functional dependence on ∆,Γ, etc from the density matrix, ρ. We assume that
t, τ, 1

Γ
� L/c, so that correlations between time bins vanish, implying thatG(2) can be

factored into traces containing each separate time bin. There are peaks that appear
experimentally when performing this measurement, corresponding to the different
possible arrival times of the photons on the detectors. For the centre peak (where
t′ = t+ τ), the factored G(2) is
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G(2)(τ) = 2Tr
(
a (t′) a(t)ρa(t)†a (t′)

†
)
+ 2Tr

(
aρssa

†)2
+ e−i(φa+φb)Tr (a (t′) a(t)ρ)Tr

(
ρa(t)†a (t′)

†
)

+ e−i(φa−φb)Tr
(
a (t′) ρa(t)†

)
Tr
(
a(t)ρa (t′)

†
)

+ e−iφa

[
Tr (aρss)Tr

(
a(t)ρa(t)†a (t′)

†
)
+ Tr

(
a (t′) a(t)ρa(t)†

)
Tr
(
ρssa

†)]
+ ei(φa−φb)Tr

(
a(t′)ρa(t)†

)
Tr
(
a(t)ρa(t′)†

)
+ e−iφb

[
Tr
(
a(t′)ρa(t)†a(t′)†

)
Tr (aρss) + Tr

(
a(t′)a(t)ρa(t)†

)
Tr
(
ρssa

†)]
+ ei(φ1+φb)Tr (a(t′)a(t)ρ)Tr

(
ρa(t)†a(t′)†

)
+ eiφb

[
Tr
(
a(t′)a(t)ρa(t′)†

)
Tr
(
ρssa

†)+ Tr
(
a(t′)ρa(t)†a(t′)†

)
Tr (aρss)

]
+ eiφa

[
Tr
(
a(t′)a(t)ρa(t)†

)
Tr
(
ρssa

†)+ Tr
(
a(t)ρa(t)†a(t′)†

)
Tr (aρss)

]
.

(3.54)

When τ = ±L/c+ ε we obtain non-central peaks. We define t′ = t+ ε. The factored
G(2)(τ) for the non-central peaks is then

G(2)(τ) = Tr
(
a (t′) a(t)ρa(t)†a (t′)

†
)
+ 3Tr

(
aρssa

†)2
+ ei(φa−φb)Tr (aρss)2 Tr

(
ρa(t)†a(t′)†

)
+ ei(φa+φb)Tr (aρss)Tr

(
a(t)ρa(t′)†

)
Tr
(
ρssa

†)
+ eiφa

[
Tr (a(t′)ρ)Tr

(
a(t)ρa(t)†a(t′)†

)
+ Tr (aρss)Tr (ρssa)Tr

(
a(t)ρa(t)†

)]
+ e−i(φa+φb)Tr

(
a(t′)ρa(t)†

)
Tr (a(t)ρss)Tr

(
ρssa

†)
+ e−iφb

[
Tr
(
a(t′)ρa(t)†a(t′)†

)
Tr (a(t)ρ) + Tr (a(t′)ρa(t′))Tr (aρss)Tr

(
ρssa

†)]
+ e−i(φa−φb)Tr (a(t′)a(t)ρ)Tr

(
ρssa

†)2
+ eiφb

[
Tr
(
a(t′)a(t)ρa(t′)†

)
Tr
(
ρssa

†)+ Tr
(
a(t′)ρa(t′)†
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(3.55)
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Chapter 4

Collective super- and subradiance
from coupled quantum dots

This chapter will form the basis of a theory paper accompanying our recent experi-
mental work [2]. The experimental work was primarily carried out by Alexey Tiranov,
Vasiliki Angelopoulou and Cornelis Jacobus van Diepen. I developed the theory,
along with Björn Schrinski and Anders Søndberg Sørensen. The figures Fig. 4.5,
Fig. 4.6 and Fig. 4.12 are modifications of ones produced for the work [2], originally
produced by A.T, V.A and C.J.vD using their experimental data and code containing
the theory simulation that I provided.
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In the previous chapter, we looked at producing a nonlinearity at the level of
single photons. We were able to show theoretically that a quantum dot embedded
in a photonic crystal waveguide would reflect single photons and allow two photon
states to pass through. This is an important step to realising a building block that
could be used for photonic information processing, e.g., a single photon gate.

Now, we add an emitter, such that N = 2. Going from N = 1 to N > 1
represents a drastic change in the available physics: with more than one emitter,
an input field can be absorbed by one emitter, re-excited and then absorbed by
another emitter, leading to the formation of collective emitter states. Due to the co-
herence between these emitted fields, various collective modes can result, including
superradiant (symmetric) and subradiant (antisymmetric) modes [54, 55]. The non-
linearity present at N = 1 in principle allows for quantum information processing.
It is then of interest to couple two quantum emitters to allow for the engineering
of, e.g., multi-photon gates between emitters. In principle, dipole-dipole interactions
between emitters would produce the appropriate coupling, but a major challenge is
that these interactions decay strongly with distance [56], meaning that engineering
using dipole-dipole interactions is challenging in real experiments that have imper-
fections. By using a waveguide, the dipole-dipole interactions between quantum
dots can be enhanced by collective effects, meaning that in principle it is possible
to couple emitters more distant than the typical sub-wavelength scales required for
dipole-dipole interactions. The first natural question is how one can tell if there is
coupling between two emitters.

For this, we look to the diagram in Fig 4.1. We see in panel a) the two emitters
in their uncoupled basis, and in panel b) in the coupled basis. A signature feature
of the coupled basis is super- and subradiant emission, where coherent cancellation
of the decay from |ee〉 → |−〉 produces a so-called superradiant decay to the state
|+〉 at an enhanced decay rate Γ+. As we will show using an effective Hamiltonian
approach, without imperfections, this superradiant decay rate is 2Γ (where Γ is the
ordinary decay rate of the QD), whereas the subradiant state |−〉 = |eg〉 − |ge〉 is
completely dark, as the decay rate from this state is Γ− = 0.

We will now show how to obtain the super- and subradiant decay rates, and how
these rates would be visible in an experiment. We use the master equation formalism
detailed in the introduction chapter, taking the effective Hamiltonian with N = 2

Heff =
2∑

i,j=1

(
Jij − i

Γij

2

)
σ+
j σ

−
i −

2∑
j

(
i
γsj
2

+ ∆j

)
σ+
j σ

−
j . (4.1)

We will first consider the case where we have only one excitation in the system, and
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Figure 4.1: Super- and subradiance produced by emitter-emitter coupling.
a) Each of the quantum dots j is modelled as a two level emitter with ground state
|gj〉 and excited state |ej〉 with decay raters Γj. The two levels are separated in energy
by a detuning ∆. b) In the coupled basis, the superradiant state |+〉 = |eg〉 + |ge〉
radiates with higher rate Γ+ compared with the single emitter decay rates due to
coherent cancellation of the decay to the state |−〉 = |eg〉 − |ge〉 which occurs with
a rate Γ− < Γj.

work in the single excitation subspace with

Heff =

(
∆1 − iΓ1

2
−1

2
ieiφ

√
β1β2Γ1Γ2

−1
2
ieiφ

√
β1β2Γ1Γ2 ∆2 − iΓ2

2

)
(4.2)

Since we are interested in the decay rates of the two emitters, we are interested
in the eigenvalues, which are, assuming the two emitters have the same decay rate
Γ1 = Γ2 = Γ and coupling β1 = β2 = β

E± =
1

2

(
−iΓ +∆1 +∆2 ± i

√
β2Γ2e2iφ −∆2

)
, (4.3)

where ∆ = ∆2 − ∆1. The emitter decay rate is given by Γ± = −2Im(E±), so we
have the super and subradiant rates as

Γ± = Γ± Re
(√

β2Γ2e2iφ −∆2
)

(4.4)

When we have purely dissipative coupling, φ = Nπ, unity β and are on resonance
∆ = 0, we obtain the result Γ+ = 2Γ and Γ− = 0, i.e., the superradiant decay occurs
at twice the rate compared to the single emitter decay rate Γ and the subradiant
state has an infinite lifetime since its decay rate is zero. The structure of these decay
rates allows us to understand much of what is occurring dynamically in the system,
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Figure 4.2: Super- and subradiant decay rates Γ± as a function ∆/Γ. We
take φ = 0 and β = 1 as a starting point for each plot, and the colour gradients show
variations in a) β from 1 (solid lines) to 0 (faint lines) and b), φ from 0 (solid lines)
to π/2, (faint lines).

and how changes to the system parameters will affect the system behaviour. As can
be seen in Fig 4.2, these rates form circles in the plane Γ±,∆. As β decreases from
1, the radius of this circle shrinks, until Γ+ = Γ− = Γ and the effects of super- and
subradiance is gone. Similarly, as we sweep the phase φ from 0 to π/2, the circles
deform and elongate, eventually reaching the same Γ± = 1 state with no super- or
subradiance. In the case of dissipative coupling, we also lose the distinction between
super- and subradiant decays as soon as we are in the overdamped region ∆ > Γ,
where Γ+ = Γ− = Γ. Even in an ostensibly simple system, the coupling phase φ
and detuning ∆ both introduce rich physics which merits exploration. However, in a
realistic system, we expect imperfections, so a natural question is exactly how much
these imperfections affect the decay dynamics.

We will attempt to answer this question by investigating both the population of
each state, as well as the intensity caused by the decays that might be measured in a
realistic experiment. Assuming that the initial population is |ψ0〉 = (0, 1)T , i.e., the
second dot is initially excited, the population density can be computed with

|ψ〉 = exp (−iHefft) |ψ0〉 (4.5)
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Figure 4.3: Population of the super- and subradiant state |+〉 and |−〉 as a
function of time. The gradients show variations in a) ∆ from 0 (solid lines) to 2/Γ
(faint lines) and b), φ from 0 (solid lines) to π/2, (faint lines).

and the left- and right-going fields incident on the detectors have the expressions

EL = −i
√
β1Γ1σ

−
1√

2
− i

eiφ
√
β2Γ2σ

−
2√

2
(4.6)

ER = −ie
iφ
√
β1Γ1σ

−
1√

2
− i

√
β2Γ2σ

−
2√

2
, (4.7)

with the phase φ = k0d and where d is the distance between the emitters. The
intensity at the left/right ports can thus be computed with

IL/R = 〈E†
L/REL/R〉 (4.8)

By computing the initial intensity IL(t = 0) = IR(t = 0) = β2Γ2

2
which represents half

the decay from the excited dot going to each detector, we can see that the waveguide
in our model is non-chiral, i.e., it does not have a preferred propagation direction.

In Fig. 4.3 we can see the effects of the structures in Fig. 4.2 on the populations of
the super- and subradiant states. For ∆/Γ = 0 (opaque line), we have a subradiant
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Figure 4.4: Intensities at the left and right detectors IL/R for the initial state
|eg〉. We show two different regimes, ∆ < Γ, the underdamped regime where the
decay is dominant over the population transfer due to the detuning. Here we have the
strongest signatures of super- and subradiance. We also show the overdamped regime
∆ > Γ, where now the dominant rate is the cycling from |eg〉 ↔ |ge〉. By altering
the opacity of the lines from φ = 0 (opaque line) to φ = π/2 (transparent line), we
can see how changing the phase between the dots alters the observed dynamics.

population remaining at 0.5 without decay, whilst the superradiant decay causes the
population to rapidly decrease to zero. As ∆ is increased from resonance, we see the
resulting oscillations between the super- and subradiant states, and the population
oscillates between the two decay rates Γ+ and Γ−. As the phase φ is varied from
0 (opaque lines) we can see the result of the circle gradually broadening out, with
the two decay rates becoming equal, the populations simply decay at the same rate,
mimicking the uncoupled system.

In Fig. 4.4 we show the effects of these changing populations on the intensity. In
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the underdamped regime ∆ < Γ, the decay dynamics are dominant over the coherent
population transfer due to the detuning. When the coupling phase φ = Nπ the
measured value at each detector is identical, due to the symmetry in the fields EL and
ER. This symmetry was present in the experimental data shown in Fig. 4.6, where
the left and right ports showed symmetric intensities, consistent with dissipative
coupling φ = Nπ. The data are well described by the theoretical model, shown in
panel c).

Figure 4.5: Experimental intensity measurements of pairs of quantum dots
in a photonic crystal waveguide, fitted with the theory described above. The
resonant case, shown in yellow, shows the signature of super- and subradiance, with
an early superradiant decay occurring at a rate faster than the off resonant decay
rate, followed by a slower subradiant decay. Experimentally, a short π pulse is used
to excite one of the dots, and this pulse is also modelled in the theory. Data has
been reproduced from our recent experimental work [2]

Eq. (4.4) and Fig. 4.2 imply that we will see the strongest signatures of super- and
subradiance when the coupling phase φ = 0 and when we are on resonance ∆ = 0.
In Fig. 4.5, we show experimental data from the work [2], fitted with the full theory
including dephasing and spectral diffusion. On resonance, we see a clear subradiant
and superradiant decay which is well described by the theory.
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Figure 4.6: Experimental intensity measurements of a pair of coupled quan-
tum dots as a function of time and detuning. Experimental data from the left
port is shown in panel a), whilst data from the right port is shown in panel b). The
corresponding curve predicted by the theory is shown below in panel c). The sym-
metric readouts from left and right ports is consistent with a coupling phase φ = Nπ,
i.e., we have dissipative coupling.

4.1 Driving and multiple excitations
We have until this point considered a situation where we, as theorists are often wont
to do, simply assume that we can perform magic tricks with a reckless disregard
to the significantly more complicated reality of actual experiments. Here, we will
investigate the more realistic scenario where our dots must be excited by driving
them with laser light. Indeed, this is the entire point of the coherent field Eq. (2.13)
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introduced in Chapter 2. One of the important features in [2] was the ability to drive,
from the top (i.e., not through the waveguide) a single dot at a time. Let us now see
what is possible with this fine degree of control over our system. Firstly, it should be
noted that it is no longer sufficient to work in the single-excitation sub-space for a
full description of our system. Especially when we have long pulses or continuously
shine light on our dots, there is a high probability of multiple excitation. In this
case, we must solve the full density matrix using the master equation that we can
recall from Chapter 2

ρ̇ = Ltot[ρ] = −i [H, ρ] + Lcoup[ρ] + Ldecay[ρ] + Ldeph[ρ]. (4.9)

Since we now have multiple excitations, we will also use the second order correlation
function g(2)(τ) to quantify our dynamics.

When we drive a single dot, we populate both the |+〉 and |−〉 states and can in
principle drive from either of them to the state |ee〉. However, since the superradiant
state decays with rate Γ+ > Γ−, the coupling to |+〉 is effectively suppressed. Thus
the dominant pathway is circular (see Fig. 4.7) |gg〉 → |−〉 → |ee〉 → |+〉 → |gg〉.
This decay pathway produces bunching since once the photon decays from |ee〉, the

Figure 4.7: Resonant driving of a single quantum dot. a) One of the dots
is resonantly driven with Rabi frequency Ω1. b) The effective drive (purple, thick
arrows) follows a circular path in the coupled basis due to the difference in decay
rate Γ+ > Γ−. If Ω1 � Γ+, then the |ee〉 state will become saturated, leading to a
more pronounced bunching peak.

subradiant state decays with probability P (t) = e−Γ+t, which is strongly peaked at
t = 0. Thus, we expect that g(2)(τ) has a contribution that has a bunching with
a characteristic timescale that goes as the inverse of the superradiant decay rate
tsuper ∼ 1/Γ+.

51



Chapter 4 | Collective super- and subradiance from coupled quantum dots

However, there is another, broader feature that can appear in g(2)(τ) stemming
from imperfections in the subradiant state. This state can decay with a decay time
that goes as Γsub ∼ 1/Γ− which is longer than the timescale of the superradiant
decay. Since there is always exactly one photon in this process, it will be anti-
bunched. Thus, there are two features that can be detected in g(2)(τ): one narrow
bunching peak and a broader antibunching dip that correspond to the super- and
subradiant states, respectively. These features can be seen in Fig. 4.8, where in
panel a), we can see both the narrow bunching peak, and the broader anti-bunching
dip. In panel b) we can see how the phase φ affects whether we have bunching or
anti-bunching for our coincidences.
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Figure 4.8: Second order correlation function for a continuously driven
single dot. In a) we show g(2)(τ) and in b) we show how the bunching peak g(2)(0)
decays as φ is swept between 0 and π/2.

4.1.1 The importance of coherence
If we perform the same experiment where we off resonantly drive one dot whilst
sweeping the detuning, we find something rather striking: g(2)(0) actually increases.

We can understand this by considering the populations in perturbation theory
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X

Figure 4.9: Off resonant driving of a single quantum dot a) Our drive is off
resonance (detuning ∆) with the target dot whilst on resonance with the other. b)
Due to coherent cancellation of the single-photon decays, the bunching of this state
increases with when the detuning ∆ is increased (see Fig. 4.10).

(to first order in Ω)
˙(c1
c2

)
= Heff

(
c1
c2

)
− i

2

(
Ω1

Ω2

)
(4.10)

In steady state, we have the solutions(
c1
c2

)
=
i

2
H−1

eff

(
Ω1

Ω2

)
(4.11)

When we drive only the detuned dot, i.e., Ω1 = 0, we have the amplitudes(
c1
c2

)
=

( iΓ2Ω2

2
√
Γ1Γ2∆

− iΩ2

2∆

)
(4.12)

and when Γ1 = Γ2 = Γ, the amplitudes have the same magnitude but opposite sign,(
c1
c2

)
=

(
iΩ2

2∆

− iΩ2

2∆

)
(4.13)

Because of this relative phase, the amplitude of the one photon decay processes cancel
destructively, leaving only two-photon decay, which produces a large bunching effect.
This effect can happen only when the excitation exchange happens coherently, and
as such we expect it not to happen for e.g., dephasing, which produces an incoherent
evolution between super- and subradiant states. Indeed, in Fig. 4.10b), we see the
decay of the bunching peak g(2)(0) as a function of γd.
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Figure 4.10: Bunching peak g(2)(0) as a function of detuning and dephasing.
a) Due to coherent cancellation, the bunching peak increases as ∆2 is swept. b) Since
dephasing is incoherent, no such cancellation occurs, and the single-photon decays
begin to dominate, causing anti-bunching.

