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ABSTRACT

Dark matter constitutes six times more of the mass in the Universe than ordinary baryonic matter. The
halos formed by dark matter are fundamental to the formation of structure, yet the properties of these
halos are not well understood theoretically or observationally.

In the first part of this thesis, I review the evidence for the existence of dark matter and its role
in cosmology and astrophysics, and I discuss the particle nature of dark matter and how that nature
can be identified. Then, I summarize the predicted properties of collisionless dark matter halos from
fundamental theory and from numerical simulations of the formation of structure. In particular, I focus
on the possibility of an anisotropic velocity dispersion tensor where the typical velocity in one direction
can be different from that in another direction. This anisotropy demonstrates the fundamental difference
between collisionless dark matter systems and collisional gases.

In the second part of the thesis, I investigate how the properties of halos can be constrained obser-
vationally, and what these constraints imply about dark matter. First, I analyze how accurately the
velocity anisotropy parameter can be measured in a dark matter detector which is sensitive to the direc-
tion of the measured dark matter particles. The anisotropy parameter turns out to be measurable, but
I find that a very large number of events are necessary to reject isotropy at high statistical significance.
Second, using x-ray observations of a sample of galaxy clusters, I carry out a first measurement of the
radially-varying velocity anisotropy profile of dark matter. The measured profile is found to be non-zero
and radially increasing, which is in good agreement with the predictions of numerical simulations. The
measurement implies that dark matter is in fact effectively collisionless in clusters and it sets an upper
limit on the dark matter self-scattering cross section. Finally, I again use a sample of clusters observed
in x-ray to constrain the mass distribution of dark matter in the halos of the clusters. I compare the
measured mass profiles with a number of parametrized mass models in a detailed statistical analysis.
I find moderate evidence that the observed mass profiles are not strictly universal but require a shape
parameter to be fitted to each halo.

Mørkt stof udgør seks gange s̊a meget af massen i universet som almindeligt, baryoniskt stof. Haloer
dannet af mørkt stof spiller en grundlæggende rolle i dannelsen af struktur, men alligevel er den teoretiske
og observationelle forst̊aelse af haloernes egenskaber mangelfuld.

I denne afhandlings første del gennemg̊ar jeg beviserne for eksistensen af mørkt stof, og jeg diskuterer
mørkt stofs egenskaber som partikel, samt hvorledes denne partikel kan identifceres. Derefter beskriver
jeg egenskaberne ved en kollisionsløs halo af mørkt stof, som forudsagt teoretisk og udfra numeriske simu-
leringer. Jeg fokuserer p̊a hastighedsfordelingens dispersionstensor, som kan være ellipsoidisk, s̊aledes at
middelhastigheden i én retning er forskellig fra middelhastigheden i en anden retning. Denne anisotropi
er et eksempel p̊a den grundlæggendel forskel mellem kollisionsløst mørkt stof og vekselvirkende gas.

I afhandlingens anden del undersøger jeg, hvorledes haloers egenskaber kan bestemmes gennem ob-
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servationer, samt hvad disse egenskaber betyder for mørkt stof. Først undersøger jeg, hvor nøjagtigt
anisotropiparameteren kan m̊ales i en partikeldetektor, som kan bestemme retningen af de m̊alte mørkt
stof partikler. Det viser sig, at der kræves et meget stort antal vekselvirkninger af mørkt stof i detek-
toren for at afvise med statistisk signifikans, at hastighedsfordelingen er isotrop. Derefter anvender jeg
observationer af galaksehobe i røntgenspektret til, for første gang nogensinde, at m̊ale anisotropiparam-
eteren og dennes radiale variation i hobenes haloer. Den m̊alte profil er forskellig fra nul og vokser med
radius i god overensstemmelse med forudsigelser baseret p̊a numeriske simuleringer. Målingen betyder,
at mørkt stof i galaksehobe m̊a opføre sig som kollisionsløse partikler, og at der kan sættes en øvre grænse
for tværsnittet af det mørke stofs egenvekselvirkning. Til sidst bruger jeg igen røntgenobservationer af
galaksehobe til at undersøge massefordelingen i hobene. Jeg sammenligner de m̊alte fordelinger med
forskellige parametriserede masseprofiler p̊a grundlag af en detaljeret statistisk analyse. Jeg p̊aviser,
at der er moderat evidens for, at masseprofilen ikke er strengt universel, men derimod kræver, at en
formbestemmende parameter tilpasses hver hobs halo.
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1. INTRODUCTION & OBJECTIVES

Dark matter is one of the main unsolved myster-
ies in modern physics and cosmology. The notion
that the majority of matter in the Universe is of a
so far unknown nature humbles our perception of
the physical world. The investigation of dark mat-
ter, its particle nature, and its role in the Universe
encompasses efforts from the fields of cosmology,
astrophysics, high energy physics, experimental nu-
clear physics, and so on. So far the nature of dark
matter is unknown, but a large and diverse experi-
mental effort gives hope that this situation may be
about to change. Identifying dark matter will be
a major breakthrough in high energy physics, as
a signpost for physics beyond the standard model,
and in cosmology, as the dominant form of matter.

Historically, dark matter was first suggested as
unobserved missing matter in galaxy clusters. To-
day we know that dark matter halos play a crucial
role in the formation of structure in the Universe.
The purpose of this thesis is to constrain the prop-
erties of dark matter halos observationally. This
includes the distribution of mass in the halos and
the dynamics of the dark matter particles. Out
of several possible observational probes, I focus on
two: x-rays from the intracluster medium of galaxy
clusters, which traces the distribution of mass in
the dark matter halo, and ‘dark matter telescopes’
in the form of direction-sensitive dark matter de-
tectors, that may be able to detect Galactic dark
matter particles.

The present thesis takes the form of a synop-
sis, which means that the main body of the thesis
presents a review of the dark matter field and a
summary of the research in relation to that context.
By necessity, this review is concise and, in some
cases, quite selective in the topics covered, and the
bibliography is perhaps exemplifying rather than
exhaustive. In section 2, the modern picture of cos-
mology is summarized, including a brief discussion
of structure formation with dark matter, and the
evidence for dark matter in astrophysics is intro-
duced. Section 3 covers the particle nature of dark

matter, how dark matter can appear in particle
physics theories beyond the standard model, and
the various possibilities for identifying dark mat-
ter. In section 4, dark matter halos are discussed,
with an emphasis on how they can be studied in
observations. Finally, section 5 is a summary and
comment on the papers.

The actual accounts of the research, i.e. the sci-
entific papers on which the thesis is based, are in-
cluded in manuscript as appendices. The papers
are

• Paper I: Host & Hansen (2007), published
in Journal of Cosmology and Astro-particle
Physics, Issue 06, pp. 016 (2007).

• Paper II: Host et al. (2009), published in The
Astrophysical Journal Volume 690, Issue 1, pp.
358-366 (2009).

• Paper III: Host & Hansen (2009), submitted to
The Astrophysical Journal, preprint available
from arXiv:0907.1097.

The appended manuscripts are identical to the pub-
lished or submitted versions, except that the refer-
ences have been merged into a single bibliography
for the whole thesis and are updated where neces-
sary.
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2. COSMOLOGY

The present cosmological paradigm is built on
the theory of general relativity, the assumptions of
homogeneity and isotropy of the Universe, and the
idea that the Universe originated in a Big Bang.
The observational foundations of this model are
the Cosmic Microwave Background (CMB) and the
anisotropies in that, the agreement between predic-
tions and measurements of the light element abun-
dances, galaxy redshift surveys that map structure
in the Universe, and the evidence for accelerated
expansion, as first determined by the dimming of
distant supernovae. Together these pieces form a
picture of an initially smooth, expanding Universe
in which small deviations from smoothness become
gravitationally unstable and collapse to form galax-
ies and galaxy clusters. In this section, I summarize
the present picture of cosmology. The topics are es-
sentially textbook material (Kolb & Turner, 1990;
Dodelson, 2003; Ryden, 2003).

2.1 The evolution of the Universe

Modern physics is the study of matter and how
matter interacts. There are four types of interac-
tions, or forces, namely the strong and weak nu-
clear forces, the electromagnetic force, and gravity.
The first two are short-range in nature and they
can only be observed on the scales of nuclei and
smaller. Electromagnetism also affects matter on
the nuclear scales, and it is the dominant force on
meso-scopic scales. In principle it is a long-range
force, but since equal charges repel each other so
that large accumulations of charge are not found,
electromagnetism does not play a direct role on cos-
mological scales. The remaining force, gravity, is
far weaker and therefore unobservable on nuclear
scales, but since there is no negative gravitational
charge, gravity is the governing force on cosmolog-
ical scales.

Einstein’s theory of general relativity describes
gravity as a curvature of four-dimensional space-
time where matter curves space-time and objects

in free fall travel along geodesics. The local struc-
ture of space-time, and hence of gravity, is encoded
in the metric gµν which is sourced by the energy-
momentum tensor Tµν , as a generalization of how
the Newtonian potential is sourced by the mass
density.

On sufficiently large scales the Universe appears
spatially homogeneous and isotropic, in the sense
that no particular volume of space stands out from
any other. Assuming homogeneity and isotropy,
the invariant line element ds2 = gµνdxµdxν

is given by the Friedmann-Lemâıtre-Robertson-
Walker metric,

ds2 = −dt2 + a(t)2

[
dr2

1− kr2
+ r2dΩ2

]
. (2.1)

The scale factor a(t) describes the size of the Uni-
verse and is conventionally set to a0 = 1 at present,
while k = 1, 0,−1 corresponds to positive, zero,
and negative curvature, respectively. The expan-
sion rate H = ȧ/a is dictated by the energy content
and is given by the Friedmann equation,

H2 =
8πG

3

(
ρ− ρc − ρ0

a2

)
, (2.2)

where ρ0 ≈ 10−26 kg m−3 is the present mean en-
ergy density, and ρc = 3H2/8πG is a ‘critical den-
sity’ which is defined by a flat geometry, k = 0. If
the mean energy density is smaller than the crit-
ical density the Universe has negative curvature,
and if it is greater the curvature is positive. The
energy densities of the various components of the
Universe—matter, radiation, etc.—are often given
in units of the critical density, Ωi = ρi/ρc. The
present expansion rate, the Hubble constant, is
given as H0 = 100h km s−1 Mpc−1. The Hubble
space telescope used distant Cepheids to measure
h ≈ 0.7 (Freedman et al., 2001).

The energy densities of the different components
evolve according to the pressure, P = wρ. For a
constant equation of state w the result is a power-



12 2. Cosmology

law dependence

ρ ∝ a−3(1+w). (2.3)

Non-relativistic matter, including both baryons
and cold dark matter, is essentially pressure-less
(w = 0) and its energy density simply scales as the
inverse of volume, ρm ∝ a−3. Radiation (w = 1/3)
picks up an extra factor due to the redshifting of
its wavelength, i.e. ρr ∝ a−4, and the energy den-
sity associated with curvature, the second term in
eq. (2.2), behaves as ρk ∝ a−2. Conversely, the
dominant contribution to the energy density deter-
mines the expansion rate through the Friedmann
equation and the Euler equation which yield the
acceleration

ä

a
= −4πG

3
(ρ+ 3P ). (2.4)

In the early hot Universe, numerous high-energy
photons dominate the energy budget, but radiation
gives way to a phase of matter domination begin-
ning around the time the CMB is formed. Obser-
vations of the dimming of type Ia supernovae, be-
lieved to be ‘standard candles’, show that the ex-
pansion of the Universe begins to accelerate (Riess
et al., 1998; Perlmutter et al., 1999) at quite low
redshift, z < 1. Acceleration cannot be caused
by ordinary matter but requires a component with
negative pressure, w < −1/3, as evident from
eq. (2.4). The simplest phenomenological possibil-
ity to explain this is a cosmological constant Λ,
termed dark energy, which has w = −1 and which
appears as a constant term in the Einstein equa-
tions. This has led the ΛCDM cosmological model,
consisting of dark energy and cold dark matter, to
become the standard cosmological model, despite
the fact that there is no understanding of what may
constitute the dark energy.

Within the ΛCDM model, the measurements of
the CMB anisotropies by the WMAP satellite as
well as a number of ground-based or balloon-borne
telescopes, together with the measured expansion
rate h, constrain the total amount of pressure-less
matter to be Ωm ≈ 0.3 (Spergel et al., 2007; Ko-
matsu et al., 2009). The amount of curvature is
also severely constrained, and the Universe appears
to be very close to a flat geometry. The super-
novae observations, as well as independent con-
straints from the gas fraction of galaxy clusters

Improved constraints on dark energy from relaxed galaxy clusters 13
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Figure 6. The 68.3 and 95.4 per cent (1 and 2 σ) confidence
constraints in the Ωm,ΩΛ plane for the Chandra fgas data (red
contours; standard priors on Ωbh2 and h are used). Also shown
are the independent results obtained from CMB data (blue con-
tours) using a weak, uniform prior on h (0.2 < h < 2), and SNIa
data (green contours; the results for the Davis et al. 2007 compila-
tion are shown). The inner, orange contours show the constraint
obtained from all three data sets combined (no external priors
on Ωbh2 and h are used). A ΛCDM model is assumed, with the
curvature included as a free parameter.

ΩΛ ≤ 0 is ruled out at ∼ 99.98 per cent confidence. (Using
the standard priors on Ωbh2 and h, a model with ΩΛ ≤ 0
is ruled out at 99.99 per cent confidence; Table 5). The sig-
nificance of the detection of dark energy in the fgas data
is comparable to that of current SNIa studies (e.g. Riess et
al. 2007; Wood-Vasey et al. 2007). The fgas data provide
strong, independent evidence for cosmic acceleration.

In contrast to the Ωm constraints, the error budget for
ΩΛ includes significant contributions from both statistical
and systematic sources. From the analysis of the full sample
of 42 clusters using the standard priors on Ωbh2 and h, we
find ΩΛ = 0.86± 0.19; the error bar is comprised of approx-
imately ±0.15 statistical error and ±0.12 systematic uncer-
tainty. Thus, whereas improved measurements of Ωm from
the fgas method will require additional information leading
to tighter priors and systematic allowances, significant im-
provements in the precision of the dark energy constraints
should be possible simply by gathering more data (e.g. dou-
bling the present fgas data set).

Fig. 6 also shows the constraints on Ωm and ΩΛ ob-
tained from the CMB (blue contours) and SNIa (green con-
tours) data (Section 4.3). The agreement between the re-
sults for the independent data sets is excellent and motivates
a combined analysis. The inner, orange contours in Fig. 6
show the constraints on Ωm and ΩΛ obtained from the com-
bined fgas+CMB+SNIa data set. We obtain marginalized
68 per cent confidence limits of Ωm = 0.275 ± 0.033 and
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Figure 7. The marginalized constraints on ΩΛ determined from
the Chandra fgas data using the non-flat ΛCDM model and stan-
dard (solid curve) and weak (dashed curve) priors on Ωbh2 and
h. The fgas data provide a detection of the effects of dark energy
at the ∼ 99.99 per cent confidence level.

ΩΛ = 0.735 ± 0.023. Together, the fgas+CMB+SNIa data
also constrain the Universe to be close to geometrically flat:
Ωk = −0.010± 0.011. No external priors on Ωbh2 and h are
used in the analysis of the combined fgas+CMB+SNIa data
(see also Section 5.6).

Finally, we have examined the effects of doubling the
allowance for non-thermal pressure support in the clusters
i.e. setting 1.0 < γ < 1.2. For the analysis of the fgas data
alone, this boosts the best-fit value of Ωm by ∼ 5 per cent
but leaves the results on dark energy unchanged. This can
be understood by inspection of equation 3 and recalling that
the constraint on Ωm is determined primarily from the nor-
malization of the fgas curve, whereas the constraints on dark
energy are driven by its shape (Section 4.2). For the com-
bined fgas+CMB+SNIa data set, doubling the width of the
allowance on γ has a negligible impact on the results, since
in this case the value of Ωm is tightly constrained by the
combination of data sets.

5.3 Scatter in the fgas data

Hydrodynamical simulations suggest that the intrinsic dis-
persion in fgas measurements for the largest, dynamically
relaxed galaxy clusters should be small. Nagai et al. (2007a)
simulate and analyze mock X-ray observations of galaxy
clusters (including cooling and feedback processes), employ-
ing standard assumptions of spherical symmetry and hy-
drostatic equilibrium and identifying relaxed systems based
on X-ray morphology in a similar manner to that employed
here. For relaxed clusters, these authors find that fgas mea-
surements at r2500 are biased low by ∼ 9 per cent, with
the bias primarily due to non-thermal pressure support pro-
vided by subsonic bulk motions in the intracluster gas. They
measure an intrinsic dispersion in the fgas measurements of

c© 0000 RAS, MNRAS 000, 000–000

Fig. 2.1: Observational constraints on the energy
content of the Universe. The CMB-only
contours are based on a uniform prior
0.2 < h < 2, the HST prior narrows these
contours considerably. No priors on h or
Ωb are used for the joint contour. Figure
from Allen et al. (2008).

(Allen et al., 2008), require a non-zero ΩΛ, but a de-
generacy in the ΩΛ−Ωm plane means that a fairly
wide range in ΩΛ can be accomodated. This degen-
eracy is broken by a joint analysis of the supernova
data and the CMB data. The missing energy re-
quired by the CMB to achieve the critical energy
density is provided by the cosmological constant,
ΩΛ = 1 − Ωm ≈ 0.7. Figure 2.1 summarizes the
constraints on the contributions from matter and
the cosmological constant to the energy budget in
the present Universe.

2.2 Growth of perturbations

If the Universe contains only perfectly smooth flu-
ids there cannot be any gravitational clustering.
The seeds of the present day galaxies are seen in
the CMB temperature field as tiny fluctuations at a
level of 10−5 relative to the mean temperature. The
statistical distribution of these fluctuations can be
compared with theoretical model predictions. For
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Fig. 2.2: Measured power spectrum of the CMB temperature anisotropies. The additional small scale
data points are from the balloon-based Boomerang telescope and the ground telescopes ACBAR
and CBI. Figure from Nolta et al. (2009).

this, the observed temperature field on the sky is
expanded in spherical harmonics and the correla-
tion function of this expansion is〈

δT

T
(x)

δT

T
(x′)

〉
=
∞∑
l=1

2l + 1
4π

ClPl(x · x′), (2.5)

where x and x′ are unit vectors on the sphere and
the Pl’s are Legendre polynomials. The power
spectrum given by the Cl’s contains all informa-
tion about the angular distribution of the temper-
ature anisotropies. The observational constraints
on the power spectrum from the five-year survey of
WMAP as well as a few other CMB experiments
are shown in Figure 2.2.

What is the physics behind the power spec-
trum? The CMB fluctuations are seeded by a very
early period of exponential growth, inflation, dur-
ing which the scale factor a increases by an enor-
mous factor eN , with N > 60. This stretches
random quantum fluctuations in the density field
to the classical regime and yields a nearly scale-
invariant spectrum of fluctuations, corresponding
to a horizontal line in figure 2.2. When inflation
ends, the Universe is reheated by decay of the in-
flaton field which produces a very hot relativistic
fluid in which all particle species are coupled to
each other, and which is supported against gravi-
tational instability by radiation pressure. The radi-

ation domination causes the Universe to expand as
a ∝ t1/2. Expansion lowers the temperature, and at
some point the weak scattering rate of dark matter
drops below the Hubble rate. This causes to dark
matter decouple from the other particle species.
Now lacking pressure support, the density pertur-
bations in the dark matter fluid become unstable
and grow. When the temperature reaches the eV-
scale at z ∼ 1100, electrons and nuclei recombine
to form neutral atoms and the baryons fall into the
gravitational wells already formed by dark matter.
This collapse leads to a series of acoustic oscilla-
tions of the baryonic fluid. Recombination also
causes the Universe to become transparent to pho-
tons which triggers the formation of the so-called
last scattering surface, which is where the CMB
photons last scattered. The first peak in the CMB
power spectrum corresponds to the density pertur-
bation scale that has just fallen into the potential
well and reached maximum compression when the
last scattering surface is formed. The other peaks
are overtones of this wave corresponding to first
decompression, second compression, etc. Therefore
these acoustic peaks carry information about the
sound speed at the time of recombination, which
itself depends on the baryonic density. The sound
speed can be measured from the ratio of the 1st and
the 3rd peak heights, i.e. the peaks corresponding
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to full compression, and the result corresponds to
Ωbh2 ≈ 0.02.1 The position of the first peak in
l-space is given by the size of the horizon, since
this determines which perturbation scale reaches
first compression at the last scattering surface. At
some redshift before decoupling, the energy density
of matter and radiation are equal (ρr = ρm) and
after that matter is dominant and the Universe ex-
pand as a ∝ t2/3. Therefore the matter density
determines how much the Universe has expanded
and fixes the horizon size at decoupling, which is re-
flected in the position of the first peak in the CMB
power spectrum. The total amount of matter also
affects the peak heights of all peaks and these two
effects together determine Ωmh2 ≈ 0.15. Note that
the measurements of Ωb and Ωm already indicate
the need for non-baryonic dark matter. Finally, the
position of the first peak as well as the low-l inte-
grated Sachs-Wolfe effect provide a strong upper
limit on the amount of curvature, while the total
Ω is close to unity with the HST prior on h ≈ 0.7
is taken into account. Dark energy is only very
weakly constrained directly, but indirectly fulfills
the need for the component energy densities to add
up to Ω0 ' 1. The connection between the physics
of the microwave background, the observables, and
the cosmological parameters is discussed in detail
in Hu et al. (1997, 2001).

The growth of baryonic structure in the Universe
follows the decoupling of radiation and matter, and
is largely caused by the evolution of the dark mat-
ter fluid. The early phase is characterized by small
fluctuations in all components, δ = δρ/ρ � 1,
which can be treated as linear perturbations to the
smooth cosmological evolution. Still, solving the
linear evolution is somewhat complicated since a
number of physical processes play a part. Gener-
ically, the evolution of the density pertubation δ
of any component (dark matter, baryons, radi-
ation) obeys a second-order differential equation
where the transition between oscillatory and grow-
ing/decaying solutions is dictated by the difference
between pressure and gravity. However, the pertur-
bations to the gravitational potential are sourced
by the δ’s of all components so the system is cou-
pled. At early times, for example, radiation acts
as a damping term for the potential and so it indi-

1 The degeneracy with h2 is due to the critical density
ρc ∝ h2.
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Figure 2: Differential halo number density as a function of mass and epoch. The function n(M,z) gives

the comoving number density of halos less massive than M. We plot it as the halo multiplicity function

M2!−1 dn/dM, where ! is the mean density of the universe. Groups of particles were found using

a friends-of-friends algorithm6 with linking length equal to 0.2 of the mean particle separation. The

fraction of mass bound to halos of more than 20 particles (vertical dotted line) grows from 6.42×10−4

at z= 10.07 to 0.496 at z= 0. Solid lines are predictions from an analytic fitting function proposed in

previous work11, while the dashed lines give the Press-Schechter model14 at z= 10.07 and z= 0.

6

Fig. 2.3: Halo mass function at various redshifts
as found in the Millennium simulation
(Springel et al., 2005). The light-blue
dotted lines are Press-Schecter models at
z = 10.07 and z = 0.

rectly affects the evolution of dark matter pertur-
bations. There is also a damping term connected
to the expansion of the Universe, the size of which
depends on whether the Universe is radiation- or
matter-dominated. Before radiation-matter equal-
ity, dark matter pertubations only grow logarith-
mically whereas after, δDM ∝ a. Another compli-
cation is that perturbations on small scales have
longer time to collapse than perturbations on large
scales, which need to enter the causal horizon first.

When δ becomes order of unity the linear treat-
ment breaks down and higher order terms must
be included. As usual, in the linear regime each
Fourier mode evolves independently, but in the
non-linear regime different modes become coupled.
Hence, the growth of perturbations can only be
followed analytically at relatively early times (de-
pending on the scale of interest). For late times
it is still possible to follow the statistical proper-
ties of the fluctuations, e.g. the spatial correlation
function of density peaks, but otherwise a numeri-
cal treatment in the form of N -body simulations is
necessary (section 4.2).

When a perturbation mode reaches the non-
linear regime it collapses on a much shorter time-
scale than the linear evolution. In cold dark mat-
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ter models, the first perturbations to collapse are
the smallest-scale ones which leads to the concept
of hierarchical structure formation (the ‘bottom-
up’ scenario): small-scale objects merge and form
larger halos through a continuous assembly process,
which involves both accretion and violent mergers.
Stars and galaxies form from collapsing gas clouds
within the dark matter halos in a highly complex,
non-linear process which is very dependent on the
environment. Feedback processes and turbulence
as well as merger history play important roles in
the efficiency of star formation. These processes
are studied in numerical simulations but are still
not quantitatively well understood.

The large-scale formation of structure is reason-
ably well understood in terms of the halo mass func-
tion, i.e. the number of halos in a given mass inter-
val. Of course, this distribution is connected to the
initial conditions for the formation of structure ob-
served in the CMB. The link between the two is a
prescription for halo formation, either in the form
of numerical simulations (section 4.2) or an analyt-
ical approximation. The most popular analytical
approach is the extended Press-Schecter formalism
(Press & Schechter, 1974; Sheth & Tormen, 1999;
Zentner, 2007). This relates the perturbations in
the linear regime to the number of collapsed halos
of a given mass through a ‘magical’ formula,

dn(M, z)
dM

= −
√

2
π

ρmδc
3M2σ

d lnσ
d lnR

e−δ
2
c/2σ

2
. (2.6)

The density fluctuations are approximated as a
smoothed Gaussian field, and if a spherical over-
density on the scale R is greater than a critical
value δc, that scale collapses. The variance of the
smoothed field is σ(R, z) which is only weakly mass-
dependent. Hence the total mass dependence of the
halo mass function is dominated by the M−2 fac-
tor. The halo mass function has been found to be
in agreement with observations of the UV luminos-
ity function at high redshift (Bouwens et al., 2008).
Figure 2.3 shows the halo mass function at various
redshifts as found in a cosmological numerical sim-
ulation, as well as the Press-Schecter prediction.
The 1/M2-dependence corresponds to a horizontal
line in the figure.

While properties of the halo distribution are rea-
sonably well understood, there is no theory that is
able to predict the formation or structure of indi-
vidual haloes. Instead, numerical simulations have

become a very important tool. I return to this sub-
ject in section 4.

2.3 Evidence for dark matter

There are several reasons for postulating the ex-
istence of dark matter. As discussed above, the
CMB anisotropies indicate that the baryons com-
prise less than one-sixth of the total matter density
of the Universe. Independent and complementary
evidence for dark matter comes from astrophysics
where dark matter is introduced as ‘missing mass’.
Here I summarize this evidence, but the methodol-
ogy is discussed in more detail in section 4.3.

The most important type of analysis for estab-
lishing astrophysical dark matter is kinematical
analyses of stars in galaxies and galaxies in galaxy
clusters. The line-of-sight velocity of an object can
be measured spectroscopically through the Doppler
shift of emission and absorption lines, both in stel-
lar spectra and in the 21 cm spin-flip radio emission
of neutral hydrogen.

An important method to probe the gravitational
potential of galaxies is the measurement of rota-
tion curves of spiral galaxies, pioneered by Rubin
and Ford in the 1970’s. The velocity of a star in a
circular orbit is v2

c = GM(r)/r, where M(r) is the
mass interior to the orbital radius. Typically, there
is a steep rise of the circular velocity within the
central bulge, but then it becomes roughly constant
with radius. Figure 2.4 shows an example of such
a measurement. The light distribution in the disk
is approximately exponential with a scale length in
the range of kpc, and most of the luminous mat-
ter is contained within a few scale lengths. If mass
follows the distribution of light, the rotation curve
should become simply Keplerian v2

c ∝ r−1 in the
outer parts of the spiral, but the observations in-
stead imply a mass profile M(r) ∝ r. This cannot
be explained by the stellar or diffuse contributions
from either the disk, the bulge, or the stellar halo,
and one is forced to introduce an extra dark halo.

Historically, the first indication of missing mass
was found in galaxy clusters. Zwicky (1933) ap-
plied the virial theorem to the redshift distribution
of galaxies in the Coma cluster and found that the
inferred mass was much greater than the luminos-
ity of the cluster could account for. He concluded
that a dominant amount of the matter in Coma was
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Fig. 2.4: The rotation curve of NGC3198, and a fit-
ted two-component model consisting of an
exponential stellar disk and a dark matter
halo (van Albada et al., 1985).

‘dunkles Materie’, dark matter. The virial theorem
in its most simple form relates the kinetic energy of
a stable system of self-gravitating particles to the
potential energy of the system as 2K = −U . The
total kinetic energy of the galaxies can be estimated
from their line-of-sight velocities. Additional evi-
dence for the large mass of galaxy clusters comes
from x-ray observations. The intracluster medium
(ICM), an ionized plasma which reaches temper-
atures up to 108K, produces x-rays through ther-
mal bremsstrahlung. Given that clusters are stable,
the thermal pressure of the ICM must support the
ICM against collapse in the gravitational field of
the cluster. The pressure can be determined from
the x-ray observations and, generally, the result-
ing mass estimate is found to be much larger than
the contribution from the ICM itself or the contri-
bution from the individual galaxies. Thus, x-ray
observations show that 80–90% of the matter in
galaxy clusters is dark and distributed throughout
the clusters. Another probe of the matter in galaxy
clusters is gravitational lensing. A galaxy cluster
can act as a gravitational lens which distorts the
light of background galaxies or quasars. The de-
flection angle of a light ray is propotional to the
mass of the lens and the inverse impact parameter,
θ ∝ M(r)/r. Observations of background galaxies
can be used to determine the mass distribution of

the lensing cluster. Again, the measured total mass
is much greater than that provided by the luminous
component.

A relatively recent observation of a merging clus-
ter system, known as the Bullet Cluster, provides
extremely convincing evidence for the presence of
dark matter (Markevitch et al., 2004). A small clus-
ter has ‘shot’ through a larger one on a trajectory
perpendicular to the line of sight. The x-ray emit-
ting ICM is highly disturbed, and the bullet shows
a clear bow shock from which the relative speed
of the impact can be determined. But lensing ob-
servations show that the majority of the matter is
found in two clumps on either side of the ICM. This
shows that the collisional gas has been slowed down
by the merger and separated from the gravitating
mass in the form of collisionless dark matter.

