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ABSTRACT

_e B mode of the polarization of the cosmic microwave background, which is a unique
estimator of the presence of cosmological gravitational waves in the early universe, is
the target of upcoming high sensitivity CMB experiments. In this thesis, newmethods
are developed for statistical analysis of the CMB polarization. _e E and B modes are
defined in the space of the Stokes parameters, and themathematical properties of the E–B
decomposition are investigated. _ese E and B families are applied to the analysis of the
morphology and frequency dependence of the thermal dust polarized foregrounds, reveal-
ing spectral differences between the E and Bmodes. _is is followed by the presentation of
a newmethod for correction of E–B leakage and the estimation of the Bmodemap using
partial sky data. _emethod can improve the accuracy of the Bmode power spectrum
estimation bymultiple orders ofmagnitude. _e statistics of the polarization angle and
the non-polarized points are investigated. Among other results, the E and Bmodes are
found to have distinct signatures in the polarization angle distribution function, and the
number density of non-polarized points is shown to correlate with the tensor-to-scalar
ratio r under conditions of gravitational lensing. _ese statistical methods are applied to
the polarization data from the latest Planck release. Lastly, the large-scale anomalies of
the CMB are examined using newmap-spacemethods, which reveal connections in the
parity asymmetry and the alignments of the lowmultipoles.
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RESUMÉ

Det B-mode i den kosmisk mikrobølgebaggrundsstråling, som er en unik indikator for
tilstedeværelsen af kosmologiske gravitationsbølger i det tidlige univers, ermålet for kom-
mende års CMB-eksperimenter. I denne aúandling udvikles nye metoder til statistisk
analyse af CMB-polarisationen. De E- og B-modes er defineret ud fra Stokes parame-
trene, og dematematiske egenskaber ved E–B dekompositionen undersøges. Disse E- og
B-familier anvendes til analyse afmorfologien og frekvensaúængigheden af kosmisk støv,
som afslører spektrale forskellemellem E og B. Dere�er følger præsentationen af en ny
metode til korrektion af E–B leakage og estimering af B-mode-mønstre. Metoden kan
forbedre nøjagtigheden af B-mode powerspektrum med flere størrelsesordener. Statis-
tikken for polarisationsvinklen og de ikke-polariserede punkter er undersøgt. Blandt
andre resultater kan nævnes, at E- og B-modes har forskellige signaturer i histogrammet af
polarisationsvinklerne, og at antallet af ikke-polarisede punkter er korreleretmed tensor-
til-skalar-forhold r. Der er anvendt data fra den seneste udgivelse af Planck. Stor-skala
anomalierne undersøges ved hjælp af nyemetoder, der forbinder paritets asymmetri og
de parallelle axer for lavemultipoler.
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PREFACE

Inmodern cosmology, it is thought that quantum fluctuations at the earliest times evolved
into the large-scale structure of matter in the universe [1, 2]. _e cosmic microwave
background, a relic radiation source from the early universe, provides the strongest obser-
vational evidence verifying this theory.

In the past decade, the Planck satellite experiment hasmapped the anisotropies of the
CMB at high precision, and the results attest to amodel of the universe with expanding,
spatially flat, statistically homogeneous cosmology, having fluctuations that were initially
adiabatic and Gaussian, and composed at late times primarily of dark energy and cold
dark matter [3]. _e parameters of thismodel, termed the ΛCDMmodel for its two main
late-time constituents, are well-constrained by the Planck observations [4]. _e Planck
results also constrain the tensor-to-scalar ratio r, an important constantmeasuring the
strength of gravitational waves in the early universe which are related to the inflationary
potential, at around r ≲ 0.1 [4–6].

_e upcoming decade will see new efforts to study the polarization of the CMB, aiming
to improve constraints on cosmological parameters and the physics of inflation. _e

next generation of CMB experiments include LiteBIRD [7–9], CMB-S4 [10], the Simons
Observatory [11], and AliCPT [12]. _ese experiments are aiming for a sensitivity to the
tensor-to-scalar ratio at a level of r ≈ 10−3.

In order to accomplish this, themain target is the detection of the Bmode of the CMB

polarization. _e total polarization signal can be split into a curl-free E mode and a

divergence-free B mode. It was observed that normal _omson scattering during the
recombination era produces no Bmode; instead, a Bmode signal is expected from tensor
fluctuations that are predicted by inflationary theory [13–15]. _e amplitude of the B
mode is linked to the tensor-to-scalar ratio r. _e B mode map measured by Planck is
dominated by noise and foreground residuals, and the primordial Bmode in the current
data is consistent with zero.
Methods to characterize the primordial Bmode and uncover it from the foreground

signals, noise, and systematic errors that obscure it is amajor current research question
and is the theme of this thesis. One particular complication occurs when part of the sky
is masked or unobserved, resulting in leakage effects that contaminate the observed B

mode with power from themuch stronger Emode. Upcoming CMB experiments that are
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ground-based have limited sky coverage. Even full-sky surveys are not free from partial-
sky coverage due to Galactic foreground masks, and therefore the leakage problem is
inevitable. Because of these limitations, using the Bmode to improve constraints on r calls
for an improved understanding of the foreground polarization signals and the correction of
leakage, together with the design of estimators which fully exploit the available polarization
data.
In preparation for upcoming high-sensitivity observations, this thesis presents new

work in several directions for data analysis of the CMB polarization. _ese include the
E–B decomposition, analysis of the polarized foregrounds, correction of the E–B leakage,
and the study of statistical estimators based on polarization angles and non-polarized
points. _e first chapter introduces the physical properties of the CMB, the history of its
observation, and itsmathematical and discrete descriptions, focusing especially on the
CMB polarization and the standard formulations of the E and Bmodes.