4.1.2 Multiple driving
We now allow for the driving of both the dots simultaneously. The introduction of
two drives introduces the possibility for new physics: a relative phase between the
drives. By choosing the phase of the drive, we can deterministically populate either
the super- or subradiant states. In Fig. 4.11, we see the effect of sweeping the driving
phase between θ = 0 and θ = π. When the population is in the subradiant state,
the decay rate is low, and so the probability for multiple excitation to the |ee〉 state
is high. This means that at θ = π, we see bunching. The superradiant state, on
the other hand, decays quickly, and the probability for multiple excitation is low.
Instead, the single-excitation state decays, displaying the anti-bunching effect that
we see in Fig. 4.11b). We can use the same perturbation theory as in (4.10), with a
driving phase eiθ on one of the dots, to calculate the approximate amplitudes of the
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Figure 4.11: Sweeping the driving phase for multiple driving. Resonant
driving of both dots with Ω1 = Ω2 = Γ/2, whilst sweeping the driving phase θ. a)
The driving phase allows us to excite either the super- (θ = 0) or subradiant (θ = π)
states, causing a corresponding anti-bunching or bunching. b) g(2)(0) for θ ∈ [0, π].
Since the superradiant state decays quickly, the dots do not have the chance to reach
the |ee〉 state, so at θ = 0, we see anti-bunching. The subradiant state, on the other
hand, decays slowly, allowing for multiple excitation to the |ee〉 state which decays
with bunching.

super- and subradiant states, obtaining the expressions

csuper =

(
1 + eiθ

)
Ω

2
√
2(Γ + i∆)

(4.14)

csub =
i
(
−1 + eiθ

)
Ω

2
√
2∆

(4.15)

where here we have set Ω1 = Ω2 = Ω, and Γ1 = Γ2 = Γ. Here we can see that at
θ = 0, the coefficient of the subradiant state csub ∝ 1− eiθ = 0. Similarly, at θ = π,
the coefficient of the superradiant state csuper ∝ 1 + eiθ = 0.
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a b

c d

Figure 4.12: 2D lifetime measurements sweeping θ. a. The theory and corre-
sponding experimental data b.. The dots are simultaneously excited with a phase
θ = −π/2 determined from the theoretical fit. c. Trace of the normalised intensity
with different detunings. With a positive detuning ∆ > 0, we excite into the su-
perradiant state, as can be seen by the initial large counts, followed by a coherent
oscillation to the subradiant state, characterised by a lowering of the count rate. The
two detuned states oscillate out of phase with each other, as with a negative detuning
∆ < 0, we excite into the subradiant state. The data are well explained by the theory
(solid lines). d. Trace along the detuning axis, taken at an early (0.07ns) and later
(0.4ns) time. For t = 0.07ns, we see the initial excitation into either superradiant
(∆ < 0) or subradiant (∆ > 0) states. At the later time t = 0.4ns, we can see the
effect of the coherent oscillations between the super- and subradiant states.
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Figure 4.13: Populations of multiple driving. a. The steady state populations of
the super- and subradiant states as a function of the driving phase θ, calculated using
the perturbation theory (4.10). b. The populations using the full pulsed theory for
the experimental run shown in Fig. 4.12 as a function of detuning ∆ and c. time.
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4.2 Conclusions and outlook
The coupling of emitters has been a long-standing goal that will open the door to
many opportunities, including the generation of cluster states, photon-photon gates
and the exploration of non-equilibrium many-body physics. In this chapter, we ex-
amined in more detail the theory that accompanied our recent experimental work
that realised this milestone [2]. We began by examining the heart of the theoreti-
cal analysis, the effective Hamiltonian, from which many insights could be gained.
Firstly, we solved the dynamics in the single-excitation subspace, finding expressions
for the super- and subradiant decay rates. We showed how these decay rates affected
the decay dynamics, in both population, and at the detectors. We investigated the
effects of the introduction of detuning ∆ finite coupling to the waveguide β and
the phase between the quantum dots φ, and detailed two important regimes for the
dynamics, the underdamped ∆ < Γ and the overdamped ∆ > Γ. We found that
the experiment, which uses pulses for excitation, is well-described by this simple
model, which agreed also with the full model that included the excitation pulse. By
introducing driving of a single dot, we introduced new physics: the ability to have
multiple excitations in the system at once. Here, we looked at the correlation func-
tion g(2)(τ) to quantify the effects of the coupling when both emitters were excited.
We also investigated multiple driving, finding that by altering the driving phase,
it is possible to excite into either the super- or subradiant states. Along with our
effective Hamiltonian description giving analytic insights into the behaviour of the
rich physics in this system, our full model, including driving pulses, was a good fit to
the experimental data. In principle, the introduction of driving pulses adds another
degree of freedom that is experimentally and theoretically interesting, particularly
in the region between the short pulse and long pulse (continuous wave) limits. Our
model and accompanying code also allows for the inclusion of driving through the
waveguide, where the detector field is modified to include the driving coherent light
field. Again, there are in principle some interesting effects to be explored here, in-
cluding a strong asymmetry between left and right detector intensities due to the
presence of the input light field. The investigation of these effects is beyond the scope
of this work, but an interested reader is welcome to explore for themselves with the
accompanying code.
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Chapter 5

Cooperative sensing with
impurities in a two-dimensional
subwavelength array

The following is an unpublished manuscript composed of work that was primarily
carried out during my external stay at Harvard University, in the group of Susanne
F. Yelin. This work was carried out in collaboration with Stefan Ostermann, who
produced the Figure 5.4, the appendix section 5.6, and additionally contributed to
proofreading and editing of the manuscript, along with Prof. Yelin.
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Abstract
Quantum sensing plays a vital role in future technologies. Here, we propose a versa-
tile protocol based on two dissipatively coupled quantum emitters for highly sensitive
sensing applications. Our approach, compatible with existing platforms, leverages
the strong frequency dependence of efficient population transfer between distant
emitters and local readout. This allows the detection of minute relative frequency
shifts in the emitters’ resonance frequencies. We analytically estimate achievable
sensitivities as well as the dependence on various system parameters. The proposed
protocol is robust against various environmental factors and perturbations, which
enhances its applicability in real-world scenarios.

5.1 Introduction
Efficient light-matter interfaces are a core constituent of future quantum technolo-
gies [57]. However, establishing strong coupling between light and matter is chal-
lenging due to the small interaction cross-section between matter and single pho-
tons, which is in general proportional to the photon’s wavelength squared [56]. To
overcome this challenge, various platforms which alter the radiative environment by
introducing dielectric media near quantum emitters have been developed over the
past decade. Besides enhancing the coupling between light and matter on the single
photon level, these setups also enable long-range couplings between distant emitters
and modified emitter decay rates.

Prominent examples of such platforms are quantum emitters, such as quantum
dots [22], nano-particles [58, 59], or atoms coupled to cavities, nano-photonic waveg-
uides [60], photonic band-gap materials [61], or other dielectric structures, like atomic
lattices with subwavelength spacing [62, 63, 64]. All these platforms offer a wide range
of applications, including the generation of super- and subradiant states [65, 66, 2], as
well as the generation of non-classical states of light, quantum simulation, quantum
information processing, and sensing.

In this Letter we propose a versatile protocol to exploit two dissipatively coupled
quantum emitters for sensing applications. The utilization of quantum platforms
for quantum sensing capitalizes on a crucial feature of quantum systems: their sus-
ceptibility to external disturbances. While these effects are detrimental to quantum
cryptography and quantum computing, they present an opportunity for highly sen-
sitive measurements of electric and magnetic fields [67], time and frequency [68],
rotations [69], temperature, and pressure [70, 71]. In sensors based on large dense
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ensembles of emitters, cooperative effects result in systematic errors of atom based
sensing protocols due to induced shifts, dephasing, and decays [72, 73, 74].

Our approach leverages the strong frequency dependence of the population trans-
fer between distant quantum emitters and local population readout, enabling the
measurement of minute frequency shifts. While the scheme is compatible with a
variety of state-of-the-art platforms that allow coherent dissipative coupling of emit-
ters, the discussion below is based on a particular setup of impurities embedded
in a two-dimensional subwavelength atom array [75]. We show that the presented
approach is highly sensitive while remaining robust to noise.

Model.—Pairs of cooperatively coupled quantum emitters (labelled s and q as
in Fig. 5.1a) with resonance frequencies ωs,q = 2πc/λs,q0 (λs,q0 denotes the transition
wavelength of emitters s and q) and decay rates γs,q can in general be described by
the effective non-Hermitian Hamiltonian

Heff =

(
Ωs − iΓs/2

√
γsγqκ√

γsγqκ Ωq − iΓq/2

)
, (5.1)

where the effective frequencies Ωs,q, effective decay rates Γs,q, and coupling strength
κ are determined by the specific system used to realize the Hamiltonian.

For the remainder of this work we focus on a particular configuration where the
Hamiltonian (5.1) is realised by coupling two impurities to a large two-dimensional
atomic array with sub-wavelength lattice spacing, i. e., , a < λs,q0 . The atoms interact
via light induced dipole-dipole interactions. The coherent and dissipative interaction
strengths between the atoms are determined via the real- and imaginary-part of the
Green’s tensor for a point dipole in free space (see Supplementary Information 5.2).
In general, the system dynamics of such a dissipative quantum system has to be
modelled in the master equation formalism. In the single-excitation subspace, and
without external driving, the quantum jump terms in the master equation can be
neglected [76] and the system dynamics are fully described by the effective Hamilto-
nian (5.1). After adiabatically eliminating the lattice (see SM 5.2), the dynamics of
the two coupled impurities is governed by the effective frequencies

Ωs ≡ γsRe{Σ} (5.2)
Ωq ≡ ∆+ γqRe{Σ} (5.3)

and effective decay rates

Γs ≡ γs (1− 2Im{Σ}) = γsΓcoop (5.4)
Γq ≡ γq (1− 2Im{Σ}) = γqΓcoop, (5.5)
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a)

b)

a

Figure 5.1: Schematics a) The effective dynamics of the cooperatively enhanced
impurity-impurity system. In this work, this effective system is obtained via adia-
batic elimination of a 2D sub-wavelength atomic lattice, giving two parameters: a
self-energy Σ and effective coupling strength κ, that characterise the cooperative ef-
fects of the lattice. b) A pair of impurities (blue) placed in an sub-wavelength atomic
lattice with spacing a . λ. The lattice atoms couple via optical dipole-dipole inter-
actions and serves as a Markovian bath mediating the interactions and modifying
the bare decay rates. We note that we do not invoke the assumption of independent
atomic emission, instead the emitted fields of the lattice atoms interfere with each
other, giving rise to a coherent collective enhancement to the coupling of the impu-
rities.
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where 0 < Γcoop = 1 − 2Im(Σ) < 1 is the cooperativity factor that describes the
lengthening of the decay times and ∆ = ωs − ωq is the detuning between the two
impurities.

The effective frequencies and decay rates are modified by the self-energy Σ and the
effective coupling strength κ which both depend on the particular lattice parameters.
We define the resonant detuning ∆0 when Ωs = Ωq.

∆0 = Re(Σ) (γs − γq) . (5.6)

The parameter ∆0 plays an important role as it incorporates the fundamental sig-
natures of the underlying lattice structure. For example, in the inset of Figure 5.2b,
we can see that the resonance peaks shift as the ratio R = γs/γq is changed. The
location of the maximum of these peaks is given precisely by ∆0. The fact that
∆0 strongly depends on the properties of the lattice, implies that external noise like
position or frequency disorder for the lattice atoms will also result shifts of the res-
onance frequencies. Choosing the operating point of the sensing protocol (outlined
below) with respect to this modified resonance point will allow operation above the
noise floor of the chosen implementation.

The dynamics of the system are governed by the differential equations (ṡ, q̇)T =
Heff · (s, q)T . The solutions are therefore superpositions of exponentials of the eigen-
values of Heff , which are ω± = Ω̄− i γ̄Γcoop

2
± S with the quasi-Rabi frequency

S(∆) =

√
1

4

(
∆0 −∆− i

Γcoop

2
(γs − γq)

)2

+ γsγqκ2, (5.7)

the mean frequency Ω̄ = (Ωs + Ωq)/2 and the mean decay rate γ̄ = (γs + γq)/2.
Assuming the impurity q is initially excited, we can find an analytic expression for
the dynamics of impurity s. The population of impurity s at time t is given as

|s(t)|2 = −γsγq|κ|
2

4|S|2
e−tγ̄Γcoop

×
[
e−2tIm(S) + e2tIm(S) − e−2itRe(S) − e2itRe(S)

]
, (5.8)

where S = S(∆). As illustrated in Fig. 5.2a, the population |s(t)|2 is strongly
affected by changes in the detuning, ∆, between the two impurities. This feature
is at the core of our proposed sensing protocol, since it allows the measurement of
minute frequency shifts via population measurements in impurity s. Such shifts can
for example be imposed via Zeeman shifts induced by external magnetic or electric
fields at the location of impurity q.
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The dynamics of s(t) resemble the well known behaviour of laser driven atoms
performing Rabi oscillations. In our system, S(∆) takes on the analogous role of
the Rabi frequency, with the key difference being that both the quasi-detuning
∆quasi = ∆−∆0−iΓcoop

2
(γq−γs) given by the difference between the diagonal elements

of Heff and consequently the quasi- Rabi frequency S(∆) have imaginary components.
These imaginary components come as a consequence of the decay channels available
due to the cooperative effects induced via the surrounding lattice atoms. Note that as
a consequence of the non-Hermitian effective Hamiltonian (5.1) the eigenvalue spec-
trum of H admits exceptional points [77], which have been previously investigated
as candidates for quantum sensing protocols. For the protocol presented below, the
exceptional points are not optimal points for sensing, so we do not focus on them in
this work (see 5.3 for more details).

Sensing protocol.—The key concept of the proposed protocol is illustrated in
Fig. 5.2a. After an initial excitation of impurity q, the population in impurity s is
detected after some time t0. Note that while this time can in general be selected
arbitrarily, there are specific values that maximize the protocol’s sensitivity. Thus,
t0 is a degree of freedom that can be optimized. The large amplitude change in the
population dynamics of impurity s exhibits the high sensitivity to small changes in
the relative resonance frequencies between the quantum emitters, described by the
detuning ∆̃ = ∆/

√
γsγq. Therefore, an external disturbance to impurity q, e.g.,

a magnetic field, can be detected in the dynamics of impurity s. The long-range
coupling of the two emitters allows efficient local readout. The sensitivity of this
protocol can be quantified by computing the standard deviation of the change to the
population in response to some signal ∆signal (see Figure 5.2b)

Since the protocol requires the detection of single photons, each measurement of
the population in impurity s is a Bernoulli trial (the detector clicks or it doesn’t)
where the probability of success is binomially distributed with probability p =
|s(t0)|2, i.e., we take samples from the response curve in Figure 5.2b. From these
measurements, one can estimate the quantity ssignal, which is the change in the pop-
ulation due to some additional detuning ∆signal. Since the population changes with
∆signal, by measuring s, we can obtain an estimate of ∆signal from |ssignal|2 as follows:

We have |s(t0)|2 = f(∆). Assume we initially detune to a certain value ∆ =
∆0+∆add. The added detuning ∆add gives an extra degree of freedom that allows us
to further optimise the system to be sensitive to changes in |s(t0)|2 created by some
signal detuning ∆signal. We have

f(∆add +∆signal) = s+ ssignal (5.9)
⇒ ∆signal = f−1(s+ ssignal)−∆add (5.10)
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Expanding linearly around s, we obtain

∆signal =
ssignal

∂s
∂∆

−∆add (5.11)

The standard deviation of ∆signal is thus

σ∆signal
=
σssignal

∂s
∂∆

∣∣∣∣∣
∆=∆add

, (5.12)

where the measurements of ssignal are distributed binomially, and so has the well-
known (single-shot) variance σ2 = p(1− p) and ∆signal inherits the same distribution
via its dependence on |s(t0)|2. The observable of interest is the signal detuning ∆signal.
For a certain frequency shift, which is generated via an external local perturbation
(e.g., a magnetic field at the location of impurity q), it can be obtained by measuring
the maximum population of s. Since the system is highly sensitive to changes in ∆,
the protocol is able to detect small external disturbances. We quantify this sensitivity
by computing the uncertainty on the measurement of ∆ via the standard deviation
[see 5.2b and (5.12)].

An analytic approximation to the envelope function of |s(t0,∆)|2 can be found
by taking t0 equal to the time of maximum population transfer. Since it does not
take into account sensitivity improvements due to the phase of the response curve for
different detunings, this envelope function gives an upper bound on the sensitivity.

|smax|2 ≈ γsγq

∣∣∣κ
S

∣∣∣2 e−πγ̄Γcoop
2Re(S) (5.13)

This equation is displayed in Figure. 5.2b as a black dashed line. The decay term
containing Γcoop would be absent from systems undergoing standard Rabi oscillations.

Recall the sensitivity of the sensing protocol is quantified by σ, the standard
deviation of a measurement of ∆signal. The lattice spacing a, the added detuning
∆add and the measurement time t0 all affect this measurement sensitivity. In Figure
5.3, σ is plotted as a function of these parameters. The broad resonances in these
plots stem from the population hitting a maximum, the derivative hitting zero and
subsequently causing a divergence in σ. The narrower resonances correspond to the
population itself reaching zero for a given parameter set. These occur over a smaller
range of parameters, hence the narrower profile. In panel a), σ is plotted as a function
of the added detuning ∆̃add and the measurement time t0.
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Figure 5.2: Impurity dynamics. a) The population of the initially unexcited im-
purity s as a function of the time t̃ = √

γsγqt [see Eq. (5.8)] for a 10 × 10 lattice,
with lattice spacing a = 0.3λs0 and impurity distance d = 2a. The blue curve cor-
responds to maximal population transfer at ∆̃ = 0. A small change in detuning
(∆̃ = 0.1) diminishes the achievable population transfer (red curve). b) The max-
imum population as a function of detuning for the same parameters as a) above.
In the inset, the population is shown for values of R = γs/γq from left to right
R = (1/30, 1/10, 1, 10, 30). The height and width of the quasi-Lorenzian |smax|2(∆)
[see (5.13)] lowers and widens as we move away from the ratio R = γs/γq = 1. Note
that R and R−1 have the same shape, just shifted such that the resonance occurs at
∆0 (5.6).
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For a given t0, ∆̃add has the effect of moving the resonance point. At very small
values of t0, the population is very small, little information can be extracted from
the system and hence σ is very large.

In panel b), σ is plotted as a function of measurement time, t0 and the lattice
spacing a

The lattice spacing changes the timescale of the dynamics, where a smaller lat-
tice spacing means faster exchange. This makes physical sense: the smaller the
lattice spacing, the smaller the physical distance the excitation needs to traverse,
and assuming equal decay rates and propagation velocity, the effective timescale is
decreased.

For a ∼ 0.13, there is a dark band where in principle the optimal σ lies. However,
in the neighbourhood of this region there are a number of isolated resonances that
would be very difficult to avoid in practice.

In general, small, but non-zero values of ∆̃add are optimal, and at the optimal
detunings, avoiding resonances, a lattice spacing of a ∼ 0.2 is optimal.