Non-baryonic dark matter

The astrophysical motivation for dark matter is to
solve the problem of missing mass, and the ob-
servations do not say much about the nature of
dark matter, except that it cannot interact with
light. But cosmological observations clearly show
that dark matter must be non-baryonic, through
two pieces of evidence. The first is from the im-
print of baryonic acoustic oscillations on the CMB
in the potential formed by dark matter, already dis-
cussed. The second is the formation of elements in
the early, hot universe as described by Big Bang
Nucleosynthesis (see Iocco et al. (2009) for a re-
view), which relates the amount of baryons to the
abundance of light elements. Nucleosynthesis takes
place when the Universe has cooled to a tempera-
ture below the nuclear binding energy scale of MeV.
Above this temperature the reaction n+p� D+γ
is in equilibrium, so as soon as a deuterium nu-
cleus is formed it is split again by a high energy
photon. But below this temperature there are rel-
atively few photons with an energy greater than
the deuterium binding energy of 2.2 MeV and the
reaction proceeds only in one direction. Since the
number density of photons is much greater than
that of baryons, nγ/nb ∼ 1010, the production only
starts at ∼ 0.1 MeV, and deuterium can then fuse
into 3He and 4He. However, the low rate of nu-
clear interactions at this temperature, as well as
the absence of a stable isotope with five nucleons,
means that only trace amounts of heavier elements
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are produced. The amount of deuterium which is
not processed into helium is strongly dependent on
the amount of baryons since that determines the
number of protons available to fuse with. There-
fore, the primordial deuterium abundance is a par-
ticularly good tracer of the baryon density. It can
be measured in quasar spectra where intergalactic
hydrogen clouds distributed along the line-of-sight
absorb at the Ly-α transition. This deuterium is
believed not to have been enriched by astrophysi-
cal processes. The measured deuterium abundance
implies that the amount of baryons is Ωb ' 0.04, in
good agreement with the CMB measurement. This
underlines the non-baryonic nature of dark matter.

There are, of course, non-baryonic particles in
the standard model. However, the charged lep-
tons cannot constitute the dark matter as they do
not clump together and they would in any case
easily be observed. The other possibility, neutri-
nos, are abundant in the form of a cosmic neu-
trino background, formed similarly to the CMB
through freeze-out in the early Universe. How-
ever, standard model neutrinos are ruled out as the
dominant form of dark matter because they would
need a mass of about 11 eV to contribute the nec-
essary energy density, in conflict with laboratory
bounds. Neutrinos can still contribute a fraction of
the dark matter, but this amount turns out to be
severely constrained since neutrinos are relativis-
tic in the early universe. This means that they do
not clump together below a free-streaming scale,
roughly cH−1, which suppresses structure forma-
tion below that scale. This suppression is not seen
in the measured galaxy power spectrum which sug-
gests that Ων < 0.02 (e.g. Hannestad et al., 2008),
and that can be used to put a strong upper limit on
the neutrino mass. The suppression of small-scale
power is generic to any type of dark matter that
is relativistic at decoupling, socalled hot dark mat-
ter. Hot dark matter is ruled out by the measured
power spectrum but warm dark matter, which is
slightly relativistic at decoupling, can still be ac-
commodated. In any case, the dark matter must
be a new type of particle from beyond the stan-
dard model of particle physics.
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3. PARTICLE NATURE OF DARK MATTER

The puzzle of dark matter can only be solved
by physics beyond the standard model and there-
fore dark matter has attracted a lot of attention
from the high energy physics community. In this
chapter, I briefly review some of the better mo-
tivated dark matter particle candidates that have
been put forward, and I discuss the experimental
efforts that may contribute to the identification of
dark matter. This section is based on some of the
several good reviews and lecture notes on the sub-
ject (Smith & Lewin, 1990; Jungman et al., 1996;
Bertone et al., 2005; Hooper, 2009; Bergstrom,
2009; D’Amico et al., 2009).

3.1 Theoretical candidates

There are certain requirements of any good theoret-
ical candidate for dark matter. Firstly, there should
be a production mechanism that accounts for the
abundance of dark matter and makes sure that the
dark matter is cold, i.e. non-relativistic. Secondly,
the particle should not be in conflict with present
experimental or observational constraints.

The second requirement implies that the dark
matter particle cannot have an electromagnetic
coupling, at least not with a charge of order unity
as the charged standard model particles. Nor can
it have strong interactions since it would then cou-
ple to quarks and form nuclei. However, weak in-
teractions can be accommodated without violat-
ing any constraints, and they are in fact welcome
for a viable production mechanism. Weak inter-
actions turn out to be very attractive since dark
matter can then be produced in the early Universe
by freeze-out from thermal equilibrium, in much
the same way as neutrinos. The relic abundance
Ωdmh2 is independent of the mass of the DM par-
ticle, but it does depend on the thermally-averaged
cross-section. It turns out that for weak scale in-
teractions of a particle with mass ∼ 100 GeV ,
〈σv〉 ≈ 3 × 10−26 cm3s−1, the abundance is of or-
der unity. Hence, a thermal relic in the form of a

WIMP, a weakly interacting massive particle, is an
attractive candidate for dark matter.

A very popular class of theories in which a WIMP
can be found are supersymmetrical extensions of
the standard model (SUSY). SUSY is introduced
in an attempt to explain some of the many loose
ends of the standard model, including the mass hi-
erarchy and the breaking of the electroweak sym-
metry. It is a new symmetry between bosons and
fermions so that every standard model particle gets
a new SUSY partner and the particle spectrum is
doubled. There is an enormous amount of free-
dom in this framework with more than 100 possible
new parameters—couplings, mixing angles, etc.—
and typically the phenomenology of some limited
subset of this parameter space is studied. In some
cases SUSY is global symmetry but it can also
be promoted to a local symmetry, in which case
an effective theory of gravitation mediated through
gravitons appears. A common ingredient is a new
conserved charge called R-parity which is positive
for standard-model particles but negative for SUSY
partners and hence breaks SUSY. If SUSY were
a perfect symmetry, the superpartners would have
the same masses as their standard model counter-
parts, and they would already have been produced
in collider experiments. But if SUSY is broken,
the new particles acquire higher masses, typically
on the TeV-scale. The conservation of R-parity
also means that the number of SUSY-particles is
conserved, and therefore the lightest supersymmet-
ric particle (LSP) is stable. This LSP is a good
WIMP-type dark matter candidate which is elec-
trically neutral but has weak scale interactions and
a mass of O(100 GeV). The LSP is a linear com-
bination of the superpartners of the gauge bosons,
the bino, the wino, and the higgsino, but the ex-
act nature of the LSP, its mass, and its couplings
depend on the particular SUSY model. Whether
SUSY is realized in nature can be tested at the
Tevatron or the Large Hadron Collider which may
reach the required energy to produce SUSY par-



20 3. Particle nature of dark matter

ticles. Most likely, colliders cannot show that the
neutralino constitutes the dark matter directly and
so other experimental efforts are still required.

Another DM candidate is found in Kaluza-Klein
(KK) theories of universal extra dimensions. In the
simplest case there is a single extra spatial dimen-
sion which is compact, meaning that it has a circle
U(1) geometry with a size R. This geometry nat-
urally leads to standing waves along the extra di-
mension with energy En = n/R where n is the exci-
tation. Such waves can be associated with standard
model particle fields where the standard model par-
ticle is the ground state and the excitations are ad-
ditional new particles with mass mn = En +mSM.
This sequence is referred to as a KK tower. Mo-
mentum conservation in the extra dimension means
that the lightest n = 1 state is stable. The KK
states associated with all standard model bosons,
except the W and the gluons, as well as the KK
neutrinos, have no electric charge and do not inter-
act strongly, and they are therefore WIMPs (Cheng
et al., 2002). In particular, if the characteristic size
is R ∼ TeV−1 one finds an almost degenerate spec-
trum of KK-states of the various standard model
fields so that the WIMP is a mixture of several
states with ∼TeV mass. Typically, the KK WIMP
can pair annihilate into standard model particles
and it can therefore be produced as a thermal relic
in a similar fashion to SUSY dark matter.

A different candidate arises from the experimen-
tal evidence that neutrinos oscillate between flavors
which implies that the neutrino masses are non-
zero, and that the weak eigenstates νe,µ,τ are su-
perpositions of three mass eigenstates ν1,2,3. There
are two types of mass terms that can generate a
neutrino mass, a Dirac term similar to the mass
terms for the other standard model particles, or a
Majorana term which is allowed for neutrinos since
they carry no charge. Both types of mass term cou-
ple the left-handed weak SU(2)-doublets to right-
handed singlets, which are in effect a new type of
right-handed neutrino that must be added to the
standard model. Experimental bounds on the effec-
tive mass of the νe and on the square-mass differ-
ences ∆m2

ij = m2
i−m2

j mean that the active neutri-
nos have masses less than 2 eV and that at least two
masses are non-zero (Gonzalez-Garcia & Maltoni,
2008). The smallness of the neutrino mass scale,
six orders of magnitude below the charged lepton
masses, is difficult to explain theoretically but an

attractive solution has been proposed in the form
of the see-saw mechanism involving Majorana neu-
trinos. In this scenario, a heavy right-handed neu-
trino mixes with the massless left-handed neutrino
to form an active mass eigenstate with a small, but
non-zero, mass and a sterile mass eigenstate with
a mass similar to the right-handed neutrino’s. Of-
ten, this heavy mass scale is taken as the scale of
Grand Unified Theories (GUTs), ∼ 1016 GeV, in
which case the mixing is large, but it could also be
as low as the keV-scale if the mixing is small. This
latter case is referred to as a sterile neutrino which
is a dark matter candidate (Dodelson & Widrow,
1994; Kusenko, 2009). Unlike active neutrinos and
WIMPs, the sterile neutrinos are not produced by
thermal freeze-out in the early Universe, but other
production mechanisms have been proposed which
could yield cold or warm keV-mass sterile neutrino
dark matter with the correct abundance. The ster-
ile neutrino models are attractive in the sense that
they can explain dark matter, as well as leptoge-
nesis and neutrino oscillations, at the expense of
adding only a few right-handed singlets to the stan-
dard model particles.

The last example of a theoretically motivated
dark matter candidate is the axion which arises in
the context of the strong CP-problem. Experimen-
tally, the strong interaction is not found to vio-
late the conservation of charge conjugation–parity
(CP), despite terms in the QCD Lagrangian that
should do so unless a CP-violating phase is fine-
tuned to be � 1. Peccei & Quinn (1977) pro-
posed a dynamical mechanism in which the phase
is promoted to a field associated with a global U(1)
symmetry. This symmetry is spontaneously bro-
ken at an energy level fa and the broken symmetry
drives the phase towards zero. The axion appears
as a result of this symmetry breaking with a mass
ma ≈ 1016 eV2/fa. However, the scale fa is not
predicted by the Peccei-Quinn model. Experimen-
tal searches limit the mass of the axion to be less
than meV, i.e. 14 orders of magnitude smaller than
the typical scale of WIMPs. Even so, axions are
still cold dark matter because they are produced in
a peculiar fashion with essentially no kinetic energy.
It turns out that the experimentally allowed mass
range yields cosmological abundances Ωa of order
one. The axion couples to the photon through a
loop diagram, and this forms the basis for experi-
mental searches using microwave cavities or the ro-
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tation of linearly polarized light. This coupling also
implies that the axion can decay, but with a lifetime
much longer than the age of the Universe. Hence,
the axion is a well motivated and experimentally
accessible cold dark matter candidate, even if it
can appear somewhat overshadowed by WIMPs in
the literature.

3.2 Indirect detection

Indirect detection refers to the observation of decay
or annihilation products of dark matter in an astro-
physical context. Depending on the nature of the
dark matter particle, the observed particles can be
any of the stable standard model particles. A diffi-
cult problem is to distinguish the dark matter sig-
nal from astrophysical backgrounds, and to achieve
this discrimination both the flux, energy, and origin
of the signal should ideally be determined.

For annihilations, the signal rate is proportional
to the square of the dark matter number density.
Hence, the centres of dark matter halos are the
prime sources for observing annihilation products
of WIMPs. The types of annihilation products are
very model-dependent and the possibilities include
high energy gamma rays and cosmic rays, where es-
pecially positrons and anti-protons are promising.
In the past year or two the physics that can affect
an annihilation signal from the Galactic halo has
been intensely studied. This is partly due to a num-
ber of new cosmic ray observatories and partly to
improvements in numerical simulations of the for-
mation of dark matter structures, which allow the
mass distribution in both the Galactic halo and in
substructures to be explored (Kuhlen et al., 2008;
Diemand et al., 2008; Springel et al., 2008b).

The smoking gun of indirect annihilation sig-
nals is a line in the gamma ray spectrum from
the Galaxy or from the density peaks associated
with Galactic substructure. The direct annihilation
χχ → γγ proceeds through some type of loop dia-
gram, and the line would straight-forwardly yield
the mass of the annihilating WIMP, Eγ = Mχ.
This signal would be relatively easily to distinguish
from astrophysical backgrounds both through the
narrow width of the line (since the dark matter
is non-relativistic) and through the directionality
of the signal. However, this is not necessarily a
very likely signal to observe since it must be sup-

Figure 2: All-sky maps (in a Mollweide projection) of the Sommerfeld-enhanced annihilation surface brightness
(
∫

los
ρ2S d") from all Via Lactea II dark matter particles within 400 kpc. The observer is located at 8 kpc from

the halo center along the host halo’s intermediate principal axis. A: No Sommerfeld enhancement. B: S ∼ 1/v,
saturated at ∼ 1 km s−1. C: S ∼ 1/v2 saturated at ∼ 5 km s−1. The maps have been normalized to give the same

total smooth host halo flux.

the Galactic Center (Fig. 2). In Sommerfeld-enhanced models, substructures are much more

clearly visible, and can even outshine the Galactic Center when the cross-section is close to

resonance and saturates at low velocities. Furthermore, baryonic processes will tend to heat up

the Galactic Center and dim its Sommerfeld boost, and thereby increase the relative detectability

of subhalos. Dark matter halos are not isothermal and have smaller velocity dispersions in the

center (see Supporting Online Material). In addition to an overall increase in the annihilation

4

Fig. 3.1: Surface brightness signal from annihilat-
ing dark matter in the main Galactic halo
and associated substructures, as predicted
by the Via Lactea II simulation. Figure
from Kuhlen et al. (2009).

pressed at the one-loop level. SUSY neutralinos,
for example, have a very low cross section for the
annihilation. A stronger gamma ray signal can be
produced by decays of annihilation products, espe-
cially π0’s, but this signal has a broad spectrum
and which makes it more difficult to identify in the
presence of backgrounds. The FERMI satellite ob-
servatory (Morselli et al., 2002), launched in June
2008, is in an excellent position to detect a gamma
ray signal from dark matter annihilation. This is a
survey instrument which will produce full sky maps
with high angular and spectral resolution. Figure
3.1 shows a prediction of the annihilation signal
from the Galactic halo and its substructure, based
on a cosmological numerical simulation. A comple-
mentary method is gamma ray observations with
Air Cherenkov Telescopes such as H.E.S.S. (Aharo-
nian et al., 2008, 2009a), MAGIC (Lombardi et al.,
2009), and VERITAS (Wood et al., 2008). They
identify gamma rays through the Cherenkov light of
super-luminal muons produced by the gamma ray’s
interaction in the upper atmosphere. These tele-
scopes have the advantage that they can be pointed
to a target, e.g. the dense dark matter halo of a
dwarf spheroidal galaxy, and integrate for longer
exposures. On the other hand they are only sen-
sitive to energies above ∼ 100 GeV, while FERMI
probes the range 0.1− 300 GeV.

The PAMELA satellite experiment (Adriani
et al., 2009a,b) searching for cosmic ray antimat-
ter recently reported two intriguing results: an ex-
cess of positrons relative to electrons at energies
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above 10 GeV on one hand, and an anti-proton–
to–proton ratio in agreement with expectations on
the other. Both e+ and p̄ can carry a dark mat-
ter annihilation signal which can be distinguished
from backgrounds as a spectral feature. Astrophys-
ical sources in general produce copious amounts of
electrons and protons and only few positrons and
anti-protons, but the positron–to–electron ratio (or
p̄/p) can be boosted by dark matter annihilations
which yield equal amounts of both. At the same
time the ATIC balloon experiment reported a rise
in the total flux of electrons and positrons above
300 GeV, peaking at 600 GeV, and with a rather
sharp cut-off in the spectrum which is very sug-
gestive of annihilation of a WIMP with mass equal
to the cut-off energy (Chang et al., 2008). These
observations caused a flurry of different interpre-
tations, but the general consensus now seems to
be that the results are caused either by nearby as-
trophysical sources or by annihilating dark matter.
The first type of explanation involves positron pro-
duction in nearby pulsars (Profumo, 2008), in su-
pernova remnants, or in the magnetic stellar wind
of very massive stars that explode as supernovae
(Biermann et al., 2009). The dark matter expla-
nation requires annihilation preferentially into lep-
tons to avoid boosting the number of anti-protons
(Cirelli et al., 2009b). More recently the FERMI
observatory, which is also sensitive to electrons and
positrons, rejected the large feature seen by ATIC
but still reported a slight excess in the same en-
ergy range with much better statistics (Abdo et al.,
2009; Bergström et al., 2009). This was corrob-
orated by H.E.S.S. which also identified a high-
energy cutoff (Aharonian et al., 2009b). Figure 3.2
summarizes the measurements of the e+ + e− flux.
However, there is some uncertainty about both
propagation of high energy cosmic rays through the
galaxy as well as the background modeling (Grasso
et al., 2009). More experimental results from both
FERMI and PAMELA are expected very soon, but
it is unclear if these will be sufficient to distinguish
between the pulsar and the dark matter interpre-
tations. Quite generically, the dark matter inter-
pretation requires the annihilation to be boosted
relative to the signal expected from WIMPs in a
smooth halo with the annihilation cross-section re-
quired for freeze-out in the early Universe. This
can perhaps be achieved by the Sommerfeld effect,
which is a low-velocity boost to the annihilation

Figure 1: In this figure we compare Fermi-LAT CRE data (Abdo et al. 2009 [27]), as well as several
other experimental data sets (HEAT: Du Vernois et al. 2001 [32]; AMS-01: Aguilar et al. 2002 [2];
ATIC: Chang et al. 2008 [7]; PPB-BETS:Tori et al. 2008 [9]; H.E.S.S. 2008: Aharonian et al. 2008,
[10]; H.E.S.S. 2009 Aharonian et al. 2009, [11]) with the electron plus positron spectrum modeled with
GALPROP under the conditions discussed in Sec.2.1. The gray band represents systematic errors on
the CRE spectrum measured by Fermi-LAT. The black continuos line corresponds to the conventional
model used in (Strong et al. 2004 [30]) to fit pre-Fermi data model (model 0 in Tab. 1). The red dashed
(model 1 in Tab. 1) and blue dot-dashed lines (model 2 in Tab. 1) are obtained with modified injection
indexes in order to fit Fermi-LAT CRE data. Both models account for solar modulation using the force
field approximation assuming a potential Φ = 0.55 GV.

20 GeV. Note that our results use a solar modulation potential Φ = 550 MV which is
appropriate for the AMS-01 and HEAT data taking periods (Barwick et al. 1997 [14]).
This discrepancy may only partially be interpreted in terms of systematic uncertainty
on energy calibration, which may result in a +10%, - 20% rigid shift of the Fermi-LAT
data (see Abdo et al. 2009 [27]). Some tuning of the theoretical models at low energy
may also be required, e.g. by changing the assumptions on solar modulation, or on
particle propagation/losses at low energy. It should also be noted that all figures showed
in this paper have been obtained by assuming γ0 = 1.6 below 4 GeV, as done in Strong
et al. (2004 [30]) in order to reproduce the diffuse gamma-ray spectrum measured by
CGRO/EGRET and COMPTEL. Other choices of the source spectral index at those
low energies may also be considered which may improve the agreement of the models
with low energy pre-Fermi data without affecting the interpretation of CRE spectrum
measured by Fermi-LAT.

The excess in the prediction of the models considered here with respect to H.E.S.S.
data above 1 TeV (Aharonian et al. 2008 [10]) may be a consequence of a cutoff in the
CRE source spectrum or of the breakdown of the source spatial continuity and steady
state hypothesis beyond that energy. This feature is to be expected as a consequence

6

Fig. 3.2: Measurements of the cosmic ray e+ + e−

spectrum. The FERMI measurements
have the best statistics so far and are in
reasonable agreement with the HESS re-
sults. The solid line is the conventional
background model and the dashed and
dot–dashed lines are different model with
non-standard injection spectra. Figure
from Grasso et al. (2009).

rate (e.g. Lattanzi & Silk, 2009), with an addi-
tional contribution from clumping of dark matter
into substructures of the main halo. On the other
hand, the dark matter interpretation implies that a
large amount of radiation has been produced by an-
nihilation in halos over the history of the Universe,
which may be in conflict with the observed level of
the diffuse gamma ray background and could also
affect the reionization history of the Universe (Be-
likov & Hooper, 2009; Cirelli et al., 2009a; Profumo
& Jeltema, 2009).

A much more nearby source where annihilation
is expected to take place is the Sun. A WIMP
in the Galactic halo that passes through the Sun
can lose energy through elastic scattering off a nu-
cleus and become gravitationally bound. Eventu-
ally it will scatter again and sink to the centre of
the Sun, and through this process the density of
WIMPs in the centre will increase until it is large
enough to become limited by annihilation. Due to
the extreme density of the environment, the only
annihilation products that can escape the Sun are
neutrinos, which are typically secondary annihila-
tion products but may even be primaries. These
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neutrinos are very energetic, Eν = O(100 GeV),
and can be detected in neutrino telescopes such as
Super-Kamiokande (Desai et al., 2004) or IceCube
(Deyoung, 2009). If the WIMP accretion is bal-
anced by annihilation, the limiting factor is the nu-
clear scattering cross section that determines the
efficiency of accretion, not the annihilation cross
section. Therefore the neutrino searches probe the
same parameter space as direct detection experi-
ments, discussed below. The direct searches seem
to rule out a neutrino detection if the accretion
is governed by spin-indepedent interactions while
the spin-dependent channel is still a possibility (see
Hooper, 2009).

Unstable dark matter candidates can also be de-
tected indirectly through their decay. In this case
the rate scales with the number density, so the cen-
tres of halos are again the most promising target.
For sterile neutrinos there is a suppressed one-loop
decay into an active neutrino and an x-ray pho-
ton which yields a line at Eγ = M/2 in the keV
range. Unfortunately galaxies and galaxy clusters
have fairly large x-ray backgrounds, but prime tar-
gets are the Milky Way dwarf satellites, which are
devoid of x-ray emitting gas, or the dark matter
concentration of the Bullet Cluster where the hot
gas has been removed by the collision (Riemer-
Sorensen et al., 2007; Riemer-Sørensen & Hansen,
2009). The lack of signals has been used to rule
out large parts of the mass-mixing angle parameter
space (Kusenko, 2009).

There are already a number of unexplained astro-
physical signals that have been analyzed in the dark
matter context. The EGRET gamma ray satel-
lite observatory measured a diffuse flux of gamma
rays with a spectral distribution that could be ex-
plained by annihilating dark matter. However,
early FERMI data do not confirm this excess (Sgrò,
2008). The INTEGRAL satellite has measured
a flux of 511 keV photons from the Galactic cen-
ter which is roughly circularly symmetric with an
angular extent of a few degrees (Churazov et al.,
2005). The simplest dark matter interpretation of
this signal requires a particle with a mass of at most
a few MeV which interacts through a new, light
boson in order to avoid being produced overabun-
dantly in the early Universe. An interesting alter-
native is TeV-scale exciting dark matter which has
two states separated by ∆E ≈ 1 MeV (Finkbeiner
& Weiner, 2007). Finally, there is a residual Galac-

tic foreground signal in the WMAP measurements
found in a region extending ∼ 20◦ around the
Galactic centre, known as the WMAP Haze (Dobler
& Finkbeiner, 2008). This emission could be ex-
plained by dark matter annihilating to e+e−-pairs
which then produce synchrotron radiation in the
Galactic magnetic field. FERMI should be able to
probe the dark matter origin of the WMAP Haze
(Hooper et al., 2008).

To summarize, indirect detection offers a promis-
ing method of detecting some of the most popular
dark matter candidates, and also to probe the prop-
erties of dark matter halos in situ. A generic dif-
ficulty is to identify the signal at high significance
from astrophysical backgrounds and to rule out an
unknown astrophysical nature of the source.

3.3 Direct detection

Since WIMPs are weakly interacting, it is reason-
able to expect that it may be possible to mea-
sure the scattering of Galactic WIMPs off nuclei
directly. This idea forms the basis of dark matter
searches in direct detection experiments.

Nuclear scattering

The basic process to consider is elastic scattering
of a WIMP with a nucleus. The interaction cross-
section of this process is generally model-dependent
but the observable energy transfer can be calcu-
lated from the kinematics alone. The energy trans-
fer depends on the WIMP mass mχ and the mass
of the nucleus M as

Erec =
µ2v2(1− cos θ)

M
, (3.1)

where µ = mχM/(mχ + M) is the reduced mass
of the system, v is the relative speed, and θ is the
scattering angle of the WIMP. This turns out to
be on the scale of tens of keV with a scatter of
one magnitude in either direction, depending on
the mass of the target nucleus and the WIMP mass.
The recoil energy spectrum is given by

dN
dErec

=
σ0nχ
2µ2

F 2(q)
∫ ∞
vmin

dv
f(v)
v

, (3.2)

where σ0 is the cross-section at vanishing momen-
tum transfer, nχ is the local number density of dark
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matter, F 2(q) is the nuclear form factor which de-
pends on the momentum transfer q, and f(v) is
the speed distribution of WIMPs in the laboratory
frame. The speed distribution vanishes at speeds
greater than the local escape velocity, and in any
realistic detector there is a minimum recoil energy
detection threshold below which no signal can be
seen, and therefore the lower limit of the integra-
tion is vmin > 0.

The physics of the WIMP is contained in σ0

which in general contains both spin-dependent
and spin-independent contributions. The spin-
dependent term requires interaction with an un-
paired nucleon, while the spin-independent term
is coherently enhanced across all nucleons, which
means that the WIMP essentially interacts with
the whole nucleus. This enhancement boosts the
interaction cross-section by a factor A2. At higher
momentum transfer this coherence effect is lost as
described by the nuclear form factor F 2(q). The
spin-independent term receives contributions from
the direct couplings to protons and neutrons and
the coupling through a loop diagram to gluons.

Detection strategies

The keV-scale nuclear recoil is extremely difficult to
distinguish from backgrounds in a detector and at
least three methods, or combinations of methods,
are being employed in present experiments. The
first is detection through the heat (phonons) which
is deposited into the detector. This can be mea-
sured as a temperature change in cryogenic bolome-
ters which are kept at a critical temperature close
to the super-conducting phase transition. The re-
coil energy deposited into phonons pushes the tem-
perature above this transition so that the electrical
resistance changes abruptly and measurably. The
second method is to detect ionization produced as
the recoiling nucleus loses its energy. In a gas or liq-
uid time projection chamber (TPC), this ionization
is drifted to a cathode by a magnetic field, where
the signal is amplified in an electron avalanche and
can be read out as a current in the cathode. This
can be achieved with both liquid and solid state
materials. A similar principle can be utilized in
semiconductor detectors. Finally, the detector can
be constructed with a scintillating medium which
emits a fraction of the deposited energy as scintil-
lation light that can be measured by photomulti-

pliers. A few of the specific experimental set-ups
are discussed in section 3.4.

The main issue in detector design is to minimize
backgrounds while increasing the fiducial detector
mass. The main sources of background include
muons produced by cosmic rays and radioactivity
from impurities in the materials in the detector it-
self or its surroundings. The cosmic rays can be
reduced by placing the detector deep underground
in mine shafts or under mountains while radioac-
tive backgrounds are minimized through the choice
of materials and through shielding. Even so, un-
wanted sources will still deposit energy in the de-
tector at some level, and it is necessary to be able to
discriminate against such events. By far the most
common approach is to build a very well defined
detector in which backgrounds are reduced to ex-
tremely low levels. Most backgrounds, such as ra-
dioactively produced gammas and betas, will inter-
act electronically and the detector can be designed
to produce distinguishable signals for electronic and
nuclear interactions. This can be achieved by the
timing of scintillation signals or by the rate of en-
ergy loss through ionization, and in many designs
two of the three signals (heat, ionization, scintila-
tion) are combined for a more efficient background
rejection. However, the need for a well-defined de-
tector means that it is more difficult to scale up
in mass. This is a problem since the sensitivity of
a given design can only be improved by reducing
backgrounds or increasing the target mass. Liquid
noble gas TPCs seem to offer one way out of this
problem. If electronic backgrounds can be sepa-
rated then the main problem is neutrons from ra-
dioactive decays which are an unavoidable source
of noise. Hence a WIMP signal must be greater
than this background to be detected.

A different approach to background rejection is
based on a novel time-dependence of the expected
dark matter signal (Drukier et al., 1986; Freese
et al., 1988). The motion of the solar system in
the Galaxy means that the detector is sweeping
through the dark matter halo at a velocity v� ∼
220 km s−1, but the additional rotational motion of
the Earth with v⊕ ∼ 30 km s−1 around the Sun
is superimposed on top of this. This means that
at one point the detector is moving slightly faster
with respect to the halo and half a year later it is
moving slightly slower. Hence, there is an annual
modulation of the mean WIMP speed in the detec-
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Fig. 2. As the Earth spins about its rotation axis, the average direction of the WIMP wind with
respect to a DM detector changes by nearly 90◦ every 12 sidereal hours.

leading to a corresponding increase (decrease) of the observed rates in DM detectors.
Unfortunately, this effect is difficult to detect because the seasonal modulation is
expected to be small (a few %) and very hard to disentangle from other systematic
effects, such as the seasonal dependence of background rates. These experimental
difficulties cast a shadow on the recent claimed observation of the yearly asymmetry
by the DAMA/LIBRA collaboration.21

A larger modulation of the WIMP signal was pointed out by Spergel22 in 1988
and is illustrated in Figure 2. The Earth spins around its axis with a period of 24
sidereal hours. Because its rotation axis is oriented at 42◦ with respect to the direc-
tion of the DM wind, an observer on Earth sees the average direction of the WIMPs
change by nearly 96◦ every 12 sidereal hours. This modulation in arrival direction
should be resolvable by a Dark Matter directional detector, e.g. a detector able to
determine the direction of the DM wind. Most importantly, no known background is
correlated with the direction of the DM wind. Therefore, a directional Dark Matter
detector could hold the key to the unambiguous observation of WIMPs.

In addition to background rejection, the determination of the direction of the
arrival of Dark Matter particles can discriminate23,24,25 between various DM halo
distributions including the standard dark halo model,19 models with streams of
WIMPs, the Sikivie late-infall halo model,26 and other anisotropic models. The dis-
crimination power improves if a determination of the vector direction of WIMPs is
possible. This capability makes directional detectors unique observatories for un-
derground WIMP astronomy.

3. Requirements for a directional DM detector

When Dark Matter interacts with normal matter it generates nuclear recoils with
typical energies of a few tens of keV (Figure 3-left). The direction of the recoiling
nucleus encodes the direction of the incoming DM particle (Figure 3-right). To
observe the daily modulation in the direction of the DM wind, an angular resolution
of 20–30 degrees in the reconstruction of the recoil nucleus is required.

Fig. 3.3: The daily variation of the direction of the
WIMP wind in a detector, in this case the
DM-TPC prototype located at 42◦N. Fig-
ure from Sciolla (2008).

tor system which translates directly into an annual
modulation of the signal rate, which is expected to
be at the level of a few percent. This can be ex-
ploited in a massive detector in which the WIMP
interaction rate is orders of magnitude greater than
in the zero-background detectors. There will be a
sizable, even dominant, background but the dark
matter signal can be recognized by the presence of
an annual modulation with the correct phase. It
is of course necessary to make sure that no back-
ground can mimic the annual modulation.

