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Abstract

In superradiant lasers the emitted light has a frequency determined mainly by atoms, as
opposed to ordinary lasers, where mechanical parts have a large influence. And while me-
chanical parts are hard to replicate and control exactly, the universal properties of atoms are
ideal to use as references for precision measurements. In this sense, photons emitted by an
atom are a ”frequency ruler” which we can compare other photon frequencies to. Therefore
superradiant lasers are a promising technology within quantum metrology, as the best fre-
quency references today are limited by tiny thermal disturbances in mechanical mirrors. And
even though frequency is the quantity we can measure most accurately, it can also be used
as proxy for many other quantities, such as length or gravitational acceleration. Therefore a
wide range of areas such as timekeeping, geopositioning and geodesy may benefit from the
development of superradiant lasers. Today, this is still an emerging technology, confined to
big machines in research labs.

In this thesis we investigate superradiant lasing in different settings, using the 7.48 kHz-
wide 1S0-

3P1 electronic transition in strontium. This magnitude of linewidth implies that
superradiant lasing is relatively easy and less technically demanding to realize, compared to
on the much narrower transitions which are considered in other labs. Similarly, a relatively
high power can be realized. The drawback is that narrower transitions may allow for a
narrower laser linewidth and lower sensitivity to mechanical disturbances, quantified by the
cavity pulling coefficient.

The first system we consider is an experimental setup at the University of Copenhagen. Here
a cloud of atoms is trapped and cooled to mK temperatures using a magneto-optical trap
(MOT). The atoms are then coherently pumped to 3P1 before emitting a laser pulse into
an optical cavity. In experiments and numerical simulations we investigate how the atom
number, their finite temperature, and the cavity detuning influence the pulse dynamics.
The parameters place this system within the superradiant crossover regime, where phase
information within both the atoms and the cavity field have a large impact on the dynamics.
We find a reduction in cavity pulling by up to a factor 4 when considering the full pulse
spectrum. Within a range of detunings, the peak frequency of the spectrum also becomes
immune to local variations. In addition we find a good agreement between the numerical
simulations and experimental results. This also provides some verification of the models of
other systems presented in this thesis. These share many features with the pulsed model, but
are used predictively.

The setup was upgraded to cool atoms to µK temperatures, including a system to control the
MOT coil currents on the ms-timescale, which was crucial to achieve a low atom loss. These
improvements to the setup are also presented in the thesis. In the new crossover regime at
µK, atoms phase-synchronize to a higher degree, and cavity pulling is reduced by up to a
factor 56. However, due to the short pulse duration when using coherent pumping, the pulse
linewidth is limited to hundreds of kHz. We use numerical simulations to investigate pulses
in another new regime with incoherent repumping, which is now being realized in the lab.
Here we also determine the impact of photon recoils from repumping on the temperature
and cloud expansion, and in turn the pulse dynamics and spectra. These suggest a linewidth
of a few hundred Hz may be realized. This appears most viable at small cavity detunings,
or possibly at a finite detuning with a fine-tuning of atom cloud parameters. We have also
determined the lasing threshold for fully continuous lasing in the system, which ranges on
the order of 109 atoms/s. Realizing this may require more extensive changes to the setup.
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The second system we consider is a hot beam superradiant lasing machine at the University
of Amsterdam. Here a beam of strontium atoms from an oven is transversely laser-cooled
to a few mK and then pumped incoherently to 3P1 right before passing through an optical
cavity. We describe parts of the experimental machine and numerical simulations of pumping
and superradiant lasing within it. Simulations of pumping are also used to investigate the
prospects of a velocity selection scheme. This reduces the final temperature, but also flux, of
3P1 atoms.

The simple architecture of the hot beam machine allows for a very high atom flux. As a
result, hundreds of nW emitted power is expected if the lasing threshold near ∼ 2 · 1012

atoms/s is overcome. Cavity pulling is suppressed by a factor ∼20-30, with velocity-selection
contributing a 10-25% improvement. A simple estimate suggests a linewidth of 9.4 Hz can be
reached by this system. The impact of different physical effects is investigated in simulations.
One effect is the relativistic Doppler shift, which affects all the atoms differently. These cause
net shifts in the lasing frequency of hundreds of Hz, and also affect the variations in frequency
fluctuations at different cavity detunings. We also investigate the effect of variations in
temperature, decoherence from stray light, requirements for the velocity selection stage, and
the frequency-dependency of the cavity pulling effect. Finally, we present the characteristics
of absorption and amplification for a wide range of atom fluxes if a laser beam is input into
the optical cavity.

The final system we consider is based on a µK beam of atoms, transported in a dipole
guide. This atom source has been realized at the University of Amsterdam, but is here
considered in the context of superradiant lasing. We assume atoms are continually repumped
as they propagate through the cavity mode. The model includes all Zeeman-levels involved
in pumping, photon recoils, state-dependent optical potentials, and coherent effects from two
pumping lasers. A stochastic master equation and quantum jumps are used in the model
to capture the thermal effects from repumping within state-dependent optical potentials.
In the literature, stationary two-level atoms are often considered in models of superradiant
lasers, with a greatly simplified treatment of pumping. Therefore our approach also has
broader relevance when considering superradiant lasing schemes which rely on repumping
within optical potentials.

Hundreds of pW may be realized in the cold beam system, and each atom may emit up to
∼40 photons into the cavity before heating up and escaping. Cavity pulling is suppressed by
a factor ∼ 50−100, which is favorable compared to the hot beam system. On the other hand,
a crude estimate of the linewidth yields 82 Hz, inferior to the hot beam estimate. An optical
lattice may reduce cavity pulling further, but introduces significant light shift variations on
pumping transitions. Repumping laser frequencies affect a net shift in the lasing frequency,
but variations are suppressed by over two orders of magnitude. Similarly, intensities do affect
a net shift, which also varies with parameters such as atom flux. However we find there are
regimes where the net shift in lasing frequency is zero, and is also locally independent of the
atom flux. Over-all, the hot beam system has many advantages compared to this approach,
especially in terms of experimental simplicity. On the other hand, for narrower transitions,
a setting similar to the cold beam system is more viable for realizing superradiant lasing.
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Resumé

Det udsendte lys fra superradiante lasere har en frekvens, der primært bestemmes af atomer,
i modsætning til almindelige lasere, hvor mekaniske dele har en stor indflydelse. Og mens
mekaniske dele er svære at genskabe og kontrollere præcist, er atomers universelle egenskaber
ideelle til at bruge som referencer til præcisionsm̊alinger. Her er fotonerne fra et atom et
slags ”frekvens-m̊aleb̊and”, man kan sammenligne andre foton-frekvenser med. Derfor er
superradiante lasere en lovende teknologi inden for kvantemetrologi, efter som de bedste
frekvensreferencer i dag begrænses af sm̊a termiske fluktuationer i mekaniske spejle. Og
selvom frekvens er den fysiske størrelse, vi kan m̊ale mest nøjagtigt, kan den ogs̊a bruges
indirekte til at m̊ale andre størrelser, som afstand eller tyngdeacceleration. Derfor kan et bredt
udsnit af omr̊ader, som tidstagning, geopositionering og geodæsi, drage nytte af udviklingen af
superradiante lasere. Den dag i dag er superradiante lasere stadig en fremvoksende teknologi,
begrænset til store maskiner i laboratorier.

I denne afhandling undersøger vi superradiant lasing i forskellige sammenhænge, hvor den
7.48 kHz-bredde 1S0-

3P1 elektronovergang i strontium bruges. Denne størrelse af linjebredde
gør, at superradiant lasing er relativt nemt og mindre teknisk krævende at realisere, sammen-
lignet med p̊a de langt smallere overgange, som overvejes i andre laboratorier. Det gør ogs̊a,
at en relativt høj emitteret effekt kan opn̊as. Ulemperne er til gengæld, at en smallere over-
gang kunne give en smallere linjebredde af laseren, og mindre følsomhed overfor mekaniske
forstyrrelser, hvilket beskrives matematisk af cavity pulling-koefficienten.

Det første system, vi undersøger, er et eksperimentelt apparat p̊a Københavns Universitet.
Her fanges en sky af atomer og køles til mK-temperaturer vha. en magneto-optisk fælde
(MOT). Derefter pumpes atomerne koherent til 3P1, hvorefter de udsender en laserpuls i en
optisk kavitet. Vha. eksperimenter og numeriske simulationer undersøger vi hvordan antallet
af atomer, deres temperatur, og kavitetens detuning har indflydelse p̊a puls-dynamikken.
Systemets parametre gør, at pulsernes opførsel passer med det superradiante crossover regime,
hvor faseinformationen i b̊ade atomerne og kavitetsfeltet har stor indflydelse p̊a dynamikken.
Vi finder at cavity pulling reduceres med op til en faktor 4, n̊ar vi betrageter hele puls-
spektret. Inden for et interval af detunings er toppen af pulsens spektrum ogs̊a immun overfor
sm̊a ændringer i detuning. Derudover finder vi god overensstemmelse mellem numeriske
simulationer og forsøgsresultater. Dette giver ogs̊a en hvis verifikation af modellerne af de
andre systemer, som er præsenteret i afhandlingen. De har mange fællestræk med modellen
af pulserne, men bruges til forudsigelser under nye betingelser.

Forsøgsopstillingen blev opgraderet for at køle atomer til µK-temperaturer, inklusiv et system
til at styre strømmen i MOT-spolerne p̊a ms-tidsskala, hvilket var vigtigt for at opn̊a et lavt
tab af atomer. Disse forbedringer af opstillingen er ogs̊a præsenteret i afhandlingen. I det
nye crossover regime ved µK fase-synkroniserer atomerne i højere grad, og cavity pulling er
reduceret op til en faktor 56. Linjebredden af pulserne er dog begrænset til hundredevis af
kHz pga. den korte varighed, n̊ar atomerne pumpes koherent. Vha. numeriske simulationer
undersøger vi pulser i et andet regime med inkoherent repumping, som nu realiseres i labo-
ratoriet. Her undersøger vi ogs̊a hvordan foton-impulser har indflydelse p̊a temperaturen og
udvidelsen af atomskyen, og dette i sidste ende p̊avirker dynamik og spektra af laserpulserne.
Ud fra simulationerne er det realistisk at opn̊a en linjebredde p̊a nogle hundrede Hz. Dette
er mest realistisk for lille kavitetsdetuning, men måske ogs̊a ved en betydelig detuning, hvis
atomskyens parametre kan fin-tunes. Vi har ogs̊a bestemt tærsklen for at realisere lasing i et
helt kontinuert system, som ligger omkring 109 atomer/s. At realisere dette kan dog kræve
betydelige ændringer i forsøgsopstillingen.
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Det andet system, vi undersøger, er en superradiant lasing-maskine baseret p̊a en varm
atomstr̊ale. Denne er bygget p̊a Amsterdam Universitet. Atomstr̊alen udsendes fra en ovn og
køles først transverst til f̊a mK, og derefter pumpes atomerne inkoherent til 3P1 lige inden, de
passerer igennem en optisk kavitet. Vi beskriver dele af det eksperimentelle apparat, pumpe-
processen og superradiant lasing i systemet. Simulationerne af pumpe-processen bliver ogs̊a
brugt til at undersøge indvirkningen af en metode til hastigheds-udvælgelse. Denne kan
sænke den endelige temperatur, men ogs̊a flux, af 3P1-atomer.

En meget høj atomflux kan opn̊as pga. maskinens simple arkitektur. Pga. dette kan en
effekt p̊a hundredevis af nW forventes, hvis lasing-tærsklen omkring ∼ 2 · 1012 atoms/s
kan overkommes. Cavity pulling undertrykkes med en faktor ∼20-30, og heraf bidrager
hastigheds-udvælgelse med en forbedring p̊a 10-25%. Ifølge et simpelt estimat kan en lin-
jebredde p̊a 9.4 Hz opn̊as i dette system. I simulationer undersøger vi indvirkningen fra
forskellige fysiske effekter. En effekt er den relativistiske dopplerforskydning, som p̊avirker
alle atomerne forskelligt. Dette giver en forskydning i laserens frekvens p̊a hundredevis af Hz,
og p̊avirker ogs̊a hvordan frekvensfluktuationer varierer ved forskellig kavitets-detuning. Vi
undersøger ogs̊a indvirkningerne af temperatur-ændringer, dekoherens fra forstyrrende lys,
krav til hastighedsudvælgelsen, og frekvensafhængigheden af cavity pulling-effekten. Deru-
dover præsenterer vi karakteristika for absorption og forstærkning, som kan opn̊as ved forskel-
lige størrelsesordner af atomflux, hvis laserlys sendes ind i kaviteten.

Det sidste system vi betragter er baseret p̊a en str̊ale af µK-kolde atomer, der transporteres
i en dipol-fælde. Denne atomkilde er realiseret p̊a Amsterdam Universitet, men her be-
tragtes dens potentiale i forbindelse med superradiant lasing. Vi antager, at atomerne pumpes
vedvarende, imens de propagerer igennem kaviteten. Vores model inkluderer alle Zeeman-
niveauer, der er involveret i pumpningen, foton-impulser, tilstandsafhængige optiske poten-
tialer, og koherente effekter fra to pumpe-lasere. I modellen bruger vi en stokastisk master
equation og diskrete kvantespring til at tage højde for de termiske effekter fra at pumpe atom-
erne i tilstandsafhængige optiske potentialer. I modeller af superradiante lasere i litteraturen
betragter man ofte stationære atomer med to enegitilstande, hvor pumpningen behandles
meget simplificeret. Derfor har vores tilgang ogs̊a generel relevans for superradiante lasere,
der er baseret p̊a at pumpe atomer i optiske potentialer.

Hundredevis af pW kan opn̊as i systemet baseret p̊a den kolde atomstr̊ale, og hvert atom
kan udsende op til ∼40 fotoner i kaviteten, før de opvarmes og flyver væk. Cavity pulling
undertrykkes med en faktor ∼ 50−100, hvilket er en fordel ift. maskinen baseret p̊a en varm
atomstr̊ale. Til gengæld giver et simpelt estimat af linjebredden 82 Hz, hvilket er ringere. Et
optisk gitter kan muligvis reducere cavity pulling yderligere, men vil ogs̊a give store light shift-
variationer p̊a pumpeovergangene. Pumpelasernes frekvens indvirker ogs̊a p̊a en forskydning
af laserfrekvensen, men variationer er undertrykt med over to størrelsesordner. Forskydningen
p̊avirkes ligeledes af pumpelasernes intensitet, men ogs̊a af atomfluks. Vi finder dog at der
er regimer, hvor forskydningen er nul, og den samtidig er lokalt uafhængig af atomflux. Alt
i alt har maskinen baseret p̊a den varme atomstr̊ale mange fordele sammenlignet med denne
tilgang, specielt pga. dens simplere konstruktion. P̊a smallere overgange i atomer er det til
gengæld mere realistisk at opn̊a superradiant lasing i systemer, som minder om den kolde
atomstr̊ale.
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Symbols and abbreviations

Abbreviations
AOM - Acousto-optic modulator
(C)QED - (Cavity) quantum electrodynamics
CoM - Center of mass
CPU - Central processing unit
ECDL - External cavity diode laser
EOM - Electro-optic modulator
EPS - Expanded polystyrene
FSR - Free spectral range (of cavity)
GPU - Graphics processing unit
GUI - Graphical user interface
MFT - Mean field theory
MOSFET - Metal–oxide–semiconductor field-effect transistor
MOT - Magneto-optical trap
(N)PS(D) - (Normalized) power spectrum/spectral density
PI(D) - Proportional-integral(-differential) (circuit)
PDH - Pound-Drever-Hall (technique)
RAM - Random access memory
RF - Radio frequency
SME - Stochastic master equation
SRLM - Superradiant lasing machine
SWAP - Sawtooth-wave adiabatic passage
TA - Tapered amplifier
TEM - Transverse electromagnetic mode
UvA - University of Amsterdam (Universiteit van Amsterdam)
UCPH - University of Copenhagen

Symbols
a - Cavity field annihilation operator; acceleration
a† - Cavity field creation operator
B,B - Magnetic field strength/vector
c - Speed of light, 299792458 m/s
cg - Clebsch-Gordan coefficient
C - Cooperativity; capacitance
E - Energy
f , f † - Filter cavity field annihilation/creation operators
F - Cavity finesse; force
g, gf - Angular coupling rate of (atom/filter cavity) to the science cavity
h, h̄ - Planck’s constant/reduced Planck’s constant
H - Hamiltonian operator
I - Intensity; current
k,k - Wavenumber/wave vector
L - Cavity length (between mirrors); inductance
m - Mass
n - Number of cavity photons; photon number operator; column density
N - Number of atoms
o - Operator
p - Momentum
P - Power
Pout, P

S
out - Cavity output power (total/single side)

q, q† - annihilation/creation operators



P. viii of 169

r - Radius; distance
r - Position vector
R - Resistance
t - Time
T - Temperature; end time
U - Voltage
v,v - Velocity/velocity vector
w - Repumping rate (angular frequency)
W - Cavity waist radius
x - Position coordinate, along atom propagation axis (if applicable)
y - Position coordinate, along repumping laser beam axis (if applicable)
z - Position coordinate along cavity axis

α - Polarizability
γ - Atomic decay rate/FWHM transition linewidth (angular frequency); Lorentz factor
Γ - Characteristic FWHM bandwidth (angular frequency)
δij - Angular frequency difference; δij = ωi − ωj
δL - Shift in lasing frequency with respect to the unperturbed transition; δL = ωL − ωE
∆ - Change/shift in the subsequent quantity
E - Emf
η - Driving rate of driving laser
κ - Cavity power dissipation rate/FWHM linewidth (angular frequency)
λ - Wavelength
ν, ω - Frequency (ordinary/angular)
ρ - Density operator/matrix/matrix element
σ - Atomic spin operator; standard deviation; cross section
τ - Characteristic time
φ - Phase
Φ - Flux
χ - Rabi frequency (angular)
ψ - State
Ω - Generalized Rabi frequency (angular); collective atom-cavity coupling rate

Subscript notation for atomic levels, frequencies, etc.
1S0: g, 3P0: n, 3P1: (i, e, u), 3S1: (x, y, z), 3P2: (p, q, r, s, t) (mJ from - to +)
Capital letters denote the unperturbed transition (but including potential Zeeman-shifts).

c - Cavity resonance
d - Driving laser (cavity input beam) resonance
f - Filter cavity resonance
li, lx - Pumping laser (689 nm σ− transition/688 nm π transition)
L - The superadiant laser
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on upgrading the machine to cool atoms to µK temperatures. This pursuit allowed us to
experience the occasional mercilessness of experimental physics, as the rapid ramping of the
current in our big MOT coils would be a challenge haunting our setup for a long time. Despite
these challenges I am happy to have worked with them and appreciate their big interest and
excitement for physics. Fortunately we could begin to appreciate the physics more after
celebrating our first µK atom cloud. Sofus and Eliot have put much effort into upgrading
many different parts of the Sr1 machine, also including a new oven and some new laser
systems. These are not presented in this thesis in detail, but were important for realizing the
experiments at µK temperatures. I also want to thank them for reading and giving useful
comments on a couple of thesis chapters.

1Website: nbi.ku.dk/english/research/quantum-optics-and-photonics/quantum-metrology/
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keep up with optimizing the setup during our struggles with entropy. I have enjoyed working
in group with them and following their exciting improvements to the strontium beamline.

Several students also worked on projects on the Sr1 setup. Mantas Ambroza built a setup
for his master project to finally lock those athletic repumper resonances we always struggled
with taming. Maria S. V. Larsen worked on the Sr1 setup for her master project and
contributed to our final realization of µK cooling. In addition to her experimental work, she
also dived into the theory of atom-light interactions and simulations. Here I was very lucky,
as she spotted a mistake in one of my equations. Andrea S. Eriksen also contributed to our
laser system for µK cooling during her bachelor project. Jens Kinch worked on setting up the
initial absorption imaging system and determining the cloud temperature. He also deserves
a big thanks for allowing us to exploit his graphics card and sacrifice FPS for numerical
simulations before we had a dedicated simulation computer. Jonathan G. Elsborg and
Kasper Pedersen also improved the imaging system further during their bachelor projects.

Outside the lab I would also like to thank Michael Heide Bernt and the rest of the technical
workshop at UCPH for all their advice and help with designing and making many important
components for the Sr1 setup.

Beyond UCPH I would also like to thank the people from the iqClock consortium2. In
this international collaboration I have mainly been involved in what became the hot beam
superradiant lasing machine at the University of Amsterdam. At the beginning we had
regular online meetings discussing possible designs and numerical simulations of continuous
superradiance. I enjoyed the discussions with Florian Schreck, Shayne Bennetts and
others from the Amsterdam group, whose expertise in atomic beams and machinery guided
the project, Georgy Kazakov from TU Wien who contributed with advice on numerical
modeling, and Christoph Hotter and the rest of the group of Helmut Ritsch at the
University of Innsbruck, contributing their expertise in quantum theory and even making
independent checks of the model for our pulsed experiments at UCPH. Christoph has also
shown great interest in the Sr1 setup and come up with new, interesting ideas for us to
explore.

Later I also got to know the iqClock team and Strontium quantum gases group3 at the
University of Amsterdam better, now in the context of our lab work on the hot beam machine.
It was exciting to follow the vacuum chamber’s journey, hatching from its bubble wrap,
consuming our components and growing into a full machine beast over the course of six
months. Especially Shayne, Francesca Famà and Sheng Zhou helped me get started in
the new lab and become increasingly familiar with where all the different components were
hidden. I also got to work with Camila B. Silva, Zeyuan Zhang, Stefan, Benjamin
Pasquiou and Florian. They made many contributions to the hot beam project that are
not presented in this thesis. I am also thankful for all the techniques I learned from them
during my time in the lab.

2Website: www.iqclock.eu
3Website: strontiumbec.com
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Introduction to quantum metrology

and superradiant lasers

1.1 Quantum metrology

Quantum metrology1 is a field of science that deals with precision measurements based on
quantum physics. Technologies advanced within the field of quantum metrology include
atomic clocks [1, 2], lasers with ultra-stable frequencies [3, 4, 5] and systems based on ultra-
cold atoms in optical cavities [6]. These are used as tools in many areas at the frontier of
science, such as in gravitational wave detection [7], geodesy [8, 9], geopositioning [10] and
quantum simulation [11]. Improvements to the precision of the very best tools may also
uncover new realms of physics [12, 13], similarly to how microscopes and telescopes enabled
us to discover new aspects of the universe beyond the limitations of the naked eye.

The quantity we can measure most precisely and accurately2 is time, and its inverse, fre-
quency. Today’s state-of-the-art atomic clocks can reach a fractional uncertainty at the level
of 10−18 [9, 14, 15, 16, 17, 18] - smaller than the magnitude of a second relative to the age of
the universe.

Centuries ago time was measured using mechanical clocks, for example by counting how
many times an arm swung back and forth. These clocks had limited accuracy because the
mechanics inevitably vary, so that two mechanical clocks will never have the exact same arm
length and behave exactly the same. That causes the clocks to get out of sync - the arm
in one might swing 60 times in the same time interval another one swings 61 times. Using
atomic transitions was a big step forward for clocks, because two atoms of the same isotope
will behave in the same way under the same conditions. The impact of ”conditions” might
sound disappointing at first, but can be controlled extremely well compared to the factors
influencing e.g. mechanical clocks.

1Quantum metrology should not be confused with the study of quantum subways. Also not with quantum
meterology, which would be dealing with quantum weather forecasts.

2Precision refers to how small a spread can be obtained in measurements of a given quantity (small statistical
uncertainty). Accuracy refers to how close the measured values are compared to a known reference on average
(small systematic uncertainty/bias).

1
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1.1.1 Atomic pendula

The discrete states of atoms are connected by transitions, which enable them to be used as
”pendula” for clocks and measurements, instead of mechanical arms. A state describes an
atom’s physical quantities at a given time, such as the angular momentum of the nucleus
and electrons. The state can be changed by interactions, and we will only be dealing with
electromagnetic interactions between photons and the outermost electrons of atoms. For
example an atom can absorb a photon, which can cause one of its electrons to e.g. jump to
an orbit further from the nucleus. In this excited state with higher energy, it may emit a
photon, reversing the process.

Because the electrons cannot simply have a stable orbit at any arbitrary distance from the
nucleus or arbitrary angular momentum, the states are discrete, and a very specific amount
of energy E is needed by the photon to cause these jumps. This leads to one important
quantity - the transition frequency ν = E/h, where h is Planck’s constant. In this thesis
we will work in angular units most of the time, where we have ω = E/h̄. These atomic
transition frequencies serve as natural alternatives to oscillation frequencies of mechanically
constructed pendula. Interactions do not last infinitely long, so the Fourier limit tells us
that the transitions cannot be infinitely well-defined spectrally. Instead there is a span of
photon frequencies that can cause a given transition, defining a second important quantity
- the transition linewidth γ (in angular units). This characterizes the natural span by the
full-width at half-maximum (FWHM) of a Lorentzian curve around the transition frequency,
and is the inverse of the characteristic spontaneous decay time 1/γ back from the excited
state.

1.2 Strontium

As an example of an interesting atom for metrology we can consider strontium, which we
will be working with in this thesis (specifically 88Sr). 88Sr is the most abundant isotope
of strontium in nature at 82.58(1)% by mass [19, p. 2], but 87Sr at 7.00(1)% is also of
great metrological interest. 88Sr has no nuclear spin, which gives it a simpler level structure
compared to other isotopes and makes it easier to work with. As an alkaline earth atom,
strontium has two electrons in the outermost shell, which gives it a structure of electronic
transitions that is particularly useful in quantum metrology. A selection of energy levels
and transitions for strontium is shown in Fig. 1.1. The levels refer to the electrons in the
outermost shell in the Russel-Saunders notation 2S+1LJ [20, p. 81]. Here S is the total spin
quantum number of the two electrons (as they are spin 1/2 particles, S can be either 0 or 1).
L represents the orbital angular momentum quantum numbers by letters from spectroscopic
notation (S means 0, P means 1 and D means 2). J denotes the total angular momentum
quantum number from the spin-orbit coupling.

Each level can be further divided into 2J + 1 states characterized by the projection numbers
mJ = −J,−J+1, ...,+J of the orbital angular momentum along an axis (typically a magnetic
field). In the presence of a magnetic field, such states will have their energies shifted relative
to the depicted levels by the Zeeman shift. For weak fields it is given by [20, p. 91]:

∆EZee = gJµBBmJ , gJ ≈
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
, (1.1)

where gJ is the Landé g-factor, µB the Bohr magneton and B the field strength, so here
∆EZee = 0 for mJ = 0.
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Figure 1.1: Some of the many levels and transitions of strontium. Transition linewidths in
angular units, s−1, are specified in E notation, and frequencies in THz are specified in regular
notation near the upper state of transitions. In this thesis we will work with the transitions
between the colored levels and their Zeeman states. References: [a]: [19], [b]: [21], [c]: [22],
[d]: [23], [e]: [24], [f ]: [25], [g]: [15], [h]: [26].

The first useful property from the level structure of strontium is that it can easily be laser-
cooled to very low temperatures using transitions connected to the ground state 1S0. We will
consider laser-cooling techniques in Chapter 3, but for these we note that the 30 MHz wide
1S0-

1P1 transition at 461 nm enables rapid cooling to mK temperatures, and the 7.5 kHz wide
1S0-

3P1 transition can be used for further cooling to µK temperatures. Secondly, it also has
narrow spin-flip transitions accessible from the ground state. The doubly-forbidden 1S0-

3P0

”mHz transition” is the one of most interest for metrology due to its linewidth of just 1.35
mHz in 87Sr. This occurs due to the nonzero nuclear spin of 87Sr. In 88Sr the corresponding
linewidth is practically zero unless a strong magnetic field is applied, which makes it possible
to engineer a linewidth in the µHz range. As an alternative the singly-forbidden 1S0-

3P1

”kHz transition” is in an intermediate region between the narrow clock transitions and the
MHz-wide allowed transitions. This allows for avoiding the much larger technical demands
associated with transitions in the mHz range, making it useful for exploring the physics of
metrological systems and developing systems where simplicity is also important. This is the
”pendulum” transition we will be working with throughout the thesis.

1.3 Atomic clocks, optical cavities and lasers

The second is currently defined by the transition frequency between two hyperfine states
in caesium-133. And since the atoms behave identically, anyone can shine microwaves on
caesium-133 atoms at different locations - if they absorb the photons and are not disturbed
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by their environment, then we know the frequency of the photon’s oscillations is 9.2 GHz,
and can keep track of the oscillations to make a clock. As we saw magnetic field can disturb
the frequency of some transitions by the Zeeman effect, but other effects also include different
electric fields, gravitational acceleration or Doppler shifts from relative motion, so it is still
important to understand the influence of the environment. The prospects of nuclear clocks
are interesting because they can be even less sensitive to some environmental effects compared
to clocks based on electronic transitions [27].

In addition to atoms being identical, another big advantage of atoms is the large transition
frequency which enables a much finer division of time than mechanical clocks can achieve. If
the arm of a clock swings once per second, you cannot divide time much finer than that and
use it to distinguish time intervals of µs. But using the microwave transition of caesium at 9.2
GHz corresponds to having an arm that swings back and forth during just 110 picoseconds,
so much smaller time intervals can be distinguished. For this reason, the optical atomic
clocks which have been developed over the past few decades have also rapidly progressed
to outperform the older clocks based on microwave transitions, like caesium. The 1S0-

3P1

transition which we focus on in this thesis has a transition frequency of 434 THz, equivalent to
a period of 2.3 femtoseconds (and wavelength 689 nm, visible as red light). With such a fine
division of time, optical clocks can outperform the caesium standard by orders of magnitude,
and there have been considerations [28] to use them in a redefinition of the second for over
a decade now. The linewidth is also important as it determines how finely frequencies can
be discriminated, so transitions can be characterized by a quality factor given by Q = ω/γ
which can be on the order of 1017, much larger than for other types of oscillators.

One challenge arising from the optical frequencies is that they are too high for direct electronic
measurements. Instead optical frequencies can be measured relative to each other by using
the interference of light waves, if they have the same polarization. This arises from the
superposition principle, meaning the total electric field of the wave is the sum of the two
separate waves. So if two laser beams are overlapped and one has a frequency that is 10
MHz higher than the other, a 10 MHz beat signal can be detected e.g. with a photodiode. In
this way atomic frequency references can be compared to each other, or characterized with
”reference lasers” which keep an approximately constant frequency on a short timescale, but
may drift between random frequencies on longer timescales.

Because we can measure time so precisely, optical clocks are also used for some of the most
precise measurements of other quantities. Since the frequency of atomic transitions can be
disturbed by their environment, the clocks can be used to measure a select ”disturbance”
instead of avoiding it. For example the gravitational potential can be mapped out by com-
paring the frequency of an atomic clock at a fixed location with another one that is moved
to different locations in the potential. This can reveal information about the composition
or ongoing processes underground. Another application of atomic clocks is in geopositioning
systems. For these, satellites in orbit with atomic clocks on board send out radio signals with
time information from the clocks. These signals propagate at the speed of light, so the time
at which they reach a receiver to be located will be delayed by d/c, where d is the distance
to the satellite and c = 299792458 m/s is the speed of light. In this way the delay time from
three satellites pinpoints a location relative to the satellites. In practice four satellites are
typically necessary, when the receiver does not have an accurate clock itself, which adds an
additional unknown to the problem. With signals traveling at c, a 100 ns error in an atomic
clock could result in 30 meters error in a calculated distance, highlighting how important the
clock precision and accuracy is for these systems.
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LaserHigh-finesse
optical cavity

Cold atoms
in optical lattice

Figure 1.2: Example of a passive atomic clock.
The laser corresponds to the ”arm” of a me-
chanical clock, and its frequency is adjusted to
be on resonance with a transition being inter-
rogated in cold atoms. An optical cavity also
helps to keep the laser frequency stable while
the cold atoms are being prepared.

To get a better idea of the physics of
atomic clocks and current challenges, we
can consider an example of one of the best-
performing atomic clocks today [29], illus-
trated in Fig. 1.2. Here on the order of 1000
87Sr atoms are first cooled and trapped us-
ing lasers, reaching a temperature of 3 µK.
Such low temperatures are important for the
best atomic clocks because the typical (root
mean square) velocity of an atom at a tem-
perature T is vrms =

√
3kBT/m, where kB

is Boltzmann’s constant and m is the mass
of the atom [30, p. 242]. For 87Sr this gives
vrms = 3 cm/s at this temperature. This
causes a Doppler shift in the frequency which
an atom will absorb or emit at. The Doppler
shift in the resonance frequency of an atomic
transition is ∆ν = ν0 ·v/c, where v is the rel-
ative velocity and ν0 is the transition frequency. In this clock the 1S0-

3P0 transition in Fig.
1.1 at 430 THz is used. This means that at 3 µK a typical Doppler shift is about 40 kHz,
about 10−10 of the clock transition frequency. This could be a problem if they disturb the
frequency of the atomic clock. However there are equally many atoms with positive and
negative shifts, so the frequency of the clock is disturbed far less than on the order of 10−10.

To use these cold atoms as a clock after cooling and trapping them, a laser beam with very
stable frequency (resonant with the clock transition) is sent onto the atoms for 600 ms. This
particular duration corresponds to a π-pulse and transfers the most atoms to the excited
state, 3P0. The π-pulse duration generally depends on the laser beam intensity, but also
the linewidth of the atomic transition (1.35±0.03 mHz in this case [21]). The narrow clock
transitions imply that the π-pulse duration is relatively long and also that small changes in
the laser frequency will significantly change how many atoms are transferred by the pulse.
This means that if the laser used for the π-pulse has the wrong frequency, less atoms will
be excited, and the frequency of the laser can be corrected back to the frequency of the
atomic transition. Making such corrections continually is referred to as ”locking” the laser to
the atomic transition and yields a frequency reference, which is the core of an atomic clock
(the remaining problem of using the very stable THz optical signal for actual timekeeping
is mainly technical). To know how many atoms are excited by the π-pulse, a short pulse of
light at a frequency matching a different (much broader) transition is sent onto the atoms
before and after the π-pulse, which causes the non-excited atoms to fluoresce, emitting light
that can be used to count them.

However this scheme is cyclic, because it takes time to first cool and trap the atoms, then
send a π pulse, and then another pulse of light to read the state of the atoms to correct
the laser, before starting over and repeating. You only get information about what the
frequency of the laser was during the π-pulse - not during cooling or reading their state,
which is ”dead-time”. This can reduce the frequency stability of atomic clocks [31]. During
this dead-time, the system relies on an optical cavity with high finesse (implying it has highly
reflecting mirrors) to stabilize its frequency. A photon can only enter through the mirrors if its
frequency is within a very narrow range such that an integer number of photon wavelengths
matches the cavity length, otherwise the photon will be reflected. This frequency range
defines the cavity linewidth κ and the inverse of the power decay time within it, similarly
to the atomic transition linewidth γ. This ability of cavities to discriminate frequencies
like atoms can be exploited in the Pound-Drever-Hall locking scheme [32], to lock a laser
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frequency to the cavity resonance frequency, which depends on the exact distance between
its mirrors. But since the cavity is a mechanical construct, this distance can drift over time,
and tiny thermal fluctuations in the mirrors can also cause noise on short timescales, which
is a current limitation in the best frequency references [33, 34].

Therefore an ongoing goal in quantum metrology is to make continuous optical atomic clocks.
This could be done for example by using an atomic beam so the preparation, interrogation
and state readout can be separated in space instead of time. This would still be a passive
reference, implying that the frequency of the clock laser is corrected using the transition of
atoms which are not responsible for the laser emission itself. An alternative scheme is an
active clock, using atoms with a narrow transition as a gain medium to directly generate
light with a frequency determined by the atomic transition. This is the concept behind
superradiant lasers, which are the focus of this thesis.

1.4 Superradiant lasers

Superradiant lasers are a promising type of active frequency reference - their principle is sim-
ilar to the hydrogen maser [35], but with the benefit of operating at high optical frequencies.
The differences between superradiant lasers and ordinary good-cavity lasers are illustrated in
Fig. 1.3. For quantum metrology, the most important feature is that the phase and frequency
of the emitted light in a superradiant laser are mainly determined by the resonance frequency
of the gain medium (the atoms) rather than the optical cavity (which drifts over time, and
as mentioned, limits the best frequency references). A superradiant laser requires operating
in the bad-cavity regime, where the gain linewidth is significantly narrower than the cavity
linewidth. The gain linewidth is fundamentally limited to the linewidth of the atomic tran-
sition, so narrow atomic transitions are used, just as for the passive frequency references.
However even if the transition linewidth is very narrow, the gain linewidth can be broadened
further both homogenously and inhomogenously, with different resulting effects. A broad
cavity linewidth, as required by a superradiant laser, implies any photons within the cavity
are quickly transmitted, and the intensity within the cavity itself is low compared to cavities
with narrow linewidths and highly reflecting mirrors. In this way the phase-information in
the atoms is long-lived in a superradiant laser, and any emission from the gain medium is
quickly transmitted by the cavity, without the cavity significantly influencing the phase and
frequency.

Superradiant laser Frequency is primarily
determined by

atomic transition

Frequency is primarily
determined by
cavity length

Good-cavity laser

High-reflectivity mirrors

High intensity in cavity

Spectrally broad gain medium

Low-reflectivity mirrors

Low intensity in cavity

Spectrally narrow gain medium

Disturbed by
mirror fluctuations

Not sensitive to
mirror fluctuations

Figure 1.3: Comparison of superradiant lasers and ordinary good-cavity lasers.

Similarly to the passive references, superradiant lasers can be both pulsed and continuous.
From an experimental point of view a pulsed superradiant laser is easier to realize. By
trapping and cooling atoms (up to on the order of 109 on the order of a second) within
an optical cavity and pumping them all to the excited state of the clock transition at once,
the ensemble can emit a pulse into the cavity. A continuous superradiant laser requires
either a constant flux of atoms or keeping the same atoms trapped while lasing. Because the
superradiating atoms within the cavity can easily be disturbed by cooling light, it is hard
to realize as high atom numbers with a continually operating superradiant laser, making it
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harder to reach the threshold for operating. Therefore realizing fully continuous superradiant
lasing on narrow optical transitions is an ongoing challenge.

1.4.1 Regimes of superradiant pulses

Superradiant lasers borrow the term superradiance from a range of phenomena where atomic
dipoles phase-synchronize and radiate cooperatively into a common electromagnetic mode at
a higher rate than independent spontaneous emission. This was originally considered mainly
in a gas where particles were confined within a wavelength [36]. The particles are initially
excited, and the cooperative emission rate scales with N2. The result is a pulse characterized
by a sech2 shape in the time domain, and a peak intensity which also scales with N2.

Later studies focused on extended gases where one electromagnetic mode is favored due to the
particle distribution, e.g. a pencil-shaped cloud. These systems share similarities with lasers,
such as threshold density [37] or length [38], and exhibit additional regimes. A superradiating
ensemble can be prepared with a finite initial coherence (determined by e.g. a pumping beam).
This is a narrower definition of superradiance which has been used e.g. in the overview [39, p.
168]. Alternatively the ensemble can be prepared with no initial coherence, for example using
a third level decaying to the excited state. The term superfluorescence has been introduced
[40] to distinguish this case with no initial coherence, as the pulse requires a spontaneously
emitted photon to be initiated. This affects the pulse buildup time and phase, as the rate
of spontaneous emission scales with N rather than N2, and decay events are random. The
subsequent dynamics can still result in sech2-shaped pulses with N2-scaling peaks, which
has been denoted ”pure” superfluorescence [40, 41]. Other characteristics of the pure regime
include a pulse duration scaling with 1/N [42] and a delay between pumping and pulse peak
which scales with log(N)/N for a fully inverted ensemble [43, p. 309] [42, p. 334], and 1/N2

for a half-inverted state Dicke-state (which has a macroscopic initial coherence) [43, p. 309].

A different regime is encountered when the gas length dimension becomes comparable to
a ”cooperation length” (so that the full ensemble no longer synchronizes), instead of being
significantly smaller [38, 40, 44]. This results in afterpulses due to the effects of stimulated
emission, and a transition to a regime where the intensity scales linearly with N [40], which
has also been called ”oscillatory superfluorescence” to distinguish it from the ”pure” regime
with sech2 pulses [40, 41]. In the oscillatory regime, delays scaling with 1/

√
N have been

reported [41].

Yet another term, amplified spontaneous emission (ASE), has been introduced for the case
where a macroscopic dipole moment fails to build up, due to e.g. low density or large thermal
dephasing rate [45, 46, 47]. In this regime the intensity becomes more chaotic over time
compared to (oscillatory) superfluorescence, eventually with multiple peaks from different
spontaneous emission events amplified by fractions of the ensemble, within an exponentially
decaying trend on average [41, 46]. Note that the terminology within the field has been the
subject of confusion and discussion [48, 49], and there are variations in the use of terms. In
this thesis we will use the term superradiance relatively broadly, including superfluorescence
and oscillatory regimes. Superradiance in gases in free space is still an active field of research
[50, 51, 52], and is also progressing towards more continuous settings [53].
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1.4.2 Pulsed superradiant lasers

Spontaneous emission
from ensemble

Pure superfluorescence

Pulses in the pure 
superradiant regime

Pulses in the superradiant 
crossover regime

Intensity

Time

Intensity

Time

Intensity

Time

Oscillatory
superfluorescence

Figure 1.4: Regimes for pulsed superradiance
and independent spontaneous emission.

The idea of treating superradiant emission
within the framework of a cavity was in-
troduced in [43]. Here a cavity loss rate
κ = c/2L was used (where L is the cav-
ity length), and since FSR = c/2L, the fi-
nesse is 1, mimicing the free-space gas set-
ting. But simply introducing a higher cav-
ity mirror reflectivity (lower κ) serves to in-
crease the effective length of the gas sam-
ple considered in previous settings. Pho-
tons emitted by the atoms then propagate
for a longer time within the sample. The
regimes of the extended gas are recovered,
but can now depend on the cavity param-
eters instead of sample length. The pure
superradiant regime is recovered when the
photons escape the cavity fast enough to
not act back on the atoms, which requires
κ > ΩN = 2g

√
N , where g is the atom-

cavity coupling (here assumed identical for
all atoms), and ΩN is the collective coupling
rate, with N atoms. If this is not fulfilled,
photons piling up in the cavity may act back
on the atoms (at the interaction rate 2g

√
n,

where n is the photon number), such that absorption and stimulated emission starts to play
a significant role. This gives rise to the superradiant crossover regime, like the oscillatory
regime considered for the extended gas, where the peak intensity scales linearly with N rather
than with N2.

In this way the different superradiant regimes are recovered in the bad-cavity regime of lasers
mentioned earlier (see Fig. 1.4 and Fig. 1.5). Note that in the presence of e.g. thermal
broadening, the simple distinction based on N no longer holds, as many of the fast-moving
atoms in the ensemble may not be able to phase-synchronize with the slow ones, reducing
the collective coupling rate. In this case an ”effective” atom number may be considered, or
alternatively whether κ � 2g

√
n, such that the cavity field population adiabatically follows

the atomic dynamics as in the pure superradiant regime, versus κ ≈ 2g
√
n, where oscillations

can be expected.
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Figure 1.5: Scaling of the peak output power with atom number depending on the relative
magnitudes of γ, κ and ΩN . Figure adapted from [54].
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Superradiant laser pulses in the pure regime have been studied experimentally on the 1.35
mHz wide 1S0-

3P0 transition in 87Sr [55, 56] and on the 375 Hz wide 1S0-
3P1 transition in

40Ca, where log(N)/N delay scaling and pulse statistics from the pure regime are recovered
[57]. It has also been investigated theoretically in [58], recovering N2- and N -scaling of pulse
heights in the pure and crossover regimes, respectively. Within this thesis we will also explore
these regimes on the 7.5 kHz wide 1S0-

3P1 transition in 88Sr at mK temperatures (published
in [54]), primarily the crossover regime. Spectral properties in this crossover regime have
been reported in [59] and are also described in this thesis. The crossover regime has also
been explored on this transition at µK temperatures in [60].