Conclusions and Outlook.—We introduced a quantum sensor which is based on
the coherent photon exchange between distant quantum emitters and local popu-
lation readout. We showed that these local population measurements can be used
to detect minute frequency shifts at the location of one emitter. This is due to the
strong sensitivity of the photon transfer efficiency on the relative detuning between
the emitters. The population transfer is strongly enhanced by the collective effects
present in the system. This is in contrast to other lattice based metrology appli-
cations which are in general harmed by such effects via dephasing and cooperative
shifts. While the discussion in this Letter was based on a particular implementation
with impurities embedded in a cooperative array, the protocol is generalizable to re-
lated platforms (quantum dots coupled to waveguides or photonic bandgap materials,
solid state based implementations, NV centres etc).

The introduced approach opens up exciting avenues for cooperatively enhance
quantum sensing. The proposed protocol is expected to be implementable in state-
of-the-art platforms. The major challenge to overcome is local single photon readout,
which however is for example becoming feasible in modern tweezer-based setups.

For the particular configuration studied here, where the sensor relies on the co-
operative coupling of the lattice atoms to the impurities, the population dynamics
of the two impurities can also be used to monitor the lattice dynamics. This could
form the basis for a new tool for device characterisation. Another exciting future
direction motivated by the findings in this work is to extend the study to systems
beyond the single excitation regime, where strong photon non-linearities will occur.
These could potentially improve the sensitivity.
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Figure 5.3: Measurement standard deviation (a) Standard deviation of mea-
surements of ∆sig as a function of the measurement time t̃0. We set γs = γq for
this plot as it represents the universally optimal value for this protocol (see 5.5 for
details). (b) σ as a function of the measurement time t̃0 and the lattice spacing a.
Again, the resonances are a result of divergences when the derivative hits an inflec-
tion point. The resonances are a result of the derivative reaching an inflection point,
leading to a divergence in (5.12). σ as a function of the lattice spacing, a.
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5.2 Appendix: Realisation of effective Hamilto-
nian

Below, we show how the effective Hamiltonian (5.1) can be obtained via adiabatic
elimination of the lattice Hamiltonian in the appropriate rotating wave approxima-
tion. We model an array of ` atoms arranged in a lattice, as well as two impurities
with annihilation operators q, s. We have a space of size N , where the first ` en-
tries correspond to the lattice atoms, and the next two entries correspond to the
impurities, i.e., ` = N − 2.

In real space, the Hamiltonian is split into

Hlatt =
∑̀
m

(
ωL − i

γL
2

)
σ†
mσm + γL

∑̀
m6=n

(
Jmn − i

Γmn

2

)
σ†
mσn (5.14)

We have also the interaction between the lattice and the impurities (or defect)

Hlatt,d =
√
γLγd

∑̀
m

[(
Jdm − i

Γdm

2

)
d†σm +

(
Jmd − i

Γmd

2

)
σ†
md

]
(5.15)

where d = q, s indicate the impurity atoms and σ
(d)
z indicates a σz matrix acting on

site d. We have also the impurity interaction that has the same form as the lattice
atoms

Hqs =
√
γqγs

[(
Jqs − i

Γqs

2

)
q†s+

(
Jsq − i

Γsq

2

)
s†q

]
(5.16)

The bare impurity dynamics is governed by

Hdd =
∑
d

(
ωd − i

γd
2

)
d†d (5.17)

Due to resonant dipole-dipole interactions, we obtain collective coupling Jij and
decay Γij rates that are defined as

√
γiγjJij(ri, rj) = −

3π
√
γiγj

ω
d†
i · Re [G(rij, ω)] · dj (5.18)

√
γiγjΓij(ri, rj) = −

6π
√
γiγj

ω
d†
i · Im [G(rij, ω)] · dj (5.19)
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for the free space Green’s tensor G(rij, ω) with components

Gαβ(rij, ω) =
eiωr

4πr

[(
1 +

i

ωr
− 1

ω2r2

)
δαβ −

(
1 +

3i

ωr
− 3

ω2r2

)
rij,αrij,β
r2

]
−δ(rij)

3ω2
δαβ,

(5.20)
an atomic separation rij = ri − rj, r ≡ |rij|, individual atomic decay rates γi, γj and
atomic dipole moments di,j.

5.2.1 Momentum space representation

Writing σm = 1√
`

∑`
k=1 e

2π
`
ik·rm , moving to the rotating frame with frequency ωs and

requiring that we are in the single-excitation subspace, we get that

Hlatt = γL
∑
k

[
δsL
γL

− i

2
+ JL(k)−

i

2
ΓL(k)

]
σ†
kσk (5.21)

Hlatt,d =
√
γLγd

∑
k

[(
Jd(k)−

i

2
Γd(k)

)
d†σk +

(
J∗
d (k)−

i

2
Γ∗
d(k)

)
σ†
kd

]
(5.22)

Hqs =
√
γsγq

(
Jqs − i

Γqs

2

)
q†s+

(
Jsq − i

Γsq

2

)
s†q (5.23)

Hss = −iγs
2
s†s (5.24)

Hqq =
(
∆− i

γq
2

)
q†q (5.25)

Where ∆ = ωq − ωs, δ = ωL − ωs and where σk → e−iωstσk, s → e−iωsts and
q → e−iωstq.

After adiabatic elimination of the lattice, we obtain

ṡ = −i
(
γsΣs − i

γs
2

)
s− i

√
γsγqκsq (5.26)

q̇ = −i
(
∆+ γqΣq − i

γq
2

)
q − i

√
γsγqκqs (5.27)
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Where we define the self-energies

Σs ≡
∑
k

(Js(k)− i
2
Γs(k))(J

∗
s (k)− i

2
Γ∗
s(k))

δ/γL + JL(k)− i
2
ΓL(k)− i/2

(5.28)

Σq ≡
∑
k

(Jq(k)− i
2
Γq(k))(J

∗
q (k)− i

2
Γ∗
q(k))

δ/γL + JL(k)− i
2
ΓL(k)− i/2

(5.29)

and the effective coupling strengths

κs ≡

(
Jsq − i

Γsq

2
+
∑
k

(Js(k)− i
2
Γs(k))(J

∗
q (k)− i

2
Γ∗
q(k))

δ/γL + JL(k)− i
2
ΓL(k)− i/2

)
(5.30)

κq ≡

(
Jqs − i

Γqs

2
+
∑
k

(Jq(k)− i
2
Γq(k))(J

∗
s (k)− i

2
Γ∗
s(k))

δ/γL + JL(k)− i
2
ΓL(k)− i/2

)
(5.31)

Now calling |ψ〉 =

(
s
q

)
and noting that κs = κq ≡ κ and Σs = Σq ≡ Σ, these

equations can be written in terms of an effective (non-Hermitian) Hamiltonian

Heff =

(
− iγs

2
+ γsΣ

√
γsγqκ√

γsγqκ − iγq
2
+∆+ γqΣ

)
≡
(

Ωs − iΓs/2
√
γsγqκ√

γsγqκ Ωq − iΓq/2

)
, (5.32)

which is (5.1) in the main text.

5.2.2 Constraints on Σ and κ

The above derivation requires the computation of the self-energy Σ and the coupling
rate κ if the dynamics of the effective Hamiltonian (5.1) are to be realised. Below,
we discuss the constraints and physical meaning of these parameters.

The real part of Σ is responsible for setting an energy scale, and so does nothing
whatsoever to the overall dynamics, as the only relevant quantity affecting dynamics
is the energy difference. To achieve the longest lifetime, the requirement is Im{Σ} =
1/2, such that the decay terms Γs and Γq are zero and thus the decay time diverges.
However, at Im{Σ} = 1/2, then limt→∞ |s(t)|2 → ∞, i.e., the population diverges too
and is thus unphysical in this model. In general, for us to have physical parameters,
we need to satisfy

Im{Σ} < 1

2
and γ̄Γcoop > 2Im{S}, (5.33)
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where the second inequality comes from ensuring that limt→∞ |s(t)|2 <∞. Satisfying
the second inequality puts restrictions on κ. Assuming γs = γq ≡ γ, and ∆ = 0 we
have S =

√
γ2κ2, and

Im(S) =
γIm(κ)Re(κ)

|Re(κ)|
. (5.34)

Thus, the general condition under our assumptions is

γIm(κ)Re(κ)

|Re(κ)|
< γ

(
1

2
− Im(Σ)

)
(5.35)

Assuming Re(κ) < 0 and Im(κ) < 0, we can further simplify this to the condition

Im(κ) > Im(Σ)− 1

2
. (5.36)

5.3 Appendix: Exceptional points
In this section, we compute the exceptional points of the system and find that they
lie far away from the optimal point for sensing in the presented protocol. The
eigenvectors of the effective Hamiltonian (5.1) are

e± =

(
1
κ̃

(
Ωsq − iΓsq

2
± S

)
1,

)
(5.37)

with the eigenvalues given in the main text. The energies are degenerate when the

square root term S =

√
−
(
iΩsq +

Γsq

2

)2
+ κ̃2 = 0. Equating real and imaginary

parts, we obtain

γsqΓcoop = Re{κ̃} (5.38)
1

2
(∆0 −∆) = Im{κ̃} (5.39)

and this is the same point at which the eigenvalues also coalesce, i.e., it is the
exceptional point for the system. For any γs 6= γq, any degeneracy in the eigenvalue
spectrum is an exceptional point. However, γs = γq is the optimal point for the
presented sensing protocol, and the exceptional points lie far away (several orders
of magnitude) from this optimum. Therefore, we do not focus on the exceptional
points in this work.
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5.4 Fisher information
The Fisher information for a binomially distributed quantity is given by I(s) =

n
p(1−p)

. The variance of a Bernoulli distribution with n trials is np(1−p), and saturates
the Cramér-Rao bound for a single shot

σ2
ssignal

≥ 1

I(s)
(5.40)

np(1− p) ≥ p(1− p)

n
. (5.41)

5.5 Appendix: Optimal value of emitter decay
rates

The optimal value of the gamma ratio is always R = γs/γq = 1, i.e., that the two
impurities have the same decay rate, regardless of the value of a, and additionally
any value R = r gives the same value of σ as its reciprocal R = 1/r, mirroring the
symmetry in Figure 5.2b.

5.6 Appendix: Calculating the self-energies and
effective coupling strengths for non-periodic
arrays

Bloch’s theorem can be applied for periodic lattices to obtain the lattice dispersion
used to determine the self-energies and coupling rates defined in Eqs. (5.29) and
(5.31). For impurities embedded in a non-periodic lattices, the self-energy and cou-
pling rates can be determined via an alternative method based on the real space
Hamiltonian.

In the single excitation manifold the system dynamics are governed by the Schrödinger
equation i∂t |ψ(t)〉 = H |ψ(t)〉 with the non-Hermitian Hamiltonian H = Hlatt +
Hlatt,d +Hqs +Hdd, with the individual Hamiltonians defined in Eqs. (5.14)–(5.17).
The atomic wave function can be written as |ψ(t)〉 = a(t) |G, gs, gq〉+

∑l
m=1 bm(t)e

iωI t |ei, gs, gq〉+
s(t)eiωI t |G, es, gq〉 + q(t)eiωI t |G, gs, eq〉, where |G, gs, gq〉 denotes the state with all
atoms in the ground state, |ei, gs, gq〉 the state where only the ith lattice atom is ex-
cited and |G, es, gq〉 (|G, gs, eq〉) is the state where only the impurity s (q) is excited.
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In the frame rotating at the impurity resonance frequency ωI , this results in a set of
coupled equations for the amplitudes bm(t), s(t) and q(t),

∂tbm(t) = i

(
δLI +

i

2
γL

)
bm(t)− iγL

l∑
n 6=m

(
Jmn −

i

2
Γmn

)
bn(t)

− i
√
γLγs

(
Jms −

i

2
Γms

)
s(t)− i

√
γLγq

(
Jmq −

i

2
Γmq

)
q(t), (5.42a)

∂ts(t) = −γs
2
s(t)− i

√
γLγs

l∑
m=1

(
Jms −

i

2
Γms

)
bi(t)− i

√
γsγq

(
Jsq − i

Γsq

2

)
q(t)

(5.42b)

∂tq(t) = −γq
2
q(t)− i

√
γLγs

l∑
m=1

(
Jmq −

i

2
Γmq

)
bi(t)− i

√
γsγq

(
Jqs − i

Γqs

2

)
s(t).

(5.42c)

We introduced the detuning δLI := ωI − ωL between the lattice and impurity atom
transition frequencies. Note that the model does not contain any classical driving
terms, so the derivatives of the excited state populations don’t depend on the ground
state population a(t). This set of equations can be written in matrix form

i


ḃ1(t)

...
ḃl(t)
ṡ(t)
q̇(t)

 =


c1s c1q

HL
... ...
cls clq

cs1 · · · csl iγs/2 csq
cq1 · · · cql cqs iγq/2

 ·


b1(t)

...
bl(t)
s(t)
q(t)

 (5.43)

where the l× l matrix HL represents the bare lattice Hamiltonian matrix containing
the terms ∝ (δLI − iγL/2) in the diagonal and the coupling terms ∝ (Jmn − iΓmn/2)
in the off-diagonals [see first line in Eq. (5.42a)]. The complex numbers cis,q = cs,qi
with i ∈ [1, l] denote the coupling terms between the lattice atoms and the impurity
∝ Jms − iΓms/2, and csq = cqs denotes the free space coupling of the two impurities
s and q.

If γs,q � γL, the lattice dynamics can be adiabatically eliminated. Defining the
quantities b(t) := (b1(t) . . . bl(t))

T and the lattice-impurity coupling vectors CLs :=
(c1s . . . cls)

T , CLq := (c1q . . . clq)
T and setting ḃi(t) = 0 results in the steady state for

the lattice atoms,
bss(t) = −H−1

L · (CLss(t) +CLqq(t)) . (5.44)
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Plugging this back into Eq. (5.43), we obtain the coupled set of equation governing
the impurities’ dynamics

ṡ(t) = −i
[
i

2
γs −CT

sL ·H−1
L ·CLs

]
s(t)− i

[
csq −CT

sL ·H−1CLq

]
q(t), (5.45)

q̇(t) = −i
[
i

2
γq −CT

qL ·H−1
L ·CLq

]
q(t)− i

[
cqs −CT

qL ·H−1CLs

]
s(t), (5.46)

with CT
s,qL := (cs,q1, . . . , cs,ql). To obtain the effective Hamiltonian given in Eq. (5.32)

we have to bring these equations into the form

ṡ(t) = −i
[
γsΣs − i

γs
2

]
s(t)− i

√
γsγqκsq(t), (5.47)

q̇(t) = −i
[
γqΣq − i

γq
2

]
q(t)− i

√
γsγqκqs(t). (5.48)

This results in the following expressions for the self energies and coupling strengths

Σs := −CT
sL ·H−1

L ·CLs/γs, (5.49)
Σq := −CT

qL ·H−1
L ·CLq/γq, (5.50)

κs :=
(
csq −CT

qL ·H−1
L ·CLs

)
/
√
γsγq, (5.51)

κq :=
(
cqs −CT

sL ·H−1
L ·CLq

)
/
√
γsγq. (5.52)

5.7 Appendix: Robustness to noise
To illustrate the robustness of the introduced sensing protocol to external noise, we
analyse the role of positional disorder of the array atoms onto the self-energy and cou-
pling strength. Therefore, we randomly sample the lattice positions for each emitter
from a Gaussian distribution with a certain width σ centred around the unperturbed
lattice points. We determine Σ and κ for 100 lattice realizations (for R = γs/γq = 1)
and plot its mean value together with the standard deviation in Fig. 5.4. Note that
positional disorder breaks the lattice symmetry and Bloch’s theorem, which was em-
ployed in the momentum space representation described above, is no longer valid.
Therefore, we perform the adiabatic elimination in real space as outlined above.

The self-energy and the coupling strength are the two quantities at the core of the
introduced protocol. The real part of the coupling constant κ changes the timescale
of the dynamics, i.e., it has a similar effect as changing the lattice spacing a. As such,
in Fig. 5.5a), we see a similar response to Re(κdis) as changing a, including crossing
over resonance points. The imaginary part of κ affects the decay lifetime similarly
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Figure 5.4: Mean-value and standard deviation (indicated by blue and red
shaded regions) of the real- and imaginary-part of the self-energy Σ (a)-(b) and the
coupling strength κ (c)-(d) as a function of position disorder. The insets show the
lattice positions realized for a certain position disorder.

to Γcoop. Increasing this parameter can actually improve the sensitivity, as seen
in Fig. 5.5b). As discussed in SM 5.2.2, the real part of the self-energy Σ simply sets
an absolute energy scale and does not affect the dynamics. As such, we do not see any
change to σ in panel c) of Fig. 5.5. Finally, altering Im(Σ) directly affects Γcoop and
thus can dramatically affect the sensitivity of the protocol. In Fig. 5.4b), we see that
a relatively large amount of lattice disorder is required before a significant change
in Re(Σ) is observed. In panel d) of Fig. 5.5, we see that the sensitivity remains
relatively low for small changes to Σdis. However, directly changing the imaginary
part of Σ is equivalent to changing the cooperative enhancement factor Γcoop directly.
Since improvements to this factor exponentially improve the sensitivity, disorder that
destroys this enhancement will similarly see a loss of this exponential improvement.
Hence, we can see it is important that there is not too much disorder that produces
a large change in Im(Σ).
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Figure 5.5: The protocol sensitivity σ with the inclusion of lattice disorder.
a) σ with added real part of the coupling constant κdis. b) Adding an imaginary κdis.
c) Adding a real part Σdis to the self-energy Σ. c) Adding an imaginary part Σdis to
the self-energy Σ.
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The 2015 detection of gravitational waves by the LIGO collaboration [78] ush-
ered in a new era in astronomy. Since then, subsequent measurements [79, 80] has
cemented the place of this new era, and subsequent detectors, including LIGO and
VIRGO, have made several changes to improve the sensitivity [81, 82]. It has been
known since the early ‘80s [83, 84] that squeezed light can improve the sensitivity
of gravitational wave detectors, due to the suppression of quantum noise, and we are
now reaching the point where the engineering effort to remove the classical noise has
been so successful that quantum noise is now dominant.

A gravitational wave interferometer uses laser light to monitor the position of
suspended mirrors which act as test masses. The light produces two types of quantum
noise: shot noise, which arises from the random fluctuations of photon arrival time at
the photodetectors and radiation pressure noise, which arises from the fluctuations
in the laser power, causing movement in the mirror that masks the motion due to
the gravitational wave amplitude h.

Shot noise becomes dominant at frequencies in the tens of hertz and has Pois-
sonian statistics, meaning it has a signal-to-noise ratio (SNR) SNR ∼ N√

N
=

√
N .

i.e., the signal grows linearly with photon number, but the corresponding noise in-
troduced only grows as the square root. Thus, shot noise can be counteracted by
increasing the laser power, so that the total number of photons reaching the detector
is increased.