A final possibility for background discrimination
is to build a detector which is sensitive to the direc-
tion the of the nuclear recoil (see Sciolla & Martoff,
2009, for a review). The WIMP wind induced by
the motion of the Sun means that WIMPs will pre-
dominantly pass through the detector in one direc-
tion at any given time. Therefore the nuclear recoils
will also tend to travel in one direction, although
the signal is degraded since there is a distribution
of scattering angles. Though it is easily possible
for a background source to induce a directional sig-
nal, that direction would be constant in the labo-
ratory frame whereas the WIMP signal changes di-
rection in the laboratory during the day, see figure
3.3. Hence, one advantage of this strategy is that a
WIMP signal is unambiguously astrophysical. An-
other advantage is that such a detector design is in
fact a WIMP telescope. After a first detection of

WIMPs is established, a direction sensitive detec-
tor can proceed to do ‘WIMP astronomy’, mapping
out the properties of the local dark matter veloc-
ity distribution.1 Analyses have shown that only
about ten events are needed to distinguish if those
events are due to a directional WIMP signal or an
isotropic background (Morgan et al., 2005). How-
ever, this is for an ideal detector which is able to
measure the recoil track in three dimensions and
which can determine the sense of the recoil trajec-
tory. If these requirements are not met, the num-
ber of events needed is increased by roughly one
order of magnitude (Morgan & Green, 2005) and it
increases even more if the WIMP signal is subdom-
inant to an isotropic background. Also, it is much
more difficult to determine the sense and orienta-
tion at very low energies and correspondingly short
tracks (Green & Morgan, 2008).

Although there are ideas to use anisotropic crys-
tal detectors or nuclear emulsions, the most promis-
ing type of detector for this purpose is a gaseous
TPC. The nuclear recoil produces a cloud of ion-
ization which is drifted onto a mesh of cathode (or
anode) wires by an electric field. There, the x-y
position of the ionization cloud can be measured
from the currents induced in the wires and timing
information can be used to constrain the z-position.
Of course, there is a price to pay for being sensi-
tive to the direction: in order for the nuclear recoil
track to be measured, it must have some spatial
extent which limits the maximum pressure. The
pressure in turn limits the target mass that can be
contained in a given volume. On the other hand,
a lower pressure means an increase in the diffusion
length of the electrons and ions, which tends to
wash out the information about the original shape
of the cloud. Ideally, the detector should not only
be sensitive to the shape of the ionization cloud, it
should also reconstruct the head and the tail. A
number of collaborations are in various stages of
R&D towards a viable direction sensitive gas TPC
for dark matter searches, including DRIFT (Alner
et al., 2005; Burgos et al., 2009), DM-TPC (Du-
jmic et al., 2008a,b), and NEWAGE (Miuchi et al.,
2007).

1 This ability is not completely unique to direction sen-
sitive detectors as some information about the velocity dis-
tribution can be inferred from the energy spectrum even
without directional information (Drees & Shan, 2008).
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3.4 Present status

In this section, I review a selection of the more im-
portant present direct detection experiments, in-
cluding detector design and target materials. The
experimental effort is reviewed in e.g. Gaitskell
(2004) as well as in numerous conference proceed-
ings such as Baudis (2007a).

The CDMS experiment (Ahmed et al., 2009) in
its latest configuration operates solid state cryo-
genic detectors made of germanium and silicium
which measure events through heat and ionization.
The design is mainly sensitive to spin-independent
coherent interactions, but both detector types con-
tain isotopes with an unpaired neutron which gives
some sensitivity to spin-dependent neutron cou-
plings. The ratio of the energies measured in
phonons and in ionization, as well as signal tim-
ing, allows discrimination of electronic interactions
at a level of 106. The released results are based on a
total exposure of 121.3 kg-days exposure of the Ge
detectors, and an older 12 kg-day Si exposure (Ak-
erib et al., 2006), and in both cases no events passed
the selection cuts. The lowest energy electronic re-
coils have also been used to constrain axion dark
matter (Ahmed et al., 2009). The collaboration
has proposed an upgrade, SuperCDMS, which will
increase the sensitivity by an order of magnitude
through a larger target mass and a deeper site for
improved cosmic ray background shielding. A sim-
ilar experiment, EDELWEISS, is also using cryo-
genic Ge detectors to detect events through heat
and ionization, and they have achieved an exposure
of 62 kg-days (Sanglard et al., 2005). An upgrade
with more refined technology is taking data at the
moment and is also a step towards a 100 kg-scale
cryogenic detector, EURECA.

The XENON collaboration uses a liquid xenon
TPC design in which the deposited energy pro-
duces both prompt scintillation light and ionization
which is detected through a delayed scintillation
signal. The relative strength of the two signals al-
lows discrimination against electronic backgrounds
and the detector is sensitive to spin-dependent cou-
plings because about half of the naturally occurring
Xe-isotopes have an unpaired nucleon. The collab-
oration has completed the XENON10 phase with a
5.6 kg fiducial mass design with no signal in either
the spin-independent or the spin-dependent chan-
nels (Angle et al., 2008a,b), but the results must

be revised in light of a new measurement of the low
energy scintillation light yield (Aprile et al., 2009).
The current set-up, XENON100, with 65 kg fidu-
cial mass is taking data and it is expected to reach
an exposure of 6000 kg-days at the end of the year
(Aprile & Baudis, 2009).

A very different design is that of COUPP (Bolte
et al., 2007) which is a bubble chamber in which a
superheated CF3I liquid responds to the heat de-
posit by nucleation of the gas phase. The bubbles
created in this way and can be seen by the naked
eye and photographed. By optimizing the tem-
perature and pressure of the chamber, it becomes
impossible for electronic recoils to produce bub-
bles because they do not deposit sufficient energy
rapidly enough to initiate nucleation. The choice
of CF3I as detector medium makes the design sen-
sitive to spin-independent couplings through the
heavy iodine nuclei and to spin-dependent proton
couplings through the fluorine. A 1.5 kg prototype
has been operated close to the surface for a 52 kg-
day exposure and has set the presently most strin-
gent limits on the spin-dependent proton coupling
(Behnke et al., 2008).

The KIMS experiment, which uses scintillat-
ing crystals made of CsI(Tl), is sensitive to spin-
dependent couplings to both protons and neu-
trons. Electronic background rejection is achieved
through pulse shape discrimination, i.e. analysis of
the time variation of the scintillation light. The ex-
periment has published results on 3409 kg-days of
exposure, providing the strongest constraint on the
spin-dependent proton coupling (Lee et al., 2007).

Finally, one of the most important direct dark
matter searches is DAMA, which has been run-
ning firstly the DAMA/NaI and then its successor
DAMA/LIBRA, as well as other detectors. Their
strategy is based on NaI(Tl) scintillation detec-
tors without discrimination against electronic back-
grounds. Instead they rely on the annual modula-
tion of the signal rate to identify a dark matter
signal. The only background discrimination is re-
jection of events that trigger more than one de-
tector at the same time, which could for example
be caused by cosmic rays but not by a weakly in-
teracting particle. Indeed, with a very significant
total exposure of 0.82 t-yr the collaboration has re-
ported the observation of such an annual modula-
tion in the single-hit events at very high significance
over a period of 11 years (Bernabei et al., 2008).
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Fig. 3.4: WIMP mass vs cross section for the spin-independent coupling (left) and spin-dependent proton
coupling (right). The data are CDMS (black), XENON10 (red), EDELWEISS (brown line),
COUPP (light blue), KIMS (light green), and DAMA (brown shaded area). The dotted line
is a constraint from SuperKamiokande on annihilation in the Sun (Desai et al., 2004). The
dark green area is a prediction based on the Constrained MSSM supersymmetric model (Trotta
et al., 2008). In such a plot there are certain assumptions about the halo model and the detector
responses. These plots were generated on the webpage http://dmtools.berkeley.edu/limitplots/.

The phase of the signal is consistent with that ex-
pected from the motion of the Earth around the
Sun. The collaboration emphasize that their result
is strongly model-independent, i.e. it does not have
to be caused by a conventional WIMP, but could
also be induced by other dark matter candidates
which may be rejected as background in other ex-
periments.

The collaboration first claimed detection of the
annual modulation signal one decade ago (Bernabei
et al., 1999). This claim has been heavily debated
and criticized for just as long, since it appears to
conflict with the results of other searches. Some
of the issues raised include the possibility of back-
grounds with an annual modulation as well as a
limited understanding of the detector. An interest-
ing recent development is the issue of channeling:
only a fraction of the nuclear recoil energy is actu-
ally detected as scintillation light while the rest is
dissipated into heat, and this means the observed
energy is QErec where Q is the quenching factor
(QNa = 0.3 and QI = 0.09). However, some re-

coils will follow paths along the symmetry planes
of the crystal lattice structure and effectively lose
all their energy to electrons. This means that for
a fraction of the events in the detector, the actual
energy threshold (the minimum detectable nuclear
recoil energy) is lowered, in the case of DAMA to
as little as 2 keV. This can affect the comparison
with other searches with higher thresholds.

Figure 3.4 shows a selection of the recent exper-
imental results. The claimed detection by DAMA
is largely ruled out by other experiments, but the
exclusion curves shown are derived for each exper-
iment on its own. In the literature, there are also
several joint analyses of the DAMA signal and the
various null results which attempt to identify any
allowed regions of parameter space in a consistent
statistical analysis (e.g. Savage et al., 2009a,b; Fair-
bairn & Schwetz, 2009). There seems to be agree-
ment that both in the spin-independent and the
spin-dependent neutron channels, the dark matter
interpretation of DAMA is ruled out by the null
results of other experiments. On the other hand
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there is a small low-mass window around 10 GeV for
spin-dependent proton scattering which is consis-
tent with all the experimental results, i.e. where nu-
clear scattering of WIMPs can explain the DAMA
result without being in conflict with other experi-
ments.2

3.5 Establishing a detection

Several different strategies are being pursued in or-
der to reveal the particle nature of dark matter.
All the possible paths are model-dependent to some
degree, in the sense that no detection method can
identify all possible candidates, and some of them
relate only to very specific models. The various
approaches also have astrophysical or experimen-
tal backgrounds from which the dark matter signal
must be disentangled.

In light of this, it is reasonable to ask under which
circumstances a detection of particle dark matter
can be established. It is unlikely that any single ex-
periment can establish this alone, as exemplified by
the conflicting interpretations of the DAMA signal
in light of other null results, or the ambiguous in-
direct signals from PAMELA and ATIC. Moreover,
even if the existence of, say, the axion becomes es-
tablished in laboratory experiments, it will be nec-
essary to examine its properties carefully before its
astrophysical impact can be determined. There-
fore, it is likely that at least three independent,
mutually consistent observations that can be inter-
preted as caused by dark matter are needed. For
WIMPs, a direct detection signal should be estab-
lished for more than one choice of target nucleus
and in more than one type of detector design, and
it would ideally be complemented by some annihi-
lation signal from the Sun or the Galaxy.

The dark matter search undoubtedly requires a
large effort with complementary contributions from
many branches of experimental physics, but the
near future seems promising with the FERMI tele-
scope taking data, upgrades of direct detection ex-
periments to tonne-scale masses, and constraints
from the LHC on the underlying particle physics
theory. Yet, it should be kept in mind that for
all dark matter candidates there are regions of the

2 The COUPP result constrains this region somewhat (see
figure 3.4) but the collaboration has not published suffi-
ciently detailed data to be included in the spin-dependent
analysis in Savage et al. (2009b).

relevant parameter space in which the particle can
evade identification by all of the planned experi-
ments.

Of course, another question one might ask is
whether we already have seen the particle nature
of dark matter. The unexplained astrophysical sig-
nals, the DAMA modulation signal, and the cos-
mic ray anomalies have spawned a number of pa-
pers which attempt to explain (some of) these by
a specific dark matter particle. To mention just
a few, the inelastic dark matter scenario (Tucker-
Smith & Weiner, 2001) involves a heavy doublet
which has a mass-splitting between the two states
≈ 100 keV and only scatters inelastically. In that
case, the modulation amplitude is boosted so that
the DAMA result is fully compatible with other di-
rect searches, and the expected spectrum is very
different. A similar model is exciting dark matter
(Finkbeiner & Weiner, 2007) where a mass splitting
of 1 − 2 MeV explains the Integral 511 keV line as
e+e− emission during deexcitation. The properties
of these two scenarios are unified in the model of
Arkani-Hamed et al. (2009) in which a new force
carrier that couples to the dark matter generates
a multiplet of states with various mass splittings.
This new force carrier also induces a Sommerfeld
enhancement so that the PAMELA and ATIC re-
sults can be explained without dark matter be-
ing produced overabundantly in the early Universe.
The robustness of the unexplained signals when
improved observations become available will deter-
mine the plausibility of these models.



4. DARK MATTER HALOS

In this section, I discuss the theoretical, nu-
merical, and observational methods that are used
to probe the physics of the dark matter halos
that galaxies and galaxy clusters are embedded in.
There are two major points of interest: is there
an equilibrium configuration of a dark matter halo,
and how is a halo assembled to reach that configu-
ration?

4.1 Theory

Since dark matter particles are expected to have
weak interactions at most, the dark matter fluid
is effectively collisionless, so dark matter does not
thermalize. Dark matter halos can be treated clas-
sically by Newtonian theory, i.e. there is no need
to go to a full general relativistic treatment. The
theory of collisionless gravitating systems has been
developed in the context of stellar systems, but
much of galactic dynamics can be applied directly
to dark matter halos as well. As a result, this sec-
tion is mainly based on the textbook of Binney &
Tremaine (2008).

In the continuum limit the fundamental descrip-
tion of the dark matter fluid is the six-dimensional
phase-space distribution function (DF) f(x, v)dxdv
which gives the number of dark matter particles in
the (infinitesimal) phase-space volume dxdv. The
physical number density is straight-forwardly

n(x) =
∫

d3vf(x, v). (4.1)

More generally, the DF can be given in terms
of any set of canonical coordinates f(p, q). The
DF obeys a conservation equation, the collisionless
Boltzmann equation (CBE), which in Cartesian co-
ordinates is

∂f

∂t
+ vi

∂f

∂xi
+
∂Φ
∂xi

∂f

∂vi
= 0, (4.2)

where Φ(x) is the Newtonian gravitational poten-
tial. Since dark matter is self-gravitating, the grav-
itational potential is sourced by the dark matter

itself through the mass density ρ(x) = mn(x) as
described by the Poisson equation,

∇2Φ = 4πGρ. (4.3)

To model a dark matter halo, one searches for si-
multaneous steady-state (∂f/∂t = 0) solutions of
the CBE and the Poisson equation. If we con-
sider a spherically symmetric gravitational poten-
tial Φ(r), this is obviously sourced by a spherically
symmetric mass distribution, ρ(r). The distribu-
tion function can only depend on angular momen-
tum L = r(v2

θ + v2
φ)1/2 and on the Hamiltonain

H = 1
2v

2 + Φ(r). If we further assume that there
are no bulk flows, the mean velocity components
vanish, vr = vθ = vφ = 0 and the velocity disper-
sion tensor

σ2
ij(x) =

1
n(x)

∫
dv(vi− v̄i)(vj − v̄j)f(x, v), (4.4)

is diagonal along the axes (r̂, θ̂, φ̂). Since the ori-
entation of the polar axis of the coordinate system
is arbitrary, σ2

θ = σ2
φ. On the other hand there

is no reason to expect that the radial velocity dis-
persion should be equal to the tangential velocity
dispersions. This motivates the introduction of the
velocity anisotropy parameter (Binney, 1980),

β = 1− σ2
θ

σ2
r

, (4.5)

which is zero for isotropic velocity dispersion ten-
sors, 0 < β < 1 for a radially biased tensor, and
β < 0 in the case of tangential bias.

The CBE cannot immediately be applied to
quantities that are observationally accessible, but
instead one can take moments of the CBE towards
this end. For a spherically symmetric system in
a steady state, the first-order moment with re-
spect to the radial velocity component yields one of
the Jeans equations, often referred to as the Jeans
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equation,

σ2
r

(
d ln ρ(r)

d ln r
+

d lnσ2
r(r)

d ln r
+ 2β(r)

)
= −GM(r)

r
,

(4.6)
where M(r) = 4π

∫ r
0

dr′r′2ρ(r′) is the mass interior
to the radius r. As already hinted at in section 2.3,
there are various observational methods to infer the
mass profile of a dark matter halo, and the Jeans
equation provides a link to the internal dynamics
of the halo.

Even in the restricted case of spherical symmetry
there is no unique equilibrium configuration. There
are several potential-density pairs which simulta-
neously solve the Jeans and Poisson equations, but
there is also al degeneracy between the radial veloc-
ity dispersion and the velocity anisotropy. Hence,
additional constraints are needed. One possibility
to find such constraints is to apply some set of first
principles, such as the maximum entropy method.
Based on the Shannon entropy, S =

∑
pi ln pi, this

method identifies the most probable state of a sys-
tem of particles, subject to a number of moment
constraints such as the total energy or the volume
of the system. The most probable state is the one
that maximizes the Shannon entropy, and when
this method is applied to an ordinary gas it yields
the Maxwell distribution. However, when applied
to a self-gravitating system it becomes clear that
there is no upper bound to the entropy. The only
apparent solution (Lynden-Bell, 1967) is the singu-
lar isothermal sphere, which has a constant veloc-
ity dispersion and ρ ∼ r−2, but this profile violates
energy and mass conservation. The main reason
for this behavior of self-gravitating systems is the
non-extensive nature of the potential energy: if the
system is divided into two isolated subsystems, the
potential energy of the two parts is less than the
potential energy of the total system (Padmanab-
han, 1990, 2008). For this reason a lot of atten-
tion has been given to generalized non-extensive en-
tropy functions such as the Tsallis entropy (Tsallis,
1988) which is based on q-exponentials (e.g. Verga-
dos et al., 2008). So far, these approaches have not
resulted in a definite answer either.

However, numerical simulations of the formation
of structure suggest that there is a (near) univer-
sal mass distribution of relaxed halos, which is
reached by halos irrespective of the cosmological
model, the redshift considered, or the halo merger

history, i.e. whether the halo has accreted smoothly
in near isolation or it has been disturbed through
major mergers. It is not understood why this equi-
librium configuration is picked out. Some authors
have emphasized the role of cosmology-dependent
boundary conditions imposed by infalling matter,
both during periods of steady accretion (secondary
infall) and during major mergers (Gunn & Gott,
1972; Manrique et al., 2003, and references therein).
This yields results which appear to be in good
agreement with the numerical simulations. On the
other hand, the universality appears to be more
general phenomenon than suggested in these sce-
narios (Wang & White, 2009).

4.2 Numerical simulations

Perhaps the most important tool in the study of
dark matter halos is numericalN -body simulations,
both in the form of pure dark matter simulations
and simulations that also include hydrodynamical
gas processes. Again, Binney & Tremaine (2008) is
a reference as well as the recent review of Diemand
& Moore (2009).

Pure dark matter simulations attempt to follow
the formation and evolution of structure in the dark
matter fluid, essentially by solving the CBE for
the distribution function f(x, v, t). At early times,
this can be done analytically using a perturbation
approach which, as mentioned, breaks down once
the perturbation modes enter the nonlinear regime.
The key ingredient in the N -body method is to ap-
proximate the distribution function with a discrete
sampling of it. These N samples each represent
a mass mi and are referred to as ‘particles’. The
known distribution function at some high redshift
(z > 30) is then replaced with the sample of par-
ticles. This allows the Newtonian potential to be
treated as the potential generated by the particles,

Φ(x, t) = −GM
∫

d3x′d3v′
f(x′, v′, t)
|x− x′|

(4.7)

' −GM
N

N∑
i=1

f(x, v, t)/fs(x, v, t)
|x− x′|

,

where M is the total mass of the system and
fs(x, v, t) is the sampling distribution chosen to
generate the sample of particles. The simplest
choice is fs(x, v, t) = f(x, v, t) but there are more
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general schemes as well. The acceleration of each
particle is given by the potential, and the parti-
cle trajectories can then be advanced a small step
∆t forward in time. The size of ∆t depends on the
size of the accelerations: large accelerations require
small time steps in order to track the evolution ac-
curately. The sample of particles represent the dis-
tribution function after ∆t, and the process can be
repeated until the desired redshift (usually z = 0)
is reached.

This scheme appears straight-forward to imple-
ment, but in fact there are several further tricks
and approximations that are necessary. In prin-
ciple, the potential Φ must be calculated at the
position of each particle by a Poisson solver algo-
rithm. In practice it is not feasible to calculate the
distances needed in eq. (4.7) for a large number of
sample particles, since the number of interparticle
distances is ∼ N2. Different schemes exist which
trade a little accuracy with a significant reduction
of computational effort by, e.g., interpolating the
particle masses onto a mesh, calculating the forces
on the mesh nodes, and then interpolating back to
the particle positions. With such methods the com-
putational effort can be reduced to scale as N lnN .
Another problem arises when two particles come
very close to each other and experience very large
forces. This is both unphysical, as a side effect of
the discretization of the problem, and numerically
problematic, as it requires very small time-steps to
follow. It is solved by softening the gravitational
force at short distances which means that the r−1

behavior of the potential is altered for small r so
that there is no singularity. For example, Plummer
softening replaces r−1 with (r2 +ε2)−1/2 where the
choice of ε sets the scale of the softening.

For these reasons there are certain limitations to
N -body simulations. The gravitational softening
sets a minimum scale below which the results of
the simulation are not reliable, and for halos this
means that the centre of the halo cannot be probed.
Another discreteness issue is the mass resolution:
clearly, (sub-)structures on a mass scale lower than
the mass ascribed to the sample particles cannot be
resolved in the simulation. Similarly, low-density
regions between halos are poorly resolved due to
the small number of particles in such volumes, al-
though this is of less importance for halos. In the
recent literature, it has become customary to test
convergence and resolution by running series of sim-

ulations based on the same algorithms and initial
conditions but with increasing number of particles.
The results of one simulation can then be gauged
against those of its higher resolution sibling.

Finally, it is important to stress two concep-
tual limitations of cosmological N -body simula-
tions. The simulations require a specified cosmolog-
ical model, such as ΛCDM, as well as definite values
of the cosmological parameters, i.e. the Hubble con-
stant, the matter content, the amplitude of mass
fluctuations, etc. Therefore, cosmological simula-
tions are model-dependent by nature. The second
issue is that cosmological simulations may provide
a solution to the structure formation problem, but
they do not explain why that solution is realized.
Hence, simulations cannot provide a fundamental
understanding of the equilibrium and formation of
dark matter halos, with or without baryons.

The mass profile

More than ten years ago Navarro, Frenk, and White
(NFW) pointed out that the mass profiles of re-
laxed dark matter halos found in cosmological sim-
ulations are similar, irrespective of halo mass or
redshift (Navarro et al., 1996, 1997). This univer-
sal mass profile was found to be well described by
a double power-law with an inner slope of −1 and
an outer slope of −3. There is no freedom in the
NFW profile except two scaling parameters which
fix the mass and the radial extent of the halo. Since
then several other functional forms have been pro-
posed and tested against higher resolution numer-
ical simulations, and some of these introduce an
extra shape parameter which can vary the shape of
the profile. A critical question is whether such a
shape parameter is universal or varies from halo to
halo. In the latter case, there are several interest-
ing possible relations between the shape parameter
and, e.g., halo mass, redshift of last major merger,
or the spatial size of the halo.

The NFW profile and a number of other profiles
can conveniently be expressed in terms of a general
double power law (Hernquist (1990); Zhao (1996)),

ρ(r) =
ρ0

(r/rs)γ [1 + (r/rs)α](β−γ)/α
. (4.8)

The shape of the profiles are specified by the pa-
rameters (α, β, γ) which control the width of the
transition and the inner and outer logarithmic
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Fig. 4.1: Mass profile as a function of radius in
units of r−2, which is the radius where the
logarithmic slope is −2. The profiles have
been normalized to unity at r−2. For the
cored NFW γ = 0 in eq. (4.8).

slopes, respectively. The NFW profile is given by
(1, 3, 1), the Hernquist profile by (1, 4, 1), and the
Moore profile (Moore et al., 1998) by (1, 3, 1.5).
Also, Dehnen et al. (2006) used dynamical re-
lations extracted from numerical simulations to
close the Jeans equation and obtain the parame-
ters ([4− 2β0]/9, [31− 2β0]/9, [7 + 10β0]/9), where
β0 is the velocity anisotropy at r = 0.

For the three-parameter profiles, one immedi-
ately obtains a family of generalized NFW profiles
where one of the (α, β, γ)-parameters is left free to
vary. In light of the limited resolution of simula-
tions in the centre of halos as well as the cusp-core
problem (see section 4.3) a lot of attention has been
given to a varying inner slope, γ. Another three-
parameter profile is the Einasto (or Sérsic) profile
(Einasto, 1969; Sérsic, 1963),

ρ(r) = ρ−2 exp

(
−2n

[(
r

r−2

)1/n

− 1

])
, (4.9)

where ρ−2 labels the density at the radius r−2, at
which the logarithmic slope of the profile is −2.
The Einasto profile is characterized by a contin-
uous ‘roll’ and does not asymptote to a power
law at small or large r. This parametrization has
been used extensively as a two-dimensional pro-

file to model surface brightness profiles of galax-
ies (usually then referred to as the Sérsic profile)
and it is itself a generalization of the de Vau-
couleurs’ profile (de Vaucouleurs, 1948). The recent
high resolution Aquarius simulations of Milky Way-
sized halos have indicated that the Einasto pro-
file is a better description than any two-paramater
model, including the NFW. The best fit is achieved
with a shape parameter varying from halo to halo
(Navarro et al., 2008). Figure 4.1 shows examples
of some parametrized mass profiles.

The total mass of a halo, whether real or sim-
ulated, is somewhat ambiguous since there is no
boundary in the form of a sharp transition in the
density field. One definition of the boundary is the
‘virial radius’ rvir within which the halo is virial-
ized, but this radius is not easily determined nei-
ther in numerical simulations nor observationally.
Formally, the virial radius can be defined through
the collapse of a spherical top-hat overdensity in an
Einstein-de Sitter universe (Peebles, 1980) where it
turns out to be the radius enclosing a mass with
mean overdensity ∆vir = 18π2 ≈ 178, compared to
the mean matter density, i.e.,

Mvir =
4πr3

vir

3
∆ρm. (4.10)

With this definition, however, rvir depends on both
cosmology and redshift (Bryan & Norman, 1998).
Alternatively, one may just define an overdensity
which forms the basis for comparison of different
halo masses. It is common to take ∆ = 200 with
respect to either the critical density or the mean
matter density. The radius defined in this way is
labeled r200, but it is often referred to, nonetheless,
as the virial radius. This is a convenient definition
of the extent of a halo in numerical simulations as
it does not involve any physical properties of the
individual halo. A related parameter is the concen-
tration, c200 = r200/rs which is weakly correlated
with the cluster mass (see below).

Simulations now probe not only the mass dis-
tribution of the primary halo but also that con-
tained in substructures, which are halos that have
been accreted but are cold enough to survive tidal
disruption (Springel et al., 2008a; Diemand et al.,
2008). The abundance of substructures can be
compared with the observed number of Milky Way
satellites. Several hundreds of subhalos are pre-
dicted by simulations whereas traditionally only 11
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satellites were known. This discrepancy has been
referred to as the satellite abundance problem of
ΛCDM. However, on one hand 14 new satellites
have been discovered in the ∼ 20% of the sky ob-
served by the Sloan Digital Sky Survey (Adelman-
McCarthy et al., 2008; Tollerud et al., 2008), and on
the other the understanding of star formation and
the detectability of these very small halos has im-
proved (Kravtsov et al., 2004; Koposov et al., 2008;
Maccio’ et al., 2009). Thus, it now seems there is
no strong disagreement between observations and
expectations.

Substructures potentially play an important part
for indirect detection of annihilating dark matter.
Several of the known satellites are located in low
gamma-ray background regions of the sky, whereas
a possible annihilation signal from the main Milky
Way halo peaks in the complex background of the
Galactic centre. Predictions of the annihilation
signal have been made both based on numerical
simulations (Kuhlen et al., 2008, 2009; Springel
et al., 2008b) and on the observed satellites (Stri-
gari et al., 2008). These predictions are of course
particularly pertinent with FERMI taking data. It
should perhaps be kept in mind that the observed
mass profiles of spiral galaxies such as the Milky
Way are often found to be more cored than those
of simulated Milky Way-sized halos. Hence the an-
nihilation signal from the main halo may not be
as strong as predicted. Likewise, while the num-
ber of Milky Way satellites does not appear to be
in strong disagreement with simulations anymore,
there is a long way to go before the observations
can be said to confirm the predicted abundance,
and so there is also considerable uncertainty in this
respect. If FERMI detects an annihilation signal
this would provide a very interesting test of the
numerical predictions.

The dynamical structure

The dynamical structure of simulated dark mat-
ter halos has received somewhat less attention than
the mass profile, largely because it is not immedi-
ately accessible in observations. However, the dy-
namical structure in the solar neighborhood plays
a very important role for direct detection exper-
iments. Dynamical structure can also provide
clues about the fundamental nature of halo physics.
Roughly speaking, there are two parts to the dy-

Phase-space structure in the local dark matter distribution 3

for all six halos with about 200 million particles within R200. Fur-

ther details of the halos and their characteristics can be found in

Springel et al. (2008).

In the following analysis we will often compare the six level-2

resolution halos, Aq-A-2 to Aq-F-2. To facilitate this comparison,

we scale the halos in mass and radius by the constant required to

give each a maximum circular velocity of Vmax = 208.49 km/s,
the value for Aq-A-2. We will also sometimes refer to a coordi-

nate system that is aligned with the principal axes of the inner halo,

and which labels particles by an ellipsoidal radius rell defined as

the semi-major axis length of the ellipsoidal equidensity surface on

which the particle sits. We determine the orientation and shape of

these ellipsoids as follows. For each halo we begin by diagonal-

ising the moment of inertia tensor of the dark matter within the

spherical shell 6 kpc < r < 12 kpc (after scaling to a com-
mon Vmax). This gives us a first estimate of the orientation and

shape of the best fitting ellipsoid. We then reselect particles with

6 kpc < rell < 12 kpc, recalculate the moment of inertia tensor
and repeat until convergence. The resulting ellipsoids have minor-

to-major axis ratios which vary from 0.39 for Aq-B-2 to 0.59 for
Aq-D-2. The radius restriction reflects our desire to probe the dark

matter distribution near the Sun.

3 SPATIAL DISTRIBUTIONS

The density of DM particles at the Earth determines the flux of

DM particles passing through laboratory detectors. It is important,

therefore, to determine not only the mean value of the DM density

8 kpc from the Galactic Centre, but also the fluctuations around this

mean which may result from small-scale structure.