1.4.3 Continuous superradiant lasers

In [61] the idea of repumping superradiating atoms within a cavity via a three-level scheme was
introduced - the continuous superradiant laser. Unlike the previously mentioned pulses, which
will have linewidths larger than the transition linewidth γ, the linewidth of a continuous laser
is not Fourier-limited in this way, making it of much greater metrological interest. Different
regimes have also been distinguished for continuous superradiant lasers, as for the pulsed
systems. In [62] a crossover between the good and bad cavity regimes has been defined based
on the ratio of cavity photons to atoms being n/N ≈ 1, assuming an optimal pumping rate
in a three-level model. This yielded a crossover parameter given by Ng2/2κ2 (for identical
couplings g), with Ng2 � 2κ2 in the superradiant limit, and Ng2 ≈ 2κ2 in the crossover
regime, similar to the considerations in the pulsed regime. The ratio n/N further quantifies
to which degree the system’s coherence is stored in the cavity photons relative to atoms,
and the point at which cavity pulling grows to order unity. The crossover regime has also
been described in more simple terms as the regime where gain and cavity linewidths are
comparable [63]. In this context the criteria based on N or n can be related to the power
broadening of the gain medium due to the cavity field. In [64] the pure and crossover regimes
of a continuous superradiant laser have also been investigated, distinguishing between (pure)
superradiance and a superradiant lasing regime where n > 1. For high photon numbers
within the lasing regime, entanglement can lead to a narrowing of the laser linewidth [64, p.
3].
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Another new aspect of continuous superradiant lasers is how to supply new excitations which
are required for continuous operation. An overview of some different approaches have been
presented in [65], and some examples are depicted in Fig. 1.6.

mK atoms

Pump

µK atoms

µK atoms

Guide
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Cool+trap

Cool+trap

mK atoms

Pump

(b)(a)

(c)

Pump

Lattice trap

Figure 1.6: Examples of possible continuous superradiant laser architectures discussed in the
main text. The functionality of different laser beams (shaded) are indicated, as well as atom
temperatures at different locations. The red color of some atoms indicate excitation from
optical pumping. The atom source is not depicted for the optical lattice laser (a), but may
be trapped with a similar scheme to the guided beam (b) or a continuous 3D trap within the
cavity mode (similar to the intermediate trapping stages in (b)).

If an atomic ensemble can be cooled and trapped within the cavity, the ensemble may be
considered stationary and can be repumped incoherently as considered in [61, 62, 64, 66,
67, 68, 69]. The trapping can be done using a far-detuned high-power optical lattice within
the cavity (Fig. 1.6(a)), giving rise to the term optical lattice laser [70]. This setting has
also been investigated for 40Ca [71], and one proposal combines such a lattice with a cooling
scheme for alkaline earth atoms [72]. Another approach for a lattice-like laser could be to
exploit the superradiant lasing interaction itself for cooling and trapping atoms [73, 74, 75].
The mechanical effects of interaction with the superradiant field in a cavity have also been
studied extensively in [76, 77], and the impact of dipole-dipole interactions between trapped
atoms in [78]. In addition to these studies, more exotic lasing schemes have also been explored,
such as lasing involving multiple Zeeman levels to achieve a narrow linewidth in 88Sr [79] and
lasers based on virtual transitions [80].

For an optical lattice laser to work, it is crucial that the lattice has a wavelength which
is magic for the superradiant transition, meaning that light shifts on the two lasing states
cancel out so they will not disturb the laser. This issue was originally considered for passive
optical lattice clocks [81, 82]. Similarly, light shifts from pumping or cooling lasers could
also disturb the superradiant laser frequency if they do not cancel out. Another challenge is
that the repumping laser introduces additional decoherence on the lasing transition - a higher
repumping rate enables potentially more power, but increases the lasing threshold and can
potentially ruin the narrow linewidth of the laser. Finally, light for cooling the atoms can
easily introduce large decoherence rates that would destroy the lasing - this can be avoided by
using transitions not directly connected to the states involved in superradiance (as in [72]),
but can further complicate the pumping scheme.
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Therefore some studies have considered settings where atoms are in continuous motion
through the cavity (as in Fig. 1.6(b)). In the ultra-cold regime this has been investigated
theoretically for atoms continually fed through optical lattices [83]. In this thesis we will
also consider a system where atoms are transported along a dipole guide and are continually
repumped within a cavity (also presented in [84]), without using a lattice. However most ul-
tracold atom experiments ultimately rely on a hot beam of atoms from an oven as source, and
complex intermediate stages are needed to produce a cold (µK), slow (e.g. cm/s) and dense
beam. Atom losses are inevitable throughout the many intermediate stages from the oven,
so the atom flux and potential output power is reduced by orders of magnitude compared to
what could be achieved if the total atom flux from the oven could be used for superradiance.

For this reason the simplest idea for continuous superradiance is to let such a hot beam
of atoms pass directly through a pumping stage before the cavity [85] (Fig. 1.6(c)). The
atoms can be transversely laser-cooled to the mK regime using broad transitions, which still
implies Doppler dephasing on the order of MHz. This, combined with the high propagation
speeds and limited interaction time with the cavity, makes such a hot beam approach most
viable for relatively broad transitions on the order of kHz, and was originally considered
using the 7.5 kHz transition in 88Sr and 375 Hz transition in 40Ca [85]. Laser linewidths of
10 mHz have been predicted as viable in a hot beam system using e.g. the 375 Hz transition
in 40Ca, comparable to the best existing clock lasers [86]. The predicted output power, on
the order of µW, is also decent for metrological purposes. However the significant thermal
broadening leads to challenges and additional features, such as unstable regimes, which have
been explored in [87, 88, 89, 87]. The impact of inhomogenous broadening on superradiant
lasing has also been investigated more generally in [90, 91] and transit time broadening in
[92]. We will also explore a continuous hot-beam system based on 88Sr in this thesis, for
which some results are presented in [84].

1.4.4 Experimental progress towards continuous superradiance

Continuous superradiant lasing has not been demonstrated on such narrow transitions as
used in pulsed systems. One of the closest systems may be [93], where lasing on an 1470 nm
hyperfine transition in a Cs gas cell was realized. Despite decay rates and Doppler widths in
the MHz range, the much larger cavity decay rate of 2π·244 MHz places the system deep in
the bad-cavity regime.

Some systems have also achieved quasi-continuous operation. These are based on repump-
ing an ensemble of atoms just as in some proposals for continuous superradiance, but with
technical limitations to the duration. Typically an ensemble of atoms is trapped, similar to
the technique in Sec. 1.3 and in experiments with pulsed superradiance. Atom loss during
lasing limits the duration to less than a second, while also causing changes in the dynamics
over time which are not expected in a fully continuous regime, such as a gradual decrease in
output power and change in spectral characteristics. Despite this, they demonstrate many
of the properties and the over-all behavior expected in a fully continuous regime. Quasi-
continuous superradiance has been demonstrated using a Raman transition in 87Rb up to
140 ms [94], where relaxation oscillations [95] and phase-synchronization dynamics [96] have
also been studied in detail. The quasi-continuous regime has also been realized on the 1S0-

3P1

transition in 88Sr for up to 1.5 ms [60].

The realization of continuous superradiant lasers also strongly depends on the development
of atomic beams with high flux and density, and low temperature. Strontium beams in the
ultra-cold µK regime have been used to realize the first continuous Bose-Einstein condensate
[97] and characterized utilizing different isotopes [98], including 88Sr. A number of sources
have also been developed [99, 100, 101, 102] yielding a higher atom flux closer to the mK
regime, which are promising sources for realizing the hot beam proposals.
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1.5 Thesis overview

In this thesis we will investigate superradiant lasing on the 7.5 kHz-wide 1S0-
3P1 transition

of 88Sr in several different kinds of systems - both pulsed and continuous. The thesis contains
both experimental work on realizing some of the systems, experimental characterization of
superradiant lasing pulses, and a big part is also devoted to numerical simulations of lasing
in the different systems. Therefore the numerical models have some variations, but share the
same fundamental principles, which are described in Chapter 2.

The pulsed system, which is realized in the machinery at the University of Copenhagen,
consists of a cold atomic cloud within an optical cavity. This cloud is trapped from a Zeeman-
slowed atomic beam using a 3D magneto-optical trap (MOT). It is almost fundamentally a
cyclic system because the superradiant lasing is heavily disturbed by the cooling and trapping
process. However the cyclic nature enables the machine to accumulate many (∼ 107) atoms
within the cavity mode, making it relatively easy to reach lasing threshold. In this sense the
machine is a stepping stone towards continuous superradiance and enables us to investigate
the dynamics of superradiant lasing with simpler technical requirements.

Chapter 3 is devoted to the experimental details of this setup, and the upgrades that were
made as part of this thesis to realize µK atom temperatures. Chapter 4 is devoted to sim-
ulations and experimental results from pulsed superradiance in the mK regime. Chapter
5 describes new regimes enabled by current and ongoing experimental upgrades, including
pulses at µK temperatures and dynamics with continuous repumping. As such this chapter
primarily presents simulations.

Another type of system which we will investigate is a continuous superradiant laser operating
on the kHz-transition based on the hot-beam scheme. It is characterized by a large atom flux
(∼ 1012 s−1), high thermal velocities in the propagation direction, mK temperatures along
the cavity axis, and its relative technical simplicity. This type of system is being developed
at the University of Amsterdam, and work on the experimental setup during my secondment
is described in Chapter 6, while simulations of the superradiant laser physics are described
in Chapter 7.

A second variant of the continuous superradiant laser that we will investigate is a cold beam
system. This is based on an atom source realized at the University of Amsterdam and was
considered as an alternative candidate to the hot beam system before its development. The
cold beam system is characterized by a lower atom flux (∼ 108 s−1), µK atom temperatures,
using magic dipole traps to transport and confine the atoms, and a repumping scheme to
enhance emission, making it significantly more complex. Numerical simulations of this type
of system are presented in Chapter 8.
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2
Theory for superradiant lasing

and numerical treatment

The goal of the numerical models in this thesis is to predict observables, mainly the output
power and spectrum of a superradiant laser, and how they depend on relevant physical
parameters. In this chapter we will describe the general methods used for making these
models. An example of a very general system that could be treated is illustrated in Fig. 2.1.

(a) Pum
p laser

Driving laser
Cavity

Transm
itted

cavity field1S0 atoms

Spontaneous
emission1S0 and 3P1

atoms

(b) (c)

100 dt 100 dt

Figure 2.1: Example of the time evolution of a general superradiant laser system. The system
changes significantly from panel (a) to (b) and then (c), but the dynamics may be solved
numerically by dividing them into small time intervals of length dt, e.g. 100 timesteps between
the situations in each panel. If the time intervals are short enough, the changes during each
interval are small enough that they can be accurately solved.

In this example the system starts out in the state shown in panel (a). Here an ensemble of
1S0 atoms are located within the optical cavity of the superradiant laser. Right at this time a
pumping laser is turned on to excite the atoms, and a driving laser is turned on to populate
the cavity field with photons, but these dynamics have not yet changed the atom and cavity
states. After a while, the system has changed to the state in panel (b). Here the lasers have
been turned off again, but in the meantime, several atoms (red) have been excited by the
pumping laser to 3P1, and a cavity-field has built up due to the driving laser, which is now
also leaking out of the cavity mirrors. The atoms start interacting with the cavity field, and a
bit later, the system is as shown in panel (c). Here many of the atoms have emitted light into
the cavity, or absorbed light from it, and are now in superpositions of 1S0 and 3P1 (purple),
while some may spontaneously emit photons into the environment.

The aim of numerical treatment is to divide this time evolution into small timesteps (each
with a length called dt), because the dynamics cannot be solved analytically. The dynamics
in between these three situations might be divided into e.g. 100 timesteps where the changes
are small enough to get an accurate solution. Every timestep we consider the current state
of the system and based on this we find the state one timestep later. For example if an
atom has a velocity v, the differential equation for its position ṙ is simply dr/dt = v, giving
the discrete variant dr = v · dt (according to the Eurler method) telling us the change in
position dr during the timestep. If gravity or optical forces are present, v may also change
during the timestep. In that case an accurate solution requires dt is small compared to the
timescale of the relevant dynamics. For example if an atom is initially moving upwards at 1

13
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m/s while being accelerated downwards at 10 m/s2 by gravity, choosing dt=1 second while
using a simple Euler integration would tell us the atom has moved 1 meter upwards after the
timestep, and its new velocity is 9 m/s in the downwards direction. This velocity is correct
as it changes at the same constant rate (10 m/s2) during the time interval dt. However the
analytical solution tells us the atom would have fallen by 4 meters during this time interval.
The predicted position is very inaccurate because the velocity changes significantly during
the time interval, compared to the initial value that was used to calculate the position. This
timestep is clearly too large to accurately treat an acceleration of this magnitude.

In similar fashion, using cavity quantum electrodynamics, we will derive differential equations
to describe the cavity field and atomic states that can be treated by numeric integration. This
allows us to describe systems with very complex dynamics that would need to be greatly
simplified for analytical treatment. Lasers can be switched on and off or change intensity,
random recoils from lasers may be treated for each atom individually, and so on. When
modeling a superradiant laser numerically we encounter similar problems as for the falling
atom. If atoms are Rabi oscillating at a rate χ due to a pumping laser, dt� 1/χ is required.
If an atom is moving across a coherent light wave at a rate v/λ, interacting with a cavity
field at a rate 2g

√
n, decaying from some excited state at a rate γ, or light is leaking from

the cavity at a rate κ, all these rates will similarly set requirements for how small dt must
be. When treating the 1S0-

3P1 transition in 88Sr with Euler integration this can easily be on
the order of 1 ns, however higher order numeric integration methods can allow for over an
order of magnitude higher timestep at the cost of a few extra and more complex equations
(which is often worth it). In this thesis a 2nd order Runge-Kutta method is generally used
for the equations that require the shortest timesteps, in particular the variant of the method
that minimizes the third order local truncation error (for more details see [103, p. 32] and
[104, p. 1109]).

2.1 Cavity quantum electrodynamics

Here we will illustrate the general methods for deriving the time-evolution of the atomic and
cavity field states in a system such as in Fig. 2.1. To make it relatively general we will assume
the atoms have three levels, |g〉, |e〉 and |i〉, so the extension to any number of levels should
be clear. |g〉 represents the ground state and |e〉 is the excited state of the superradiant laser
transition, so |e〉 can decay spontaneously to |g〉. |i〉 represents a high energy that can decay
to both |g〉 and |e〉, and a laser is used to pump the atoms to |i〉 so that they decay to |e〉
and inversion on the lasing transition can be achieved.

2.1.1 Hamiltonians

A starting point for finding the time evolution of a quantum system is its Hamiltonian,
representing the total energy. Considering the system in Fig. 2.1, a fairly general Hamiltonian
of the physical system is given by:

H = Hcav +Hat +Hint +Hpump +Hdrive. (2.1)

Hcav: We will start by defining the Hamiltonian in the Schrödinger picture, where the op-
erators are time-independent. The energy of a cavity field, Hcav, is given by the number of
photons n multiplied by the energy of each photon, h̄ω. In cavity QED this gives us the
term h̄ωn in the Hamiltonian, where n is the photon number operator (we will omit hats on
operators). We will write the number operator n = a†a in terms of the bosonic raising and
lowering operators a† and a, which obey the commutation relation

[
a, a†

]
= aa† − a†a = 1

[105, p. 12] [106, p. 11].

Hat: For an atom we need to choose a zero point for the atomic energy levels. This choice
does not affect the physics, as the dynamics depend on relative energy differences. Here we
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choose the unperturbed ground state |g〉 to have zero energy. In this case the Hamiltonian
representing the atomic energy will have a term for each excited state of the excitation
energy h̄ω. A superradiant laser requires many atoms, so the Hamiltonian of the atoms
will be the sum of all the individual atomic Hamiltonians. For e.g. 10 atoms with the
ground state |g〉, excited lasing state |e〉 and one other excited state for pumping |i〉, we
get

∑10
j=1 h̄ω

j
eσ

j
ee + h̄ωji σ

j
ii. The transition frequencies ωje, ω

j
i can vary from atom to atom

if they are affected by frequency shifts such as light shifts. When referring to unperturbed
atomic transitions we will generally use capital letters, as ωE , ωI , but include Zeeman shifts
in these when they are uniform. σij are the Pauli spin operators. The ones with identical
indices i = j represent the populations of atomic states, while the ones with different indices
act as transition operators. Sometimes σeg is written σ†, similar to the bosonic raising and
lowering operators, in this case with σee = σ†σ. However these are fermionic raising/lowering
operators and obey the anticommutation relation

{
σ, σ†

}
= σσ† + σ†σ = 1 [106, p. 13].

Hint: Just as for the atomic energies, the total atom-cavity interaction energy Hint will be a
sum of the interaction energies of all the atoms. The interaction energy of one atom with the
cavity mode is given by h̄ωgj (σge + σeg)

(
a+ a†

)
. gj is the atom-cavity coupling, and for a

linear cavity with two equally reflecting mirrors it is given by (defining the z axis along the
cavity axis):

gj = cg

√
6c3γ

W 2Lω2
sin
(ω
c
zj

)
e−(x

2
j+y

2
j )/W

2

. (2.2)

Here cg is a Clebsch-Gordan coefficient, which is 1 for the 1S0-
3P1 mJ=0 transition we

consider for superradiance in this thesis. We see the coupling gj depends on the atomic
transition through both the transition frequency ω and linewidth γ - narrow transitions lead
to small values of gj , leading to slowly evolving dynamics. We also see gj depends on cavity
parameters - the waist W and length between mirrors L - these must be chosen carefully to
make a superradiant laser work. We see that a small mode volume (small L and W ) result in
larger gj . Finally we see that the atom-cavity coupling depends on the position of the atom
- the coupling will be low, and the atom will interact very little, if it is located near a node
in the standing wave in the cavity (sine term) or it is far away from the waist of the cavity
(exponential). The sinusoidal change in gj as an atom moves along the z axis gives rise to
the Doppler effect in the atom-cavity interaction.

It is worth also considering the operators, e.g. σjge and a. In the most simple picture we can

consider their expectation values. Here
〈
σjge
〉

is a complex number with modulus between 0

and 1, and with additional constraints in combination with the populations
〈
σjgg
〉
,
〈
σjee
〉

from

the Bloch sphere. This contains the phase information of the atomic dipole, and equivalently〈
σjeg
〉

=
〈
σjge
〉∗

. 〈a〉 is similarly a complex number with the phase information of the cavity

field, but modulus of
√
n. So the atom-cavity interaction generally scales with g

√
n, and the

cavity QED equivalent to the semiclassical Rabi frequency is χQED = 2g
√
n. The mirror

reflectivity does not directly enter into these equations, but a high mirror reflectivity/narrow
cavity linewidth results in a higher intra-cavity photon number, as the photons escape more
slowly, and leads to a stronger interaction (higher g

√
n), but n often requires numerical

simulations to determine.

Hpump: To describe the pumping of the atoms, we will assume the pump lasers to be running
waves with high enough intensity that they are not significantly attenuated by the interaction
with the atoms. In this case we can describe the interaction semiclassically, giving for each
atom:

Hj
pump = h̄

χjgi
2

(
σjgi + σjig

)(
eikli·rj−iωlit + e−ikli·rj+iωlit

)
. (2.3)

Note the similarity to Eq. 2.2, except that the laser phase terms (right) are running waves
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(with kli being the wave vector of the laser and rj the position vector of the atom), and the
Rabi frequency which for an atom is given by:

χjli = cg

√
6πc2γIli
h̄ω3

e−(x
2
j+y

2
j )/W

2
li . (2.4)

The Clebsch-Gordan coefficient cg generally depends on the pumping transition, but is of
order unity. Ili refers to the peak intensity of the laser beam (assuming its intensity profile is
Gaussian) and is related to the laser power Pli by Ili = Pli/w1w2 for a beam with waist radii
w1 and w2. For a non-Gaussian laser beam, the exponential term should be omitted and the
local intensity at a given atom should be used in place of Ili.

Hdrive: The final term, Hdrive, can be used to describe an external laser beam coupling into
the cavity:

Hdrive =
η

2

(
a+ a†

) (
e−iωdt + eiωdt

)
, (2.5)

where η represents the driving strength. If no atoms were present, the cavity would be
populated by η2/(κ2 + 4δ2cd) photons in steady state, where κ is the cavity linewidth FWHM
and δcd is the laser detuning from the cavity resonance (for some examples see [103, p. 6]).
Since the output power from a cavity with n photons is Pout = nh̄ωc, which must be equal
to the input power in steady state and with no atoms inside, this means η = κ

√
kinPin/h̄ωc,

where kin is the coupling efficiency of the input beam to the cavity mode, and Pin is the
input power.

The resulting Hamiltonian from these examples is then:

H = h̄ωca
†a+

N∑
j=1

h̄ωjeσ
j
ee +

N∑
j=1

h̄ωji σ
j
ii +

N∑
j=1

h̄gj
(
σjge + σjeg

) (
a+ a†

)

+

N∑
j=1

h̄
χjli
2

(
σjgi + σjig

)(
eikli·rj−iωlit + e−ikli·rj+iωlit

)
+
η

2

(
a+ a†

) (
e−iωdt + eiωdt

)
.

(2.6)

The terms are illustrated in Fig. 2.2.

η
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Figure 2.2: A superradiant laser consisting of an optical cavity with atoms inside. The atoms
can be pumped by an external laser, causing each atom to oscillate with a Rabi frequency χj.
The atoms also couple to the cavity field with coupling rates gj and emit spontaneously into
the environment at a rate γ. Light leaks through the cavity mirrors at a rate κ. An external
laser inputs light into the cavity, characterized by a driving strength η.

2.1.2 The interaction picture and rotating wave approximation

Once we have a Hamiltonian like Eq. 2.6, we start by noting that it contains many optical
frequencies (ω) - these oscillate at hundreds of THz and it would be impossible to solve
dynamics numerically on interesting µs or longer timescales if such rapidly oscillating terms
were present. To deal with these we start by going to an interaction picture, choosing the
non-interaction terms of the Hamiltonian (and so far keeping the frequencies {ω1, ω2, ω3}
arbitrary):

HU = h̄ω1a
†a+

N∑
j=1

h̄ω2σ
j
ee +

N∑
j=1

h̄ω3σ
j
ii. (2.7)
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The interaction Hamiltonian, still in the Schrödinger picture, is then given by:

HS
I = H −HU = h̄δc1a

†a+
N∑
j=1

h̄δje2σ
j
ee +

N∑
j=1

h̄δji3σ
j
ii +

N∑
j=1

h̄gj
(
σjge + σjeg

) (
a+ a†

)

+

N∑
j=1

h̄
χjli
2

(
σjgi + σjig

)(
eikli·rj−iωlit + e−ikli·rj+iωlit

)
+
η

2

(
a+ a†

) (
e−iωdt + eiωdt

)
,

(2.8)

where we define detunings as δij = ωi−ωj . The next step is to determine the time-dependence
of the operators in this interaction picture - how they evolve due to HU . For each of the
operators o we can use the Heisenberg equation:

ȯ =
i

h̄
[HU , o] . (2.9)

Then we get (with the I representing the operators being in the interaction picture):

ȧI = iω1

[
a†a, a

]
I

= iω1

(
a†aa− aa†a

)
I

= iω1

[
a†, a

]
I
aI = −iω1aI

σ̇jge,I = iω2

[
σjee, σ

j
ge

]
I

= −iω2σ
j
ge,I

σ̇jgi,I = −iω3σ
j
gi,I .

(2.10)

This gives the following relations between the Schrödinger and interaction picture operators
(the photon number operator n and atom populations σjee etc. are unaffected by these changes
in picture):

aI = aSe
−iω1t, σjge,I = σjge,Se

−iω2t, σjgi,I = σjgi,Se
−iω3t. (2.11)

Now we can replace the oS operators in Eq. 2.8 with the new oI operators and obtain the
Hamiltonian in the interaction picture (dropping the picture subscripts again):

HI = h̄δc1a
†a+

N∑
j=1

h̄δje2σ
j
ee +

N∑
j=1

h̄δji3σ
j
ii

+

N∑
j=1

h̄gj
(
σjgee

iω2t + σjege
−iω2t

) (
aeiω1t + a†e−iω1t

)

+
N∑
j=1

h̄
χjli
2

(
σjgie

iω3t + σjige
−iω3t

)(
eikli·rj−iωlit + e−ikli·rj+iωlit

)
+
η

2

(
aeiω1t + a†e−iω1t

) (
e−iωdt + eiωdt

)
.

(2.12)

If we then choose the arbitrary frequencies to be reasonably close (up to GHz, not THz) to
the ones in the terms they add/subtract with, so ω1 ≈ ω2, ω1 ≈ ωd, ω3 ≈ ωli, we can use the
rotating wave approximation. Multiplying the brackets, terms with e.g. exp (i(ω2 + ω1)t)
would oscillate rapidly and average to zero, so that we can neglect them, while terms with
frequency differences, e.g. exp (iδ21t), may oscillate on the physically relevant timescales.
This gives us the interaction Hamiltonian in the rotating wave approximation:

HI = h̄δc1a
†a+

N∑
j=1

h̄δje2σ
j
ee +

N∑
j=1

h̄δji3σ
j
ii +

N∑
j=1

h̄gj

(
σjgea

†eiδ21t + σjegae
−iδ21t

)

+

N∑
j=1

h̄
χjli
2

(
σjgie

ikli·rj−iδli3t + σjige
−ikli·rj+iδli3t

)
+
η

2

(
aeiδ1dt + a†e−iδ1dt

)
.

(2.13)

Now we can consider which frequencies to choose for ω1, ω2 and ω3. Choosing them earlier
can simplify the derivation, while choosing them later can make it easier to simplify the
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final equations. In terms of computational performance it is often an advantage to get rid
of exponential terms. For example choosing ω1 = ωd, ω2 = ω1, ω3 = ωI (with ωI being the
unperturbed atomic transition frequency) would give:

HI = h̄δcda
†a+

N∑
j=1

h̄δjedσ
j
ee +

N∑
j=1

h̄δjiIσ
j
ii +

N∑
j=1

h̄gj

(
σjgea

† + σjega
)

+
N∑
j=1

h̄
χjli
2

(
σjgie

ikli·rj−iδliI t + σjige
−ikli·rj+iδliI t

)
+
η

2

(
a+ a†

)
.

(2.14)

This would put the equations of the dynamics on the superradiant lasing transition in the
reference frame at the driving laser frequency ωd (if η=0 this could again just be arbitrarily
chosen and further simplify the equations). An alternative that can be easier to interpret
and keep track of is to fix all the frequencies to the relevant, unperturbed atomic transition
frequencies, such that all detunings simply refer to the unperturbed transitions: ω1 = ω2 =
ωE , ω3 = ωI . This gives us:

HI = h̄δcEa
†a+

N∑
j=1

h̄δjeEσ
j
ee +

N∑
j=1

h̄δjiIσ
j
ii +

N∑
j=1

h̄gj

(
σjgea

† + σjega
)

+
N∑
j=1

h̄
χjli
2

(
σjgie

ikli·rj−iδliI t + σjige
−ikli·rj+iδliI t

)
+
η

2

(
aeiδEdt + a†e−iδEdt

)
.

(2.15)

We will use this Hamiltonian to generate a set of equations for the system dynamics. We are
interested in the light emitted by the superradiant laser - its power and spectrum. This re-
quires that we know the time-evolution of the cavity field. In the simplest cavity QED model,
first order mean field theory, we can neglect quantum fluctuations and describe the cavity
field by the expectation value of a: here

〈
a†
〉

= 〈a〉∗ and the photon number expectation
value is 〈n〉 = 〈a〉∗ 〈a〉. The time-evolution of expectation values can generally be determined
using:

〈ȯ〉 =
i

h̄
〈[H, o]〉 −

∑
k

γk
2

〈
oq†kqk + q†kqko− 2q†koqk

〉
. (2.16)

Here the first term represents the coherent dynamics from the Hamiltonian, and the second
term describes dissipative dynamics due to interactions with the environment. The sum gives
one term with a characteristic decay time γk for each decay channel. We will describe the
coherent and dissipative terms in the following sections. Note that an open-source program-
ming package called QuantumCumulants has been developed for Julia, which can be used to
derive these kinds of equations from a Hamiltonian automatically [107, 108].

2.1.3 Coherent time-evolution

With Eq. 2.16 the coherent evolution can be determined using the commutation relations
mentioned earlier. For the cavity field lowering operator we get:

〈ȧ〉coh = iδcE

〈[
a†a, a

]〉
+ i

N∑
j=1

gj

〈
σjge

[
a†, a

]〉
+ i

η

2

〈[
a†, a

]〉
e−iδEdt

= −iδcE 〈a〉 − i
N∑
j=1

gj
〈
σjge
〉
− iη

2
e−iδEdt.

(2.17)

We see this equation is coupled to
〈
σjge
〉

(the coherences of all the atoms), so we determine

this next. Treating the atomic operators, we can think of them as two ket-bras and use
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orthogonality for the inner product in the middle: σabσcd = |a〉〈b| |c〉〈d| = σadδbc, where δbc is
the Kronecker delta:〈

σ̇jge
〉
coh

= iδjeE
〈[
σjee, σ

j
ge

]〉
+ igj

〈[
σjega, σ

j
ge

]〉
+ i

χjli
2

〈[(
σjgie

ikli·rj−iδliI t + σjige
−ikli·rj+iδliI t

)
, σjge

]〉
= −iδjeE

〈
σjge
〉

+ igj
〈
(σjee − σjgg)a

〉
− i

χjli
2

〈
σjie

〉
e−ikli·rj+iδliI t.

(2.18)

We find that the time evolution of the atomic coherence on the lasing transition depends on〈(
σjee − σjgg

)
a
〉

and
〈
σjie

〉
. The first of these is a second order correlation, which you could

in principle also derive an equation of motion for. This procedure would often lead to third
order correlations with three operators, and could quickly get out of hand. One approach to
deal with third order correlations is to reduce them to lower orders with the approximation
[107, p. 4] [109]:

〈abc〉 ≈ 〈ab〉 〈c〉+ 〈ac〉 〈b〉+ 〈a〉 〈bc〉 − 2 〈a〉 〈b〉 〈c〉 . (2.19)

This assumes that at least one of the operators a, b and c is statistically independent of the
others. Numerical models have been used extensively for studying superradiant lasers using
this approach [64, 79, 110] to obtain a closed set of equations in second order mean field theory
(MFT), meaning expectation values with products of no more than two operators. However
we proceed in first order MFT by making the approximation 〈ab〉 ≈ 〈a〉 〈b〉. As a result,
quantum noise is neglected, unlike in second order MFT. However the number of equations
in first order scales linearly with the number of atoms, rather than the square. As a result the
model can be used to treat more atoms individually and include many other effects affecting
each atom differently, which would be too computationally heavy to include in second order
MFT, which often requires treating a small number of atom clusters where each atom in a
cluster is assumed to be in identical states. With this factorization of expectation values we
obtain:

〈
σ̇jge
〉
coh

= −iδjeE
〈
σjge
〉

+ igj
〈
(σjee

〉
−
〈
σjgg
〉
) 〈a〉 − i

χjli
2

〈
σjie

〉
e−ikli·rj+iδliI t, (2.20)

and we are left with the task of finding equations for σjee, σ
j
gg and σjie:〈

σ̇jee
〉
coh

= igj

〈[
σjgea

† + σjega, σ
j
ee

]〉
= igj

(〈
σjge
〉 〈
a†
〉
−
〈
σjeg
〉
〈a〉
)

= 2igj
[
Im〈σjge〉Re〈a〉 − Re〈σjge〉 Im〈a〉

]〈
σ̇jgg
〉
coh

= −2igj
[
Im〈σjge〉Re〈a〉 − Re〈σjge〉 Im〈a〉

]
+ i

χjli
2

〈[
σjgie

iklirj−iδliI t + σjige
−iklirj+iδliI t, σjgg

]〉
= −2igj

[
Im〈σjge〉Re〈a〉 − Re〈σjge〉 Im〈a〉

]
− i

χjli
2

(〈
σjig

〉∗
eiklirj−iδliI t −

〈
σjig

〉
e−iklirj+iδliI t

)
〈
σ̇jie

〉
coh

= iδjeE

〈[
σjee, σ

j
ie

]〉
+ iδjiI

〈[
σjii, σ

j
ie

]〉
+ igj

〈[
σjgea

† + σjega, σ
j
ie

]〉
+ i

χjli
2

〈[
σjgie

iklirj−iδliI t + σjige
−iklirj+iδliI t, σjie

]〉
= i
(
δjiI − δ

j
eE

)〈
σjie

〉
− igj

〈
σjig

〉
〈a〉+ i

χjli
2

〈
σjge
〉
eiklirj−iδliI t.

(2.21)
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Here we find that we also need to determine the equation for σjig, which in turn depends on

σjii: 〈
σ̇jig

〉
coh

= iδjiI

〈[
σjii, σ

j
ig

]〉
+ igj

〈[
σjgea

† + σjega, σ
j
ig

]〉
+ i

χjli
2

〈[
σjgi, σ

j
ig

]〉
eiklirj−iδliI t

= iδjiI

〈
σjig

〉
coh
− igj

〈
σjie

〉
〈a〉∗ − i

χjli
2

(〈
σjii

〉
−
〈
σjgg
〉)
eiklirj−iδliI t〈

σ̇jii

〉
coh

= i
χjli
2

〈[
σjgie

iklirj−iδliI t + σjige
−iklirj+iδliI t, σjii

]〉
= i

χjli
2

(〈
σjig

〉∗
eiklirj−iδliI t −

〈
σjig

〉
e−iklirj+iδliI t

)
.

(2.22)
Now the coherent set of equations is closed and can be solved by numerically integrating them

over time. One of the populations could also be eliminated by using
〈
σjgg
〉

+
〈
σjee
〉

+
〈
σjii

〉
= 1.

2.1.4 Dissipation

To describe dissipation we need to evaluate the last term in Eq. 2.16 for relevant operators o
and using the relevant dissipation rates in place of γk for each dissipation source. We have an
equation for the coherent evolution of 〈a〉, representing the cavity field, so we can determine
the dissipation term for o = a due to the coupling of the cavity mode to the environment
with the rate κ. In this case the relevant raising and lowering operators to use are q† = a†

and q = a:

〈ȧ〉dis = −κ
2

〈
aa†a+ a†aa− 2a†aa

〉
= −κ

2

〈[
a, a†

]
a
〉

= −κ
2
〈a〉 . (2.23)

Next we can consider spontaneous emission into the environment, where state |e〉 decays to
|g〉 with the decay rate γeg. The relevant raising and lowering operators here are q† = σjeg

and q = σjge. We will determine the effect on both the excited state population,
〈
σjee
〉

, and

the coherence,
〈
σjge
〉

:

〈
σ̇jee
〉
dis

= −γeg
2

〈
σjeeσ

j
egσ

j
ge + σjegσ

j
geσ

j
ee − 2σjegσ

j
eeσ

j
ge

〉
= −γeg

〈
σjee
〉

〈
σ̇jge
〉
dis

= −γeg
2

〈
σjge
〉
.

(2.24)

The same procedure could be used to include spontaneous decays from |i〉 to |g〉 and |e〉,
which would lead to similar equations for

〈
σ̇jii

〉
and

〈
σ̇jgi

〉
. Lindblad terms can also be used

to describe incoherent pumping as inverse spontaneous emission. In that case one just needs
to switch the atomic operators for q and q†, and replace γ with the relevant pumping rate.

We can also consider how the coherence σie is affected by the three decay channels:〈
σ̇jie

〉
dis

=− γie
2

〈
σjieσ

j
ieσ

j
ei + σjieσ

j
eiσ

j
ie − 2σjieσ

j
ieσ

j
ei

〉
− γig

2

〈
σjieσ

j
igσ

j
gi + σjigσ

j
giσ

j
ie − 2σjigσ

j
ieσ

j
gi

〉
− γeg

2

〈
σjieσ

j
egσ

j
ge + σjegσ

j
geσ

j
ie − 2σjegσ

j
ieσ

j
ge

〉
=
γie + γig + γeg

2

〈
σjie

〉
.

(2.25)

Here we see that the coherence is damped by all dissipation sources from either of the lev-
els. Finally we could repeat the previous calculations for the ground state, or simply use
conservation of population, which leads to〈

σ̇jgg
〉
dis

= γeg
〈
σjee
〉

+ γig

〈
σjii

〉
. (2.26)
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Compiling the completed set of equations derived from Eq. 2.15 using Eq. 2.16 while dropping
the expectation value brackets, we get:

ȧ = −iδcEa− i
N∑
j=1

gjσ
j
ge − i

η

2
e−iδEdt − κ

2
a

σ̇jii = i
χjli
2

(
σj∗ig e

iklirj−iδliI t − σjige
−iklirj+iδliI t

)
− γigσjii

σ̇jee = 2igj
[
Im
(
σjge
)

Re (a)− Re
(
σjge
)

Im (a)
]
− γegσjee + γieσ

j
ii

σ̇jgg = −σ̇jii − σ̇
j
ee

σ̇jig = iδjiIσ
j
ig − igjσ

j
iea
∗ − i

χjli
2

(
σjii − σ

j
gg

)
eiklirj−iδliI t − γig + γie

2
σjig

σ̇jge = −iδjeEσ
j
ge + igj(σ

j
ee − σjgg)a− i

χjli
2
σjiee

−iklirj+iδliI t − γeg
2
σjeg

σ̇jie = i
(
δjiI − δ

j
eE

)
σjie − igjσ

j
iga+ i

χjli
2
σjgee

iklirj−iδliI t − γig + γie + γeg
2

σjie.

(2.27)

2.2 The stochastic master equation

So far we have described how to determine the evolution of expectation values of operators.

These expectation values represent the mean evolution, e.g.
〈
σjee
〉

the mean evolution of

the excited state of an atom, and
〈
a†a
〉

the mean evolution of the cavity photon population.
But in many cases there are fluctuations which can be important to consider. For example
the linewidth of a laser depends on quantum fluctuations which vanish when considering
the expectation values in first order MFT. Another example is the spontaneous decay of
atoms. In the treatment in Sec. 2.1 the spontaneous decay occurs gradually over time,
but if an atom moves in an optical potential that depends on the atomic state, discrete
changes in the atom’s state due to decays could have a large impact on its motion. Here
we will present the stochastic master equation (SME) and density matrix framework, which
is useful for describing stochastic dynamics. First we will link the density matrix to the
previous approach of deriving expectation values. If we consider the Hamiltonian 2.15 and
again assume we can treat the atomic states separately from the cavity field and each other,
we can describe each atom fully by its internal state. We can choose a basis with bras:

〈e| =
(

0 0 1
)

, 〈g| =
(

0 1 0
)

, 〈i| =
(

1 0 0
)

. In this basis we can write the density

matrix of an atom’s state as:

ρj = |ψj〉〈ψj | =

ρ
j
ii ρjig ρjie
ρjgi ρjgg ρjge

ρjei ρjeg ρjee

 , (2.28)

the transition operators σxy = |x〉〈y| then become matrices, such as:

σjge = |g〉〈e| =
(

0 1 0
)0

0

1

 =

0 0 0

0 0 1

0 0 0

 , (2.29)
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and the Hamiltonian 2.15 can be written as:

HI = h̄δcEa
†a+

N∑
j=1

h̄δjeE

0 0 0

0 1 0

0 0 0


j

+

N∑
j=1

h̄δjiI

1 0 0

0 0 0

0 0 0


j

+
η

2

(
aeiδEdt + a†e−iδEdt

)

+
N∑
j=1

h̄gj


0 0 0

0 0 1

0 0 0


j

a† +

0 0 0

0 0 0

0 1 0


j

a



+
N∑
j=1

h̄
χjli
2


0 0 0

1 0 0

0 0 0


j

eikli·rj−iδliI t +

0 1 0

0 0 0

0 0 0


j

e−ikli·rj+iδliI t

 .
(2.30)

The equations 2.27 can be derived again using Eq. 2.16 and the relation 〈o〉 = tr(ρo). With

this relation we see e.g. the populations are simply related by
〈
σjii

〉
= ρjii,

〈
σjgg
〉

= ρjgg and〈
σjee
〉

= ρjee, and for the coherences the indices are flipped in the relations, e.g.
〈
σjge
〉

= ρjeg.

Also note that above we assume the cavity field is still represented by the expectation value
〈a〉. Since the cavity can be populated by any number of photons, and these populations
are linked to emission/absorption by the atoms, which ultimately become correlated, using a
density matrix description of the cavity states becomes significantly more complicated. This
may be described in a similar way to the dressed states of the Jaynes-Cummings model, and
the correlations between atoms have been described by Dicke states [36, 111], which have also
been used to illustrate the behavior of atoms in a superradiant laser in 2nd order MFT [64].

With the density matrix formalism we can now use the SME for the atomic states. Physically
it is equivalent to continually measuring the atomic state by measuring the spontaneously
emitted photons - once the photons are detected, the atomic state collapses. In practice you
do not have to measure all the spontaneously emitted photons from the atoms, they could
also simply be absorbed by some component in the vacuum chamber around a superradiant
laser, breaking any entanglement and projecting the atomic state - then the evolution of
the SME represents that we know of these events. The important part is the effect of these
projections due to spontaneous emission and coupling to an environment. The SME can be
written [104, p. 818]:

dρ = − i
h̄

[H, ρ] dt−
∑
k

γk
2

(
q†kqkρ+ ρq†kqk − 2

〈
q†kqk

〉
ρ
)
dt+

 qkρq
†
k〈

q†kqk

〉 − ρ
 dNk. (2.31)

Here the dt factor is not on the left side as usual, but is moved to the right because some
of the right side terms do not scale with dt - instead they represent discrete quantum jumps
that occur when dNk = 1 (for decay channel k). Compared to the regular master equation,
the first term is the same - the unitary evolution due to the Hamiltonian. The second term
looks similar to the Lindblad superoperator, but it is a bit different - if you detect all the
spontaneously emitted photons, you also gain information when no photons are detected.
As a result the state evolves differently when no photons are detected, compared to the
Lindbladian evolution. The final terms representing quantum jumps result in abrupt changes
of the state - the left term in the parenthesis yields the final state, and we see the right term
that contains ρ cancels out the initial value of ρ when dN = 1. It is the mathematical way
of writing ”if a decay happens from |x〉 → |y〉 (so dNxy = 1), make population ρjyy = 1 and
all other populations and coherences 0”. dNk must be chosen randomly (being either 0 or
1) each timestep based on the probability of the quantum jump occuring within the time
interval dt. For one atom spontaneously decaying e.g. from state |e〉 to |g〉 this probability
of dN j

eg = 1 is ρjeeγegdt.
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The Hamiltonian part in Eq. 2.30 leads to the same coherent evolution as the atomic equa-
tions in Sec. 2.1.3 when looking at the resulting elements of dρ according to Eq. 2.31. For
the second and third terms of Eq. 2.31 we get the additional terms:

dρjii,SME =
[
− (γig + γie)

(
1− ρjii

)
+ γegρ

j
ee

]
ρjiidt− ρ

j
ii

(
dN j

ig + dN j
ie + dN j

eg

)
(2.32)

dρjee,SME =
[
(γig + γie) ρ

j
ii − γeg

(
1− ρjee

)]
ρjeedt− ρjee

(
dN j

ig + dN j
eg

)
+
(
1− ρjee

)
dN j

ie

(2.33)

dρjgg,SME =
[
(γig + γie) ρ

j
ii + γegρ

j
ee

]
ρjggdt+

(
1− ρjgg

) (
dN j

ig + dN j
eg

)
− ρjggdN

j
ie (2.34)

dρjig,SME =

[
−γig + γie

2

(
1− 2ρjii

)
+ γegρ

j
ee

]
ρjigdt− ρ

j
ig

(
dN j

ig + dN j
ie + dN j

eg

)
(2.35)

dρjge,SME =
[
(γig + γie) ρ

j
ii −

γeg
2

(
1− 2ρjee

)]
ρjgedt− ρjge

(
dN j

ig + dN j
ie + dN j

eg

)
(2.36)

dρjie,SME =

[
−γig + γie

2

(
1− 2ρjii

)
− γeg

2

(
1− 2ρjee

)]
ρjiedt− ρ

j
ie

(
dN j

ig + dN j
ie + dN j

eg

)
.