Radiation pressure noise, on the other hand, dominates at frequencies around
1Hz, corresponding to the resonant frequency of the mirror’s harmonic motion. Ra-
diation pressure noise is worsened by increased laser power: as the total power in-
creases, so too do the fluctuations. As expected from the quantum uncertainty
principle, we can never get something for free. The tradeoff between these two noise
sources has been extensively studied [85] by the quantum measurement community.
For a measurement of length τ , quantum mechanics places a limit on the accuracy of
a measurement of the position z of a mass, called the “standard quantum limit" [83]

(∆z)SQL =

(
2πτ

m

)1/2

(6.1)

This correspondingly limits the gravitational wave amplitude h that it is possible to
detect with an interferometer

hSQL ∼ (∆z)SQL/l (6.2)

where l is the interferometer arm length. This scaling with the inverse of length is
the reason that ground-based interferometers such as LIGO try to make the arm
length as large as possible (4km, in the case of LIGO).
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In this chapter, we will analyse a simple theoretical model of an interferometer,
and show that by using frequency dependent squeezing, it is possible to suppress
the quantum noise across the entire spectral range. In the chapter following, we
will detail a scheme for producing frequency dependent squeezing for the purpose
of enhancing gravitational wave detection. The figure of merit for this detection is
the noise spectral density, i.e., the power spectral density of each noise component
(see Fig. 6.1).

Figure 6.1: The noise spectral density of different generations of LIGO
detectors. Reproduced from the arXiv version of [3] under the LIGO image use
policy [4].

6.1 Squeezing in a toy model of LIGO
We first imagine LIGO as a Mach-Zehnder interferometer interfaced with a cavity
with movable mirror on one arm. We include a frequency dependent phase shifter
ϕ(ω) injecting light into the input port. For now, we are simply interested in whether
such a phase element can produce any improvement to the sensitivity of LIGO in
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principle, and will not pay attention to how one might produce such a phase element.
We will first write down the Hamiltonian for the movable cavity mirror, and then
write the equation of motion for light in the cavity. We then write down the input-
output relation for the cavity and calculate the quadrature modes that will be used
to calculate the noise spectral density.

Figure 6.2: A toy model of LIGO where the phase difference between arms is
produced by a cavity of length L with movable mirror with position coordinate x.
We inject light with frequency dependent squeezing angle ϕ(ω) into the vacuum port
of the interferometer. The mode â0 is used as the interferometer laser mode, i.e., it
is a coherent state.

6.1.1 Hamiltonian for cavity mirror
The cavity in the top arm of Fig. 6.2 is described by a the harmonic oscillator
Hamiltonian

Hcav = ~ωcavâ
†
cavâcav, (6.3)

where we have dropped the ground state energy ~ωcav

2
as it is simply a constant offset.
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6.1.1.1 Light resonance condition for a cavity

For light to be resonant within a cavity of length L, the round trip distance (2L)
must be equal to an integer multiple of the wavelength, λ. This is so the light
constructively interferes, forming a standing wave pattern. 2L = Nλ, for N ∈ N.

The angular frequency of light ω is related to the ordinary frequency f by ω =
2πf . Further f = v

λ
, where v is the velocity of the wave. For the case of light, v = c.

We thus have, for the cavity of length L,

ω0 = 2π
v

λ
=

2πc

2L
=
πc

L
(6.4)

Now supposing the cavity mirror is moved some distance x̂ from its initial length L,
we have

ωcav =
πc

L+ x̂
(6.5)

Since we are trying to detect minute displacements from gravitational waves we know
that x̂� L, so we can perform a series expansion to first order in x̂, giving

ωcav ≈ ω0

(
1− x̂

L

)
thus, the Hamiltonian is given by

Ĥcav ≈ ~ω0

(
1− x̂

L

)
â†cavâcav (6.6)

6.1.2 Mirror equation of motion
We have the equations of motion

˙̂x(t) =
1

m
p̂(t) (6.7)

˙̂p(t) = −mω2
mx̂(t)− γp(t) + Fba(t) + Fs(t) + Fd(t) (6.8)

Where Fba is the back action, Fd is a classical diffusive force and Fs is the force due
to the gravitational wave signal.

82



Chapter 6 | Frequency dependent squeezing in gravitational wave detectors

The back action can be written

Fba = ṗcav =
∂Hcav

∂x
=

~ω0

L
â†cavâcav (6.9)

Expanding âcav = δâcav + αcav, we find

F̂ba =
~ω0

L

(
δâ†cav + α∗

cav

)
(δâcav + αcav) (6.10)

=
~ω0

L

[
������
δâ†cavδâcav + δâ†cav + α∗

cavδâcav + |αcav|2
]

(6.11)

We similarly expand x̂ = δx̂+ 〈x〉 and collect only the time dependent terms in (6.8)
(neither 〈x〉 nor |α|2 carry time-dependence.)

˙̂p(t) = −mω2
mδx̂(t)− γp̂(t) +

~ω0

L

(
α∗
cavδâcav + αcavδâ

†
cav

)
+ F̂d + F̂s (6.12)

Taking the Fourier transform, we arrive at

−iωp̂(ω) = −mω2
mδx̂(ω)− γp̂(ω) +

~ω0

L

[
α∗
cavδâcav(ω) + αcavδâ

†
cav(−ω)

]
+ F̂d(ω) + F̂s(ω) (6.13)

Fourier transforming (6.7) gives

−iωδ(̂ω) = p̂(ω)

m
(6.14)

⇒ p̂(ω) = −iωmδx̂(ω) (6.15)

Substituting into (6.13), we obtain

δx̂(ω)
[
mω2

m −mω2 − iγmω
]
=

~ω0

L

[
α∗
cavδâcav(ω) + αcavδâ

†
cav(−ω)

]
+ F̂d(ω) + F̂s(ω)

(6.16)

Let χ−1
m = m(ω2

m − ω2 − iγω) and write

δx̂(ω) = χm

[
~ω0

L

(
α∗
cavδâcav(ω) + αcavδâ

†
cav(−ω)

)
+ F̂d(ω) + F̂s(ω)

]
(6.17)

Writing δâ†(−ω) = δX̂(ω) + iδP̂ (ω) and δâ(ω) = δX̂(ω)− δP̂ (ω), we have

δx̂(ω) = χm

[
~ω0

L

(
iδP̂ (ω)(αcav − α∗

cav) + δX̂(ω)(αcav + α∗
cav)
)
+ F̂d(ω) + F̂s(ω)

]
(6.18)
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6.1.3 Light equation of motion
The equation of motion for light in the cavity is

˙̂acav = −κâcav +
√
2κâin +

i

~
[Ĥ, âcav] (6.19)

âout = âin −
√
2κâcav (6.20)

Recalling that the cavity Hamiltonian (6.6) and computing the commutator [Ĥ, âcav] =
~ω0âcav

(
x̂
L
− 1
)
, we can write

˙̂acav = −κâcav +
√
2κâin + iω0âcav

(
x̂

L
− 1

)
(6.21)

We will write the operators in the laser frame with the transformation â →
âe−iωLt. This affects the time derivative on the left hand side but leaves the remaining
terms unchanged (after multiplying through by eiωLt)

˙̂acav − iωLâcav = −κâcav +
√
2κâin + iω0âcav

(
x̂

L
− 1

)
(6.22)

Writing our operators as a mean value + fluctuation, we can make the transformation
â = δâ+ 〈a〉︸︷︷︸

=α

and x̂ = δx+ 〈x〉 and write

δ ˙̂acav + α̇cav + κ(δâcav + αcav) =

√
2κ (δâin + αin) + i

ω0

(
〈x〉
L

− 1

)
+ ωL︸ ︷︷ ︸

∆=ωL−ω′
0=0

+
ω0δx̂

L

 (δcav + αcav) , (6.23)

and linearise our equations, i.e., taking terms to first order in the fluctuations only

δ ˙̂acav + κδâcav =
√
2κδâin + i

ω0δx̂

L
αcav (6.24)

Fourier transforming, we obtain

(κ− iω)δâcav(ω) =
√
2κδâin(ω) + i

ω0δx̂(ω)

L
αcav (6.25)
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We would like to re-write in terms of the quadrature operators δX̂(ω) = 1
2

(
δâ†(−ω) + δâ(ω)

)
and δP̂ (ω) = 1

2i

(
δâ†(−ω)− δâ(ω)

)
. Taking the complex conjugate and performing

ω → −ω, we obtain

(κ− iω)δâ†cav(−ω) =
√
2κδâ†in(−ω)− i

ω0δx̂(ω)

L
αcav (6.26)

where (δx(−ω))† = δx(ω) by the definition of the Fourier transform (see Appendix 6.5),
recalling that δx̂†(t) = δx̂(t) because x̂ is an observable and therefore Hermitian.
Performing 1

2
((6.25) + (6.26)) and 1

2i
((6.25) - (6.26))

(κ− iω) δX̂cav(ω) +
iω0δx̂(ω)

2L
(α∗

cav − αcav) =
√
2κδX̂in(ω) (6.27)

(κ− iω) δP̂cav(ω) +
ω0δx̂(ω)

2L
(αcav + α∗

cav) =
√
2κδP̂in(ω) (6.28)

Combining these two equations with (6.18), we obtain the matrix equations

 κ− iω 0 iω0

2L
(αcav

∗ − αcav)
0 κ− iω ω0

2L
(αcav

∗ + αcav)
~ω0

L
(αcav

∗ + αcav)
i~ω0

L
(αcav − αcav

∗) 1
χm(ω)

δX̂cav(ω)

δP̂cav(ω)
δx̂

 =


√
2κδX̂in√
2κδP̂in

F̂s + F̂d


(6.29)

We can invert this equation to obtainδX̂cav(ω)

δP̂cav(ω)
δx̂

 =


1

κ−iω
0 0

2~|αcav|2ω2
0χm(ω)

L2(κ−iω)2
1

κ−iω
− |αcav|ω0χm(ω)

L(κ−iω)

−2~|αcav|ω0χm(ω)
L(κ−iω)

0 χm(ω)



√
2κδX̂in√
2κδP̂in

F̂s + F̂d

 (6.30)

This equation describes the response of the system inside the cavity, but we want to
additionally include the rest of the interferometer, which will input and output light.

6.1.4 Cavity input output relation and quadrature modes
As such, we begin by writing the input-output relation for the cavity mode âcav and
write the fluctuations about this cavity mode δâcav.

âout = âin −
√
2κâcav (6.31)

⇒ δâout = δâin −
√
2κδâcav (6.32)
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Since δX̂ and δP̂ are linear in δâ, we can simply write

δŶout = δŶin −
√
2κδYcav (6.33)

Where Y is a generalized quadrature operator that can be any linear combination of
δâ. Combining with (6.30), we find that

ˆδXout = −
ˆδXin(κ+ iω)

κ− iω
(6.34)

ˆδPout =

√
2α

√
κχω0

(
F̂d + F̂s

)
L(κ− iω)

−
ˆδPin (κ

2 + ω2)

(κ− iω)2
− 4α2κχω02~ ˆδXin

L2(κ− iω)2
(6.35)

Now we define g = 2αω0

√
~

L
√
κm

and Fs = δxs/χ

ˆδPout =
gκ

√
m (χFd + δxs)√
2
√
~(κ− iω)

− g2κ2mχ ˆδXin

(κ− iω)2
−

ˆδPin (κ
2 + ω2)

(κ− iω)2
(6.36)

Pout = −Pine
2iθ −Xin

g2|L(ω)|2

iγ + ω2 − ω2
m

e2iθ

+
eiθg|L(ω)√

2~m(iγω + ω2 − ω2
m)
Fd +

eiθg|L(ω)
√
m√

2~
δxs (6.37)

where L(ω) = κ
κ+iω

= κ√
κ2+ω2 e

iθ i.e.,

|L(ω)| = κ√
κ2 + ω2

(6.38)

⇒ |L(ω)|2 = κ2

κ2 + ω2
(6.39)

These output modes can be used to calculate the output intensity of the interferom-
eter, which we can use to calculate the noise spectral density.

6.2 Noise spectral density
Analysing the interferometer modes (see appendix 6.6) allows us to express the ho-
modyne photocurrent in terms of the P quadrature

I = 2iα2Pout (6.40)
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Inserting Pout from above and normalising by dividing by the signal term (the coef-
ficient of δxs), we have the normalised photocurrent

Inorm =
(
(sin(ϕ)X − cos(ϕ)P ) eiθ

√
2~√

mg|L(ω)|
− (cos(ϕ)X + sin(ϕ)P )

g|L(ω)eiθ
√
2~√

m(iγω + ω2 − ω2
m)

+ δxs +
Fd

m(iγω + ω2 − ω2
m)

)
(6.41)

We can write Inorm = δxs + δI, i.e., split into signal and noise components. Let
χ−1 = (ω2

m − ω2 − iγω) and define A =
√
2~

g
√
m|L(ω)| and B = g

√
2~|L(ω)|√
mχ−1 . We now write

δI = Aeiθ(X sin(ϕ)− P cos(ϕ))− Beiθ(P sin(ϕ) +X cos(ϕ)) +
Fd

mχ−1
(6.42)

We can then find the noise spectral density SδI , where we inject squeezed light into
the vacuum port with squeezing parameter S. We obtain

SδIδ(ω − ω′) =
1

2
〈δI†δI + δIδI†〉 (6.43)

=
1

2

(
1

2
|A|2

(
S−1 sin2(ϕ) + S cos2(ϕ)

)
+ |AB|

(
S − S−1

)
sin(ϕ) cos(ϕ)

+
1

2
|B|2

(
S sin2(ϕ) + S−1 cos2(ϕ)

)
+

〈Fd
† · Fd〉

m2|χ|−2
+

〈Fd · Fd
†〉

m2|χ|−2

)
(6.44)

where the cross terms cancel, and we have made use of 〈X†X〉 = 〈XX†〉 = 1
4
S−1 and

〈P †P 〉 = 〈PP †〉 = 1
4
S

Throwing away the classical terms given by Fd, and inserting the definitions of
A,B we have

SδIδ(ω − ω′) =
1

2

(
~

g2m |L(ω)|2
(
S−1 sin2(ϕ) + S cos2(ϕ)

)
+

2~
m|χ−1|

(
S − S−1

)
sin(ϕ) cos(ϕ)

+
g2~ |L(ω)|2

m |χ−1|2
(
S sin2(ϕ) + S−1 cos2(ϕ)

))
(6.45)
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Letting iγω � ω2 − ω2
m and recalling that χ−1 = (ω2

m − ω2 − iγω), we can write

SδIδ(ω − ω′) =
1

2

(
~

g2m |L(ω)|2
(
S−1 sin2(ϕ) + S cos2(ϕ)

)
+

2~
m|ω2 − ω2

m|
(
S − S−1

)
sin(ϕ) cos(ϕ)

+
g2~ |L(ω)|2

m |ω2 − ω2
m|

2

(
S sin2(ϕ) + S−1 cos2(ϕ)

))
(6.46)

Now we can identify a characteristic noise spectral density Sc = ~
mg2LIGO

. We can
then obtain the quantity Σ = SδI

Sc
We obtain

Σ =
g2LIGO

2g2|L(ω)|2
(S−1 sin2(ϕ) + S cos2(ϕ)) +

g2g2LIGO|L(ω)|2

2|ω2 − ω2
m|2

(
S sin2(ϕ) + S−1 cos2(ϕ)

)
+ (S − S−1) sin(ϕ) cos(ϕ)

g2LIGO

ω2 − ω2
m

(6.47)

6.2.1 Optimal phase angle
To find the optimal phase angle, Σ is differentiated with respect to the phase angle.
The extrema are given by dΣ

dϕ
= 0.

0 =
d

dϕ
Σ =

(
S − S−1

)( g2LIGO
ω2 − ω2

m

cos(2ϕ) +
g2LIGO

(
g4 |L(ω)|4 − |ω2 − ω2

m|2
)

2g2 |L(ω)|2 |ω2 − ω2
m|2

sin(2ϕ)

)
(6.48)

⇒ tan(2ϕ) =
2g2 |L(ω)|2 |ω2 − ω2

m| 2

(ω2 − ω2
m)
(
g4 |L(ω)|4 − |ω2 − ω2

m| 2
) (6.49)

Assuming that ωm < ω, we can write |ω2 − ω2
m| = ω2 − ω2

m This gives

tan(2ϕ) =
2g2 (ω2 − ω2

m) |L(ω)|
2

g4 |L(ω)|4 − (ω2 − ω2
m)

2
(6.50)

Now we use the identity tan(2θ) = 2 tan(θ)
1−tan2(θ)

. We have an equation in x = tan(ϕ)

2x

1− x2
=

2g2 (ω2 − ω2
m) |L(ω)|

2

g4 |L(ω)|4 − (ω2 − ω2
m)

2
(6.51)
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which has solutions

xmin =
ω2 − ω2

m

g2 |L(ω)|2
, xmax = −g

2 |L(ω)|2

ω2 − ω2
m

(6.52)

⇒ ϕmin = arctan

(
ω2 − ω2

m

g2 |L(ω)|2

)
, ϕmax = arctan

(
−g

2 |L(ω)|2

ω2 − ω2
m

)
(6.53)

6.2.2 Comparison with unsqueezed state
We then insert these extremal angles into Eq.(6.47) to give an optimal noise spectral
density. Using x cos(arctan(x)) = sin(arctan(x)) = x√

x2+1
, we compute Σ for ϕmin

and ϕmax, respectively. We obtain

Σmin =
1

S

(
g2LIGO

2

(
1

g2|L(ω)|2
+

g2|L(ω)|2

|ω2 − ω2
m|2

))
=

Σun-squeezed

S
(6.54)

Σmax = SΣun-squeezed (6.55)

i.e., we obtain perfect broadband squeezing across the entire spectral range. This
noise spectral density is plotted in Fig. 6.3. When we throw away the classical
terms F̂d, we have made Σ into close to a perfect square, bar the sine and cosine
contributions, which are equal when S = 1 (i.e., when we do not have squeezing).
This broadband suppression of noise has been known at least since the analysis of
Kimble et al. [86].
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Figure 6.3: The noise spectral density of the interferometer at different
squeezing settings. A squeezing angle of φ = 0 corresponds to back action sup-
pression at low frequencies, whilst a squeezing angle of ϕ = π/2 corresponds to shot
noise suppression, which dominates at high frequencies. We also show the noise
spectral density with the calculated optimal phase angle ϕ = ϕmin(ω) which shows a
fixed broadband suppression across the entire spectral range.

6.3 Frequency dependent squeezing via a filter cav-
ity

We have, as yet, not considered how one might produce the frequency dependent
squeezing ϕ(ω) that we need. Below, we will consider the case of a filter cavity with
cavity mode â with equation of motion in Fourier space given by

−iâω = âin
√
κout −

âκ

2
+ âloss

√
κloss (6.56)

We have here used the conventions compatible with the Langevin equations for a
3-level atom in a Lambda configuration, that will later be used for an EIT analysis.
The above equation can be obtained by setting the atom-light coupling g to zero,
such that the equations correspond to an empty cavity.