We estimate the local DM distribution at each point in our

simulations using an SPH smoothing kernel adapted to the 64

nearest neighbours. We then fit a power law to the resulting dis-

tribution of ln ρ against ln rell over the ellipsoidal radius range

6 kpc < rell < 12 kpc. This defines a smooth model density
field ρmodel(rell). We then construct a density probability distribu-
tion function (DPDF) as the histogram of ρ/ρmodel for all particles

in 6 kpc < rell < 12 kpc, where each is weighted by ρ−1 so that

the resulting distribution refers to random points within our ellip-

soidal shell rather than to random mass elements. We normalise the

resulting DPDFs to have unit integral. They then provide a prob-

ability distribution for the local dark matter density at a random

point in units of that predicted by the best fitting smooth ellipsoidal

model.

In Fig. 1 we show the DPDFs measured in this way for all

resimulations of Aq-A (top panel) and for all level-2 halos after

scaling to a common Vmax (bottom panel). Two distinct compo-

nents are evident in both plots. One is smoothly and log-normally

distributed around ρ = ρmodel, the other is a power-law tail to high

densities which contains less than 10−4 of all points. The power-

law tail is not present in the lower resolution halos (Aq-A-3, Aq-

A-4, Aq-A-5) because they are unable to resolve subhalos in these

inner regions. However, Aq-A-2 and Aq-A-1 give quite similar re-

sults, suggesting that resolution level 2 is sufficient to get a reason-

able estimate of the overall level of the tail. A comparison of the six

level 2 simulations then demonstrates that this tail has similar shape

in different halos, but a normalisation which can vary by a factor

of several. In none of our halos does the fraction of the distribu-

tion in this tail rise above 5× 10−5. Furthermore, the arguments of

Springel et al (2008) suggest that the total mass fraction in the in-

ner halo (and thus also the total volume fraction) in subhalos below

0 150 300 450 600
v [km s-1]

0

1

2

3

4

f(
v
) 
!
 1

0
-3

       

-1
0
1

"
 !

 1
0

-3

-450 -225 0 225 450
v1 [km s-1]

0

1

2

3

4

f(
v

1
) 
!
 1

0
-3

     

-1
0
1

"
 !

 1
0

-3

-450 -225 0 225 450
v2 [km s-1]

0

1

2

3

4

f(
v

2
) 
!
 1

0
-3

     

-1
0
1

"
 !

 1
0

-3

-450 -225 0 225 450
v3 [km s-1]

0

1

2

3

4

f(
v

3
) 
!
 1

0
-3

     

-1
0
1

"
 !

 1
0

-3

0 150 300 450 600
v [km s-1]

0

1

2

3

4

5

f(
v
) 
!
 1

0
-3

Aq-A-1

Figure 2. Top four panels: Velocity distributions in a 2 kpc box at the Solar
Circle for halo Aq-A-1. v1, v2 and v3 are the velocity components parallel

to the major, intermediate and minor axes of the velocity ellipsoid; v is the
modulus of the velocity vector. Red lines show the histograms measured

directly from the simulation, while black dashed lines show a multivari-

ate Gaussian model fit to the individual component distributions. Residuals

from this model are shown in the upper part of each panel. The major axis

velocity distribution is clearly platykurtic, whereas the other two distribu-

tions are leptokurtic. All three are very smooth, showing no evidence for

spikes due to individual streams. In contrast, the distribution of the velocity

modulus, shown in the upper left panel, shows broad bumps and dips with

amplitudes of up to ten percent of the distribution maximum. Lower panel:

Velocity modulus distributions for all 2 kpc boxes centred between 7 and
9 kpc from the centre of Aq-A-1. At each velocity a thick red line gives the
median of all the measured distributions, while a dashed black line gives

the median of all the fitted multivariate Gaussians. The dark and light blue

contours enclose 68% and 95% of all the measured distributions at each ve-

locity. The bumps seen in the distribution for a single box are clearly present

with similar amplitude in all boxes, and so also in the median curve. The

bin size is 5 km/s in all plots.

Fig. 4.2: The velocity distribution in the vicinity of
the Sun in a Milky Way-sized halo. Upper
left: speed distribution, others: compo-
nents along the axes of σij . The red curves
are the actual distributions and the black
dashed curves are Gaussian fits. Figure
from Vogelsberger et al. (2009).

namical structure: the angular momentum distri-
bution, which has been shown to be universal (Bul-
lock et al., 2001a), and the velocity dispersion ten-
sor which enters the Jeans equation. I will focus on
the latter.

Just as the mass distribution, the velocity disper-
sion tensor is usually analyzed in spherically av-
eraged radial bins. The only freedom, in princi-
ple, is the total velocity dispersion and the velocity
anisotropy β, both as functions of radius. How-
ever, local substructure or tidal effects can compli-
cate this idealization. The velocity dispersion and
anisotropy are very sensitive to discreteness effects
since a) there may be a non-zero mean velocity in a
bin (which can be physical, e.g. caused by substruc-
ture, or it may be a discreteness issue), and b) as
a second moment, it is quite sensitive to particles
which are outliers in the velocity distribution.

Figure 4.2 shows the dark matter velocity distri-
bution at the radius of the solar orbit in a simu-
lated halo similar to the Milky Way. Compared to
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Figure 9. Left panel: Velocity dispersion profiles for our Aq-A convergence series. Arrows, line-types and colours are as in Fig. 1. Note
the excellent numerical convergence. The shape of the velocity dispersion profile is remarkably similar to that of the r2ρ profile shown in
Fig. 1, highlighting the intimate connection between the density and velocity dispersion profiles which is responsible for the power-law
behaviour of the pseudo-phase-space density profile discussed in Sec. 4.4. Right panel: Anisotropy profiles for the Aq-A convergence
series. Note the non-monotonic variation with radius: the halo is nearly isotropic near the centre, is dominated by radial motions at
intermediate radii, but becomes markedly less anisotropic near the virial radius.

Figure 10. As Fig. 9, but for all six level-2 resolution Aquarius halos, scaled to match at the peak of the profile, identified by σmax

and r(σmax). This scaling highlights small but significant departures from similarity in the velocity dispersion structure of ΛCDM halos.
Note the correspondence in shape between the velocity dispersion and r2ρ profiles shown in Fig. 1, which reflects the “universal” pseudo-
phase-space density profile of the halos (Fig. 13). Note also that the non-monotonic behaviour of the anisotropy highlighted in Fig. 9 is
common to all six halos.

Fig. 4.3: Velocity dispersion (left) and velocity anisotropy (right) for the six Milky Way-sized halos of
the Aquarius simulations (from Navarro et al., 2008).

a Maxwell-Boltzmann distribution, it is clear that
the radial component v1 has a more ‘boxy’ shape
(kurtosis < 0) while the tangential components v2

and v3 have more ‘spiky’ shapes (kurtosis > 0).
This behavior holds within r−2, but it is opposite in
the outer parts (Wojtak et al., 2008a). The veloc-
ity distribution is better approximated by a Tsallis-
type generalization of the Maxwell-Boltzmann dis-
tribution (Hansen et al., 2006).

The dispersion profile σ2 is found to increase
slightly with radius until r−2, where it reaches
its maximum, and then it declines gradually. The
left panel of figure 4.3 shows the total velocity dis-
persion for the six halos of the Aquarius project,
rescaled to the radius of the peak dispersion σ2

max.
The logarithmic slope of the profile is about 0.4
in the region interior to σ2

max and −0.4 outside.
The radius corresponding to the peak velocity dis-
persion coincides with r−2 and the virial radius is
about one magnitude larger than this, with some
halo-dependent scatter. The right panel shows the
velocity anisotropy profile which increases slowly
from a near-isotropic level in the central regions to
reach a radial bias in the outer regions. Clearly, col-
lisionless structures have a more complicated stress
tensor than collisional gases. A linear relation
has been identified between the velocity anisotropy
and the logarithmic slope of the density profile
d ln ρ/d ln r (Hansen & Moore, 2006; Hansen &

Stadel, 2006), shown in figure 4.4. This has been
confirmed to hold within r−2 in the Aquarius sim-
ulations.

Another quantity that has drawn considerable
attention is the combination of the density profile
and the velocity dispersion profile in the form ρ/σ3,
termed the pseudo-phase space density. As can be
seen in figure 4.5, this has been found to be well de-
scribed by a single power law r−χ with χ ≈ 1.875
(Taylor & Navarro, 2001), despite the more com-
plex radial dependences of both the density and ve-
locity disperison profiles. This has been connected
to the self-similar solution to radial infall onto a
point mass in an Einstein-de Sitter universe, as
found by Bertschinger (1985). It is not quite clear
if the power law behavior is more consistent with
ρ/σ3 or ρ/σ3

r , but in any case the pseudo-phase
space density appears to be a strong candidate for
a universal trait of dark matter halos. The phase
space density profile is also sensitive to substruc-
ture in the outer parts (Stadel et al., 2009). The
simple power law behavior of ρ/σ3

r was combined
with the velocity anisotropy–density slope relation
by Dehnen & McLaughlin (2005) who found a sin-
gle physically viable solution, χ = 35/18 ≈ 1.94
(see also Austin et al., 2005), which determines all
the terms in the Jeans equation up to a free param-
eter β(r = 0).

If the mass profile of relaxed dark matter
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Fig. 2. The final density slope versus velocity anisotropy for the six different simula-
tions (coloured symbols) discussed in the text. For the spherical collapse calculation
we plot the result using both spherical and elliptical bins. A general relation is clear
with the slope in the range -3 to -1. The shape of the relation is reasonably well
fit with 2 parameters, β = η1 − η2 α, where approximately −0.45 < η1 < 0.05 and
0.1 < η2 < 0.35. The dashed (black) line is a one parameter fit as discussed in
section 4, with the parameter ξ = 1.15.

lations the relation between the slope of the mass profile and the anisotropy
parameter of the particles is the same. The simulations are roughly resolved to
the radius where the slope is approximately −1, and should not be trusted for
more shallow profiles. This resolution limit is set by the number of particles in
the central regions - we do not know if the correlation we find is affected by the
numerical relaxation processes that occur where particle-particle encounters
are important. For slopes steeper than ≈ −2.5 the particles have often not
had time to equilibrate fully.

In principle, the anisotropy parameter could have any value in the range −∞ <
β ≤ 1. Isotropic orbits have β = 0 and positive values correspond to more
radial orbits. On Fig. 2 we see that the relations is approximately fit with
β = η1−η2 α. More detailed simulations and convergence tests are in progress
to clarify the best fitting relation and to investigate the cause of the scatter.
It will be interesting to explore how much “violent relaxation” is required to
force an existing equilibrium structure to lie on this correlation, and what the
driving force behind establishing the correlation is. The time evolution of the
radial infall simulation allows us to compare the change of anisotropy with
the change in the mass profile. Even though naively, one might have expected
that the density profile should first manifest itself and then only later the
anisotropy should appear, it seems that the two come hand in hand. As soon
as a given density profile exists (and is approximately equilibrated) then the
anisotropy exists as well, and sits near the α − β relation. We also point out
that the orbital structure of the models does not play an important role in

5

Fig. 4.4: The density slope–velocity anisotropy re-
lation, which appears not only in cosmo-
logical simulations but also in various toy
models. Figure from Hansen & Moore
(2006).

structures is near-universal and the pseudo-phase
space density is described by a simple power law,
the velocity dispersion profile and the velocity
anisotropy must also be near-universal. However,
the anisotropy profiles in figure 4.3 appear to be
only qualitatively rather than quantitatively sim-
ilar. This apparent contradiction can be caused
by slight disturbances of the halos, or it may be
connected to the fact that halos are actually triax-
ial (e.g., Dubinski & Carlberg, 1991; Novak et al.,
2006; Stadel et al., 2009) with typical axis ratios
as low as 0.5. The errors induced by the spherical
binning of the N -body particles may then be re-
sponsible for the variation of the anisotropy profile
at large radii.1

Statistical properties

Not only the properties of individual halos can be
predicted by cosmological numerical simulations,
the ensemble of halos in a large simulation can also
be investigated to reveal clues about the physics of

1 It may also be suspected that three-parameter mass pro-
files such as the Einasto profile will never be truly universal,
since similar halos with different axis ratios could then also
have different shape parameters in the spherical approxima-
tion.
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Figure 13. Pseudo-phase-space density profiles of all six level-2 Aquarius halos. Radii have been scaled to r−2, and the pseudo-phase-
space densities to maximise agreement within r−2. Note that for all six halos these profiles are very well approximated by power laws
with an exponent very close to that of the Bertschinger solution. All halos, including those that were outliers in the density, velocity
dispersion, and anisotropy profiles, are almost indistinguishable in this plot. Deviations from the Bertschinger law are typically more
pronounced when radial velocity dispersion is used instead of the full 3D velocity dispersion. Residuals from the best-fit power-laws,
ρ/σ3 ∝ rχ, are shown in the bottom panels. The values of χ are listed for each halo in Table 2.

trivial ways by the presence of baryons. Providing a full
account of the coupled structure of the cold dark matter
and baryonic components in galaxies like our own is clearly
the next major computational challenge, and it is likely to
exercise us for some time to come.
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Fig. 4.5: Pseudo-phase space density profiles ρ/σ3

of the six Aquarius halos. The near-power
law behavior is evident. The lower panels
show the residuals from the r−1.875 pro-
file and from the best fitting free slope
power law. The best fitting slopes are in
the range −1.86 to −1.92. Figure from
Navarro et al. (2008).

structure formation. One example, the halo mass
function, was already discussed in section 2.2.

The concentration of the NFW profile is defined
as c200 = r200/rs but this can easily be generalized
to the model independent c200 = r200/r−2. This
parameter measures the scale of the ‘roll’ of the
mass profile compared to the virial radius. The
concentration has been found to be negatively cor-
related with the virial mass of the halo (Navarro
et al., 1996, 1997) although there is appreciable in-
trinsic scatter about the mean relation. This be-
havior can easily be understood in terms of the
hierarchical formation of structure in the ΛCDM
cosmology: small halos are the first to form and
they do so in the higher density environment of the
high-redshift universe. Hence their central densi-
ties are greater and the density contrast compared
to the background, i.e. the concentration, is larger.
The normalization of the mass–concentration rela-
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tion is quite sensitive to the cosmology, particularly
to the amplitude of mass fluctuations, σ8 (Neto
et al., 2007; Macciò et al., 2008). The concentration
is also correlated with redshift, which means that
galaxies in the early universe were more extended
and hence likely to have lower surface brightness,
compared to a z = 0 galaxy of similar mass (Bul-
lock et al., 2001b).

Baryonic effects

A major problem when confronting the results of
high-resolution cosmological simulations with ob-
servations is the uncertain properties and effects
of the baryonic component. Baryonic effects can
steepen the inner slope of the dark matter profile by
adiabatic contraction, where the dissipative cluster-
ing of baryons steepens the inner slope (e.g. Gnedin
et al., 2004). The inner slope can also be affected by
black holes, formed either through accretion, which
yields a steepening of the profile in the same way
as adiabatic contraction, or through mergers, which
can energize the dark matter so it forms a constant
density core (Merritt et al., 2002).

The missing baryonic effects can be alleviated for
example by putting additional gas particles, sub-
ject to hydrodynamic forces as well as gravitational,
into the N -body simulations in a scheme known
as smoothed particle hydrodynamics (Monaghan,
1992; Springel & Hernquist, 2002). The gas parti-
cles are associated with a pressure and an entropy,
and the pressure yields an extra term in the equa-
tion of motion. Additionally, an artificial viscosity
term is introduced in order for the gas to be able to
increase its entropy and dissipate energy. More ad-
vanced schemes include models for radiative cooling
of the gas particles and complex processes such as
star formation and reheating due to feedback. Still,
the models are very simplified and involve a degree
of tuning in order to obtain realistic results. The
effort required to track the additional properties of
gas particles means that they are computationally
much more expensive to simulate than pure dark
matter, and the spatial resolution and mass resolu-
tion are considerably reduced for a given computing
time. Thus, cosmological hydrodynamical simula-
tions are not yet at the level where they can probe
the impact on the dark matter halo mass profile and
dynamics reliably, particularly not in the centre,
but they provide extremely valuable benchmarks

for direct comparison with x-ray observations in-
cluding estimates of the non-thermal pressure (Val-
darnini, 2006; Nagai et al., 2007).

Another approach to modeling baryons are semi-
analytical models which combine an approximate
analytical description of baryonic physics with N -
body simulations of dark matter (e.g. Croton et al.,
2006). The crucial information from the simula-
tions is the halo merger tree, which specifies how
structure is built up of hierarchical mergers of
smaller halos. Each halo is assumed to contain a
Universal baryon fraction which is subject to exter-
nal UV radiation, radiative cooling, star formation,
AGN and supernova feedback processes, etc. The
final step is a model of the luminosities and spectra
of the halo galaxies which facilitates direct compar-
ison with observations. Again, the results are quite
model-dependent and the various schemes used in
the literature are still being optimized. Compared
to the SPH approach, the semi-analytical models
do not degrade the resolution of the N -body sim-
ulation, and it is possible to try different semi-
analytical models on the same simulations, as the
baryonic modeling is done entirely post-simulation.
On the other hand, the effect of baryons on the dark
matter halo itself can only be estimated coarsely
and the semi-analytical models must in general be
tuned by results from hydrodynamical simulations.

4.3 Observational probes

The same types of observations that reveal the need
for dark matter in galaxies and galaxy clusters can
also be used to probe the properties of dark mat-
ter halos. For galaxies the most important source
of data is stellar kinematics while for clusters both
gravitational lensing and x-ray observations of the
hot gas in the intra-cluster medium provide valu-
able data. Again, a general reference is the text-
book of Dodelson (2003) and, for clusters, the re-
view of Sarazin (1986).

Kinematical data

As discussed earlier, the line-of-sight velocities of
stars in galaxies can be measured from their red-
shifts. In ellipticals or dwarf galaxies, where there
is no significant ordered motion, the stars can (to
lowest order) be described by the Jeans equation
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and the surface brightness profile as a function of projected
radius. Given finite amounts of data defining the projected surface
brightness and kinematic distribution functions,we can proceed in
either of two ways. We can assume a priori a parameterized mass
model M (r) and velocity anisotropy !(r) and fit the observed
velocity dispersion profile, or we can use the Jeans equations to
determine the mass profile from the projected velocity disper-
sion profile, utilizing some (differentiable) functional fit to the
observed light distribution and a (range of ) assumed form(s) for
the anisotropy !(r). Assuming spherical symmetry, it is straight-
forward to obtain h"2

r i from the observed line-of-sight velocity
dispersion using Abel integrals. In what follows, we take the
second approach to the Jeans equation analysis: both the spa-
tially binned dispersion profile and the surface brightness dis-
tribution are fit by an appropriate smooth function, and we
assume an isotropic velocity dispersion. Figure 3 shows some
examples of the fits to the light and dispersion profiles used in the
analysis.

It is obvious from the Jeans equation that radially variable
velocity dispersion anisotropy is degenerate with mass, making
any deductions as to whether or not the inner mass profile is cored
or cusped in general model dependent. Further information is
needed to break this degeneracy and fortunately is sometimes
available, as we discuss below. In general, however, full multi-
component distribution function models using adequately large
data sets, as discussed in x 3.4 below, are required to use the in-
formation in the data to break this degeneracy.

3.2. Moment Equation Analyses of Inner
Dark Mass Distributions

Jeans equation dynamical analyses generate three quantities.
The most robust is themean dark matter mass density inside the
radius where adequate kinematic data are available. Similarly
robust is the total mass, again inside the radius where adequate
kinematic data are available. The analysis can also constrain the

Fig. 2.—Observed line-of-sight velocity dispersion profiles for six dSph galaxies. Also shown (bottom right) is the model-predicted dispersion profile for a Plummer
model in which mass follows light. The bottom left panel shows the observed velocity dispersion profile for the globular cluster ! Cen from Seitzer (1983). The similarity
between the Plummer mass-follows-light model and the data for ! Cen is apparent, with a monotonic decrease in dispersion from a central maximum. In contrast, the dSph
galaxies do not have their maximum dispersion value at the center and retain relatively high dispersions at large radii, indicating extended (dark) mass distributions.

Fig. 3.—Functional fits to the surface brightness profile (top) and velocity
dispersion profile (bottom) of the Draco (left ) and Carina (right ) dSph’s used to
derive mass profiles based on the Jeans equations. Similar fits are used for the
remaining four dSph’s presented in Fig. 4.

GILMORE ET AL.952 Vol. 663

Fig. 4.6: Line-of-sight velocity dispersions of six dwarf spheroidals, as well as the globular cluster Omega
Centauri, and the velocity dispersion profile of a model in which mass follows light. The model
is in good agreement with the globular cluster, but not with the dSphs. Figure from Gilmore
et al. (2007).

(4.6), while in spiral galaxies the rotation is simply
related to the mass as v2

c = GM(r)/r.
The Milky Way satellites are dwarf spheroidal

galaxies with luminosities ∼ 106L�. They are the
most dark matter-dominated systems known with
observed line-of-sight velocity dispersions σlos ∼
10 kms−1, which imply mass-to-light ratios in the
range of tens or even hundreds in solar units. The
measured σlos is usually found to be roughly con-
stant with radius. Figure 4.6 shows examples of
the measured velocity dispersion profiles of dSphs
as well as that of a globular cluster with similar
luminosity. For globular clusters, which are not
believed to contain any dark matter, the disper-
sion profile can be explained by the stellar mass
but this is not the case for the dSph profiles. The
line-of-sight velocity dispersion is formally a mo-
ment of the distribution function integrated along
the line–of–sight. For this reason a major problem
in the modeling of these systems is the unknown
velocity anisotropy profile of the stars β?(r), which
is partially degenerate with the total mass profile.
Even so, a cored mass profile with constant den-
sity in the central regions is preferred by the data

although a tangentially biased cuspy NFW profile
is also a possibility (Gilmore et al., 2007; Walker
et al., 2009). In a few cases the presence of old
substructures have been argued to imply a cored
profile, since the substructures ought to have been
tidally disrupted in a cuspy profile (Kleyna et al.,
2003; Goerdt et al., 2006). The presence of a core is
also supported by recent more advanced modeling
based on thousands of stellar velocities (Gilmore,
2009). Dwarf spirals are also better described by
a cored mass profile than by a cuspy one (e.g. van
Eymeren et al., 2009).

The shape of the rotation curve of larger spiral
galaxies is also a probe of the mass distribution
in the halo. The shape of the total mass profile
seems to be mass-dependent (Kirillov & Turaev,
2006; Salucci et al., 2007). As the dSphs, the spi-
ral rotation curves prefer a cored mass profile over
a cuspy one. However, spirals are much more ef-
ficient at forming stars than either dwarf galaxies
or clusters, so baryonic effects that may affect the
dark matter distribution are expected to be strong
(Conroy & Wechsler, 2009). Secondly, the spiral
disk itself is difficult to build in numerical simu-
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lations with baryons and so the nature of baryonic
effects is not well understood in this context. There
are also indications that the spectral analysis may
be affected by systematics (Spekkens et al., 2005).

Kinematic analyses are also applied to the mo-
tion of galaxies in clusters, but in this case there
is again the partial degeneracy between the veloc-
ity anisotropy of the galaxies and the mass profile
(but see  Lokas & Mamon, 2003). Therefore x-ray
and lensing observations are better probes of clus-
ters.

Gravitational lensing

Gravitational lensing probes the total mass distri-
bution along the line of sight, independent of the
type of matter that exerts the gravitational pull.
Light emitted by a background source is deflected
by any mass located between the source and the ob-
server. A source located at the true position on the
sky β is observed at a position θ, which is given by
the solution of the lens equation (see, e.g., Schnei-
der, 2006),

β = θ − 1
π

∫
d2θ′κ(θ′)

θ − θ′

|θ − θ′|2
. (4.11)

Here, κ(θ) is the surface mass density of the lensing
objects. If there are multiple images (or arcs) of the
same background object, there is more than one β
that solves the lens equation This is the strong lens-
ing regime already mentioned. Whether this is the
case depends both on the strength of the lens and
on the redshifts, i.e. the geometrical configuration,
of the lens and the source. Several galaxy clusters
are strong lenses and various methods, both para-
metric and non-parametric, have been developed to
infer the lensing potential by matching the observed
images and arcs to that produced by model poten-
tials. This allows a mapping of the central parts
of clusters. In the other case, weak lensing, there
is only one solution to the lens equation and hence
only one image is observed. This image will in gen-
eral be magnified and distorted in shape. Whether
this is the case for a single source is impossible to
determine, but the field of background galaxies will
be distorted in a coherent fashion. Therefore the
lensing potential can be determined from the statis-
tics of the ellipticities of background galaxies, which
allows a mapping of the potential in the outer parts
of a galaxy cluster.
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Fig.A.1. Cool core clusters, sorted from top left to bottom right in order of increasing centroid shift parameter, 〈w〉. The images are derived from
the three EPIC detectors and have been corrected for vignetting. Point sources have been removed and replaced by Poisson noise sampled from

counts in a surrounding annulus. Contours increase in steps of
√
2. The colour table of each panel is scaled by a factor of L0.22

X
(see Böhringer et al.

2007 for details). Note that RXC J1302 +0230 and RXC J2319 -7313 are classified as both cool core and morphologically disturbed.

=

∫ +∞
−∞ ∆ ln L p(ln L| ln L0) Vsel(ln L) d ln L
∫ +∞
−∞ p(ln L| ln L0) Vsel(ln L) d ln L

where L0 is the mean (zero scatter) L for given mass, ∆ ln L =
ln L − ln L0, and p(ln L| ln L0) characterizes the scatter of L in
the mass - luminosity relation, assumed to be lognormally dis-
tributed, and given by the observed scatter in the L−MY relation
(Table 2). The bias factor is shown as a function of luminosity in
the right hand panel of Figure B.1.

A final subtlety is that the luminosities used as the basis of
the REXCESS selection, and thus for the bias calculation above,
are those calculated as in the original REFLEX catalogue. These
were iteratively calculated in the [0.1-2.4] keV band in the de-
tection aperture and extrapolated to an assumed radius of R200,
and are thus not equivalent to the luminosities derived in this
paper (see Böhringer et al. 2004 for luminosity calculation de-
tails; the appropriate REFLEX luminosities for the REXCESS

sample are given in Table 3 of Böhringer et al. 2007). We fit a
linear relation in log-log space between the present luminosi-
ties and those from REFLEX, finding LREFLEX = 1.15 × ([0.1 −
2.4] keV LREXCESS )

0.94. The bias correction factor for the appro-
priate luminosity, Bias (ln L| ln L0), is then applied to each data
point in the sample and the relation is refitted.

The Malmquist bias-corrected bolometric L −MY relation is
shown in the right hand panel of Figure 6, and the correspond-
ing fitted power law relation is given in Table 2. The correction
steepens the relation somewhat, due to the under-representation,
at a givenmass, of low luminosity clusters in theREXCESS sam-
ple.

B.3. Comparison to other results

The corrected relations for the two survey bands are also given
in Table B.2. The left hand panel of Figure B.2 shows the raw
and corrected [0.1-2.4] keV band relation compared to previ-
ous determinations from an X-ray hydrostatic analysis assuming
isothermality (Reiprich & Böhringer 2002) and a stacked weak
lensing analysis (Rykoff et al. 2008). We convert their L − M200

relations to M500 using a standard NFW model with a concen-
tration parameter of c500 = 3.2, the average concentration de-
rived from the total mass profiles of the morphologically regular
cluster sample discussed in Pointecouteau et al. (2005). Our cor-
rected relation has a 25 per cent higher normalisation than that
of Rykoff et al. at our fiducial pivot point of 2 × 1014 M'. The
Reiprich & Böhringer relation has a 6 per cent lower normalisa-
tion than our corrected relation at the same mass scale.

The right hand panel of Figure B.2 shows the corrected
[0.5-2] keV band relation compared to the results derived by
Vikhlinin et al. (2008) using the same Malmquist bias correc-
tion procedure on a sample of clusters observed with Chandra
(the Chandra Cluster Cosmology Project, CCCP). The agree-
ment in normalisation is good at low L/M, but at higher L/M
the Vikhlinin et al. relation is somewhat below ours (by approx-
imately 40 per cent at 8 keV, or 8 × 1014 M').

The REXCESS and CCCP slopes are slightly different, al-
though it is important to note that they are in agreement within
their 1σ uncertainties. The bias correction itself does not play
a part because there is excellent agreement in the magnitude
of the scatter about the L − M relation from the two samples.
We use a different M500 − YX relation to estimate masses, al-
though in practice the effect of this difference will be small since
our relation is in good agreement with theirs. One partial ex-
planation could be due to the systematic offset in measurements
between Chandra and XMM-Newton, in which, at high temper-
atures, Chandra overestimates the temperature4. Since in both
cases masses are derived from YX = Mgas T , this will have the
effect of boosting the higher mass Chandra points at a given lu-
minosity, leading to a flatter relation than the one we find here.
The effect is of order 20 per cent at 8 keV for a mass calculated
from the M − YX relation, which alleviates the difference some-
what. Finally, the samples contain different clusters. The individ-
ual samples probe slightly different mass ranges as REXCESS

containsmore lower mass systems, while the local CCCP sample

4 A Comparison of Cluster Temperatures
Derived from Chandra and XMM-Newton
http://cxc.harvard.edu/cal/memos/hrma memo.pdf
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Fig.A.2. Non-cool core clusters, sorted from top left to bottom right in order of increasing centroid shift parameter, 〈w〉.

contains more higher mass systems. In addition, differences in
the number of cool core systems, and their distribution across the
mass range, could change the slope. In particular, if REXCESS

has more cool core systems at higher mass than CCCP, their
higher luminosity would make the REXCESS relation slightly
steeper.

Fig. 4.7: X-ray emission from the clusters Abell
1384 (left) and Abell 3854 (right). Figure
from Pratt et al. (2009).

X-rays

The spaceborn X-ray observatories XMM-Newton
and Chandra allow observations of the intra-cluster
medium (ICM) with unprecedented spatial resolu-
tion. From such observations, the radial profile of
both the temperature and the density of the ICM
can be obtained. Typically, the temperature profile
can be obtained by spectral fitting in ∼ 10 radial
bins over more than a decade in radius. The density
profile can be obtained from spectral fitting as well,
but also directly from the flux with much higher
spatial resolution. In order to probe the gravi-
tational potential, the thermal gas pressure is as-
sumed to provide the support against gravitational
collapse which leads to the equation of hydrostatic
equilibrium,

GM(r)
r

= − kBT
µmH

(
d lnne
d ln r

+
d lnT
d ln r

)
. (4.12)

Here, ne is the number density of electrons in the
ionized ICM, and µ = 0.6 is the mean molec-
ular weight of the ICM. If there are significant
bulk flows in the gas, additional terms of the form
(~v · ∇)~v − (v2

θ + v2
φ)/r appear on the right-hand-

side of eq. (4.12), but this is usually not a major
issue for systems that appear relaxed (Piffaretti &
Valdarnini, 2008; Lau et al., 2009). The spherical
approximation is often surprisingly good as can be
seen in figure 4.7.