(2.37)

In the square brackets we see the general forms that arise due to the second term in Eq.
2.31, depending on how the states and coherences are involved in the three decay routes from
|i〉 → |e〉, |i〉 → |g〉 or |e〉 → |g〉. The rightmost term in Eq. 2.31 also gives rise to three terms
for each density matrix element in Eq. 2.32.

In Fig. 2.3 the effect of the SME quantum jumps is illustrated in a slightly different three-level
system. Here an intermediate state |i〉 (orange) couples to the ground state |g〉 (black) and
higher excited state |x〉 (green). The system starts in the ground state, but then begins Rabi
flopping between the different states due to two semiclassical pumping lasers on resonance
with the transitions, with Rabi frequencies χgi = 5γig and χix = 10γxi = 5γig. The SME
dynamics are highlighted and compared to the brightly-colored dynamics of optical Bloch
equations. In panel (a) the dynamics for one atom is shown with two spontaneous decay
events interrupting the Rabi flops. The usual decaying Rabi flops are distorted in shape
due to the Lindblad-like term in the SME. In panel (b) we see the average of 1000 atom’s
states follow the OBE very closely with only small fluctuations due to the random, individual
quantum jumps.
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Figure 2.3: Dynamics of a 3 level ladder system evolving under the optical Bloch equa-
tions/first order MFT (bright curves) vs the SME (dark curves), for (a) one atom and (b)
averaging over 1000 atoms. In (a) we see how the individual atom’s dynamics are changed
by the SME and the effect of quantum jumps, and in (b) how these jumps, for many atoms,
average out to the OBE dynamics.

2.3 Coherent pumping vs rate equations

Modeling coherent interactions with even semiclassical laser beams can be computationally
demanding, typically if the Rabi frequency is very high, such that a low timestep is required
for numerical stability. These high Rabi frequencies can be encountered for pumping lasers
driving broad transitions with MHz linewidths. An example could be a superradiant laser
operating on the 1S0-

3P1 mJ=0 transition, where atoms are repumped incoherently from 1S0

to first 3P1 mJ=-1 and subsequently 3S1 (with laser wavelengths 689 and 688 nm). From
3S1 the atoms may decay to 3P1 m0=1 as desired, but could also decay to several other
Zeeman sublevels of 3P2 and 3P0, which require additional lasers (with wavelengths 707 and
679 nm) to bring the atoms back to 3S1 so that they can end up in 3P1 mJ=0. These 679
and 707 nm lasers operate on MHz wide transitions and their impact on the lasing transition
coherence would be negligible due to the rapid decay rate of 3S1, which links them to the
lasing transition via the 688 and 689 nm lasers. In this case the details of atomic coherence
are not relevant to keep track of for these levels, and it is an advantage to approximate the
pumping between such levels using rate equations. In some cases when the details of pumping
are not of interest, several pumping levels can even be bunched together or even eliminated
to yield a two level model characterized by an effective incoherent pumping rate [68].
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Here we will consider a simple two-level system with states |g〉 and |e〉, and connect the rate
equation approach to the coherent dynamics described by the optical Bloch equations (OBE),
which can be written [104, p. 178]:

ρ̇ee = χ Im (ρge)− γρee
ρ̇gg = −χ Im (ρge) + γρee

ρ̇ge = − (γT + iδ) ρge − i
χ

2
(ρee − ρgg) .

(2.38)

Here χ is the Rabi-frequency, δ is the laser detuning, γ is the decay rate from |e〉 to |g〉 and
γT is the transverse decay rate. γT = γ/2 when spontaneous emission is the only source of
decoherence, but it can be larger, for example due to decoherence introduced by pumping
lasers to other states. If γT � γ then ρge decays much more quickly than the populations
and can be adiabatically eliminated, giving [104, p. 191]:

ρ̇ee = − χ2

2γT (1 + δ2/γ2T )
(ρee − ρgg)− γρee. (2.39)

This is equivalent to the population rate equations from laser physics (e.g. [112, p. 150]),
which are generally written in terms of a single parameter, the pumping rate w:

ρ̇ee = −w(ρee − ρgg)− γρee. (2.40)

Comparing these, the pumping rate w can be connected to the Rabi frequency, transverse
decay rate and laser detuning, and in turn to laser intensities in a setup. The magnitude of
the Rabi frequency, in case of a linearly polarized field aligned with the atomic dipole along
the z-axis, is given by [104, p. 154]:

χ =

√
2I

h̄2ε0c
〈g|dz|e〉 . (2.41)

In this situation the matrix element is related to the decay rate from |e〉 to |g〉 by
γ = ω3| 〈g|dz|e〉|2/3πε0h̄c3 [104, p. 154], giving:

χ =

√
6πc2γI

h̄ω3
. (2.42)

This depends on γ (which can be looked up for a transition) and the laser intensity I at the
atom. For a laser power P and Gaussian beam shape with waists Wx and Wy illuminating
an atom, the Rabi frequency at the center of the beam profile is then:

χ0 =

√
6c2γP

h̄ω3WxWy
. (2.43)

In Fig. 2.4 the dynamics according to the OBE (Eq. 2.38) and rate equations (Eq. 2.39
and ρgg = 1 − ρee) are shown for different combinations of χ, δ and γT . The rate equations
clearly deviate during coherent oscillations, but generally agree well in steady state as well
as dynamically for γT � γ.
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Figure 2.4: Dynamics of the excited population in a two level system according to optical Bloch
equations (black curves) and rate equations (red dashed curves) for different combinations of
parameters. The rate equations do not capture the coherent oscillations and only agree well
for γT � γ, but in steady state the populations generally agree.

2.4 Transitions between Zeeman sublevels

A two-level model as in Sec. 2.3 can quickly become inadequate for a superradiant laser that
relies on pumping between many different levels. The method in Sec. 2.1 can be used to
derive equations for transitions between any number of Zeeman sublevels, so in this section we
will only focus on how the coupling to electromagnetic fields are generally affected (impacting
Rabi frequencies, cavity coupling, pumping and decay rates).

When an atom is in a state with total angular momentum J > 0, a magnetic field B splits
up the energies of the Zeeman sublevels depending on their angular momentum’s projection
along the B-vector, giving the quantum number mJ ∈ {−J,−J + 1, ...,+J}. Photons are
spin 1 particles, so their projected angular momentum along the axis may be p ∈ {−1, 0, 1}.
These three values correspond to driving σ−, π or σ+ transitions of the atom, respectively,
and depends on the photon polarization. For example a linear polarization parallel to B
would give p = 0, but a linear polarization orthogonal to B can be decomposed into two half-
intensity interactions with p = −1 and p = +1, equivalent to two components with circular
polarizations of opposite helicities. The interaction between the atom and photon angular
momenta can be treated using the formalism for coupling angular momenta in quantum me-
chanics, where we can write the lower atom state as |Jg,mg〉, upper state |Je,me〉, and photon
as |1, p〉. These kets enter into the dipole matrix element in electromagnetic interactions as
in Eq. 2.41 for the Rabi frequency, and similarly impact the atom-cavity coupling g and
pumping rates w. The matrix element can be rewritten using the Wigner-Eckart theorem
and solved as a separate problem. This yields a Clebsch-Gordan coefficient (see e.g. the
online tool [113]), or equivalently, a 3j symbol (see e.g. [114, p. 9] [115] [104, p. 305]):

χ = χ0 〈Jg,mg|Je, 1,me, p〉

= χ0(−1)Jg−1+me
√

2Je + 1

(
Jg 1 Je

mg p −me

)
.

(2.44)

For the strontium transitions of interest, the Clebsch-Gordan coefficients cg are shown in Fig.
2.5. Atom decays are affected via coupling to the vacuum field, so the branching ratios of
decays are also given by c2g. For e.g. 3S1 we can look up the decay rate γ/2π = 7.2 MHz
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to the 3P2 manifold (as indicated in Fig. 1.1) and see in Fig. 2.5 that for the 3S1 mJ=-1
sublevel, the decay rates to mJ=-2, -1 and 0 of 3P2 are 6γ/10, 3γ/10 and γ/10, respectively.

mJ: -2 -1 0 1 2
3S1

3P2

3P1

3P0

1S0

6

10

6

10

1

10

4

10
−

1

10

3

10

3

10
−

1

2
−

1

2
−

1

2

1

2
−

1

2

1

2

1 1 1

1 1 1

3

10

3

10
−

Figure 2.5: Clebsch-Gordan coefficients, 〈Jg,mg|Je, 1,me, p〉, of transitions between Zeeman
levels. |Jg,mg〉 refers to the lower level.

If the laser k-vector is not orthogonal to the B-field, for example near the center of the
anti-Helmholtz field used in a magneto-optical trap, the strengths of σ and π transitions will
also change. This can generally be determined in a spherical basis as done in [116]. A more
specific example for the effect on a linearly polarized pump laser is given in [103, p. 27] and
in Sec. 3.2.1 the effect on beam interactions in a magneto-optical trap is considered.

2.5 Heating

Heating of atoms in a superradiant laser can arise from interactions with the cavity field,
pumping lasers and spontaneous emission. This can happen due to photon recoils, but in the
presence of an optical potential (for example a dipole guide/optical lattice used to confine
atoms), changes in state can also change the potential energy and cause additional heating.

The motion of atoms due to the interaction with e.g. the cavity field can be treated quantum
mechanically by including a kinetic energy term in the system Hamiltonian, Eq. 2.1. Both
the quantum mechanical and semiclassical treatment of light forces on atoms is described
extensively in e.g. [117]. The semiclassical approach is generally accurate when the de
Broglie wavelength of atoms is significantly less than the light field wavelength [117, p. 6],
which we can also write as a temperature requirement:

λdB =
h

p
� λ =⇒ v � h

mλ
, T =

mv2rms
3kB

� h2

3kBmλ2
. (2.45)

For 88Sr h/m = 4.55 · 10−9 m2/s, so for λ = 689 nm, the condition is v � 6.6 · 10−3 m/s.
In terms of the temperature, the requirement is T � 150 nK, with a ”stronger” � due to
the v2-dependency. In this thesis we will generally consider atoms from the µK to the mK
regime, and the recoils we will treat are so numerous that the semiclassical condition will
generally be fulfilled. However we will still consider the effect of discrete recoils, which cause
momentum diffusion.
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Discrete recoils are easy to treat in the SME framework in Sec. 2.2, since the changes in
state are already discrete, and a momentum kick can simply be associated with the quantum
jumps, along the laser wavevector for laser recoils or in a random direction for spontaneous
emission. However the treatment in Sec. 2.1 describes the mean evolution of operators such
as the atomic states. Forces would be proportional to the changes in these states associated
with an interaction, but in a superradiant laser we would also try to balance the forces of
e.g. repumping lasers, such that a net force will not push atoms out of the cavity. Here
fluctuations due to individual recoils will play an important role.

We know that if
〈
σjee
〉

changes from 0 to 1, an atom has changed state to |e〉, and if this occurs

gradually,
∫ T
0

〈
σ̇jee
〉
dt = 1 implies the state change occured from time 0 to T . However, if

we consider σ̇jee in Eq. 2.27 (again dropping the angle brackets):

σ̇jee = 2igj
[
Im
(
σjge
)

Re (a)− Re
(
σjge
)

Im (a)
]
− γegσjee + γieσ

j
ii. (2.46)

In 1st order MFT, the atom may gradually emit light into the cavity and environment, im-

plying 2igj

[
Im
(
σjge
)

Re (a)− Re
(
σjge
)

Im (a)
]
< 0 and −γegσjee < 0, and simultaneously it

may be gradually repumped, γieσ
j
ii > 0. These interactions may sum up to zero such that the

atomic state, on average, is in steady state. Therefore to track the change in state due to an

interaction, it must be integrated separately:
∫ T
0 2igj

[
Im
(
σjge
)

Re (a)− Re
(
σjge
)

Im (a)
]
dt

gives the total change in state |e〉 due to interaction with the cavity field for the j′th atom,
and equivalently for the other terms. Keeping track of integrals like these enables us to set
conditions for recoils in a numerical simulation: if

∫ T
0 γieσ

j
iidt crosses an inter value at time

T , we can apply a recoil corresponding to a spontaneous decay from |i〉 to |e〉 (numerically:
a kick with momentum h̄kphoton in a random direction). This can be done separately for all
the interactions, but also allows for some approximations. For example if an atom is pumped
from |g〉 to |i〉 in a repumping scheme that involves 10 different intermediate levels, all those

recoils can be treated simultaneously when
∫ T
0 γieσ

j
iidt crosses an integer value, assuming that

the individual recoils do not significantly affect the dynamics (λdB �
∑10

k=1 λk).

When an optical potential is present and an atom is pumped between different levels, treating
the atomic states with the average values from mean field theory can be inaccurate: if the
atomic states are in steady state due to different interactions canceling out on average, the
potential energy of an atom that is evaluated based on its state would also remain constant at
a given position. In reality, the atom would be transferred between different states and may
pick up kinetic energy while it is cycled between the states with different potential energy.
This effect can be accounted for by treating the transitions with quantum jumps as in the
SME approach.

2.6 Cavity field phase and spectral information

The main advantage of superradiant lasers lies in their reduced sensitivity to cavity mirror
fluctuations. This results both in a potentially narrow laser linewidth, but also in a low
amount of cavity pulling - the lasing frequency that can stay close to the atomic transition
even if the cavity is detuned. Quantifying these parameters requires spectral information
from the system, so here we will describe how to extract this information from simulations.

In first order MFT the phase of the electric field of the cavity mode is represented by the
phase of 〈a〉, and the amplitude spectrum of the cavity field can be calculated by Fourier
transforming 〈a(t)〉 over the relevant time interval, and subsequently squared to obtain the
power spectrum. In a numerical simulation this can be done using the fast Fourier transform
(FFT) algorithm which requires just a single command in some programming languages. It
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requires a list of the values of 〈a〉 saved on a time interval characterized by the total duration
T and sampling frequency 1/δta at which 〈a(t)〉 is saved. The highest frequency that one can
hope to gain information about (without aliasing) is then the Nyquist frequency νNy = δta/2,
and the spectral resolution will be Fourier-limited to 1/T .

The advantages of the Fourier transform method is that the data from a simulation can be
post-processed in different ways. Storing 〈a〉 in an array once every 10 or 100 timesteps and
saving the array to a file typically takes an insignificant fraction of the time of a simulation,
but could result in large data files. The data files can then be used to obtain a spectrum from
any part of the time interval, or generate spectrograms. A spectrogram can be generated by
applying a window function to the data (typically a Gaussian characterized by a standard
deviation σW ), where the window weighs the data around a certain time τ which is varied:

a(ω, τ) =
1√
2π

∫ T

0
a(t)e−(τ−t)

2/2σ2
W e−iωtdt. (2.47)

The spectral intensity I(ω, τ) ∝ |a(ω, τ)|2 can then be plotted on a heatmap as function of
the frequency ω and time τ to reveal how the spectrum changes over time. A small window
σW gives better time-resolution but poorer frequency resolution due to the Fourier limit.
In the opposite regime as σW → ∞ one trivially obtains the spectrum over the entire time
interval no matter the value of τ .

2.6.1 Importance of the reference frame

The phase evolution of 〈a〉 is also interesting in itself in terms of physical information, and
can be compared to an experimentally observed phase of a beat signal between a superradiant
laser and a reference laser. Such a beat signal will have oscillations at the frequency difference
between the superradiant laser and reference laser. In many cases the reference laser may also
have an offset from the atomic transition. If the reference laser frequency is different from the
rotating frame frequency (ω1) chosen in Eq. 2.7, the phase of 〈a〉 must first be transformed
to a frame rotating at the same frequency as the reference laser to make a direct comparison.
This can be done by adding δ · t to the unwrapped phase, shifting the reference frame by
an angular frequency δ. ”Unwrapped” here means the phase is defined beyond [0; 2π[ such
that there are no discontinuities in the phase when it ”wraps” from 2π back to 0 or the other
way around. The procedure of wrapping/unwrapping can be done e.g. with a command in
programming languages such as Matlab, or modulo operations.

Shifting the reference frame can also be an advantage before using the Fourier transform
method, as the Fourier transformation will give a symmetric two-sided spectrum around
zero, which corresponds to the reference frame frequency. If there are spectral features both
1 MHz above and below the frame frequency, the frame can be shifted by 2 MHz such that
these can be distinguished in the spectrum after Fourier transforming.

2.6.2 Filter cavities

For simulations of long timescales where one is interested e.g. in a narrow spectrum of a
continuous superradiant laser, a method based on ”filter cavities” can be used which does
not require saving values of 〈a〉. This method also works in second order MFT [64, 79, 110],
where Fourier-transforming 〈a(t)〉 is not a reliable method to extract the spectrum of the
cavity field. In the filter cavity approach, a spectral range of interest must be chosen initially,
e.g. a range of frequencies with span ∆ω around a center frequency ω0 and desired spectral
resolution δω, which could be set e.g. near the Fourier limit based on the simulation time.
Then a term Hfil with Nf = ∆ω/δω filter cavities are added to the Hamiltonian (e.g. Eq.
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2.1):

Hfil =

Nf∑
k=1

hgf

(
a+ a†

)(
fk + f †k

)
. (2.48)

This Hamiltonian and the connection of filter cavities to the intensity spectrum is illustrated
in Fig. 2.6.

gf

ωf

I(ω)

Figure 2.6: Illustration of filter cavities for calculating the spectrum of a superradiant laser.
The filter cavities couple to the science cavity at rates gf and their relative photon populations
yield the intensity spectrum as illustrated in the top left. Figure adapted from [84].

The filter cavities can be thought of as a spectrum analyzer: light from the science cavity
couples to the filter cavities, each with their own resonance frequency ωkf . But since the
filter cavities are only used for calculating the spectrum, we let the coupling between the
science and filter cavities gf → 0, so that back-action on the science cavity field can be
neglected. This also means that the photon populations within the filter cavities will be tiny.
The spectral power distribution is given by the relative photon population as function of the
filter cavity resonance frequency. In this thesis the loss rate of the filter cavities is taken to
be 0, meaning that there is no memory loss and the resulting spectrum will include the full
simulated timespan. By saving the relative photon populations at different time intervals,
the filter cavity method can also be used to generate a particular form of spectrogram where
the window includes all the dynamics up to time τ . In terms of the Heaviside step function,
the window function is then H(τ − 0)H(t − τ). However the amount of data that must
be saved then scales with Nf times the desired time resolution, a disadvantage compared
to the Fourier transform method, which is also not limited in the type of window function.
The simulation will also take longer to run when including filter cavities in the model, but
typically Nf � Natoms and the performance impact is not very significant. On the other
hand no post-processing is required, such as the FFT algorithm for different window sizes,
which can be very time-consuming.

2.6.3 Superradiant laser linewidth

Here we will consider the limitations of 1st order MFT in predicting the the linewidth of su-
perradiant lasers, and the alternatives. One limitation is the neglect of spontaneous emission
into the cavity mode, which occurs at the Purcell rate 4g2/κ. Since these photons are emitted
with random phases they will lead to broadening of the laser linewidth. We can consider the
prospects of modeling this by looking for the cavity photon number in 2nd order MFT, based
on the Hamiltonian 2.15:〈

˙a†a
〉
coh

= i
N∑
j=1

gj

(〈
σjega

〉
−
〈
σjgea

†
〉)

+ i
η

2

(
〈a〉 eiδEdt −

〈
a†
〉
e−iδEdt

)
. (2.49)

If we then look for the equation for e.g. 〈σega〉, we get:〈
˙

σjega
〉
coh

= i (δeE − δcE)
〈
σjega

〉
− igj

[〈
σjee

(
a†a+ 1

)〉
−
〈
σjgg

〈
a†a
〉〉]

− i
χjli
2

〈
σjeia

〉
eikli·rj−iδliI t − iη

2

〈
σjeg
〉
e−iδEdt.

(2.50)
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Here we see the atom-cavity interaction term (with gj) includes a term with the excited

population, σjee, that contains a†a + 1, corresponding to an excited atom emitting into the
cavity via stimulated emission (scaling with

〈
a†a
〉
) or spontaneous emission (the extra +1).

The impact of spontaneous emission can be found in the filter cavity framework looking for

e.g. the filter cavity populations
〈
f †kfk

〉
which eventually couples to

〈
σjega

〉
via equations

involving the cavity field. The equations here also do not yet involve atom-atom correlations

(like
〈
σigeσ

j
eg

〉
) so the number of equations does not necessarily scale with N2 if they can

be closed without atom-atom correlations (these can of course also have an impact on the
spectrum). However including this in the model has been considered outside the scope of the
thesis.

The linewidth from pulsed and quasi-continuous lasing will ultimately be Fourier-limited by
the pulse duration, if nothing else broadens the linewidth further. Fully continuous superra-
diant lasers are not limited in this way, making them of greater metrological interest. Using
2nd order theory in [72], ∆ω = Cγ was found as an estimate for the minimum linewidth
of a continuous superradiant laser characterized by incoherent repumping at a rate w. Here
C = 4g20/κγ is the cooperativity parameter, and this ∆ω is exactly the Purcell rate of the
system. It was found to be a good estimate for pumping rates within 1/T2 < w < NCγ. 1/T2
is an effective relaxation rate due to all inhomogenous processes, such as finite temperature,
and the pumping rate must overcome this for atoms to become phase-locked. Near w = NCγ
the pumping rate becomes too high and begins to destroy the coherence, leading to a sharp
increase in linewidth.

An analytical expression for the linewidth in such a system was derived in [62], given by:

∆ω =
CN + 1

2 (CNd0 − 1)

Γ

w + γ

4g20κ

(κ+ Γ)2
, (2.51)

where Γ = γ + w + 1/T2 represents the decoherence rate, CN = 4Ng20/κΓ is a generalized
cooperativity parameter, and d0 = (w−γ)/(w+γ) characterizes the inversion due to pumping
in absence of the cavity. This expression was compared to simulations based on 2nd order
theory in [64], showing good agreement for a broad range of pumping rates down to near
lasing threshold for a system using the 1S0-

3P1 transition, all the way up until the limit
where the coherence is destroyed by pumping. It was also illustrated that further narrowing
could occur deep within the superradiant lasing regime for sufficiently high atom numbers
and appropriate pumping rates, giving linewidths potentially orders of magnitude below the
Purcell rate. This regime is also described by Eq. 2.51.

In some proposals for continuous superradiance the atoms are pumped prior to entering the
cavity instead of being continuously pumped within the cavity. Such a pumping scheme does
e.g. not introduce decoherence on the lasing transition of atoms within the cavity, so Eq.
2.51 is not directly applicable to these systems. The Purcell rate still offers an estimate of
the linewidth in this regime.

In addition to estimates of the linewidth, lower limits on the linewidth have also been derived,
such as a generalized version of the Schawlow-Townes limit that applies outside the good-
cavity regime. This approach has been applied to a thermal atomic beam that is pumped to
the excited lasing state prior to entering the cavity [85]:

∆ωST =
κ

4πn

ρee
ρee − ρgg

(
1

1 + (κ/ΓG)

)2

. (2.52)

Here n is the cavity photon number, which can be found by numerical simulations or analytical
expressions in sufficiently simple systems (as also given in [85]). Similarly the populations ρee
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and ρgg can be found using simulations, but for efficient pumping giving a significant inversion,
the fraction is of order unity. ΓG is the gain bandwidth, and the equation was originally
derived in a regime without inhomogenous broadening. The impact of inhomogenous effects
was investigated in [118], showing that the total gain bandwidth, including both homogenous
and inhomogenous mechanisms, is a good approximation for ΓG. The equation is often
expressed in terms of the cavity output power, Pout = h̄ωκn.

2.6.4 Instantaneous frequency and transfer functions

Cavity pulling is often defined in a stationary regime, where a pulling coefficient can be
defined simply as cpull = δL/δcE , with δL being the shift in lasing frequency from the atomic
transition, and δcE being the cavity detuning relative to the transition. However one of
the main motivations for building superradiant lasers is that cavity mirrors tend to not be
stationary, so it is also important to quantify how superradiant lasers respond to fluctuations
such as changes in cavity detuning. This can be described with a transfer function for the
frequency response, using linear response theory. The cavity pulling coefficient is associated
with the response at the lowest frequencies. Linear response theory has been applied to
superradiant lasers in [63].

In 1st order MFT we can define the instantaneous frequency as ν(t) = d 〈φ(t)〉 /2πdt from the
unwrapped phase 〈φ(t)〉 of 〈a(t)〉. To extract the frequency response transfer function, one
method in simulations is to subject the superradiant laser (once it has reached steady-state
behavior) to a sudden step in cavity detuning (at t = tJ). This gives us the step response of
the instantaneous frequency, ν(t) for t > tJ . From this we can obtain the impulse response,
dν(t)/dt, and the frequency response transfer function as the Fourier transform of dν(t)/dt.
The transfer function can be normalized by the jump size in cavity detuning, in which case
the transfer function of a system will typically be identical for different jump sizes, if the
jumps are not too big. The same procedure can also be used to extract the phase and power
transfer functions, with 〈φ(t)〉 or Pout(t) in place of ν(t).

2.7 Atom group approximation and performance considera-
tions

If the number of atoms is very large and takes too long to simulate even in 1st order MFT,
an atom group/clustering approximation can be used. This works by representing many
atoms (e.g. Npg=100) as a single unit, sharing position, velocity and state, and the σjxy
operators then represent atom group j instead of the j’th atom in e.g. Eq. 2.6. This reduces
the number of terms in the sum, while giving a factor Npg at each atom operator, if their
normalization is to be preserved. The atom group approximation generally leads to a quicker

buildup of a macroscopic dipole from a random configuration because all the coherences
〈
σjge
〉

within a group are identical and add up, while they would (under randomizing conditions)
tend to cancel each other out to a degree. As a result atom groups can result in biases
leading to quicker buildup of superradiant pulses, which was investigated in [103, p. 34].
Since fluctuations in atom number scale with 1/

√
N relative to the total atom number, phase

fluctuations etc. originating from the atoms will also be larger when using the approximation.
However mean values of e.g. emitted power can still be accurately predicted while using the
approximation, especially in steady state where a macroscopic coherence has already been
established.

Optimizing the performance of simulations is crucial to limit the need for such approxi-
mations. In high-level programming languages the most important factor is to vectorize the
operations involving atoms, as loops tend to be very slow. Running simulations where atomic
variables are stored in large vectors that are multiplied can be sped up further using a GPU
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instead of CPU when the vectors are sufficiently large. A CPU typically has a few cores (on
the order of 10), meaning it can do 10 simultaneous operations at the clock frequency (on the
order of a few GHz) under optimal conditions, and reads and stores the vectors in RAM. On
the other hand a GPU has many more cores (e.g. thousands) and a clock frequency typically
lower, but similar, to a CPU. It also has its own memory, but reading to/from the GPU is
typically slower than RAM, which makes the CPU faster for small vector sizes. The GPU
architecture with many cores was made to process pixel values in parallel but is equally useful
for parallel calculations of the elements in large vectors. In Fig. 2.7 the benefit of using a
GPU for numerical simulations is illustrated, and how it depends on the number of particles
(atoms or atom groups). The GPU used here is an nVidia GTX 1080 Ti, while the CPU
is an AMD Ryzen 2700X. The example is based on the model of pulsed superradiance in a
mK atom cloud presented in Chapter 4, but the over-all scaling is similar for other models
(with their regimes in atom number highlighted). The atom group approximation will only
be used generally for the hot atomic beam system (typically with 100 atoms/group) and in
a few other cases where it is stated. Using the GPU is an advantage for > 105 particles.
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Figure 2.7: Comparison of performance when storing and calculating the atomic states on
GPU vs CPU and RAM. The data is from simulations of superradiant pulses in a mK atom
cloud, showing the calculation time of a timestep when the atoms interact only with the cavity
mode, as well as when the pump pulse is also on, which requires more calculations. Curves
show a moving mean. The regimes of different types of simulations in the thesis are highlighted
in terms of the number of particles if no atomic grouping is used.
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Finally, we can consider one approach to a concrete numerical implementation, beyond the
trivial task of storing data at appropriate time intervals with the desired physical quantities
to be saved in files. Fig. 2.8 shows an approach to keeping track of a simulation (the cold
beam model in Chapter 8) by live-plotting different relevant quantities and overviews. In
the upper left, different parameters from the simulation are listed for reference, and in the
lower left, atoms are color-coded by their state. The panels on the right show the cavity field
dynamics (upper center), intensity spectrum from filter cavity calculations (upper right),
spatial distribution of populations (lower center) and temperature (lower right). Periodically
plotting and saving these enables monitoring how the system evolves over time. It is not viable
to do every timestep, as it takes a lot of performance, but skipping every e.g. 1000 timesteps
allows the monitoring to have an insignificant impact on performance. Generally, the more
parameters that are monitored, the easier it is to understand the dynamics intuitively, spot
problems or unphysical behavior and to debug the code.

Figure 2.8: Example of live plotting for the cold beam simulations in Chap. 8. The different
aspects of the dynamics are monitored in the different panels.
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Atom cloud machine

for superradiant laser pulses

This chapter describes the atom cloud machine at UCPH which is used for investigating
superradiant laser pulses. Investigations of the pulses are presented in later chapters. Here
we focus on the components of the machine and related physics, and the parts that were
upgraded during the work of this thesis. This was done in collaboration with several people
(see Acknowledgements). The core part of the machine is illustrated in Fig. 3.1.

Oven

Zeeman slower

Science
chamber

Sr
Cloud

Atom
beam

Science
cavity

MOT beams

Zeeman
slower
beam

Pump pulse

Repumping
beams

Figure 3.1: The core part of the strontium cloud machine. The inside is under vacuum.
When the oven is heated up, an atomic beam forms, providing a source for trapping an atom
cloud within the science chamber. Additional laser beams can be used to pump the atoms and
enable us to investigate superradiant emission into the mode of the science cavity.

The first part of the machine is an oven containing strontium. The strontium is heated to
typically 530 ◦C, yielding a beam of atoms from the oven nozzle. The atoms of the beam
then pass through a Zeeman slower, which relies on a laser beam and the magnetic field of
a solenoid. The magnetic field of the coil splits up 1P1 into mJ = {−1, 0, 1}, and the laser
beam is circularly polarized and red-detuned 440 MHz from the unshifted resonance. The
particular variation in the solenoid windings causes the Zeeman shift to change gradually as
the atoms move though it, such that the fastest velocity-class is continually slowed by the
laser beam. The atoms entering the Zeeman slower from the oven move at several hundreds
of m/s and are slowed down to the order of 10 m/s as they enter the science chamber.

Here atoms from the slowed beam are trapped in a magneto-optical trap (MOT). The slow
velocities are required to be within the capture range of the MOT - without the Zeeman
slower, only a tiny fraction of the thermal atoms from the oven would be slow enough to
be captured by the MOT alone (see e.g. examples of the velocity distributions in a thermal
beam in Fig. 7.1).

35
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The MOT utilizes the same principle as the Zeeman-slower, but in three dimensions to trap
atoms in a cloud. The MOT initially uses 461 nm beams, operating on the 1S0-

1P1 transition
(the ”blue MOT”). As part of the work of this thesis, the machine was upgraded to enable
2nd stage cooling - using 689 nm beams after the blue MOT stage to trap and further cool
atoms in a red MOT cloud. Once a blue or red MOT cloud has formed, a pump pulse can
be used to excite the atoms from 1S0 to 3P1, and the excited atoms may subsequently emit
a superradiant pulse into the cavity mode. Since the science cavity mirrors are not perfectly
reflecting, light from the pulse will eventually couple out of the cavity, where the pulses can
be investigated. The parameters of the science cavity are given in Table 3.1.

Atom-cavity coupling g0/2π 813.5 Hz

Finesse F 1260

Free spectral range FSR 781 MHz

Length L 192 mm [119, p. 118]

Linewidth (FWHM) κ/2π 620.3±0.4 kHz [103, p. 63] ∗

Mirror radius of curvature 9 m [119, p. 118]

Mirror reflectivity 99.751%

Purcell rate (4g20/κ)/2π 4.27 Hz

Single-atom cooperativity C 5.72 · 10−4

Waist radius W 450 µm [119, p. 118]

Table 3.1: Parameters of the science cavity within the atom cloud machine, for laser light
resonant with the 689 nm 1S0-3P1 transition. ∗Note the linewidth (and related parameters)
can change over time - it may increase if materials accumulate on the mirrors, reducing the
reflectivity. At the time of writing, there are indications that it has increased to ∼800 kHz.

The repumping laser beams at 679 and 707 nm are crucial for efficient MOT operation, as
the 1P1 state has tiny decay routes into the long-lived states 3P2 and 3P0 (see Fig. 1.1).
The repumpers pump these atoms to 3S1 so that they can decay to 3P1 and subsequently
1S0, such that they can interact with the MOT beams again. As a result they increase the
atom number within the blue MOT cloud on the order of a factor 13 (see e.g. [120, p. 15]),
depending on the pressure within the science chamber.

3.1 Laser systems for the atom cloud machine

A highly simplified overview of the laser systems on the ”Sr1” optical table, used for the
atom cloud machine, is shown in Fig. 3.2.

689 nm Master Laser

The 689 nm Master Laser system is located on a separate optical table, but this has not
changed significantly since the overview given in [121, p. 32-34], [122, p. 101-104] and
[119, p. 85-87]. Here the 689 nm Master Laser is locked to a high-finesse cavity (F=7500)
in vacuum, using the Pound-Drever-Hall (PDH) technique. The main recent changes were
adding more fiber couplings for beat measurements and replacing the original flat-cut optical
fiber to the Sr1 table with an angle-cut one, which reduced etalon effects and enabled us to
eliminate one of the two optical isolators. This fiber transmits the light for injecting the 689
nm Slave 1 laser.



C. 3 Atom cloud machine for superradiant laser pulses P. 37 of 169

68
9 

nm
T
A 689 nm

slave 2

689 nm
slave 1

679 nm

707 nm

Repumper
PDH cavity

Sci. cavity
PDH

D
et

ec
ti
on

MOT

Ref

Im
ag

in
g

Z
ee

m
an

689 nm reference
From "Mausoleum"

Fr
om

 6
89

nm
 m

as
te

r

F
lip

 m
ir

ro
r

Pulse

Sr oven

461 nm
laser

Sr ref
cell

Switch

Sweep AOM1

F
SR

Seed

Fiber
EOM

E
O

M

Figure 3.2: Simplified overview of laser systems for the Sr cloud machine. Changes in beam
colors (arbitrary) indicate changes in frequency by AOMs (yellow boxes). Dashed lines indi-
cate overlapping beam paths. Fibers are indicated by green lines.

689 nm slave lasers and tapered amplifier

The ”Slave 1” laser diode derives its name from the fact that it ideally inherits its frequency
from the 689 nm Master Laser. This is done by the injection-locking technique, which only
works within a narrow range of laser diode current and temperature, and relies on sending
a small amount of light from the Master Laser into Slave 1. In terms of power, at least
about 1.1 mW must be sent into the diode, out of the isolator protecting it, with the current
mode-matching. This isolator also sends the light component with unwanted polarization
from the slave diode towards the fiber to the Master Laser table. As a result the power
transmitted from Slave 1 through the fiber is a good proxy for optimizing the mode-matching
of the injecting beam with the laser diode. In terms of laser diode current, a stable injection
is typically characterized by a plateau in the power emitted by the diode as function of the
diode current. This is usually observed on an oscilloscope, displaying the detected power
from a photodiode as function of a triangle wave reference voltage. This reference voltage is
simultaneously used as a modulation input for the laser diode current. A typical plateau for
Slave 1 can be seen in [119, p. 94]. This qualitative behavior has persisted, though the exact
diode current and temperature have been adjusted slightly over time.

The beam from Slave 1 is sent to AOM 1. The 0th order from AOM 1 is used for injecting
Slave 2, and these injection characteristics were described in [103, p. 55]. All the power from
Slave 2 is subsequently used as input for a tapered amplifier (BOOSTA) with fiber-coupled
ports. The BOOSTA is a replacement for the original TA described in [103, p. 56-57], as
the power from it degraded over time (see Appendix A.1). This commonly occurs in tapered
amplifiers, and is also observed in the BOOSTA. From the output fiber of the BOOSTA we
obtain on the order of 200 mW, which is used for the pump pulse and red MOT beams. The
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pump pulse is switched via the pulse AOM, using the -1 order and a frequency close to 40
MHz. The beam is focused within the AOM to minimize the rise/fall time of the intensity
when switching to the order of tens of ns. This transient behavior is described in more detail
in [103, p. 57-58], but the quantitative characteristics have changed slightly since then due
to the changes in the optics.

Red MOT optics

Since the pump pulse is not needed while capturing atoms into the red MOT cloud, the 0th
order of the pulse AOM is used for the red MOT, so that the full TA power can be used for
either. The subsequent red MOT optics are shown in Fig. 3.3. Here one single-pass AOM
(”Switch”) enables quickly switching the red MOT beams on/off, and a second (”Sweep”) is
double-passed so that it can be continually scanned to frequency-broaden the red MOT beams
with minimal misalignment. The beam is subsequently fiber-coupled and divided between
the vertical and horizontal axes of the MOT. Then it is expanded with telescopes and finally
overlapped with the blue MOT beams using dichroic mirrors. Since the dichroic mirrors do
not preserve circular polarization well, achromatic λ/4-plates were mounted right before the
chamber windows for the MOT beams.

Figure 3.3: The Sr1 table seen from the lower right side in Fig. 3.2, including the pump pulse
and red MOT optics, and the atom cloud machine in the background.

Science cavity input beam

A laser beam is sent to the science cavity to lock it via the PDH technique. The beam from
689 nm Slave 1 is first double-passed in AOM1 and then sent to either the ”Seed” or ”FSR”
AOM, depending on the configuration of a flip mirror. If the mirror is flipped up, the beam
single-passes the FSR AOM and is then detuned 781 MHz from the atom resonance, but
is on resonance with the next FSR of the science cavity. If the mirror is flipped down, the
beam instead double-passes the Seed AOM and is shifted close to the atomic resonance. This
enables populating the cavity mode with light that affects the atomic dynamics (defining
the η and ωd parameters in Chapter 2). In either case the beam from one of the AOMs is
eventually coupled into a fiber EOM which adds sidebands at 10 MHz used for the PDH lock.
The optics layout is described in more detail in [121, p. 29-31]. The only significant change
was replacing the fiber EOM to one with angle-cut fibers, which reduced disturbances from
etalon effects. The power of the 10 MHz RF signal for the EOM is typically on the order of
15 dBm.
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Blue laser system

The 461 nm laser system for laser cooling on the 1S0-
1P1 transition is mounted on a bread-

board, which also includes a hollow-cathode cell for locking the laser frequency to the atomic
transition using saturated absorption spectroscopy. The beam for the Sr1 machine is subse-
quently divided via the MOT AOM and Zeeman slower AOM. The optical path from this laser
system to the atom cloud was shortened compared to an older system based on frequency-
doubling, which makes the blue MOT less sensitive to minor changes in alignment e.g. from
random temperature changes from day to day. Some light from the blue laser system is also
used for an absorption imaging system.

679 and 707 nm repumpers

Figure 3.4: The repumper breadboard with
beam paths highlighted.

The 679 and 707 nm repumpers are Littman-
Metcalf type external cavity diode lasers
(ECDLs) housed in temperature-stabilized
boxes. The lasers themselves are described
in more detail in [119, p. 106-108]. For
space management and portability they were
mounted onto a breadboard, with a new op-
tics layout shown in Fig. 3.4. A setup for
locking both of the repumper lasers to a cav-
ity is described in [123].

689 nm reference laser system

The reference laser system was set up in a separate well-isolated room (the ”Mausoleum”) -
the initial system used for beat signal data presented in this thesis is described in [121, p.
33-38]. Here, the laser was locked to a high-finesse cavity temporarily borrowed from SYRTE
(described in [124]), using the PDH-technique. Fibers link the reference laser system to the
main lab. At the atom cloud machine, optics enabled for overlapping a reference laser beam
with the output of the cavity mode, for beat note detection of superradiant pulses from the
blue MOT cloud. Fiber-noise cancellation was also employed for this link.

3.2 Magneto-optical trap

The MOT is a central component in the atom cloud machine. Here we will first consider how
a MOT works qualitatively. It relies on two coils in the anti-Helmholtz configuration, which
generate a magnetic field with the shape shown in 3.5a. The field is symmetric around the
z axis, has a zero-point near the center, and the magnitude of the field increases linearly as
one moves away from the center. From Gauss’ law for magnetism ∇ · B = 0 we know the
gradient along the z axis is twice, and opposite, of the x and y axes: ∂B

∂z = −∂B
∂x −

∂B
∂y .
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Figure 3.5: (a) The magnetic field of coils in the anti-Helmholtz configuration. Both current
can also be reversed, reversing the field lines. (b) The dependency of Zeeman-shifted energies
of different levels on the atom’s position along the z axis in a MOT. The red arrow indicates
the energy of MOT photons, which are red-detuned from the mJ=0 transition.

A second ingredient in the MOT is the level structure of 88Sr, which we encountered in Fig.
1.1. A magnetic field will split up any levels with angular momentum. The ground state of
Sr, 1S0, has zero angular momentum and is unaffected, but the blue/red MOT excited states,
1P1 and 3P1, have total angular momentum of J = 1, and are therefore split into three levels
with different energies, depending on the projection of the angular momentum along the z
axis: mJ = +1 if the angular momentum vector points along z, 0 if it is zero, and -1 if it
points towards −z. As a result the energies of the three levels vary along the z axis as shown
in Fig. 3.5(b). For x and y, the scaling with mJ is lower by a factor two and flips sign.

The third ingredient is the laser light. If we consider a circularly polarized laser beam coming
from below (so k ‖ ẑ), we can classify it as right-handed if its E-field rotates counter-clockwise
around k as it propagates. In this case a photon from the laser beam has angular momentum
+1 around the z axis, and can drive σ+ transitions from 1S0 to 1P1 mJ=1, pushing any atoms
upwards that are on resonance with it.

If this beam is simply reflected back by a mirror, k will flip, but its angular momentum along
the z axis will stay the same. As a result it would be ”left-handed”. But for the atoms it
is the angular momentum relative to ẑ that matters, not the handedness (defined relative to
k). So if the beam is simply reflected back, it would again drive the σ+ transition, and the
atoms on resonance would be pushed equally up and down by the laser beam. However if a
quarter-wave plate is placed before the mirror, the angular momentum of the photons can be
flipped after the two passes, such that the reflected beam drives the σ− transition.

Now the Zeeman shifts shown in Fig. 3.5(b) become useful. If the laser is red-detuned from
the unperturbed atom resonance (from 1S0 to 1P1 mJ=0) by δl, it will preferentially drive
transitions where the combined Zeeman and Doppler shifts obey δl = δZ + δD. So if an
atom is standing still a bit below the magnetic field center, δD = 0 but δZ is positive for
mJ=-1 and negative for mJ=1. Then the laser would be closest to the σ+ resonance and
as a result the atom would tend to be accelerated upwards. For an atom a bit above the
center, the laser frequency matches the σ− transition better, which can only be driven by the
back-reflected beam, so this atom will be accelerated downwards. The effect of Doppler shifts
is similar. For an atom standing still in the center both laser beams are red-detuned from
the transitions, but if it is moving upwards, the photons from above will appear blue-shifted
closer to resonance, while the ones from below will be red-shifted further away. Thus the
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two laser beams slow down atoms and trap them near the magnetic field center. The center
can be moved by changing the relative coil currents, and if the light intensities are not equal,
atoms may also be trapped a bit off-center. For the x and y axes, the same considerations
can be used - the light polarization just needs to be changed so that it drives the opposite
transitions, since the magnetic field lines run in the opposite direction, as indicated in Fig.
3.6.
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Figure 3.6: The light polarization and σ tran-
sitions driven in a MOT.