In chapter 2, the E–B decomposition is reformulated in themap domain as an integral
convolution of the input polarization data with corresponding E and B kernels. _e E

and B kernels reveal the underlying geometric structure and non-locality of the E–B
decomposition. _e map-domain E–B decomposition also retains the full capacity of
the Stokes parameters, enabling the definition of polarization intensities and polarization
angles corresponding to the E and Bmodes separately. _ese estimators are applied to the
analysis of the polarized foregrounds in chapter 2; foreground analysis, especially, benefits
from themap domain estimators, revealing variation of foreground properties across the
sky and their influence on the E and Bmodes.

_emap domain E–B decomposition opens new doors for the correction of E–B leakage.
In chapter 3, a newmethod of correcting leakage in themap domain is presented, and its
performance is validated using simulations of partial-sky CMB observations. _emethod
produces a cleaned Bmodemap with leakage greatly reduced, and in combination with
theMASTERmethod for estimation of the power spectrum, it can reduce the error on the
power spectrum such that it is at an insignificant level compared to other residuals, in the
interesting multipole range of ℓ from about 60 to 120.

In chapter 4, further statistical properties of the CMB polarization are explored, focusing
on the statistics of the polarization angle ψ. _e polarization angle has an important role
in the analysis of foregrounds, where it reflects physical processes in the Galaxy and
the interstellarmedium. It is also sensitive to systematic errors. _e distribution of the
polarization angle for general Gaussian polarization data is considered, and it is found
that the E and Bmodes produce polarization angle distributions with unique signatures.

In chapter 5, the zero points of the polarization field are investigated. _e classification
of these points and their corresponding number densities on the sky are sensitive to the
statistical properties of the polarization, which is used as the basis to construct a test of
Gaussianity applied to the Planck component separation maps. It is also shown that the
total number density of non-polarized points is linked to gravitational lensing.
In chapter 6, attention is turned to the large-scale anomalies of the cosmicmicrowave
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background, including the parity asymmetry and the quadrupole–octupole alignment.
_e anomalies are reexamined using new map-domain methods. _e parity asymmetry is
shown to be related to specific zones on the sky, which are also related to the direction
of the kinematic dipole and the alignments of the low multipoles. While this analysis
occurs on the temperature data, the methods and estimators can be transferred to the
polarization, where some hints of parity asymmetry appear in the U Stokes parameter.

✴ ✴ ✴
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this thesis [16–23]. Some results and figures in this thesis are reused from these papers.

Lastly, I wish to express my gratitude to my supervisor, Professor Pavel Naselsky, andmy
colleagues at the Niels Bohr Institute, especially Professor Andrew D. Jackson, Professor
Hao Liu, Dr. Sebastian von Hausegger, Nadia Dachlythra, Aske Ravnebjerg, Jaan Kasak,
and JacobHjortlund. I am also obliged to Dr. Amel Durakovic for reading the text and
making helpful suggestions.

James Creswell
Copenhagen, Denmark
July 2021
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1 THE COSMIC MICROWAVE BACKGROUND

A homogeneous and isotropic universe is described by the Robertson–Walker spacetime

metric:

ds2 = дµνdx µdxν = −c2dt2 + a(t)2dx2 , (1.1)

where a(t) is the scale factor that parametrizes the relative expansion of physical distances
and dx2 is themetric of a three-dimensional spacewith a uniform curvature. _e evolution
of a(t) is given by general relativity and depends on thematter and energy composition
of the universe.

A period of exponential expansion of the scale factor in the very early universe explains
several aspects of observational cosmologywhich are otherwise problematic._ese include
the flatness of the universe, which ismeasured today to be nearly exactly flat [4]. In the
standard expanding universe, flatness is an unstable equilibrium, and any departure from
flatness should grow as the universe expands. _e small measured curvature therefore
seems to indicate fine tuning in the normal model. During exponential expansion of the
scale factor, however, the curvature would be suppressed towards zero, removing the need
for fine tuning.

Another difficulty of the non-inflationary universe is the horizon problem. As discussed
below, the CMB is nearly perfect blackbody emission with a temperature that is almost
constant over the full sky, implying that therewas some time at which the entire observable
universe was in thermal equilibrium. However, according to the normal expansion history,
different parts of the sky that are separated bymore than a few degrees should be causally
disconnected. Inflation provides amechanism to make the CMB isotropic, again avoiding
fine tuning.
_ere are many inflationary models, which were originally proposed to solve these

problems [24, 25]. Generally, the existence of a scalar field ϕ is proposed, corresponding
to an inflation particle that drives exponential expansion of the universe. _e inflaton is
subject to a potentialV(ϕ) and is originally displaced from itsminimum. Under “slow-roll”
conditions, when

(dϕ
dt
)2 ≪ V(ϕ), (1.2)

inflation ensues with almost exponential growth of the scale factor.

1



Inflation expands small quantum fluctuations in the inflaton field into the primordial
density perturbations, which are predicted to be Gaussian, adiabatic, and nearly scale
invariant [1, 2]. _ese predictions are confirmed by observations of the CMB. For the
curvature perturbations in comoving gauge, denotedR, a power spectrum is expected
that is approximately described by a power law:

∆2
R(k) = k3 ⟨∣Rk ∣2⟩

2π2
∝ kns−1 . (1.3)

When the spectral index ns = 1, the perturbations are exactly scale invariant. _e current
Planckmeasurement of the spectral index is ns = 0.965 ± 0.004 [4]. _e primordial power
spectrum affects the angular power spectrum of the CMB, and therefore the statistical
properties of the CMBmap.