An important problem in the x-ray analysis is
the step from 2D projected profiles to 3D de-
projected profiles which, even assuming spherical
symmetry, is not trivial. One type of solution
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involves parametrized 3D models for the density
and temperature profiles which are projected onto
the sky analytically or numerically and then fit-
ted to the observations. If one is more inter-
ested in the properties of the ICM, a variation of
this method parametrizes the total mass profile in-
stead (e.g., with an NFW profile), and leaves the
deprojected temperature profile to be determined
through eq. (4.12). Another option, sometimes re-
ferred to as ‘onion-peeling’, involves the stepwise
subtraction of the contribution of outer bins to the
projected signal from further in. This method is
less model-dependent as it can be done without
parametrizing the density and temperature profiles.
However, it is susceptible to spikes or outliers in the
2D profiles which induce an oscillatory behavior in
the 3D profiles.

The contribution from the individual galaxies to
the total mass profile is negligible, except in the
centre of clusters, and so the ICM density pro-
file and the total mass profile obtained through
eq. (4.12) allow the dark matter density profile to
be determined. In general, the NFW profile has
been found to be in good agreement with observa-
tions, but often the data only support fits over a
limited radial range and so the Hernquist profile,
or in some cases even simple power laws, can also
be adequate descriptions. On the other hand, the
steeper cusp of the Moore profile has often been
found to be in tension with the observations. Un-
fortunately, the x-ray observations have difficulties
in probing the centre well enough to determine if
the power law slope becomes less steep than in the
NFW case. This is due to a combination of spatial
resolution, the uncertainty of the stellar contribu-
tion in the centre, and the very small mass con-
tained there. Part of Paper III is an investigation
of observational constraints on the inner slope.

Predictions vs. observations

So what is the status between the predictions of
numerical simulations on one hand and the obser-
vational results on the other?

For the mass profile, the benchmark for com-
parison has been the NFW profile. As already
hinted at, the kinematics of dwarf galaxies and spi-
ral galaxies prefer a profile with a more shallow
inner slope than the NFW, although the model-
ing means there is some uncertainty. This core-

cusp problem could be solved by warm dark mat-
ter such as keV-scale sterile neutrinos. Warm dark
matter is slightly relativistic at decoupling and it
leads to a suppression of the matter power spec-
trum on smaller scales than hot dark matter. The
free streaming could eradicate the cusps predicted
by numerical simulations.

On larger scales, several studies of galaxy clusters
have found the NFW profile to be in good agree-
ment with both strong and weak lensing observa-
tions (Broadhurst et al., 2005; Comerford et al.,
2006; Limousin et al., 2008), although there are
also claims of a less steep central density profile
(Sand et al., 2004). X-ray studies of galaxy clus-
ters also find varying inner slopes but this may be
a real effect or scatter (observationally induced or
perhaps intrinsic) around the NFW cusp (Ettori
et al., 2002; Lewis et al., 2003; Zappacosta et al.,
2006; Saha & Read, 2009). There has also been
several joint analyses of clusters using both x-rays
and lensing which do not always find agreement on
the mass distribution (Loeb & Mao, 1994; Mah-
davi et al., 2007; Miralda-Escude & Babul, 1995;
Zhang et al., 2008; Riemer-Sørensen et al., 2009).
Disagreement is usually ascribed to deviations from
spherical symmetry or non-thermal pressures which
bias the x-ray analysis, but the lensing studies may
also be contaminated by the presence of additional
mass concentrations along the line of sight. Tar-
gets for strong lensing are often perturbed systems
with significant amounts of substructure which are
more attractive to model because they produce sev-
eral lensing arcs, but such systems cannot be ex-
pected to be in hydrostatic equilibrium so an x-ray
mass model will likely not be accurate. Observa-
tions, particularly lensing, also tend to prefer a high
normalization for the concentration–mass relation
(Buote et al., 2007; Gastaldello et al., 2007; Broad-
hurst et al., 2008) (but see Paper III), although the
negative correlation between c and M , as predicted
by ΛCDM, is observed at very high significance.

The dynamical structure of dark matter halos is
not well studied observationally due to the diffi-
culty of making robust measurements of quantities
which are not immediately observable. Ikebe et al.
(2004) found that the specific energy of dark matter
∼ σ2

DM was always smaller than that of the ICM,
however they assumed a vanishing dark matter ve-
locity anisotropy in clear disagreement with numer-
ical simulations. Then, Hansen & Piffaretti (2007)
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instead assumed equipartition of the specific ener-
gies in two cool core clusters and solved the Jeans
equation for the velocity anisotropy, which was as-
sumed to be constant. They found β to be nonzero
at ∼ 3σ, with best-fitting values of 0.4 and 0.6 for
the two clusters (Paper II is an improvement and
extension of this work). More effort has gone to-
wards determining the dynamical strucuture of the
galaxy population in clusters where the line-of-sight
velocity dispersion can be measured directly (e.g.,
Natarajan & Kneib, 1996; Lemze et al., 2009).



5. SUMMARY & DISCUSSION OF PAPER I-III

In this section I summarize the purposes and re-
sults of Paper I-III within the observational and
theoretical context of the previous sections. A few
select figures from the papers are also included here,
but the reader is referred to the appendices for the
detailed analysis, results, and discussion of each pa-
per, as well as full references.

5.1 Paper I: Host & Hansen (2007)

What it takes to measure a fundamental difference
between dark matter and baryons: the halo velocity
anisotropy

In this paper we determine whether the dark mat-
ter velocity anisotropy β can be measured in a
direction-sensitive dark matter detector.

The signal rate in direct detection experiments,
eq. (3.2), can be divided into two parts, one which
is determined by the particle physics nature of dark
matter, and one which depends on the properties
of the Galactic dark matter halo. After a first de-
tection of WIMPs has been established by direct
searches, the next goal is to measure these two
parts, i.e. to determine the couplings of the WIMP
and put these into a theoretical context, and to
measure the spectrum and direction of the WIMPs.
For the latter purpose, a direction-sensitive detec-
tor is needed.

The detection rate depends on two properties of
the halo, namely the local density of dark matter
ρ0 and the local velocity distribution f(~v). The
local density is degenerate with the nuclear scat-
tering cross section, but it can be inferred if the
cross section is measured in collider experiments
or fixed by the underlying theory. There is the
possibility that local substructure or tidal streams
may cause an unusual signal, but the more likely
scenario is that the measured event distribution is
representative of the Milky Way halo. As discussed
in section 4.1, even though the halo dark matter is
in the classical regime, there is no reason to ex-

pect that the velocity distribution is Maxwellian.
In fact, numerical simulations show that the dark
matter velocity distribution shape varies with ra-
dius, and that the velocity dispersion tensor σ2

ij is
expected to be anisotropic in a halo. Figure 4.2
shows the three components of the dark matter ve-
locity distribution and the speed distribution in a
simulated Milky Way-sized halo at the orbit of the
Sun. There is a clear difference in the shape of the
radial and the two tangential distributions. The
velocity anisotropy parameter,

β = 1− σ2
t

σ2
r

, (5.1)

is typically found to be in the range 0.1 − 0.3 at
the solar orbit. The purpose of Paper I is to inves-
tigate whether such an anisotropy is measurable in
a direction-sensitive direct detection experiment.

We only consider coherent spin-independent
scattering, and we take a model-independent ap-
proach in the sense that we do not consider a par-
ticular combination of detector mass and WIMP.
Instead we ask how many events are required to
measure the velocity distribution with a given ac-
curacy. We assume the most simple Galactic dark
matter velocity distribution that allows for a veloc-
ity anisotropy, which is a multi-variate Maxwellian,

f(~v) ∝ exp

(
− v2

r

2σ2
r

−
v2
θ + v2

φ

2σ2
t

)
. (5.2)

Even if the Maxwell-Boltzmann distribution is not
necessarily a perfect representation of the velocity
components distributions, it is likely a reasonable
approximation, and it has the clear advantage that
it does not require extra parameters to be fixed ei-
ther by hand or measured from the data. Events,
i.e. random Monte Carlo samples, are drawn from
this velocity distribution and they are then trans-
formed to the laboratory frame, which is moving
with respect to the Galactic frame with a speed
~v�+~v⊕(t). We scatter the events at random points
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Fig. 5.1: The longitudinal distribution of nuclear
recoils induced by dark matter for three
different values of the velocity anisotropy
β. The motion of the Sun is towards
90◦ longitude, and the β-dependence of
the distribution leads to an asymmetry
between the number of events from the
forwards- and backwards directions. We
use this asymmetry as the observable sig-
nature of β.

of the sidereal year. We simulate the momentum-
dependent nuclear scattering with the standard
Helm form factor. This determines the scattering
angle and the nuclear recoil for each event. We
model the limited angular resolution of a realistic
detector by the Fisher distribution, the spherical
analogy to a Gaussian. This, finally, represents the
measured nuclear recoil. We can vary the detector-
dependent angular resolution, which gives the dis-
persion of the Fisher distribution, and the detection
threshold, which determines if a given event is ac-
tually measured. We consider a number of realistic
values for both.

We find that the velocity anisotropy has a very
simple observational signature in the number of nu-
clear recoils which are measured to arrive from the
forwards hemisphere (defined by the solar motion),
relative to the number from the backwards. The
variation of this ‘forwards–backwards’ asymmetry
is shown in figure 5.1. We use this asymmetry
within a defined solid angle (the acceptance region)
as an estimator for the velocity anisotropy. Then
we consider how accurately the velocity anisotropy
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Fig. 5.2: The sensitivity to the velocity anisotropy,
i.e. the predicted measurement uncer-
tainty, σβ for varying threshold energy
and acceptance angle. The shape of these
curves are general, but the actual value of
σβ is model-dependent, see the text for de-
tails. A large number of events, 3×104 for
a 100 keV threshold energy, are required to
reach the sensitivity shown in this figure.

can be measured under given circumstances. As a
fiducial model we consider a conservative value for
the anisotropy, β = 0.1, perfect angular resolution,
a WIMP mass of 100 GeV, and a 32S target nucleus
(as used in the DRIFT TPC design). The asymme-
try increases with β for small detection thresholds,
but this trend reverses around Ethr ≈ 40 keV. We
do not assume an accurate energy reconstruction
and therefore a relatively high energy threshold is
not necessarily a disadvantage.

The variance σβ of the simulated detections is
shown in figure 5.2 for the fiducial model for 106

events. The optimal scenario with Ethr = 100 keV
yields a sensitivity of σβ = 0.03, corresponding
to a better than 3σ detection of a non-zero veloc-
ity anisotropy. Only about 3% of all events pass
this energy threshold, but for lower thresholds the
turnover of the asymmetry–anisotropy correlation
means that the sensitivity is degraded.

We can then investigate the effects of the various
parameters. For example, the sensitivity depends
on the number of events roughly as 1/

√
N , as might

be expected, while a limited angular resolution of
30◦ degrades the sensitivity by about 30%. An
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isotropic background, which adds events to both
the forwards and the backwards acceptance region,
with a level of 25% of the WIMP signal increases
σβ by about 25%.

However, the main result is that it will take a
very large number of events to make a statisti-
cally significant measurement of a non-zero velocity
anisotropy, if β ≈ 0.1. For comparison, the enor-
mous DAMA/LIBRA exposure of 0.53 t-yr resulted
in 2 × 105 events, of which only a fraction may be
WIMPs causing the observed annual modulation.
For a direction-sensitive detector, this number of
events is far into the future. For this reason we
did not go into a more detailed analysis, but we
expect a somewhat improved sensitivity if the re-
coil energy can be measured. There will likely be a
non-trivial detector-specific energy dependence of
both the spectral and the angular resolution. Our
results are largely unchanged if WIMPs are primar-
ily detected through spin-dependent interactions,
since the WIMP distribution does not probe the
strongly varying high-momentum transfer part of
the nuclear form factor.

It is not clear whether there are other halo
properties that can generate a varying forwards–
backwards asymmetry. There are, of course, many
possible parametrizations of the velocity distri-
bution and the anisotropy signature might vary
slightly between these models. Constraining the
shape of the velocity distribution will, however, be
much more difficult. A local disturbance of the ve-
locity field, even if subdominant, might also cause
an ambiguous signal.

5.2 Paper II: Host et al. (2009)

Measurement of the dark matter velocity anisotropy
in galaxy clusters

In this paper we make a first measurement of the
dark matter velocity anisotropy profile, based on
x-ray observations of 16 galaxy clusters.

As discussed in section 4.3, satellite x-ray tele-
scopes such as Chandra and XMM-Newton al-
low high-resolution observations of the hot, ionized
ICM. It is possible to determine the radial tempera-
ture and density profiles, T (r) and ne(r), through a
spectral deprojection analysis, and the data we use
here consists of the deprojected temperature and
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Fig. 5.3: The ratio of the specific energies of the
ICM and dark matter for two ensemble of
relaxed cluster-halos found in the CLEF
and V06 cosmological SPH simulations.
The fact that this ratio is close to unity is
used as an extra constraint in the analysis,
which allows us to close the Jeans equa-
tion and determine the velocity anisotropy
β(r).

density profiles, with uncertainties, in six or seven
radial bins for each of the 16 clusters. All profiles
were deprojected without assuming parametrized
models for either the density or the temperature.

The use of x-ray observations to measure the
mass distribution in galaxy clusters based on hy-
drostatic equilibrium has become standard in the
literature. The dark matter density profile can also
be inferred as the difference between the total den-
sity and the measured ICM density. This still leaves
two degrees of freedom in the Jeans equation (4.6),

σ2
r

(
d ln ρ
d ln r

+
d lnσ2

r

d ln r
+ 2β

)
= −GM(r)

r
.

In order to close the Jeans equation, we make the
additional assumption that the specific energy of
dark matter tracks the specific thermal energy of
the ICM, i.e. the temperature. This assumption is
inspired by the results of two cosmological radia-
tive SPH simulations of the formation of structure.
Figure 5.3 shows the ratio κ of the specific energies
for the most relaxed halos found in each simulation
(67 for CLEF, 20 for V06). Clearly, the specific en-
ergies are close to equal. The two simulations are
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Fig. 5.4: The stacked measured velocity anisotropy profile β(r) for all 16 clusters. There are two different,
but not independent, ways of finding β from the observations. The dashed line shows the
anisotropy profile for the 67 halos in the CLEF simulations, and the green line is the median
anisotropy recovered by our method for those simulated halos. The measured β-profile is in
good agreement with CLEF at intermediate radii, while it is overestimated outside r2500 due to
a lack of hydrostatic support. The relatively large anisotropy interior to 0.1 r2500 is somewhat
unexpected, see text for details.

completely independent and based on two differ-
ent numerical codes. By fixing κ(r), it is possible
to solve the Jeans equation to find σ2

r(r) and β(r)
from the measured T (r) and ne(r).

The anisotropy-profiles of the individual clus-
ters are found to be qualitatively similar, but they
show some scatter and in some cases quite large
uncertainties. Hence, we also consider the sample-
averaged velocity anisotropy profile, shown in figure
5.4. At intermediate radii we find a slowly increas-
ing radial bias in the range 0.1−0.5, as predicted by
numerical simulations. At radii greater than r2500

we measure a very large anisotropy parameter of
∼ 0.8. We believe this is an overestimate due to a
lack of hydrostatic support of the gas in the outer
parts of the clusters, as demonstrated by testing
our method on the simulated halos. Towards the
centre we find a slight, but significant, increase of
β to 0.3. This is somewhat surprising since the

anisotropy parameter is expected to approach zero
in the centre according to higher resolution pure
dark matter simulations (e.g. figure 4.3). The in-
crease takes place in a region which is smaller than
the spatial resolution of the hydrodynamical simu-
lations so we do not have a handle on the value of
κ. However, the increase of β persists even if we
assume different sensible κ-profiles with κ 6= 0 in
the centre.

The measurement of a non-zero velocity
anisotropy implies that dark matter is effectively
collisionless in galaxy clusters. We can put
an order–of–magnitude upper limit on the self-
scattering cross section per unit mass, σ/m .
1 cm2g−1. This value is derived from the typical
densities in the intermediate radial range where we
observe good agreement with simulations. If we
take the central densities instead, the upper limit
improves by one magnitude. The present result is
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very close to ruling out the self-interacting dark
matter model (Spergel & Steinhardt, 2000), intro-
duced to explain the core–cusp problem.

After publication of Paper II we investigated
whether the presence of large cD-galaxies in the
centres of the clusters could account for the in-
crease of β in the centre. This could be a di-
rect effect where the measured quantity would cor-
respond to the velocity anisotropy in the halo of
the cD-galaxy. It could also be an indirect effect,
as the cD-galaxy could alter the measured den-
sity slope of the dark matter and hence β through
the Jeans equation. To investigate this, we found
brightness profiles of the brightest cluster galaxy
for nine members of our sample in the 2MASS
survery (Skrutskie et al., 2006), and included these
in the mass budget of the clusters. However, we
immediately found that only unrealistically large
mass-to-light ratios for the central galaxies could
affect our mass-modeling, confirming the assump-
tion that the galaxy masses are negligible. This
ruled out the indirect effect. We also considered
two higher-resolution simulated galaxy cluster ha-
los (see Sommer-Larsen & Limousin, 2009), where
a more detailed model of galaxy formation was in-
cluded. However, the velocity anisotropy was found
to be, β ∼ 0.1, and roughky constant close to the
innermost resolved radius. Hence, while not negli-
gible, there was no indication of the large central
anisotropy we measured. We hope to investigate
this issue in the future with both higher resolution
observational data and numerical simulations.

There is considerable potential in using the ve-
locity anisotropy profile to constrain the thermal
state of the ICM. For example, it may be possi-
ble to use a universal velocity anisotropy profile
as a measure for testing hydrostatic equilibrium of
the ICM. For that, a better understanding of the
dynamical state of simulated dark matter halos is
needed, including a systematic picture of the halo-
to-halo scatter around the typical anisotropy pro-
file. A first step observationally is an investigation
of how the measured velocity anisotropy correlates
with other probes of the dynamical state such as
the centroid shift.

5.3 Paper III: Host & Hansen (2009)

A detailed statistical analysis of the dark matter mass
profiles of galaxy clusters

In this paper we investigate the mass distribution of
clusters in a subsample of 11 of the clusters used in
Paper II. We perform detailed statistical compar-
isons with a number of different parametrized mass
models from the numerical simulation literature.

Lacking a fundamental prediction of the dark
matter mass profile, various parametrized fitting
models are used to model halos in numerical simula-
tions (section 4.2). While the two-parameter NFW
is the de facto standard, there is some tension be-
tween this profile and observations regarding the in-
ner slope for dwarfs and spirals, and even in some
cases for clusters. Recent high-resolution simula-
tions also seem to prefer the Einasto model, which
has an additional free shape parameter.

The ubiquitous χ2 goodness-of-fit statistic is not
necessarily a good basis for model comparison if
there are more free parameters in one model than
in the other, if the parameters of different models
have very different physical meaning, or if an extra
parameter has very limited effect on the observ-
ables in the measured range. Hence it is necessary
to define a metric in the parameter space of each
model, in which the agreement between model and
data can be assessed quantitatively and unambigu-
ously. In Bayesian statistics, this is the prior prob-
ability distribution of the model parameters. This
describes the a priori ‘state of knowledge’ about
the parameters, before the data are taken into ac-
count. As usual, the measurements are described
by the likelihood of the data given the parameters,
L(xi|θ) ∝ exp(−χ2/2), which assumes Gaussian-
distributed measurement uncertainties. The per-
formance of a model in describing the data can be
summarized by the average of the likelihood over
the prior of the model, and this average is the
Bayesian evidence E. The Bayes factor of two mod-
els is the ratio B12 = E1/E1 and says how much
more (or less) probable model 1 is in light of the
data than model 2. This basis for comparison by
default penalizes extra parameters, unless these pa-
rameters result in a significantly better description
of the data.

We use Bayes factors to compare a number
of two- and three-parameter mass profile models
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Fig. 5.5: Logarithm of the Bayes factors (the relative odds) of the different models relative to the NFW
for each cluster and for the sample as a whole. A positive Bayes factor shows that the NFW
is preferred. The NFW is the best two-parameter profile, but there is moderate evidence that
the slopeNFW model, a generalized NFW model with a freely varying inner slope, is preferred
by the data.

against the observed mass profiles. The models
include the NFW and the Einasto/Sersic profiles,
as well as generalized NFW profiles where the in-
ner slope or the transition parameter is allowed to
vary. Figure 5.5 shows the Bayes factors for each
model relative to the NFW. For the two-parameter
models we find that the NFW is preferred, and
that the Moore profile with a steep inner cusp
(α = 1.5) is convincingly ruled out. For the three-
parameter models, the ‘slopeNFW’ profile with a
free inner slope is significantly preferred over the
NFW and over all the other models considered.
The ‘transNFW’ and Sersic models perform as well
as the simple NFW. In all cases there is consider-
able and significant variation from cluster to cluster
regarding which model is preferred and how strong
that preference is. In particular, the least massive
and/or lowest redshift clusters prefer steep inner
slopes, but the sample is too small to claim this is
a general trend. There is also significant variation
in the preferred value of the shape-parameter of
all three three-parameter models, i.e. the shape pa-
rameters do not converge. We conclude that there
is moderate evidence of a non-universal mass profile
in our sample, and that the best parametrization
is an NFW-like double power law with free inner
slope.

Additionally, we consider the NFW mass–
concentration relation of our sample which is shown
in figure 5.6. At ∆ = 2500 the relation is robust and
quite model-independent since r2500 is within the
radial range of the data, but at ∆ = 200 it is nec-
essary to extrapolate outside the range of the data.
Our sample is not ideal for constraining theM–c re-
lation since more than half of our clusters have very
similar masses and concentrations. However, we
can study the normalization of the M − c relation,
and there is good agreement for both ∆ = 2500
and ∆ = 200 with the relations found in numerical
simulations.

Paper III presents a more thorough model com-
parison of mass profiles than what is usually found
in the literature, either observationally or for nu-
merical simulations. Several authors have claimed
to observe discrepancies with ΛCDM predictions,
especially for the inner slope, based on only a single
or a few observed clusters. The statistical meth-
ods we use can readily be carried over to other
observations or applied to numerical simulations.
In particular, it would be interesting to analyze
Chandra observations since the improved angular
resolution would likely provide stronger constraints
on the inner slope. It is also worth noting that
we find good agreement with the normalization of
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Fig. 5.6: The mass–concentration relation, M∆

vs. c∆, of our sample for ∆ = 200 and
∆ = 2500. The dashed lines are the rela-
tions from the simulations of Macciò et al.
(2008), based on the WMAP 5-year cos-
mology, and are in good agreement with
our results, unlike several other recent ob-
servational studies.

the mass-concentration relation as predicted in the
WMAP 5-year results, unlike some other analyses.
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Abstract

Numerous ongoing experiments aim at detecting WIMP dark matter particles from the galactic halo directly
through WIMP-nucleon interactions. Once such a detection is established a confirmation of the galactic origin of
the signal is needed. This requires a direction-sensitive detector. We show that such a detector can measure the
velocity anisotropy β of the galactic halo. Cosmological N-body simulations predict the dark matter anisotropy
to be nonzero, β ∼ 0.2. Baryonic matter has β = 0 and therefore a detection of a nonzero β would be strong proof
of the fundamental difference between dark and baryonic matter. We estimate the sensitivity for various detector
configurations using Monte Carlo methods and we show that the strongest signal is found in the relatively few
high recoil energy events. Measuring β to the precision of ∼ 0.03 will require detecting more than 104 WIMP
events with nuclear recoil energies greater than 100 keV for a WIMP mass of 100 GeV and a 32S target. This
number corresponds to ∼ 106 events at all energies. We discuss variations with respect to input parameters and
we show that our method is robust to the presence of backgrounds and discuss the possible improved sensitivity
for an energy-sensitive detector.
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A.1 Introduction

Several cosmological probes have shown that there is
a dark matter component in the universe compris-
ing about one quarter of the average energy density
(Tegmark et al., 2004; Cole et al., 2005; Spergel et al.,
2007). The local density of dark matter in the solar
neighborhood is estimated to be in the range ρ0 =
0.2 − 0.6 GeV/cm3 (Jungman et al., 1996). Several
dark matter candidates in the form of WIMPs, Weakly
Interacting Massive Particles, have been suggested in-
cluding the lightest supersymmetric particle (LSP) in
SUSY extensions of the standard model, sterile neutri-
nos and axions – see the review Bertone et al. (2005)
for a discussion.

Recent years have seen a remarkable progress in the
understanding of dark matter structures. Universal
trends have been identified and quantified using nu-
merical cosmological simulations. One of the most dis-
cussed general trends lies in the behaviour of the uni-
versal density profile (Navarro et al., 1997; Moore et al.,
1998; Fukushige & Makino, 1997), which has likely been
explained (Hansen, 2004; Austin et al., 2005; Dehnen &
McLaughlin, 2005). Another general result of cosmo-
logical simulations is that the velocity anisotropy is zero
near the central region, and positive in the outer region
(Buote & Lewis, 2004; Cole & Lacey, 1996). There
even appears to be a universal connection between the
local slope of the density profile and the local veloc-
ity anisotropy, which allows one to predict that the
value of the velocity anisotropy near the Earth should
be non-zero and of the order 0.2 (Hansen & Moore,
2006; Hansen & Stadel, 2006). Studies have shown that
the velocity anisotropy can have a measurable effect on
the detection rates of WIMPs (Vergados, 1999; Evans
et al., 2000; Green, 2002). The physical interpretation
of this velocity anisotropy is that the local dark matter
‘temperature’ is different in the tangential and radial
directions with respect to the galactic centre. Thus, a
non-zero velocity anisotropy of the dark matter presents
a sharp contrast with a typical baryonic gas. This im-
plies that an eventual measurement of the anisotropy
would be a strong proof that dark matter really behaves
significantly and fundamentally different from ordinary
matter. This is the main reason why we here present a
possible method, based on direct detection of dark mat-
ter, by which one eventually will be able to measure this
property characterizing the dark matter halo.

Detecting dark matter directly involves measuring
the recoil of a nucleus which is scattered by the WIMP.
At present, several direct detection experiments search
for WIMPs from the galactic halo. Strategies differ, but
the best exclusion limits at the moment are provided by
low background cryogenic detectors detecting phonons

and either ionization, such as CDMS (Akerib et al.,
2006) and EDELWEISS (EDELWEISS Collaboration,
2007), or scintillation as CRESST (Bravin et al., 1999).
However, KIMS (Lee et al., 2007) are also competitive
using only scintillation. A promising alternative is dual-
phase noble gas detectors measuring scintillation and
ionization, for example ZEPLIN (Alner et al., 2007),
XENON10 (Baudis, 2007b) and ArDM (Laffranchi &
Rubbia, 2007). These are relatively easily scalable to
ton-mass detectors. The only collaboration to claim a
detection so far is DAMA (Bernabei et al., 2000) which
relies on detecting the weak annual modulation of the
signal rate induced by the motion of the Earth (Freese
et al., 1988). However, the claim appears to be ruled
out by CDMS (Akerib et al., 2006) and is heavily dis-
puted. Of particular interest to the present work are
the direction sensitive detectors DRIFT (Alner et al.,
2005) and NEWAGE (Miuchi et al., 2007). DRIFT is a
1 m3 negative ion time projection chamber (TPC) situ-
ated in the Boulby Mine in the UK. The collaboration
has provided proof-of-principle and are running the sec-
ond stage of the detector. NEWAGE is a micro-TPC
in the R&D stage.

Direction-sensitive detectors search for a WIMP sig-
nal induced by the solar motion through the WIMP
halo (Spergel, 1988). This causes a large forward-
backward asymmetry in the recoil signal rate as shown
in figure A.1. The magnitude of the asymmetry de-
pends mainly on the solar orbital speed. Analyses sug-
gest that less than 10 WIMP events in a direction-
sensitive detector may confirm the signal as being galac-
tic due to the large forward-backward asymmetry (Copi
et al., 1999; Copi & Krauss, 2001; Green & Morgan,
2007; Morgan et al., 2005). Hence, while direction sen-
sitive detectors are less likely to provide first detec-
tion, they may well provide a crucial confirmation of
the galactic origin of a WIMP signal. However, the
asymmetry is also weakly dependent on the velocity
anisotropy of the dark matter halo and therefore a care-
ful measurement of the asymmetry allows for a deter-
mination of β.

A.2 Modelling

In this section we discuss the components of the Monte
Carlo simulation. The simulation generates a detector
event by randomly selecting a WIMP velocity in the
galactic halo, transforming the velocity to the detector
and calculating the detector response to the event.

Dark matter velocity distribution

We make the simplest assumption for the velocity dis-
tribution which is a modified Maxwell-Boltzmann dis-
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Fig. A.1: Hammer-Aitoff projections of the sky in galactic coordinates showing the directional nuclear
recoil rate in our fiducial model. On the left all recoils are shown, on the right only those with
a recoil energy Erec > 100 keV. The Sun moves towards 90◦ longitude on the Galactic equator.
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in which the one-dimensional radial and tangential ve-
locity dispersions are related through β = 1 − σ2

t /σ
2
r .

As explained in the introduction, numerical simula-
tions predict β ∼ 0.2 near the Earth. When varying
β we fix the total velocity dispersion σ =

p
σ2
r + 2σ2

t

at σ = v0 = 230 kms−1, the circular orbit velocity.
The distribution is cut off at an escape velocity of
vesc = 600 kms−1. More general distributions (Hansen
et al., 2006; Vergados et al., 2008) will require a more
detailed study.

The velocity of the Earth through the Galaxy is cal-
culated as specified in Appendix B of Lewin & Smith
(1996) to obtain the WIMP velocity ~v in the detector.
The velocity is the sum of the Earth’s orbit around the
Sun ~vE , the solar motion ~v� with respect to the local
standard of rest and the galactic orbital speed of the
local standard of rest, which is just the circular orbit
velocity v0. The solar motion measured by the Hippar-
cos satellite (Dehnen & Binney, 1998) is, in Galactic
coordinates, ~v� = (10.0, 5.2, 7.2) kms−1. We refer to
Lewin & Smith (1996) for the calculation of ~vE as a
function of time and date.

WIMP-nucleus interaction

A WIMP can be detected by the nuclear recoil produced
when it scatters off a target nucleus in a detector. We
consider the case where the dominant channel is spin-
independent elastic scattering, which is coherently en-
hanced by the number of nucleons at low energies. The
cross section depends on the momentum transfer q as

σ(q) = σ0|F (q)|2, (A.2)

where F (q) is the nuclear form factor and σ0 is the
cross section in the limit of zero momentum transfer.
Following Lewin & Smith (1996), the WIMP-nucleus
interaction is modelled by the Helm form factor (Helm,
1956),

F (qrn) = 3
j1(qrn)

qrn
exp (−(qs)2/2), (A.3)

where rn = 1.14A1/3 is the approximate nuclear radius
and s = 0.9 fm is the skin thickness parameter. For
elastic scattering the momentum transfer is given by

q = 2µv cos θ, (A.4)

where µ = mtmW /(mt + mW ) is the reduced mass of
the WIMP-target system, v is the laboratory speed of
the incoming WIMP and θ is the recoil angle of the
nucleus with respect to ~v. For each event, the maxi-
mum possible momentum transfer is determined by the
velocity of the WIMP. The distribution |F (q)|2 is then
randomly sampled in the interval up to the maximum
momentum transfer to determine the actual momen-
tum transfer. This fixes the scattering angle θ through
eq. (A.4).
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Detector

The directional WIMP signal is unavoidably smeared
out by the fact that only the nuclear recoil is observed,
not the WIMP itself. In addition to this, the detec-
tor will have a limited angular resolution with which
the initial nuclear recoil direction can be reconstructed.
For example, in the DRIFT time projection chamber,
the ionization cloud from a typical recoil will drift onto
only a few anode wires in the readout (Spooner, 2007).
This, coupled with the charge diffusion, necessarily lim-
its the accuracy with which the recoil can be recon-
structed. High energy recoil events produce longer ion-
ization tracks, hence it is easier to measure the direction
of more energetic events.