A Zeeman slower uses the same principles as
a MOT to slow a beam of atoms, rather than
to trap them. Here a solenoid is built around
the atomic beam path with a variation in the
density of loops such that one laser beam
antiparallel to the atomic beam is continu-
ally kept on resonance with a Zeeman-shifted
transition of the fastest atoms as they travel
along the path. The MOT principles can
also be used in 2 dimensions to transversely
cool and confine a beam of atoms, and the
similar optical molasses technique (without
the coils and magnetic field of the MOT) can
also be used to cool atoms without confining
them.

3.2.1 Model of a MOT

Here we will consider a model of a MOT to illustrate the qualitative behavior of atom trapping
and cooling in the Sr cloud machine, and the challenges involved with 2nd stage cooling. Each
MOT beam will be treated independently (which is accurate for low saturation), and for one
MOT beam we can consider three different force contributions [20, p. 188]:

F = Fsca + δFabs + δFspon. (3.1)

Here Fsca is the average scattering force, which stems from absorbing MOT beam photons,
δFabs are the fluctuations due to the randomness of individual laser recoils, and δFspon are
the fluctuations to due spontaneous emission into all directions. Fsca and the scattering rate
Rsca from a MOT beam is [20, p. 180] [116]:

Fsca = h̄kRsca = h̄k
γ

2

∑
j

WjI/Isat
1 +WjI/Isat + 4δ2j /γ

2
. (3.2)

Here we will use Rsca to calculate the probability of a scattering event from a MOT beam,
Rscadt, for atoms during each timestep in a simulation. Each time a scattering event occurs, a
quantized recoil from the MOT laser is imparted, along with a random recoil from subsequent
spontaneous emission. In this way both the mean force and fluctuations are included. Rsca
depends on the saturation intensity of the MOT transitions (with Lorentzian linewidths γ),
which are given by [20, p. 142] [104, p. 193]:

Isat =
h̄ω3γ

12πc2
. (3.3)

Note this is specifically the resonant value of Isat (which is most commonly used, laser detun-
ings are usually accounted for separately, as also done here) and definitions in other sources
can differ by a factor 2. For the blue MOT transition where γ = 2π· 30.24(3) MHz this
gives IBsat = 403.8(4) W/m2, while for the red MOT transition γ = 2π· 7.480(1) kHz gives
IRsat = 29.87(4) mW/m2. We will model the intensity profiles with simple Gaussian functions.
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The parameter Wj accounts for the fact that the quantization axis of each atom generally
points along the B-field vector B = Bgrad(−x,−y, 2z). This is used in [116] where the
circularly polarized light of each laser beam is considered in a spherical basis and a rotation
matrix is used to map it onto B at each atom to determine how strongly the σ± and π
transitions of each atom are driven by the MOT beams. By assuming that each laser beam
has exactly the desired circular polarization, and defining the angle θ between klaser and B,
we obtain the following results for the x axis (y and z are equivalent):

W+ =

(
1

2
+

1

2
cos θx

)2

=

(
1

2
+

1

2
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=
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(3.4)

For example, if an atom is located along the z-axis at (0, 0, z), B = 2Bgrad(0, 0, z) and for the

downwards-pointing MOT beam with k̂ = (0, 0,−1) we get W+ = 0, W0 = W− = 1, while
for the upwards-pointing MOT beam we get W+ = 1, W0 = W− = 0. And as illustrated in
Fig. 3.5(b), neglecting Doppler shifts, the red-detuning of the MOT beams will then result
in the σ− transition being driven the strongest, which only the downwards-pointing beam
(with W− > 0) can do, so the atom will most likely be pushed towards (0, 0, 0). But we see
that in general, all the MOT beams can drive σ± and π transitions for the off-axis atoms.
The dependency on the projection angle is illustrated in Fig. 3.7.
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Figure 3.7: The dependency of the σ± and π transition strengths, Wj, on the angle between
the laser k-vector and local B-vector.

In addition to the intensity and polarization of the laser beams, the detuning δj is important,
as the atoms in a MOT experience both Zeeman and Doppler shifts in addition to the laser
detuning. We can write the laser detuning experienced by the mj = +1 state of an atom
from a laser beam propagating towards +x as:

δ = δl − kv +
gJµB
h̄

x
dB

dx
. (3.5)

The equations for y and z are equivalent, while for the opposing beams the Doppler shift kv
flips sign. For the mJ = −1 level the Zeeman shift flips sign, while mJ = 0 has no Zeeman
shift. gJ = 1 for 1P1 of the blue MOT and 3/2 for 3P1 of the red MOT. Typical values for
the field gradients along the coil axis are 370 mT/m for a blue MOT and 31 mT/m for the
red MOT. The blue MOT beams are detuned by 40 MHz, while the red MOT beams are
typically detuned on the order of hundreds of kHz to a few MHz, initially with frequency
modulation.
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3.2.2 Simulations of 2nd stage cooling

With the method and parameters in Sec. 3.2.1 we can start by considering the behavior of
the blue MOT. In experiments, common parameters for a blue MOT are 108 atoms, R = 1
mm (standard deviation of density profile) and T = 5 mK. Assuming a power of 7 mW in
each horizontal beam, 4.9 mW in the vertical beams and a waist radius of 10 mm, we get a
peak intensity of 70 W/m2 and Imax/Isat = 0.173 from a horizontal beam. We will also use
a typical vertical gradient of 370 mT/m. The simulated evolution of blue MOT with these
parameters is shown in Fig 3.8. First of all we see that the temperature decreases to about
1 mK. This temperature is primarily determined by the detuning in the model. At 15 MHz
(γ/2) the temperature reaches the Doppler cooling limit (726 µK), but at 40 MHz the forces
on slow atoms are weaker. This value is chosen experimentally to capture a larger range of
velocities the Zeeman-slowed beam. We also see that the cloud in the simulation compresses
significantly.
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Figure 3.8: Simulation of blue MOT, (a) Time evolution of the cloud with I = 0.173Isat and
Msca = 1 random photon recoil per MOT beam interaction (red panel) vs I = 0.015Isat and
Msca = 8 (green panel), which replicates the experimental cloud parameters. (b) Evolution of
the cloud radius along two dimensions for the two cases. (c) Time evolution of the tempera-
ture.

This discrepancy can largely be attributed to the fact that the atoms in the model can only
scatter one photon from the MOT beams, while in experiments, photons from the MOT
beams will be re-emitted by the atoms and be reabsorbed by other atoms, creating a repul-
sive force (see e.g. [125]) and heating them. To account for this we assume each absorption
event is accompanied by Msca = 8 spontaneous emission events, which primarily affects the
cloud temperature, but also increases the cloud radius. In reality this scattering will also
have a density-dependence, and the absorbed photons will tend to kick atoms away from the
center of the cloud, but we will neglect these effects. Shadow effects within the cloud, sat-
uration effects from multiple beams as well as experimental imperfections such as imperfect
polarizations, power imbalances etc. can also cause an additional expansion of the cloud in
experiments. To account for these we simply assume a lower effective intensity of 0.015 Isat.
With these assumptions the cloud temperature and radius obtained in simulations agree with
experiments. Effects such as shadowing and saturation from multiple beams have been con-
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sidered in more detail in e.g. [126, 127]. The temperature discrepancy between experiments
and Doppler cooling theory for a 88Sr blue MOT has been investigated quantitatively in [128].

With these initial conditions we can investigate the dynamics when loading atoms into a red
MOT. For the red MOT beams we assume 3 mW in the horizontal beams, 6 mm in vertical
beams, and 5 mm waists, giving Imax = 120 W/m2 and Imax/Isat = 4020 (horizontally).
The target red MOT gradient is 31 mT/m vertically, and we will investigate the influence of
the time it takes to shift from the blue to red MOT gradient. The model will use a logistic
function with a characteristic timescale τ :

Bgrad(t) = BR
grad +

1

2
(BB

grad −BR
grad)

[
1 + tanh

(
− t− tL

τ

)]
. (3.6)

Furthermore, the red MOT cooling will be divided into two phases to recreate typical exper-
imental procedures and parameters. The first phase (broadband) lasts 70 ms, and here the
laser detuning is varied sinusoidally between 0 and -3 MHz with a modulation frequency of
25 kHz. The second phase (single-frequency) lasts 50 ms. Here the laser detuning is fixed at
-150 kHz, and we assume the intensity is reduced by a factor 10 and constant. The dynamics
of the atoms are shown for τ = 1 m/s in Fig. 3.9. One dilemma is when to turn off the blue
laser light while ramping the B-field. In the example shown here it was done halfway through
the ramp (t = tL in Eq. 3.6). The blue light will cause the atom cloud to start expanding
as the B-field is ramped down, but we see it was not very significant in this case, due to the
short ramping time.

Switching to the broadband red MOT phase, the atom cloud initially expands quickly, as the
red MOT forces are orders of magnitude lower than the blue MOT forces. With a scan range
of 3 MHz, the red MOT detuning can in principle address most of the atoms in the 5 mK
cloud (the comparable Doppler broadening i 2.3 MHz). However the magnetic field gradient
similarly imposes a spatial region that the red MOT beams can address. This region has the
shape of an oblate spheroid, with a radius that scales with the gradient and scan range. This
is another reason why ramping the B-field quickly is critical - otherwise the lasers can only
trap the atoms within a tiny volume at the center of the blue MOT. In Fig. 3.9(a) we can
see a ”fingerprint” of the oblate region from about 5-20 ms. The atoms that were outside
this region tend to simply escape, but within the region, they tend to become trapped.

From t = 10-70 ms the remaining atoms start to cool and accumulate within the red MOT.
The timescale of this is determined by the MOT beam intensities and scan range. A higher
intensity enables quicker trapping, but a broader scan range slows the trapping dynamics as
the laser power is distributed over a larger region in position and velocity space. The final
broadband red MOT has the shape of a droplet and sags because the red MOT forces are
of the same order of magnitude as gravity. A larger scan range also increases the final size
and temperature of the broadband MOT - in this case 20 µK within the high-density region
according to the simulation.

At t = 70 ms the single-frequency cooling phase begins. With a detuning of 150 kHz, the
region in position and velocity space that can be addressed becomes much smaller, however
forces on atoms in this region will generally be larger, even with the factor 10 reduction in
intensity. As a result the atoms start to accumulate within in a tiny region, and we especially
see the high-density region starting to change. Some atoms that were outside the velocity
capture range get accelerated away by the single-frequency MOT beams and form small jets
of escaping atoms at t = 80-90 ms - such losses can be avoided by using a more gradual
reduction of the scan range. Many of the low-density parts of the broadband MOT are
similarly outside the spatial capture range and start falling due to gravity - however they
can then reach velocities that bring them back into resonance with the upwards-propagating
laser beam, preventing them from falling freely.
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Figure 3.9: Simulation of red MOT, (a) Time evolution of the cloud spatially for the param-
eters given in text and τ = 1 ms. (b) Evolution of the atom number within a given spherical
radius from the magnetic field center. (c) Time evolution of the temperature within the radii.

The result product of the MOT stages is a 3 µK cloud with radius on the order of just
50 µm containing 15% of the original 108 atoms. About 80% of the original atoms were
lost in the transition from the blue MOT to the broadband MOT, while the transition to
single-frequency MOT was much more efficient.
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We can compare this example to what happens for a slower switching time of τ = 10 ms (see
Fig. 3.10). In this example we again switch from blue to red MOT light at t = tL = 0. Since
the magnetic field already changes on the ms timescale before tL, the blue MOT expands
somewhat even before t = 0, compared to the case for τ = 1 ms. This presents a new range
of optimization parameters - the optimal time to switch off the blue lasers relative to the
gradual change in B-field, and possibly power and detuning ramping, to minimize the atom
loss.

After t = 0 the slower change in gradient significantly reduces the spatial region from which
the red MOT beams can initially trap the atoms. This region expands as the B-field gradient
approaches the target value, but the loss during the transfer from blue to red MOT increases
significantly. In Fig. 3.10(b) the evolution of the atom numbers are compared for the two
switching times. Here we see that the transfer efficiency from blue to broadband red MOT
is decreased from 20% to 8%.

The schemes shown here for dividing the red MOT trapping process into two stages, with
sine modulation of the laser frequency and the particular scan ranges, are just a few out
of many options. Other groups have achieved good trapping efficiencies by using a SWAP
(sawtooth-wave adiabatic passage) technique [129, C. 10] [130, 131, 132]. The main ingredient
is an upwards sawtooth function when scanning the laser frequency. This implies that in the
dressed state picture, the ground state 1S0 is initially equivalent to one of the dressed states,
but this dressed state gradually transforms into 3P1 as the laser frequency sweeps above the
atom resonance. These dressed states are the eigenstates of the Hamiltonian including the
laser interaction, so the atoms follow them from 1S0 to 3P1 for modulation frequencies that
are not too high. However such coherent effects require a quantum treatment of the atomic
state as in Chap. 2 and are out of the scope of the model presented here.
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Figure 3.10: Simulation of red MOT, (a) Time evolution of the cloud spatially for the same
parameters as in Fig. 3.9, but τ = 10 ms. (b) Evolution of the atom number within a given
spherical radius from the magnetic field center, compared to the τ = 1 ms case (light dashed
curves). (c) Comparison of the magnetic field gradient along the z axis for τ = 1 ms (light
dashed) and 10 ms (dark line)

3.3 Implementation of second stage MOT cooling

As discussed in Sec. 3.2.2, ramping the magnetic field within a few ms is crucial. A system
of electronics was developed for this purpose. This was integrated with a computer control
system developed for controlling TTL signals to the AOMs. In addition a new set of MOT
coils were also made which were capable of ramping on the ms timescale. These developments
are presented in this section.

3.3.1 Electronics for controlling the coil currents

An overview of the circuit for controlling the current in one MOT coil is shown in Fig. 3.11.
The MOSFET part of the circuit (marked in yellow) was heavily inspired by [129, p. 38] -
we similarly use APTM50UM09FAG MOSFETs, UFL230FA60 diodes, and a TAP800K1R0
resistor (1 Ω). We added another 10 Ω resistor in series, which allowed us to reduce the coil
switching time further. Varistors were added in parallel with the MOSFET to protect it from
voltage spikes which can occur when switching too fast. Significant power is dissipated in
the MOSFETs when ramping, so they can heat up significantly. Therefore these parts are
mounted onto aluminium plates with copper water-cooling parts mounted onto them, to keep
the temperature acceptable.
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Figure 3.11: Circuit for controlling the current in one of the MOT coils. In the PI circuit
several additional capacitors are placed between nodes and ground, which are not shown here.
G and τ indicate the gain and angular corner frequency of the PI circuit, respectively.
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The PI-circuit in Fig. 3.11 was made to control the gate-source voltage UMOS of the MOS-
FET, which determines how much current it allows to run from source to drain and thus
through the coil. One PI circuit was built for each coil, and there is similarly one MOSFET
circuit and a separate power supply for each coil. A Hall probe (ACS758LCB-100B-PFF-T)
is connected in series with each coil, giving a signal Uprobe which is proportional to the coil
current. This is then compared to an analog control signal Uref which is output from a com-
puter, where it can be customized. The resulting signal from the comparison goes through
the main PI part of the circuit, where the gain and corner frequency can be adjusted using
the variable resistors. ”PI” refers to the fact that it gives proportional and integral (over
time) responses to the deviation in the current from the desired value according to Uref . For
more details about PI circuits, see e.g. [133, Chap. 7-8], in particular Sec. 7.12.1.1. Finally,
the output from this stage goes through an optocoupler before being sent to the MOSFET,
in order to electrically isolate the coils and their ground from the rest of the circuit. The
rest of the circuit shares ground with the computer, laser diode current sources and many
other parts of the setup where voltage spikes (which could occur while ramping) could cause
damage. Thus it is very important that no connection is made between the ”MOT coil power
group” (marked yellow in Fig. 3.11) and the rest of the experiment.

The realization of these circuits in the lab is shown in Fig. 3.12. Due to the small resistance
of the coils, any poor connection in the rest of the circuit with a significant resistance will
reduce the available voltage drop over the coils and dissipate a significant amount of power.
In the worst case, with soldering connections, the solderings can melt and possibly cause fires.
Therefore the coil circuits use clamped connections.

Figure 3.12: (a) Photo of the two circuits for switching the MOT coils (left), power supplies
(below table) and PI circuit boxes (right, on table). (b) The inside of one PI box.

A calibration of the coil current one obtains for a given reference voltage is shown in Fig.
3.13. The slight difference between the coils is attributed to slightly different resistances in
the connections to the current sensors in each circuit, which affects how much they heat up
for a given current, altering their characteristics.
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Figure 3.13: MOT coil current dependencies on the analog reference signals.

3.3.2 System for controlling the experimental sequence and imaging

The reference voltage function for the MOT coil control circuits is controlled via a GUI.
This was developed to be part of the QWeather system for controlling many parts of the
setups in the lab. The QWeather system is written in Python and consists of server and
clients scripts and a broker which facilitates communication between them. A few scripts
have been developed specifically for controlling the experimental cycle of the strontium cloud
experiment.

The NI6259 script starts the StrontiumBrain server which is responsible for communicating
with a NI6259 card, using the PyDAQmx library. This card is connected to a BNC2110
interface, such that BNC connections can be made to a number of digital and analog input
and output channels. The digital output channels are used for the TTL signals to control e.g.
switching AOMs during the experimental cycle, and the analog output channels are used for
the MOT coil reference voltages Uref .

The StrontiumBrainGUI client is the primary GUI for controlling the experimental cycle.
For digital output channels the on/off switch times of the signals can be set. It also includes
a section for adjusting the analog output signals. There are simple options such a square,
triangle and a constant level, the option to load a custom waveform from a file, and finally
the MOT control signal waveform which was made for the experiment. This waveform is
characterized by the parameters illustrated in Fig. 3.14. It was chosen based on testing,
where a logistic function for ramping the coil current (characterized by tauSafetyRed) proved
to be most suitable for quickly ramping the current. Alternatives such as a simple exponential
function with an initial kink tended to require more gentle parameters, resulting in slower
ramping.
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Figure 3.14: Variables determining the shape of the analog reference signal for controlling the
MOT coil currents. The variable values are chosen for illustrative purposes.

Four of the parameters are voltage levels. Ublue is used for the initial blue MOT current
levels to get a high field gradient, and Ured for the red MOT gradient. UlinEnd can be set
to make a linear ramp to a higher gradient level that can be used to compress the red MOT.
Finally Upulse can be used to control the Zeeman splitting during pumping and lasing, by
quickly shifting the current levels of the coils (e.g. in opposite directions). The tauSafetyBlue
and tauSafetyRed variables represent the characteristic timescale τ of the ramping functions,
as in Eq. 3.6. Making very fast changes, such as an instant ramp between two significantly
different current levels, can result in voltage spikes and risk of avalanche within the MOSFET,
which can cause it to degrade over time. This is most relevant for tauSafetyRed, which is
often pushed to near its limit and can be set to about 2 ms when ramping from e.g. 72 A to 6
A. When pushing into a new regime, such as ramping from a higher blue MOT current level,
or lowering tauSafetyRed, the current sensor signals from the coils should be monitored while
changing the parameters in small steps. Noise appearing in the signal during the steepest
part of the ramp is usually a first sign that the parameters may be too rough. Safety is
also very important to consider while making changes to ramping and the circuits. Energy
dissipated in the wrong components can heat them up, cause failures and in the worst case
fires, and voltage spikes that are not contained can cause damage to equipment or injury.

After defining analog channel parameters and switching times of digital channels, the cycle
pattern is ”armed” by the arm button in the GUI, which prepares the cycle within the NI6259
card. If any parameters are changed, the cycle must be armed again to update it in the card.
After arming, the pattern can then be started and stopped.

While the StrontiumBrainGUI can in principle be run by itself, it is also imported into a tab
in the CameraGUI script. This is more typically used for experimental sessions because it
also has GUI elements for imaging the atom cloud and showing the atom number over time,
which are useful for optimization. The CameraGUI communicates with a Blackfly camera
(BFS-U3-31S4M-C) via another server script, ”BlackFlyCameraServer”. The CameraGUI is
shown in Fig. 3.15, with the StrontiumBrainGUI embedded in the lower part.
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Figure 3.15: The CameraGUI which is used for monitoring the atom cloud and atom number,
and controlling analog and digital signals defining an experimental cycle. The Strontium-
BrainGUI is loaded within the Timings tab in the bottom, where parameters for an experi-
mental cycle can be controlled.

Imaging is done using the absorption imaging technique. The main tool in this technique
is an AOM-regulated laser beam resonant with the 1S0-

3P1 transition. This beam, when
switched on, has a path that intersects the atom cloud before reaching a the Blackfly camera
(indicated in Fig. 3.2). The CameraGUI enables choosing a cycle with suitable switching
times for the imaging AOM while gathering images from the camera. Constructing the atom
column density distribution from the absorption imaging technique relies on Beer’s law for
the exponential attenuation of light (the laser beam) as it propagates through a medium (the
cloud), I = I0e

−OD [134, p. 348]. The optical density is related to the column density n
according to OD = σn [135, p. 3], where the absorption cross section is:

σ =
σ0

1 + 4 (δ/γ)2 + I0/Isat
, (3.7)

and σ0 = h̄ωγ/2Isat = 3λ2/2π, which is a good approximation for σ when the imaging beam
is on resonance and the intensity is low compared to the saturation intensity. The optical
density can be determined using the following equation [134, p. 353]:

ODmeas = ln

(
Ilight − Idark
Iatoms − Idark

)
. (3.8)

Here the quantity ODmeas offers an approximate value of the optical density OD, without
taking into account optical density saturation as done in [134, p. 353]. We see that ODmeas

depends on three different intensities (images): Iatom is the intensity distribution obtained
after the imaging beam has been attenuated by the atom cloud. Ilight is the intensity dis-
tribution from the imaging beam, but with no atom cloud, used for normalization. Finally,
Idark is the background to be subtracted; the intensity distribution with no laser beam and
no cloud. These calculations are performed within the CameraGUI script based on images
taken at different times during each cycle. By integrating the column densities obtained from
the images, the estimated number of atoms in the MOT can also be monitored. Finally,
the temperature of a MOT can be determined via the time of flight method. Over time the
radius of an atom cloud along a given axis will expand depending on its temperature (along
the axis) according to [135, p. 5]:

r(t) =

√
r20 +

kBT

m
t2. (3.9)
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By gathering absorption images from experimental cycles with a delay t introduced between
turning off the MOT lasers and imaging the atom cloud, r(t) can be assigned to the standard
deviation of Gaussian fits to the absorption images. Eq. 3.9 can then be fitted to the values
of {t, r(t)} to determine the temperature (the fit parameter T ).

3.3.3 Performance and challenges of original MOT coils

Figure 3.16: Original MOT coils in the atom
cloud machine. Wire loops are hidden by sepa-
rate cooling pipes with thermal paste (white)
and copper plates forming separate closed
loops.

Here we will consider the challenges with the
original MOT coils in the setup and motiva-
tion for replacing them. The original MOT
coils consisted of solid wires and separate wa-
ter tubes for cooling (see Fig. 3.16), and con-
tain full copper rings along the top and bot-
tom. When switching the current to another
level, these rings act as large wire loops and
a current starts to flow in them that coun-
teracts the change in magnetic field. Since
they are located almost on top of the wires,
they also have a good inductive coupling M .
We can model this as two circuits coupled by
mutual inductance as shown in Fig. 3.17.

The mutual inductance results in an
emf in each circuit, Ecoil = −MİH and
EH = −Mİcoil. Kirchoff’s loop rule [136, p.
855] gives:

0 = Ucoil + Ecoil + UR + UL = Ucoil −MİH −RcoilIcoil − Lcoilİcoil
0 = EH + URE + ULH = −Mİcoil −RHIH − LH İH .

(3.10)

From Eqs. 3.10 we get these coupled equations for the currents in the coil and holder:

İcoil =
Ucoil −RcoilIcoil −MİH

Lcoil
, İH = −Mİcoil +RHIH

LH
. (3.11)

Icoil IH

RH
LHLcoil

ℰcoil

M

ℰH

ULHUL

UR

Rcoil

URHUcoil

Figure 3.17: Model circuit of one of the original MOT coil in the atom cloud machine. The
coil itself (left) has a resistance within the wire, Rcoil and inductance Lcoil, and the voltage
over the coil Ucoil can be controlled to regulate the current Icoil. This circuit is inductively
coupled to a copper holder with its own resistance and inductance. Any change in current
within one of the circuit induces a current in the other.
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We see that for M = 0 and Ucoil = 0, the current decays on the timescale τ0coil = Lcoil/Rcoil
within the coil, and a current within the holder would decay with τ0H = LH/RH . Using a
Laplace transform [137, p. 243], the decay time of the coil current when the circuits are
coupled can be determined as τcoil = τ0coil + τ0H for constant Ucoil. However since the coupling
is not perfect (M <

√
Lcoil · LH), one idea was to overshoot the down ramp in coil current,

possibly even reversing it - this has been demonstrated as an effective way to lower the
switching time in presence of eddy currents in [138]. By overshooting, the new current level
in combination with the induced current in the holders could yield the desired magnetic field
when added together. This behavior was simulated in Matlab (see Fig. 3.18). Here we
assume M = 0.999

√
Lcoil · LH and use the estimates Lcoil = 1 mH, LH = 0.5 µH, Rcoil = 250

mΩ and RH = 23.9 µΩ. Especially the mutual inductance is uncertain and the simulations
should primarily be considered as qualitative examples of the behavior and potential solution
options.
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Figure 3.18: Simulation of the behavior of one of our original coils if the voltage is reversed
when we desire to go to a lower magnetic field value at t = 100 µs. By overshooting the naive
target value when ignoring the copper holder, an even larger current is induced in the copper
holder, but due to the finite inductive coupling, the total magnetic field at the center of the
coil reaches the desired value after 200 µs.
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At t = 0 the voltage across the coil is abruptly switched to 14.7 V, but due to interaction with
the copper holder, the magnetic field gradually builds up to the target value over the course of
100 ms. A similar behavior could be expected when abruptly switching the voltage to a lower
value targeting the desired current level in the coil for operating the red MOT, assumed 1.5
V in this simulation. But instead we overshoot this value by 5.2 V (thus reversing the voltage
to -3.7 V) and then ramp exponentially towards the desired level of 1.5 V. The timescale of
the ramp is set to 18 ms and is chosen based on the timescale of energy dissipation due to the
resistance of the copper holder. The resulting behavior in the simulation is that the current
in the coil and holder interact with each other, resulting in damped oscillations in the total
magnetic field on a timescale of 100 µs. This timescale is related to the mutual inductance
- if M were simply 1 ·

√
Rcoil ·RH , the oscillations would continue forever, while if it were 0

there would be no current induced in the holder from switching the coil. After just 200 µs
the magnetic field settles at the target value for the red MOT in this example (an arbitrary
value can be chosen by simply changing the overshooting value), and the remaining current
in the copper holder after the interaction now decays exponentially due to the resistance. By
matching this exponential decay in the voltage across the coil, going from -3.7 V to the naive
target value of 1.5 V, the magnetic field is kept constant as the contribution from the coil
gradually replaces the contribution from the holder.
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Figure 3.19: A test of switching the current in
our original top coil from 56 A to 5 A using
the control signal in panel (a) (here the coil
PI circuit was different, resulting in a different
current scaling than in Fig. 3.14). The current
in panel (b) cannot be reversed and clamps at 0
A for a while. The measured B-field above the
coil is shown in panel (c) with a characteristic
decay time of 10 ms.

A drawback of this method is the need to re-
verse the voltage (if the mutual inductance
is high), which complicates the electronics,
as well as the need to spend time optimizing
extra parameters to counteract the copper
holder. This could become a complex pro-
cedure if we would desire to not just switch
the magnetic field gradient between two val-
ues, but also ramp it over time to opimise
the cooling stages further. However mak-
ing new coils and opening vacuum to replace
the old ones is also a lengthy procedure so
we investigated the behavior of our original
coils while overcompensating without revers-
ing the voltage.

The optimized reference signal for the origi-
nal coils was based on a hyperbolic tangent
with a soft overshooting part. The behav-
ior of the top coil during a test is shown in
Fig. 3.19. Here the reference signal causes
the current to approach 0, where it stays
clamped for 25 ms while the measured B-
field is decaying, presumably due to induced
currents in the holders. A hyperbolic tan-
gent fit yields a timescale of 10 ms for the
B-field, which can significantly reduce the
transfer efficiency to a red MOT, as we saw
in Fig. 3.10. So to obtain a good transfer
efficiency we would need to upgrade the coil
switching circuit to reverse the current, adding more optimization parameters, complexity
and potential issues, or replace the MOT coils, which we chose as the solution.
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Figure 3.20: Hollow wire MOT coils. (a) Winding the top coil on a lathe. (b) The completed
bottom coil before mounting. (c) One of the electrical connections for the coil. (d) Mounting
the vacuum chamber after installing the bottom coil. (e) Coil testing setup. (f) The setup
after installing the new MOT coils.
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3.3.4 Hollow wire MOT coils

Inspired by the setup in [129, p. 36] we designed new MOT coils based on hollow copper
wire. We used cylindrical wire with inner and outer diameters of 3 and 5 mm respectively.
Each coil consists of three sections that are water-cooled in parallel but electrically connected
in series, with each section having three layers and approximately nine windings per layer,
yielding a total of about 81 windings for each coil. Kapton tape was added as insulation to
the bare copper wire as we wound the coil, and several layers were also added all around the
final coil to protect it and hold it together. We considered enameled wire as an alternative
insulation, but kapton tape seemed more scratch-resistant, and we wanted to minimise the
risk of short-circuits appearing in the new coils. The coils are shown in Fig. 3.20, and
prior to mounting them we tested their resistance. These are shown in Table 3.2 in thermal
equilibrium at the given temperatures.

Segment Rtop (mΩ) Rbottom (mΩ)

Inner 30.9 32.5

Middle 37.6 35.3

Outer 40.5 36.7

All 109.0 104.6

Table 3.2: Resistances of the hollow wire MOT coils according to four terminal measurements.
The top coil temperature was 20.6 ◦C during the measurements, and the bottom coil was
22.6 ◦C.
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Figure 3.21: Temperature test of the top coil before mounting it onto the chamber. (a)
Temperature from thermistor mounted on the coil during the test, near the water exit of the
outermost wire loop. (b) Coil current and water pressure during the test. The total dissipated
power (including wires and connections) is also indicated.
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We also tested how the coil temperature responded to different coil currents and water pres-
sures, shown in Fig. 3.21. The test demonstrated that 1.5 bar is enough to cool the coil
efficiently for up to about 90 A. In addition it is also important to make sure all connections
are clamped with a good contact surface. At 80 A, the contacts to the power supply rose
to 50 ◦C, and 65 ◦C for 90 A. After using some sandpaper on the wire contact surface, we
achieved 35 ◦C at 75 A.

Finally, we tested the ramping behavior of the coils. When the coils are mounted on the
vacuum chamber, they can induce eddy currents within the chamber, similarly to the copper
disk on the original MOT coils (but much less pronounced). They will also interact when
they are ramped simultaneously. Therefore some differences in behavior are expected when
they are tested individually or together while mounted on the setup. An example of the
behavior under optimized conditions in the setup is shown in Fig. 3.22. Here both the coils
are switching simultaneously, from approximately 74 A to 6 A, yielding a characteristic time
of 3.37 ms for the magnetic field.

40

40

40

Time (ms)

Date: 2021-08-20
(a)

(b)

(c)

Figure 3.22: Switching the hollow wire MOT coils mounted on the chamber, here with a total
resistance of 11 Ω in the MOSFET circuit. (a) The reference signal for controlling the bottom
coil current. A similar one is used for the top coil. (b) The current measured by a Hall probe
in series with the bottom coil. (c) The signal of a Hall probe close to the top coil, showing
the behavior of the magnetic field near the chamber while ramping.

3.3.5 Compensation coils

We added compensation coils along both the horizontal axes to gain additional degrees of
freedom for optimizing the MOT (a vertical bias can already be created by separately chang-
ing the MOT coil currents). This is especially important for the red MOT which is very
sensitive to offsets in the magnetic field, which could cause it to be trapped with an offset
relative to the cavity.
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The compensation coils were made simply by winding lacquered copper wire around the
existing coils until we got around 20 turns (for the coils along the atomic beam axis: 20
turns with 222 mΩ resistance near the Zeeman laser beam entry and 18 with 202 mΩ near
the Zeeman coil). Running these in the Helmholtz configuration can offset the magnetic field
zero point about 18 mm in either direction with 5 A (assuming a central gradient of 15.5
mT/m with 6 A in the MOT coils). The field is illustrated in Fig. 3.23 in relation to the
horizontal gradient of the MOT coils near the center.
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Figure 3.23: The magnetic field from MOT coils at 6 A (red, dashed) along a horizontal axis,
compared to the magnetic field from a pair of compensation coils at ±5 A. The combined
zero-point can be shifted within ±18 mm depending on the compensation coil currents.

3.4 Experimental routines

Here we will describe the steps towards trapping and optimizing the blue and red MOT clouds
for realizing superradiant laser pulses, given the setup and improvements described earlier in
this chapter. To obtain pulses, the atom cloud must have a sufficiently high atom number
and density, a low temperature, and a good overlap with the mode of the science cavity.

3.4.1 Optimizing the science cavity incoupling

Aligning the input beam for the science cavity is necessary for locking the cavity during
superradiant pulses (such that ωc in Chapter 2 is a known parameter), and also makes it
possible to excite atoms within the cavity using a resonant input beam, which can help during
alignment of MOT beams. The finesse of 1260 makes it non-trivial, but not too hard, to couple
light into the cavity. Mode-matching is simple as the radius of curvature of the cavity mirrors
is 9 m, and the output beam divergence is small, keeping a waist radius near 450 µm for tens
of cm. To couple into the cavity, a basic tool is the photodiode signal of the light reflected by
the cavity, which is also required for the PDH lock. An additional tool which can be useful is
a beam-profiler camera monitoring the profile of the cavity transmission. While aligning the
beam into the cavity one can then look for dips in the cavity reflection signal, or look for high
order Gaussian modes appearing in the transmission (as in Fig. 3.24), while scanning the
cavity piezo voltage across any resonances. With a high amount of input power (limited by
the fiber EOM tolerance to the µW magnitude) spotting high order Gaussian modes in the
beam profiler is relatively easy with a bit of alignment and piezo voltage adjustments. Then
the symmetry of the high order Gaussian modes can be used to reduce the number of ”blobs”
along each dimension by walking the input mirrors, while regularly checking different scan
ranges until the TEM00 mode is found. Finally, the scan range can be adjusted to correlate
the TEM00 mode on the beam profiler with the corresponding reflection dip, which is often
easier to optimize.
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Figure 3.24: Examples of cavity transmission beam profiles encountered while optimizing the
incoupling to the science cavity, from high order Gaussian modes (left) to the TEM00 mode
(right).

3.4.2 Pound-Drever-Hall locking

The PDH technique is used for locking the science cavity resonance to the input beam fre-
quency, but is also used in other systems in the lab. In the PDH technique a laser beam is
frequency-modulated using an EOM, placing sidebands often tens of MHz next to the carrier
frequency. This beam is then coupled into a cavity, and the reflected beam from the cavity
is detected. The reflection signal is mixed with a phase-shifted signal oscillating at the mod-
ulation frequency to obtain the PDH signal. For an overview of the science cavity PDH lock
electronics, see [119, p. 120, p. 68-70]. As a function of the laser frequency relative to the
cavity resonance, the PDH signal has a shape that can have some similarities to bat wings -
the function is given by [139, p. 273]:

D(δ) = −4
ω2
m (κ/2) δ

[
(κ/2)2 − δ2 + ω2

m

]
[
δ2 + (κ/2)2

] [
(δ + ωm)2 + (κ/2)2

] [
(δ − ωm)2 + (κ/2)2

] . (3.12)

This depends on the cavity linewidth κ, modulation frequency ωm and the laser detuning
with respect to the cavity resonance, δ = ωl − ωc. The steep variation of the signal near the
cavity resonance is used to provide feedback via e.g. a PI or PID circuit, like the role Uprobe
in Sec. 3.3.1. If the feedback acts on the laser diode current, fast (MHz) adjustments can
be made to the laser frequency, while acting on the piezo of a macroscopic cavity mirror or
ECDL cavity typically allows responses below the MHz range. The slope of the central part
of the PDH signal is the metric for how well the laser or cavity can be locked - a bigger slope
implies sensitivity to smaller changes in the cavity resonance frequency and requires a narrow
cavity linewidth. This can be seen in Fig. 3.25(a) where two examples of calculated PDH
signals are shown - one for the master laser system, and one for the science cavity system.

The slope of the PDH signal also changes depending on the power of the reflected signal,
affecting the characteristics of the lock. As a result, especially the science cavity PDH lock
can require frequent optimization, when a different input power is desired. This can be
done by adjusting the PI parameters and gain based on the spectrum of the PDH signal
during locking. An example of such a spectrum is shown in Fig. 3.25(b) for the master laser
PDH lock for three different gain values. It shows the typical ”servo bumps” separated some
hundreds of kHz from the carrier/modulation frequency difference (10 MHz). The goal is to
”push” the servo bumps far away, implying the corrections from feedback effectively remove
low-frequency noise. A balance must be struck where the servo bumps do not add a lot of
high frequency noise instead, as in the regime approached in the high gain example.
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Figure 3.25: (a) Examples of calculated PDH signals for the master laser and science cavity
systems, with κ/2π = 270 kHz and 620 kHz, respectively, and ωm/2π = 10 MHz. (b) Power
spectral density of the PDH detector signal in the master laser system during locking, for
three different PID lock gain levels.

3.4.3 Maintaining the repumper ECDLs

The 679 and 707 nm repumping lasers tend to increase the number of captured atoms in a
MOT cloud by over an order of magnitude, so their condition is important. They should
be giving a single-mode (frequency) beam, which can be verified with a wavemeter (which
tend to show interference signatures) or the reflection/transmission from a monitoring cavity.
These should be dominated by a single (or periodic) feature which is stable, and not different,
fluctuating features which indicate ”multimode” oscillation of the laser with many spectral
components. Often an effect on the MOT cloud can be seen for repumper detunings of tens
of MHz from the transition frequencies, and sometimes even in multimode condition, giving
a starting point for adjusting the piezo-voltage to bring them to the right frequency. As
homebuilt ECDLs, the 679 and 707 nm repumpers may often prefer to start ”multimoding”
at a piezo-voltage on the way towards the desired frequency. One can look for another FSR
of the ECDL at a different piezo voltage, and if that does not work, small adjustments to the
laser diode current can often enable single-mode oscillation within a range of tens to hundreds
of MHz around the desired frequency in terms of piezo voltage. Over the course of several
months to years, such a regime may become continually harder to obtain, in which case the
grating within the laser boxes and/or the laser diode temperature may need to be adjusted.

3.4.4 Making and optimizing a blue MOT cloud

Starting with only a Zeeman-slowed beam, the first step is trapping a blue MOT cloud,
which is relatively easy due to the very broad linewidth of the 1S0-

1P1 transition, but a few
parameters must be within ”reasonable” ranges. Verifying that the MOT beam polarizations
are correct in combination with the coil current directions (as in Fig. 3.6) is important, as
well as the MOT beam detuning. A detuning near 40 MHz from the transition frequency
tends to be most effective. Aligning the MOT beams can also be a lengthy procedure -
without a cloud to judge from, a good starting point is to ensure the back-reflected MOT
beams overlap well far back along the beam path, verifying the horizontal beams keep the
same height and all beams intersect with approximately right angles, which must usually be
deduced from their locations on vacuum chamber windows. With larger MOT beam waists
the initial beam alignment is less critical, making it easier to obtain a cloud. Simply looking
for the cloud by eye can be preferable to setting up fluorescence-collecting photodiodes or
absorption imaging systems for the first time. These tools can easily overlook a cloud forming
outside their field of view, but are useful tools for optimizing a cloud.



P. 62 of 169 C. 3 Atom cloud machine for superradiant laser pulses

Once a small cloud has been obtained, the number of trapped atoms can be improved by
going through all the different parameters affecting it and optimizing them several times
based on the cloud appearance or absorption image. A MOT fluorescence signal can be
very sensitive to the cloud location, depending on the optics, making it risky to optimize
for. It is usually optimal to have the MOT beams reflected close to directly back, so a
”beam-walking” technique is usually used where either the vertical or horizontal axis of two
mirrors on opposite sides of the chamber are aligned simultaneously. The current values of
top and bottom MOT coils should also be checked regularly, as small changes in alignment
can make different ratios optimal, if the beams are shifted relative to the magnetic field zero
point. They can also be ”walked” to change the gradiant while preserving the field center.
The power ratios of the MOT beams (controlled via λ/2 plates) is another parameter to be
optimized periodically. The first step of optimization based purely on appearance should
mainly aim to get a blue MOT cloud of reasonable size (10-100 million atoms). At this point
the overlap with the cavity mode should be accounted for in the optimization if the goal is
superradiant pulses. The location of the cavity mode along two dimensions in an absorption
image can be determined by coupling on the order of 100 nW light into the cavity while a
blue MOT cloud is at least partially overlapping with it. When the cavity is on resonance
with the 1S0-

3P1 transition, this will keep a significant fraction of the atoms in 3P1 in steady
state, giving a stripe in the absorption image as in Fig. 3.26. In some cases this can be
visible in the cloud as a less bright stripe even to the eye. This stripe determines the optimal
location of the cloud in the plane of the image, but still leaves one dimension uncertain.

Figure 3.26: Absorption image of a blue MOT (blue: low density, red: high density). (a)
No light coupled into the cavity, (b) light is coupled into the cavity, resulting in fewer atoms
within the cavity responding to the imaging light, visible horizontally near the crosshair. (c)
The pixel values of the two images are subtracted, illustrating the location of the cavity mode.

A more quantitative method for optimizing the MOT is to directly measure how efficiently it
absorbs the light in the cavity mode. Since the blue MOT can load atoms in a steady-state
condition with no experimental cycle needed, one option is to simply scan the piezo voltage
of the science cavity across the atom-cavity resonance over time, with light sent into the
cavity that is resonant with the atoms. One can then compare the peak amplitude of the
cavity transmission signal when there is no atom cloud (blocking the blue laser beams) to
the situation with the atom cloud present, to find how much it is reduced - the absorption.
Using an input power below the order of 1-10 nW is preferable at this point to reduce
possible saturation effects, but in any case the MOT alignment and other parameters can be
optimized to minimize the cavity transmission peaks. Superradiant pulses have been observed
for approximately >70% absorption in a blue MOT cloud with an optimized pump pulse.
However continuing to optimize the absorption can often be more efficient than optimizing
the pulses because the pulses have larger random variations. Up to approximately 95%
absorption has been achieved for the blue MOT. In addition to providing a good starting
point for superradiance, a highly absorbing blue MOT also gives a good starting point for
trapping a red MOT, as it should presumably be trapped in the same location. Some examples
of blue MOT clouds within the setup can be seen in Fig. 3.27.
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Figure 3.27: Photos of some blue MOT clouds, (a) in the system with old MOT coils, (b) in
the system with hollow wire MOT coils, (c) a ring-shaped ”race track” cloud obtained due to
misalignment of the mirrors.

3.4.5 Red MOT cloud discovery

As for the blue MOT, trapping a red MOT for the first time requires many parameters to be
in order - the red MOT beam frequency, intensity profile, polarization, power balances and
alignment, as well as the magnetic field. It is significantly harder to realize than the blue
MOT due to the many additional parameters, required experimental cycle, and the narrower
linewidth of the 1S0-

3P1 transition which results in much weaker forces. When we first saw
a red MOT cloud, we ran a cycle with the blue MOT light on for 800 ms and off for 81
ms. We ramped the coil currents while switching off the blue MOT light and turning on the
red MOT light. The most clear method for us to get the first red MOT was to look at a
photodetector signal of the blue MOT fluorescence. If we do not trap or slow any atoms with
the red light, then the blue MOT fluorescence increases slowly once the blue light is turned
on again as new atoms accumulate. But as soon as the red light starts to slow or trap the
atoms, the fluorescence signal increases faster in the beginning. This enabled us to optimize
all the different parameters - compensation coil currents, MOT coil currents, red MOT laser
carrier and modulation frequency, and so on, to increase the slope after turning on the blue
MOT light as seen in Fig. 3.28. After a bit of optimization the red MOT was visible in the
imaging system (Fig. 3.29).
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Figure 3.28: Three different traces of the blue MOT fluorescence detected before and after
attempting to catch a red MOT cloud. TRC3: Injection beam blocked for the red MOT laser,
thus we do not trap any atoms in the red MOT. TRC2 and 4: The red MOT laser is injected
and the center frequency of the red MOT beams are set to different values.