Solving along with the input-output relation â = âin+âout√
κout

, we obtain a reflection
coefficient
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Figure 6.4: Schematic of one-sided cavity with cavity mode â, along with input mode
âin and output mode âout. We consider possible losses from the ‘wrong’ side of the
cavity κs, but express in terms of the cavity κ as κloss = κs/κ.

r =
aout
ain

=
−κ+ 2κ (1− κloss) + 2iω

κ− 2iω
(6.57)

where we have written the cavity out-coupling in terms of the cavity coupling κ with
a loss term κloss, i.e., κout = κ (1− κloss). The scattering angle θ in the lossy case is

θ = −2 tan−1

 4κω (κloss − 1)

κ2
(√

κ2(1−2κloss)2+4ω2

κ2+4ω2 − 2κloss + 1

)
+ 4ω2

(√
κ2(1−2κloss)2+4ω2

κ2+4ω2 − 1

)


(6.58)

In the lossless case, we have simply

r =
κ+ 2iω

κ− 2iω
(6.59)

and a scattering angle

θ = 2 tan−1

(
2ω

κ

)
(6.60)
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Now we can define our squeezing rotation angle

ϕ =
θ(ω + ωi) + θ(−ω + ωi)

2
(6.61)

= tan−1

(
2 (ωi − ω)

κ

)
+ tan−1

(
2 (ωi + ω)

κ

)
(6.62)

= tan−1

(
4κωi

−4ω2
i + κ2 + 4ω2

)
(6.63)

where ωi is the frequency of the interferometer laser and where we have used the
identity tan−1(u) ± tan−1(v) = tan−1

(
u±v
1∓uv

)
, and where ωi is the frequency of the

interferometer light.
Physically, we can shift our φ by introducing a fixed phase delay. Mathematically,

a π/2 constant shift is obtained by taking the limit of the above identity as v → ∞.
This yields tan−1(u) + π

2
= − tan−1

(
1
u

)
We will hence work with the function

φ = tan−1

(
−−4ω2

i + κ2 + 4ω2

4κωi

)
(6.64)

We can compare this to the optimal phase for LIGO

φLIGO = tan−1

(
ω2 (κ2LIGO + ω2)

g2LIGOκ
2
LIGO

)
(6.65)

Comparing the arguments of the arctan functions, we find that

ω4

g2LIGOκ
2
LIGO

+
ω2

g2LIGO
= − ω2

κωi

+
ωi

κ
− κ

4ωi

(6.66)

and matching coefficients, we find that

ωi = − 1√
2
gLIGO (6.67)

κ =
√
2gLIGO (6.68)

where we have taken the solution with κ ∈ R>0. We note also that this matching
becomes exact as κLIGO → ∞.
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6.4 Summary and conclusion
In this chapter, we have analysed a toy model of the LIGO interferometer and found
that we can produce a suppression of the noise across the entire spectral range.
The concept requires the production of frequency-dependent squeezing, which we
showed can be produced by a filter cavity. Despite the considerable experimental
difficulties, proof of principle experiments for these filter cavities have already been
conducted [87, 88]. In the next chapter, we model a system that can potentially
mimic the effects of the filter cavity, whilst circumventing some of the associated
experimental difficulties.

6.5 Appendix: Fourier transform convention
In this appendix, we detail the Fourier transform convention used throughout the
gravitational wave chapters. We have continuous operators with the following com-
mutation rules

[â(t), â†(t′)] = δ(t− t′) (6.69)

and

[â(t), â(t′)] = [â†(t), â†(t′)] = 0. (6.70)

In the time domain X̂(t) = 1
2
(â†(t) + â(t)), we can see that X̂†(t) = X̂(t). However,

to take the Fourier transform, we need to make some choice for what to do with the
transform of â†

â(ω) =
1√
2π

∫ ∞

−∞
a(t)eiωtdt (6.71)

Since the Fourier transform takes us out of the reals, the resulting operators do not
have the same properties under conjugation. In particular, if we make the following
choice (taking the hermitian conjugate of the entire Fourier transform above)

â†(ω) =
1√
2π

∫ ∞

−∞
a†(t)e−iωtdt (6.72)

Then we will have

⇒ â†(−ω) = 1√
2π

∫ ∞

−∞
â†(t)eiωtdt (6.73)
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This choice of convention implies that
(â(ω))† = â†(ω) (6.74)

⇒ (â(−ω))† = â†(−ω), (6.75)
i.e., there is no ambiguity in the notation. However, it also implies that the Fourier
transform of â†(t) F.T→ â†(−ω). Since we will frequently need to manipulate our
operators in either the time domain or the Fourier domain, this is a helpful choice
of definition, since we only have to be careful when actually making our Fourier
transforms. Everything else just works as expected.

This choice affects the commutation relation [a(ω), a†(ω′)]. For our choice, we
have

[â(ω), â†(ω′)] =
1

2π

∫
â(t)eiωtdt

∫
â†(t′)e−iω′t′dt′ − 1

2π

∫
â†(t′)e−iω′t′dt′

∫
â(t)eiωtdt

(6.76)

=
1

2π

∫ (
â(t)â†(t′)− â†(t′)â(t)

)
eiωte−iω′t′dtdt′ (6.77)

=
1

2π

∫ ∞

−∞
[â(t), â†(t′)]eitωe−it′ω′

dtdt′ (6.78)

=
1

2π

∫ ∞

−∞
δ(t− t′)eitωe−it′ω′

dtdt′ (6.79)

=
1

2π

∫ ∞

−∞
eit(ω−ω′)dt (6.80)

= δ(ω − ω′), (6.81)
which is analogous to the non-Fourier relations. Choosing instead the convention

â†(ω) =
1√
2π

∫ ∞

−∞
â†(t)eiωtdt (6.82)

leads to the commutation rule [â(ω), â†(ω′)] = δ(ω + ω′), since there will be the
term eiωteiω

′t′ which will lead to an integral over eit(ω+ω′). we also have

[â(ω), â(ω′)] =
1

2π

∫ ∞

−∞
[â(t), â(t′)]eitωeit

′ω′
dtdf ′ (6.83)

= 0 (6.84)
= [â†(ω), â†(ω′)], (6.85)

which is independent of our convention choice.
Below, we will compute the Fourier transforms of some useful operators using

this convention.
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6.5.0.1 Fourier transform of δâ.

For the operator δâ(t) ≡ â(t) − α(t) (for a coherent state), we have the Fourier
transform convention

δâ(ω) =
1√
2π

∫ ∞

−∞
a(t)eiωtdt− 1√

2π

∫ ∞

−∞
α(t)eiωtdt (6.86)

= â(ω)− α(ω) (6.87)

and

δâ†(ω) =
1√
2π

∫ ∞

−∞
a†(t)e−iωtdt− 1√

2π

∫ ∞

−∞
α∗(t)e−iωtdt (6.88)

= â†(ω)− α∗(ω) (6.89)

6.5.0.2 Fourier transform convention for δX̂

For the operator δX̂ = 1
2

(
δâ+ δâ†

)
, we have the Fourier transform

δX̂(ω) =
1√
2π

∫ ∞

−∞

1

2

(
δâ(t) + δâ†(t)

)
eiωtdt (6.90)

=
1

2

(
δâ(ω) + δâ†(−ω)

)
(6.91)

6.6 Appendix: Analysis of interferometer
In this appendix, we analyse the modes of the interferometer shown in Fig. 6.5.
We want to find the relationship between the input operators â0, â1 and the output
operators â4, â5. We first perform an analysis without assuming the input modes
â0 and â1, but later we assume squeezed vacuum and coherent light are injected
into these ports, respectively. Light entering the ports (â0, â1) will be split by the
beamsplitter according to (

a2
a3

)
= B

(
a0
a1

)
(6.92)

=
1√
2

(
a0 + ia1
a1 + ia0

)
(6.93)

where
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Figure 6.5: A standard Mach-Zehnder interferometer with phase difference
φ between the two arms. The extra phase shift π/2 is included so that we operate
in ‘dark mode’ i.e., we have no photocurrent when the phase difference is zero.

B =
1√
2

(
1 i
i 1

)
(6.94)

is the matrix for the 50/50 beamsplitter.
The light â0 transmits to the arm denoted by â2 and the light â1 reflects (and

thus picks up a π/2 phase shift) in arm two. For arm three, the transmission and
reflection are reversed.

The phase shifter φ directly introduces a relative phase shift between the arms,
and we additionally shift the relative phase by π/2 so the detection is in ‘dark’ mode,
i.e., that there is no output signal when the lengths of the interferometer arms are
the same.
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After the phase shifting, the light in arm 3 changes, and we have(
a2
a3

)
= Φ

(
φ+

π

2

)
B

(
a0
a1

)
(6.95)

=
1√
2

(
a0 + ia1

−eiφ (a0 − ia1)

)
(6.96)

where

Φ(θ) =

(
1 0
0 eiθ

)
(6.97)

performs a phase shift θ on the lower arm (here arm 3). The light then enters the
second beam splitter and is transformed according to the matrix B again, and we
find the final output modes(

a4
a5

)
= BΦ

(
φ+

π

2

)
B

(
a0
a1

)
(6.98)

=
1

2

( (
1− ieiφ

)
a0 −

(
−i+ eiφ

)
a1

i
(
i+ eiφ

)
a1 −

(
−i+ eiφ

)
a0

)
(6.99)

The detectors measure the photocurrent N = a†a. In our configuration, we will
perform a homodyne measurement, i.e., we subtract the current at arm 4 from the
one at arm 5 to obtain

Î = â†5â5 − â†4â4 (6.100)
Î = sin(φ)

(
a1

†a1 − a0
†a0
)
+ cos(φ)

(
a0

†a1 + a1
†a0
)

(6.101)

6.6.1 Injection of coherent light into one port
Using a coherent state input β = |β|eiθ combined with some light of interest |Ψ〉, we
can obtain

〈β,Ψ|Î|Ψ, β〉 = 〈β,Ψ| sin(φ)
(
a1

†a1 − a0
†a0
)
+ cos(φ)

(
a0

†a1 + a1
†a0
)
|Ψ, β〉 (6.102)

= sin(φ)
(
|β|2 − 〈Ψ|n̂0|Ψ〉

)
+ |β| cos(φ) 〈Ψ|â†0eiθ + â0e

−iθ|Ψ〉 (6.103)
= sin(φ)

(
|β|2 − 〈Ψ|n̂0|Ψ〉

)
+ 2|β| cos(φ) 〈Ψ|Ŷ (θ)|Ψ〉 (6.104)
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Where Ŷ (θ) = 1
2

(
â†0e

iθ + â0e
−iθ
)

and θ is the angle of the coherent state input
(that will function as the local oscillator angle for homodyne detection). Note that
Ŷ (θ = 0) = X̂0 and Ŷ (θ = π/2) = P̂0, so we have access to both quadrature
components with this method.

We can also compute the variance

(∆I)2 = |β| sin(φ) cos(φ) 〈Ψ|eiθa0† + a0e
−iθ|Ψ〉+ cos2(φ) 〈Ψ|a0† · a0|Ψ〉+ |β|2 sin2(φ)

(6.105)
= |β| sin(φ) cos(φ) 〈Ψ|Y (θ)|Ψ〉+ cos2(φ) 〈Ψ|n0|Ψ〉+ |β|2 sin2(φ) (6.106)

6.6.1.1 Vacuum state in other port

If we now use |0〉 in the other port, we have

〈β, 0|Î|0, β〉 = |β|2 sin(φ) (6.107)

We can also compute the variance of this signal

∆I2 = |β|2 , (6.108)

yielding a signal-to-noise ratio

SNR =
〈I〉
∆I

=
|β|2 sin(φ)

|β|
(6.109)

6.6.1.2 Squeezed vacuum in second port

We now consider the case where we inject squeezed vacuum into the second port. We
will make use of the squeeze operator relations

Ŝ†(z)âŜ(z) = â cosh r − eiθsq â† sinh (6.110)
Ŝ†(z)â†Ŝ(z) = â† cosh r − e−iθsq â sinh r (6.111)

where θsq is the squeezing angle and r is the squeezing parameter.

n0 = a†0a0

⇒ nsq = cosh(r)
(
a0

† cosh(r)− a0e
−iθ sinh(r)

)
· a0

+ sinh(r)
(
a0 sinh(r)− eiθa0

† cosh(r)
)
· a0† (6.112)
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which has expectation value

〈0|nsq|0〉 = sinh2(r) (6.113)

Since the expectation value of the generalized quadrature operator Y (θ) is linear in
the operators â0 and â†0, it has expectation value zero, so the signal is

〈I〉 = sin(φ)
(
|β|2 − sinh2(r)

)
(6.114)

with variance

(∆I)2 = |β|2 sin2(φ) + sinh2(r) cos2(φ), (6.115)

giving a signal-to-noise ratio

SNR =

∣∣∣|β|2 sin(φ)− sinh2(r) sin(φ)
∣∣∣√

|β|2 sin2(φ) + sinh2(r) cos2(φ)
(6.116)

≈
∣∣φ (|β|2 − sinh2(r)

) ∣∣
| sinh2(r)|

+O
(
φ2
)
, (6.117)

where in the second line we have expanded in φ to first order, since we expect the
signal to be small. The signal-to-noise ratio grows as the squeezing parameter r is
increased.
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7.1 Introduction
We have seen in the previous chapter that the optimal frequency dependent squeezing
can be produced by a filter cavity. In order to produce this squeezing rotation,
the light needs to be inside the cavity on the order of milliseconds (gLIGO = 2π ·
60 Hz corresponds to ∼ 2.5ms). Given the high propagation speed of light, this
corresponds to roughly 1000km of distance travelled. Assuming a round trip loss of
0.01%, we require a cavity length of 1km to reach > 90% total loss. To alleviate
some of the engineering problems associated with producing such a large cavity, we
propose an alternative scheme to increase the light storage time: photon storage via
electromagnetically induced transparency.

Works analysing the storage potential of EIT are relatively numerous [89, 90,
91] and the idea to apply EIT to gravitational wave detection has already been
proposed [92]. However, the analysis [92] does not include the averaging effect of
atoms travelling in and out of the cavity beam, nor does it rigorously treat all the
noise sources. We endeavour to build on this work and do both. We will begin with
a treatment of the noise that includes additional losses from the cavity and effects
due to finite cooperativity and then move on to a full treatment of the dynamics of
atoms moving in and out of the cavity field in the section on motional averaging.

Other recent work [93] has theoretically and experimentally analysed an optical
parametric oscillator away from resonance, and found that up to a 39◦ rotation is
possible, with a corresponding noise reduction of 5.5 dB.

7.2 Frequency dependent squeezing with EIT
We consider the 3-level system shown in Fig. 7.1. We begin with the rotating
frame atomic Hamiltonian (7.172) in the rotating wave approximation derived in
Appendix 7.10 of this chapter.

Ĥ(j) = ~∆σ̂(j)
33 + ~δσ̂(j)

22 − ~
(
Ωjσ̂

(j)
32 + Ω∗

j σ̂
(j)
23 + gjσ̂

(j)
31 â+ g∗j σ̂

(j)
13 â

†
)

(7.1)

From here, we can obtain Langevin equations of motion via

dÔ

dt
= − i

~

[
Ô, Ĥ

]
− γÔ

2
Ô + Γ̂Ô, (7.2)

where we have introduced a decay γÔ corresponding to each operator and a Langevin
noise operator ΓÔ such that the fluctuation dissipation theorem is satisfied (this noise
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Figure 7.1: A Λ-type 3-level atom coupled to a classical field (solid), with Rabi
frequency Ω and a quantum cavity field (dashed) with coupling strength g. Assuming
each of the N atoms in the medium couples equally to the field, the quantum field
couples to spin-wave excitations with an effective coupling constant g

√
N due to

collective enhancement [5]. The fields are detuned from the excited state |3〉 by some
amount ∆ to reduce the effects of Doppler broadening and absorption.

operator has the effect of ensuring that the commutation relations for the operators
are conserved by the time-evolution).

˙̂a = i
N−1∑
j=0

(
g(j)
)∗
σ
(j)
1,3 + âin

√
κout −

âκ

2
+ ˆaloss

√
κloss (7.3)

˙̂σ
(j)
12 = i

Ω∗

2
σ̂
(j)
13 −

(γs
2

+ iδ
)
σ̂
(j)
12 + Γ̂σ12 (7.4)

˙̂σ
(j)
13 = ig(j)â−

(γ
2
+ i∆

)
σ̂
(j)
13 + i

Ω

2
σ̂12 + Γ̂σ13 , (7.5)

where we have assumed the population of the state |1〉 remains high, i.e., σ11 ≈ 1 and
σ22 ≈ σ33 ≈ 0. We have set γâ → κ = κout+κloss and Γâ → âin

√
κout+ ˆaloss

√
κloss, i.e.,

the decay Γ̂â is composed of the normal input-output relation for a cavity, plus an
additional loss term âloss

√
κloss that takes into account cavity losses that do not come

through the in/out port. This represents a small departure from the usual (time-
reversal symmetric) representation and corresponds to extra cavity loss κs from the
other side of the cavity. We have additionally defined γσ12 = γs and γσ13 = γ
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7.3 Constant coupling EIT
To obtain the standard EIT equations, we will assume that each of our N atoms
couples equally to the cavity field â, i.e., gj = g and to the classical field such
that Ωj = Ω. This assumption is not realistic for atoms moving in and out of the
laser beam, and will be treated more rigorously in the following section on motional
averaging. We define two collective operators

P̂ =
1√
N

N−1∑
j=0

σ̂
(j)
23 (7.6)

Ŝ =
1√
N

N−1∑
j=0

σ̂
(j)
21 (7.7)

Ŝ is the annihilation operator for the so-called ‘spin wave’, that a quantum memory
is trying to create (i.e., mapping a pulse of light from the state |2〉 to the long-lived
state |1〉 via the excited state |3〉) P̂ is the annihilation operator for the polarisation.
Setting δ = 0, we obtain the equations of motion

˙̂a = âin
√
κout −

âκ

2
+ ˆaloss

√
κloss + ig

√
NP̂ (7.8)

˙̂
P = iâg

√
N +

√
γF̂p + P̂

(
−γ
2
− i∆

)
+

1

2
iŜΩ (7.9)

˙̂
S = F̂s

√
γs +

1

2
iP̂Ω∗ − Ŝγs

2
− iδŜ (7.10)

Where we have replaced the Langevin noise operators with force terms γÔF̂Ô. These
noise operators, along with âloss have zero expectation value when expressed in terms
of normal-ordered products and will thus be neglected in the following.