In an actual experiment the angular resolution must
be carefully measured. Here, we model it by rotating
the recoil velocity in a random direction by an angle
α drawn from the Fisher distribution on the sphere
p(α) ∝ exp(κ cosα) (Fisher, 1953). The parameter κ
fixes the width of the distribution with larger κ corre-
sponding to a more centralized distribution. We con-
sider perfect reconstruction of the direction, κ =∞, as
well as κ = 5 and κ = 2.3 corresponding to half the
sampled angles being greater than 30◦ and 45◦, respec-
tively.

Another parameter characterizing the detector is the
detector threshold energy Ethr. A realistic detector
cannot measure the direction of nuclear recoils below
this energy since low energy recoils will not move suf-
ficiently long distances in the detector. Naturally the
total signal rate is lowered for increasing threshold en-
ergy.

Calibrating the asymmetry-anisotropy
relation

The observed asymmetry depends on β in a non-trivial
way which necessitates Monte Carlo calibration.

We define the angle φ between the observed nuclear
recoil direction and the direction of the solar motion
through the halo. If φ is less than a chosen acceptance
angle αacc the event is counted as a forward event while
if φ is greater than 180◦ − αacc the event is a back-
ward event. The observed asymmetry is the difference
between the number of forward and backward events.
From figure A.2, it is evident that the asymmetry is
large, compared to the total number of signals, but the
dependence on β is weak. The relative asymmetry is the
difference between the number of forward and backward
events with Erec > Ethr, divided by the total number of
generated events, regardless of recoil energy. In other
words, it is the probability that a random detector event
will add to the asymmetry given Ethr and αacc.

The relation between the relative asymmetry and
the velocity anisotropy is calibrated by simulating 108

events for β in the range (−0.5, 0.5) in steps of 0.05. For
each β, the relative asymmetry is tabulated for a num-
ber of threshold energies and acceptance angles. Third
order polynomials are fitted to the calculated relative
asymmetries and used as calibration curves. Figure A.3
shows the calibration curves at threshold energies of
0 keV and 100 keV. Note that for low threshold energy,
the relative asymmetry increases with β while the op-
posite is true for high threshold energy. This change
in behaviour occurs in the region of Ethr ' 40 keV, in-
creasing with the smaller acceptance angles.

The calibration depends on both the WIMP and tar-
get masses, mW and mt, on the assumed velocity dis-
persion σ, and on the angular resolution of the detec-
tor, κ. Further, each configuration of detection en-
ergy threshold and acceptance angle results in a dif-
ferent calibration. We calculate calibration curves for
Ethr/(keV) ∈ [0, 20, 40, 70, 100, 140, 180] and αacc ∈
[90◦, 60◦, 45◦, 36◦, 30◦, 26◦, 22◦].

A.3 Results

Now we discuss the sensitivity, i.e. the mean or ex-
pected accuracy, with which the velocity anisotropy can
be measured, depending on the experimental configura-
tion. We simulate a large number of experiments, each
measuring β from a number of observed nuclear recoils.
The measurement is done by converting the observed
relative asymmetry in each experiment to a value for
β using the calibration curves discussed above. This
yields a distribution of measurements and the sensitiv-
ity is the width of this distribution.

Signal rates

We do not calculate specific rates, rather we assume
a WIMP mass and a target nucleus and estimate the
sensitivity from a number of generated events for dif-
ferent Ethr and αacc. Increasing Ethr lowers the sig-
nal rate by a factor depending on the masses. Ta-
ble A.1 lists the fraction of recoils with energy above
a given threshold for some combinations of mW and
target nucleus. For example, out of 1000 recoils only
about 30 would have recoil energy greater than 100 keV
if mW = 100 GeV and the target is 32S. It is therefore
natural to compare sensitivities for different threshold
energies between simulations with the same number of
total generated events.

The actual signal rate in a detector is proportional to
ρ0/mW , where ρ0 is the WIMP density in the vicinity
of the solar system.
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Fig. A.2: Distributions of nuclear recoils with respect to galactic longitude, normalized to unity, for three
values of β. An energy threshold of Ethr = 100 keV has been applied, other parameters are as
in the fiducial model.

Tab. A.1: Fraction of nuclear recoils with recoil energy above Ethr.
Ethr (keV) 0 20 40 70 100 140 180
32S target, mW = 100 GeV 1.0 0.35 0.18 0.074 0.030 0.0082 0.0018
12C target, mW = 100 GeV 1.0 0.22 0.073 0.013 0.0014 - -
32S target, mW = 500 GeV 1.0 0.44 0.27 0.14 0.073 0.031 0.013

Fiducial model

We consider a fiducial model with velocity anisotropy
β = 0.1, a WIMP mass of mW = 100 GeV, a 32S tar-
get nucleus and perfect reconstruction of the recoil di-
rection, κ = ∞. We simulate a total of 109 detector
events which we group as 1000 experiments obtaining
106 WIMP detections each. The distribution of mea-
sured β’s for these 1000 simulated experiments is shown
in figure A.4 for Ethr = 100 keV and αacc = 45◦ . The
width σβ of the distribution is the desired estimate of
the experimental sensitivity to β. Explicitly, a detec-
tor reconstructing the direction of the roughly 3 × 104

events with recoil energy greater than 100 keV (out of
the 106 events at all energies) is expected to be able to
measure β with an accuracy of σβ = 0.029, if β = 0.1.

The sensitivity in the fiducial model is shown in fig-
ure A.5 for various acceptance angles as a function of
threshold energy. The best sensitivity is obtained for
the above-mentioned configuration, αacc = 45◦ and
Ethr = 100 keV, for which σβ = 0.029. Very simi-
lar results are obtained for Ethr = 0 keV while inter-

mediate threshold energies are less optimal. The de-
pendence on αacc is weak for large threshold energies,
but rather strong at low and intermediate Ethr. The
optimal threshold energy at 100 keV should be under-
stood as the best compromise between a steep calibra-
tion curve and a large number of events. Explicitly, the
asymmetry is more enhanced if only high energy events
are detected, but the lower number of events reduces
the signal to noise ratio. For zero threshold energy, the
opposite happens as there is a large number of events
but each event contains less information. The poor per-
formance at intermediate Ethr is mainly due to the cali-
bration curves changing from positive to negative slope
as the threshold energy increases while the increase in
σβ for Ethr > 100 keV is due to the low number of
events with sufficient recoil energy. The simulated ex-
periments reproduce the input β = 0.1 consistently.
The only unfortunate exceptions are for αacc = 90◦ and
Ethr = 20 or 40 keV in which case the flatness of the
calibration curves and the low signal per event smear
the distribution out over a wide range of β’s.



56 A. Paper I: A fundamental difference between dark matter and baryons: the halo velocity anisotropy

(a) Ethr = 0 keV

-0.4 -0.2 0.0 0.2 0.4
Velocity anisotropy β

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30
R

el
at

iv
e 

as
ym

m
et

ry
60o

45o

(b) Ethr = 20 keV
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(c) Ethr = 40 keV
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(d) Ethr = 100 keV
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Fig. A.3: Calibration curves for (a) Ethr = 0 keV, (b) Ethr = 20 keV, (b) Ethr = 40 keV and (d) Ethr =
100 keV, acceptance angles as labelled. The calibration is for the fiducial model, i.e. κ = ∞,
mW = 100 GeV and 32S target.

The measured value of the relative asymmetry in the
1000 experiments is close to Gaussian since the number
of forward events is very large, the number of back-
ward events is very small and each number is Poisson
distributed. However, since the calibration curves are
not straight lines the distribution of measured β’s is
distorted. The measure of this distortion is the sample
skewness, which is the ratio of the third sample moment
to the second,

γ =
µ3

σ3
=

√
n
P
i(βi − β̄)3

[
P
i(βi − β̄)2]3/2

. (A.5)

In particular, we find large, negative skewness γ . −1
for low threshold energies as well as for αacc = 90◦. In
these cases a Gaussian fit is not a good representation of
the distribution of β’s and we take the sample standard
deviation of the unbinned distribution as the sensitivity
instead.

The dependence on the number of detected events
is investigated by regrouping the 109 simulated events
into more experiments with fewer detections. Figure
A.6 shows the obtained accuracy for 4 × 105 events,
i.e. 2.5 times fewer than the fiducial configuration. The

best σβ is again obtained at Ethr = 100 keV and αacc =
45◦, for which σβ = 0.047. In general we find that
σβ ∝ 1/

√
N for experiments with at least 105 events,

as expected. However, the skewness becomes more and
more pronounced as the number of detector events is
reduced.

In summary, to make a coarse measurement of the
velocity anisotropy of the dark matter halo with an ac-
curacy of about 0.1, about 105 WIMPs at all energies
would be needed. However, a detector which is insen-
sitive to the recoil energy should ideally only count
the nuclear recoils with energy greater than 100 keV.
A precision measurement would require more than 106

events, corresponding to a ton-scale direction-sensitive
detector operating for several years if the cross-section
is 10−7pb. These numbers, compared to the present
status of WIMP directional detection experiments, are
of course very large and would require a large dedicated
experimental programme. Additionally, a cross-section
of 10−7 pb may be too optimistic – for example, a re-
cent study found that the most favored region would
be the range 10−10 − 10−8 pb (Trotta et al., 2007).
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Fig. A.4: Binned distribution of measured β’s in the
fiducial model with 106 detector events,
Ethr = 100 keV and αacc = 45◦. The
width of the distribution defines the sensi-
tivity for this experimental configuration.
The curve shows the Gaussian fit which
has σβ = 0.029.

Parameter influence

Next, we investigate the consequences of varying each
of the parameters of the fiducial model independently.

• First and most important, a limited detector an-
gular resolution, κ = 5, is found to increase σβ
by 30%. A poorer detector with κ = 2.3 increases
σβ by 75%. The optimal acceptance angle in both
cases is αacc = 60◦. In these cases, the σβ ’s ob-
tained at zero threshold energy are notably poorer
than at 100 keV, unlike in the fiducial model. One
might expect the resolution would have a stronger
effect but it should be remembered that the WIMP
recoil distribution is already smeared out by the
nuclear recoil distribution so the relative decrease
due to a finite κ is small.

• If the target nucleus mass is lowered, the reduced
mass of the WIMP-nucleus system is decreased
and, from eq. (A.4), so is the width of the re-
coil angle distribution. Hence the nuclear recoil
direction resembles the incoming WIMP direction
better. For a 12C target, σβ is decreased by 15%.
The lower reduced mass also lowers the optimal
threshold energy to Ethr = 70 keV.

• If the WIMP mass is increased, the reduced mass
is also increased and the recoil angle distribution
becomes wider, resulting in poorer sensitivity. For
mW = 500 GeV we find σβ is increased by 10%
and the optimal threshold energy is 180 keV. It
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Fig. A.5: Sensitivity σβ of measurement of β as a
function of detector energy threshold for
various acceptance angles in the fiducial
model.

Tab. A.2: Impact of varying the parameters of the
fiducial model independently.

Parameter Best σβ Ethr (keV) αacc

Fiducial model 0.029 100 45◦

κ = 5 0.037 100 60◦

κ = 2.3 0.051 100 60◦

mW = 500 GeV 0.033 180 45◦
12C target 0.025 70 45◦

β = −0.1 0.045 100 45◦

should be noted here that since the WIMP flux is
inversely proportional to mW , it would take five
times as long to record the same number of events
if mW = 500 GeV rather than 100 GeV.

• Finally, if the ‘true’ value of β is instead −0.1 the
smaller slope of the calibration curve causes σβ to
increase by about 50%. The opposite is true if β =
0.3, in which case σβ decreases by 40%. Hence, if
the actual value of β is larger than the 0.1 in our
reference model, the number of events needed to
measure β is significantly smaller. For example,
measuring β = 0.3 to a precision of about ±0.06
would require roughly 3 000 events above 100 keV.
Figure A.7 shows the variation of the sensitivity
with the assumed true value of β.

The best obtained σβ for these parameters and the cor-
responding optimal acceptance angle and threshold en-
ergy are summarized in table A.2.
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Fig. A.6: Same as figure A.5 but with 4×105 events
per experiment.

Background

So far we have assumed a zero background level. Now
we discuss the influence of a nonzero background which
is assumed to be isotropic in the Galactic frame when
averaged over time (Morgan & Green, 2005). We con-
sider the impact on the optimal detector configuration
for the fiducial model, Ethr = 100 keV and αacc = 45◦.
For each simulated experiment we add a number of
background events to the forward and backward signal
events. These two numbers are drawn from a Poisson
distribution with mean equal to a fraction of the num-
ber of forward signal events. The asymmetry is then
calculated as before and the calibration curve is used
to determine the measured value of β. We find that the
degradation due to nonzero background is benign, as
long as the signal is not weaker than the background.
For a 25% background level the sensitivity σβ = 0.037,
an increase of less than 30%. For a 100% background,
σβ = 0.06 while for a 400% background σβ = 0.10. The
distribution of measured β’s still reproduce β = 0.1
consistently as shown in figure A.8.

The well-behaved performance of the sensitivity with
respect to nonzero backgrounds can be attributed to
our method of measuring the velocity anisotropy from
the difference of the number of forward and backward
signals, defined within equal solid angles. This method
is largely insensitive to the background level, since the
expected number of background events is the same in
the forward and backward bins.

Energy resolution

We have not assumed that the detector can measure the
nuclear recoil energy. However, as is evident from the
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Fig. A.7: Variation of the sensitivty with the in-
put value of β for αacc = 45◦ and 60◦

and Ethr = 100 keV. The dependence is
primarily determined by the calibration
curve.

calibration curves in figure A.3 the forward-backward
asymmetry increases with β for low energy recoils but
decreases for high energy recoils. Hence a ‘cleaner’ sig-
nal can be obtained if the experiment is able to place
events into energy bins with some resolution.

We have investigated the possible improvements by
binning events into 15 keV bins according to their re-
coil energy, i.e. with no additional detector resolution
effects. For each energy bin and acceptance angle we
calculate separate calibration curves. The flip from pos-
itive to negative slope of the calibration curves takes
place at about Erec = 60 keV for the fiducial model.
Hence, at intermediate recoil energies there is virtually
no sensitivity to β. Following the usual procedure, we
calculate the distribution of measured β’s in each en-
ergy bin. For 106 events distributed over all bins, the
measurements reproduce the input β for low (. 50 keV)
and high (& 100 keV) recoil energies. The best sensitiv-
ity in individual bins is obtained in the lowest energy
bin, Erec ∈ (0, 15) keV for which σβ,E = 0.032. If the
results of the bins that reproduce β = 0.1 are combined
through σ−2

β =
P
i σ
−2
β,Ei

, a sensitivity of σβ = 0.20
is achieved. This corresponds roughly to the improve-
ment obtained by our standard detector with no energy
resolution taking data for twice as long.

It is interesting to note that a direction-sensitive de-
tector with high energy resolution will be able to extend
the study of (Drees & Shan, 2007) to extract the shape
of the full 3-dimensional velocity distribution function.
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Fig. A.8: Binned distributions of measured β’s in
the fiducial model as in figure A.4 but in-
cluding a background level set relative to
the number of forward events. The sensi-
tivities are σβ = 0.037 and σβ = 0.06 for
25% and 100% background levels, respec-
tively.

A.4 Discussion

We have investigated the possibility of measuring the
velocity anisotropy β of the galactic dark matter halo
in a direction sensitive WIMP detector using Monte
Carlo methods. The measurement is based on the well
known forward-backward asymmetry in the directional
spectrum of WIMP-induced nuclear recoils. A non-zero
β alters the magnitude of the asymmetry slightly which
makes it possible to measure β.

We find that in excess of 105 events across all energies
are needed to make a coarse measurement of β. An
experiment measuring 3×104 events with recoil energy
greater than 100 keV, equivalent to 106 events at all
energies, should be able to measure β to a precision of
0.03. This result is obtained for an acceptance angle
of αacc = 45◦, a velocity dispersion of σ = 230 kms−1,
a WIMP mass of 100 GeV and a 32S target. Such a
measurement would provide a strong proof that dark
matter behaves fundamentally different from baryonic
matter. We also note that if β is actually larger than
the 0.1 we have assumed, the required number of events
can be reduced significantly.

We have investigated the dependence of the sensi-
tivity with respect to the angular resolution and the
threshold energy of the detector, the masses of the
WIMP and the target and the background level. The
main point is that low energy and high energy nu-
clear recoils carry more information about the velocity

anisotropy, implying a steep calibration curve, while in-
termediate energy recoils show little sensitivity. Since
the calibration curves for low and high energy re-
coils have positive and negative slope, respectively, an
energy-sensitive detector may improve the sensitivity.
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Abstract

The internal dynamics of a dark matter structure may have the remarkable property that the local temperature
in the structure depends on direction. This is parametrized by the velocity anisotropy β which must be zero
for relaxed collisional structures, but has been shown to be non-zero in numerical simulations of dark matter
structures. Here we present a method to infer the radial profile of the velocity anisotropy of the dark matter
halo in a galaxy cluster from X-ray observables of the intracluster gas. This non-parametric method is based on
a universal relation between the dark matter temperature and the gas temperature which is confirmed through
numerical simulations. We apply this method to observational data and we find that β is significantly different
from zero at intermediate radii. Thus we find a strong indication that dark matter is effectively collisionless on
the dynamical time-scale of clusters, which implies an upper limit on the self-interaction cross-section per unit
mass σ/m . 1 cm2g−1. Our results may provide an independent way to determine the stellar mass density in
the central regions of a relaxed cluster, as well as a test of whether a cluster is in fact relaxed.
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B.1 Introduction

Our understanding of dark matter structures has in-
creased significantly over the recent years. This
progress has mainly been driven by numerical simu-
lations which have identified a range of universalities
of the dark matter structures. One of the first gen-
eral properties to be suggested was the radial density
profile (Navarro et al., 1996; Moore et al., 1998; Die-
mand et al., 2004; Merritt et al., 2006; Graham et al.,
2006), whose radial behaviour was shown to change
from a fairly shallow decline in the central region to
a much steeper decline in the outer regions. This be-
haviour has been confirmed observationally for galaxy
clusters, both through X-ray observations (Buote &
Lewis, 2004; Pointecouteau et al., 2005; Arnaud et al.,
2005; Vikhlinin et al., 2006; Pratt et al., 2006), and
also more recently through strong and weak lensing ob-
servations (Sand et al., 2004; Broadhurst et al., 2005;
Comerford et al., 2006; Limousin et al., 2008).

A slightly less intuitive quantity to be considered is
the dark matter velocity anisotropy defined by

β ≡ 1− σ2
t

σ2
r

, (B.1)

where σ2
t and σ2

r are the 1-dimensional tangential and
radial velocity dispersions in a spherical system (Bin-
ney & Tremaine, 1987). This anisotropy was shown in
pure dark matter simulations to increase radially from
zero in the central region to roughly 0.5 in the outer re-
gion (Carlberg et al., 1997; Cole & Lacey, 1996; Hansen
& Moore, 2006). For collisional systems, in contrast,
the velocity anisotropy is explicitly zero in the equili-
brated regions. Therefore, eventually inferring β from
observational data is an important test of whether dark
matter is in fact collisionless, as assumed in the stan-
dard model of structure formation. On this note, it has
been shown that the Galactic velocity anisotropy can
affect the detection rates of direct dark matter searches
(Vergados et al., 2008), and it is in principle measur-
able in a direction-sensitive detector (Host & Hansen,
2007).

The most massive bound structures in the Universe
are clusters of galaxies, which consist of an extended
dark matter halo, an X-ray emitting plasma making
up the intracluster medium (ICM), and the individual
galaxies. While the contribution of galaxies to the to-
tal mass is small, approximately 10 % of the cluster
mass resides in the ICM. The present generation of X-
ray satellites, XMM-Newton and Chandra, allows very
accurate measurements of azimuthally-averaged radial
profiles of density and temperature of the ICM. These
are used, under the assumption of hydrostatic equilib-
rium and spherical symmetry of both gas and total mass

distributions, to estimate total, gas, and dark matter
mass profiles (Fabricant et al., 1980).

Below we infer the radial velocity anisotropy profile
of dark matter in 16 galaxy clusters using a generally
applicable framework without any parametrized mod-
eling of the clusters. In short, we assume a univer-
sal relation between the effective temperature of dark
matter and the ICM temperature, which allows us to
solve the dynamics of the dark matter halo using the
radial gas temperature and density profiles determined
from X-ray data. We investigate the shape and va-
lidity of this temperature relation in two cosmological
simulations of galaxy clusters, based on independent
numerical codes. We apply our method to 16 galaxy
clusters from two different samples and find a velocity
anisotropy significantly different from zero in the outer
parts, in qualitative agreement with simulations.

Our approach here is a generalization of the non-
parametric analysis in Hansen & Piffaretti (2007) where
β was inferred neglecting the radial dependence. We
also note the parametrized analyses in Ikebe et al.
(2004) and Morandi & Ettori (2007), where the total
dark matter velocity dispersion was inferred assuming
either β = 0, or the analytical β-profiles of Coĺın et al.
(2000) or Cole & Lacey (1996) (see also Wojtak et al.
(2008b)). In particular, Morandi & Ettori (2007) found
that the dark matter temperature and the ICM temper-
ature were essentially the same in strong cooling-core
clusters.

The structure of the paper is the following: In the
next section, we discuss how we relate the temperature
of dark matter to the observable gas temperature. In
section 3 we show how we can then solve the dynamics
of the dark matter. In section 4 we test the assumed
temperature relation and our method on numerical sim-
ulations, and in section 5 we apply the method to obser-
vational data. Section 6 is the summary and discussion.

B.2 The temperature of dark matter

The equality of inertial and gravitational mass implies
that the orbit of a test particle in a gravitational sys-
tem is independent of mass. For example, the veloc-
ity of a circular orbit in a spherical mass distribution
v2
c = GM(r)/r depends only on the distance to the cen-

ter of the system and the mass contained within that
radius. Therefore it is natural to assume that, at a given
radius, all species in a relaxed, spherical gravitational
system have the same average specific kinetic energy.
Obviously, they also have the same specific potential
energy. In a gas system, equilibrium implies energy
equipartition between all species. It is clear that the
corresponding principle for a relaxed gravitational sys-
tem is a common velocity dispersion, precisely because
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gravitational dynamics are independent of mass. Since
the average velocity is associated with the thermal en-
ergy content, this relationship is expressed by

TDM = κTgas. (B.2)

The parameter κ is constant as long as the impact of ra-
diative or entropy-changing processes affecting the gas
is negligible and the system is relaxed. Therefore, we
allow for a radial dependence, κ = κ(r/r2500), where
r2500 is the scale radius within which the mean total
density is 2500 times the critical density at the redshift
of the cluster.

The dark matter temperature in eq. (B.2) is naturally
not well-defined as there is no thermodynamic equilib-
rium for a collisionless gas. Instead, we simply define
an effective dark matter temperature which is propor-
tional to the three-dimensional velocity dispersion,

kBTDM =
1

3
µmHσ

2
DM (B.3)

=
1

3
µmH

`
σ2
r + 2σ2

t

´
. (B.4)

The velocity dispersion has been decomposed into the
contributions from the one-dimensional radial and tan-
gential dispersions. We choose the constant of propor-
tionality to be the mean molecular mass of the intra-
cluster gas simply to allow κ to be of order unity. Equa-
tions (B.2)–(B.4) are equivalent to assuming that the
specific energies of gas and dark matter particles are
the same up to a factor of κ, on average. The same
conjecture was made in Hansen & Piffaretti (2007) but
with κ = 1 explicitly.

It should be mentioned that the temperature rela-
tion eq. (B.2) was recently analyzed in simulations by
Evrard et al. (2008). Whereas we allow a possible ra-
dial variation in the temperature relation, those authors
considered averages within r200 and found that

κ̃<r200 ≡
kBTgas/µmH

σ2
DM

= 1.04± 0.06, (B.5)

This was based on their determination of κ̄−1
<r200

=
(0.87±0.04)〈Tspec/Tmw〉, where the ratio of the spectro-
scopic temperature to the mass-weighted temperature
was 〈Tspec/Tmw〉 = 1.1 ± 0.05 (Nagai, 2006). Then,
in Rines et al. (2008) it was noted that by applying
virial scaling to the WMAP5+SN+BAO results (Ko-
matsu et al., 2009), an average value of κ̃−1|<r500 = 1.1
was found. The authors concluded that the observa-
tional results indicated that the average specific energy
of the ICM was close to both that of the dark matter
and that of the galaxies. In section B.4, we will arrive
at the same conclusion for simulated galaxy clusters.

B.3 Solving the dark matter dynamics

Equation (B.2) allows us to estimate the total veloc-
ity dispersion profile of the dark matter structure from
measurements of the radial temperature profile of the
gas. In this section we discuss how we can proceed to
determine the dark matter velocity anisotropy.

The collisionless Jeans equations relate the dynam-
ical properties of the dark matter to the gravitational
potential of the cluster. Assuming that the system is
spherically symmetric and in a steady state, the sec-
ond Jeans equation can be put in the form (Binney &
Tremaine, 1987)

d(νv2
r)

dr
+
ν

r

h
2v2
r −

“
v2
θ + v2

φ

”i
= −ν GM

r2
, (B.6)

where ν is the dark matter number density, v2
i is the

second moment of the ith velocity component, and M
is the mass contained within radius r. If it is further
assumed that there are no bulk flows, vi = 0, and that
the tangential velocity dispersions are equal, σ2

θ = σ2
φ ≡

σ2
t , the Jeans equation becomes

σ2
r

„
d ln ρDM

d ln r
+
d lnσ2

r

d ln r
+ 2β

«
= −GM(r)

r
, (B.7)

where ρDM is the mass density, σ2
r is the radial velocity

dispersion, and β is the velocity anisotropy introduced
in (B.1).

Similar to the Jeans equation, the radial part of the
Euler equations of the ICM expresses the condition that
the thermal pressure of the gas balances the gravita-
tional potential. This equation of hydrostatic equilib-
rium reads

kBTgas

µmH

„
d lnne
d ln r

+
d lnTgas

d ln r

«
= −GM(r)

r
, (B.8)

where Tgas is the gas electron temperature and ne is the
number density of electrons. This important equation
has been widely used to estimate the total mass of a
galaxy cluster from X-ray data. In case there is turbu-
lence or larger scale bulk motion in the gas additional
terms of the form (~v · ∇)~v − (v2

θ + v2
φ)/r appear (Lan-

dau & Lifshitz, 1987). Neglecting such terms may lead
to an underestimate of the mass, however this is usu-
ally not a major effect for systems that appear relaxed
(Piffaretti & Valdarnini, 2008).

By equating (B.7) and (B.8) and using (B.1) and
(B.2) to eliminate β, we obtain the following differential
equation for the radial velocity dispersion,

σ2
r

„
d ln ρDM

d ln r
+
d lnσ2

r

d ln r
+ 3

«
= ψ(r), (B.9)
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where the function ψ is defined by

ψ(r) = 3κ
kBTgas

µmH
− GM

r
. (B.10)

Clearly, ψ is determined directly from the X-ray ob-
servables and the κ-profile, which we discuss in section
B.4.

The differential equation (B.9) is solved by finding
an integrating factor which yields

σ2
r(r) =

1

ρDM(r) r3

Z r

0

dr′ ψ(r′)ρDM(r′)r′2. (B.11)

The dark matter density is determined as usual through
ρDM = ρtot − µmHne. With the radial velocity disper-
sion profile determined, the velocity anisotropy is easily
recovered from either the temperature relation eq. (B.2)
or the Jeans equation (B.7),

2βtr = 3

„
1− κ kBTgas

µmHσ2
r

«
, (B.12)

2βJe = −d ln(ρDMσ
2
r)

d ln r
− GM

rσ2
r

. (B.13)

Obviously these two expressions should be equal. This
can be used as a consistency check on whether numeri-
cal issues related to the differentiations and integration
involved are kept under control.

To summarize, the assumed relation eq. (B.2) be-
tween the effective dark matter temperature and the
gas temperature, along with the mass estimate from
(B.8), allows us to solve the dark matter dynamics di-
rectly from X-ray data, and determine both the radial
velocity dispersion and the velocity anisotropy as func-
tions of radius.

B.4 Cluster simulations

We use numerical simulations of the formation of galaxy
clusters in the ΛCDM cosmology to investigate the va-
lidity and shape of the temperature relation eq. (B.2),
and to test the method for determining the velocity
anisotropy. In order to check systematic effects we take
samples from two different simulations based on two
completely independent numerical codes.

CLEF

We first consider a sample of 67 clusters taken from the
CLEF simulation (Kay et al., 2007), details of which
are briefly summarized here. The CLEF simulation was
run with the GADGET2 N -body/SPH code (Springel,
2005) and followed the evolution of large-scale structure
within a box of comoving length, 200h−1Mpc. The fol-
lowing cosmological parameters were assumed: Ωm =

0.3; ΩΛ = 0.7; Ωb = 0.0486;h = 0.7;ns = 1;σ8 = 0.9.
Here the value of the Hubble constant is written as
100h km s−1 Mpc−1 and σ8 is the rms mass fluctuation
at the present epoch in a sphere of radius 8h−1Mpc.
The number of particles was set to 4283 for each of the
gas and dark matter species, thus determining the par-
ticle masses to be mDM = 7.1× 109h−1M� and mgas =
1.4× 109h−1M� respectively. The equivalent Plummer
softening length was set to 20h−1 kpc and held fixed
at all times in comoving co-ordinates. Pressure forces
were calculated using the standard GADGET2 entropy-
conserving version of SPH with an artificial viscosity
to convert kinetic energy into thermal energy where
the flow was convergent. The gas could cool radia-
tively assuming a fixed metallicity, Z = 0.3Z�. Cold
(T < 105K) gas with nH > 10−3cm−3 either formed
stars or was heated by an entropy, ∆S = 1000 keV cm2.
This choice was determined stochastically by selecting
a random number, r, from the unit interval and heat-
ing the particle if r < 0.1, i.e. a 10 per cent proba-
bility of being heated. This high level of feedback was
necessary to reproduce the observed excess entropy in
clusters (see Kay et al. (2007) for further details).

To select the cluster sample, we first consider all clus-
ters at z = 0 with X-ray temperatures, kT > 2 keV;
this produces 95 objects, with virial masses, Mvir >
1.3×1014h−1M� (correspondingly, > 15, 000 dark mat-
ter particles). We then select those clusters with 3D
substructure statistic, s < 0.05. The substructure
statistic (Thomas et al., 1998) measures the displace-
ment of the centre of mass from the potential minimum
of the cluster (taken to be its centre), relative to r500,
which is the scale radius within which the mean total
density is 500 times the critical density. By making this
cut, we therefore exclude all clusters that show signifi-
cant signs of dynamical activity, i.e. major mergers.