Apart from the scalar curvature perturbations, the theory of inflation also predicts the
existence of tensormetric perturbations [26]. Tensor perturbations result from gravita-
tional waves, which can be represented in terms of the + and × polarizations, denoted h+
and h×. _e power spectrumof the tensor perturbations, summing over both polarizations,
is

∆2
h(k) = 2 k

3 ⟨∣h+,k ∣2 + ∣h×,k ∣2⟩
2π2

, (1.4)

which is also usually described in terms of a power lawmodel∆2
h(k) ∝ kn t . More generally,

scale-dependent running of the spectral indices ns and nt is allowed.
_e amplitude of the gravitational waves is given in terms of the tensor-to-scalar ratio r,

defined as the ratio of the power spectrum of tensor fluctuations to the power spectrum of
scalar fluctuations, evaluated at a relevant scale k = k0:

r = ∆2
h(k0)

∆2
R(k0) . (1.5)

_e tensor-to-scalar ratio r is directly linked with the energy scale of inflation, and it is the
target of considerable experimental effort, ongoing and upcoming. _e tensor fluctuations
also affect the angular power spectrum of the CMB temperature, but the information
is limited by cosmic variance. Greater sensitivity is available in the polarization of the
CMB, and especially in the Bmode. _e current observational constraint on r by Planck
is approximately r < 0.1; in combination with other current datasets, r < 0.05 is achievable
with some confidence [6, 27, 28]. _e goal for upcoming CMB observations in the next
decade is r ≈ 10−3.
_e remainder of this chapter introduces the important elements that underlie CMB

data analysis, including the history and status of CMB observations and themathematical
description of CMB data. _e focus is especially on establishing themathematics of the
CMB polarization and the standard E and Bmodes.
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1.1 observation of the cmb

Direct observation of the CMB began in 1964 with the unintentional discovery by Penzias
&Wilson of a residual background noise term in a horn antenna designed for satellite
radio communication [29], followed almost immediately by the deliberatemeasurement
of the CMB by a team at PrincetonUniversity [30]. _is observation was the starting point
of a new era of observational cosmology, but it was also the culmination of theoretical
predictions about the science of the CMB, especially the work of Gamow, Alpher, and
Herman in the 1940s, who attempted to explain the chemical composition of the early
universe in a hot Big Bang model [31–34]. _e first recognition of the possibility of
detecting the CMB, and the prediction of its blackbody spectrum, wasmade shortly before
its actual discovery in 1964 [35].

Space-based study of the CMB began with the RELIKT-1 experiment launched in 1983
[36, 37]. _e sky at 37 GHz wasmapped with an angular resolution of about 5○, which
was sufficient to identify the CMB dipole andmicrowave emission from the Galaxy and to
place an upper bound on the quadrupole fluctuations. RELIKT-1 was followed by COBE,
the Cosmic Background Explorer, which mademulti-frequency observations of the CMB,

verifying its blackbody spectrum, andmade robustmeasurements of the CMB anisotropy,
albeit at low resolution of around 7○ [38–41].
COBE was followed byWMAP, theWilkinson Microwave Anisotropy Probe [42–44].

Launched in 2001,WMAP began the era of precisionCMB astronomy from space,mapping
the full sky at a resolution of about 15 arcminutes. _e datameasured by WMAP began to
place tight constraints on cosmological parameters [45, 46].
_e current generation full-sky CMBmission is Planck [47]. _e Planck satellite was

launched in May 2009 into an orbit around the L2 Lagrange point. It began taking obser-
vations in July of the same year. _e satellite spins at one revolution perminute, with its
telescope beams tracing a large circle around the sky. As the L2 point orbits around the
sun, the entire sky is gradually traced out by the spinning satellite.

Planck’s telescope consists of two instruments, each bearing a large number of bolome-
ters. _e Low Frequency Instrument (LFI) observes in 3 bands centered at 30GHz, 44GHz,
and 70 GHz; theHigh Frequency Instrument (HFI) observes in 6 bands centered at 100
GHz, 143 GHz, 217 GHz, 353 GHz, 545 GHz, and 857 GHz. _e sensitivity and resolution
achievable vary by instrument and frequency band, but in general improves significantly
onWMAP, reaching resolutions down to 5 arcminutes. Apart from the 545 GHz and 857

GHz bands, the LFI and HFI are both equipped tomeasure the CMB temperature and
polarization.
Following Planck, the next generation full-sky CMB mission is LiteBIRD, currently

expected to be launched in 2028 [7–9]. Joining the spacemissions, ongoing and upcoming
balloon-borne experiments also contribute to the current and next-generation CMB data

landscape [48–50]. Balloons are generally flown from polar sites [51, 52]. Finally, there are
many ground-based observatories in the operating and planning phases [7–12, 53–57].
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Figure 1.1: _e CMB blackbody spectrummeasured by the FIRAS instrument aboard the
COBE satellite [58, 59]. _emeasurements are shown in blue dots, above the theoretical
blackbody curve with T = 2.725 K.