7.3.1 Adiabatic elimination of â and P̂ .
We want an approximate solution... Let us move into the Fourier domain and assume
that κ, γ,∆ � ω. This allows us to neglect the −iωâ and −iωP̂ terms that appear
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on the left hand side.

0 = âin
√
κout −

âκ

2
+ ˆaloss

√
κloss + ig

√
NP̂ (7.11)

0 = iâg
√
N +

√
γF̂p + P̂

(
−γ
2
− i∆

)
+

1

2
iŜΩ (7.12)

−iωŜ =
1

2
iP̂Ω∗ + F̂s

√
γs −

Ŝγs
2

(7.13)

Since we are working in vacuum, normal ordered products of our noise operators will
give zero in expectation values. Thus, we can neglect the operators F̂s, F̂p, âloss.

Ŝ =
iPΩ∗

γs − 2iω
(7.14)

from which we obtain

0 = iag
√
N + P

(
1

2
(−γ − 2i∆)− ΩΩ∗

2(γs − 2iω)

)
(7.15)

⇒ P =
iag

√
N

1
2

(
γ + ΩΩ∗

γs−2iω
+ 2i∆

) (7.16)

From our first equation, we now get

0 = − 2âg2N

γ + 2i∆+ ΩΩ∗

γs−2iω

+ âin
√
κout −

âκ

2
(7.17)

= âinκout − â
√
κout

(
κ

2
+

2g2N

γ + 2i∆+ ΩΩ∗

γs−2iω

)
(7.18)

Using the input-output relation âin + âout = â
√
κout and inserting the cooperativity

C = 4g2N
γκ

, we obtain the reflection coefficient

r =
âout
âin

= −1 +
2κout

κ

(
1 + γC

γ+2i∆+ ΩΩ∗
γs−2iω

) (7.19)

We now want to control the properties of this reflection coefficient such that we can
mimic the optimal response of the filter cavity we found in Section 6.3 of the previous
chapter.
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7.3.1.1 Lossless solution

If we remove losses, we are left with

r = −1 +
2(

1 + γC

γ+2i∆−ΩΩ∗
2iω

) (7.20)

If we further make the approximation (C + 1) ≈ C, (which is valid for C � 1), we
obtain a reflection coefficient

r =
ΩΩ∗ + 2iω(γC − 2i∆)

ΩΩ∗ − 2iω(γC + 2i∆)
(7.21)

We have a resonance when r reaches its maximal value (i.e., where r → −1) at

ωres = − i|Ω|2

2γC + 4i∆
(7.22)

The real and imaginary parts of r are

R =
(4∆ω + Ω2)

2 − 4γ2C2ω2

4γ2C2ω2 + (4∆ω + Ω2)2
(7.23)

I =
4γCω (4∆ω + Ω2)

4γ2C2ω2 + (4∆ω + Ω2)2
(7.24)

which gives a scattering angle θ = Arg(r) = 2 tan−1
(

I√
R2+I2+R

)
θ = 2 tan−1

(
2γCω

4∆ω + Ω2

)
, (7.25)

that we want to use to mimic the filter cavity from Section 6.3. The squeezing
rotation angle ϕ is then given by

ϕ(ω) =
θ(ω + ωi) + θ(−ω + ωi)

2
(7.26)

= tan−1

(
2γC (ωi − ω)

4∆ (ωi − ω) + Ω2

)
+ tan−1

(
2γC (ωi + ω)

4∆ (ωi + ω) + Ω2

)
(7.27)

where ωi is the frequency of the interferometer light.
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7.3.1.2 Setting ωi

Since we want our squeezing rotation angle ϕ to give values between 0 and π/2, or
equivalently, between π/2 and π, we can make use of this requirement to set our ωi.
We set ϕ(ω = 0) = π

2
, and solve for ωi.

2 tan−1

(
2γCωi

4∆ωi + Ω2

)
=
π

2
(7.28)

⇒ 2γCωi

4∆ωi + Ω2
= 1 (7.29)

⇒ ωi =
Ω2

2γC − 4∆
(7.30)

Here we note that by setting ωi we can counteract the negative effects of finite coop-
erativity C. This parameter is extremely sensitive, and crucially, depends strongly
on the position of the atomic resonance. By making different approximations for the
solutions to our equations, the calculated value of the atomic resonance will change,
and hence the correct value of ωi will be altered.

7.3.2 Setting Ω

The filter cavity that we are trying to mimic has a bandwidth κ that controls the
rate at which the memory is accessed. We can modify the bandwidth by setting
the coupling laser frequency, Ω. We found that the filter cavity should have κ =√
2gLIGO. We need to compute an expression for the effective bandwidth of the

cavity-atoms system. This rate is related to the decay rate of the storage state S
into the cavity mode aout. We want to find some expression for 〈â†outâout〉 as a function
of the population Ŝ†Ŝ. Using our adiabatically eliminated equations, we can write
(assuming γs = κloss = 0)

âout = − SΩ
√
γC

γ + γC + 2i∆
, (7.31)

and thus

〈â†outâout〉 =
γCΩ2

γ2(C + 1)2 + 4∆2︸ ︷︷ ︸
effective bandwidth

〈Ŝ†Ŝ〉 (7.32)

We can therefore set

Ω =
4
√
2
√
gLIGO

√
γ2(C + 1)2 + 4∆2

√
γC

(7.33)
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7.3.3 Limiting cases
We now consider two limiting cases, firstly the so-called EIT limit, where we are on
resonance ∆ = 0, and Raman limit, where we are far detuned ∆ � Cγ.

7.3.3.1 EIT limit (∆ = 0)

In this case, our equations reduce to

r =
ΩΩ∗ + 2iγCω

ΩΩ∗ − 2iγCω
(7.34)

=
Ω2/γC + 2iω

Ω2/γC − 2iω
(7.35)

and

θ = 2 tan−1

(
2γCω

Ω2

)
(7.36)

This maps on exactly to the case where we have a filter cavity (6.64) with Ω2/γC =
κeff. In accordance with our analysis for the filter cavity, in order to have the optimal
parameters, we should set Ω = (

√
2gLIGOγC)

1/2 and ωi = − 1√
2
gLIGO.

7.3.3.2 Raman limit

In the opposite extreme, we have ∆ � Cγ, and we obtain

r = −1 +
2(

1 + γC

γ+2i∆−ΩΩ∗
2iω

) (7.37)

≈ −1 +
2

1 + γC
i|Ω|2
2ω

+2i∆

(7.38)

The condition 2i∆− Ω2

2iω
= 0 leads to the changing from r = −1, to r = 1 and then

back again i.e., the phase changes rapidly around the region of this resonance, which
occurs at ω = −Ω2

4∆
. This rapid change around the resonance is what we exploit to

mimic the filter cavity response.
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7.4 Full solution
In the previous section, we used adiabatic elimination to obtain simple analytic
results. However, we do no have to assume the conditions for adiabatic elimination,
and instead produce a more precise solution where we keep all the terms. In Fourier
space, our equations of motion are now

−iωâ = âin
√
κout −

âκ

2
+ ig

√
NP̂ (7.39)

−iωP̂ = iâg
√
N + P̂

(
−γ
2
− i∆

)
+

1

2
iŜΩ (7.40)

−iωŜ = − Ŝγs
2

+
1

2
iP̂Ω∗ (7.41)

Again, setting our noise operators F̂s = F̂p = âloss = 0, we have

Ŝ =
iP̂Ω∗

γs − 2iω
(7.42)

from which we obtain

0 = iag
√
N + P

(
−γ
2
− i∆− ΩΩ∗

2(γs − 2iω)
+ iω

)
(7.43)

⇒ P̂ =
iâg

√
N

γ
2
+ i∆+ ΩΩ∗

2(γs−2iω)
− iω

(7.44)

From our first equation, we now get

0 = âin
√
κout − â

(
κ

2
+

g2N
γ
2
+ i∆+ ΩΩ∗

2(γs−2iω)
− iω

− iω

)
(7.45)

= âinκout − âf (7.46)
Using the input-output relation âin + âout = â

√
κout, we obtain

r =
aout
ain

= −1 +
κout
f

(7.47)

= −1 +
2κout

γCκ

γ+2i(∆−ω)+ ΩΩ∗
γs−2iω

+ κ− 2iω
(7.48)

= −1 +
2κ (1− κloss)
γCκ

γ+2i(∆−ω)+ ΩΩ∗
γs−2iω

+ κ− 2iω
(7.49)
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where here κloss is expressed as a fraction of κ.
Although in principle this expression is more precise than the adiabatically elim-

inated solutions, in the parameter regime we consider, the adiabatic approximation
holds, so the differences between the two solutions are minor. As such, to investigate
the losses in the system, we proceed with the adiabatically eliminated solutions.

7.4.1 EIT in the presence of losses
Now we are in a position to analyse exactly how losses such as finite cooperativity
C and finite lifetimes of the storage state γs, and cavity loss κloss. Unless otherwise
stated, for all the plots given below, we use the parameters ∆/2π = 109 Hz, κ/2π =
109 Hz, γ/2π = 106 Hz, C = 5, gLIGO/2π = 60 Hz, κLIGO/2π = 450 Hz and a
squeezing parameter S = 10 dB. The first thing to ensure is that perfect EIT can
reproduce the broadband suppression. Even with a modest cooperativity C = 5,
we can reproduce the optimal suppression shown as φoptimal in Fig. 7.2. As we can
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Figure 7.2: Noise spectral density with finite cooperativity C = 5 with an EIT
scheme in the Raman configuration. The other losses κloss and γs are set to zero.

see from Fig. 7.3, worsening the cooperativity to a relatively low C = 3 can still
produce a broadband suppression very close to what is achievable with the optimal
frequency rotation φoptimal. The protocol is relatively robust to cavity loss κloss as
well. In Fig. 7.4, and in Fig. 7.5, we have can see the effect of κloss = 0.01, 0.05,
respectively. There is, in essence, a broadband worsening of the noise suppression, as
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Figure 7.3: Noise spectral density with finite cooperativity C = 3 with an EIT
scheme in the Raman configuration. The other losses κloss and γs are set to zero.

expected if the squeezed vacuum is being lost and replaced by un-squeezed vacuum,
from the leaking of the cavity. Adding some loss from the storage state γs/2π =
20, 30 Hz produces a worsening around the frequency of γs, as can be seen in Fig. 7.6
and Fig. 7.7. Finally, we can examine the combination of all these errors. We find
that for the parameters used, the cavity loss κloss dominates Fig. 7.8 the effects of loss
from the storage state. However, we are still seeing, even in the worst case Fig. 7.9,
a broadband noise suppression of more than 5dB, given input squeezing of 10dB.
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Figure 7.4: Noise spectral density with κloss = 0.01, i.e., a 1% loss of light from
the ’perfect’ mirror. We otherwise have C = 5, γs = 0.
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Figure 7.5: Noise spectral density with κloss = 0.05, i.e., a 5% loss of light from
the ’perfect’ mirror. We otherwise have C = 5, γs = 0.
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Figure 7.6: Noise spectral density with γs/2π = 20 Hz. We otherwise have C = 5,
κloss = 0.
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Figure 7.7: Noise spectral density with γs/2π = 30 Hz. We otherwise have C = 5,
κloss = 0.
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Figure 7.8: Noise spectral density with combined losses γs/2π = 20 Hz, κloss =
0.01 and C = 5.
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Figure 7.9: Noise spectral density with combined losses γs/2π = 30 Hz, κloss =
0.05 and C = 5.
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7.5 Motional averaging

Figure 7.10: Motional averaging using an atomic ensemble. The pump laser
prepares atoms in the state |1〉 shown. This state is then coupled to the cavity field
â with coupling strength gj, which is different for every atom. A classical drive Ωj

couples the excited state |3〉 to the storage state |2〉. The detuning ∆ is chosen large
to reduce the effects of Doppler broadening.

Our analysis shows that the EIT scheme can produce broadband suppression of
noise. However, there are additional noise sources present in real life experiments that
we have not yet taken into account. Instead of assuming that the atoms all experience
the same coupling to these beams, we instead treat the couplings generally, allowing
for the ensemble atoms to dynamically move in and out of the light fields within the
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cavity.
We will return to the full equations of motion (7.5) and treat them more com-

pletely. We now consider the full setup, as shown in Fig. 7.10, where the ensemble
atoms can move in and out of the cavity light beam â.

7.5.1 Adiabatic elimination of σ13
We will take Ω(j)(t) and g(j)(t) to have real modes. We can re-write equation (7.5)

dσ
(j)
13

dt
= −Kσ(j)

13 + igj(t)a+ i
Ωj

2
σ
(j)
12 (7.50)

where K = γ
2
+ i∆. Multiplying by M = CeKt gives a total derivative on the LHS

dσ
(j)
13

dt
M +KMσ

(j)
13 =

dσ
(j)
13

dt
M +M ′σ

(j)
13 =

d

dt
(Mσ13) (7.51)

= iMgj(t)a+ iM
Ω(t)

2
σ
(j)
12 (7.52)

where M ′ = KM . Substituting Ω(t) = Ωxy sin(k(zj(0) + v
(j)
z (0)t)) and g(t) =

gxy sin(k(zj(0) + v
(j)
z (0)t)), and integrating, we get

σ
(j)
13 = e−Kt

(
igxya

∫
eKt sin(k(zj(0) + v(j)z (0)t))dt+

iΩxy

2
σ
(j)
12

∫
eKt sin(k(zj(0) + v(j)z (0)t))dt

)
(7.53)

=
gxy
2
afint +

Ωxy

4
σ
(j)
12 fint (7.54)

where

fint = 2ie−Kt

∫
eKt sin(k(zj(0) + v(j)z (0)t))dt (7.55)

=
eikzj(t)

γ
2
− i∆+ ikv

(j)
z (0)

+
e−ikzj(t)

−γ
2
+ i∆+ ikv

(j)
z (0)

(7.56)
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and zj(t) = zj(0) + vz(0)t. Now, we can eliminate σ13 from our equations to obtain

˙̂a = −κ
2
â+

N−1∑
j=0

g(j)(t)

(
g
(j)
xy

4
a+

Ω
(j)
xy

8
σ̂
(j)
12

)
fj(γ,∆, k) +

√
κinâin (7.57)

=

(
−κ
2
+

N−1∑
j=0

|g(j)xy |2fj(γ,∆, k)

)
a+

N−1∑
j=0

1

8
g(j)xy (t)Ω

(j)
xy fj(γ,∆, k)σ

(j)
12 +

√
κinâin

(7.58)

= A(t)â+
N∑
j=1

Bj(t)σ
(j)
12 +

√
κinâin (7.59)

and

˙̂σ
(j)
12 = −1

2
σ̂
(j)
12 γs +

Ω
(j)
xy

8

(
g(j)xy â+

Ω
(j)
xy

2
σ̂
(j)
12

)
fj(γ, δ, k) (7.60)

=
1

8
g(j)xyΩ

(j)
xy âfj(γ,∆, k) +

(
1

16
|Ωxy|2fj(γ,∆, k)−

1

2
γs

)
σ̂
(j)
12 (7.61)

= Bj â+ Cj(t)σ̂(j)
12 (7.62)

where

A(t) = −κ
2
+

N∑
j=1

|g(j)xy |2fj(γ,∆, k) (7.63)

Bj(t) =
1

8
g(j)xy (t)Ω

(j)
xy (t)fj(γ,∆, k) (7.64)

Cj(t) =
1

16
|Ωxy|2fj(γ,∆, k)−

1

2
γs (7.65)

fj(γ,∆, k) = 2i sin(k(zj(0) + v(j)z (0)t))fint (7.66)

=
1− e−2ikzj(t)

−γ
2
− i∆+ ikvz(0)

+
−1 + e2ikzj(t)

γ
2
+ i∆+ ikvz(0)

(7.67)

We can now split our operators into a time-independent mean value and (time-
dependent) fluctuations. When taking the average of fj, we neglect the contribution
from Doppler broadening and assume the exponential terms average to zero. This
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gives

f̄j = =
−1

γ
2
− i (∆− kvz(0))

− 1
γ
2
− i (∆ + kvz(0))

(7.68)

=
−4γ + 8i∆

4k2v2 + (γ − 2i∆)2
(7.69)

and

δf(t) =
e2ikzj(t)

γ
2
− i (∆− kvz(0))

+
e−2ikzj(t)

γ
2
− i (∆ + kvz(0))

(7.70)

A(t) = −κ
2
+

N∑
j=1

|g(j)xy |2f̄j︸ ︷︷ ︸
Ā

+
N∑
j=1

|g(j)xy |2δf(t)︸ ︷︷ ︸
δA(t)

(7.71)

Bj(t) =
1

8
g(j)xy (t)Ω

(j)
xy (t)f̄j︸ ︷︷ ︸

B̄

+
1

8
g(j)xy (t)Ω

(j)
xy (t)δf(t)︸ ︷︷ ︸

δB(t)

(7.72)

Cj(t) =
1

16
|Ωxy|2f̄j +

1

2
γs︸ ︷︷ ︸

C̄

+
1

16
|Ωxy|2δf(t)︸ ︷︷ ︸

δC(t)

(7.73)

Here we note that

Ω(j)
xy (t) = Ωe

−x2j (t)−y2j (t)

w2 (7.74)

g(j)xy (t) = ge
−x2j (t)−y2j (t)

w2 (7.75)

i.e., both have a Gaussian shape. This reflects the Gaussian shape of the light beam
in the transverse direction, and the sinusoidal term that we included earlier describes
the oscillations in the light beam electric field. To summarise, we have

˙̂a = A(t)â+
N∑
j=1

Bj(t)σ̂
(j)
12 +

√
κinâin (7.76)

˙̂σ
(j)
12 = Bj â+ Cj(t)σ̂(j)

12 (7.77)

The (N + 1)× (N + 1) equations can be written in a coupling matrix form

ẋ = M′(t)x(t) +
√
κâin (7.78)
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where x(t) =
(
â, σ̂

(0)
21 , σ̂

(1)
21 , . . . , σ̂

(N−1)
21

)T
, the elements of our basis are Bi = xivi and

vi = (0, 0, . . . , 1i, 0, 0, . . . )
T . The coupling matrix M′ = M′

0 +M′
1 where

M′
0 =



Ā B̄ B̄ B̄ . . . B̄
B̄ C̄ 0 0 . . . 0
B̄ 0 C̄ 0 . . . 0
... ... ... . . . ...
... ... ... . . . ...
B̄ 0 0 . . . . . . C̄


(7.79)

M′
1 =



δA δB0 δB1 δB2 . . . δBN−1

δB0 δC0 0 0 . . . 0
δB1 0 δC1 0 . . . 0

... ... ... . . . ...

... ... ... . . . ...
δBN−1 0 0 . . . . . . δCN−1


(7.80)

This matrix equation describes the coupling to individual modes. In the analysis
above, it was advantageous to introduce collective mode operators, which we gener-
alise here to produce a collective mode description of the system.