V06

The second sample is a subsample of the one presented
in Valdarnini (2006) which we refer to as V06. These
simulations assumed a concordance flat ΛCDM with the
same cosmological parameters as for the CLEF simula-
tion.

The simulation ensemble of galaxy clusters was con-
structed according to a procedure described in (Pif-
faretti & Valdarnini, 2008). Here we briefly summa-
rize the most important aspects. The hydrodynamic
simulations were run using an entropy-conserving mul-
tistep TREESPH code for a sample of 153 clusters
spanning a range from ' 1.5 × 1015h−1M� down to
Mvir ' 1.5 × 1014h−1M�. The initial conditions
(zin = 49) were extracted from a set of purely N-body
cosmological simulations in which clusters of galaxies
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were identified from the particle distribution at z = 0
using a friends–of–friends algorithm. In order to inves-
tigate the effect of the implemented gas processes on
the energy equipartition between gas end dark matter
particles, we performed both adiabatic and radiative
simulations. The radiative simulations are of course
more realistic than the adiabatic ones, because they ad-
ditionally take into account radiative cooling, star for-
mation, energy and metal feedback (Valdarnini, 2003).
More details concerning the simulation technique and
the implementation of physical processes of the gas are
given in Valdarnini (2006).

In order to avoid contamination from dynamically
perturbed clusters, we select the 20 most relaxed ob-
jects at z = 0. The selection is based on the power
ratio method, which measures the amount of substruc-
ture in X-ray surface brightness maps. The map sources
a pseudo-potential which is expanded in plane harmon-
ics, and the ratio of the third coefficient to the zeroth
is a measure of substructure. More details are given in
Piffaretti & Valdarnini (2008).

The temperature relation

We examine the temperature relation eq. (B.2) in the
two simulated samples by comparing the gas mass-
weighted temperature to the rescaled dark matter ve-
locity dispersion. The resulting κ-profiles are shown in
fig. B.1 and clearly κ ≈ 1 for both samples. Since we
apply somewhat different criteria to select the two sim-
ulation samples, it is not surprising to find slightly dif-
ferent profiles. This indicates a systematic uncertainty
of ±0.1 in the simulated κ profiles. The kinetic energy
associated with bulk motions of both gas and dark mat-
ter particles is at most a few percent of the thermal
energy within 2 r2500, outside which bulk motion is not
negligible. This is in agreement with what was found in
Ascasibar (2003). Due to the standard problem of lim-
ited force resolution, the simulations do not probe the
innermost region reliably. Therefore we exclude data
inside a cutoff radius (56h−1 kpc for CLEF, 0.1 r2500

for V06), which means we cannot estimate κ in the
central region where gas physics can make a significant
impact.

The adiabatic version of the V06 sample exhibits
a larger median κ-profile which is constant about 1.2
within r2500 and increases steadily to 1.4 at r200. This is
comparable with the earlier work of Rasia et al. (2004),
where the specific energy of dark matter was seen to
be larger than that of the gas by 20–30% in adiabatic
simulations.
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Fig. B.2: Comparison of estimated and true values
of the physical quantities involved in de-
termining the velocity anisotropy β in our
simulations. Top, the ratio of the recon-
structed total density to the true; bottom,
the ratio of the reconstructed σ2

r to the
true one. Error bars show the 1σ per-
centiles taken over the sample members.

Reconstructing the velocity anisotropy

In order to test the method outlined above for determin-
ing β, we reconstruct the anisotropy profiles observed
in the simulated samples. Here, we assume κ = 1 for all
radii even though we expect deviations at small radii.
First we derive the integrated mass profile M(r) for
each cluster assuming hydrostatic equilibrium (B.8),
and from that the total density profile. The numeri-
cal derivatives involved are calculated using three-point
quadratic interpolation. The estimated density profile,
shown in fig. B.2 (top), displays a satisfactory agree-
ment with the actual density profile for both the CLEF
and V06 samples. The only exception is at the outer-
most radii above r2500 where the density is underesti-
mated. Next, we calculate the radial velocity dispersion
eq. (B.11) by interpolating the integrand from r = 0 us-
ing a four-point natural spline interpolation. We com-
pare the resulting radial velocity dispersion with the
actual in fig. B.2 (bottom) which shows that there is
good agreement except for the deviation at large radii
already seen in the density profiles.

Finally we determine the velocity anisotropy param-
eter β. We find similar results whether we calculate
βJe or βtr, however the temperature relation yields less
noisy results. The median velocity anisotropy profiles
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Fig. B.1: Radial profile of κ = TDM/Tgas for the samples of clusters obtained from the CLEF and V06
simulations comprising 67 and 20 clusters, respectively. We plot the median and 1σ percentiles
taken over each sample. The vertical line indicates the largest radius of the observational data
sample, while the vertical lines indicate the mean and standard deviation of the κ-profile that
we use in the fiducial analysis. Note that, for the CLEF sample, only eight clusters contribute
to the innermost bin.

are shown in fig. B.3 together with the median ac-
tual profile. The reconstructed profile tracks the actual
anisotropy well in the inner parts but overestimates β
in the outer parts. There is also considerable noise in
the results.

In order to understand the origin of the deviations at
large radii and the significant scatter in our results, we
investigate the systematics of the analysis, as applied
to the CLEF sample (similar conditions hold for the
V06 sample). First, we substitute the dark matter den-
sity estimated from hydrostatic equilibrium with the
true density. The β-profiles calculated on this basis
are shown in the top panels of fig. B.4. The agree-
ment between the estimated and actual β is consid-
erably improved, and the error bars are significantly
reduced. This clearly indicates that, in the fiducial
analysis, the numerical derivatives necessary to esti-
mate ρDM are responsible for the large error bars. Since
we do not want to do any parametrized modeling of
the gas properties, the numerical derivatives are liable
to amplify noise and induce systematic deviations in
the outermost bin, where the quantities are only con-
strained to one side. Additionally, this explains why
βJe appears more noisy in the fiducial analysis since an
additional derivative must be calculated. The test also

shows that there is a deviation from hydrostatic equi-
librium at large radii which is part of the reason why β
is overestimated. As a second test, we additionally use
the true three-dimensional velocity dispersion instead
of using the temperature relation. This yields further
improvement as to how well the reconstructed β tracks
the true one, as shown in the bottom panels of fig. B.4.
This implies that it is possible to get the correct scale
of the radial velocity dispersion, calculated as an inte-
gral from the center, despite the lack of resolved data
in the inner radii. We note that, with respect to obser-
vational data, the tests we apply here can possibly be
utilized in the future, e.g. with accurate density profiles
inferred from gravitational lensing, and with more de-
tailed knowledge of κ from improved simulations. We
conclude that the numerical simulations provide proof
that our method is robust and that it is indeed possible
to infer the β-profile despite lacking knowledge of κ in
the center.

B.5 Observations

Next we apply our analysis to observational data from
which the radial gas density and temperature pro-
files are recovered. This is done strictly using non-
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Fig. B.3: Reconstructed velocity anisotropies for
the simulated samples. The hatched
bands show the actual β-profiles of the
samples. Error bars show the 1σ per-
centiles taken over the sample members.
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Fig. B.4: Systematics of the reconstruction of the β
profiles for the CLEF simulation. Again,
β is recovered both from eq. (B.12) (left)
and eq. (B.13) (right). The true dark
matter density is substituted for the es-
timated, and in the bottom panels we
additionally use the true total velocity
dispersion instead of estimating it from
TDM = κTgas.

parametric methods, i.e. no modeling of the gas prop-
erties is involved. Our data consists of the depro-
jected density and temperature profiles of two samples
of clusters at low and intermediate redshift, respec-
tively. The deprojected profiles were obtained from
X-ray data analysis published in earlier work (details
below). We consider clusters which appear relaxed and
close to spherical, and for which sufficient spectroscopic
data are available to analyze several annuli, so that the
radial variations of the gas density and temperature are
resolved with good statistics.

The first set of eleven clusters at low redshift is
based on X-ray data from XMM-Newton of the clus-
ters: A262, A496, A1795, A1837, A2052, A4059, Sérsic
159−3, MKW3s, MKW9, NGC533, and 2A0335+096.
These objects are highly relaxed cool-core (CC) clusters
selected as to match the requirements described above.
The objects were part of the sample analyzed in Kaas-
tra et al. (2004) (see this paper for an extensive presen-
tation of the data analysis), in which deprojected radial
temperature and density profiles were derived from spa-
tially resolved spectroscopy. We adopt the radial bin
selection of Piffaretti et al. (2005) in order to ensure
a robust determination of gas temperature and density
for the full radial range. Note that data for A2052 and
Sérsic 159−3 were also used in the analysis by Hansen
& Piffaretti (2007) where a constant velocity anisotropy
was assumed.

The other set of five intermediate redshift X-ray
galaxy clusters (RXJ1347.5, A1689, A2218, A1914,
A611) is from the Chandra sample analyzed in Morandi
et al. (2007). The radial deprojected temperature and
density profiles were retrieved through resolved spec-
tral analysis in a set of annuli, selected to collect at
least 2000 net counts, by assuming spherical geometry
and by using the definition of ‘effective volume’ (see
Morandi et al. (2007) for further details).

B.6 Results

We determine the dark matter velocity anisotropy pro-
file β(r) of each cluster according to the recipe in sec-
tion B.3 using a Monte Carlo method. For each radial
bin the deprojected gas temperature and density are
sampled assuming Gaussian uncertainties, i.e. a ran-
dom number is chosen from a Gaussian distribution
with mean equal to the estimated temperature or den-
sity and a standard deviation equal to the uncertainty
of the estimate. The bins are sampled independently.
The parameter κ is also sampled for each bin, assuming
a Gaussian distribution with a mean of 1 and a standard
deviation of 0.1, which is a reasonable value according
to the simulations. The sampled profiles are used to
reconstruct the total mass through (B.8), and then the
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Fig. B.5: Three steps in the calculation of the velocity anisotropy for Sérsic 159−3. Left, the inferred
total density; center, the radial velocity dispersion; right, the β-profiles. The gas density
and temperature profiles are also shown. The scale radius for this cluster is estimated to be
r2500 = 337 ± 13 kpc. Error bars indicate the propagated statistical uncertainties on the ICM
temperature and density profile, taken as the 1σ percentiles of 1000 Monte Carlo samples. This
is unlike in the previous figures where the error bars indicate the spread over the numerically
simulated samples. In the right panel, the radial positions of βtr and βJe have been offset
slightly for clarity.

integrand, the radial velocity dispersion, and the veloc-
ity anisotropy are calculated in each bin. The sampled
set of profiles is accepted only if the temperature and
density as well as the reconstructed dark matter density
and radial velocity dispersion are all non-negative in all
bins. For each sample, we also estimate the scale radius
r2500 and the mass M2500 contained within that radius.
Table B.1 summarizes the properties of the clusters in
our sample.

The numerical methods for calculating derivatives
and integrals are the same as for the simulated sam-
ples, i.e. three-point quadratic interpolation is used for
derivatives and four-point spline interpolation is used
for the integral in eq. (B.11). The integration results are
stable to using two-point linear, three-point quadratic,
or four-point least squares quadratic interpolation in-
stead.

Individual steps of the reconstruction are shown in
fig. B.5 for the cluster Sérsic 159−3, and the depro-
jected input data are also displayed. We always plot
the median and 1σ percentiles since spurious outliers
in individual Monte Carlo samples can bias the mean
and standard deviation significantly. The size of the
error bars is mostly determined by the uncertainties of
the temperatures, to a lesser degree by the uncertain-
ties of the ICM densities, and it is virtually insensitive
to the 10% variation assumed for the κ-profile.

As can be seen in the right panel of fig. B.5, the
agreement between βtr and βJe indicates that numer-

ical effects associated with the integration and differ-
entiations are small. On the other hand, β becomes
unphysically large in the outermost bins since the re-
constructed radial velocity dispersion for some samples
becomes greater than the total velocity dispersion. This
result is similar to that found in the blind analysis of the
simulation samples. As discussed above, this behaviour
is mainly due to a deviation from hydrostatic equilib-
rium of the gas, and to a lesser degree to edge effects
making the numerical differentiations less well deter-
mined in the outermost bin. It is possible that system-
atic uncertainties in the input data or radial variations
in κ for individual clusters also play a role. In principle,
we could impose σ2

r < σ2, thereby forcing β < 1, as an-
other physical condition on each Monte Carlo sample,
but we prefer not to do so in order to have a consistency
check.

We repeat the data analysis for the remaining
15 clusters of our sample and the resulting velocity
anisotropy profiles are shown in fig. B.6. In almost
all cases the anisotropy is small in the inner radial bins
and increases to between 0.5 and 1.0 in the outer parts.
There is good agreement between the two derivations
of β for all clusters, indicating that numerical issues are
under control.

Since the qualitative behaviour of the velocity
anisotropy profiles are similar, we combine all our data
into a single ‘stacked’ profile, shown in fig. B.7. In the
region where direct comparison is possible, the mea-
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Fig. B.6: Median velocity anisotropy profiles for the remaining 15 clusters of our sample. The estimated
scale radii are also shown, and the symbols are the same as in fig. B.5.
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sured stacked profile is very similar to the reconstructed
β profiles for the simulation samples (the green line),
and within r2500 there is also agreement with the actual
velocity anisotropy of the simulation samples (hatched
band). The velocity anisotropy is likely overestimated
outside r2500 for the same reason as for the simulated
samples, i.e. deviation from hydrostatic equilibrium,
but the effect appears to be even stronger for the obser-
vational data. Interior to the cut-off radius of the nu-
merical simulations, the observations tend to β ∼ 0.3.
This is somewhat surprising since numerical simulations
at all mass scales generally have very little anisotropy
towards the center of structures. While we cannot ex-
clude the possibility that cluster halos are anisotropic
even at low radii, our result can also be explained by the
neglected stellar contribution ρ? to the total mass den-
sity. To first order, this contribution enters our analysis
in the Jeans equation through the estimated dark mat-
ter density eρDM = ρDM + ρ?. In terms of δ? = ρ?/ρDM,
the Jeans equation becomes

σ2
r

„
d ln eρDM

d ln r
+
d lnσ2

r

d ln r
+ 2β − d ln(1 + δ?)

d ln r

«
= −GM(r)

r
,(B.14)

where the slope of (1 + δ?) is negative since the stel-
lar density must fall off faster than the dark matter
density. This means that we overestimate the velocity
anisotropy in the central region by not accounting for
the stellar mass. Indeed, if we assume that 50% of the
total mass in the innermost bin is made up of stars, the
velocity anisotropy in the two innermost bins becomes
consistent with zero. There is also a second order cor-
rection through the appearance of eρDM in eq. (B.11)
instead of ρDM, but this correction must be small since
the density contributes to both the integrand and the
normalization factor.

Finally, we investigate how the assumed shape of the
κ-profile affects our results. We try five different pro-
files as functions of x = r/r2500 with noise added as
before, and calculate the velocity anisotropy profiles
for each. The κ-profiles are chosen so as to mimick
either the effects of gas radiative cooling or AGN heat-
ing in the central regions, or to check the results if the
dark matter is generally hotter or cooler than the gas.
The radially varying profiles we try are extreme cases
of the simulation profiles, fig. B.1. Typically, the re-
sult is that the β-profile is shifted in the central regions
while the outer regions are largely unaffected, as shown
in fig. B.8. This analysis confirms that there is a sig-
nificant velocity anisotropy at large radii, independent
of the specific assumptions about the temperature re-
lation.

B.7 Summary and discussion

In this paper, we have presented a non-parametric
method to infer the velocity anisotropy of dark matter
in clusters of galxies from the observable temperature
and density of the intracluster medium. We assume
that the intracluster medium has the same specific en-
ergy as the dark matter, and we investigate the validity
of this assumption in two different cosmological simu-
lations of the formation of galaxy clusters. Both con-
firm the simplest possible form of the relation, namely
TDM ≈ Tgas in the radial range which is resolved.

We have tested how well our method can reconstruct
the actual velocity anisotropy in the simulated clus-
ters, and we have found good agreement between the
two, although the reconstruction is sensitive to system-
atic biases connected with deviations from hydrostatic
equilibrium.

We have applied our method to the radial ICM den-
sity and temperature profiles of 16 galaxy clusters based
on Chandra and XMM-Newton X-ray data. The shape
of the velocity anisotropy profiles is always consistent
with that seen in simulations, which tends to zero at
the innermost radius where the temperature relation
is calibrated. It then increases to about 0.5 at r2500

and even larger in the outer regions. The same is true
of the fiducial analysis applied to simulated data and
is likely caused by a deviation from hydrostatic equilib-
rium outside r2500. We also find a significant anisotropy
even if we assume radially varying κ-profiles, such as
can be expected given the strong gas cooling and AGN
heating in the core of many clusters, or if we assume
κ 6= 1. The agreement between the observed velocity
anisotropy and that predicted in numerical simulations
shows that we are beginning to understand also the dy-
namical aspects of dark matter in halos.

In the innermost radial bins we measure a rather
large anisotropy, but this is most likely an overestima-
tion due to the neglect of the stellar mass in the center.
This can be used as a means to estimate the stellar
mass profile of galaxy clusters if one assumes that the
velocity dispersion to be isotropic in the central regions.
Similarly, our method may be used as a general test of
whether a cluster is relaxed. A reconstructed velocity
anisotropy which deviates significantly from the simu-
lated profiles would be a strong hint that the data do
not support the assumption of hydrostatic equilibrium.

The inferred velocity anisotropy profiles are signifi-
cantly different from zero which means that the collec-
tive behaviour of dark matter is unlike that of bary-
onic particles in gases. This shows that dark matter
is effectively collisionless on the timescale of τ ∼ 109,
the dynamical timescale of galaxy clusters. By taking
typical values at ∼ 0.3 r2500 and allowing only a few
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Fig. B.7: Median velocity anisotropy profile of all 16 clusters in our dataset. In this case the error bars
denote the 1σ percentiles of the combined probability density of all clusters within the bin.
The actual and reconstructed β-profiles from the simulations are also shown. The left vertical
line is the innermost radius probed in the CLEF simulations and the right vertical line shows,
roughly, the onset of significant deviations from hydrostatic equilibrium in the simulations, see
fig. B.2.

Tab. B.1: Properties of our cluster sample
Cluster z r2500/kpc M2500/M�

A262 0.015 256± 28 (2.7± 0.8)× 1013

A496 0.032 398± 10 (1.0± 0.2)× 1014

A1795 0.064 504± 22 (1.9± 0.2)× 1014

A1837 0.071 374± 26 (8.0± 1.7)× 1013

A2052 0.036 362± 11 (6.7± 0.6)× 1013

A4059 0.047 445± 21 (1.3± 0.2)× 1014

Sérsic 159−3 0.057 337± 17 (5.7± 0.8)× 1013

MKW3s 0.046 404± 14 (9.5± 0.9)× 1013

MKW9 0.040 279± 44 (3.2± 1.5)× 1013

NGC533 0.018 191± 15 (9.7± 2.2)× 1012

2A0335+096 0.034 350± 40 (6.9± 2.5)× 1013

A611 0.29 519± 52 (2.5± 0.6)× 1014

A1689 0.18 609± 4 (3.5± 0.7)× 1014

A1914 0.17 590± 44 (3.3± 0.8)× 1014

A2218 0.18 535± 51 (2.5± 0.7)× 1014

RXJ1347.5-1145 0.45 710± 60 (7.3± 1.4)× 1014
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Fig. B.8: The effect of assuming different κ-profiles on the stacked velocity anisotropy profile. Top left,
the five κ-profiles. Others, the resulting sample averaged β-profiles calculated assuming the
numbered κ-profile. In all cases, β is greater than zero in the outer parts.

scatterings within the time τ , this corresponds to an
order–of–magnitude upper limit to the scattering cross-
section of roughly σ/m = (ρDMτv)−1 . 1 cm2g−1.
This limit is similar to what has been found for merging
clusters (Markevitch et al., 2004; Bradač et al., 2008),
and within an order of magnitude of the scattering
cross-section for self-interacting dark matter proposed
in Spergel & Steinhardt (2000).

We emphasize that improvements to the numerical
simulations in the near future will improve our under-
standing of the κ profile and hopefully track the im-
pact of radiative effects in the center. We also hope
that improved understanding of deviations from hydro-
static equilibrium will allow us to estimate how large
the suspected bias at large radii is. On the observa-
tional side, the main problem at present is the uncer-
tainty in the temperature profile. Improvements can be
expected both with regards to the deprojection analysis
and the amount of data available. Obviously, there is
also the possibility of including a kinematical analysis
of the galaxy clusters in our method.

Acknowledgments: We thank Jens Hjorth, Gary
A. Mamon, and Kristian Pedersen for comments.



C. PAPER III: A DETAILED STATISTICAL ANALYSIS
OF THE DARK MATTER MASS PROFILES OF
GALAXY CLUSTERS

Ole Host, Steen H. Hansen

Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100
Copenhagen, Denmark

Submitted to Astrophys. J.

Abstract

The distribution of dark matter in the halos that surround galaxies and galaxy clusters has been probed observa-
tionally, theoretically, and in numerical simulations. Yet there is still confusion about which of several suggested
parameterized models is the better representation, and whether these models are truly universal. We use the
observed temperature and density profiles of the intracluster medium of 11 relaxed galaxy clusters to investigate
mass models for the dark matter halo using a thorough statistical analysis. We make careful comparisons be-
tween two- and three-parameter models, including the issue of a universal third parameter. We find that, of the
two-parameter models, the NFW is still the best representation, but we also find moderate statistical evidence
that a generalized three-parameter NFW model with a freely varying inner slope is preferred, despite penalizing
against the extra degree of freedom. There is a strong indication that this inner slope needs to be determined
for each cluster individually, some clusters have central cores and others have steep cusps. This implies that
x-ray observations do not support the idea of a universal inner slope, but perhaps show a hint of a dependence
with redshift or mass. The mass-concentration relation of our sample is in reasonable agreement with the latest
predictions based on numerical simulations.
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C.1 Introduction

The potential of gravitationally bound structures in the
Universe, ranging in size from dwarf galaxies to galaxy
clusters, is sourced by a composite mass distribution
of dark matter, baryonic matter in gas form, and col-
lapsed objects such as stars in galaxies and galaxies in
clusters. The investigation of these mass distributions
entails a number of questions: what is the shape of the
distributions? Is it universal across ten magnitudes of
mass and at all redshifts? Does it depend on cosmology
or on the merger history of the individual halos? Since
the dominant component of relaxed structures is dark
matter, much focus has been aimed at dark matter-only
halos.

There is little theoretical understanding of the dis-
tribution of matter in a dark matter halo. The main
developments have been found through numerical sim-
ulations of the formation of structure in the universe
within a given cosmological model. Advances have been
achieved through the improvement of numerical codes
as well as the increase of raw computing power on one
hand and a more refined understanding of which ques-
tions that need to be answered on the other. Perhaps
the most fundamental idea that has come out of the
numerical approach is that relaxed halos are (nearly)
universal in many respects, including the distribution
of matter (Navarro et al., 1997; Taylor & Navarro, 2001)
and the dynamical structure (Bullock et al., 2001a;
Hansen & Moore, 2006). However, the simulations have
not been able to reach agreement about the exact be-
havior of the profiles in the innermost regions, where
the limited force resolution of simulations sets a lower
limit to the radial range that can be probed. Various
authors claim that the logarithmic slope of the den-
sity profile reaches a value between −1 and −1.5, per-
haps dependent on mass or merger history, and there is
also discussion whether the inner slope is actually uni-
versal or not (Moore et al., 1998; Klypin et al., 2001;
Navarro et al., 2004; Fukushige et al., 2004; Merritt
et al., 2006; Graham et al., 2006; Gao et al., 2008).
A further complication arises when the simulations are
compared with observations since the gravitational po-
tential of the baryonic component, which is very time
consuming to model in the simulations, cannot be ne-
glected in the center. This complication can in princi-
ple both change the slope of the dark matter profile as
well as alter the total mass profile (Blumenthal et al.,
1986; El-Zant et al., 2001; Gnedin et al., 2004; Sommer-
Larsen & Limousin, 2009).

Theoretical efforts are hampered by the fact that,
even under the strongest simplifying assumptions, there
are not enough constraints to obtain unique solutions
to the collisionless Boltzmann equation (Binney &

Tremaine, 1987) which governs a dark matter struc-
ture. Instead, one can take phenomenological input
from numerical simulations such as the density pro-
file itself, the pseudo-phase space density (Taylor &
Navarro, 2001; Dehnen & McLaughlin, 2005), or the
density slope-velocity anisotropy relation (from which
Hansen & Stadel (2006) predict an inner slope of 0.8),
and implement this into a Jeans equation analysis to
predict the consequences of the ‘inspired guess’ (see
also Zait et al. (2008) and references therein). Alter-
natively one can attempt to model the formation his-
tory of the halo including major mergers and steady
accretion (e.g., Ryden & Gunn (1987); Ascasibar et al.
(2004); Salvador-Solé et al. (2007); Del Popolo (2009),
and references therein). While these approaches typi-
cally yield results in rough agreement with simulations,
the modeling can also explore the physical connection
between the static and dynamic properties of the halo
as well as offer constrained extrapolations which are not
accessible in simulations.

Observationally, there is a strong discrepancy be-
tween the numerical results and the inferred mass dis-
tributions in dwarf and low surface brightness galax-
ies, which are much shallower than predicted, the
so-called cusp/core-problem (see, e.g., Salucci et al.
(2003); Spekkens et al. (2005); Gilmore et al. (2007)).
At the opposite end of the mass spectrum, galaxy clus-
ters are typically found to be in rough agreement with
the cuspy numerical simulations, but with even greater
scatter for the inferred inner slope. There is also sig-
nificant discussion about the type of model and num-
ber of parameters that are necessary in order to ob-
tain an acceptable description of the data. One com-
mon method is based on mass modeling through weak
or strong gravitational lensing, which can yield results
which are in good agreement with numerical simula-
tions (Broadhurst et al., 2005; Comerford et al., 2006;
Limousin et al., 2008; Richard et al., 2009), but also
profiles that are significantly shallower (Sand et al.,
2004, 2008). Another method is based on x-ray obser-
vations of the intracluster medium (ICM) which is sup-
ported against gravitational collapse by its own pres-
sure. Again, authors find a range of inner slopes (Ettori
et al., 2002; Lewis et al., 2003; Zappacosta et al., 2006;
Saha & Read, 2009). For both lensing and x-ray studies
most authors focus on only one or a few clusters, which
of course makes it more difficult to assess the univer-
sality of the profiles on an observational foundation.

In the present work we take a sample of 11 highly
relaxed clusters and use the measurements of the x-ray
emitting gas to infer model-independent mass profiles.
We then compare with a number of different models
that have been applied as mass profiles in the litera-
ture, focusing on three key questions: Which parame-
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terized model is the most successful? How many free
parameters are needed to describe the data adequately?
Is there evidence for a universal inner slope/shape-type
parameter? We answer these questions using a detailed
statistical analysis based on Bayesian inference where
we use the Bayesian evidence (or marginal likelihood)
to make judgments about which model is preferred by
the data.

C.2 Density profile models

Most models that are used for modeling the mass distri-
bution in halos have been proposed or introduced as fit-
ting formulae applied to the halos found in the numer-
ical simulations. Hence these models are not theoreti-
cally well-founded but rather form a basis on which the
predictions of numerical simulations can be compared
with observations. Almost all of these models have two
free parameters which determine the mass scale and the
spatial extent of the halo, and these two parameters are
specific to each halo. Some models have one or more
additional parameters which determines the shape of
the profile, and which may or may not be universal.
Here we consider a number of two- and three-parameter
models.

A whole class of models are ‘double power-laws’
which asymptote to power laws at very small and very
large radii. These models can conveniently be sum-
marized in Hernquist’s (α, β, γ) parametrization (Hern-
quist, 1990; Zhao, 1996),

ρ(r) = ρ0

„
r

rs

«−α »
1 +

„
r

rs

«γ–− β−αγ
, (C.1)

where ρ0 and rs are scaling constants to be determined
for each halo individually. The inner power-law slope
is α and the outer slope is β, while the width of the
transition region is controlled by γ. We consider four
such two-parameter profiles: the NFW (Navarro et al.,
1997), the Dehnen-McLaughlin (Dehnen & McLaugh-
lin, 2005), the Hernquist, and the Moore profile (Moore
et al., 1998). The properties of these models are sum-
marized in table C.1.

We also consider three three-parameter models: Two
are simply generalized NFW profiles where, in the first
case, we allow the inner slope α to vary. The motivation
for this slopeNFW model was already apparent from
the introduction. The second case, transNFW, is also
a generalization of the NFW where now the transition
parameter γ is free. Such a profile can mimic a steeper
inner slope by pushing the inner power law behavior
closer to the center. The third profile is the Sérsic (or

Einasto) profile (Sérsic, 1963; Einasto, 1969),

ρ(r) = ρs exp
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, (C.2)

where the parameter n determines the shape of the
profile. For n = 4 the de Vaucouleurs’ law describing
the surface brightness of elliptical galaxies is recovered.
The shape parameter is sometimes given as αs = n−1.
Recently, the Sérsic profile has been claimed to pro-
vide a better fit than the NFW to Milky Way-sized
haloes formed in numerical simulations, and, interest-
ingly, with a shape parameter that varies significantly
from halo to halo (Salvador-Solé et al., 2007; Navarro
et al., 2008).

We map the scale radius rs and scale densities ρs or
ρ0 of each model to the model-independent parameters
r−2 and ρ−2, which are the radius at which the slope of
the density profile is −2 and the density at that radius,
respectively. This mapping makes comparison of the
models easier and enables identical priors to be used in
the statistical analysis in all models.

C.3 Data analysis

We revisit the sample of 11 highly relaxed, low redshift
(z < 0.1) galaxy clusters observed with XMM-Newton
which we already used in Host et al. (2009) to mea-
sure the dark matter velocity anisotropy profile for the
first time (see also Hansen & Piffaretti (2007)). The
members of this sample were selected to appear close
to round on the sky and not have strong features in the
temperature and density profiles. The spectral analysis
and deprojection of the x-ray data was carried out in
Kaastra et al. (2004) and Piffaretti et al. (2005). The
deprojection method was non-parametric, i.e. without
any parametric modeling of the radial temperature or
density profiles. The outcome, and the starting point
for the present analysis, was estimates of the ICM tem-
perature Ti and electron number density ne,i with asso-
ciated uncertainties in six or seven radial bins, for each
of the clusters.