1.2 anisotropy of the cmb

_e spectrum of the CMB at any point on the sky is observed to follow Planck’s law for
blackbody radiation, in which the intensity at frequency ν is

Iν = 2hν3

c2
1

ehν/kT − 1 . (1.6)

Measurements of the CMB intensity are usually reported in terms of the effective tempera-
ture. Letting T(n̂) denote the observed temperature at each direction n̂ on the sky, the
mean temperature is observed to be

1

4π
∫ T(n̂) dn̂ = 2.725 ± 0.001K. (1.7)

Measurements of the CMB spectrum by COBE are shown in figure 1.1. _e spectrum
agrees with a blackbody with a temperature of 2.725K to high precision.
Blackbody emission is expected from a photon gas in thermal equilibrium. _ese

observations are therefore consistent with the inflationary hot Big Bang model of the
universe. However, the observed temperature is not perfectly constant on the sky for
several reasons. _e strongest anisotropy, of order 3mK, is the dipole distortion, which
can be caused by the redshi� due to themotion of the telescope with respect to the rest
frame of the CMB._e dipole is usually attributed entirely to such peculiarmotion and
subtracted from the CMB.
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Temperature fluctuations

A�er subtraction of the dipole, the isotropy of the CMB temperature is still broken by
small fluctuations. _e relative temperature fluctuation is defined as

∆T(n̂) = T(n̂) − 1

4π
∫ T(n̂) dn̂. (1.8)

_e size of the temperature fluctuations is dependent on the angular scale at which obser-
vations aremade. _e strongest fluctuations, seen on angular scales of around 1○, are at
around the 80 µK level.

Several physical processes in the early universe give rise to the temperature fluctuations
of the CMB. In general, the temperature fluctuations reflect the uneven distribution of
matter at the time of the formation of the CMB, which is why the primordial density
fluctuations can bemeasured in the anisotropy of the CMB.

Harmonic transformation

_e temperature fluctuation is a scalar-valued function on the sphere, and it can bewritten
as a linear combination of spherical harmonics:

∆T(n̂) = ∞∑
ℓ=1

ℓ

∑
m=−ℓ

aℓmYℓm(n̂). (1.9)

_e harmonic coefficients aℓm are generally complex numbers, although real input implies
constraints between their values. _e decomposition is orthogonal, and the aℓm coefficients
can be calculated from ∆T(n̂) by integration over the full sky with the corresponding
spherical harmonic function:

aℓm = ∫ ∆T(n̂)Yℓm(n̂) d n̂. (1.10)

_e harmonic domain is commodious to the statistical description of the temperature
anisotropy. According to standard theories of inflation, the anisotropy is a realization of a
Gaussian random field, which can be described in the harmonic domain, and its statistical
properties aremainly characterized by its power spectrum, Cℓ . _is means that its aℓm
coefficients are random variables with zero mean and covariance

⟨aℓma∗ℓ′m′⟩ = δℓℓ′δmm′Cℓ . (1.11)

Cℓ is the power spectrum, which is positive and real-valued, andmeasures the variance
over m of the aℓm at each ℓ. _e covariance ⟨aℓma∗ℓ′m′⟩ contains no dependence on m,
reflecting the isotropy of the Gaussian random field. _e 2ℓ + 1 instances of aℓm at each
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ℓ therefore constitute independent realizations, from which the power spectrum can be
estimated by

Ĉℓ = 1

2ℓ + 1
ℓ∑

m=−ℓ

∣aℓm ∣2 . (1.12)

_is estimate is highly uncertain at low ℓ, where only a few values ofm exist to be averaged.
Under rotations of the coordinate system, the aℓm coefficientswill change, but the power

spectrum is rotationally invariant. In general, the spherical harmonics at a particular ℓ
vary on an angular scale of approximately 100○/ℓ. _e value of Cℓ , which is linked to the
total power in the aℓm coefficients thatmultiply the spherical harmonics in the harmonic
expansion, is therefore ameasure of the strength of temperature fluctuations on the angular
scale corresponding to ℓ. _is interpretation is particularly useful for summarizing the
properties of the CMB._e power spectrum estimated from the Planck data is shown in
the upper panel of figure 1.2.
_e temperature fluctuations can also be considered in real space. _e two-point

correlation function is

C(n1 , n2) = ⟨∆T(n̂1)∆T(n̂2)⟩ . (1.13)

Under conditions of statistical isotropy, the correlation function depends only on the angle
between n1 and n2. In terms of cos(θ) = n̂1 ⋅ n̂2, it can be written in the form

C(θ) = 1

4π

∞∑
ℓ=0

(2ℓ + 1)CℓPℓ(cos(θ)), (1.14)

where Cℓ is the power spectrum and Pℓ are the Legendre polynomials.

1.3 polarization of the cmb

_e CMB is polarized, which is expected from anisotropic scattering at the surface of last
scattering. _emathematical description of the polarization of the CMB is complicated by
the dependence on the coordinate system in which the data is represented.

Stokes parameters

_e polarization of electromagnetic waves can be described in several ways. It is con-
ventional to use the Stokes parameters [61]. Given a Cartesian basis (x , y) in the plane
orthogonal to the incoming wave, and another Cartesian basis (a, b) rotated by 45○ from(x , y), the Stokes parameters are defined in terms of the projections of the electric field
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Figure 1.2: TT, TE, and EE angular power spectra measured by Planck [60]. _e black
curves show the ΛCDM model with best-fit parameters, and the blue dots show the
measured values. _e TT and TE spectra are plotted in terms of Dℓ = ℓ(ℓ + 1)Cℓ/2π.

vector E = (Ex , Ey) [62]
I = ⟨E2

x⟩ + ⟨E2
y⟩ ; (1.15a)

Q = ⟨E2
x⟩ − ⟨E2

y⟩ ; (1.15b)

U = ⟨E2
a⟩ − ⟨E2

b⟩ . (1.15c)

_e ⟨⋅⟩ brackets denote time averages. I is the amplitude, or total intensity of the wave;
note that this quantity is coordinate-independent. Q and U measure the preference for
orientation aligned with the (x , y) and (a, b) axes. If there is no preference, and the
orientation of the wave varies randomly in time, then the expectation values in each
direction will be equal to each other, and Q and U will be 0. A general description of
polarization requires a fourth Stokes parameter, denoted V , which measures circular
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Figure 1.3: _e blue bar shows the electric field orientation of an incoming electromagnetic
wave with polarization described by, from le� to right, pure Q > 0, pure Q < 0, pureU > 0,
and pure U < 0. In general there will be some superposition with nonzero Q and U .