7.5.2 Change of basis
We now define

Ŝk =
1√
N

N−1∑
`=0

eik`
2π
N σ̂

(`)
12 (7.81)

with inverse

σ̂
(j)
12 =

1√
N

N−1∑
`=0

e−ij` 2π
N Ŝ` (7.82)

This Ŝk operator is the generalisation of the operator Ŝ = Ŝk=0 that we wrote down
before. The operator Ŝ†

0 generates the Dicke state when acting on the vacuum, i.e.,
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it excites the atom from the ground to the storage state. Note the orthogonality
condition

N−1∑
n=0

e
i2π
N

(k−k′)n = N δkk′ (7.83)

In this basis, we have

˙̂a = A(t)â+
1√
N

N−1∑
j=0

N−1∑
`=0

B̄e−ij` 2π
N Ŝ` +

1√
N

N−1∑
j=0

N−1∑
`=0

δBj(t)e
−ij` 2π

N Ŝ` +
√
κinâin

(7.84)

= A(t)â+
B̄√
N

N−1∑
`=0

N−1∑
j=0

e−ij` 2π
N

︸ ︷︷ ︸
Nδ`0

Ŝ` +
N−1∑
`=0

1√
N

N−1∑
j=0

δBj(t)e
−ij` 2π

N

︸ ︷︷ ︸
≡δBâ

`

Ŝ` +
√
κinâin

(7.85)

= Āâ+ δA(t)â+ B̄
√
NŜ0 +

N−1∑
`=0

δBâ
` (t)Ŝ` +

√
κinâin (7.86)

where we have defined

δBâ
` (t) ≡

1√
N

N−1∑
j=0

δBj(t)e
−ij` 2π

N (7.87)

Summing (7.77) over j, and writing Cj(t) = C̄+δCj(t), we can write an expression
for ˙̂

S`.
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1√
N

N−1∑
j=0

eij`
2π
N ˙̂σ

(j)
12 =

1√
N

∑
j=0

Bj(t)e
ij` 2π

N â+
N−1∑
j=0

N−1∑
`′=0

eij`
2π
N Cj(t)e−ij`′ 2π

N Ŝ`′

(7.88)

⇒ ˙̂
S` =

√
N B̄δ`0â+

N−1∑
j=0

δBj(t)e
ij` 2π

N

︸ ︷︷ ︸
=δBâ

−`(t)

â+ C̄Ŝ` +
N−1∑
`′=0

N−1∑
j=0

eij(`−`′) 2π
N δCj(t)︸ ︷︷ ︸

≡δC`,`′ (t)

Ŝ`′ (7.89)

=
√
N B̄δ`0â+ δBâ

−`(t)â+ C̄Ŝ` +
N−1∑
`′=0

δC`,`′(t)Ŝ`′ (7.90)

In this new basis, we have

˙̂a = Āâ+ B̄
√
NŜ0 +A(t)â+

N−1∑
`=0

Bâ
` (t)Ŝ` +

√
κinâin (7.91)

˙̂
S` =

√
N B̄δ`0â+ δBâ

−`(t)â+ C̄Ŝ` +
N−1∑
`′=0

δC`,`′(t)Ŝ`′ (7.92)

We have now the matrix equation y′(t) = My(t)+
√
κâin(t), where M = M̄+δM(t)

and

M̄ =


Ā

√
N B̄ 0 . . . 0√

N B̄ C̄
0 C̄
... . . .
0 C̄

 (7.93)
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and,

δM(t) =

(
δA(t) δBâ

` (t)
δBâ

−`(t) δC`,`′(t)

)
(7.94)

=


δA(t) δBâ

0(t) δBâ
1(t) . . . δBâ

N−1(t)
δBâ

0(t) δC0,0(t) δC0,1(t) . . . δC0,N−1(t)

δBâ
−1(t) δC1,0(t) δC1,1(t)

...
... ... . . .

δBâ
1−N(t) δCN−1,0(t) . . . δCN−1,N−1(t)

 (7.95)

Here we can see that the coefficient A couples the light field to itself, that C couples
the Ŝ` modes to each other, and it is Bâ

` that couples the atoms to the light field.
The description in terms of only the coupling matrix M̄ reduces exactly to the EIT
description that we derived above, with the fluctuations δM(t) corresponding to
additional noise terms that we will quantify below.

7.6 Perturbation expansion
To quantify the degree to which the motional averaging will introduce extra noise,
we wish to perform a perturbation expansion up to second order. Recall our coupling
matrix equation

y′(t) = M(t)y(t) +
√
κâin(t), (7.96)

where y, âin are both vectors, and M is the coupling matrix for the system of differ-
ential equations. We will now expand

y(t) = y0(t) + λy1(t) + λ2y2(t) (7.97)
M(t) = M̄+ λδM(t), (7.98)

where λ is a parameter we will use to keep track of the order of the perturbation.
Inserting these into (7.96), and equating orders of λ

y′
0(t) = M̄y0(t) +

√
κâin (7.99)

y′
1(t) = δM(t)y0(t) + M̄y1(t) (7.100)

y′
2(t) = δM(t)y1(t) + M̄y2(t) (7.101)
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Moving to the Fourier domain, we obtain

−iωy0(ω) = M̄y0(ω) +
√
κâin(ω) (7.102)

−iωy1(ω) = M̄y1(ω) +

∫
δM(ω − ω′)y0(ω

′)dω′ (7.103)

−iωy2(ω) = M̄y2(ω) +

∫
δM(ω − ω′)y1(ω

′)dω′ (7.104)

where the integrals result from the convolution theorem for products in Fourier space.
The solution to the 0th order equation is

y0(ω) = −
[
iω + M̄

]−1√
κâin(ω) (7.105)

Plugging this into the first order equation gives

y1(ω) =
[
iω + M̄

]−1
(∫ ∞

−∞
δM(ω − ω′)

[
iω′ + M̄

]−1√
κâin(ω

′)dω′
)

(7.106)

and finally plugging this into the second order equation gives

y2(ω) = −
[
iω + M̄

]−1
(∫ ∞

−∞
δM(ω − ω′)

[
iω′ + M̄

]−1

(∫ ∞

−∞
δM(ω′ − ω′′)

[
iω′′ + M̄

]−1√
κâin(ω

′′)dω′′

)
dω′

)
(7.107)

7.6.1 Expression for inverse matrix
Since M̄ is in block diagonal form, we can invert it fairly easily. We call the 2 × 2
matrix in the top left corner T and find the inverse

T+ iω =

(
Ā+ iω

√
N B̄√

N B̄ C̄ + iω

)
(7.108)

⇒ (T+ iω)−1 = T̂ =
1

(Ā+ iω)(C̄ + iω)−N B̄2

(
C̄ + iω

√
N B̄√

N B̄ Ā+ iω

)
(7.109)
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The rest of the entries are simply C̄+ iω so the reciprocal will be taken in the inverse
matrix (M0 + iω)−1. i.e., we have

(M̄+ iω)−1 = W(ω) =


T̂ 0 . . . 0

0 1
C̄+iω

0
...

... . . . 0
0 . . . 0 1

C̄+iω

 (7.110)

Note that the S0 mode (the symmetric Dicke state) is the mode that is ultimately
being coupled by the propagator W.

7.6.2 Solution to the average equations of motion
We will now show that our zeroth order solution is equal to the EIT solution derived
in the previous section. The zeroth order term â is the zeroth component of y0

y0 = − [iω +M0]
−1√κâin (7.111)

= −
√
κWâin(ω)e0 (7.112)

where e0 is a basis vector. In order to extract the zeroth component (the one corre-
sponding to â), we left multiply by the basis vector e†0, giving

â(0)(ω) = −e†0W(ω)
√
κinâin(ω) (7.113)

= −W00(ω)
√
κinâin(ω), (7.114)

where

W00 =
C̄ + iω

(Ā+ iω)(C̄ + iω)−N B̄2
. (7.115)

We can now find a reflection coefficient using the now familiar input-output relation

âin + âout =
√
κoutâ. (7.116)

We have

âin + âout = −κâinW00 (7.117)

⇒ âout
âin

= −1− κW00 (7.118)

123



Chapter 7 | Frequency dependent squeezing via electromagnetically induced transparency in a
motionally-averaged room temperature atomic ensemble

We assume that we are far-detuned ∆ � kvz(0) such that we can neglect the
effects of Doppler broadening, and write

r = −1−
κ
(
− Ω2

4
( γ
2
+i∆

) − γs
2
+ iω

)
(
− γCκ

γ
2
+i∆

− κ
2
+ iω

)(
− Ω2

4
( γ
2
+i∆

) − γs
2
+ iω

)
− γCκΩ2

16
( γ
2
+i∆

)2 . (7.119)

When γs = 0, we have

r = −1− κ

− γCκΩ2

16
( γ
2
+i∆

)2(
iω− Ω2

4
(
γ
2 +i∆

)
) − γCκ

γ
2
+i∆

− κ
2
+ iω

(7.120)

This is of the same functional form as if we adiabatically eliminate P̂ in the standard
EIT equations from above, where we have made the rescalings Ω →

√
2Ω and g →√

2g. In Fig. 7.11, we plot this noise spectral density for this zeroth order correction
alongside the standard EIT solution. As before, without losses we can reach the
noise floor provided by the optimal angle φoptimal.
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Figure 7.11: Comparison of the noise spectral density of standard EIT (dot-
dashed), with the zeroth order motional averaging solution (dashed). We have broad-
band suppression of the noise compared to the unsqueezed φLIGO, and reach the level
of the optimal solution φoptimal when we have turned off losses due to the cavity and
finite lifetime of the storage state.

7.7 Higher order corrections and noise spectral
density

The first order correction to â is

â(1)(ω) = e†0W(ω)

∫ ∞

−∞
δM(ω − ω′)W(ω′)e0

√
κinâin(ω

′)dω′ (7.121)

=
∑
ij

W0i(ω)

∫ ∞

−∞
δMij(ω − ω′)Wj0(ω

′)
√
κinâin(ω

′)dω′ (7.122)
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and the second order correction is

â(2)(ω) = −e†0W(ω)

(∫ ∞

−∞
δM(ω − ω′)W(ω′)

×
(∫ ∞

−∞
δM(ω′ − ω′′)W(ω′′)e0

√
κinâin(ω

′′)dω′′
)
dω′

)
(7.123)

= −
∑
ijk`

W0i(ω)

(∫ ∞

−∞
δMij(ω − ω′)Wjk(ω

′)

)
×
(∫ ∞

−∞
δMk`(ω

′ − ω′′)W`0(ω
′′)
√
κinâin(ω

′′)dω′′
)
dω′ (7.124)

= −
√
κin

∫ ∞

−∞

∑
ijk`

W0i(ω)δMij(ω − ω′)Wjk(ω
′)δMk`(ω

′ − ω′′)

×W`0(ω
′′)
√
κinâin(ω

′′)dω′′dω′ (7.125)

7.7.1 Noise spectral density to second order
We want to compute the noise spectral density which can be achieved by a single
computation (see Appendix 7.12) of expectation values of the generalised quadrature
operator Ŷ (ω, θ) = eiθa(−ω)†+e−iθa(ω)

2
expanded to second order

Y †(ω1, θ)Y (ω2, θ) =
1

4

(
e2iθa0 (ω1)

† · a2 (−ω2)
† + e2iθa2 (ω1)

† · a0 (−ω2)
†

+ e−2iθa0 (−ω1) · a2 (ω2) + e−2iθa2 (−ω1) · a0 (ω2)

+ a0 (ω1)
† · a2 (ω2) + a2 (ω1)

† · a0 (ω2)

+ a0 (−ω1) · a2 (−ω2)
† + a2 (−ω1) · a0 (−ω2)

†
)

(7.126)

where we have thrown away a1a1 terms, which were argued in [94] were negligible.
After some algebra (see Appendix 7.11), we obtain

〈Y †(ω1, θ)Y (ω2, θ)〉

=
κin
8
δ(ω1 − ω2)

∫
dτdω′

∑
`

cosh2(r)T (−ω1) + sinh2(r)T (ω1)

+ sinh(2r)
(
U(ω1) + U(−ω1) + V(ω1) + V(−ω1)

)
(7.127)
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where

T (ω1) = 2W00 (ω1)WD(ω
′)∗eiτ(ω

′−ω1)
(
W01 (ω1)

∗W00 (ω1)
∗ (δB`(t

′)δC`(t)) ∗

+W10 (ω1)
∗ (W00 (ω1)

∗ (δB`(t)δC`(t′)) ∗ +W01 (ω1)
∗ (δC`(t)δC`(t′)) ∗)

+ (W00 (ω1)
∗) 2 (δB`(t)δB`(t

′)) ∗
)

+ 2W00 (ω1)
∗WD(ω

′)eiτ(ω1−ω′)
(
W00 (ω1) δB`(t) +W01 (ω1) δC`(t)

)
(W00 (ω1) δB`(t

′) +W10 (ω1) δC`(t′)) (7.128)

U(ω1) = W00 (−ω1)
∗WD(ω

′)∗
(
−ei(2θ+τ(ω′−ω1))

)
(
W01 (ω1)

∗W00 (ω1)
∗ (δB`(t

′)δC`(t)) ∗ +W10 (ω1)
∗
(
W00 (ω1)

∗ (δB`(t)δC`(t′)) ∗

+W01 (ω1)
∗ (δC`(t)δC`(t′)) ∗

)
+ (W00 (ω1)

∗) 2 (δB`(t)δB`(t
′)) ∗
)

(7.129)

and

V(ω1) = W00 (−ω1)WD(ω
′)e−i(2θ+τ(ω′−ω1))

(
W00 (ω1) δB`(t)

+W01 (ω1) δC`(t)
)
(W00 (ω1) δB`(t

′) +W10 (ω1) δC`(t′)) (7.130)

7.8 Atomic billiards simulation
To evaluate the average and second order correction, we need atomic trajectories
A(t), B(t) and C(t), which are provided by an atomic billiard simulation. We simulate
N atoms with a thermal velocity distribution inside a box with variable geometry,
to allow for both rectangular and circular cross-sections.

With large enough N , the values of Ā, B̄ and C̄ from the simulation can reproduce
the broadband noise suppression in the average case, as shown in Fig. 7.12. The
simulation will be used to produce the second order correction to the noise spectral
density in future work. To do this, the formula (7.127) will be included in the
simulation, making use of the atomic trajectories in the calculation for the NSD.
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Figure 7.12: Calculation of the noise spectral density from an atomic billiard
simulation. The motional averaging here is computed to lowest order only, i.e.,
without the second order correction. Without losses, we can reproduce the optimal
broadband suppression from the optimal squeezing angle.
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7.9 Summary and Conclusions
In these chapters, we have shown that frequency-dependent squeezing can improve
the performance of gravitational wave interferometers such as the one used by VIRGO
and LIGO. We derived the optimal squeezing angle needed to produce broadband
suppression of noise, and showed that a filter cavity could produce this squeezing
angle. However, such a filter cavity would be experimentally cumbersome, so we
investigated another model, EIT using an atomic ensemble, to see whether it could
produce the same effect. Initially, we assumed the coupling constants for each atom
were equal, and solved the equations of motion to investigate the performance of this
scheme with losses. We found that even with large losses, we were able to produce a
noise suppression that would improve the sensitivity of detection. We then analysed
the motional averaging aspect of the scheme, and treated the couplings in more detail,
finding that, to first order, the motional averaging equations are equal to the ones
for standard EIT. We used an atomic billiard simulation to verify our equations to
first order. To quantify the effects of ensemble atoms moving in and out of the cavity
beam by expanding the cavity mode operator to second order, and computing the
noise spectral density. Future work will involve using our atomic billiard simulation
to compute the additional error terms using our expression for the second order
correction, such that we can fully characterise the effects of various noise sources,
as well as the error introduced by the ensemble dynamics. Due to the length of the
equation (7.127), checking for errors will be a relatively involved process.
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7.10 Appendix: Derivation of atomic Hamiltonian
In this appendix, we derive the Hamiltonian and some additional theory that forms
the basis for this chapter. Here we will derive the Hamiltonian for a 3-level atom
coupled by two fields in the Λ configuration. We will write our atomic Hamiltonian
assuming the energy of each level is Ei = ~ωi. We obtain

Ĥ0 =
∑
i

~ωiσ̂ii

Defining ωij = ωi − ωj, we will make a constant offset to the Hamiltonian (i.e.,
defining the state |1〉 as the reference energy level. We obtain

Ĥ0 = ~ω31σ̂33 + ~ω21σ̂22 =
∑
i

~ωi1σ̂ii

7.10.1 Inclusion of dipole interaction
Suppose our 3-level atom is illuminated with two light frequencies ν1 and ν2, as
in Fig. 7.13. One of these we will take to be a quantum field, with an electric field
component given by

Ê1(z) = ε1

(
~ω1

2ε0V

)1/2 (
âeiν1z/c + â†e−iν1z/c

)
(7.131)

where â is the mode annihilation operator with frequency ν1, ε1 is the polarisation
unit vector, V is the quantization volume for the field, ε0 is the permittivity of free
space and c is the speed of light in a vacuum. The inclusion of this quantum field
alters our Hamiltonian

Ĥ0 = ~ν1â†â+ ~ω31σ̂33 + ~ω21σ̂22

ν1 is the central frequency of the cavity. We drive the other atomic transition with
a classical control field at frequency ν2

E2(z, t) = ε2E2(t) cos(ν2(t− z/c)). (7.132)

Both fields interact with the atoms via the dipole force. We define Ĥint = −d̂ · Ê,
where d̂ is the dipole moment.