Assuming hydrostatic equilibrium, the ICM gas
traces the gravitational potential according to (Cava-
liere & Fusco-Femiano, 1978)

kBT

µmH

„
d lnne
d ln r

+
d lnT

d ln r

«
= −GMtot(r)

r
, (C.3)

where µ = 0.6 is the mean molecular weight of the
ICM. Almost all of the cluster mass resides in dark mat-
ter and the ICM, and therefore the dark matter mass
distribution can be determined through MDM(r) =
Mtot(r) − MICM(r). The ICM mass profile is given
straight-forwardly by the density ρICM = µmHne.
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Tab. C.1: Density profile models
Model (α, β, γ) r−2/rs ρ−2/ρ0 µ(x = r/rs)
NFW (1, 3, 1) 1 1

4 ln(1 + x)− x/(1 + x)

D&M ( 7
9 ,

31
9 ,

4
9 ) 121

169 0.0338 9
20 (1 + x4/9)−5

Hernquist (1, 4, 1) 1
2

16
27 x2/[2(1 + x)2]

Moore ( 3
2 , 3, 1) 1

2
8

3
√

3
2 sinh−1(

√
x)− 2

√
x/(1 + x)

slopeNFW (α, 3, 1) 2− α (2− α)−α(3− α)α−3 -
transNFW (1, 3, γ) 1 1

4 -

Sérsic - 1 1 8−ne2nn1−3nγ(3n, 2nx1/n)

Note. — Properties of the density profiles that we consider, including the (α, β, γ) specification, the
relations between (r−2, ρ−2) and (rs, ρ0), and the shape µ(r) of the mass profile M(r) = 4πr3

sρ0µ(r), if
analytical. γ(a, x) is the lower incomplete gamma function, γ(a, x) =

∫ x
0
ta−1e−tdt.

We calculate MDM(ri) of each radial bin through a
Monte Carlo (MC) analysis in order to propagate un-
certainties accurately. In detail, the prescription for
each MC realization is as follows: In each bin i the best
estimates of Ti and ne,i are added to random numbers
drawn from Gaussian distributions representative of the
uncertainties δTi and δne,i. In order to apply eq. (C.3),
we estimate the logarithmic derivative of, e.g., T at
the bin-radius ri by the slope of the unique parabola
that passes through (ln ri−1, lnTi−1), (ln ri, lnTi), and
(ln ri+1, lnTi+1). In this way we can calculate the to-
tal mass interior to ri for that data realization. We
subtract the gas mass, estimated through a five-point
Newton-Cotes integration formula applied to the same
realization of the density data, and we arrive at the dark
matter mass MDM,i. We impose a number of checks
to determine if the derived data realization is physi-
cally sensible: the ICM temperature and density must
be greater than zero in all bins, the total mass profile
must be increasing with radius, and the dark matter
mass profile and derived density profile must also be
everywhere positive. If these conditions are not met
the entire realization is discarded. This process is re-
peated until N = 5000 realizations have been accepted.
From these the sample mean of lnMi in each bin is de-
termined, as well as the sample covariance matrix with
elements

Cij =
1

1−N

NX
k

(lnMik − 〈lnMi〉)(lnMjk − 〈lnMj〉),

(C.4)
where N is the number of Monte Carlo realizations.
Even though we sample the ICM temperature and den-
sity in each bin independently, the covariance matrix
is not diagonal since the derivatives and physical con-
sistency checks induce bin-to-bin correlations in the ac-

cepted sample. We use the mean and covariance of lnM
rather than M since, by inspection, the former is closer
to being Gaussian distributed.

C.4 Statistical analysis

We take a Bayesian approach to the statistical analysis
and the usual starting point is the likelihood function,
which we calculate in the following manner.

It requires less manipulation of the data to calculate
the mass profile from the observations than to calculate
the density profile. Therefore we integrate the density
profile analytically or numerically for each model to ob-
tain the mass distribution and compare with the data
in mass space, not density space. Further, as men-
tioned above, we have found in the MC analysis that
the mass samplings in each bin are close to being log-
normally distributed. Therefore we construct the like-
lihood L(Mi) = exp(−χ2/2) from the χ2 function,

χ2 =
X
i,j

(lnMi − lnM(ri))C
−1
ij (lnMj − lnM(rj)),

(C.5)
where M(ri) is the model mass profile at the radial
centre ri of bin i, and lnMi and Cij are determined by
the MC analysis.

The main goal is to decide which model is the bet-
ter representation of the data. We do this by calcu-
lating the Bayesian evidence of each model, which is a
quantitative measure of the agreement between model
and data (Trotta, 2008). First we calculate the likeli-
hoods of each model on a grid in the parameter space
θ = (log r−2, log ρ−2). Next, we construct the poste-
rior probability distribution by combining the likeli-
hood function with a prior probability distribution π(θ)
resembling our knowledge of log r−2 and log ρ−2 before
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taking the data into account. We discuss the choice of
prior below. We then integrate the posterior to obtain
the Bayesian evidence,

E =

Z
all

dθπ(θ)L(θ, lnMi), (C.6)

which is essentially the weighted average of the likeli-
hood over the prior volume. The evidence of a model,
given the data and a prior, quantifies how well that
model explains the data. It is important to stress that
the comparison is made over all of the prior volume, not
just at the best fitting set of parameters. When compar-
ing models the Bayes factor B12 = E1/E2 shows how
much more (or less) probable model 1 is than model 2,
in light of the data. Traditionally, this is gauged on Jef-
frey’s scale where a Bayes factor of lnB12 < 1 is labeled
‘inconclusive’ evidence for model 1 over model 2 while
‘weak’, ‘moderate’, and ‘strong’ evidence corresponds
to lnB12 values < 2.5, < 5, and > 5, respectively.

We choose priors which are constant in the loga-
rithms of r−2 and ρ−2. The flat logarithmic prior is
the uninformative prior for scaling parameters (Trotta,
2008) since it reflects ignorance about the magnitude
of the parameter. However we restrict the range of the
priors, so that we end up with top-hat priors in log r−2

and log ρ−2. As a reference point we first assume a
top-hat prior relative to the best estimate of r2500 as
determined in the MC analysis. (The scale radius r2500

is defined as the radius within which the mean density
is 2500 times the critical density of the universe.) The
top-hat prior in log r−2 ranges from 1.5 magnitudes be-
low r2500 to 0.5 above. The basic idea behind this prior
is that the transition or ‘roll’ of a model should occur
close to r2500, as it does in haloes in numerical simula-
tions, and also to prevent the model from behaving as
a simple power-law by pushing the transition from the
inner to the outer power law far away from the range of
the data. We emphasize that this is still a conservative
prior, as current simulations typically resolve 2–3 radial
magnitudes with r−2 located about one order of mag-
nitude below the virial radius (Bullock et al., 2001b).
The prior in ρ−2 is also a top-hat in the logarithm and a
range of 10−26–10−21 kg m−3, which in practice means
that the likelihood is vanishingly small at the bound-
aries of the prior.

Two-parameter model results

The result of the model comparison is summarized in
table C.2, where the NFW model is compared against
each of the other two-parameter models. A positive
Bayes factor indicates that the NFW model is preferred.
This does not imply any bias on the NFW since any two

Tab. C.2: Bayes Factor lnB for the two-parameter
models, relative to the NFW profile

Cluster z D&M Hernq. Moore
A262 0.015 -2.0 0.9 -3.0
NGC533 0.018 -1.7 1.2 -3.0
A496 0.032 -1.4 0.6 -1.2
2A0335+096 0.034 0.5 -0.1 13.2
A2052 0.036 1.9 -0.3 5.8
MKW9 0.040 0.5 -0.1 1.4
MKW3s 0.046 1.8 -0.3 6.2
A4059 0.047 1.5 -0.4 9.5
Sérsic 159–3 0.057 -0.5 1.6 2.7
A1795 0.064 2.5 -0.5 17.9
A1837 0.071 0.5 -0.2 1.2
Total - 3.6 2.4 51

Note. — A positive value of lnB indicates that
the NFW profile is preferred over the considered
model. Note that this does not imply any bias to-
wards the NFW as the Bayes factor of any two
other models is just the difference between the re-
spective Bayes factors given here.

models can be compared by subtracting the Bayes fac-
tors we give for them from one another. We find that,
individually, the clusters yield strong constraints only
against the Moore model, while the evidences for or
against the D&M and Hernquist models are either weak
or inconclusive on Jeffrey’s scale. If instead we consider
the cumulative Bayes factor summed over the full sam-
ple, the NFW is found to be the preferred model overall,
i.e., as a universal two-parameter profile our sample fa-
vors the NFW model. The Hernquist profile and the
D&M profile are weakly and moderately disfavored, re-
spectively, with cumulative Bayes factors of 2.4 and 3.6
while the Moore profile is convincingly ruled out with a
factor of 51. The weak constraint on the Hernquist pro-
file is not surprising as data extending out to the virial
radius would likely be needed to properly distinguish
this model from the NFW.

In table C.3 we present the effects of varying the pri-
ors. The evidence against the D&M profile increases
to the level of strong when we limit the range of the
prior in log r−2 to the smaller interval (−0.75, 0.25),
while the Bayes factor is reduced slightly on the larger
range (−3, 3). The evidence also becomes strong if
we choose top-hat priors in (r−2, ρ−2) instead of the
logarithmic priors. Finally, the D&M model is disfa-
vored slightly more if we apply a ‘soft’ Gaussian prior
in log r−2. The Bayes factor for the Hernquist model
is robust under the same variations, while the Moore



78 C. Paper III: A detailed statistical analysis of the dark matter mass profiles of galaxy clusters

r/r2500

(M
/1

014
M

O •
)/

(r
/r

25
00

)

  

0.01

0.10

1.00
A262

  

 

 

 
NGC533

  

 

 

 
A496

  

0.01

0.10

1.00
2A0335

  

 

 

 
A2052

  

 

 

 
MKW9

  

0.01

0.10

1.00
MKW3s

  

 

 

 
A4059

  

 

 

 
Sersic 159-3

0.1 1.0

0.01

0.10

1.00
A1795

0.1 1.0

 

 

 
A1837

0.1 1.0
 

 

 

Sersic
transNFW
slopeNFW

Moore
Hernq
D&M
NFW

Fig. C.1: Mass profile of each cluster with 68% uncertainties and best-fit models. The radial axis has
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profile is very strongly ruled out in all cases. We con-
clude that our two-parameter model selection results
are stable against variation amongst reasonable choices
of priors, which means that the data are of sufficient
quality to make robust conclusions.

A more interesting issue to consider than the pri-
ors is that the preference for the NFW profile over the
Hernquist and D&M profiles is somewhat susceptible
to ‘jackknife’ resampling: if we recompute the cumu-
lative Bayes factor eleven times systematically leaving
a single cluster out each time, there are a few cases
where the strength of the evidence is reduced to incon-
clusive but also cases where it is increased to strong
(against the D&M). This is largely due to the fact that
our data sample is somewhat inhomogeneous in terms
of the relative statistical uncertainty on the mass pro-
file. For example, a comparison of the error bars of
MKW9 with those of A1795 or Sérsic 159-3 (see figure
C.1) immediately shows that the former is much less
constraining than the latter two. This means that our
sample is a mixture of strongly and weakly constraining
clusters and this is reflected in figure C.2 where the con-
tributions from individual clusters clearly varies. There
appears to be a trend that the clusters A262, NGC533,
and A496, which are the lowest redshift and some of the
least massive in our sample, stand out by preferring the
D&M and the Moore profile. However, such trends are
just as likely spurious selection effects caused by the rel-
atively small sample but could be investigated with a
larger sample. The D&M profile can easily be preferred
by clusters that also prefer the Moore profile since, by
extending the transition region, the D&M profile can
push the inner asymptotic power law well inside the
radial range of the data.

Finally we compare with a standard goodness–of–fit
test: the minimum χ2 values for the models support
our more detailed analysis: for a total of 53 degrees
of freedom we get minimum χ2’s of 81 for the NFW,
93 for the D&M, 82 for the Hernquist, and 190 for the
Moore profile. Major contributions to these χ2 values
come from the two clusters MKW3s with χ2 = 14.2
and A4059 with χ2 = 13.2 for the NFW model and
similar or larger values for the other models. The cor-
responding p-values imply that the D&M χ2 is about 20
times less likely to have occurred by chance (if the D&M
model is correct) than the NFW model is (if the NFW
model is correct). Compare this with the Bayesian odds
that the NFW is ∼ 40 times more probable than the
D&M. Note that the actual best-fits are slightly smaller
since we evaluate the χ2 on a grid instead of minimizing
it with a dedicated search. The χ2 values show that,
also in terms of goodness–o-f-fit, our sample is rather
inhomogeneous. The rather poor total fit should not
be judged too harshly since the halos in numerical sim-

ulations also show halo–to–halo scatter, which is not
accounted for by the fitting profiles.

Three-parameter model results

For the three-parameter models we again want to test
whether the models represent the data better than the
NFW. In this case the comparison is slightly more in-
volved since there is the freedom of an additional pa-
rameter to take into account. This naturally yields a
lower value of the evidence if the extra parameter does
not provide a better description of the data, or, more
specifically, the third parameter must improve the fit
over a significant volume of parameter space in order
to be preferred over the NFW. It is important to stress
that there is no assumption about the third parameter
being universal. On the contrary, we ask whether the
data require the additional freedom of an extra param-
eter which is determined individually for each cluster.

The model comparison proceeds as before: we calcu-
late the evidence for each of the three-parameter mod-
els with the same priors in log r−2 and log ρ−2 as in
the fiducial two-parameter analysis for all models. For
the slopeNFW we choose a top-hat prior for α which
ranges from 0 to 1.75, i.e. from a cored profile to a pro-
file slightly steeper than the Moore profile. We do not
want to go all the way to −2 since r−2 tends to zero
and eventually becomes undefined as α approaches −2.
For the transNFW, we choose a logarithmic prior with
γ in the range (0.1, 4) which allows this profile to mimic
a steeper inner profile by pushing the asymptotic inner
power law inside the radial range of the data. Finally,
we take a logarithmic prior for n in the range (2,15) for
the Sérsic model, motivated by numerical simulations
which have best fits Sérsic profiles with n=5–9. The
logarithmic prior has the advantage that it is invariant
whether one prefers n or αs = 1/n as the parameteri-
zation.

The resulting Bayes factors relative to the NFW are
given in table C.4 and summarized in the chart in fig-
ure C.2. The individual clusters provide only weak ev-
idence for or against any of the models. Based on the
whole sample, the model selection is inconclusive for
the transNFW and Sérsic models but there is ‘moder-
ate’ evidence for the slopeNFW model over the NFW
with a Bayes factor of −2.6. This corresponds to odds
of 13 to 1 in favor of the slopeNFW model and shows
that, overall, the slopeNFW has the highest evidence E
of all models considered. Hence the data show a mod-
erate need for a free inner slope despite the penalty
against the extra freedom built into the Bayesian anal-
ysis. It must be mentioned that most of the discrimina-
tory power is carried by a few clusters such as NGC533,
A4059, and A1795 and removal of any of these clusters
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Tab. C.3: Total Bayes factor lnB for the two-parameter models assuming various priors, relative to the
NFW profile

Prior Range log ρ−2 D&M Hernq. Moore
Top-hat in log r−2 (-1.5,0.5) 3.6 2.4 51
Top-hat in log r−2 (-3,3) 2.8 2.5 36
Top-hat in log r−2 (-0.75,0.25) 6.8 2.3 63
Top-hat in (r−2, ρ−2) (-1.5,0.5) 8.8 1.3 60
Gaussian in log r−2 - 4.8 2.3 50

Note. — The top line is the fiducial prior used in table C.2. In the next two cases the range of the
prior in log r−2 (in units of r2500, see text) is varied, and in the following two cases a top-hat prior in r−2

and both r−2 and ρ−2 is applied. The final case assumes a Gaussian prior in log r−2 with mean -0.25
and width 0.5.
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Fig. C.2: Bar chart of the Bayes factors lnB for the various models considered, relative to the NFW, as
given in table C.2 and C.4. The Bayes factors are additive so the contribution of individual
clusters to the total Bayes factor is easily assessed. The values shown are based on the fiducial
priors discussed in the text.

from the sample would change the Bayes factor signifi-
cantly. Therefore we caution that the moderate prefer-
ence for the slopeNFW model is somewhat susceptible
to selection effects since, as noted above, the constraints
from individual clusters vary in quality. We also find
some sensitivity to the choice of prior: if the upper
bound of α is extended from 1.75 up to 1.9, the Bayes
factor for the slopeNFW model changes to −1.9, while
if it is set to the Moore profile at 1.5 the Bayes factor be-
comes −3.1. If the lower bound of α is increased to 0.5,
the Bayes factor remains relatively unchanged at −2.9.
While we believe that the fiducial priors used above
are reasonable descriptions of the ‘state of knowledge’
based on numerical simulations, the sensitivity to the
choice of prior indicates that the data do not necessar-
ily confine the posterior to a sufficiently small region of

the prior volume to provide unambiguous conclusions.

Constraints on the third parameters

Finally, for the three-parameter models we also want
to constrain the preferred value of the third parame-
ter. Unlike above, this analysis assumes that there is
a universal value for the third parameter and attempts
to identify that value. We use the same priors as in the
previous analysis for each model, but now we marginal-
ize over the nuisance parameters (log r−2, log ρ−2) to
find the one-dimensional posterior probability distribu-
tion for the third parameter for each cluster. Then we
combine the results from the individual clusters into a
joint posterior which is simply the product of the the
individual ones. We calculate 95% credible intervals for
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Fig. C.3: Probability distributions for the third parameter in each of the three-parameter models:
slopeNFW α (left), transNFW γ (middle), and Sérsic n (right). In each panel, the full line
shows the joint posterior for all clusters combined while the dot–dashed line shows the joint
posterior obtained using the method of hyper-parameters (see text). The dashed lines are the
pdf’s of individual clusters. Note that each posterior is normalized to unity so it is not possi-
ble to draw conclusions about the quality of fit of the individual clusters from this plot. The
standard 95% credible intervals are (1.00, 1.21) for α, (0.68, 1.06) for γ, and (4.3, 6.2) for n.
With the hyper-parameters, the intervals are instead (0.85, 1.31) for α, (0.50, 1.28) for γ, and
(3.5, 7.4) for n. We assume top-hat priors in α, ln γ, and lnn.

Tab. C.4: Bayes Factor lnB for the three-
parameter models, relative to the NFW
profile.

Cluster slopeNFW transNFW Sérsic
A262 -2.1 -1.6 -2.0
NGC533 -1.8 -1.9 -1.8
A496 -1.1 -0.7 -0.9
2A0335+096 1.1 0.6 1.0
A2052 0.2 1.2 0.6
MKW9 0.2 0.4 0.3
MKW3s 1.4 1.7 1.5
A4059 -2.5 -1.4 -1.8
Sérsic 159–3 0.3 0.9 0.5
A1795 1.8 1.3 2.4
A1837 -0.1 0.2 0.1
Total -2.6 0.7 -0.1

Note. — A positive value of lnB indicates that
the NFW profile is preferred over the considered
model. A top-hat prior in log r−2 of (−1.5, 0.5)
around the best estimate of r2500 for each cluster is
assumed.

both the individual and the joint posterior. However,
we know from the previous analysis that each three-
parameter model is preferred by some clusters but not
by others. Therefore we also use the method of hyper-
parameters (Lahav et al., 2000) which allows the contri-
bution from individual data-sets to the joint posterior
to be weighted. These weights are marginalized over
assuming logarithmic priors with the result that in the
joint likelihood one replacesX

i

χ2
i →

X
i

Ni lnχ2
i , (C.7)

whereNi is the number of data points in data-set i. The
upshot of all this is that clusters that are not described
well by the model do not constrain the parameters as
strongly as clusters that are well described. The price
to pay is that the effective sample size is reduced which,
all other things being equal, will lead to wider and more
conservative credible intervals.

The results are shown in figure C.3, where in each
panel the fully drawn line is the joint posterior, the
dotted line is the hyper-parameters posterior, and the
dashed lines are the posteriors of the individual clusters.
The generalized NFW models are drawn slightly away
from, but not in disagreement with, the NFW with 95%
credible intervals of (1.00, 1.21) for α and (0.68, 1.06) for
γ. The interval for the Sérsic n parameter is (4.3, 6.2),
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in good agreement with the values reported by the
Aquarius numerical simulations for Milky Way-sized
halos (Navarro et al., 2008). The intervals derived using
the method of hyper-parameters are wider as expected:
(0.85, 1.31) for α, (0.50, 1.28) for γ, and (3.5, 7.4) for n.
The difference between the hyper-parameters method
and the conventional calculation illustrates the need for
a cautious approach to in-homogeneous data-sets. We
believe the hyper-parameters yields the more trustwor-
thy results in the case at hand, while on the other hand
we acknowledge that they are not very constraining.

An inspection of the contribution from individual
clusters reveals some issues: It is clear that for each
model a number of clusters provide very little informa-
tion about the third parameter, i.e. the model describes
the mass profile almost equally well regardless of the
third parameter value. This is actually expected, given
the varying size of the Bayes factors in table C.4. There
are also a few cases, particularly for the transNFW
model, where the posterior peaks very close to or on the
bounds of the prior. In such cases the results, e.g. the
individual credible intervals, are of course very prior-
dependent which again indicates that the data are not
very discriminatory with respect to the prior. On the
other hand, rather drastic priors or small sub-samples
must be used in order to significantly affect the cred-
ible intervals of the joint posterior, especially for the
hyper-parameters method.

Figure C.4 shows the individual clusters’ constraints
on α, γ, and n. As could be expected given the varying
nature of our results, there is perhaps the slightest of
hints of a redshift–dependence in the constraints but
our sample size does not allow us to probe such an
issue in detail. It should again be noted that any hint
of a redshift–dependence could actually be caused by a
mass–dependence instead, since the two lowest redshift
clusters in our sample are also the least massive.

A different picture emerges when we consider the
overlap of the individual clusters’ credible intervals for
the slopeNFW model. For example, no value of α is
contained in all 11 95% credible intervals, and only the
very short range (1.08, 1.10) is contained in all but two
intervals. Likewise the NFW α = 1 case is excluded
from four of the eleven intervals. These results, as well
as a visual inspection of figure C.3, puts strong doubts
about the concept of a universal shape parameter. The
situation is not quite as compelling for the transNFW
and Sérsic models which is likely the reason that they
do not stand out from the NFW in the model selection.
In fact, we believe it is a reasonable statement that the
success of the slopeNFW model is precisely due to the
very different preferred values of α from cluster to clus-
ter. This puts a strong question mark against the idea
of universal third parameter.
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Fig. C.4: The individual clusters’ constraints on
the third parameter in each of the three-
parameter models. In this case we show
the 68% credible intervals, and the hor-
izontal lines indicate the 68% range of
the joint posterior calculated using the
method of hyper-parameters. Refer to ta-
ble C.2 for the redshifts of each cluster.

We conclude that there is moderate evidence for the
slopeNFW model to be preferred over the simple NFW,
while the transNFW and Sérsic models do not stand
out against the two-parameter NFW profile. If the
inner slope of the slopeNFW model is universal, we
constrain it to be close to −1 but preferably slightly
steeper. However, the spread of the individual clusters’
preferred ranges suggests that the inner slope is not
universal.

We also comment that the method of hyper-
parameters method could in principle be extended to
the model selection analysis. As a matter of fact, since
the slopeNFW ‘contains’ both the NFW and the Moore
models as subsets, we can derive the corresponding
Bayes factor for the Moore profile which is only 10.
This is of course a drastic reduction numerically but it
does not alter the conclusion and anyway corresponds
to rather convincing odds of about 20 000 : 1.
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C.5 Biases

So far we have discussed the interpretation of our re-
sults with respect to the statistical evidence. However,
a number of biases, or systematic uncertainties, can be
thought of that may affect our results. Loosely, these
can be grouped into biases that affect both the individ-
ual cluster mass modeling and the combined analysis,
and selection effects that only influence the latter.

The analysis rests on the ability to produce depro-
jected temperature and density profiles with uncertain-
ties that correctly mirror the uncertainties in the spec-
tral analysis of the x-ray data. This has been discussed
extensively in Kaastra et al. (2004). The basic assump-
tion in determining the mass distribution of a galaxy
cluster is that the cluster is relaxed, and obeys the
equation of hydrostatic equilibrium. Numerical simu-
lations indicate that the additional pressure associated
with turbulence and bulk motion in the ICM yields an
underestimate of the mass in the region of 5 − 20%
with the larger values corresponding to large radii, r500

and greater (Nagai et al., 2007; Piffaretti & Valdarnini,
2008; Lau et al., 2009). We do not expect this bias to
exceed 10% in the present case since we do not model
further out than to ∼ r2500. On the other hand, the
same numerical simulations indicate that if the turbu-
lent pressure is accounted for, an accurate mass recon-
struction is possible. This point demonstrates that de-
viations from spherical symmetry are not a major con-
cern in the error budget.

A related question is whether the parameterized pro-
files should be tested against the total mass distribution
or the dark matter mass profile only. While the pre-
dictions of numerical simulations are founded in dark
matter-only simulations, it is not clear how much a sim-
ulated dark matter-only mass profile is modified by the
presence of baryons. Observationally, the ICM con-
tributes about 5− 15% of the total density in a cluster,
again increasing with radius in the range of interest
here, so formally there is a difference between the to-
tal and the dark matter profile’s radial dependence. To
test the impact of this, we have rerun the statistical
analyses described above without subtracting the ICM
mass from the mass estimate of eq. (C.3). We find only
minor differences: For the two-parameter models, the
total Bayes factors relative to the NFW profile, assum-
ing the fiducial prior as in table C.2, are 2.8 (D&M),
2.7 (Hernquist), and 54 (Moore), i.e. there is no signifi-
cant change in the interpretation of the results. For the
three-parameter models, the total Bayes factors become
−3.1 (slopeNFW), 0.6 (transNFW), and −0.2 (Sérsic),
which are in good agreement with the results in table
C.4. Finally, the constraints on the third parameters
for the three-parameter models are unchanged.

The fact that our results are stable whether we test
the mass models against the total or dark matter-only
mass profiles allows us to gauge how important the
mass bias caused by turbulent pressure is. The point
is that the turbulent pressure is expected to contribute
the same amount (or less) to the total mass estimate as
the ICM mass: both contributions are at the 5 − 15%
level and radially increasing, and at the maximum ra-
dius we consider ∼ r2500 the gas fraction (∼ 10%) is
likely larger than the pressure bias. Since our results
are the same whether we account for the ICM mass
or not, we conclude that the systematic uncertainty is
likely much smaller than the statistical uncertainty.

C.6 Mass–concentration relation

An important consequence of the ‘bottom-up’ scenario
of structure formation is that smaller halos are denser
in the center, since they formed earlier when the density
of the Universe was higher. This effect is seen in nu-
merical simulations and it can be expressed as a relation
between the halo mass and the concentration parame-
ter. The concentration parameter is defined for a given
overdensity as c∆ = r∆/r−2 (often rs is used instead
of r−2 but for the NFW this is unimportant). Simula-
tions usually consider the mass–concentration relation
at the virial radius r200, but we can only reach that ra-
dius by model-dependent extrapolation. Therefore, in
figure C.5, we show the mass–concentration relation of
our sample calculated within the NFW model at both
r2500 and extrapolated to r200. We suggest that au-
thors provide relations at both of these ∆’s as they
complement each other in physical significance and ob-
servational accessibility.

As can be seen in figure C.5, our sample is not ideally
suited to derive a relation from given that six sample
members cluster at almost identical values of M∆. In-
stead we compare with the mass–concentration relation
of the simulations presented in Macciò et al. (2008),
which are in reasonable agreement with our sample ex-
cept for the low mass NGC533. We emphasize that the
orientation of the uncertainty ellipses is related only to
the parameter degeneracies present in the combination
of model and mass profile data and has nothing to do
with the slope of the mass–concentration relation. The
agreement between our observed mass–concentration
relation and the predictions of numerical simulations re-
sembles the recent x-ray analysis of Buote et al. (2007),
but stands out from the significant discrepancy of the
lensing study in Broadhurst et al. (2008).
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Fig. C.5: The mass–concentration relation of our sample, calculated within the NFW model. The con-
tours contain 95% of the posterior PDF and are based on the fiducial prior. We show two con-
tours for each cluster: (M2500, c2500) (red, full lines) which are derived within the radial range
of the data, and (M200, c200) (blue, dot-dashed) which is based on an NFW model-dependent
extrapolation to r200. The dashed lines show the mean relations for the two values of ∆ from
the N-body simulations of Macciò et al. (2008), based on the WMAP5 cosmology. The relations
are log c200 = 0.83− 0.094 log(M200/1012M�) and log c2500 = 0.35− 0.130 log(M2500/1012M�).
Given the low redshift of our sample, we have not made any correction for a redshift evolution
of c∆.

C.7 Summary & discussion

We have conducted a careful statistical analysis of the
constraints on mass distribution models of galaxy clus-
ters which can be derived from x-ray observations.
We find that the NFW model is the preferred two-
parameter model and that the Moore model is deci-
sively ruled out. There is moderate evidence that the
data require an additional free parameter that alters
the shape of the mass profile, and the best choice is a
model similar to the NFW but with a freely varying
inner slope. If we assume this slope to be universal,
we can constrain it to be close to or slightly steeper
than the NFW, but our data suggest that the shape
parameter must be determined individually.

Significantly, the clusters in our sample prefer very
different values for the inner slope, some prefer flat
cores while others prefer steep cusps. The shape-
parameters of the other two three-parameter models

we consider, the Sérsic and transNFW, also show con-
siderable scatter across our sample. We conclude that
there is a strong indication in our data that the mass
profile is not universal but suffers considerable halo-to-
halo scatter. The limited size of our sample means that
we cannot assess whether this is in disagreement with
the results of numerical simulations. Of course, we can
force universality of the inner slope, in which case we
find that it is preferred to be slightly steeper than the
NFW value of −1. However, when the goodness–of–fit
of each cluster is taken into account using the method
of Bayesian hyper-parameters, the credible interval be-
comes significantly larger, partly because of the smaller
effective sample size, but also because of the lack of uni-
versality.

This analysis stands out from the numerous observa-
tional results that claim significant discrepancies from
simulations based on only one or a few observed clus-
ters. We acknowledge that our sample size is still lim-
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ited, but it allows us to discuss the issue of universality.
Given that halos in numerical simulations which include
baryons are still not readily mass produced with suffi-
cient resolution, which makes the question of halo to
halo scatter difficult to assess, it is not possible to de-
cide if the strong indication of a non-universal model
that we see is at odds with the numerical predictions.

Our results are largely insensitive to whether we com-
pare the models with the dark matter mass profile or
the total mass profile, and so we cannot judge whether
one type of model is more appropriate for the dark mat-
ter halo or the total gravitational potential of a halo.
There are two reasons for this: firstly, the uncertainties
of primarily the ICM temperature profiles are too large,
and secondly, the angular resolution in the center is not
good enough. Of course the ICM is rather smoothly dis-
tributed and very good statistics would be needed for
a model to fit either the total or dark matter distribu-
tion significantly better. For nine of the 11 clusters of
our sample we readily found 2MASS (Skrutskie et al.,
2006) cD or BCG galaxies very close to the x-ray center
but including these in the mass budget does not make a
difference, unless we assumed extreme mass-to-light ra-
tios. This is again due to the limited angular resolution
of the observations which implies that a large amount of
dark matter is contained even within the radial center
of the innermost bin.

The robustness of our results whether we use the dark
matter or total mass profile gives us reasonable confi-
dence that deviations from hydrostatic equilibrium in
the ICM are not a major problem. Such a systematic
uncertainty would yield a bias of at most 10–15% ac-
cording to numerical simulations, which is similar to
the difference between the total and dark matter mass
profiles.
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