Figure 3.29: Initial imaging of the red MOT 10 ms after the red MOT light is turned off (red:
atoms, green: no atoms).

3.4.6 Optimizing the red MOT

The red MOT cloud is not visible to the eye and requires several steps in an experimental
cycle to make, which makes it more tricky to optimize than the blue MOT cloud, though
the same general procedure can still be used - going through all the different parameters
affecting it several times based on e.g. absorption images. The red MOT is very sensitive to
any near-resonant light in the cavity, so optimizing it while continually coupling light into the
cavity is likely to disturb it. The overlap with the cavity can still be inspected by comparing
absorption images with and without light in the cavity. An example of this is shown in Fig.
3.30 where the cloud shape is also disturbed by the cavity photons.
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Figure 3.30: Absorption image of a red MOT (blue: low density, red/black: high density).
(a) No light injected into the cavity, (b) light is injected into the cavity, disturbing the cloud
shape and causing atoms within the cavity mode to be less responsive to imaging light.

As for the blue MOT, a more quantitative method for optimizing the red MOT is to measure
the absorption of light in the cavity mode. Scanning the cavity piezo with a period adapted
to the experimental cycle duration can provide a good measure without disturbing the cloud
significantly. In Fig. 3.31 two traces of the cavity transmission signal are shown (with the
background value subtracted) when scanning the cavity with and without a red MOT cloud
overlapping with the cavity mode, after turning off the red MOT beams at t = 0. In the
center of the transmission profile with a red MOT cloud, the dip is approximately 20% of the
peak value without the cloud. This dip within the profile forms due to the low temperature of
the atoms, indicating that their Doppler width is significantly lower than the cavity linewidth
of 620 kHz, while the wings of the transmission feature can be distorted by the dispersive
interaction with the atoms. The blue MOT, on the other hand, has a Doppler width of about
2 MHz and simply reduces the height of the entire transmission feature when scanning the
cavity. The dip formed by the red MOT cloud changes shape on the scale of hundreds of
kHz, and depending on the magnetic field, three separate dips may be found when shifting
the cavity input laser frequency a few 100 kHz, attributed to the three Zeeman levels of 3P1.

No red MOT

Red MOT

Date: 08/11-2021

Figure 3.31: Cavity transmission signal while scanning across the resonance with the input
beam frequency and 1S0-3P1 transition with and without a red MOT cloud present. The red
MOT cloud absorbs and distorts the Lorentzian feature.
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Figure 3.32: A seeded superradiant pulse from
a red MOT, compared to the cavity transmis-
sion without a red MOT. The initial peak are
detected photons from the pump pulse, while
the second pulse, visible only with a red MOT,
is emitted by the ensemble into the cavity.
The background level is highlighted with dashed
lines.

A high absorption translates directly into the
potential amplitude of superradiant pulses,
assuming the atoms are pumped efficiently
to 3P1. A ”seed laser” - resonant light cou-
pled into the cavity - can be used to obtain
superradiant pulses in a less optimal setting,
both for a blue and red MOT cloud. Atoms
excited by a pumping pulse will immediately
couple to the finite cavity field and build up
a lasing pulse. An example of a small, seeded
pulse is shown in Fig. 3.32. As the seeded
lasing pulse grows bigger, the seed power can
be reduced, eventually reaching the regime
where superradiant pulses are emitted with-
out any seeding.



. C
H

A
P

T
E

R

4
Superradiant crossover pulses

from a mK atom cloud

Here we will explore pulsed lasing primarily in the superradiant crossover regime within the
strontium cloud setup presented in Chapter 3, specifically in the regime where the atom
cloud is cooled only on the 1S0-

1P1 transition to about 5 mK. As a result the lasing tran-
sition linewidth of a single atom is γeg = 2π· 7.5 kHz (1S0-

3P1), which is much narrower
than the cavity linewidth (κ = 2π· 620 kHz), however the Doppler width of the ensemble
(ΓD = 2π · 2.3 MHz for T = 5 mK) is in turn even broader. In addition to these linewidths,
we will primarily look at the case where the effective collective coupling rate 2geff

√
Neff

is also larger than κ, but also the transition where it becomes comparable to and smaller
than κ. It is in the regime with large collective coupling where we observe the superradiant
crossover dynamics, and the combination with significant Doppler broadening leads to partial
synchronization among atoms with different velocities. Many of the results presented in this
chapter have been published in [54, 59], and some are also described in Stefan’s thesis [121].

4.1 Setup and numerical model

Detector

ωref

ωL

κ

Reference
laser

Pump pulse

γ
88Sr

Figure 4.1: Setup for experiments with su-
perradiant pulses in a blue MOT cloud. The
atoms can be coherently pumped with a pump
pulse, and subsequently emit light into the cav-
ity. A detector outside the vacuum chamber is
used to detect the output power from the cav-
ity, or a beat signal with a reference laser beam.
Figure adapted from [59].

The system we investigate here is illustrated
in Fig. 4.1. It consists of a blue MOT cloud
overlapping with the science cavity. The
cloud consists of ∼108 atoms, of which ∼107

are within the cavity waist. A Gaussian den-
sity profile is assumed, characterized by a
standard deviation σR ∼ 1 mm. The atoms
are initially pumped to 3P1 using a π pulse
from an off-axis pump laser, with an effi-
ciency on the order of 80% for atoms within
the cavity mode. A few µs after pumping,
the atoms emit a superradiant pulse into the
cavity mode, which also lasts on the order of
a few µs. These pulses are detected outside
the vacuum chamber. In some cases they
are detected directly, giving a signal propor-
tional to the cavity output power. In other
cases the pulses are overlapped with a ref-
erence laser beam on the detector to record
a beat signal with phase-information of the
pulses. We will generally look at the single-
side output power, PSout, which is half the total output power in absence of a driving laser,
for easier comparison to experiments.

67
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A numerical model of the system based on a Tavis-Cummings Hamiltonian was developed
in Matlab during my master’s thesis. There the dynamics of atom populations and cavity
output power were explored when coherently pumping the atoms [103]. Since then, filter
cavities were included in the model to simulate the spectrum of the laser pulses. Using the
notation in Sec. 2.1, the Hamiltonian describing the full system is given by:

H = h̄ωca
†a+

N∑
j=1

h̄ωeσ
j
ee +

Nf∑
k=1

h̄ωkff
†
kfk +

N∑
j=1

h̄gj
(
σjge + σjeg

) (
a+ a†

)
(4.1)

+
N∑
j=1

h̄
χjp
2

(
σjge + σjeg

) (
eikp·rj−iωpt + e−ikp·rj+iωpt

)
+

Nf∑
k=1

h̄gf

(
a+ a†

)(
fk + f †k

)
.

This can be used to derive the equations for time evolution of the expectation values of the
operators, using the method in Chapter 2, here in the reference frame of the pumping laser
(with frequency ωp):

〈
σ̇jge
〉

= −
(
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γeg
2

) 〈
σjge
〉

+ i
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2
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)(〈
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〉
−
〈
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(4.3)

〈ȧ〉 = −
(
iδcp +

κ

2

)
〈a〉 −

N∑
j=1

igj
〈
σjge
〉

(4.4)

〈ḟk〉 = −

(
iδkfp +

κkf
2

)
〈fk〉 − igf 〈a〉 . (4.5)

In addition to including filter cavities, a few changes were also made compared to the model
presented in the master’s thesis. Rather than using a Gaussian approximation of the pump
pulse beam profile, the imaging data from a beam profiler is used to calculate the Rabi
frequencies of atoms depending on their position. An uneven beam profile leads to a spatial
spread in Rabi frequencies that can reduce the obtainable inversion. The impact is small,
but enables a slightly more direct comparison between simulations and experiments.

Motion in the model is treated classically, with fixed velocities based on an initial thermal
distribution. The code was also changed to use a GPU for calculations, such that the atomic
group approximation used in the master’s thesis can be omitted and each atom can be treated
individually. This eliminates some systematic biases from the approximation. Compared to
using the CPU and RAM, the calculations are sped up when above ∼105 atoms are involved
(as was shown in Fig. 2.7).

4.2 Lasing pulse dynamics and phase behavior

Here we will consider the intensity- and phase-dynamics of individual superradiant lasing
pulses within the atom cloud, and the random variations from pulse to pulse. We will base
the parameters on experiments with an estimated atom number N = 7.5 · 107, T = 5 mK,
σR = 0.8 mm, and a pump pulse characterized by Pp = 98.4 mW and a beam profile which, if
a Gaussian is fitted to it, has waists of 1.51 and 2.69 mm (the beam profile used in simulations
is shown in A.2). Three examples of simulated laser pulses are shown in Fig. 4.2, with the
cavity output power presented in panel (a), and cavity field phases in panel (b), respectively.
The phases we consider here are relative to the phase-evolution of a reference frame at the
unperturbed atomic transition frequency, ωE .
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Figure 4.2: Simulations of three laser pulses from the mK atom cloud after a pump pulse
(initial red shading). (a) Time evolution of the single side cavity output power. (b) Time
evolution of the cavity field phase. The cavity detuning is zero, and the phase flips sign during
each afterpulse (highlighted by blue shading for the curve with the largest peak power). Figure
adapted from [59].

At the beginning of the simulation a 170 ns pump pulse is applied, which excites 85% of
atoms within the cavity mode. The Bloch vector of the atoms cannot all be driven perfectly
to the north pole, because of the finite ensemble temperature and non-uniform pump laser
intensity profile. As a result, especially the slow atoms along the pump pulse k-vector and
atoms located near the cavity axis region are close to 100% excited, while fast atoms (on
the order of 1 m/s) and atoms near the edge of the beam profile can even be less than 50%
excited.

The pump pulse imprints a phase on each atom (the phases of
〈
σjge
〉

). In Eq. 4.2 we see

that even if atoms were excited (
〈
σjee
〉
≈ 1), the cavity field amplitude will stay zero if〈

σjge
〉

= 0 for all the atoms. However we also see that the change in 〈a〉 depends on the

sum of gj
〈
σjge
〉

. For example, if all atoms had the same value of
〈
σjge
〉

, the sum could still

be zero if they were distributed equally on the positive and negative antinodes of gj (this
configuration is considered in e.g. [140]). Such a configuration could be called sub-radiant,
because coherent emission by the atoms into the cavity mode would destructively interfere,
suppressing emission. In a thermal atom cloud that we consider here, the sign and value of
gj indeed varies randomly from atom to atom, so the sum

∑
j g

j will be small but nonzero.

Next we can consider the impact of
〈
σjge
〉

. As the pump pulse is angled 45◦ with respect to

the cavity axis, the phases projected onto gj in
∑

j g
j
〈
σjge
〉

will still tend to cancel out on

average, and the sum will be small, but nonzero. This results in a random, macroscopically
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preferred cavity field phase by the ensemble. As the atoms are moving up to a few m/s, gj

also changes over time for each atom, so this preferred phase can similarly change on the
order of µs. However, as the cavity field builds up, the atoms will partially phase-synchronize
due to their interaction with the cavity field and reinforce the macroscopically preferred phase
against fluctuations. As a result of this we see the phases become fixed within a µs in Fig.
4.2(b).

In addition to the atomic phases, a small cavity field amplitude also builds up during the pump
pulse itself, corresponding to a population of 0.1 photons in the semiclassical model. In Fig.
4.2(b) we see how the initial phase of the cavity field is pulled towards the macroscopically
preferred phase by the atoms over the course of about a µs. If the atomic coherence were
destroyed after the pump pulse (this could be done experimentally by applying a pulse of 461
nm light, projecting the atoms into 1S0 and 3P1), a lasing pulse would build up, but with
whatever phase the cavity field had at the end of the pump pulse, since the atoms no longer
have any macroscopically preferred phase.

A third effect which plays a role in experiments, but is not included in the simulations, is
spontaneous emission into the cavity mode. Given the Purcell rate of the system, on the
order of 60 photons will be spontaneously emitted into the cavity within 1 µs after the pump
pulse. These will have a random phase and cause additional fluctuations in the phase of the
cavity field, compared to the smooth behavior seen in Fig. 4.2(b), and also cause the field
amplitude to initially grow more quickly.

Once the cavity field phase has settled, a lasing pulse builds up over the course of a few µs
before peaking, and is followed by small afterpulses. These dynamics are consistent with the
superradiant crossover regime described in Sec. 1.4.2. We see that the pulses have some
random properties - the exact peak output power and lasing delay (defined as the time from
the end of the pump pulse to the peak output power) vary from pulse to pulse, though they are
also correlated - pulses that build up more slowly also tend to be smaller, such as the dashed
orange in Fig. 4.2. We see that for the orange pulse, the cavity field phase takes a longer
time to settle after the pump pulse. Random variations in the initial atom configuration
can cause these differences, and in experiments, the randomness of spontaneously emitted
photons can also disturb the cavity field phase and contribute to variations in lasing delays.
Another contribution to the correlation is the 3P1 decay time of 21 µs, which means there is
slightly less gain for the pulses that build up more slowly.

Considering the afterpulses, we see that the initial (primary) pulse is generally followed by a
small, short afterpulse, then a slightly larger, longer afterpulse. This is a general pattern for
this particular parameter regime (atom number, temperature, zero cavity detuning from the
atom transition frequency). At zero cavity-detuning the intensity goes to zero between the
afterpulses, so the phase of the cavity field flips sign between them. This is highlighted by
the blue shading of every other afterpulse for the blue full-line simulation.

The phase φ of the cavity field can be compared to an experimental beat signal by using
the transformation sin(φ) ·

√
Pout. This is shown in panel (a) in Fig. 4.3, using the phases

from Fig. 4.2(b). Three experimental beat signals are shown in Fig. 4.3(b) for comparison.
Because the phase varies randomly from pulse to pulse, only the qualitative behavior can be
compared.
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Figure 4.3: Examples of signals from simulations and experiments. (a) Calculated beat signals
based on the pulses in Fig. 4.2. (b) Beat signals detected from lasing pulses in an experiment.
Figure adapted from [59].

4.3 Lasing regimes and scaling with atom number

In this section we will consider the different regimes realized in our system when varying
the number of atoms, considering the variation in lasing dynamics, output power and lasing
delay. In Fig. 4.4 we show how pulses, such as those presented in Fig. 4.2(a), vary with the
atom number in simulations (panel (a)) and experiments (panel (b)). The data is aligned
by the peak output power for easier comparison of pulse shapes due to the large variations
in pulse delays. The lasing delays are indicated by green points, binning the individual
end time of pumping pulses for a range of atom numbers. Error bars show the standard
deviation within the samples. The bin size is 30 samples of neighboring atom numbers for
the simulations and 40 for experiments. For the experiments, the atom number has significant
random variations for each MOT cloud realization, giving a non-uniform distribution of N .
These atom numbers were determined from the fluorescence during the cooling stage before
pumping. The calibration of atom number from fluorescence was based on correlating its
variation with the number of photons emitted in lasing pulses (this method is described in
more detail in [103, p. 59-61]).
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Figure 4.4: Time evolution of the cavity output power of superradiant lasing pulses for varying
number of atoms, (a) simulations and (b) experiments (date: 13/11-2018). The peak output
power is aligned at t = 0, and the time of the end of pump pulses are binned, shown as green
points with standard deviations indicated. The lasing delay τ = τ0/

√
N −Nth is fitted (blue

curves) prior to binning. Figure adapted from [54].

We find a good agreement between the dynamics of simulations and experiments in terms of
lasing threshold, pulse and afterpulse shape variations within the regime. The first afterpulse
is emitted by atoms which reabsorb some light at the end of the main pulse and has the
opposite phase of the main pulse (as we saw in Fig. 4.2(b)). For the highest atom numbers this
becomes less prominent as more atoms synchronize with the main pulse. On the other hand,
for the very lowest atom numbers above threshold, the cavity photon number becomes too low
for atoms to absorb significantly from the field, and the pulse resembles the pure superradiant
dynamics more closely, emitted by a fraction of the ensemble. Of the functions discussed in
Sec. 1.4.1, an 1/

√
N -scaling shows best agreement with the data (in agreement with findings

in the oscillatory superfluorescent regime [41]), consequently fits with τ = τ0/
√
N −Nth to

the lasing delay are shown. Only N is a fit parameter, while the threshold atom number Nth

is determined separately from fits to the peak output power. The scaling of the peak output
power with atom number is shown in Fig. 4.5 in panel (a), and in panel (b) the lasing delays
from simulations and experiments are compared.



C. 4 Superradiant crossover pulses from a mK atom cloud P. 73 of 169

N2-regime

P
ea

k
P

S ou
t (

µW
)

0

0.4

0.8

1.2

1.6

C
av

it
y 

ph
ot

on
s 

(1
06 )

N (107)

(a)

(b)

3 4 5 6 7 8
1

2

3

4

5

6

L
as

in
g 

de
la

y,
 τ

 (
µs

)

3 4 5 6 7
0

0.2

0.4

0.6

0.8

1.0

Linear regimeN2-regime

L
as

in
g 

th
re

sh
ol

d

N2 fit interval Linear fit interval

8

Figure 4.5: Scaling of (a) the peak cavity output power and (b) the lasing delay with number
of atoms in the cloud. Points show binned data from experiments (black) and simulations
(green). For the output power, P = a(N − Nth)2 is fitted to experimental data near the
lasing threshold, and P = b(N −N0) is fitted for higher atom numbers. For the lasing delay,
τ = τ0/

√
N −Nth is fitted to all the experimental data. Functions are fitted prior to binning.

Figure adapted from [54].

Three regimes are visible, highlighted by the background color. In the white region, there are
no observable pulses as the number of atoms is below the threshold number for lasing. In the
red region (3 ·107 < N < 5·107), the peak output power scales with N2. A fit to experimental
data within this regime (prior to binning) is shown as a red dashed line, and the experimental
lasing threshold is determined by extrapolating this fit. For higher atom numbers a linear
scaling with N is found. The blue line shows a fit to experimental data within this region.
Data for the very highest atom numbers is excluded from the fit as the scaling breaks down
in this regime according to the experimental data. This may be due to systematic bias in
determining the atom number in this regime, or varying density or temperature with atom
number, as the simulations indicate that the linear trend continues (see also Appendix A.3 for
simulations and comparison of scalings for these up to N = 1.33 · 108). As such simulations
help us to distinguish the N2- and N -scaling regimes with a transition around N ∼ 5 · 107.
As delay times in our data only span a factor 3, with large variations especially in the
experimental data for low atom numbers, a different regime for low atom numbers cannot be
clearly distinguished.

To consider the transition between the pure regime and crossover regime, as they were de-
scribed in Sec. 1.4.2, κ ≈ 2g

√
N is ambiguous because the coupling varies vastly between

atoms in the ensemble, where many are far outside the cavity waist. We can consider the
sinusoidal variation in g to define g2eff = g20/2 and account separately for the atom-cloud over-
lap by introducing an effective atom number, Neff , from the overlap with the non-sinusoidal
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terms of g2:

Neff = N

∞y

−∞
e−

2x2+2y2

W2 · e
−x

2+y2+z2

σ2
R

(2π)3/2 σ3R
dxdydz =

N

1 + 4σ2R/W
2
. (4.6)

In this case for N = 75 ·106, σR = 800 µm and W = 450 µm we get Neff = 5.5 ·106. We fulfill
Neff = κ2/4g2eff = 2.9 · 105 at only N = 4.0 · 106, which is far below the threshold number

of atoms. The reason for the threshold and N2 scaling at much higher atom numbers is the
5 mK temperature, which means that only a small fraction of the ensemble consisting of the
slowest atoms within the cavity waist participates in emitting the pulses near the threshold.
The Doppler broadening could be interpreted as lowering the effective atom number further.

Alternatively we can consider when the power broadened transition linewidth ΓP becomes
comparable to the cavity linewidth κ. The maximum power broadening experienced by an
atom due to the cavity field scales with the Rabi frequency of the cavity field interaction for
high intensities, and can be related to an observed (single side) cavity output power using
[20, p. 143] [112, p. 162] and a few relations:

Γ0
P = γeg

√
1 +

8g20n

γ2eg
= γeg

√
1 +

48c3n

W 2Lω2
Eγeg

= γeg

√
1 +

96c3PSout
h̄κW 2Lω3

Eγeg
. (4.7)

Observed lasing pulses from the system range in the order of nW and µW. An atom located at
a field node in the center of the waist then experiences a power broadening from the natural
linewidth 7.5 kHz to e.g. 97 kHz (1 nW) or 3.1 MHz (1 µW). Neglecting the unity term
in the square root and considering geff rather than g0, we may expect the crossover regime

when κ ∼ ΓeffP . In terms of observables this gives the characteristic output power (from one
side of the cavity):

κ = ΓeffP ≈

√
48γegc3PSout
h̄κW 2Lω3

E

=⇒ PSout =
κ3W 2Lh̄ω3

E

48c3γeg
. (4.8)

This corresponds to PSout = 81 nW in our system, but should be considered approximate as
g is lower for most atoms, and PSout also varies over time. For comparison the transition in
Fig. 4.5 occurs for pulses where the peak PSout ∼ 200 nW.

4.4 Lasing pulses in a detuned cavity

By detuning the science cavity away from resonance with the atomic transition frequency we
can investigate to which degree cavity fluctuations can be suppressed in the mK cloud system
- one of the key parameters of a superradiant laser. We will again start by considering the
dynamics of individual pulses, which is the focus of this section. In Fig. 4.6 the lasing pulse
and phase dynamics are shown for a cavity detuning of 1 MHz. The cavity output power is
shown in panel (a), while the unwrapped phase evolution in a reference frame rotating at the
atomic transition frequency is shown in panel (b).
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Figure 4.6: Dynamics of (a) cavity output power and (b) cavity field phase (unwrapped) in
a simulation with cavity detuning δcE/2π = 1 MHz. Unlike for δcE = 0, there are large
afterpulses. The power only goes to zero before the first afterpulse, so the phase evolution is
generally more smooth. The general phase slope tells os the lasing frequency is between the
atomic and cavity resonances (dashed lines), with a notable chirp during the afterpulses.

We see very pronounced afterpulses in panel (a), which is a general feature when the cavity
is detuned by hundreds of kHz in this system, also seen in other atom-cavity systems [141].
Regarding the phase evolution, as in Fig. 4.2, every other afterpulse of the full-line blue
simulation is highlighted by shading. In this example the unwrapped phase is shown to
highlight the sloped behavior, which is generally in-between what would be obtained for
emission at the atomic transition frequency (purple dashed line) and the cavity resonance
frequency (orange dashed line). We can see the frequency of the lasing pulse is partially pulled
towards the cavity resonance. The intensity drops to zero between the primary pulse and first
afterpulse, associated with a π phase shift familiar in Fig. 4.2. This does not happen in the
following afterpulses, and there is a more gradual jump in phase between them. The slopes
tell us the instantaneous frequency during the lasing pulse relative to the atom transition
frequency, νE , initially being νE+600 kHz before the peak of the primary pulse and then
shifting to νE+850 kHz, followed by the afterpulses near νE+600 kHz during the peaks, and
lower when approaching the phase jumps.

As for the case at zero cavity detuning, we can calculate a theoretical beat signal from the
simulated phase and compare it to experimental beat signals. This is shown in Fig. 4.7,
where the simulated phase was first transformed to a rotating frame at the cavity resonance
frequency for comparison with the experimental signals. For the experimental data, the Slave
2 Laser (injected by the 689 nm Master Laser) was used as reference laser for the beat signals
here, but locked 1 FSR (781 MHz) from the cavity resonance with which the atoms interact.
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The beat signals were demodulated by 1 FSR electronically to produce the recorded data,
such that the reference frame is the same as in panel (a).
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Figure 4.7: Examples of (a) calculated beat signal from the phase evolution in Fig. 4.6(b), and
(b) two demodulated beat signals recorded between superradiant laser pulses and a reference
laser beam originating from the 689 nm Master Laser. Curves highlight the moving mean of
raw data.

The phase behavior has given an indication that the lasing pulse frequency does not simply
follow the cavity resonance as in the good-cavity regime, but lies somewhere in-between the
atom and cavity resonance frequencies. We can consider the spectral properties of lasing
pulses at a detuning of 1 MHz using the beat signal shown in Fig. 4.8(a), and associated
spectrograms in panel (b) and (c). For these experiments an independent reference laser
was used for obtaining the beat signal. The reference laser was locked to a cavity 171 MHz
from the atom transition frequency, and the detected signal was mixed at 120 MHz prior
to recording, resulting in the rapid oscillation frequency of the signal near 51 MHz in Fig.
4.8(a). The evolution of the power spectrum is shown with different window functions in
panel (b) (Gaussian window spectrogram with σW = 400 ns) and c (Heaviside function with
increasing window size, as mentioned in Sec. 2.6.2). Here the frequency axes are shifted to
show the lasing frequency shift relative to the atomic transition. Estimated parameters for
this experiment are N = 1.05·108, T = 5 mK, σR = 0.9 mm, and a pump pulse characterized
by Pp = 90 mW and approximately the same beam profile as in Appendix A.2.
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Figure 4.8: (a) Beat signal between a superradiant laser pulse for δcE/2π = 1 MHz and
an independent reference laser beam. (b) Intensity spectrogram with a Gaussian window
(σW = 400 ns) showing the lasing frequency shift δL relative to the transition frequency ωE.
(c) Power spectrum for increasing window durations, starting from t = 0. Green lines indicate
minima in the output power. Figure adapted from [59].

The spectrogram in panel (b) shows an intense component peaking around νE+600 kHz
and two tones during the afterpulses - the most intense one near νE+250 kHz and a faint
component near νE+1.5 MHz which fades more quickly. As panel (c) uses an expanding
window it shows how the simpler components in panel (b) interfere when recording a spectrum
of the full pulse, giving bifurcations during each afterpulse. The spectrum of the full beat
signal corresponds to the vertical slice at t=8 µs in panel (c) and has a peak just 250 kHz
from the atom transition frequency, but also a broader structure with smaller peaks up to
about νE+1.4 MHz.
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The spectral evolution of a comparable simulated lasing pulse is shown in Fig. 4.9, using
the Heaviside window in panel (a). In panel (b) the final spectrum is shown, compared to
relevant lineshapes in the system - the lineshape of a single atom, of the Doppler-broadened
ensemble, and the resonance of the cavity.
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Figure 4.9: (a) Power spectrum of a simulated lasing pulse for increasing window durations,
starting from t = 0. Green lines indicate minima in the output power. The cavity detuning
is δcE/2π = 1 MHz. (b) The final spectrum of the lasing pulse (black full line), compared to
the atomic lineshape (blue dashed), ensemble Doppler lineshape (green dot-dashed) and cavity
resonance (red full line). Figure adapted from [59].

The simulation replicates the bifurcating patterns seen in the experiment, giving a spectrum
with a prominent peak closer to the atom transition frequency than cavity resonance, and
also a broad, multi-peaked background within the cavity and Doppler lineshape curves. The
background peaks are a bit more prominent in the simulation, and could suggest the temper-
ature is lower than the 5 mK estimate. An example of how the relative prominence of the
structures vary with temperature is shown in Appendix A.4.

4.4.1 Impact of a thermal distribution

The properties of the lasing pulses we have seen examples of so far are a result of the three
linewidths in the system in combination with the high atom number which places the system
in the crossover regime. The thermal distribution of atoms with narrow linewidth means that
each individual atom interacts differently with the cavity mode, depending on their velocity
along the cavity axis, vz. Detuning the cavity with respect to the center of the Doppler
distribution changes the response of the atoms, but only the absolute value |vz| matters due
to symmetry. In Fig. 4.10 the mean rate of absorption and emission due to interactions with
the cavity is shown for different velocity classes, based on |vz|. Panel (a) shows the variations
in emission and absorption for zero cavity detuning, corresponding to the dynamics in Fig.
4.2. Panel (b) shows the response for δcE/2π = 1 MHz, corresponding to the dynamics in Fig.
4.6 and Fig. 4.9. The simulations use the parameters of the experiment with N = 7.5 · 107

atoms.
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Figure 4.10: Mean rates of absorption and emission for an atom depending on its speed
along the cavity axis, |vz|, throughout superradiant lasing pulses for (a) δcE = 0 and (b)
δcE/2π = 1 MHz. The red dashed line in (b) highlights k|vz|/2π = 300 kHz, the peak of
the lasing spectrum. Note that slow atoms are more abundant due to the 5 mK distribution.
Figure adapted from [54].

We see that for δcE = 0, the main lasing pulse is emitted primarily by the slowest atoms,
but the fast atoms start to absorb from it near the end, shifting some of the excitation from
slow to fast atoms. As a result the afterpulses are mainly emitted by the faster atoms. We
also see the abrupt changes from absorption to emission across different values of vz between
each pulse - different velocity classes alternate between absorbing and emitting during each
pulse, giving rise to the alternating phases of the light in Fig. 4.2(b).

In panel (b) the main lasing pulse is built up primarily by atoms moving at a finite speed,
and both the fastest and slowest atoms start to absorb from it as it ends. The roles of
absorption and emission are clearly flipped across different velocities as the first afterpulse
begins, but the emission and absorption changes much more gradually across the different
velocities during the subsequent afterpulses, giving the gradual phase shifts in Fig. 4.6(b).
The emission pattern resembles the spectrograms using the expanding Heaviside window in
Fig. 4.8(c) and 4.9(a), and converting the velocity to Doppler shifts, we see that the spectral
peak near 300 kHz stems from the atoms moving approximately 0.2 m/s along the cavity
axis (red dashed line), which emit throughout all the afterpulses. Though these simulations
were run with parameters from the experiment on 13/11-2018, the dynamics are very similar
in the experiments with an independent reference laser, allowing for the comparison to Fig.
4.8 and 4.9.
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4.5 Cavity-detuning dependency and pulling

Here we will look at how the dynamics and spectrum of the lasing pulses depend on the cavity
detuning more generally. The dynamics of the cavity output power for different detunings
are shown in Fig. 4.11, with simulations in panel (a) and experiments in (b). The power data
is aligned by the peak values along the time axis to reduce variations from the random lasing
delays. The lasing delays are instead indicated by the green points, which show the mean
value and standard deviation within a given bin of cavity detunings. 801 simulations were
run for continually varying detunings between ±2 MHz. For the experiments, time traces
were instead recorded in steps of 100 kHz, and 50 traces are distributed continuously for each
100 kHz along the detuning axis. Due to the high amount of information in the data, these
experiments have served as one of the main benchmarks of the numerical model.
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Figure 4.11: Dynamics of the cavity output power for different cavity detunings, (a) simu-
lations and (b) experiments (date: 13/11-2018). The data is aligned by peak output power.
Green points with error bars indicate mean values and standard deviation of the time at which
the pump pulse ends for a bin of time traces. The white curves show fits given by t0 + a · δ2cE.
Figure adapted from [54].
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Over-all we find a good agreement in the qualitative variations of pulse shapes across the
different detunings. Afterpulses are prominent for detunings greater than a few hundred
kHz. Near δcE = 0 and t = 0.8 ns we see a zero-intensity ”hole” in the output power,
breaking up the pulse shape seen at larger detunings into two pieces. This is a signature
of the finite temperature, which caused the fast velocity-groups to get out of sync with the
slow groups as we saw in Fig. 4.10(a). When the cavity detuning is finite, the slowest atoms
can synchronize with a larger range of atoms such that the tiny secondary pulse is avoided.
This pattern is repeated in the later afterpulses near zero detuning. The frequency of the
output power oscillations increase slightly with cavity detuning until near 1 MHz. At larger
detunings the abundance of atoms with matching Doppler shifts becomes too low, resulting
in lower gain, slower pulse buildup and increasingly smaller pulses. The range of detunings
supporting lasing spans about 2 MHz in this regime, but this depends on the number of
atoms and temperature, among other parameters.

The frequency of power oscillations is on the order of 1 MHz, but varies significantly over time
and with detuning. Similar oscillations have been observed for a single atom interaction with

a cavity [142], with oscillations in the emitted power at a rate corresponding to
√

4g2 + δ2cE .

For an ensemble of N atoms the scaling extends with geff
√
N [141], where geff is an effective

coupling accounting for the variations in g. Considering again the effective atom number from

Eq. 4.6, Neff = 5.5 · 106, we get
√

4Neffg
2
eff/2π = 1.9 MHz for δcE = 0. This is somewhat

higher than the observed frequency of oscillations, but also does not account for the finite
temperature and imperfect pumping, which reduces the pulse buildup and how many of the
atoms participate in emitting the pulses, as also discussed in Sec. 4.3. Finally we saw how
different velocity classes can emit asynchronously and break up pulses into multiple smaller
components for some detunings, highlighting the limitations of such a simple expression when
describing a thermal ensemble.

For the lasing delays, we see as in Sec. 4.3 that the delay is slightly lower for experiments
than simulations (∼1.8 µs vs ∼2.1 µs at δcE = 0), which could be due to the model neglecting
spontaneous emission into the cavity mode.

4.5.1 Cavity pulling

The beat signal presented in Fig. 4.8 is one example out of a data sample spanning cavity
detunings within ±2 MHz. In Fig. 4.12 the final power spectrum from simulations (panel
(a)) and the full data sample from experiments (panel (b)) are shown. As in Fig. 4.11
the detuning in simulations is varied continuously, here in steps of 25 kHz, while for the
experimental data, 100 data samples are distributed around the nominal detunings where
they were taken, spaced by 100 kHz. The individual spectra are normalized by the peak
value.
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Figure 4.12: Power spectra of superradiant lasing pulses in the mK atom cloud at different
cavity detunings δcE, (a) simulations and (b) experiments. The spectra are normalized by
the peak value. Gray dotted line indicates a moving mean of the center of mass peak. Green
dashed line indicates a point in simulations where the peak frequency is locally insensitive to
changes in cavity detuning. Figure adapted from [59].

These spectra enable us to characterize cavity pulling in the system. The local sensitivity
of the lasing frequency to changes in cavity detuning is given by cpull = dδL/dδcE . We can
characterize the lasing spectrum both by its peak and ”center of mass”, where the frequencies
are weighted by intensity.

Considering the center of mass (gray dotted curves in Fig. 4.12), we find a gradual variation
with cavity detuning. Near δcE = 0 we find cCoMpull = 1.5, but as the detuning is increased,

cCoMpull gradually becomes lower, reaching a minimum value of 0.25 at ±1.2 MHz detuning.
This is already a quite low value if simply comparing the 2.3 MHz Doppler width to the 620
kHz cavity linewidth. The dynamics in Fig. 4.10(b) (and other figures shown earlier for 1
MHz detuning) are representative of this regime. For larger detunings the gain is too low to
build up an intracavity field that can interact significantly with the slowest atoms, such that
the pulse is emitted by an increasingly narrow range of velocity classes with Doppler shifts
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closer to the detuning. As a result cavity pulling increases again in this regime.

If we instead consider the peak, we find that cavity pulling varies significantly with the
detuning. Around δcE = 0 the peak frequency jumps rapidly between±150 kHz, so the pulling
coefficient cpeakpull is even greater than 1. However for δcE/2π = ±300 kHz the simulations

indicate that cpeakpull = 0 (marked by the green dashed line in Fig. 4.12(a)). This occurs due to
the interplay between the different velocity groups in a thermal ensemble of narrow-linewidth
atoms. Fig. 4.13 shows how the absorption and emission varies across velocity groups in this
intermediate regime between the examples in Fig. 4.10.
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Figure 4.13: The mean absorption and emission rates of an atom during superradiant lasing
pulses at three different cavity detunings in a regime where cpeakpull = 0. The right axes show
corresponding Doppler frequencies to the left velocity axes. The cavity detuning (green dashed
line) and evolution of the peak lasing frequency (red curve) during emission is shown. Slow
atoms pull the lasing peak closer to the atom transition during the afterpulses.

In this detuning range, the main lasing pulse is pulled towards the cavity resonance by a
factor 0.6, but during the afterpulses, emission by slow atoms pulls the peak to νE+150
kHz in all three cases. It highlights how atoms with narrow linewidths can be exploited in
systems with complex dynamics, in ways that are not obvious e.g. from simply considering
ratios between linewidths in the system. The lasing pulses here last only a few µs, so the
linewidths are not metrologically interesting. However the considerations could be applied to
systems with narrower transitions and possibly even continuous systems in the superradiant
crossover regime.

The features in the experiments are not quite as clear as in the simulations, though the general
structures persist. In particular the cavity lock PDH signal showed significant fluctuations,
potentially due to frequency instabilities in the 689 nm Master Laser. This caused fluctuations
in the pump pulse efficiency and in the cavity detuning from the nominal values, which are
expected to be the main reasons for the reduction in the experimental data quality compared
to the simulations. As a result individual laser pulses compare relatively well with simulations,
but tend to vary more, and in many cases clearly correspond to the spectra seen at detunings
shifted up to a few hundred kHz from the nominal value.
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4.5.2 Cavity noise suppression

As proof of principle we investigated the performance of the system as an active frequency
reference based on the peak frequency of the experimental laser spectra in Fig. 4.12(b).
The standard deviation of the peak frequencies are plotted in Fig. 4.14 for varying cavity
detuning. Outliers are discarded based on a 5σ criterium, which primarily filters away data
where lasing pulses did not build up at all. The experimental results can be compared to
variations expected from simulations (curves), assuming that random, Gaussian fluctuations
in cavity detuning is the only source of variations in peak frequency. The curves are based on
Monte-Carlo sampling of the lasing peak frequencies from a distribution of cavity detunings
centered on the nominal values along the x axis. 1000 samples are included for each point in
the curves, and the detunings are not fixed to the particular values of the simulations, but
also include values in-between, for which the peak frequency is interpolated.

Figure 4.14: Standard deviation of the peak frequency of lasing spectra in experiments (purple
points with error bars indicating the standard deviation within a sample) compared to simula-
tions from Monte-Carlo sampling of cavity detunings within a Gaussian distribution (curves,
dark gray: σ = 30 kHz, orange: 100 kHz, light gray: 300 kHz). Figure adapted from [59].

We find that the variations in peak lasing frequency are reduced significantly at detunings
on the order of 300 kHz, where cavity pulling is lowest, and increase significantly for large
detunings and near zero, where cavity pulling is highest. However the variations also deviate
from the curves based on simulations. This could be due to other sources of fluctuations
present in the experiments, such as variations in excitation due to frequency fluctuations of
the Master Laser, and of atom number due to drift of the repumping lasers and variations in
the 461 nm laser power and frequency.
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Superradiant lasing in the

upgraded atom cloud machine

In this chapter we will explore superradiant lasing in the atom cloud machine presented in
Chapter 3 in new regimes which were enabled by implementing second-stage cooling. First
we will look at superradiant lasing pulses in the crossover regime at µK temperatures, with
the atoms coherently pumped, just as in Chapter 4. Then we will use simulations to explore a
quasi-continuous regime, which is enabled by repumping the atoms incoherently and is being
investigated in the lab at the time of writing. Finally, we will look at the requirements to
realize fully continuous superradiance in the system.

5.1 Crossover pulses from atoms at µK temperatures

Here we will consider pulsed lasing in the superradiant crossover regime which can be real-
ized in the µK atom clouds trapped in the upgraded setup. Compared to the mK regime
where a Doppler FWHM of 2.3 MHz was realized, this can be reduced to 63 kHz at 3.6 µK,
much less than the 620 kHz cavity linewidth. Therefore thermal dephasing will play a much
smaller role compared to the behavior we saw in the mK regime. This applies both to lasing
pulses and during pumping - the mK ensemble required a pump pulse duration of the order
tP < 1/ΓD ≈ 430 ns to achieve inversion, which required a pump pulse power on the order
of 100 mW. At 3.6 µK the corresponding timescale is 2.5 µs, making pumping significantly
easier - close to 100% excitation can be achieved even for less than 10 mW, and a homogenous
beam profile across the cloud becomes the primary limitation. The cavity coupling still varies
greatly as atoms are distributed randomly on the wavelength scale. Similarly the variation
due to the 450 µm Gaussian waist is still significant, but smaller as the µK cloud radius can be
reduced to ∼300 µm, and even less along the vertical axis. Therefore perfect synchronization
still cannot be expected for the pulses in the µK ensemble.

Fig. 5.1 shows simulations and experiments mapping out the cavity output power as function
of cavity detuning deep within the crossover regime at µK temperatures. The setup and model
for simulations is the same as in Sec. 4.1, only with parameters changed. For the atom cloud
parameters, temperatures of {Txz, Ty} = {3.6, 2.6} mK, a cloud size of Rxz = 310±35 µm,
Ry = 135±35 µm, and atom number of 11.5 ± 1.0 million were determined from absorption
imaging. However the energy contained in the lasing pulses range up to 15 · 106h̄ω, and
considering the variations in cavity coupling, it is unrealistic that every atom emits a photon,
suggesting an even higher atom number. This discrepancy is attributed to saturation effects
at high densities, as the calculated atom number of a red MOT cloud can vary by a factor
∼2 for an expanded cloud compared to a compact one. Therefore N = 18 · 106 was assumed
in the simulations, for which the peak output power agrees with the experiments.

85
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The pump pulse power at the atoms was estimated at 18±2 mW. The beam profile is shown in
Appendix A.5 and can be well approximated by a Gaussian with waists of 2.97 and 3.12 mm
along two axes. However the resulting Rabi frequency for these pumping parameters implies
a π pulse duration of 660 ns, significantly shorter than the 1030 ns used in experiments. This
may be attributed to beam misalignment and polarization imperfections in the experiment.
Based on this an effective pump pulse power of 7.6 mW was used in simulations, for which
the π pulse duration is in agreement with the known pulse duration.
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Figure 5.1: Time-evolution of the cavity output power for different cavity detunings. The time
traces are aligned with the peak output power at t=0. The mean value and standard deviation
of the end time of the pump pulses relative to the peak power are indicated by the green data
points and error bars. (a) Simulations, (b) Experiments (date: 04/05-2022)
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In this regime the single side output power reaches up to 5 µW, and there are rapid oscillations
(∼2 MHz) compared to what we saw in Fig. 4.11 for the mK ensemble. This implies the
effective g

√
N is much greater than κ and other linewidths in the system. Another difference

from the pulses in the mK regime is the broader range of cavity detunings facilitating pulses,
here up to 3.5 MHz. This range strongly depends on the atom number (see e.g. examples
in Appendix A.6) - a larger collective coupling rate enables the ensemble to build up a pulse
despite a larger mismatch between the gain and cavity resonances.

The lasing delay in simulations is about 600 ns at δcE = 0, and the over-all variation with
detuning is similar, except at large detunings, where the peak output power may be dominated
by noise rather than lasing pulses. There are also some qualitative differences in the dynamics,
especially at positive detunings. For detunings between 3 and 4 MHz there pulses which are
much shorter and less sensitive to cavity detuning than in the simulations. These are most
likely emitted by another Zeeman sublevel of 3P1, which could be excited due to the imperfect
pump pulse polarization. At smaller positive detunings interference effects between pulses
from the different Zeeman levels might explain some of the qualitative differences between
simulations and experiments in this range.

The power spectra of the simulated lasing pulses within this range of detunings are shown in
Fig. 5.2.

Figure 5.2: Variation of the normalized power spectrum with cavity detuning δcE from sim-
ulated lasing pulses in the superradiant crossover regime at 3.4 µK. The gray dotted line
indicates the intensity-weighted center of mass of the spectrum.