Ĥint = −d̂ ·
[
E2(z, t) + Ê1(z)

]
(7.133)
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Figure 7.13: A 3-level atom in Λ configuration illuminated by a cavity field with
coupling strength g and frequency ν1, as well as a classical field Ω with frequency ν2.
The states |1〉 and |2〉 are detuned from the state |3〉 by the detunings ∆1 and ∆2,
respectively.
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This Hamiltonian tells us how the energy of an atomic transition is affected by
our quantum (Ê1) and classical (E2) fields. The dipole operator is

d̂ =
∑
ij

σ̂ij 〈i|d̂|j〉

However, we assume that the transition |2〉 ↔ |1〉 is dipole forbidden, so the matrix
elements 〈2|d̂|1〉 = 〈1|d̂|2〉 = 0. We additionally assume that the atomic states don’t
have their own permanent dipole, so terms of the form 〈i|d̂|i〉 = 0. We are thus left
with a dipole operator

d̂ = σ̂23 〈2|d̂|3〉+ σ̂32 〈3|d̂|2〉+ σ̂13 〈1|d̂|3〉+ σ̂31 〈3|d̂|1〉

We will further assume that the signal (quantum) field couples only the |1〉 → |3〉
transitions via the polarisation ε1, whilst the control field couples the |s〉 → |e〉
transitions via ε2, so 〈3|d̂ · ε2|1〉 = 0 and 〈3|d̂ · ε1|2〉 = 0. In practice, this can be
achieved by having different polarisations for the two beams. With this in mind, the
dot products are

−d̂ ·E1 = −
(

~ν1
2ε0V

)1/2 (
σ̂31 〈3|d̂ · ε1|1〉+ σ13 〈1|d̂ · ε1|3〉

) (
âeiν1z/c + â†e−iν1z/c

)
(7.134)

= −~
(
gσ̂31 + g∗σ13

) (
âeiν1z/c + â†e−iν1z/c

)
(7.135)

−d̂ ·E2 = −E2
2

(
σ̂32 〈3|d̂ · ε2|2〉+ σ23 〈2|d̂ · ε2|3〉

) (
eiν2(t−z/c) + e−iν2(t−z/c)

)
(7.136)

= −~
(
Ωσ̂32 + Ω∗σ23

) (
eiν2(t−z/c) + e−iν2(t−z/c)

)
(7.137)

Where we have defined

Ω(t) =
E2(t)
~

〈3|d̂ · ε2|2〉, g =

(
ν1

2~ε0V

)1/2

〈3|d̂ · ε1|1〉 (7.138)

Where Ω is the Rabi frequency for the transition between states 3 and 2. That is,
given a perfectly resonant ∆1 = 0 transition, the atom would be excited from |2〉 to
|3〉 at a rate of Ω.

g and Ω encode how the quantum and classical light couple to their transitions.
i.e., they translate from the fields Ê1 and E2 into an energy that appears in the
Hamiltonian.
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7.10.1.1 Rotating wave approximation

We will transform into the interaction picture via a unitary transformation. The
general action of a unitary operator is defined by

H → UHU † + i~ U̇U † (7.139)

We will choose the unitary Û(t) = eit(â
†a+ω21 ˆσ2,2+ω31 ˆσ3,3) (this defines the interaction

picture)

7.10.1.2 Action of the operators

Since all the parts of the unitary commute, we can evaluate the action separately
U = U1U2 = U2U1, where

U1 = exp (it (ω21 ˆσ2,2 + ω31 ˆσ3,3 + ν1)) (7.140)
= − ˆσ2,2 − ˆσ3,3 + ˆσ2,2e

itω21 + ˆσ3,3e
itω31 + 1 (7.141)

where we took a series expansion and made use of the orthogonality of the σ̂ opera-
tors. and U2 = eitν1â

†â

This unitary acts on σαβ as

Uσ32U
† = σ̂32e

itω32 (7.142)
Uσ23U

† = σ̂23e
−itω32 (7.143)

Uσ31U
† = ˆσ3,1e

itω31 (7.144)
Uσ13U

† = ˆσ1,3e
−itω31 (7.145)

and

eiν1tâ
†ââe−iν1tâ†â = e−iν1tâ (7.146)

eiν1tâ
†ââ†e−iν1tâ†â = eiν1tâ† (7.147)
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Our dot products in the interaction picture are

U
(
−d̂ ·E1

)
U † = −~

(
gσ̂31e

itω31 + g∗σ13e
−itω31

) (
âe−iν1teiν1z/c + â†eiν1te−iν1z/c

)
(7.148)

= −~

(
g∗ ˆσ1,3â

†e−
i(ct(ω31−ν1)+ν1z)

c + âg∗ ˆσ1,3e
i
( ν1z

c
−t(ν1+ω31)

)

+ g ˆσ3,1â
†eit(ν1+ω31)− iν1z

c + âg ˆσ3,1e
i(ct(ω31−ν1)+ν1z)

c

)
(7.149)

− ~
(
g∗ ˆσ1,3â

†e−i
(
ν1
(
z
c
−t
)
+tω31

)
+ âg ˆσ3,1e

i(ctω31+ν1(z−ct))
c

)
(7.150)

= −~
(
g∗ ˆσ1,3â

†e−
iν1z
c

−it(ω31−ν1) + âg ˆσ3,1e
iν1z
c

+it(ω31−ν1)
)

(7.151)

U
(
−d̂ ·E2

)
U † = −~

(
Ωσ̂32e

itω32 + Ω∗σ23e
−itω32

) (
eiν2(t−z/c) + e−iν2(t−z/c)

)
(7.152)

= −Ω∗~ ˆσ2,3e
−it(ν2+ω32) − Ω∗~ ˆσ2,3e

it(ν2−ω32)

+ Ω~ ˆσ3,2
(
−e−it(ν2−ω32)

)
− Ω~ ˆσ3,2e

it(ν2+ω32) (7.153)

≈ −~
(
Ω∗ ˆσ2,3e

− i(ct(ω32−ν2)+ν2z)
c + Ω ˆσ3,2e

i(ct(ω32−ν2)+ν2z)
c

)
(7.154)

We have taken the rotating wave approximation (which discards terms ∝ e±i(ν+ωij)t.
Then transforming back to the Schrödinger picture, we obtain

Ĥ = H0 − ~
(
g∗ ˆσ1,3â

†e−
iν1z
c + âg ˆσ3,1e

iν1z
c + Ω∗ ˆσ2,3e

iν2(ct−z)
c + Ω ˆσ3,2e

−iν2
(
t− z

c

))
(7.155)

7.10.2 Rotating frame
We now move to a rotating frame given by the unitary

R = exp
(
−it

(
ν1 ˆσ1,1 + ν2 ˆσ2,2 + ν1â

†â
))

We again split the action of this unitary in two: R = R1U2, where U2 is the same
as above.

R1 = exp (−it (ν1 ˆσ1,1 + ν2 ˆσ2,2)) (7.156)
= − ˆσ1,1 − ˆσ2,2 + ˆσ1,1e

−iν1t + ˆσ2,2e
−iν2t + 1 (7.157)
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where we again took a series expansion and used the orthogonality of the σ operators.
The operator R has the actions

ˆσ3,2 → ˆσ3,2e
iν2t (7.158)

ˆσ2,3 → ˆσ2,3e
−iν2t (7.159)

ˆσ3,1 → ˆσ3,1e
iν1t (7.160)

ˆσ1,3 → ˆσ1,3e
−iν1t (7.161)

â→ âe−iν1t (7.162)
â† → â†eiν1t (7.163)

Now, under these transformations, we have

Ĥint = −~
(
g∗ ˆσ1,3â

†e−
iν1z
c + âg ˆσ3,1e

iν1z
c + Ω∗ ˆσ2,3e

iν2(ct−z)
c

−iν2t + Ω ˆσ3,2e
iν2t−iν2

(
t− z

c

))
(7.164)

= −~
(
Ωσ̂32 + Ω∗σ̂23 + gσ̂31â+ g∗σ̂13â

†) (7.165)

where in the last line, we have defined

ˆσ2,3 → ˆσ2,3e
iν2z
c (7.166)

â† → â†eiν1t (7.167)
ˆσ1,3 → ˆσ1,3e

−iν1
(
t− z

c

)
(7.168)

The full Hamiltonian in the rotating frame is then written

Ĥ = ~ν1â†â+ ~ω31σ̂33 + ~ω21σ̂22 + i~ṘR† + Ĥint (7.169)
= ~(ω31 − ν1)σ̂33 + ~(ω21 + ν2 − ν1)σ̂22 +Hint (7.170)
= ~(ω31 − ν1)σ̂33 + ~(ω31 − ω32 + ν2 − ν1)σ̂22 +Hint (7.171)
= ~∆1σ̂33 + ~δσ̂22 − ~

(
Ωσ̂32 + Ω∗σ̂23 + gσ̂31â+ g∗σ̂13â

†) (7.172)

where we have used σ11+σ22+σ33 = 1, ∆1 = ω31−ν1, ∆2 = ω32−ν2, δ = ∆1−∆2

and that ω31 = ω32 + ω21 ⇒ ω21 = ω31 − ω32.
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7.11 Appendix: Derivation of quadrature opera-
tor expectation values

Here we will show in detail how the expression (7.127) was obtained. Recall the
second order expansion of the quadrature operator

Y †(ω1, θ)Y (ω2, θ) =
1

4

(
e2iθa0 (ω1)

† · a2 (−ω2)
† + e2iθa2 (ω1)

† · a0 (−ω2)
†

+ e−2iθa0 (−ω1) · a2 (ω2) + e−2iθa2 (−ω1) · a0 (ω2)

+ a0 (ω1)
† · a2 (ω2) + a2 (ω1)

† · a0 (ω2)

+ a0 (−ω1) · a2 (−ω2)
† + a2 (−ω1) · a0 (−ω2)

†
)

(7.173)

and the expressions for â0 and â2.

â(0)(ω) = −W00(ω)
√
κinâin(ω) (7.174)

â(2)(ω) = −
√
κin

∫ ∞

−∞

∑
ijk`

W0i(ω)δMij(ω − ω′)Wjk(ω
′)δMk`(ω

′ − ω′′)

×W`0(ω
′′)
√
κinâin(ω

′′)dω′′dω′ (7.175)

We will perform the calculation for the term (which should be understood to be
thermally and quantum averaged)

〈â†2(ω1)â0(ω2)〉 = κin
∑
ijk`

∫ ∞

−∞

[
W0i(ω1)δMij(ω1 − ω′)Wjk(ω

′)δMk`(ω
′ − ω′′)W`0(ω

′′)
]∗

〈â†in(ω′′)âin(ω2)〉W00(ω2)dω
′′dω′ (7.176)

To proceed, we use the standard commutator relation [âin(ω), â
†
in(ω

′)] = δ(ω − ω′)
and the transformation rules for squeezed states

âin(ω) → cosh(r)âin(ω)− eiφsq sinh(r)â†in(−ω) (7.177)
â†in(ω) → cosh(r)â†in(ω)− e−iφsq sinh(r)âin(−ω) (7.178)

where r is the squeezing parameter and φsq is the (fixed) squeezing angle of the
incident light. Below, we set φsq = 0, corresponding to squeezing in P̂ , and use
〈â†in(ω′′)âin(ω2)〉 = δ(ω′′ − ω2) sinh

2(r). We thus have
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〈â†2(ω1)â0(ω2)〉 =

κin sinh
2(r)

∑
ijk`

∫ ∞

−∞

[
W0i(ω1)Wjk(ω

′)δMij(ω1 − ω′)δMk`(ω
′ − ω2)W`0(ω2)

]∗
W00(ω2)dω

′

(7.179)

Now we will write the Fourier transform

δMij(ω1 − ω′) =
1√
2π

∫
δMij(t)e

i(ω1−ω′)t (7.180)

〈â†2(ω1)â0(ω2)〉 =

κin
∑
ijk`

∫ ∞

−∞

[
W0i(ω1)δMij(t)e

i(ω1−ω′)tWjk(ω
′)δMk`(t

′)ei(ω
′−ω2)t′W`0(ω2)

]∗
W00(ω2)dω

′dtdt′

(7.181)

Now we assume that the noise process is stationary and thus that δM(t)δM(t′) =
F (t− t′) = F (τ). We then make a coordinate transformation τ = t− t′ and s = t+t′.
with dtdt′ = |J |dτds, where the Jacobian determinant is |J | = ∂t

∂τ
∂t′

∂s
− ∂t

∂s
∂t′

∂τ
= 1

2
.

Now we get

〈â†2(ω1)â0(ω2)〉 =
κin
2π

|J |
∑
ijk`

∫ ∞

−∞

[
W0i(ω1)Wjk(ω

′)F (τ)W`0(ω2)
]∗
e−

i
2
τ(ω1+ω2−2ω′)e−

i
2
s(ω1−ω2)W00(ω2)dω

′dτds

(7.182)

The integral

1

2π

∫ ∞

−∞
e−

i
2
s(ω1−ω2)ds = δ

(
ω1 − ω2

2

)
= 2δ(ω1 − ω2), (7.183)

cancels the contribution from |J |, and yields

〈â†2(ω1)â0(ω2)〉 =

κinδ(ω1 − ω2)
∑
ijk`

∫ ∞

−∞

[
W0i(ω1)Wjk(ω

′)F (τ)W`0(ω2)
]∗
W00(ω2)e

−iτ(ω1−ω′)dω′dτ

(7.184)

137



Chapter 7 | Frequency dependent squeezing via electromagnetically induced transparency in a
motionally-averaged room temperature atomic ensemble

after performing the integral ds. Now we assume that the dominant coupling is from
the terms with index 0 or 1 to the N − 1 continuum states. Thus, we can ignore the
0,1 terms in Wjk and write Wjk(ω) = δjkWD(ω) = δjk

1
C̄+iω

. This allows us to sum
over the index k, to obtain.

〈â†2(ω1)â0(ω2)〉 = κinδ(ω1 − ω2)
∑
ij`

∫ ∞

−∞

[
W0i(ω1)WD(ω

′)δMij(t)δMj`(t
′)W`0(ω2)

]∗
W00(ω2)e

−iτ(ω1−ω′)dω′dτ (7.185)

and now the index j > 1. We also have that the index i ≤ 1 and ` ≤ 1 due
to the restriction imposed by W0i and W`0. To obtain the final expression, we
approximate our atomic ensemble as an ideal gas, i.e., that trajectories of different
atoms are uncorrelated. Thus, products δMijδMj` average to zero unless the atom
number is the same, and we can evaluate the sums over i and j.

The calculation of the other terms proceeds in an analogous way, with the expec-
tation values of âin given by

〈â†in(ω1)âin(ω2)〉 = sinh2(r)δ(ω2 − ω1) (7.186)
〈âin(ω1)âin(ω2)〉 = − cosh(r) sinh(r)δ(ω2 + ω1) (7.187)
〈â†in(ω1)â

†
in(ω2)〉 = − cosh(r) sinh(r)δ(ω2 + ω1) (7.188)

〈âin(ω1)â
†
in(ω2)〉 = cosh2(r)δ(ω1 − ω2) (7.189)

7.12 Appendix: Single angle noise spectral den-
sity

To compute the noise spectral density, we need to compute SδIδ(ω−ω′) = 1
2
〈δI†δI + δIδI†〉.

In general, the evaluation of these expectation values of I = −P −AX involves writ-
ing the expectation value in terms of the generalised quadrature operator

〈Ŷ †(ω, θ)Ŷ (ω′, θ′)〉 = 〈Ŷ (ω′, θ′)Ŷ †(ω, θ)〉 (7.190)

=
1

4
δ(ω − ω′)

(
cos (θ − θ′)− i sin (θ − θ′)

− S|t|2 sin(θ − φ) sin (φ− θ′)

+
|t|2 cos(θ − φ) cos (φ− θ′)

S
− |t|2 cos (θ − θ′)

)
, (7.191)
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depending on the precise value of A. The above formula is computed by noting that
all the normal-ordered products of our operators give zero, so we simply need to
perform a commutation to get our terms into normal order (which gives the term
proportional to δ(ω−ω′)), and then the remaining operators can be discarded inside
the expectation value.

It is advantageous if we can write this result using a single angle, such that we
only need to compute it once. We write the homodyne intensity as

N (ω)(cos(θ(ω))X + sin(θ(ω))P ) = I (7.192)
= N (ω)Y (θ(ω)) (7.193)

From here we get that A = cot(θ(ω)) and

θ = cot−1(A) (7.194)
N (ω) = − csc(θ) (7.195)

= −A
√

1 +
1

A2
(7.196)

= −
√
1 +A2. (7.197)
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This thesis has investigated various ways that light and matter can interface
to give us better control and sensitivity of quantum systems. We have analysed
systems from an emitter number N = 1, all the way to a system with N ∼ 106

emitters. We first developed a model of quantum dots embedded in a photonic
crystal waveguide, and used it to analyse our recent experimental work that showed
time-energy entanglement via the scattering off a single quantum dot. Our results
improved our understanding of these single emitter systems and their associated
single-photon nonlinearity. This nonlinearity and resulting quantum entanglement
holds significance in several quantum technologies, including quantum computing,
quantum cryptography and quantum teleportation. We then extended this model
to a system with N = 2, also with an accompanying experiment. We investigated
the rich physics associated with the coupling between these dots, showing that the
emitter decay rate Γ can be modified to produce super- and subradiance. We showed
that, in many cases, the complicated system dynamics can be understood by a much
simpler model, using an effective Hamiltonian formalism. We derived several results
that give us insight into the dynamics observed in the experiment. We also showed
some features of the model that have not yet been observed in our experiment,
both analytically via perturbation theory and with our simulation of the full system
dynamics. In the cases of both N = 1 and N = 2, our model produced excellent
agreement with the experimental data, as shown by several comparisons between
experiment and theory.

We then moved on to a system with N ∼ 10− 100 – atomic arrays. We proposed
and benchmarked a novel sensing protocol using cooperative enhancement to improve
the coupling between two impurities embedded in this lattice. The protocol is rather
general and, in principle, can be applied to other coupled systems of emitters. We
analysed the effects of lattice disorder for our specific model, finding that the system
is robust to most lattice disorder. Our approach is expected to be implementable
in current state-of-the-art platforms, pushing forward the state of the art in sensing
capability.

Finally, we investigated a system with N ∼ 106 – atomic ensembles. We showed
that an atomic ensemble quantum memory in a cavity can produce the appropriate
squeezing rotation to produce broadband noise suppression for a gravitational wave
interferometer. We analysed the various imperfections that could be detrimental to
the performance of such a protocol, finding that even with large losses, we could still
produce a significant improvement to the sensitivity. These results hold promise for
improving the state of the art in gravitational wave astronomy, allowing us to see
further and fainter objects in our universe.

We have contributed models describing N = 1 and N = 2 quantum emitters
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embedded in photonic crystal waveguides, as well as an analysis of the physics un-
derlying these models. Potential future research directions include the analysis of
pulsed excitation, as well as the effects of different driving regimes, including the
strength and driving method (i.e., through the waveguide vs from the top). We
contributed a novel sensing scheme that can be realised in current state-of-the-art
platforms. This scheme could be extended to beyond the single-excitation regime,
where it may be possible to exploit the strong photon nonlinearities that will occur
to further improve the sensitivity. It would also be of interest to perform an explicit
analysis to see how the protocol performs when implemented in other platforms, in-
cluding, e.g., photonic crystal waveguides. We contributed a novel noise analysis of
motionally-averaged EIT that can be used to enhance the sensitivity of gravitational
wave detectors. Future directions for this work include an analysis of the vapour cell
in which the atomic ensemble is housed. Decreasing the size of the cell will improve
the degree of motional averaging, but will increase the number of collisions with the
cell wall, which introduces another source of error. It is thus of interest to find the
optimal cell size and geometry.

The work in this thesis is a stepping stone to a wide range of quantum en-
hanced technologies, including quantum computers, quantum networks, and quan-
tum metrology devices. Research into the interaction between light and matter will
be of continuing importance in the future, due to its role in transforming and shaping
the modern world.
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