polarization; but, since V is not produced normally by_omson scattering, it is normally
neglected. Figure 1.3 shows examples of pure Q and pure U polarizations.
_e values of Q and U depend on the coordinate system chosen. Under a rotation of

the axes by an angle ψ, they transform together as

(Q
U
) ψ↦ (Q′

U ′
) = ( cos(2ψ) sin(2ψ)− sin(2ψ) cos(2ψ))(QU). (1.16)

_e Stokes parameters are unchanged under a half rotation (ψ = π). _e combination
Q ± iU transforms as

(Q ± iU) ψ↦ (Q′ ± iU ′) = e∓2iψ(Q ± iU). (1.17)

_is is the transformation law for a spin-2 quantity, and therefore Q ± iU has a definite
spin of ±2.

A normal spherical polar coordinate system induces local Cartesian coordinates in each
direction.1 When the Stokes parameters are defined with respect to the local Cartesian
coordinates induced by overall spherical coordinates on which they aremeasured, which
is usual, then a rotation of the overall coordinates mixes Q and U at every point according
to equation (1.17). _e Stokes parameter maps defined in this way comprise a spin-2 field
on the sphere.
In terms of the Stokes parameters are defined the polarization intensity

P =√Q2 +U 2 (1.18)

and the polarization angle

ψ = 1

2
arctan(U

Q
). (1.19)

1_ere are two conventions for the local coordinate system, depending on whether the z axis, which is parallel
to the line of sight, is taken to point towards or away from the observer. CMB data analysis generally uses the
convention which is not recommended by the IAU; see [63]. In the IAU convention, the axes in figure 1.3 would
be swapped.
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_ese quantities are an alternative description of the polarization state. _e opposite
transformation from P and ψ to Q and U is

Q = P cos(2ψ); (1.20a)

U = P sin(2ψ). (1.20b)

_e factor of 1/2 in equation (1.19), and likewise the factor of 2 in equation (1.20), reflect
the geometric fact that the general elliptical polarization state is indistinguishable a�er
rotations of 180○. Q and U are o�en combined into a Stokes vector or polarization vector

P⃗ = (Q
U
). (1.21)

But this object is a spurious “vector” that does not transform like a real vector under
coordinate transformations. Nevertheless in some cases it is a useful notation to represent
the Stokes parameters.
_e Stokes parameters are straightforward to measure experimentally. If Q and U are

measuredwith symmetricGaussian errors, then equation (1.18) is anoise-biased estimate of
the polarization intensity, being strictly positive and always overestimated in the presence
of noise. Alternative unbiased estimators of the polarization intensity are sought in [64].
_e statistical theory of the polarization angle is the subject of chapter 4.

Standard E and Bmodes

As discussed above, when Q(n̂) and (n̂) are defined on the sphere, their values are linked
to a specific spherical coordinate system. It is possible to seek a rotationally invariant
description of polarization measured on the sphere. Q(n̂) ± iU(n̂) is a spin-2 field which
can be expanded in terms of spin-weighted spherical harmonics as [65]

Q(n̂) ± iU(n̂) = ∞∑
ℓ=2

ℓ∑
m=−ℓ

a±2,ℓm±2Yℓm(n̂). (1.22)

Forming linear combinations of the spin-2 harmonic coefficients as

aEℓm = − 12(a2,ℓm + a−2,ℓm); (1.23a)

aBℓm = i

2
(a2,ℓm − a−2,ℓm), (1.23b)
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an invariant E mode and B mode can be defined by normal (zero-spin) inverse harmonic
transformation [66]

E(n̂) = ∞∑
ℓ=2

ℓ∑
m=−ℓ

aEℓmYℓm(n̂); (1.24a)

B(n̂) = ∞∑
ℓ=2

ℓ∑
m=−ℓ

aBℓmYℓm(n̂). (1.24b)

_e power spectra of the E and B modes can be defined using the corresponding aℓm
coefficients in the same way as for the temperature case. It is also possible to define cross-
spectra, for example, TE or EB spectra. _e E mode spectrum measured by Planck is
shown in figure 1.2. _e Bmode spectrummeasured by Planck is dominated by noise and
systematic uncertainties, and it is compatible with 0.

It can be shown that gravitationalwaves in the earlyuniverse result in aCMB polarization
state for which neither aEℓm nor aBℓm is zero. However, the contribution to the polarization
from the normal scalar density perturbations has aBℓm = 0 [13–15, 67]. _e size of the B
mode power spectrum is linked directly to the tensor-to-scalar ratio r.

Apart from this very desirable sensitivity of the Bmode to the cosmological gravitational
waves, themeaning of the E and Bmodes is not clear from the definition yet given. _ere
are several different constructions of the E and Bmodes, variously based on spin-raising
and spin-lowering operators [68, 69], the differential geometry of tensor fields [62, 70, 71],
and the calculus of spin-2 functions [71–73]. _ese three approaches are all equivalent, but
each one clarifies different aspects of the E–B decomposition. _ey will now be discussed
in turn.