Compared to the pulse spectra in the mK regime, the center of mass of the spectra (gray
dotted line) varies far less with cavity detuning - the local pulling coefficient cCoMpull is ap-
proximately 0.018 within detunings of ±500 kHz, then increases gradually to 0.035 at ±2.8
MHz, beyond which it increases more rapidly as the oscillations die out and pulse amplitudes
decrease. The peak of the lasing spectrum is consistently shifted with a sign opposite to
the cavity detuning, with a jump from +340 to -340 kHz occuring at δcE=0. This splitting
corresponds to the period from the main pulse to the afterpulse at t=1.5 µs for δcE=0 in Fig.
5.1(a). Here the main pulse has a ”shoulder” with the same phase, while the afterpulse at
t=1.5 µs has the opposite phase. Changes in e.g. atom number or excited population can lead
to regimes more similar to the dynamics in Fig. 5.1(a) where afterpulses are more heavily
suppressed, if the initial lasing pulse and shoulder efficiently de-excites the ensemble. In these
cases the spectral peaks join together around δcE=0 instead of splitting. Some examples of
these variations in the dynamics within the crossover regime and the transition to the pure
superradiant regime are also shown in Appendix A.6.
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Besides from the jump, the lasing peak frequency varies in a more simple manner with de-
tuning than what we saw in the mK pulses, as the atoms with different velocities synchronize
to a higher degree. Similarly to the mK pulses, there is also a range of detunings where the
peak frequency locally does not vary with cavity detuning to first order, here at ±600 kHz.

5.2 Simulations of quasi-continuous superradiance

In this section we will consider quasi-continuous superradiant lasing which can be realized in
the setup by continually repumping the atom cloud. To simulate this we model repumping
as inverse spontaneous emission at a uniform rate wge from 1S0 to 3P1 mJ=0:

〈
σ̇jge
〉

=−
(
iδEp +

γeg + wge
2

)〈
σjge
〉

+ igj〈a〉
(〈
σjee
〉
−
〈
σjgg
〉)

〈
σ̇jee
〉

=− γeg
〈
σjee
〉

+ wge
〈
σjgg
〉

+ igj
(〈
a†
〉 〈
σjge
〉
− 〈a〉

〈
σjeg
〉)

〈ȧ〉 =−
(
iδcp +

κ

2

)
〈a〉 −

N∑
j=1

igj
〈
σjge
〉

〈ḟk〉 =−

(
iδkfp +

κkf
2

)
〈fk〉 − igf 〈a〉 .

(5.1)

First it is worth considering the physics that the repumping term wge represents. To realize
this requires a concrete scheme, where we here assume pumping to 3P1 mJ=-1, then 3S1

mJ=-1, from which atoms decay into the 3P0,
3P1 and 3P2 manifolds. If they do not decay

into 3P1 mJ=0 at first, 679 and 707 nm lasers pump them back to 3S1 until they eventually
end up there. The laser-driven transitions between Zeeman levels are depicted in Fig. 5.3(a),
for a choice of laser polarizations we will also consider in later chapters. Modeling all the
transitions between these Zeeman levels as discrete jumps based on probabilities from rate
equations, we can determine how atoms will be transferred between the different states during
repumping. Defining pumping rates of 2π ·70 kHz from 1S0 to 3P1 mJ=-1 and 5 MHz for the
other transitions, the populations in a sample of 106 atoms evolve as shown in Fig. 5.3(b)
when the decay of the target state 3P1 mJ=0 is set to zero. During such a repumping cycle
the number of photon recoils are shown in the histograms in Fig. 5.3(c).
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Figure 5.3: Quantum jump simulation of rate equations when pumping from 1S0 to 3P1 mJ=0.
(a) Zeeman-transitions driven by lasers, (b) populations in the simulation with decay from
3P1 mJ=0 set to zero (using the same colors as the states in (a)), (c) histogram of the number
of recoils during the transfer to 3P1 mJ=0.
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Here we see that for this repumping scheme, a given atom is subjected to 8.1 photon recoils
from the pumping lasers on average, and 7.1 subsequent recoils from spontaneous decays. For
this choice of repumping transitions the recoil statistics are independent of the repumping
rates except for the rate from 3P1 mJ=-1 to 3S1 mJ=-1. Here atoms may fall back to 1S0 if
the pump rate to 3S1 is lowered to the magnitude of γeg/2π = 7.5 kHz.

One recoil kick at 689 nm corresponds to a velocity shift of h̄ω/mc = 6.6 mm/s. Approx-
imating all the recoils by 689 nm photons, we can find the mean momentum diffusion rate
from spontaneous emission [104, p. 247] during repumping (assuming the rate wge represents
the whole repumping cycle, neglecting any delays primarily from the 3P1-

1S0 transition):

D = kswgeh̄
2k2, (5.2)

Where ks = 7.1 is the number of spontaneous decay events per repumping cycle. We will
consider blue and red MOT cloud parameters at 5 mK and 50 µK respectively, for which
vrms = 1.2 or 0.12 m/s, for comparison. The momentum diffusion grows as

√
〈p2〉 =

√
Dt,

which we can use to find the timescale on which spontaneous emission changes the tempera-
ture comparably to the initial value, based on vrms:

τs =

〈
p20
〉

h̄2k2
1

kswge
=

3mc2kBT

h̄2ω2
E

1

kswge
. (5.3)

For a relatively high repumping rate of wge = 10γeg = 2π · 75 kHz this gives 50 µK and 5 mK
on the order of 100 µK and 10 ms, respectively.

5.2.1 Quasi-continuous pulses in the µK regime

Here we will consider a few examples of quasi-continuous lasing in a red MOT cloud with
N = 107 atoms, starting with T = 50 µK and σR = 300 µm. Photon recoils from repumping
are included in these simulations, influencing the motion of atoms. This is done by applying
photon kicks based on tracking the population change due to repumping, as described in
Sec. 2.5. Gravity is neglected in the model, and recoils from the repumping laser beams are
applied along the y-axis (vertical) with balancing forces. In an experiment the power balance
from the two laser beam directions can simply be adjusted to counteract the force of gravity.
We will consider a situation with a constant cavity detuning of 300 kHz to see how cavity
fluctuations can influence the lasing spectrum.

In Fig. 5.4 the dynamics are shown for wge/2π = 75 kHz. The evolution of the z-axis
temperature of atoms within the cavity waist radius, TWz , is shown in panel (a), and the
total cavity output power is shown in panel (b). As atoms move outside the cavity waist and
the temperature increases, the power drops, which slows the rate of transitions (2g

√
n) from

3P1 to 1S0. This in turn slows the total repumping cycle time and the increase in temperature.
In panel (c) snapshots of the spatial evolution of the atom cloud in the zy-plane are shown
for t = {0.1, 2.0, 3.0} µs. The cavity waist is indicated by red dashed lines, and the atoms are
color-coded by their state (3P1: red and 1S0: blue). Here we see how the inversion increases
spatially with time as g

√
n decreases.

A spectrogram is shown in panel (d), normalized by the peak PSD during the simulation. The
window duration is chosen as 10 µs. The lasing frequency is initially shifted by 80 kHz from
the atomic transition, giving c0pull=0.27. However as the cloud expands and the temperature
increases, cavity pulling also increases gradually, so the lasing frequency slowly chirps closer
to the cavity resonance. This gives a 70 kHz-wide ”pedestal” in the final spectrum (panel
(e)) containing most of the energy. After 2.2 ms oscillations in the output power start -
here atoms no longer synchronize across velocity groups, and instead a subset of atoms begin
lasing at a frequency 380 kHz from the atomic transition (this component is very faint in the
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spectrogram). At this point the main frequency component stops pulling towards the cavity
resonance, but remains more steady. This gives rise to the largest peaks in the spectrum -
one at δL/2π = 143 kHz and another one at 153 kHz.

The faint sideband pulls towards the main peak and gives rise to a broad feature in the
final spectrum, containing only 1% of the energy. Oscillatory regimes with multiple spectral
components have been described in [87] in a continuous system based on a beam of hot atoms.
A simple criterium arises when an atomic beam with uniform velocities is simply slanted
with respect to the cavity axis, as in [89]. Here oscillations arise when the atoms move
across more than half a wavelength along the cavity axis (such that the coupling changes
sign) during the transit time. In our system the corresponding criterium is whether atoms
in the ensemble tend to move more than λ/2 along the z-axis during the emission timescale
(2g
√
n/2π)−1, as they are continually repumped. At t = 2.2 ms the Doppler FWHM has

reached 710 kHz, while the cavity photon population has decreased to n = 1.2 · 105, giving a
maximum 2g0

√
n/2π = 560 kHz.
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Figure 5.4: Dynamics in quasi-continuous superradiant lasing in a red MOT cloud. (a)
Time evolution of the temperature along the cavity axis, for atoms within the cavity waist.
(b) Cavity output power. (c) Expansion of the cloud during emission - 1S0 atoms are blue,
3P1 are red. (d) Normalized power spectrogram during emission. (e) Final power spectrum
of the entire pulse (dark blue curve), compared to initial and final Doppler widths (medium
and light blue) and the cavity resonance (orange).
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We can compare the dynamics for a lower repumping rate wge = 2π · 15 kHz. The panels in
Fig. 5.5 present the different dynamics in the same way as in Fig. 5.4. The lower repumping
rate gives rise to a much smaller increase in temperature (panel (a)) and a lower output
power (panel (b)). As a result the pulse duration is extended from 4 to 5 ms. In panel (c)
the slower cloud expansion is illustrated, again for t = {0.1, 2.0, 3.0} µs. The spectrogram in
panel (d) shows several different components, appearing with the oscillations already after
just 50 µs. Here the Doppler FWHM is only 240 kHz, but with n = 3.6 · 104 the maximum
Rabi frequency is also comparatively lower at 2g0

√
n/2π = 310 kHz, so narrower ranges of

velocity classes can synchronize, and the dynamics eventually become chaotic. The resulting
spectrum in panel (e) is much more noisy, but at the same time lacks the very broad pedestal
we saw in Fig. 5.4(e). The largest peak is at δL = 2π · 67 kHz and has a FWHM of 540 Hz,
but contains only ∼15% of the energy. 50% of the energy is contained within the major peaks
between δL = 55 kHz and 70 kHz.
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Figure 5.5: Dynamics in quasi-continuous superradiant lasing in a red MOT cloud. (a) Time
evolution of the temperature along the cavity axis, for atoms within the cavity waist. (b) Cavity
output power. (c) Expansion of the cloud during emission - 1S0 atoms are blue, 3P1 are red.
(d) Normalized power spectrogram during emission. (e) Final power spectrum of the entire
pulse (dark blue curve), compared to initial and final Doppler widths (medium and light blue)
and the cavity resonance (orange).

These quasi-continuous pulses are dominated by features with widths significantly greater
than the Fourier limit due to the changing conditions during the dynamics and the finite
cavity detuning. If the detuning could be kept within a narrow range around zero, changes in
cpull would cause the frequency to wander less during the pulse, and narrower features could
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be expected. Additionally the atoms might also be used in a ”smarter” way that reduces
changes in cpull, by cancelling out some of the changes that are caused by the cloud expansion
and heating. For example, trapping a cloud a bit off-center from the cavity and creating a
slowly increasing atom density within the cavity might largely cancel out the changes in cpull
we saw here were caused by expansion and heating. This may also allow for linewidths closer
to the Fourier limit.

5.2.2 Quasi-continuous pulses in the mK regime

As an alternative we can consider quasi-continuous pulses in a blue MOT cloud with
N = 105 · 106 atoms, σR = 0.9 mm and T = 5 mK. The higher initial temperature implies
a smaller relative change in the conditions due to heating from repumping. We consider a
high repumping rate of 75 kHz again. The repump heating timescale of 10 ms (about four
times the pulse duration) motivates recoils not being included in this model. Additionally
the atom group approximation (Sec. 2.7) is used, with 28 atoms/group for these simulations.

In Fig. 5.6 the dynamics are shown for zero cavity detuning. The repumping rate puts
the system in a regime with cavity output power of similar magnitude to the pulses in
Sec. 4.5. From the emitted power during oscillations after the initial settling we can find
〈
√
n〉2 = 3.9 · 105, which gives 2g0 〈

√
n〉2 /2π = 1.0 MHz, significantly smaller than the

Doppler FWHM of 2.3 MHz, so here we get multiple frequency components from different
velocity classes from the very beginning, close to δL = ±2geff 〈

√
n〉2 = 2π ·510 kHz. Because

the cavity detuning is zero, the central component is not influenced by cavity pulling. This
gives a central peak which has a FWHM of 680 Hz and contains 65% of the spectral energy.
Once the density becomes sufficiently low, the system transitions to a chaotic regime, and
then to two symmetric components. These regimes were also found in [87, Fig. 8] occuring
for increasing thermal widths in a continuous beam with constant density. They arise here
as function of time because of the gradually decreasing emission timescale (due to decreasing
density) relative to the thermal width.
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Figure 5.6: Quasi-continuous lasing dynamics in a blue MOT cloud at zero cavity detuning.
(a) Cavity output power, (b) normalized power spectrogram, (c) final power spectrum.



C. 5 Superradiant lasing in the upgraded atom cloud machine P. 93 of 169

In Fig. 5.7 three examples show the dynamics for cavity detunings of 200, 300 and 400 kHz -
the ”cavity-immune” regime in Sec. 4.5, according to the peak frequency of the pulse spectra.
The finite detuning changes the relative size of the two sidebands, but also generally shifts
the frequency of them. The change in density further shifts them over time. However there
appears to be one exception - the central frequency component in panel (a) does not shift
systematically before the chaotic regime beginning after 800 µs. This gives a component at
δL/2π = 226 kHz with a FWHM of 1.5 kHz and could be an interesting candidate for a
component that is immune to small fluctuations in the cavity detuning.

Another interesting feature within this range of detunings is that the triple-peaked con-
figuration is especially stable around δcE = 2π · 300 kHz - at other detunings, chaotic or
double-peaked lasing occurs at some point during the cloud expansion.
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0 1NPSD

Figure 5.7: Spectrograms (left) and final normalized power spectra for cavity detunings of
(a) 200 kHz, (b) 300 kHz and (c) 400 kHz. The frequencies of the peaks are influenced by
different cavity pulling coefficients as the density decreases, broadening the spectral features.
Around 300 kHz the triple-peaked configuration is especially stable - at other detunings, chaotic
and double-component lasing occurs during the cloud expansion.

As for the red MOT cloud examples, a finite cavity detuning also appears to broaden any
spectral features from a blue MOT cloud. Also here a strategy to reduce this effect would
be to create as constant conditions (atom number and temperature) within the cavity waist
as possible during the pulse. This would simultaneously prevent the jumps from triple-
peaked lasing to chaotic or double-peaked lasing, which limited the laser linewidth for the
zero-detuning case. If this can be realized, the laser pulse linewidth ∆ν could approach the
Fourier limit set by the pulse duration for both the red and blue MOT cloud parameters - on
the order of a few hundred Hz. This still requires the cavity detuning is kept within cpull ·∆ν
for the duration.
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5.3 Requirements for steady-state superradiance

By trapping a blue MOT cloud above the science cavity with a power imbalance that redirects
the atoms through the cavity, continuous superradiance could potentially be realized in the
machine. The atom temperature could be reduced further using a 9.8 MHz-wide transition
from 3P2 to 5s5d 3D3 at 604 THz (see Fig. 1.1) - this has been demonstrated in [22]. To
investigate the requirements for this, we will assume the atoms are continuously repumped
at a uniform rate while propagating through the cavity (as in Eqs. 5.1), and omit recoils
from repumping. We assume the atoms can initially be described as a uniform beam, using
the model for propagation which is presented in detail in Sec. 7.1, here with Tx = 5 mK
along the propagation axis, and a radial temperature in the range of 0-5 mK. The atom flux
in the model is defined by the number of atoms starting within |y| < W at a distance of
x = −1.5W from the center of the cavity, but the total number of atoms in the simulation is
higher, as they are generated uniformly within |y| < 1.5W . The atom group approximation
is used here, with 10 atoms/group for fluxes below 109 s−1 and 100 for higher fluxes.

In Fig. 5.8 the total cavity output power is plotted as function of the atom flux and repumping
rate wge for different radial temperatures. For emission to occur, ∼ 108 atoms/s are required
through the cavity mode at 0 K (∼ 6 · 104 within the mode in steady-state), increasing to
3 · 109 s−1 at 5 mK. At higher temperatures, higher repumping rates are required for an
optimal output power. The required atom flux is of the same order of magnitude as the peak
loading rates for blue MOT clouds, so continuous operation is realistic if they can be funneled
and cooled efficiently. Decoherence from stray light at 461 nm presents a risk, and an impact
could be expected on the power in Fig. 5.8 if the decoherence rate grows to the order of the
repumping rate (see e.g. more detailed considerations for the hot beam system in Sec. 7.2.3).
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Figure 5.8: Total cavity output power in simulations for different repumping rates wge, tem-
peratures (a-d) and varying atom flux, assuming a continuous atom source in the atom cloud
machine.
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Figure 6.1: Illustration of the pro-
posal for superradiant lasing based on
a hot atomic beam. Atoms from an
oven are transversely cooled and then
pumped to the excited lasing state be-
fore entering the cavity for superradi-
ant emission.

In this chapter we will look at the progress of build-
ing a continuous superradiant lasing machine (SRLM)
at the University of Amsterdam. Here I was on sec-
ondment for six months and joined the Strontium
quantum gases group1, headed by Florian Schreck,
shortly before the assembly of the SRLM began.
In addition to Florian I also enjoyed working with
Camila, Francesca, Sheng, Zeyuan, Stefan, Benjamin
and Shayne on the project. The goal of the SRLM
is to realize a proposal for continuous superradiance
based on a hot atomic beam [86], in our case using the
1S0-

3P1 transition in 88Sr. The proposal is illustrated
in Fig. 6.1. Here an atomic beam emitted from an
oven is transversely laser-cooled, then pumped to the
excited state before passing through an optical cavity.
This is a simple system compared to other continu-
ous schemes based on ultra-cold atoms transported
through optical lattices. Since the scheme has no in-
termediate trapping and transfer stages, which tend
to be lossy, it allows for a large atom flux through the
cavity and a high output power. The full experimen-
tal system involved in realizing this proposal consists of extensive laser systems in addition
to the machine itself, but here focus will be on the core machine and selected parts that I
worked on. In addition we will also use numerical simulations to explore the pumping stages
in the machine, where the atoms are prepared before they reach the cavity.

6.1 Monitor cavities

Six monitor cavities were assembled for monitoring the spectral components of laser beams
in the lab. These cavities are peripheral systems, supporting but not directly involved in
the SRLM. They consist of two mirrors separated by a spacer, with one mirror mounted on
a piezo so that the cavity length can be scanned. They are designed to have a relatively
small finesse (F≈240 at 461 or 689 nm and L=10 cm). This means the piezo can be used
to continually scan on the order of an FSR, and a single-frequency input beam will then
give a Lorentzian peak in the cavity transmission. If the input beam instead has multiple
frequency components, the cavity transmission will have peaks of varying size from each of
these components. This makes the cavities a useful tool to monitor whether laser injections

1Website: strontiumbec.com
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http://strontiumbec.com
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and locks are stable or have failed, which are common sources of problems in a setup.

The setup for assembly is shown in Fig. 6.2(a). A laser beam was sent through the cavity
during assembly, while monitoring the transmission on a photodiode and beam profiler. The
cavity mirrors were initially held in mounts fixed on translation and rotation stages. Cuts in
the mounts give space for gluing the mirrors onto the cavity assembly. For gluing we used a
two-component epoxy glue. First the piezo side mirror was glued (right side on the figure),
after verifying that it was as centered as possible on the cavity. After the glue dried, the
second mirror was moved into position (left side in the image, hidden by the holder) while
scanning the piezo. The cavities are designed for a confocal arrangement, so when the second
mirror is too far from its desired location, spatial modes show up with different resonance
frequencies in the transmission while scanning. As the mirror is moved to the correct distance
from the other, the modes in the transmission merge together (see e.g. similar behavior near
the concentric configuration in [143, p. 10]). This configuration helps to ensure that different
peaks encountered while scanning originate from different frequency components rather than
simply transverse modes. After finding this position the mirror alignment was fine-tuned to
achieve the narrowest possible linewidth, then the mirror was glued. The process of gluing
can be tricky with a horizontal cavity, and depending on the viscosity of the glue, gravity
can be a disturbance when placing it on a downwards-facing side.

In Fig. 6.2(b) a breadboard is shown with two monitor cavities mounted and intended beam
paths highlighted. The optics are designed such that beams from three fibers can be coupled
into each monitor cavity and monitored on the same photodiode.

Figure 6.2: (a) A monitor cavity being assembled, with one mirror glued onto the piezo in the
right end. (b) A breadboard for two monitor cavities with optics being assembled and beam
paths highlighted. Each cavity is used to monitor up to three fiber-coupled laser beams.

6.2 The science cavity

The science cavity is a core component of the SRLM and its assembly and properties are
described in this section. The cavity spacer is a custom design by Shayne Bennetts and is
made of Macor glass-ceramic to keep the intra-mirror distance steady. One mirror is glued
directly onto the spacer, and the other is glued onto an assembly of two piezo-electronic rings
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and additional spacers. In this configuration the cavity becomes longer when the outer/inner
piezo respectively expands/contracts, which helps to cancel out some of the nonlinear behav-
iors of the piezos. The glue used for the assembly is Epotek ND353, which must be cured
at 80-150 ◦C for a certain duration depending on the temperature [144]. This glue initially
becomes less viscous as it is heated up, but subsequently hardens and gains an amber color.
In the assembly process the parts were first cleaned with acetone and ethanol. Then, over a
couple of rounds, the pieces were glued together and heated up in an oven to cure the glue,
except for the final mirror to be glued directly onto the spacer. This initial assembly process
is shown in Fig. 6.3.

Figure 6.3: Assembly of the science cavity. (a) Gluing of the inner piezo ring and cavity
mirror, and items added to apply force while heating the glue. (b) The cavity spacer and
outer piezo ring. (c) Combination of spacer, piezo stack and mirror.

After the assembly, wires were soldered onto the piezos, and it was placed into a setup built
for securing the second cavity mirror (Fig. 6.4). Based on the experience in Sec. 6.1, this
setup was designed such that the mirror could be aligned and glued with the cavity oriented
vertically. Due to the requirements of the glue a ”curing oven” was designed, surrounding the
assembly with aluminium plates which had resistors mounted onto them. The oven base was
isolated with wooden spacers from the steel posts mounted onto the breadboard. This helped
to reduce thermal conduction from the oven part to the optical elements and to minimize
disturbing the laser beam path while curing the glue. Three thermistors were glued onto the
oven to monitor the temperatures at the top, bottom and side.
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Figure 6.4: Final assembly and glue curing of the science cavity. (a) The glue curing oven
assembled around the cavity and illustrated beam paths for alignment. (b) The inside of the
empty curing oven. (c) The cavity assembly within the oven after completing the cure. (d)
View of the assembly from below during curing. (e) The assembly covered with EPS pieces
during curing.
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The cavity mirror could be aligned using a holder with both translation and rotation degrees
of freedom. However, during alignment, it proved to be enough to detach the mirror, letting
it rest on the spacer and push it gently around with the horizontal translation degrees of
freedom. This approach also reduced the risk of the holder exerting forces on the mirror
after gluing, during heating or detachment. The cavity transmission was monitored both
using a photodiode and a beam profiler, and the mirror was glued onto the spacer with three
drops after ensuring a maximum TEM00 mode with the narrowest linewidth. Then the top
of the oven and the resistors were fastened, and the assembly was isolated further using some
pieces of EPS foam (seen in Fig. 6.4(d) and (e)). The resistor power dissipation was then
controlled while monitoring the thermistor temperatures, shown in Fig. 6.5. The monitored
beam profile changed slightly during heating, which was attributed to the thermal effects on
the setup and beam path. This was indicated by the fact that the changes could be reversed
by slightly adjusting the input mirror. They also consequently reversed again while the setup
cooled down. Parameters of the completed science cavity are given in Table 6.1.
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Figure 6.5: (a) Temperatures measured near the cavity while curing the glue, and (b) the
power dissipated in the three resistors mounted onto the glue curing oven. The heating power
was adjusted to avoid too large temperature gradients that might damage the cavity.
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Atom-cavity coupling g0/2π 11.28 kHz

Finesse F 101.6 ± 0.6 [145]

Free spectral range FSR 5.479 ± 0.001 GHz [145]

Length L 27.358 ± 0.005 mm

Linewidth (FWHM) κ/2π 53.9 ± 0.2 MHz [145]

Mirror radius of curvature 100.0±0.5 mm (manufacturer)

Mirror reflectivity 96.96%

Purcell rate (4g20/κ)/2π 9.437 Hz

Single-atom cooperativity C 1.264 · 10−3

Waist radius W 86 µm

Table 6.1: Parameters of the SRLM science cavity.

6.3 The superradiant lasing machine

After completing the science cavity, the piezo wires were soldered onto feedthrough wires, and
the cavity was placed within a holder, resting on viton balls (we were forced to place these a
bit differently than planned). The science cavity assembly was then lowered into the science
chamber, shown in Fig. 6.6. Later an anti-laser part was also mounted at the top of the
machine (seen in 6.6e), which is part of a separate project to investigate anti-lasing/super-
absorption (see e.g. [146, 147]). The quality of the many vacuum sealings were then checked
using helium and a mass spectrometer at the vacuum pump. By blowing helium gas at a
vacuum seal, this will diffuse into the mass spectrometer (on the order of some seconds,
depending on the pathway to the pump) and be detected if there is a leak. Small leaks
can still be a bit tricky to detect with this method, especially around windows, because the
helium can also diffuse through the windows.

Figure 6.6: Mounting the science cavity inside the SRLM. (a) Placement of the cavity. (b) Sol-
dering of piezo wire connections. (c) Lowering the cavity assembly into the vacuum chamber.
(d) First observation of light transmitted through the science cavity within the SRLM. (e) Leak
testing the vacuum with helium.
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The final step to complete the vacuum assembly was installing oven and heat shield parts and
loading strontium into the oven. The loading process is shown in Fig. 6.7. For superradiance,
atomic strontium is needed, but it oxidizes in contact with oxygen. Therefore the strontium
must be stored in an inert gas until it is used, and the duration in contact with oxygen must
be minimized, with our target being 15 minutes from breaking the jar until pumping vacuum.
After this was completed, the machine was placed inside a large oven and baked in order to
speed up gas release within the machine, which would otherwise be released on much longer
timescales and degrade the vacuum quality. After baking, the machine was finally mounted
onto breadboards for optics in the lab, while the electrical connections to the oven were
completed.

Figure 6.7: Final assembly of the SRLM. (a) Strontium. (b) Loading strontium into the
machine. (c) Preparing the machine for bake-out. (d) The machine within oven for baking.
(e) The SRLM after assembly, lower part: heat shields and oven exit, center: Shayne, upper:
science cavity. (f) Completion of oven connections and mounting onto breadboards.
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6.3.1 Transverse cooling optics

A setup was built to transversely cool the atoms escaping from the oven down to the mK
range. Optics plans (designed by Francesca Famà) were laid out for cooling along the parallel
and perpendicular axes with respect to the cavity axis. These schematics are illustrated in
Fig. 6.8, along with photos of the final breadboards in the setup (two breadboards of each
type were made and placed on opposing sides of the chamber).

In panel (a) the optics for cooling along the cavity axis are shown. The beam coupling out
of the fiber is first expanded and collimated, then downscaled horizontally and expanded
vertically using cylinder telescopes. This gives a narrow beam profile that only addresses the
part of the atomic beam that passes through the cavity. For the cooling beams perpendicular
to the cavity axis, an equally tall but much broader beam is necessary, motivating the design in
panel (b). This design recycles the power by making three passes before a final retroreflection
and allows stacking the beam profiles next to each other. The polarization is shifted during
each pass with waveplates. Panel (c), (d) and (e) show the transverse cooling system in
operation.

Figure 6.8: (a) Schematic and approximate beam paths for cooling parallel to the cavity axis.
Two alignment mirrors flip the final beam direction after the breadboard. (b) Schematic for
cooling atoms in the perpendicular dimension to the cavity axis. The beam color is shifted to
distinguish the passes. (c-e) The transverse cooling system in operation.
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6.3.2 Cavity-coupling optics

Two breadboards were also designed with optics for coupling to each side of the science
cavity, which would enable PDH locking, probing the atoms, and detecting beat signals with
a reference laser. The PDH technique was previously described in Sec. 3.4.2. The very broad
linewidth κ = 2π× 53.9 MHz of the science cavity implies that the modulation frequency ωm
also has to be quite high to obtain a reasonable PDH signal slope. In Fig. 6.9 the normalized
PDH signal and maximum slope is shown for different values of ωm.
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Figure 6.9: (a) Normalized PDH signal (Eq. 3.12) as function of the laser detuning δ from
the cavity resonance for different modulation frequencies ωm. (b) The maximum slope (at
δ = 0) as function of ωm normalized to the value for ωm →∞.

Figure 6.10: EOM for generating sidebands at
±40 MHz used to lock the science cavity us-
ing the PDH technique. In the EOM the laser
beam propagates through the elongated crystal
with an apparent cyan surface.

Based on this we aimed for a modulation
frequency of 40-50 MHz, as a balance be-
tween the frequency dependence of the slope,
detector efficiencies and possible noise from
other RF sources in the lab. An EOM was
assembled (Fig. 6.10) for frequency modu-
lating the laser beam to the cavity, and a
resonance circuit (see e.g. [133, p. 65-68])
was built for driving it, optimized for a res-
onance at 40.5 MHz.

The optics plans for the breadboards are
shown in Fig. 6.11). One, in panel (a), in-
cludes the EOM and PDH optics, and also
has space for a detector for e.g. power mon-
itoring. The other breadboard, in panel (b),
is for overlapping the superradiant output
with a reference laser beam for beat signal detection. With two detectors a balanced detec-
tion technique can be used. This enables canceling out common noise and measuring smaller
signals than typically possible with a single detector. The beam paths are designed so that
the cavity can be mode-matched with the collimated beams from the fibers by using a single
f=400 mm lens positioned 215 mm from the chamber, neglecting disturbances by the window
(see Fig. 6.12).
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Figure 6.11: (a) Plan for cavity optics on the PDH lock side, including the 40 MHz EOM. (b)
Cavity optics plan on the reference laser and detection side. (c) Illustration of the mounting
plan relative to the vacuum chamber (other optics, e.g. the transverse cooling, are hidden).
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Figure 6.12: The beam waist radius (red) as function of position, and mode-matching to the
fiber-coupled beams on breadboards using a 400 mm lens.

6.4 Simulations of pumping and velocity selection stages

In this section we present numerical simulations of the pumping stages within the SRLM,
with the goal of illustrating the physics and describing the impact of laser parameters quanti-
tatively. Before entering the pumping stages, the transverse cooling stage helps to collimate
the atomic beam and cool the atoms to the mK regime transversely. Once the atoms are
cooled, they must be pumped to 3P1 mJ=0. However the velocity distribution along the
propagation axis is still characterized by the oven temperature of several hundreds Kelvin.
The velocity distribution in the propagation direction (x) of such a thermal beam is given by
[148, p. 62]:

f(vx) =
v3x

2 · (kBTx/m)2
exp

(
− v2x

2kBTx/m

)
. (6.1)

This distribution has a most probable velocity given by vpx =
√

3kBTx/m. The pumping
to 3P1 can be done coherently or incoherently, but due to the velocity distribution it would
be very hard to obtain a large inversion using coherent pumping in the form of a π pulse.
This would rely on letting atoms pass through a laser beam, and very slow atoms might get
a 2π pulse while very fast atoms get a π/2 pulse. Another coherent pumping scheme could
be based on adiabatic passage, requiring spatial variations in the beam frequency which
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introduces other complications, and was not investigated in detail. Coherent pumping also
introduces a risk of the pumping laser influencing the phase and frequency of the superradiant
laser, and ideally, this should be avoided. Therefore plans were made for incoherent pumping,
using the 689 and 688 nm pumping scheme with 679 and 707 nm repumping demonstrated
in e.g. [60].

About 30 mm is left between the edge of the transverse cooling stage and the cavity mode.
This region was further divided into three regions to implement a velocity selection scheme
in addition to pumping (see Fig. 6.13). In Stage 1 the atoms are pumped to the long-lived
state 3P0 in a frequency-selective manner by modulating the 689 nm laser some hundreds of
kHz. This modulation will cause atoms with a low velocity along the cavity axis, vz, to be
efficiently pumped to 3P0 via 3P1, while atoms with high vz will tend to stay in 1S0. In the
second stage a 461 nm beam accelerates the leftover atoms in 1S0 so they reach several m/s
and do not interact significantly with the intracavity field. In the final stage the atoms in
3P0 are pumped to 3P1 mJ=0.

Transverse
cooling

Stage 2
461 nm

461 nm461 nm

Atom beam
B-field

Cavity

Stage 1

Stage 3689 nm: ↔,σ688 nm: ↔,σ679 nm: ↔,σ707 nm: ↔,σ

688 nm
: ↕,π

679 nm
: ↔,σ

707 nm
: ↔,σ

Figure 6.13: Transverse cooling, state preparation and velocity selection stages for atoms
propagating towards the cavity. Laser wavelengths and driven transitions are indicated.

In terms of timescale, with atom velocities on the order of 400 m/s and 30 mm between the
edge of the transverse cooling stage and the cavity, each atom will pass through the three
stages on the order of 75 µs. Using the method from Chapter 2, equations were derived for
the 13 Zeeman sublevels of 1S0,

3P0,
3P1,

3P2 and 3S1 which are involved in the pumping
scheme. The 689 nm laser is modeled coherently (with Rabi frequency χli), while the rest are
modeled as incoherent interactions, giving rate equations (as in Sec. 2.3, with pump rates
w). We assume the magnetic field points in the propagation direction, B ‖ x̂ (upwards in
Fig. 6.13) with a magnitude of 1.5 G, and that all the lasers are linearly polarized. The 688
nm laser drives σ± transitions in Stage 1 and π in Stage 2, while the rest drive σ± transitions
equally. In Stage 1, it is assumed that the laser beams are parallel to the cavity axis, k ‖ ẑ,
and in Stage 3, it is assumed k ‖ ŷ. The direction of the 689 nm laser in Stage 1 is crucial
to the velocity selection scheme. The polarization of the 707 nm laser is also crucial so that
atoms not pile up in 3P2 mJ=±2, and similarly the 688 nm laser in Stage 1 should drive
σ± transitions as the mJ=0 transition between 3P1 and 3S1 is forbidden. Besides from that
the pumping scheme may work with smaller quantitative changes with different choice of
orientations and polarizations.
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Expectation value brackets are omitted in the following equations, and the following sub-
scripts are used to refer to the different levels:

g = 1S0, n = 3P0,
(i, e, u) = 3P1 mJ = (-1,0,1),
(x, y, z) = 3S1 mJ = (-1,0,1),
(p, q, r, s, t) = 3P2 mJ = (-2,-1,0,1,2).

The atomic coherence involved in the 689 nm pump laser interaction evolves according to:

σ̇jgi = i
χjli
2

(
σjii − σ

j
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(6.2)

the equations for the 1S0 and 3P1 populations are given by:
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and for the long-lived states 3P0 and 3P2:
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For 3S1 we have:
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(6.5)

and due to the short decay time from 3S1 we assume these are in steady state and obtain:
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The assumed laser powers and waist sizes are given in Tab. 6.2, where W2 refers to Wx (Stage
1 and 2) or Wy (Stage 3). Identical waist sizes are chosen for x and y in Stage 1 and 2 as this
requires the simplest optics. However a lower power can be used (preserving the intensity) if
the beam waist along the y axis is reduced to a few times the cavity waist.
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Laser Wx (mm) W2 (mm) P (mW) ΦP (s−1) ΦA (s−1)

Stage 1, 689 nm 2.0 2.0 1.21 2.6 ·1016 2.3 ·1014

Stage 1, 688 nm 2.0 2.0 1.00 2.2 ·1016 2.3 ·1014

Stage 1, 707 nm 2.0 2.0 3.00 6.7 ·1017 2.3 ·1014

Stage 2, 461 nm 2.0 2.0 10.7 1.6 ·1017 2.3 ·1014

Stage 3, 688 nm 1.0 15 1.45 3.2 ·1016 1.7 ·1015

Stage 3, 707 nm 1.0 15 3.00 6.7 ·1016 1.7 ·1015

Stage 3, 679 nm 0.30 15 0.652 1.4 ·1016 1.7 ·1015

Table 6.2: Laser waist radii and powers used in simulation of pumping and velocity selection.
ΦP is the corresponding photon flux of the laser beam. ΦA is an estimated atom flux through
the laser beam during superradiant lasing.

Regarding Zeeman splittings, gJ=3/2 for 3P1 and 3P2, and gJ=2 for 3S1. Thus the 3PJ
splitting is 3.2 MHz between neighboring sublevels, which is large enough that we can assume
the 689 nm laser only affects the transition to the 3P1 mJ=-1 state (the primary motivation
for this magnitude). We assume this laser frequency is swept as an upwards sawtooth centered
on the Zeeman-shifted resonance. For the rest of the lasers, the frequencies will be chosen
to be equal to the unshifted transition frequency for simplicity and symmetry. This gives
the laser detunings illustrated in Fig. 6.14: δix = 2π· 1.05 MHz, δpx = 2π· 2.10 MHz,
δb = δiy = δqy = 2π· 3.15 MHz and δa = δrz = 2π· 4.20 MHz.

mJ: -2 -1 0 1 2
3S1

3P2

3P1

3P0

1S0

𝛿gi

𝛿ix
𝛿px

𝛿b
-𝛿b

-𝛿px𝛿a -𝛿a

-𝛿ix

Figure 6.14: Driven transitions and laser detunings due to Zeeman shifts in the model of
pumping and velocity selection stages.
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A simulation of the stages can be seen in Fig. 6.15, assuming a most probable beam velocity
of vpx=400 m/s. In panel (a) and (b) the atoms are color-coded according to their state
(using the colors of the levels in Fig. 6.14) as they propagate through the three stages and
the cavity, assuming no atom-cavity interaction. The 689 nm laser is frequency modulated
with a span of 400 kHz and modulation frequency of 20 kHz. This, in combination with power
broadening on the order of χmaxli /2π = 300 kHz, determines the range of Doppler shifts that
are transferred to 3P0. The waist size along the x axis is also crucial to velocity selection; a
larger waist radius gives more interaction time, allowing for a lower intensity and thus χli,
such that the velocity range can be cut off more sharply. With a 2 mm waist the interaction
time is approximately τ=10 µs, and the required Rabi frequency for efficient transfer is on
the order of 1/τ . The choice of parameters used here results in about 70% of the population
being transferred to 3P0 (see the population bars in Fig. 6.15(c)), and the non-1S0 atoms
have a temperature reduced from 3.6 to 2.0 mK. By increasing the laser powers (primarily
the 689 nm laser) and scan range towards the 2 MHz Doppler width, the transfer rate can
be increased towards 100% at the expense of the reduction in temperature.
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Figure 6.15: Simulation of pumping and velocity selection in the SRLM. (a) and (b) show
the atoms changing state (colors) while propagating through the stages described in the main
text. (c) Quantitative evolution of the atom states as function of position while propagating.
(d) Initial (blue) and final (red) velocity distributions along the z axis. The velocity selection
scheme shifts 30% of the atoms by about 5 m/s and yields a flux of useful atoms at 2 mK.
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After Stage 1 the atoms are projected into either 1S0 or 3P0 at x=10 mm, chosen randomly
based on the respective populations. This is necessary for calculating an appropriate force in
Stage 2 based on discrete populations we want to separate, as the populations escaping Stage
1 are mainly statistical mixtures, with a small component of coherent superpositions of |g〉
and |i〉. Experimentally the 461 nm light in Stage 2 would also rapidly destroy any coherent
superpositions of |g〉 and |i〉. The tiny remnant populations of 3P1 and 3P2 are neglected in
the projection.

Within Stage 2 the atoms in 1S0 are subjected to a semiclassical force (Eq. 3.2) from a 461
nm beam with an assumed detuning of 15 MHz, waist radius of 2 mm and I = 2Isat, which
accelerates the atoms on the order of 5 m/s along the cavity axis (the initial and final velocity
distributions are compared in Fig. 6.15(d)). The amount that the atoms’ velocity must be
shifted can be determined based on the expected output power during superradiant emission.
For an atom in 1S0 to not absorb significantly from the intracavity field, its Doppler shift
must be approximately larger than the power-broadening of the transition due to the cavity
field (Eq. 4.7):

δD > ΓP =⇒ v >
c

ωE
γeg

√
1 +

96c3PSout
h̄κW 2Lω3

Eγeg
≈

√
PSout
1µW

· 3.15
m

s
. (6.7)

Here we see that the velocity should be shifted on the order of 3 m/s to avoid disturbing
superradiant lasing with a single-side output power of 1 µW. The exact impact (including
potential dispersive effects) will be determined with cavity QED simulations in Chapter 7,
but experimentally the safest approach is to simply shift the velocities as much as possible.
With an intensity of 2Isat there are no more orders of magnitude to gain just by increasing
the laser power, but there is still space for expanding the beam waist if necessary.

In Stage 3, the atoms are finally transferred to 3P1 mJ=0 using three lasers at {688, 707, 679}
nm. Since these laser beams are orthogonal to the cavity axis, the waist radii along the z
axis must be wide enough to address the entire flux of atoms through the cavity (only the
very central section of the atom flux is simulated here). The beams are centered on a point
100 µm before the center of the cavity. The 688 and 707 nm laser waists are not very crucial
along the x axis, as long as they are larger than the 679 nm waist and the transfer to 3P0 in
Stage 1 is efficient, with few atoms remaining in 3P2. However the narrow 300 µm waist of
the 679 nm laser is crucial for the transfer efficiency to 3P1 due to the decay time of 21 µs.
The fingerprint of this decay is clearly seen spatially in Fig. 6.15(c) from x=20 to 25 mm; if
the beams were misplaced just 1 mm with respect to the cavity, 10% of the 3P1 atoms would
be lost to 1S0. So ideally the 679 nm waist is very narrow, initiating the pumping right before
the atoms enter the cavity, while all the lasers are also intense enough that the atoms are
fully transferred upon entry.
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6.4.1 Optical depth effects

The simulations presented here neglect optical depth effects, but for a high atom flux, the
atoms closest to the incoming laser beams could create a shadow effect. The intensity of a
laser beam propagating through a medium of ground-state atoms is attenuated exponentially
according to Beer’s law, I(r) = I0e

−ar, where a is an absorption coefficient [112, p. 115].
Of course the atoms subjected to high intensity will subsequently change state, such that
the shadow effect becomes reduced further along the propagation axis within an extended
laser beam waist. The simulations tell us the behavior that can be expected if the atoms
experience the given laser intensities after accounting for any attenuation due to foreground
atoms in relevant states for the wavelengths, and if internal shadowing within the simulated
region of interest is negligible. For the Stage 1 and 2 lasers with k ‖ ẑ there are no foreground
atoms, but internal shadowing could be significant. On the other hand k ‖ ŷ in Stage 3, so
there may be many foreground atoms depending on the atom flux distribution, but internal
shadowing should not be significant.

The photon flux in Table 6.2 can give an idea of the optical depth effects when compared to
the expected atom flux. An atom flux on the order of 1012-1013 s−1 intersecting the cavity
mode is expected during superradiance - that is, a segment of the atom flux within |y| < Wcav

but any possible z value. For shadow effects to be negligible, the photon flux should be a
few orders of magnitude higher than the atom flux intersecting the laser beam, which will be
larger than the atom flux through the cavity by a factor Wlaser/Wcav if the atom distribution
is uniform. These estimated values are given in the ΦA column for an atom flux of 1013

s−1 through the cavity, but will likely be lower for a non-uniform atomic beam. For the
parameters chosen here there are about 1-3 orders of magnitude more laser photons than
intersecting atoms, though it is worth noting that each atom may also require a couple of
laser photons from each beam to be pumped to the correct state. For the Stage 2 laser about
500 photons are required per residual 1S0 atom to shift their velocities by 5 m/s. Finally,
many atoms will not cause disturbances for some of the lasers if they are in states they do
not drive transitions from, which is not considered in the table.
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7
Superradiant lasing

from a hot atom beam

In Chapter 6 we presented the superradiant lasing machine (SRLM) constructed at the Uni-
versity of Amsterdam, and here we will explore the physics of continuous superradiant lasing
within this machine using numerical simulations. The numerical model was originally de-
veloped to provide input for choosing the cavity parameters in Tab. 6.1 and determine the
output power and cavity pulling we can expect from the SRLM. General theoretical scalings
of output power, laser linewidth and pulling coefficients for a hot atomic beam system were
already presented in [86]. As such the simulations are used to explore the concrete regime of
the SRLM in detail, gaining independent estimates and investigating the impact of relevant
physical effects. These effects include relativistic Doppler shifts, the impact of a finite temper-
ature and the velocity selection scheme described in Sec. 6.4, the impact of stray light, and of
dynamic changes in cavity detuning. Some of these results are also presented in [84]. Finally,
some quantitative results are presented which characterize absorption and amplification in
the system for a wide range of atom flux, including below the lasing threshold.