Spin-weighted functions

Functions on the sphere with a well-defined spin s, which transform under rotations

as f (n̂) ψ↦ e−i sψ f (n̂) (cf. equation (1.17)), are subject to spin-raising and spin-lowering
operators, denoted ð and ð̄, which raise or lower the spin [65]:

ð f (n̂) ψ↦ e−i(s+1)ψð f (n̂); (1.25a)

ð̄ f (n̂) ψ↦ e−i(s−1)ψ ð̄ f (n̂). (1.25b)

_e spin-weighted spherical harmonics obey the identities

ð(sYℓm(n̂)) = √(ℓ − s)(ℓ + s + 1)s+1Yℓm(n̂); (1.26a)

ð̄(sYℓm(n̂)) = −√(ℓ + s)(ℓ − s + 1)s−1Yℓm(n̂). (1.26b)

Spin-0 scalars can therefore be derived from the spin-2 field Q(n̂) ± iU(n̂) by application
of the raising and lowering operators. _e results are complex-valued and are denoted by
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E(n̂) ± iB(n̂):
E(n̂) + iB(n̂) = −ð̄2(Q(n̂) + iU(n̂)); (1.27a)

E(n̂) − iB(n̂) = −ð2(Q(n̂) − iU(n̂)). (1.27b)

Combining equations (1.23) and (1.26), the scalar fields are given by

E(n̂) = ∞∑
ℓ=2

ℓ∑
m=−ℓ

aEℓm

¿ÁÁÀ(ℓ + 2)!(ℓ − 2)!Yℓm(n̂); (1.28a)

B(n̂) = ∞∑
ℓ=2

ℓ∑
m=−ℓ

aBℓm

¿ÁÁÀ(ℓ + 2)!(ℓ − 2)!Yℓm(n̂). (1.28b)

It is more usual to work with the E(n̂) and B(n̂) fields rather than E(n̂) andB(n̂). E(n̂)
and B(n̂) exclude the ℓ weighting factor, but otherwise emerge from the spin-raising and
lowering procedure in the same way, and naturally have the same desired property of
rotational invariance.

Tensor harmonic expansion

_e Stokes parameters can be organized into a 2 × 2 symmetric traceless tensor field,
denoted Pab(n̂). An explicit coordinate system is required to proceed in concrete terms.
Normal spherical polar coordinates (θ , φ) is adopted in which themetric tensor is

дab = (1 0

0 sin2(θ)). (1.29)

_en Pab(n̂) is1
Pab(n̂) = 1√

2
( Q(n̂) U(n̂) sin(θ)
U(n̂) sin(θ) −Q(n̂) sin2(θ)). (1.30)

It is a fact of differential geometry that any symmetric traceless tensor field on the sphere
can be written as the sum of the gradient of some scalar field and the curl of another scalar
field, which are called E and B respectively._e terms gradient and curl are used loosely to
refer to tensor generalizations of these operations; explicitly, the decomposition is

Pab = (E∶ab − 1

2
дabE

∶c
c ) + 1

2
(B∶acєcb + B∶bcєca) (1.31)

1Different normalization and sign conventions have been used for Pab . _is one agrees with [68] and [70], but
not [62].
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using the colon notation for covariant derivatives, and є is the two dimensional Levi-Civita
symbol

єab = √д( 0 1−1 0
). (1.32)

Being scalars by construction, E and B can be represented in the harmonic domain as
sums over spin-0 spherical harmonics (i.e., equation (1.24)). _is decomposition is then
inherited by Pab , which can be written as

Pab(n̂) = ∞∑
ℓ=2

ℓ∑
m=−ℓ

(aEℓm(Y E
ℓm)ab(n̂) + aBℓm(Y B

ℓm)ab(n̂)), (1.33)

where Y E and Y B denote the gradient and curl of the spherical harmonics:

(Y E
ℓm)ab =√2

¿ÁÁÀ(ℓ − 2)!(ℓ + 2)!((Yℓm)∶ab − 1

2
дab(Yℓm)c∶c); (1.34a)

(Y B
ℓm)ab = 1√

2

¿ÁÁÀ(ℓ − 2)!(ℓ + 2)!((Yℓm)∶acєcb + (Yℓm)∶bcєca). (1.34b)

_e normalization coefficients of Y E and Y B have been chosen tomake themorthonormal
functions on the sphere. _e harmonic coefficients aEℓm and aBℓm can be found from Pab

by integration:

aEℓm = ∫ Pab(n̂)(Y E
ℓm)ab(n̂)∗ d n̂; (1.35a)

aBℓm = ∫ Pab(n̂)(Y B
ℓm)ab(n̂)∗ d n̂. (1.35b)

In spherical coordinates, Y E and Y B can be written explicitly in terms of spin-weighted
spherical harmonics:

(Y E
ℓm)ab = 1√

2

¿ÁÁÀ(ℓ − 2)!(ℓ + 2)!( Wℓm Xℓm sin(θ)
Xℓm sin(θ) −Wℓm sin2(θ)); (1.36a)

(Y B
ℓm)ab = 1√

2

¿ÁÁÀ(ℓ − 2)!(ℓ + 2)!( −Xℓm Wℓm sin(θ)
Wℓm sin(θ) Xℓm sin2(θ)), (1.36b)

where

Wℓm(n̂) ± iXℓm(n̂) =
¿ÁÁÀ(ℓ + 2)!(ℓ − 2)!±2Yℓm(n̂). (1.37)
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Vector notation

Above, the spin-raising and spin-lowering operators were applied to Q(n̂) ± iU(n̂) to
recover scalars. It is also possible to work in reverse, writing Q(n̂) ± iU(n̂) as the applica-
tion of spin-raising and spin-lowering operators on some scalar potentials. _e correct
potentials turn out to be closely linked with the E and Bmodes. We can write

Q(n̂) + iU(n̂) = ð2(ΨE(n̂) + iΨB(n̂)); (1.38a)

Q(n̂) − iU(n̂) = ð̄2(ΨE(n̂) − iΨB(n̂)), (1.38b)

where the potentials are

ΨE(n̂) = − ∞∑
ℓ=2

ℓ∑
m=−ℓ

¿ÁÁÀ(ℓ − 2)!(ℓ + 2)! aEℓmYℓm(n̂); (1.39a)

ΨB(n̂) = − ∞∑
ℓ=2

ℓ∑
m=−ℓ

¿ÁÁÀ(ℓ − 2)!(ℓ + 2)! aBℓmYℓm(n̂). (1.39b)

_ese expressions can be recovered by straightforward application of identities obeyed by
the spin-weighted spherical harmonics. Introducing differential vector operators DE and
DB defined as

DE = 1

2
( ð2 + ð̄2−i(ð2 − ð̄2)); (1.40a)

DB = 1

2
(i(ð2 − ð̄2)

ð2 − ð̄2 ), (1.40b)

then equation (1.38) can be written in terms of the Stokes vector P⃗ = (Q
U
) as

P⃗ = DEΨE + DBΨB . (1.41)

_is is analogous to the gradient/curl decomposition in equation (1.33). DE and DB are
spin-2 versions of the divergence and curl. _ey satisfy the identities

D†
E ⋅ DB = 0; (1.42a)

D†
B ⋅ DB = 0; (1.42b)

D†
E ⋅ DE = ∇2(∇2 + 2); (1.42c)

D†
B ⋅ DB = ∇2(∇2 + 2). (1.42d)

_e Stokes-space Emode of P⃗, which is P⃗E = DEΨE , therefore satisfies D
†
B ⋅ P⃗E = 0: it has

no curl. _e Stokes-space Bmode, P⃗B = DBΨB , likewise has no divergence. _is is the
origin of the E/B terminology,made by analogy with electromagnetism.
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Figure 1.4: Frequency spectra of themain Galactic foregrounds. Figure taken from [3].
_e amplitudes plotted are averages over the full sky; however, the foregrounds are not
isotropic.

1.4 galactic and extra-galactic foregrounds

_e CMB is not the only source of microwave radiation in the sky. _ere are other
sources ofmicrowave radiation from the late universe, generally concentrated in stars and
galaxies. Although these radiation sources are interesting in their own right, and they
render important datasets to astrophysics and the study of the interstellar medium, in
CMB science their main role is obscuring the background signal, and they are termed

foregrounds. _e brightest foregrounds are from the Milky Way Galaxy. _e strongest
foreground sources are synchrotron radiation from relativistic electrons accelerated in the
magnetic field of the Galaxy, free–free emission (Bremsstrahlung) from electrons deflected
by other atoms, and thermal dust emission and spinning dust emission from dust grains
in the interstellar medium. Other weaker sources include line emission from carbon
monoxide.
_e intensities of different foregrounds vary differently with frequency, and they also

vary differently from the CMB._is different frequency behavior is one of the keys that
enable foreground subtraction from multi-frequency observations, which is discussed
below. _e approximate frequency spectra of themain Galactic foregrounds in the recent
Planck data [3] are shown in figure 1.4. Synchrotron and free–free radiation dominate
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Figure 1.5: _e sky observed by Planck at ν = 30GHz. _emap shown is the reconstructed
LFI posteriormean map released by BeyondPlanck [74]. _e two main microwave signals
are the kinematic dipole and theMilkyWay Galaxy.

at lower frequencies, while thermal dust is the dominant signal at high frequencies. _e
CMB itself ismost pronounced relative to the foregrounds in the 70 and 100 GHz bands.

_e spectral behavior illustrated in figure 1.4 should not be allowed to conceal the fact
that there is significant spatial variation in the foreground maps [75], which includes
variation of the spectral indices across the sky [76].

Polarized foregrounds

_ere are also foreground sources in polarization [77, 78]. Expressed in terms of the
percentage of the total intensity, the synchrotron and thermal dust foregrounds can be sig-
nificantly polarized, up to around the 20%–40% level [79]. Synchrotron and thermal dust
emission are the dominant polarization signals at low and high frequencies respectively. It
is also suggested that Galacticmagnetic dust radiation could be significantly polarized;
these are joined by anomalousmicrowave emission, believed to result from small spinning
dust grains [80–84]. Polarized dust emission has been found to extend to high Galactic
latitudes [85], and it appears that there are no parts of the sky that are free from foreground
contamination.
Research on the polarized foregrounds has focused on their spectral behavior [86],
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which underlies the main component separation methods (discussed below). Spatial
variation and structure has also been detected in the polarized foregrounds [87–89]. Other
important results include the relative contributions of the polarized foregrounds to the
E and B modes, which is linked to research on the physics of the interstellar medium
[90–92].

Foreground polarization emission, especially contributing to the Bmode, is a significant
obstacle to current and upcoming CMB polarization experiments, both ground-based
and space-based [93, 94]. Methods for identifying and subtracting contributions from
foregrounds to the Bmode have been proposed [95–97]. _esemethods generally work
by assuming statistical isotropy of the primordial Bmode.

_e polarized foregrounds remain poorly understood. In preparation for the upcoming
ground-based experiments, themost important goal is understanding the spatial behavior
and statistical properties of the polarized foregrounds [94].

Component separation

_e subtraction of the foreground signals from observed data to produce maps of the
cosmicmicrowave background is known as component separation. A variety of different
algorithms have been proposed for performing component separation. _e Planck col-
laboration implements and publishes four component separation products: Commander,
NILC, SEVEM, and SMICA [98, 99]. All thesemethods producemaps in both tempera-
ture and polarization. _emaps are also each associated with a “confidencemask”, which
arbitrarily excludes themost corrupted and uncertain regions of the Galactic plane and
point sources.