7.1 Numerical model

The numerical model of the superradiant laser is an adaptation of the model of pulsed super-
radiance in the mK atom cloud, which was presented in Chapter 4. The biggest difference
is the atom source being a continuous beam rather than a cloud. The velocity of atoms is
assumed to be constant, based on initial Gaussian distributions radially (TR = 3.6 mK) and
the atomic beam velocity distribution along the propagation axis, x (Eq. 6.1 where we will
consider vpx = 400 m/s and 450 m/s). The atomic beam is modeled as a uniform flux through
a square with a size of 4W along the y and z axes, centered on the cavity mode, with the
cavity along z. The variation along y is important due to the Gaussian waist of the cavity,
and in [103, p. 35] it was investigated how far away in a cavity waist that atoms must be
before they could be neglected in a model of pulsed superradiance. This distance ultimately
depends on the cavity and power parameters, as the value of 2g(r(t))

√
n(t) along an atom’s

path determines if it can emit while it traverses the cavity mode. This means that in a regime
with higher flux and power than investigated here, atoms with a larger range of y values may
need to be considered. Quantitatively the atom flux, Φ, used in this chapter will be defined
as the flux only within the cavity waist radius along y, so that it is independent of the cutoff.
Along the z axis the cavity mode waist radius expands from 86 µm up to approximately 92
µm at the mirrors, 13.7 mm from the center. This would also cause a slight reduction in
coupling for atoms far along the z axis, but we neglect this variation as it is small and the
density is expected to be highest near z=0. Thus the exact positions along z in the model
are not important beyond the fact that the atoms are spread out across many wavelengths
and can still move along this wave, giving rise to the Doppler effect when interacting with
the cavity mode. Therefore the value of 4W along the z axis is arbitrary, but appropriate.
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The simulations exclude the pumping and velocity selection stages presented in Sec. 6.4. To
determine their impact, these stages are instead incorporated into the initial conditions of
some of the simulations. This is done by assuming that a certain fraction of the atoms start
in 3P1 mJ=0, if their velocities along the cavity axis are sufficiently slow, and the remaining
ones start in 1S0. The velocity distribution of the fast atoms is then changed so that 〈vz〉 = 3
m/s and Tz = 5 mK to qualitatively mimic the impact of the push beam. The impact of the
velocity shift magnitude will be investigated later, but these shifts are sufficient that the 1S0

atoms have a very small impact on the superradiant emission. The criterium distinguishing
the slow and fast atoms is |vz| < λvpx/4W , which is based on the results in [89], where atoms
moving further than half a wavelength along the cavity axis during transit in a superradiant
laser can disturb single-mode emission.

With these assumptions we only treat the states 1S0 and 3P1 mJ=0 in the model, and the
Hamiltonian is given by:

H = h̄ωca
†a+

N∑
j=1

h̄ωjeσ
j
ee +

Nf∑
k=1

h̄ωkff
†
kfk +

1

2
h̄η
(
ae−iωdt + a†eiωdt

)

+
N∑
j=1

h̄gj(rj)
(
σjge + σjeg

) (
a+ a†

)
+

Nf∑
k=1
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(
a+ a†

)(
fk + f †k

)
.

(7.1)

Using the method and notation of Chapter 2, the following equations were derived in a
reference frame fixed to the driving laser frequency ωd (which will generally be assumed to
be equal to ωc):
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(7.2)

7.1.1 Relativistic Doppler shifts

For atoms moving at hundreds of m/s, the effects of relativity become significant when we
are interested in even small shifts in frequency relative to the unperturbed resonance. If we
consider only the motion along the x axis (as vy and vz are two orders of magnitude lower
than vx), then the relativistic Doppler effect arises purely from time dilation. Time progresses
slower for a fast-moving atom in the lab (cavity) frame, red-shifting the resonance frequency
by νlab = ν0/γ, where γ is the Lorentz factor. This is known as the transverse Doppler shift.
It is accounted for in the atomic resonance frequencies via the detunings δjed of each shifted
atomic resonance with respect to the reference frame at ωd:

δjed = ωE/γj = ωE

√
1−

(
vjx/c

)2
− ωd = ωE

(√
1−

(
vjx/c

)2
− 1

)
− δdE . (7.3)

Fig. 7.1 shows the velocity distribution of vx according to Eq. 6.1 in panel (a) for two
different beam temperatures. Note these beam temperatures do not correspond directly to
oven temperatures due to the influence of the oven nozzle. The distributions are instead based
on measurements of the atomic beam under expected operating conditions. These velocity
distributions in turn result in the distributions of transverse Doppler shifts shown in panel
(b). Here δpe indicates the shift at the most probable vx.
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Figure 7.1: Velocity distribution (Eq. 6.1) and resulting transverse Doppler shifts (Eq. 7.3)
for two different beam temperatures. The shifts at vx = vpx are marked with vertical lines.

For atoms traveling at 400 m/s the shift is on the order of 400 Hz, but there is a significant
tail of Doppler shifts up to a few kHz because of how γ scales with velocity.

7.1.2 Lasing dynamics in the hot beam system

An illustration of atomic dynamics in a numerical simulation is shown in Fig. 7.2, here for a
flux of Φ = 1013 s−1. The atoms are represented by dots colored according to their state, and
here they start in 3P1 (red) if |vz| < λvpx/4W , otherwise 1S0 (blue). The atoms subsequently
change state depending on their trajectory through the cavity waist and velocity - the cavity
leaves a ”trail” of 1S0 atoms in the atomic beam, with a size along y that depends on the
cavity photon number.
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Figure 7.2: Simulation of atoms in the hot beam system as they traverse the cavity mode. The
atoms are color-coded according to their state. Red: 3P1, blue: 1S0, purple: mixed. Figure
adapted from [84].

A number of atoms (depending on the atom flux) are placed at x = −2.5W every tenth
timestep in the simulations, relative to the cavity center. To reach steady state, the atoms
must first propagate through the cavity, which takes on the order of 1 µs. In Eq. 7.2 the atoms
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will not emit into the cavity if the cavity field and atomic coherences are zero. Therefore we
set η = κ/

√
2 during the first 1 µs to mimic the effect of spontaneous emission (in steady state

with no atoms it would result in a cavity field population of 1/2, but a well-defined phase).
This initiates the dynamics and η is subsequently set to zero. More time is then needed for
the atom-cavity dynamics to reach steady state behavior - typically on the order of µs, but
very near the lasing threshold, it can take tens of µs. The steady state parameters can then
be determined from the subsequent dynamics. In simulations presented here, on the order
of 200 µs is typically evaluated. Furthermore the cavity detuning is generally chosen to be
δcE/2π = 100 kHz. A detuning of this magnitude enables us to determine the output power
near resonance simultaneously with an approximate cavity pulling coefficient. An example of
the behavior of the cavity output power during the first 100 µs after initiating a simulation
is shown in Fig. 7.3.
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Figure 7.3: Time evolution of the total cavity output power (and photon number) in a simula-
tion with Φ = 1013 s−1, vpx = 400 m/s and no velocity selection. During the first 1 µs, η > 0
to initiate the dynamics. Quantities such as output power are evaluated in steady state, e.g.
for t > 10 µs.

7.1.3 Atom group approximation

Throughout the simulations presented in this chapter, the atom grouping approximation
mentioned in Sec. 2.7 is used, with Npg = 100 atoms per group. In the continuous regime this
does not affect mean values systematically, but fluctuations in e.g. power and instantaneous
frequency over time scale with

√
Npg, as seen in Fig. 7.4. Continuous mean values are

evaluated over hundreds of µs after steady state is reached, so the random fluctuations over
time also increase the random fluctuations in the evaluated mean values slightly.
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Figure 7.4: Scaling of mean values and fluctuations with Npg in simulations during a time
interval of 190 µs for Φ = 1013 s−1, vpx = 400 m/s and no velocity selection. (a) Cavity
output power, (b) instantaneous lasing frequency. There is no systematic bias in the mean
values in the continuous regime, but fluctuations scale with

√
Npg.
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7.2 Performance of the SRLM

Simulations were run using the cavity parameters in Tab. 6.1 to determine the expected
output power from the SRLM. The results are presented in Fig. 7.5 in five different situations.
Two sets of simulations assume either of the velocity distributions in Fig. 7.1(a). Within
each set, one simulation assumes there is no velocity selection, with all atoms starting in 3P1.
Another simulation within each set assumes velocity selection is active, based on the criterium
|vz| < λvpx/4W . Finally, one additional simulation is included for vpx = 400 m/s, marked
V2. Here the simulations use the specific population and temperature distributions obtained
from the numerical simulations of velocity selection in Fig. 6.15, which may represent the
effect of velocity selection more accurately, rather than the simple cutoff criterium.
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Figure 7.5: The cavity output power for varying atom flux according to simulations of the
SRLM. Five different situations are investigated; the two velocity distributions in Fig. 7.1(a)
with and without velocity selection. Velocity selection increases the lasing threshold slightly,
and leads to a small reduction in output power. The lines show a moving mean with a span
of two points. Figure adapted from [84].

We see that the threshold atom flux is approximately 2.5 ·1012 s−1, depending on vpx. Con-
sidering that the density decreases for higher vpx, we have {3.71, 3.28} · 106 atoms within the
cavity waist for Φ = 1013 s−1 and vpx = {400, 450} m/s, respectively. Accounting for this,
the threshold is reached between 8 and 8.5 ·105 atoms within the cavity waist, with a much
smaller dependency on vpx for the atom number threshold.

In the simulations we see that the lasing threshold is slightly increased by the velocity selection
scheme based on the cutoff criterium, and well above threshold the output power is lowered
on the order of 10%. This is largely due to the reduction of the excited population. In the
two cases vpx = {400, 450} m/s, this velocity selection criterium results in {17%, 13%} of
atoms starting in 1S0. The drop in output power is not quite as high because the atoms
with largest vz also emit less efficiently when interacting with the cavity field, which has a
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frequency closer to the resonance of the slow atoms. In the V2 case, 30% of atoms start in
1S0, and the velocity distribution is not sharply cut off, resulting in a higher threshold and
lower output power.

Once the threshold is reached, the output power increases rapidly. For e.g. vpx = 400 m/s
and with no velocity selection, the output power is zero for Φ = 2.1 · 1012 s−1 but increases
to 5 nW for Φ = 2.15 · 1012 s−1, which is already an easily detectable power. At Φ = 7 · 1012

s−1 the output power reaches 1 µW. Beyond this flux the power scales approximately linearly
with the atom flux, as each atom emits on the order of one photon.

The cavity pulling characteristics are shown in Fig. 7.6 for a cavity detuning of δcE = 2 π · 100
kHz and the same five situations as in Fig. 7.5.
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• vpx = 400 m/s
• vpx = 400 m/s + velocity selection
• vpx = 400 m/s + velocity selection (V2)
• vpx = 450 m/s
• vpx = 450 m/s + velocity selection
  vpx = 400 m/s transverse Doppler shift
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Figure 7.6: Dependency of the lasing frequency shift on the atom flux for the same five
situations as in Fig. 7.5. The cavity pulling coefficient can be considered approximately
relative to the transverse Doppler shift for a given vpx (bottom lines). The simulations predict
cpull on the order of 0.03 to 0.06 and an 10-25% improvement from velocity selection. Lines
show a moving mean with span of two points. Figure adapted from [84].

First it is worth considering the impact of the relativistic Doppler shifts. The fact that the
atomic resonance frequencies are distributed according to the asymmetric distribution in Fig.
7.1(b) means that it is non-trivial at which cavity resonance frequency, ωc, that the emitted
lasing frequency ωL equals ωc. This should occur for a detuning on the order of the Doppler
shift at vx = vpx, δpe , of -400 to -500 Hz - possibly shifted somewhat due to the peak at smaller
values and large tail. In this situation the frequency where ωL = ωc = ωLc provides the most
logical reference point for defining the cavity pulling coefficient, instead of the unperturbed
atomic resonance (ωE):

cpull =
ωL − ωLc
ωc − ωLc

=
δL − δ0
δcE − δ0

, (7.4)
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defining δ0 = ωLc − ωE as the shift in ensemble resonance frequency due to the transverse
Doppler shifts. Since we consider a cavity detuning of 100 kHz here, two orders of magnitude
greater than the shifts, the denominator can be approximated by the cavity detuning, δcE ,
as in the usual definition. But the shift in the ensemble resonance frequency caused by the
Doppler shifts is not insignificant compared to δL, so to obtain an approximate expression
that does not rely on numerically determining δ0, δ

p
e can be used in its place. These values

are indicated by the dashed green lines at the bottom of the figure. The value of cpull is then
given by the distance between these lines and the curves for the corresponding vpx.

We see that without velocity selection, the cavity pulling coefficients are on the order of
0.05 around the lasing threshold, with a maximum a bit above the threshold, and then a
subsequent decrease to about 0.043 within the flux range considered here. Extrema in the
cavity pulling coefficient are experimentally beneficial because they imply a local immunity
to experimental fluctuations - at the cavity pulling maximum, small fluctuations in atom flux
would not disturb the lasing frequency to first order, as it would elsewhere.

Such maxima are also visible for the curves with velocity selection included. The cutoff-
based velocity selection reduces cavity pulling notably by 10-25 %, with cpull in the range of
0.031 to 0.044 and 0.036 to 0.047 for vpx of 400 and 450 m/s, respectively. In the criterium
|vz| < λvpx/4W , a higher vpx implies that the velocity selection scheme will have a smaller
impact, as more atoms fulfill the criterium at a given Tz. The velocity selection based on
simulated distributions, V2, shows a larger reduction in cavity pulling than the cutoff for low
atom flux, but smaller reduction above Φ = 5 ·1012 s−1. This is due to the difference between
the 2 mK velocity distribution from Fig. 6.15(d) used in V2 and the 3.6 mK distribution
with a cutoff.

As we saw in Fig. 7.5 the emitted output power well above threshold is still at easily detectable
levels in all cases. Therefore a more aggressive velocity selection criterium could also be set
than in the examples shown here, if a high flux is obtained, to improve cavity pulling further
at the expense of the output power.
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7.2.1 Velocity selection requirements

In Sec. 6.4 we saw that shifting the velocity of atoms on the order of several m/s is realistic, so
in this section we will investigate how the velocity shift affects the superradiant lasing signal.
Here we assume Φ = 1013 s−1, vpx = 400 m/s, and that all atoms for which |vz| < λvpx/4W
is not obeyed (17%) start in 1S0. For these 1S0 atoms, vz is then fixed to one value at the
beginning of a simulation to determine the impact of the different velocity classes. The results
are shown in Fig. 7.7 for different velocity shifts. As other simulations with velocity selection
also include a spread in the shifted velocities of Tz = 5 mK, a data point at vshift = 3 m/s
(green) is also included for this case. This has a miniscule impact compared to the case with
a uniform shift of this magnitude.
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Figure 7.7: Output power (a) and lasing frequency shift at 100 kHz cavity detuning (b) as
function of velocity shift of rejected atoms in a velocity selection scheme. The atomic beam
paramters are Φ = 1013 s−1 and vpx = 400 m/s. Dashed horizontal lines show the values for
vshift = 30 m/s for reference. Dashed vertical lines are based on Eq. 6.7. For the green data
points at vshift = 3 m/s, Tz = 5 mK for the shifted atoms.

We see that the output power is reduced due to absorption when the velocity shift is shifted
less than 3 m/s. The shift in lasing frequency is sensitive to the velocity shifts over a broader
range due to dispersive interactions. For a velocity shift of 3 m/s the deviation is less than
5 % of the frequency shift for 30 m/s. For comparison Eq. 6.7 suggests the velocity shift
should be greater than 2.7 m/s given the single side output power of 730 nW and the SRLM
cavity parameters.
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7.2.2 Variations with atom temperature

The fact that velocity selection reduces cavity pulling is a result of the finite temperature, so
reducing the temperature can similarly be advantageous. This is depicted in Fig. 7.8, where
the temperature along the cavity axis is varied, with Φ = 1013 s−1, vpx = 400 m/s and no
velocity selection scheme. The green lines indicate Tz = 3.6 mK, which was achieved during
optimization of the SRLM and is used in the other simulations.
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Figure 7.8: Dependency of output power (a) and lasing frequency shift (b) on the atom
temperature Tz along the cavity axis. The atomic beam paramters are Φ = 1013 s−1 and
vpx = 400 m/s. Dashed vertical lines indicate Tz = 3.6 mK as used in other simulations.

We find that the output power is sensitive to the temperature down to about 1 mK, below
which it remains steady. At this point the Doppler shifts begin to become less significant
compared to the Rabi frequency in this output power regime (again considering Eq. 6.7). In
panel (b) we see that the cavity pulling can be influenced by the temperature over a wider
range down to about 10 µK, where cavity pulling has reduced to about 1/3 of its value at 3.6
mK (taking into account the relativistic Doppler shift). This suggests cavity pulling may be
reduced significantly with an aggressive velocity selection scheme that leaves only the very
slowest atoms, if the atom flux is high enough that lasing can still be maintained.

In the opposite regime above 8-10 mK, the standard deviations of output power and instan-
taneous lasing frequency increase significantly. Here oscillations in the output power become
pronounced. A similar transition from stable to bistable superradiant lasing was found in
[89], where the atomic beam was slanted with respect to the cavity axis. The bistable regime
emerged when the atoms traversed more than half a wavelength along the cavity axis during
their transit through the waist. For a high enough temperature in the SRLM, most atoms
will similarly fulfill this criterium. In [87] similar transitions to a multi-component regime
were found for a thermal distribution, which is more similar to our system. In Fig. 7.9 the
dynamics are illustrated for Tz = 15 mK, showing power oscillations and multiple frequency
components arising in the spectrum, similar to the multi-component superradiant (MCSR)
regime found in [87].
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Figure 7.9: Multi-component lasing for Tz = 15 mK and vpx = 400 m/s. (a) The output
power shows large oscillations with a frequency of 1.66 MHz. (b) Normalized power spectral
density (NPSD) in a spectrogram with a window width of 392 ns, showing the frequency
components in the emitted light. (c) The power spectrum after 200 µs. The dashed curve
shows a normalized Doppler shift distribution at 15 mK for comparison. (d) The individual
peaks of panel (c), green curves indicate the 5 kHz Lorentzian Fourier width for comparison.

In this regime there is still a central component in the spectrum (panel (c)) from the atoms
with lowest vz, peaked 18.4 kHz from the atom transition frequency (corresponding to the
point in Fig. 7.8(b)). Furthermore there are two peaks at ±1.66 MHz from the central
component, and another pair with slightly more than twice the separation. The five peaks
in Fig. 7.8(c) are shown in more detail in panel (d).

We can consider how the observed splitting relates to relevant frequencies in the system.
Two frequencies which are of the same order of magnitude are the Rabi frequency, 2g

√
n/2π,

and the transit time broadening, ΓT /2π = 2vpx/π
√
πW . This definition of ΓT is based on

averaging over the transverse Gaussian profiles experienced by different atoms [85, p. 349]
[149, p. 1663]. As it accounts for this, it is a bit lower than the Doppler shift required to
traverse a full wavelength during transit through the center of the cavity waist, vpx/2W = 2.3
MHz. Determining the exact scaling of the splitting frequencies would require simulations in
several different regimes, and here we will consider just a few different examples. In one other
case for Tz = 10 mK and vpx = 350 m/s, the dynamics are qualitatively similar to in Fig. 7.9
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but with the five peak frequencies at δL/2π = {−3.53,−1.76, 0.0145, 1.79, 3.56} MHz, giving
a spacing of 1.77 MHz.

For the Rabi frequency, n oscillates between almost 0 and 104 in the 15 mK case, so a
Rabi frequency may be attributed using 〈

√
n〉 = 86 and the maximum coupling g0, giving

a maximum average Rabi frequency of 1.94 MHz. For the 10 mK case we get 2.32 MHz.
These frequencies are not related to the found splittings in an obvious way, but there is at
least qualitative agreement of them increasing with the Rabi frequency. For the transit time
broadening we get ΓT /2π = 1.67 MHz for the 15 mK example, but for the 10 mK case we
get ΓT /2π = 1.46 MHz, indicating that the splittings do not scale with ΓT .

We can also consider a case for Tz = 15 mK and a slower atomic beam with vpx = 350 m/s.
In this regime the atoms traverse a bigger fraction of a wavelength during transit, and the
lasing dynamics become chaotic, as seen in Fig. 7.10.
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Figure 7.10: Chaotic lasing for Tz = 15 mK and vpx = 350 m/s. (a) The output power shows
large, irregular fluctuations. (b) Spectrogram with a window width of 392 ns. (c) The power
spectrum (light blue background) and its renormalized moving mean with a span of 100 kHz
(dark blue) after 200 µs. The dashed curve shows a normalized Doppler shift distribution at
15 mK for comparison.

The mean output power is just 3 % higher than for vpx = 400 m/s, but the power fluctuations
are bigger. In the spectrogram in panel (b) we see there are jumps between an ”odd” regime
with one main peak and sidebands like in Fig. 7.9 and another ”even” regime with no central
peak, but an even number of peaks symmetric around δL ≈ 0. The odd configuration has
peaks near approximately δL/2π = {−1.47, 0.12, 1.58} MHz, giving a span of 1.5 MHz, while
the even configuration has peaks near {−0.79, 0.81} MHz, giving a span of 1.6 MHz. In [87,
p. 12] such a chaotic, unstable regime is found between an odd regime for relatively low
Doppler widths within MCSR, and even regime for larger widths.

Finally, we can also consider the behavior closer to the lasing threshold. In another simulation
for the parameters in Fig. 7.9 but with half the atom flux, the main peak is on the order of
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104 times larger than the sidebands, which also have a smaller splitting of 0.9 MHz. Here
〈
√
n〉 = 44, giving 2g0

√
n/2π = 980 kHz, in agreement with the splitting scaling with g

√
n.

If we think of each of the peaks as originating from atoms within certain velocity ranges and
neglect interactions between them, the atoms contributing the sidebands require a higher
atom flux before reaching their lasing threshold than the ones contributing the main peak,
because they are less abundant in the thermal distribution. From this we can expect regular
sidebands to disappear near the lasing threshold of the whole system, especially at lower
temperatures.

7.2.3 Impact of decoherence from stray light

Some stray light will inevitably reach the atoms within the cavity, and our main concern is
scattered light from the transverse cooling beams and the 461 nm beam in Stage 2 of the
pumping scheme. Considering this light as an incoherent pumping source from |g〉 =1S0 to
|c〉 =1P1, near the angular transition frequency ωC , we may approximate the transverse decay
rate on the lasing transition γT as half the pumping rate w, using equations from Sec. 2.3:

γT
γeg
≈ 1

2
+

12πc2I

h̄ω3
Cγeg

=
1

2
+ 10

W−1

m−2
· I. (7.5)

This assumes that all the stray light reaching the atoms in the cavity has ideal polarization
and frequency to drive one of the 1P1 Zeeman transitions. Any significant detuning relative to
γcg/2π = 30 MHz and any polarization imperfections would reduce it further. The simulated
impact of an increase in γT on the superradiant laser emission is shown in Fig. 7.11.
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Figure 7.11: Dependency of output power (a) and lasing frequency shift (b) on the transverse
decay rate γT in units of γeg = 2π· 7.5 kHz. Horizontal lines mark the ideal values with no
additional decoherence. Vertical lines indicate where γT = 2g0

√
n (using the photon number

for γT = γeg/2).

The drop in output power and increase in cavity pulling starts to become significant near
γT ≈ 100γeg, for an intensity on the order of 1 W/m2. One order of magnitude above, the
power drops to zero. In general the impact of decoherence will be significant when it is on
the order of the Rabi frequency of the atom-cavity interaction, 2g

√
n, so for e.g. a lower

atom flux, less decoherence can be tolerated. If we consider the example in Sec. 6.4.1, we can
assume 30 % of atoms (the rejected 1S0 population) each scatter 500 photons from the push
beam. As a crude approximation we can then consider this as a point source located 5 mm
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from the cavity. For an atom flux of 1013 s−1 the scattered power is then 650 µW, giving 2.3
W/m2 at the cavity location, which would severely impact the performance. However this
estimate is extremely uncertain, given the high density of the atomic beam, which can cause
many internal scattering events. We can consider the mean free path of a 461 nm photon, for
which the scattering cross section [20, p. 142] is 10−13 m−2, again assuming ideal polarization
and detuning. If the atom flux is confined within 1/4 of the cavity length, we then get an
atom density of 1017 m−3 and assuming 30% are in 1S0, the mean-free path is 300 µm. As
such photons may experience several scattering events on the way to the cavity, possibly
protecting the cavity atoms to a degree, and highlighting the big uncertainty of these simple
estimates.

7.2.4 Expected linewidth

In simulations of the SRLM, the linewidth is Fourier-limited to 5 Hz after 200 ms, with
no sign of broadening occurring within the numerical model. As described in Sec. 2.6.3,
the linewidth may be broadened further due to the neglected spontaneous emission into the
cavity mode. The simple estimate Cγeg yields a linewidth of 9.4 Hz. For vpx = {400, 450}m/s
we get δDτ = {1.06, 1.20}, using the notation in [86, p. 3]. Here an increase in linewidth
of about 30 to 40% beyond Cγeg is seen for such parameters. Further cooling or velocity
selection could improve this. The generalized Schawlow-Townes limit gives a lower limit of
0.3 Hz for Φ = 1013 s−1, vpx = 400 m/s and assuming a perfect inversion. This limit only
exceeds Cγeg for output powers below 60 nW, very near the lasing threshold.

7.3 Sensitivity to cavity fluctuations

Here we will consider the sensitivity of the superradiant laser to changes in the cavity res-
onance frequency more generally. First we will consider the case where the cavity detuning
is fixed, but at an arbitrary value. The variation of output power and lasing frequency with
the cavity detuning in this regime is shown in Fig. 7.12 for Φ = 1013 s−1, vpx = 400 m/s and
with no velocity selection.
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Figure 7.12: Dependency of output power (a) and lasing frequency shift δL (b) on the cavity
detuning, δcE. The frequency axes are offset by the shift in ensemble resonance of δ0/2π = 520
Hz due to the relativistic Doppler shifts. The detuning of 100 kHz used in other simulations is
highlighted by the vertical green dashed line, and the vertical purple long dashed line indicates
the magnitude of the cavity linewidth. The horizontal lines indicate the power and pulling
coefficient for small detunings.
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As seen in panel (a), the cavity output power is insensitive to changes in the cavity detuning
that are small compared to the cavity linewidth of 53.9 MHz. From the data set in panel (b)
we find δ0/2π = -520 Hz for these parameters, somewhat larger than the transverse Doppler
shift δpe/2π = -387 Hz (seen in Fig. 7.1(b)) at the most probable vx. This may be expected
given the asymmetry of the distribution, and the variations in how the transit time matches
1/2g

√
n for the different velocity classes. The detuning axes in Fig. 7.12 are therefore shifted

by δ0 to determine the cavity pulling coefficient over a wide range of cavity detunings, shown
in panel (b). The pulling coefficient remains constant until the cavity detuning is on the order
of the cavity linewidth, though the variation becomes apparent sooner than the variation in
power. For large detunings the lasing frequency becomes even less sensitive to changes.
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Figure 7.13: Standard deviation of the instan-
taneous frequency at different cavity detunings
with respect to the ensemble resonance fre-
quency. Vertical lines mark frequencies as in
Fig. 7.12, and the blue dashed line highlights
a linear regime.

Frequency fluctuations vary significantly de-
pending on the cavity detuning. This de-
pendency is shown in Fig. 7.13 where we
find a range of frequencies where the fluc-
tuations, characterized by the standard de-
viation σinst in the instantaneous frequency,
increase linearly with the cavity detuning.
This occurs because of the random fluctu-
ations in the atomic distribution over time,
which cause small fluctuations in the cav-
ity pulling coefficient. When the cavity is
near resonance with the ensemble, a change
in cpull has little impact on the lasing fre-
quency, but the larger the cavity detuning
is, the more the lasing frequency will change
due to a change in cpull. Finally, these fluc-
tuations also scale with the fluctuations in
the ensemble distribution, which is affected
by the atom group approximation as we saw
in Fig. 7.4. This approximation has been
accounted for in Fig. 7.13 by downscaling
the fluctuations by a factor 10.

The linear relation does not hold for cav-
ity detunings on the order of the cavity
linewidth, which is to be expected as we saw
that the cavity pulling coefficient also varies on this scale. There are also deviations below
105 Hz and an asymmetry with respect to |δcE − δ0| = 0, in particular there is a minimum
near δcE/2π = 5.5 kHz. At this cavity detuning the lasing frequency shift is δL/2π = -250
Hz, equal to the most probable transverse Doppler shift in Fig. 7.1(b). The minimum in
fluctuations at this detuning is expected to arise from a combination of cavity pulling and
the shape of the transverse Doppler shift distribution.

The nonlinear variation in cavity pulling or the increase of frequency fluctuations with de-
tuning can in principle both be used for locking the cavity to the atomic transition. However
a higher sensitivity may be obtained by beating the SRL output with light locked to the
resonance of another mode of the cavity. Since the SRL output will approximately stay at
the atom transition frequency if the cavity detuning changes, such a beat signal would change
frequency approximately by the same amount as any shift in cavity detuning.
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7.3.1 Dynamic cavity pulling

Here we will investigate the impact of dynamic perturbations to the cavity resonance fre-
quency, as this can be very different from the steady-state behavior. We will use the method
described in Sec. 2.6.4, subjecting the system to sudden steps in cavity detuning and record
the response of the instantaneous frequency. These steps are jumps away from zero detun-
ing. The response is used to calculate the gain curves shown in Fig. 7.14, which can be
interpreted as frequency-dependent cavity pulling coefficients. Below 100 kHz the response
is approximately flat and corresponds to the static pulling coefficients (δL− δ0)/(δcE − δ0) in
Fig. 7.12(b).
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Figure 7.14: Frequency-dependent response of the instantaneous lasing frequency to instant
jumps in the cavity detuning away from 0. The response is approximately flat below 100 kHz,
corresponding to the static cavity pulling coefficient. Some characteristic frequencies in this
regime are marked by vertical dashed lines. Tz = 3.6 mK except for the curve marked with
Tz = 0 K, for comparison.

For small jump sizes, which are most likely to be encountered in the setup, the response
curves are relatively smooth and increase from 4 ·10−2 to unity in the range of 1 to 100 MHz.
This implies that very rapid changes in the cavity detuning would not be suppressed in the
laser spectrum. In practice, the macroscopic motion of cavity mirrors is typically restricted
below the MHz range. This motion may be caused by noise in the mirror piezo or mechanical
disturbances, but will fall within the frequency range with significant suppression. There
are also many sources of noise within mirrors and coatings themselves (see e.g. [150, Chap.
3]), for which the PSD generally decreases with frequency and as such these sources are also
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suppressed in influencing the laser frequency. Therefore the most important result of Fig.
7.14 is that cavity pulling is more or less constant up to fluctuations of ∼1 MHz in this
system.

For steps on the order of the cavity linewidth the curves become less smooth, and a peak
forms at the cavity linewidth, showing that fluctuations on this order would actually be
amplified in the lasing frequency shift, if they occured on the timescale of the cavity lifetime.
However this would require very extreme motion of the mirrors, unexpected in the physical
setup.

Another dip feature appears in the curves near both the 3.6 mK Doppler width of the system
and the Rabi frequencies, which are marked in the figure. Since the power becomes lower at
large detunings as we saw in Fig. 7.12(a), the final Rabi frequency also lowers after these
jumps. Thus the red vertical dashed line indicates the Rabi frequency for the 10 kHz jump,
and the purple one indicates the smallest Rabi frequency for the 50 MHz jump.

One curve is included with a jump size of 50 MHz, but a temperature of 0 K for comparison.
Here the power and Rabi frequency are a bit higher (2.5 MHz) than in the 3.6 mK case. The
dip right below the Rabi frequency remains, but becomes less prominent. Additionally the
cavity pulling is lowered for frequencies below the 3.6 mK Doppler width, instead approaching
the steady-state value near 0.01 that we found for the lowest temperatures in Fig. 7.8(b).

Noise is visible near the Rabi frequency in the curves, and also at high frequencies when the
jump size is small. This is introduced by the random fluctuations in the atom distribution
over time, which affect the instantaneous frequency separately from the jump in detuning.
As such the noise is not representative of actual changes in the response, but is simply a
result of the other random effects in a simulation which are also causing fluctuations in the
lasing frequency. This noise is further increased due to the atom group approximation and
also increases with the analysis window length (20 µs).

7.4 Absorption and driven lasing

Realizing superradiant lasing requires a sufficiently high atom flux to reach threshold and
efficient atom pumping and cooling. Coupling resonant light into the cavity makes it possible
to measure quantities that vary with the atom flux far below the threshold, which is useful
for optimization. One tool is the absorption, where the atoms entering the cavity are left in
1S0 and the output power is monitored. A second tool is the amplification of light by 3P1

atoms. The scalings of these quantities relative to the cavity input power are shown in Fig.
7.15 for an input power of 1 nW, vpx = 400 m/s and no velocity selection. Here the atom
group approximation is omitted for Φ ≤ 1012 s−1.
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Figure 7.15: Possible signal amplitudes for (a) absorption measurements with atoms starting
in 1S0, or (b) amplification measurements with atoms starting in 3P1. Tz = 3.6 mK
(blue circles) and 5 mK (red diamonds in panel (a)). The cavity input power is 1 nW, and
vpx = 400 m/s. The blue dashed line highlights the linear trend below the lasing threshold,
and vertical green line indicates the threshold flux from Fig. 7.5 with no driving laser.

Far below the lasing threshold (indicated by vertical green lines), the potential signal am-
plitude is very low. Experimentally such signals may be detected by frequency-modulating
some of the pumping stages to periodically shelve some of the atoms and vary the 1S0 or 3P1

populations. This would give an oscillating fingerprint in the output power which can more
easily be distinguished from the constant background, e.g. on a spectrum analyzer.

The potential signal amplitudes are similar with either method far below the lasing threshold,
but amplification measurements are much more sensitive near the threshold. As seen in panel
(b), the power can increase by orders of magnitude within one magnitude in flux. On the
other hand, the absorption signal becomes less sensitive to the atom flux, as seen in panel (a).
These behaviors are also dependent on the cavity input power - amplifying 1 nW by a factor
103 yields an output power consistent with Fig. 7.5 above the threshold, but 1 µW cannot
be amplified to 1 mW as this would require far more energy than what can be released from
the 3P1-

1S0 transition into the cavity with these atom fluxes. On the other hand, a lower
input power in an absorption measurement can result in complete absorption for a lower flux,
making the signal insensitive at higher ranges of flux. With that in mind, a higher Pin is
generally desirable if the sensitivity can be preserved, as this allows for a larger total signal
amplitude.

As shown in Fig. 7.15(a), the signals are also sensitive to other parameters such as the
temperature along the cavity axis - for Tz = 5 mK, the absorption is reduced on the order
of 10 % below threshold compared to 3.6 mK. As a result they can also be used to optimize
the transverse cooling stage, and the amplification will be very sensitive to the efficiency of
the later pumping stages as well, allowing for their optimization.
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from a cold atom beam

In this chapter we will use numerical simulations to explore continuous superradiant lasing
in a potential system utilizing an ultracold atomic beam. The model and many of the results
in this chapter have also been presented in [84]. The atom source is based on the cold atomic
beam realized in [98], for which relevant parameters are listed in Table 8.1.

This architecture based on a cold atomic beam was initially considered during the design stage
of the SRLM presented in Chapter 6, but the hot beam system proved to be advantageous.
For comparison the flux in this cold beam system is about five orders of magnitude lower, the
propagation velocities are over three orders of magnitude lower, and the temperature is in the
low µK regime. The experimental setup required for generating such an atomic beam is also
much more complex than the hot atomic beam. However the slow propagation velocity makes
the relativistic Doppler shifts encountered in the hot beam system insignificant, and we also
saw in Sec. 7.2.2 that the mK temperature is a limiting factor in reducing cavity pulling in
the system. Furthermore the slow propagation velocities allow for repumping atoms within
the cavity mode, such that each atom may emit multiple photons during transit.

Even though the hot beam system is advantageous for the kHz-wide 1S0-
3P1 transition in

many aspects, realizing superradiant lasing on significantly narrower transitions with a hot
beam requires unfeasible atom fluxes to reach lasing threshold. Therefore the physics and
challenges of superradiant lasing using a cold atomic beam are not only of interest in the
design of the SRLM, but also more generally for schemes using very narrow transitions.

Many of the behaviors in earlier chapters also apply to the cold beam system. At sufficiently
high temperatures, multicomponent lasing can arise as for the repumped cloud in Chap. 5
and the hot beam system in Sec. 7.2.2. Variations in cavity pulling with cavity detuning
variations in Sec. 7.3 similarly carry over qualitatively, even though the exact quantities are
different. We will not go into detail with these aspects again, but instead focus on new effects
appearing in the cold beam system.

Atom flux Φ 3.25(14) · 107 s−1

Axial temperature Tx 29(2) µK

Radial temperature TR 0.89(4) µK

Mean propagation velocity vx 8.4(4) cm/s

Radial density parameter σR 23.3(4) µm

Radial trapping frequency ωt 2π · 185(10) Hz

Table 8.1: Parameters of the ultracold atomic beam source reported in [98] relevant for the
simulations of continuous superradiant lasing. We will also consider higher atom fluxes, as
further upgrades to the setup have made up to 3 · 108 s−1 realistic [151].

129
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The system is illustrated in Fig. 8.1, looking along the cavity axis in panel (a), and the
repumping axis in (b). Atoms arrive from the left, and it is assumed that they are shelved
in the long-lived state 3P0. When they arrive within the cavity waist, they are continuously
repumped to 3P1 mJ=0. This is done using the same transitions as in previous chapters,
with a configuration of magnetic field and pump lasers similar to in Stage 3 of Fig. 6.13,
but including also an 689 nm laser. The concrete schemes for the cold beam model here are
illustrated in Fig. 8.1(c) and (d) for the shelving region and lasing region with continuous
pumping, respectively. The atoms tend to eventually propagate away from the cavity region
due to heating caused by repumping. The assumed cavity parameters are given in Table
8.2, where the waist size is chosen to ensure a good overlap with the atomic beam, and the
linewidth is chosen to ensure a lasing threshold below the experimentally realized atom flux.
The length is chosen to be comparable to the cavity in the hot beam machine. While a
shorter length on the order of the atomic beam width would allow for better performance
in simulations, it would also lead to technical drawbacks such as larger FSR and increased
sensitivity to e.g. mirror fluctuations and piezo noise.
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Figure 8.1: Illustration of the cold beam system for an atom flux of 108 s−1. The spatial
distribution of atoms is shown in (a) and (b). The atoms are color-coded by their state
according to (c) and (d), without the variations in gray. The shelving scheme is shown in
(c), and the repumping scheme within the lasing region is shown in (d). Adapted from [84].
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Atom-cavity coupling g0/2π 20.29 kHz

Length L 25 mm

Linewidth (FWHM) κ/2π 20 MHz

Purcell rate (4g20/κ)/2π 82.33 Hz

Single-atom cooperativity C 1.103 ·10−2

Waist radius W 50 µm

Table 8.2: Assumed parameters of the cavity in the cold beam superradiance simulations. The
Purcell rate offers a simple estimate of the potential laser linewidth (see Sec. 2.6.3).

8.1 Numerical model

Equations are derived for the cavity field and atomic states, using the methods in Chapter
2. Here we will drop angle brackets and use the same indices as in Sec. 6.4 to refer to the
atomic states which are involved:

1S0: g, 3P0: n, 3P1: (i, e, u), 3S1: (x, y, z), 3P2: (p, q, r, s, t).

The Hamiltonian for the cold beam system describes the coherent dynamics involving the
atom-cavity interaction at rates gj , a driving laser at rate η, and filter cavities for calculating
the spectrum. In addition to |g〉 and |e〉, it also includes the states |i〉 and |x〉 for which the
pumping interactions are treated coherently (with Rabi frequencies χjli from |g〉-|i〉 and χjlx
from |i〉-|x〉):

H = h̄ωca
†a+

N∑
j=1

h̄ωjeσ
j
ee + h̄ωji σ

j
ii + h̄ωjxσ

j
xx +

Nf∑
k=1

h̄ωkff
†
kfk + h̄

η

2

(
ae−iωdt + a†eiωdt

)

+

N∑
j=1

h̄
χjli
2

(
σjgi + σjig

)(
eiklirj−iωlit + cc.

)
+

N∑
j=1

h̄
χjlx
2

(
σjix + σjxi

)(
eiklxrj−iωlxt + cc.

)

+
N∑
j=1

h̄gj(rj)
(
σjge + σjeg

) (
a+ a†

)
+

Nf∑
k=1

h̄gf

(
a+ a†

)(
fk + f †k

)
.

(8.1)
Here ωli and ωlx are the laser frequencies, and we use notation such as klirj for the dot
product of the laser wavevector with the atomic position vector. From this Hamiltonian
we can start by finding the time evolution of the expectation value of the filter cavity field
annihilation operators, fk:

ḟk = −iδkfEfk − iGa, (8.2)

and the dynamics for the cavity field (including dissipation at the rate κ):

ȧ = −
(
iδcE +

κ

2

)
a− iη

2
eiδdEt − i

N∑
j=1

gjσjge. (8.3)

The detunings are relative to the unperturbed atomic lasing transition frequency, ωE , which
is chosen as the rotating frame. ȧ couples to the atomic coherences σjge. These, along with the
other atomic coherences and populations, are treated within the stochastic master equation
(SME) approach, as described in Sec. 2.2. We will continue to use σ-operator notation for the

stochastic values (note
〈
ρjeg
〉

=
〈
σjge
〉

). Within the SME framework e.g. σjge and σjee do not

decay continually, but instead have a probability within a time interval of pj(dt) = σjeeγgedt
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to make a quantum jump to |g〉. This would lead to σjgg = 1 and all other populations and
coherences being 0. In the time intervals where this does not occur, σjge evolves according to:

σ̇jge =− iδjeEσ
j
ge + igja

(
σjee − σjgg

)
+ i

χjli
2
σjiee

−iklirj+iδliI t (8.4)

+ σjge

[
−γeg

(
1

2
− σjee

)
+ γegσ

j
ii + γxiσ

j
xx

]
.

The atomic frequency shifts δjeE are generally 0, as there are no significant shifts in the lasing
transition which are not accounted for by the coherent dynamics. δliI = 0 is the laser detuning
from the Zeeman-shifted atomic transition frequency. The lower term is a renormalization
from the SME. These equations for σ̇jge are eventually coupled to equations for the other
populations and coherences. For the states treated with coherences, we get:

σ̇jgi = igjσjeia+ i
χjli
2

(
σjii − σ

j
gg

)
e−iklirj+iδliI t − i

χjlx
2
σjgxe

iklxrj−iδlxX t (8.5)

+ σjgi

[
γegσ

j
ee − γig

(
1

2
− σjii

)
+ γxiσ

j
xx

]

σ̇jix = i
χjli
2
σjgxe

iklirj−iδliI t + i
χjlx
2

(
σjxx − σ

j
ii

)
e−iklxrj+iδlxX t (8.6)

+ σjix
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γegσ
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(
1

2
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)
− γxi

(
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2
− σjxx

)]

σ̇jgx = igjσjexa+ i
χjli
2
σjixe

−iklirj+iδliI t − i
χjlx
2
σjgie

−iklxrj+iδlxX t (8.7)

+ σjgx
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γegσ
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χjlx
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σjexe
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For the four related populations we get:

σ̇jgg = −igj
(
σjgea

† − σjega
)
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χjli
2
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σjgie

iklirj−iδliI t − σjige
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(8.10)
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The decays (γ) and incoherent pumping rates (w) which determine the probability of quantum
jumps into and out of these states correspond to rate equations given by:

σ̇jgg = γeg

(
σjii + σjee + σjuu

)
(8.14)

σ̇jee = −γegσjee +
γxe
2

(
σjxx + σjzz

)
(8.15)

σ̇jii = −γigσjii +
γxi
2

(
σjxx + σjyy

)
(8.16)

σ̇jxx = wjnxσ
j
nn + wjpxσ

j
pp + wjrxσ

j
rr − γxσjxx. (8.17)

Here γx with a single subscript denotes the total decay rate from |x〉. All other states are
treated neglecting coherences, using rate equations to determine the probabilities of discrete
jumps both from decays and pumping laters. For |y〉 and |z〉 of 3P1 we get:

σ̇jyy = wjqyσ
j
qq + wjsyσ

j
ss − γyσjyy (8.18)

σ̇jzz = wjnzσ
j
nn + wjuzσ

j
uu + wjrzσ

j
rr + wtzσ

j
tt − γzσjzz. (8.19)

For the remaining Zeeman levels of 3P0,
3P2, mJ=1 of 3P1, we get:

σ̇jnn =− wjnxσjnn − wjnzσjnn + γxn
(
σjxx + σjyy + σjzz

)
(8.20)

σ̇jpp =− wjpxσjpp +
6

10
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j
xx (8.21)
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10
γxp
(
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(8.22)
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10
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(8.23)

σ̇jss =− wjsyσjss +
3

10
γxp
(
σjyy + σjzz

)
(8.24)

σ̇jtt =− wjtzσ
j
tt +

6

10
γxpσ

j
zz (8.25)

σ̇juu =− wjuzσjuu − γegσjuu +
γxu
2

(
σjyy + σjzz

)
. (8.26)

Parameters which we will generally use in the simulations are listed in Table 8.3. It takes a
couple of milliseconds to reach steady state in simulations, so results are evaluated from the
last millisecond of 5 ms simulations.

Magnetic field strength B 47.6 µT

Zeeman splitting of 3P1 (mJ=0 to mJ=1) 1 MHz

689 nm pump Rabi frequency χli/2π 100 kHz

688 nm pump Rabi frequency χlx/2π 1 MHz

679 nm pump rate (max) w0
nx/2π 1.73 MHz

707 nm pump rate (max)∗ 5 MHz

689 nm pump detuning from 1S0-
3P1 mJ=-1 0

688, 679 and 707 nm pump detuning from unperturbed transitions 0

688 and 689 nm beam shape Uniform

679 and 707 nm waist radius along x-axis Wp 40 µm

Table 8.3: Pumping and magnetic field parameters chosen for the cold beam simulations of
superradiance. ∗The 707 pump rates driving the different transitions are further reduced by
Clebsch-Gordan coefficients and Zeeman shifts, in addition to the intensity variation.
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8.1.1 Light shifts

Here we will consider the effect of light shifts - primarily the effects of the dipole guide beam
to be included in the model. The dipole guide is a far-detuned light beam and works by
shifting the energy levels of the atoms to create an attractive potential energy landscape
along the beam. The light shift in a state’s energy can be calculated by the formula [152, p.
98]:

EL = −Re(α)I

2ε0c
. (8.27)

The shift is proportional to the light intensity I and the polarizability of the atom α, which
for a given state (index i) is given by [25] (see also: [152, p. 100], [153], [139, p. 159]):

αi = 6πc3ε0
∑
k,mk

AJki(2Jk + 1)

ω2
Jki(ω

2
Jki − ω2)

(
Ji 1 Jk

mi p −mk

)2

(8.28)

The sum is over the states connected to state i via transitions. We see the contribution from
each transition is proportional to the Einstein coefficient AJki, so strong transitions tend to
give the largest contributions. However the denominator rapidly becomes small for larger
detunings, so for certain frequencies, weak transitions can play a significant role. The final
coefficient is the Wigner 3j-symbol (see e.g. more details at Eq. 2.44), which takes into
account the angular momenta of the initial and final states involved in transitions, and the
light polarization p (p = ±1 drives σ± transitions and p = 0 drives π-transitions).

Light shifts should ideally be minimized on the lasing transition, especially if they are not
uniform. This can be done by using a magic wavelength, where α are the same for two states,
so that the light shifts cancel out. Using the data in [25] (and [19, 15] for the small corrections
from the 1S0-

3P1 transition), we can calculate the polarizability of the 1S0 and 3P1 Zeeman
levels over a range of frequencies and for different light polarizations, shown in Fig. 8.2.

Here we see there are two magic wavelengths: one at 913.9 nm, which is magic for the 1S0-
3P1

mJ=0 transition, but only for light that drives σ+ or σ− transitions. This is used for the
dipole guide in the model of superradiance. There is also another magic wavelength at 1012
nm for transitions to 3P1 mJ=1 with σ− light (and by symmetry, mJ=-1 with σ+). Another
factor that makes these magic wavelengths especially useful is that lasers with watts of power
are available in this region. Finally, the slopes of α(ω) are relatively small such that the
sensitivity to laser frequency deviations is relatively low. For these magic wavelengths α > 0
and thus atoms will be attracted to high-intensity regions, e.g. the center of a Gaussian waist,
or the antinodes of an optical lattice. At shorter wavelengths additional magic wavelengths
exist, including ones where α < 0 that can be used to repel atoms from high-intensity regions.
A number of magic wavelengths for the narrow transitions in strontium are listed in e.g. [154,
p. 51].
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any

Figure 8.2: The polarizability of the 1S0 and 3P1 sublevels in atomic units (4πε0a
3
0, where

a0 is the Bohr radius) for different light polarizations and zero magnetic field in the red and
near-IR region. Some relevant transition and magic wavelengths marked. In some of the
curves large features arise from the broad 3P1-3S1 transition at 688 nm, and smaller features
from the 1S0-3P1 transition at 689 nm.

In addition to the magic wavelengths we also see that the repumper wavelengths of 679 and
707 nm are not magic. Due to the 3P1-

3S1 transition at 688 nm, ∆α < 0 at 679 nm and
∆α > 0 at 707 nm for σ± light affecting the 1S0-

3P1 mJ=0 transition. This sets a requirement
for the intensities of any repumping lasers if the 1S0-

3P1 π transition is not to be light shifted.
Assuming the repumpers drive σ± transitions equally and are running waves, the intensity
ratio must be approximately I679/I707 = 2.55 in order for the light shifts to cancel. The third
repumper wavelength of 688 nm can also potentially cause a shift in the 1S0-

3P1 transition,
but the the mJ=0 π transition between 3P1 and 3S1 is forbidden. Therefore large light shifts
can be avoided by driving only the π transitions at 688 nm, for which the difference in α is a
factor 137 smaller than for the 679 nm repumper. With these driven transitions, a condition
on intensity ratios for the light shifts of all three beams to cancel can be written as:

α679I679 + α688I688 + α707I707 = 0 =⇒
137 · I679 + I688 = 53.7 · I707.

(8.29)

Note that even if a magic intensity ratio is not chosen, these light shifts are still only on the
order of 0.1 to 1 Hz for the 679 and 707 nm repumpers for realistic repumping intensities,
and much less for the 688 nm repumper.

The pumping from level 1S0 to 3P1 mJ=-1 can also give rise to light shifts on the lasing
transition. To illustrate how this affects different transitions we must account for the Zeeman
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shift of the sublevels when calculating the polarizability. When the interaction between the
atom and the magnetic field is weak compared to the spin-orbit interaction giving rise to fine
structure, it can be treated as a perturbation to the fine structure levels, and the energy shift
can be calculated by Eq. 1.1. To illustrate this we can consider a magnetic field strength of
4.76 µT, for which the 3P1 mJ=±1 levels are split by ±100 kHz from mJ=0. The resulting
polarizabilities of the lasing levels, averaging over σ+ and σ− (corresponding to a laser with
linear polarization orthogonal to the quantization axis), are shown in Fig. 8.3.

Frequency offset from bare 1S0-
3P1 transition (kHz)

-200 -150 -100 -50 0 50 100 150 200

Figure 8.3: The polarizability of the 1S0 and 3P1 mJ=0 states for σ± light and a magnetic
field of 4.76 µT, causing a Zeeman splitting of 100 kHz (a factor 10 less than in Table 8.3).

Since 1S0 can couple to 3P1 mJ=+1 and -1 the dispersive feature appears around both of
these resonances, which dominates compared to all other contributions, while 3P1 mJ=0
cannot couple to 1S0 via σ transitions. As both the 689 and 688 nm pumping lasers are
treated as coherent interactions in the model, this enables us to account for the light shifts
as well as other coherent effects.

8.1.2 Optical forces

Given the polarizability we can calculate the shift in an atom’s energy when subjected to
light at a certain wavelength according to Eq. 8.27. And since the force from a potential
is given by the gradient of the potential energy, we can find the radial force from a running
wave laser beam with a waist radius Wg and peak intensity I0 = 2P/πW 2

g :

F = − d

dr
EL(r) =

α

2ε0c

d

dr
I(r) = − 2αI0

ε0cWg︸ ︷︷ ︸
mag

r

Wg
exp

(
− 2r2

W 2
g

)
.

(8.30)

In [98] a 12 W dipole guide at 1070 nm was used. This was partially retroreflected, with
different focus locations and waists ranging between 92 and 165 µm. We will simply consider
a Gaussian 15 W beam at 913.9 nm with waist radius of 165 µm, which gives ag = 46.1 m/s2

for the 1S0 state and 37.0 m/s2 for the shelving state 3P0.

In addition to a dipole guide, we will also consider the effect of an intracavity optical lattice
at 913.9 nm. For an optical lattice the peak intensity in terms of the lattice power will
be I0 = 4P/πW 2

g . There will be both a radial force and a much stronger force from the
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wavelength-scale lattice:
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(8.31)

These forces depend on the state of a given atom, as the polarizability varies. The polariz-
abilities at 913.9 nm are shown in Fig. 8.4. We see that the forces can vary on the order of
50%, depending on exactly which state an atom is in. For the 3S1 levels, the direction of any
forces flip sign, so the atoms would become low-field seekers, but the rapid decay (τ = 13 ns)
means this only happens intermittently. In a superradiant laser where repumping drives the
atoms between all of these states, these variations of α can lead to non-adiabatic motion. If
an atom were for example brought from the 3PJ states to 3S1 while climbing up a lattice site,
the potential hill would suddenly become a trough, the same effect responsible for Sisyphus-
cooling. However cooling would require the pumping rate to be correlated both with the
location of the atom in the lattice and the direction it is moving, for example with light
and Doppler shifts, but would lead to many new requirements and complexities we will not
consider here. Without these correlations, the changes in the potential landscape are most
likely to cause heating. To give an idea of the order og magnitude of the light shifts with a
lattice we can consider a cavity with waist radius of 50 µm and an intra-cavity lattice of 1
W. In that case we would have the lights shifts at the intensity maxima of 150 kHz on the
1S0-

3P1 mJ=-1 transition and ∼1 MHz on the 3PJ -3S1 transitions (see Appendix A.7).
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Figure 8.4: Polarizabilities α of relevant states for a 913.9 nm laser driving σ+ and σ−

transitions equally. The dipole force is proportional to α, and for α > 0 the atoms are low-
field seekers, for α < 0, high-field seekers.

Due to the recoils associated with repumping, the temperature of the atoms will increase
along all dimensions to at the very least tens of µK, so that p � h̄k. As a result we will
consider the dipole guide forces classically.
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8.2 Spatial variations in the lasing region

As we saw in the illustration in Fig. 8.1, the atoms do not follow the dipole guide through
the cavity, but heat up significantly. In Fig. 8.5 the spatial variations along the x-axis are
presented for the same simulation used for Fig. 8.1.
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Figure 8.5: Spatial variations within the atomic beam along the x-axis, as the atoms propagate
through the repumping and lasing region. (a) Histogram of populations, using the same color
scheme as in e.g. Fig. 8.4. The inversion decreases slightly towards the exit side of the cavity
region as the density decreases and temperature decreases. (b) Mean cumulative number of
emission events from 3P1 mJ=0. Atoms can emit on the order of 40 photons into the cavity
before escaping. As some atoms diffuse back to x = 0, the number here is nonzero. (c) Atom
temperatures along the three axes. Atoms heat up to 100 µK along the cavity axis, and even
more along the repumping axis. Figure adapted from [84].
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Because of the Gaussian 679 and 707 nm repumper waists, the population of 3P0 (seen in
panel (a)) gradually decreases towards the entry side of the cavity. The cavity coupling is
low, so here excited atoms are about as likely to emit into the environment compared to the
cavity, as seen in panel (b). But as atoms move within the cavity waist, the rate of emission
into the cavity increases greatly. We saw in Fig. 5.3 that for the repumping scheme used here,
an atom is subjected to 8 photon recoils from the pumping lasers (giving a recoil randomly
along the y axis) and 7 from spontaneous emission (giving a fully randomly directed recoil).
From the numbers in panel (b) where we see atoms emit on the order of ∼65 photons from
the 3P1 mJ=0 state, this implies atoms are subjected to on the order of 1000 photon recoils.
This largely explains the large increase in temperatures as atoms move into the cavity and
then escape. However part of the increase in temperature also occurs due to the changes in
state during repumping within the dipole guide. As we saw in Fig. 8.4, each state has a
different polarizability, so the dipole guide potential has a different depth for each state. This
changes the acceleration between each quantum jump, so the SME approach enables us to
capture this effect. As the atoms end up being redirected from a simple trajectory along x,
the quantities for large x mainly sample atoms starting with high initial x-velocities or which
experience the most net recoils towards +x, which explains e.g. the lower Ty for large x.

The heating from repumping is sensitive to many different parameters. One is the atom
flux - a higher flux increases the heating rate. This occurs because a higher atom flux
leads to a larger the emission rate into the cavity will be (2g

√
n), which is the bottleneck

in the repumping cycle (along with the spontaneous decay route). So when the atom flux
increases, the emission rate into the cavity will also increase relative to the environment, and
temperatures will increase more rapidly. The over-all motion in the dipole guide changes
more from simply following the guide towards diffusing away from the cavity mode. The
dipole guide waist and power affect the heating rate by determining how much the potential
varies for the different states. A larger repumping waist and rate will obviously also increase
the heating rate, assuming it is not so high that decoherence or high temperature causes
2g
√
n to drop.
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8.3 Output power, cavity pulling and linewidth

Fig. 8.6 shows the dependency of the cavity output power on atom flux. For the chosen
cavity parameters, a lasing threshold is obtained near ∼ 2 · 107 atoms/s. The power initially
increases rapidly with flux - by two orders of magnitude from 2 · 107 to 108 s−1, where 1 nW
is obtained. However the power does not scale as a simple polynomial, but increases ever
more slowly for higher flux. This occurs because near the threshold, higher atom numbers
increase the cavity interaction rate 2g

√
n - the bottleneck in the repumping cycle - so each

additional atom causes all atoms to emit more photons into the cavity on average. But as
discussed in Sec. 8.2, a high atom flux eventually causes so much heating that atoms start
to diffuse away from the cavity, or they may eventually move too quickly along the cavity
axis to emit efficiently. Therefore the scaling at high flux could be expected to approach a
polynomial P ∝ Na, with a probably a bit larger than 1.
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Figure 8.6: Total cavity output power for varying atom flux in the cold beam system. Lasing
threshold is reached near 2 · 107 atoms/s, and for 108 atoms/s, 1 nW can be achieved. Figure
adapted from [84].

Cavity pulling

In Fig. 8.7 the lasing frequency shift δL is shown within the same interval of atom fluxes,
for three different cavity detunings δcE . We will initially consider the standard parameters
(dark curves). The coherent treatment of the 689 and 688 nm pumping interactions enable
us to capture the impact of light shifts on the lasing frequency, which is the reason why the
δcE = 0 curve does not follow δL = 0. In this case we can determine the local cavity pulling
coefficient from the distance between the curves. Near the threshold, cpull ∼ 0.01, and for
2 · 108 atoms/s the atoms heat up to a mean Tz = 34 µK within the cavity waist. As the
atom flux increases, the average temperature Tz along the cavity axis also increases, causing
cavity pulling to increase until 5 · 107 atoms/s, where Tz = 54 µK. At still higher flux, cavity
pulling starts to decrease again, as the effect of higher atom numbers dominates (as is usually
seen when superradiant lasers are considered) compared to heating. At 3 · 108 s−1 we find
Tz = 76 µK, but since the Doppler width scales with

√
T , the width does not increase so

significantly with flux anymore.

As seen in the shape of the curve for δcE = 0, the impact of light shifts appears to be
non-trivial. It is sensitive to the inversion, which generally decreases for an increasing atom
flux, but the effects considered in Sec. 8.2 makes the scaling with atom flux complicated. A
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positive result is that there is a regime near 8 ·108 s−1 where the net shift in lasing frequency
is 0 for δcE = 0 simultaneously with it being independent of atom flux to first order. The
bright curves in Fig. 8.7 show the behavior for a smaller pumping waist and lower 688 nm
pumping rate for comparison. In this case the curves are more monotonic, with no plateau
near 8 · 107 atoms/s. This is because the smaller repumping waist causes less heating, so the
effects from Sec. 8.2 give less prominent variations with the atom flux. From this we see that
despite the complexity, they can also give rise to advantages like a regime where the lasing
frequency has no net shift and is not sensitive to small variations in atom flux.
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Figure 8.7: The shift in lasing frequency δL for different atom flux at three different cavity
detunings, δcE. Standard parameters (Table 8.3) are shown in dark colors, while light variants
are simulations with Wp = 30 µm and χlx/2π = 0.8 MHz. Cavity pulling can locally be
characterized by the distance between the curves. Light shifts cause additional shifts in the
curves. For a flux near 8·107 s−1 there is no net shift in the lasing frequency at zero detuning,
and here δL is also insensitive to the atom flux to first order. Adapted from [84].
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Figure 8.8: Laser linewidth estimates and lim-
its of the cold beam system according to ana-
lytical equations, depending on flux and Wp.

Above threshold the simulations tend to
predict linewidths that are simply Fourier-
limited, which has been verified down to
25 Hz. As discussed in Sec. 2.6.3, the sim-
ulations may underestimate the linewidth.
Some alternative estimates are shown in Fig.
8.8, based on the analytical equations from
Sec. 2.6.3. The simple estimate based on
the Purcell rate is indicated by the purple
line. Other estimates are based on evalu-
ating the parameters from simulations for
the two different pumping waist sizes, Wp.
Since the system operates within the super-
radiant crossover regime and is based on
continuous repumping, Eq. 2.51 is shown
(Tieri). These estimates are evaluated with
T2 = 1/ΓD based on the average temper-
ature along the cavity axis of atoms inside
the waist, and also for T2 = 0 for compar-
ison. This suggests a significant broaden-
ing due to heating. Finally, the generalized
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Schawlow-Townes limit (Eq. 2.52) is shown, which may limit the linewidth near the lasing
threshold.

These estimates of the linewidth are inferior compared to the hot beam system, and may not
justify building a machine with such a complexity, though we here have only investigated
a small fraction of a large parameter space. The linewidth may be improved with different
cavity parameters at the cost of a higher lasing threshold, with different pumping parameters,
and thermal effects may be reduced by an optical lattice.

8.4 Sensitivity to repumping laser variations

Even if the superradiant laser is not very sensitive to the cavity resonance frequency, it is not
of much use if the repumping lasers disturb the frequency significantly, as they might then
need to have their frequencies stabilized to the same level that is desired for the superradiant
laser. As we saw in Sec. 8.1.1 our main concern is the ladder from |g〉 − |i〉 and |i〉 − |x〉
driven by the 689 and 688 nm lasers. In addition to nominal light shifts that depend on the
power and frequency of the repumping lasers, these repumping parameters can also affect the
total repumping rate and inversion. This would also have a range of effects on the dynamics
and lasing frequency, considering the dynamics in Sec. 8.2. However this should not be
significant for frequency shifts that are small compared to the power-broadened linewidths
of the transitions. The standard parameters (Table 8.3) used in simulations assume the 689
nm pump laser is on resonance with the Zeeman-shifted mJ=-1 level of 3P1, while the 688
nm laser is still tuned to the unperturbed resonance of 3P1-

3S1, giving a nominal detuning of
δ0lx/2π = −333 kHz from |i〉 to |x〉 (the same magnitude as for the |y〉-|z〉 transition, which is
treated incoherently as |g〉 − |i〉 is not driven). These are of course just one combination out
of endless options that may lead to different sensitivities to the repumper laser frequencies,
but one working combination is all that is needed.

8.4.1 Repumper frequencies

In Table 8.4 the shifts in lasing frequency are shown for an atom flux of 8 · 107 s−1, zero
cavity detuning, and with the repumping frequencies varied from the nominal values. The
finite simulation time leads to random variations in the peak lasing frequency from the random
atom variations during each realization, which are on the order of tens of Hz (these are also
visible in some of the close neighboring points in Fig. 8.7). The crucial result is that the shifts
in lasing frequency are several orders of magnitude smaller than the shifts in repumping laser
frequencies. This allows the superradiant laser to have a significantly more stable frequency
than the repumping lasers.

∆δli/2π δL/2π ∆δlx/2π δL/2π

-100 kHz -570 Hz -100 kHz -40 Hz

-10 kHz -97 Hz -10 kHz -65 Hz

-1 kHz -66 Hz -1 kHz -65 Hz

0 Hz -27 Hz 0 Hz -26 Hz

1 kHz -25 Hz 1 kHz -37 Hz

10 kHz +66 Hz 10 kHz -2 Hz

100 kHz +476 Hz 100 kHz -55 Hz

Table 8.4: Shifts in the peak lasing frequency δL when either the 689 nm pump laser is detuned
from its nominal value (left columns, ∆δli), or the 688 nm pump laser (right columns, ∆δlx).
Note random variations within the finite evaluation time are also on the order of tens of Hz.



C. 8 Superradiant lasing from a cold atom beam P. 143 of 169

8.4.2 Repumper intensities

Fig. 8.9 shows how lasing parameters depend on the Rabi frequencies from the 689 and
688 nm repumping lasers, for an atom flux of 108 s−1. The lasing frequency is sensitive to
the power of the repumpers, so they must be power-stabilized to achieve a good frequency
stability.
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Figure 8.9: Lasing parameters in simulations with an atom flux of 108 s−1 and zero cavity
detuning. (a) Cavity output power, (b) peak lasing frequency shift, (c) inversion on the lasing
transition. Some values are listed next to the data points.
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8.5 Optical lattice

Here we will consider the effect of an intracavity optical lattice at the magic wavelength.
Such a lattice will result in large intensity variations on the wavelength scale within the
cavity, unlike for the guided beam (with an 165 µm waist). As considered in Appendix A.7,
this could be problematic for the repumping scheme if the lattice power is on the order of
watts. If the repumper frequencies are not modulated, the repumping rates will be spatially
dependent. The modulation does not necessarily need to cover the full span in light shifts,
as low repumping rates may be acceptable near the crests of the optical potential, from
which atoms are repelled. Here we will not account for these variations in light shifts on the
repumping transitions but simply consider the prospects if these challenges are overcome.
The system in the presence of an optical lattice is depicted in Fig. 8.10, and the impact on
different lasing parameters is shown in Fig. 8.11.
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Figure 8.10: Illustration of the cold beam system, as in Fig. 8.1, here for an atom flux of
3 · 108 s−1 and with an 10 W intra-cavity optical lattice. (a) Distribution and states of atoms
in the xy-plane, (b) xz-plane and (c) xz-plane zoomed in along the z axis, showing the effect
of the lattice on the motion of atoms. The variation in g (red sine) and lattice E-field (dark
red sine) on the wavelength scale is illustrated.
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Figure 8.11: Lasing parameters from simulations with an atom flux of 8 · 107 s−1 and cavity
detunings of 0 (black) or 100 kHz (red). (a) Total cavity output power, (b) shift in lasing peak
frequency and (c) mean temperature along the cavity axis for atoms within the cavity waist.

Both the radial and axial forces of the lattice (Eqs. in Sec. 8.1.2) influence the atoms. The
radial force accelerates the atoms from the guided beam towards the center of the cavity
waist. This has the advantage of increasing the atom density in the region with high cavity
coupling rates, but also generally increases the propagation speed through the cavity. If this
becomes too high, the density again decreases, and atoms will not have enough time to emit
as many photons as for a lower lattice power. As a result the output power increases until
about 5 W for the parameters in Fig. 8.11, and decreases again for a higher lattice power.

The radial force of the lattice similarly accelerates the atoms towards the center of the lattice
antinodes, but this force also gradually increases as atoms get closer to the center of the cavity
waist (see Fig. 8.10(c)). This causes the atomic motion to oscillate along the cavity axis. It
causes the temperature T cavz to increase, but the effects considered in Sec. 8.2 also play a role
in this. One is the lattice’s impact on the number of repumping cycles, which scales roughly
with the output power. In addition the larger changes in polarizability encountered within
the lattice can lead to faster heating during repumping, compared to the variations within
the dipole guide. Despite the increase in T cavz , we find in Fig. 8.11(b) that the cavity pulling
coefficient gradually decreases from 0.024 to 0.01 for 10 W. Part of the reduction can be
attributed to the fact that despite the increase in temperature, the movement is still confined
to less than half the magic wavelength. Therefore the atoms do not experience the variations
in g which lead to increased cavity pulling for ballistic motion at higher temperatures. Note
the atoms in Fig. 8.10(c) which are in-between the lattice sites may have moved outside the
cavity waist along the y-axis - as seen in Fig. 8.10(a), those are more likely to be in 3P1

mJ=1.

Finally, we see that the net shift in lasing frequency at δcE = 0 also depends on the lattice
power. This can be expected, as the lattice affects the dynamics in so many different ways
which in the end changes the inversion and light shift. The attractive potential towards the
cavity axis can also lead to even more complex motion, for example causing some atoms to
orbit the cavity axis if they experience the right sequence of random recoils, or enter the
cavity from the right distance along the y-axis.
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Conclusion and outlook

Numerical models

In this thesis we have explored superradiant lasing in a variety of different settings, all with
the common feature of using the kHz-wide 1S0-

3P1 transition in 88Sr. A significant part of
the thesis is devoted to numerical simulations of these systems. The models treat atoms
in small groups or fully individually, coupled to the common cavity mode. This allows us
to account for variations of many conditions within the ensemble, such as cavity-coupling,
pumping intensities, energy shifts and optical forces. As the atoms move around with different
velocities, this approach also captures the effects of a finite temperature. We have used a few
approaches to account for heating effects as well, in the settings where this is relevant.

The main parameters which we can predict are the power, phase and spectrum of the light
emitted by the superradiant lasers, and as a result also how they are affected by variations
in the cavity resonance frequency. One of the main drawbacks of the numerical approach
presented here is the complexity of the dynamics and calculations. Exploring large parameter
spaces can require weeks of calculations, at least on a single GPU. And with many different
parameters which can have similar impacts, the scope is limited to examples, making it hard
to extrapolate general relations. The advantage is that by accounting for the different effects,
we can expect a better agreement than simplified models. As a result we have also seen
good agreement between simulations and experiments of superradiant pulses. In the future
it will be interesting to see how well the simulations describe the continuous regimes which
are currently pursued experimentally.

Another important limitation of the model is that it does not include quantum noise in the
treatment of the cavity mode. This limits the ability to predict the linewidth of superradiant
lasers in the continuous regimes. It could be interesting to include this in the model, but
for the performance it is at the same time critical that the linear scaling of the number of
equations with atoms is preserved. Alternatively, the atom group approximation could be
used to a much greater extent. As we saw this can distort phase and power fluctuations, it
may also distort the predicted linewidth, however.

147
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Superradiant laser pulses and setups at UCPH

At the University of Copenhagen (UCPH), lasing pulses from a coherently pumped ensemble
have been characterized in detail in the mK regime. The experiments and numerical model
have complemented each other, with the numerical simulations showing good agreement and
offering insight into dynamics that are not readily accessible in experiments, such as the
varying behavior of atoms with different velocities. We have seen that in the superradiant
crossover regime with coherent pumping, even despite a Doppler width ∼4 times greater than
the cavity linewidth, cavity pulling can be suppressed by up to a factor 4 when considering the
center of mass of the spectrum. In addition we saw that the frequency of the most prominent
peak can even be immune to local changes in cavity detuning, when operating within certain
ranges.

Experimental approaches and upgrades were presented which enabled us to trap ensembles
with tens of millions of atoms at µK temperatures. This allowed us to realize superradi-
ant crossover pulses where the Doppler width is now ∼10 times narrower than the cavity
linewidth, and atoms with different velocities synchronize to a much greater extent. As a
result, cavity pulling is also strongly reduced, now by a factor 56 when considering the center
of mass of the spectrum. The µs pulse duration and associated broad linewidth makes this
system based on coherent pumping of limited metrological interest in itself. But as a proof
of principle system, it can give insight into the physics that may play a role in frequency ref-
erences in the future. For example experiments are now underway to demonstrate a proposal
for utilizing superradiant pulses in a Ramsey scheme [140].

A new regime that allows for much narrower linewidths is realized by incoherently repumping
the atoms. Here we have presented simulations of such lasing pulses at both µK and mK
temperatures, and investigated thermal effects of the repumping scheme. The pulse duration
can be extended to the order of several ms, but changes in density and temperature lead
to changes in cavity pulling during the pulse emission. We have seen how this can broaden
many spectral features, but also a few examples where features can remain steady even despite
large changes in the atom cloud parameters. Reaching linewidths at the Fourier limit of a
few hundred Hz may be possible in a regime near zero cavity detuning and/or by controlling
the cloud from an initial offset to keep the cavity pulling coefficient more steady. These
quasi-continuous pulses are already being investigated in the lab at the time of writing, so
we can look forward to more details from them in the future.

Still, fully continuous superradiant lasing is of much greater metrological interest, as even
narrower linewidths can be obtained and dead-time can be eliminated. We have considered
the temperature and atom number requirements for realizing continuous superradiance in
the UCPH machine, finding that on the order of 109 atoms/s are required according to
simulations. Experimentally this would be much more challenging than the quasi-continuous
setting we have considered so far. One possibility is that the atoms are slowed, trapped and
cooled with an offset from the cavity, before being directed through it. A second possibility
is that superradiant lasing co-exists with the disturbances from MOT lasers within the cavity
mode. In [155] lasing was considered in a driven V-level configuration, such as lasing in with
a blue MOT cloud. Though coherent effects were shown to enable inversion on the lasing
transition, the light from the broad transition also caused the system to behave as a good-
cavity laser. A third possibility might be a cooling and trapping region next to, or surrounding
the cavity mode, from which atoms can migrate into the lasing region. One advantage of
such an approach is that a lower atom flux could be needed compared to the atomic beam
systems we have considered, if the atoms tend to get recycled. Operating a MOT within the
cavity, using transitions encountered during repumping, could allow for even further cooling
and confinement with fewer disturbances of lasing compared to the 1S0-

1P1 transition, if they
can be fed from an initial trapping stage.
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Outside the realm of superradiant lasing, other directions can also be pursued in the upgraded
machine at UCPH. One possibility is passive interrogation of atoms, in line with previous
research [156, 157]. This may now be pursued in colder or more continuous settings, and has
simpler requirements compared to overcoming the lasing threshold. The numerical models
presented in the thesis can also readily be used to describe these settings, requiring only
minor adaptations.

Continuous spectroscopy and potentially superradiance is also pursued in the ”Sr2” machine
at UCPH (also described in [121]). This has an architecture that produces a Zeeman-slowed
continuous atomic beam, which is deflected towards an optical cavity. Simulations to deter-
mine the requirements for continuous lasing in this machine are presented in Appendix A.8,
assuming a pre-pumped setting similar to the hot beam system. But since the propagation
velocities in the atomic beam can be adjusted on the order of tens of m/s, lasing may also
be considered in a continuously repumped setting similar to the model in Chapter 8, which
could be an advantage for low velocities.

Continuous superradiance based on machines at UvA and elsewhere

The purpose-built hot beam machine at the University of Amsterdam (UvA) is a promising
platform for realizing continuous superradiance much further in the bad-cavity regime than
the machines at UCPH. In this thesis we have described some key components of this machine
from the assembly phase, including the science cavity, transverse cooling and cavity-coupling
optics. We have also presented numerical simulations of the pumping stages in the machine
to find the impact of different laser parameters on pumping and a velocity selection stage.
The simulations suggest the velocity selection scheme can be used to reduce the temperature
of atoms along the cavity axis from 3.6 mK down to e.g. ∼2 mK by sacrificing 30% of the
atoms.

Superradiant lasing in this system has also been investigated using numerical simulations,
where we find a lasing threshold for ∼ 2.5 · 1012 atoms/s. The expected output power is tens
to hundreds of nW, which is a great advantage compared to other proposals for continuous
superradiance which require more complex machinery. The cavity pulling coefficient found
in simulations is on the order of 0.03 to 0.06, with the lower range depending on realizing
the velocity selection scheme, which may give an improvement on the order of ∼25%. The
high propagation velocities of atoms in the beam give rise to an asymmetric distribution of
relativistic Doppler shifts with a peak on the order of hundreds of Hz, which are included
in the numerical model. These cause a shift in the lasing frequency of the same order, and
additionally have an impact on the frequency fluctuations arising from the random fluctua-
tions in the atom distribution. The simulations have also been used to determine how the
emitted power and spectrum is affected by the finite temperature, increased decoherence, and
cavity resonance fluctuations at different frequencies and amplitudes. A simple estimate for
the linewidth suggests this system can reach 9.4 Hz.
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Finally, we have presented a numerical model and simulations of continuous superradiance in
a regime with µK atoms, based on an atom source realized at UvA. In this system we assume
atoms are continually repumped when they are near the center of the cavity waist, such that
each atom can emit tens of photons into the cavity. This allows for an output power on the
order of hundreds of pW. All states involved in the repumping scheme are included in the
model, with the 689 and 688 nm repumping interactions modeled coherently. A stochastic
master equation (SME) is used to model atomic decays as discrete quantum jumps. Forces
from an optical dipole guide at a magic wavelength are also included in the model. These
forces depend on the state of atoms, and the SME approach enables us to quantify how this
affects the temperature of the atoms. The temperature is also affected directly by recoils
from the pumping lasers and spontaneous emission. As a result it quickly grows to several
tens of µK along the cavity axis, from the ∼1 µK temperature in the atomic beam.

Cavity pulling coefficients in the system are on the order of 0.01-0.02. While light shifts from
pumping can cause net shifts in the lasing frequency, we find certain parameter regimes where
the net shift can simultaneously be zero and independent of the atom flux to first order. An
intra-cavity optical lattice may reduce cavity pulling even further, provided the challenges of
light shifts on pumping transitions can be overcome. On the other hand, the linewidth of
82 Hz based on a simple estimate, is inferior compared to the hot beam system, and may not
justify the experimental complexity required to build such a system.

Other machines are also under development which are promising candidates for realizing
continuous superradiance. At UvA, a second machine is under development for realizing
continuous superradiance on the mHz-transition [99], and at JILA, continuous superradiance
is also being pursued in strontium [129, p. 201].
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A.1 Tapered Amplifier power

The recorded power over time of the original TA (EYP-TPA-0690-00500-2003-CMT02-0000,
setup described in [103, p. 56-57]) and the pump pulse power (total in the -1 order out of
the Pump AOM) is shown in Fig. A.1. The power varies with optimization from day to day,
but a degrading trend over the course of months is also visible.
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Figure A.1: Degradation of the TA output power over time, with approximately 20 mW input
power.

A.2 Beam profile for pumping mK atom cloud

In Fig. A.2 the beam profile of the pump pulse is shown which was used in experiments with
the mK atom cloud. Gaussian fits are shown for an approximate quantitative description.
The beam profile deviates heavily from a Gaussian after amplification by a tapered amplifier.

Figure A.2: Top: Intensity distribution of the pump pulse recorded by a beam profiler. Left:
2D gaussian fit. Right: Absolute difference between the profile and fit.
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A.3 Crossover pulses in mK ensembles for high atom numbers

Here simulations are shown for the parameters in Fig. 4.4, spanning atom numbers beyond
what could be achieved in the experiments.
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Figure A.3: Simulated single side cavity output power, as in Fig. 4.4, extended up to
N = 1.33 · 108. An 1/
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Figure A.4: Peak cavity output power from the simulations in Fig. A.3, and fits indicating
regimes with N2- and N -scaling. This behavior is similar to in [58, Fig. 4].
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A.4 Pulse spectrum dependency on cloud temperature

In Fig. A.5 the time evolution of the cavity field amplitude spectrum is shown, using an
expanding Heaviside window starting at t = 0. The frequency axis is with respect to the
pump pulse, which is equal to the atomic transition frequency. Note that a different color
scale is used than in Fig. 4.9, and that the amplitude spectrum is shown rather than the
power spectrum. The qualitative result to note is that at lower temperatures the multi-peaked
background becomes less prominent in the spectrum, as expected from the fact that there
are fewer atoms with high velocities.

Figure A.5: (a) Normalized cavity field amplitude spectrum for N = 7·107 atoms, δcE/2π = 1
MHz and T = 2 mK from a simulated lasing pulse. (b) Results with T = 5 mK instead.

A.5 Beam profile for pumping µK atom cloud

In Fig. A.6 the beam profile of the pump pulse used for the µK atom cloud is shown, along
with a Gaussian fit and residuals. Unlike the mK pump pulse, the beam profile achieved here
is a result from fiber-coupling the beam from a tapered amplifier.

Figure A.6: Left: Intensity distribution of the pump pulse recorded by a beam profiler located
at a distance from relevant optics that gives the same propagation distance as to the atom
cloud. Center: 2D gaussian fit. Right: Absolute difference between the profile and fit.

A.6 Pure and crossover pulses in the µK regime

In Fig. A.7 the dependency of the output power dynamics and power spectrum on cavity
detuning are shown for three different atom numbers N and pump pulse durations Tp. The



P. 154 of 169 Appendices

temperature here is 40 µK, the atom cloud radius is 250 µm along all axes and the pump
pulse power is 200 mW in these examples while assuming the beam profile in Appendix A.2.

Time (µs)

(a) (b)

(c) (d)

(e) (f)

Figure A.7: Simulations of (a,c,e) output power dynamics and (b,d,f) power spectra for (a-b)
N = 2 · 106 and Tp=110 ns (shorter than a π pulse), (c-d) N = 4 · 106 and Tp=140 ns (a
π pulse) and (e-f) N = 107 and Tp=140 ns. Green dots indicate the end of pumping pulses,
and gray dots show the intensity-weighted center of the spectra.

In panels (a) and (b) the atom number and excitation is low enough to realize a single pulse
near the transition to the pure superradiant regime, giving also a simple spectrum with a
single peak. In the lower panels we go into the crossover regime by increasing the number of
excitations. Though the pulses in Sec. 5.1 are realized with slightly different parameters, the
main difference is the even higher atom number compared to these examples.

A.7 Light shifts on pumping transitions from optical lattice

The maximum variation in light shifts are shown in in Table A.1 for an P = 1 W intra-cavity
optical lattice, using Eq. 8.27:

Imaxlat =
4P

πw2
0

= 5.09 · 108 W/m2, ∆νmax = −
Re(∆α)Imaxlat

2hε0c
. (A.1)
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Wavelength Transition ∆νmax (kHz)

689 nm 1S0 to 3P1 mJ=-1 150

679 nm 3P0 to 3S1 mJ=-1 1319

688 nm 3P1 mJ=-1 to 3S1 mJ=-1 1288

707 nm 3P2 mJ=-2 to 3S1 mJ=-1 1502

707 nm 3P2 mJ=-1 to 3S1 mJ=0 1327

707 nm 3P2 mJ=0 to 3S1 mJ=1 1270

Table A.1: Maximum light shifts on some pumping transitions for a lattice power of 1 W.

A.8 Simulations of lasing in the Sr2 Machine at UCPH

The ”Sr2” machine at UCPH is based on a beam of atoms traversing an optical cavity,
similarly to the hot beam machine at UvA, but uses a Zeeman slower and deflecting 2D
MOT, enabling slower and more uniform propagation velocities. Using the hot beam model
in Chapter 7 we can determine the atom flux requirement to realize lasing in this machine.
Here we also assume an uniform beam, but simply assume the atoms start at the cavity axis,
x = −Wc, in the excited state, and propagate with uniform velocities of vx = 40 m/s. The
radial atomic beam temperature is assumed to be 4 µK, and the relevant cavity parameters
are κ/2π = 180 kHz, L = 37 mm and Wc = 250 µm. Here the lasing threshold occurs near
2 · 108 atoms/s. The fast decay time of 3P1 sets a lower limit on the required propagation
velocity on the order of tens of m/s to achieve inversion within the cavity waist, when the
atoms are pumped before entry. For low propagation velocities a continuous repumping
scheme could potentially enable more power from each atom.

Figure A.8: Total cavity output power for different atom flux values in the ”Sr2” system,
according to simulations with a temperature of 4 µK along the cavity axis.
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[146] Y. D. Chong, Li Ge, Hui Cao, and A. D. Stone, Coherent Perfect Absorbers: Time-Reversed
Lasers, Phys. Rev. Lett. 105, 053901 (2010).
DOI: 10.1103/PhysRevLett.105.053901 (Retrieved October 25, 2022)

[147] D. Yang, Sh. Oh, J. Han, G. Son, J. Kim, J. Kim, M. Lee and K. An, Realization of superab-
sorption by time reversal of superradiance, Nat. Photonics 15, 272–276 (2021).
DOI: https://doi.org/10.1038/s41566-021-00770-6 (Retrieved October 25, 2022)

[148] H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping, Springer (1999).

[149] K. An and M. S. Feld, Semiclassical four-level single-atom laser, Phys. Rev. A 56, 1662 (1997).
DOI: 10.1103/PhysRevA.56.1662 (Retrieved October 25, 2022)

[150] G. Harry, T. P. Bodiya, and R. DeSalvo, Optical Coatings and Thermal Noise in Precision
Measurement, Cambridge University Press (2012).

[151] Private communications with Shayne Bennetts.

[152] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, Optical dipole traps for neutral atoms,
Adv. At. Mol. Opt. Phys. 42, 95, (2000).
DOI: 10.1016/s1049-250x(08)60186-x (Retrieved October 25, 2022)

[153] F. Le Kien, P. Schneeweiss, and A. Rauschenbeutel, Dynamical polarizability of atoms in arbi-
trary light fields: general theory and application to cesium, Eur. Phys. J. D 67, 92, (2013). DOI:
10.1140/epjd/e2013-30729-x (Retrieved October 25, 2022)

[154] S. Bennetts, 1000 times closer to a continuous atom laser: Steady-state strontium with unity
phase-space density, PhD thesis, University of Amsterdam (2019).
Link: strontiumbec.com (Retrieved October 25, 2022)

[155] C. Hotter, D. Plankensteiner, and H. Ritsch, Continuous narrowband lasing with coherently
driven V-level atoms, New J. Phys 22, 113021 (2020)
DOI: 10.1088/1367-2630/abc70c (Retrieved October 24, 2022)

[156] P. G. Westergaard, B. T. R. Christensen, D. Tieri, R. Matin, J. Cooper, M. Holland, J. Ye, and
J. W. Thomsen, Observation of Motion-Dependent Nonlinear Dispersion with Narrow-Linewidth
Atoms in an Optical Cavity, Phys. Rev. Lett. 114, 093002 (2015)
DOI: 10.1103/PhysRevLett.114.093002 (Retrieved October 27, 2022)

[157] B. T. R. Christensen, M. R. Henriksen, S. A. Schäffer, P. G. Westergaard, D. Tieri, J. Ye,
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