Commander In the Commandermethod [100, 101], the frequency-ν data at each pixel p,
denoted dν(p), ismodeled as a linear combination of projected and rescaled astrophysical
foregrounds, plus a noise term nν(p):

dν(p) = дν Nc∑
c=1

Fν(βc)T(p)ac + nν(p), (1.43)

where the different components are indexed by c, each having amplitude ac ; every compo-
nent is transformed by themap projection operator T(p) and a frequency scaling operator
depending on the spectral index Fν(βc). _ere is also an overall calibration scaling per
frequency channel, denoted дν . _e implied posterior distribution is then sampled us-
ing Gibbs sampling. Originally based on map-space data, Commander ismore recently
implemented in harmonic space [102].

NILC _e Needlet Internal Linear Combination method [103, 104] is a development
of well-known ILCmethods adopted byWMAP for component separation. A basis of
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needlets, a type of spherical wavelets with desirable properties, is used to decompose the
inputmaps; in this basis, the linear combination with minimal variance is then found.

SEVEM _e Spectral Estimation Via Expectation Maximization [105] is a real-space,
template-basedmethod. Templates can be constructed internally by subtraction of different
frequencymaps. _e data is represented as

Xν(p) = dν(p) − N t∑
i=1

α i t i(p), (1.44)

where X ∈ {T ,Q ,U} is the CMB component, and t i(p) are themap-domain templates.
_e coefficients α i are fitted by varianceminimization. _emethod produces CMBmaps
depending on frequency ν.

SMICA _e Spectral Matching Independent Component Analysismethod [106, 107]
works by producing a linear combination of the frequency channels in the harmonic
domain. _e weights are determined by variance minimization, in which the covari-
ancematrix is approximated using amaximum-likelihood algorithm under an isotropic
Gaussian model.

_ere aremultiple varieties and technical improvements to the component separation
methods that have been incorporated in the latest Planck releases. Nevertheless, all com-
ponent separation methods producemaps that are contaminated by strong foreground
residuals, especially near theGalactic plane. In addition to the confidencemasks associated
with each map, a common mask is also published formore conservative applications.

Gravitational lensing

Soon a�er the introduction of the E–B decomposition, it was observed that gravitational
lensing induces Bmodes even when only a primordial Emode signal is present [108, 109].
Effectively, the native Emodes are distorted due to gravitational lensing by interceding
matter, resulting in curl patterns which are interpreted as Bmodes; other effects of gravi-
tational lensing on the CMB include a small non-Gaussian component [110]. Strategies
for delensing exist [111], and the CMB can be delensed using measurements of the cosmic
infrared background [112] or with galaxy surveys [113, 114].

1.5 data representation

_emathematical description of the CMB is naturally continuous and involves the non-
trivial geometry of the sphere. Observations of the CMB, however, result in discrete data.
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Representations of the data in a format amenable to spherical data analysis, and especially
to spherical harmonic transformations, are therefore very desirable.

_e COBE mission adopted a quadrilaterilized spherical cubemapping, in which equal-
area pixels on the sphere are projected onto an inscribed cube. _e six base pixels, corre-
sponding to the six faces of the inscribed cube, are divided into four subpixels, which are
in turn divided into four subpixels each, and so on, resulting in a total of 6 × 22N pixels,
where N = 1, 2, 3, . . . is a number of divisions specifying the resolution.

_e advantage of equal-area pixels is that integration requires no weights. However, a
weakness of the COBE quadrilaterilized spherical cube scheme is that the pixels do not
lie on rings of equal latitude. _e computation and storage costs of evaluating spherical
harmonics on a range of latitudes are substantial, especially with modern high-resolution
data.

HEALPix

HEALPix [115] solves thisproblem by ensuring pixels lie on lines of equal latitude. HEALPix
stands for “Hierarchical Equal Area iso-Latitude Pixelization”, and was developed for the
WMAP and Planck experiments, but is now widely used for astrophysical data [63, 116].
Several implementations exist. _eC++ implementation can be accessed through a Python
wrapper [117]; this is the version used throughout this thesis.

In HEALPix, 12 base pixels are subdivided recursively into 4 subpixels each, similarly
to the quadrilaterized spherical cube scheme. Rather than the number of divisions, the
resolution is normally specified in terms of an Nside parameter, which is the number of
pixels along one side of one of the base pixels. _e total number of pixels is therefore
12 × N2

side. _e Nside parameter is a positive power of 2, i.e. Nside = 1, 2, 4, 8, 16, . . . . Most
full-resolution Planck data products are pixelized at Nside = 2048, corresponding to about
50million pixels.

HEALPix is associated with a pixel ordering, which means that amap can be stored in
a one-dimensional array object. In the RING ordering, pixels are numbered starting from
the North Pole, looping around and then stepping down through the iso-latitude rings.
In the NESTED ordering, pixels are numbered in a recursive scheme through successive
quadrilateral subpixel divisions. Maps do not need to be rasterized and include ametadata
flag labeling which of the two ordering schemes is in use. _e different ordering schemes
can have significant impacts on the performance of different algorithms.
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Figure 1.6: Upper panel: the 12 base pixels of the HEALPix scheme. Lower panel: the
HEALPixmap at Nside = 2, with the pixels numbered in the RING ordering.
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2 E AND B MODES OF THE STOKES PARAME-

TERS

_e E and Bmodes of the polarization field are normally conceived in a harmonic setting,
where they emerge from the decomposition of the Stokes field on the sphere into spin-
weighted spherical harmonics and the construction of scalar and pseudo-scalar modes
in harmonic space, discussed in section 1.3. _e great value of this decomposition is that
scalar perturbations do not produce a Bmode signal; instead, a Bmode is expected from
tensor perturbations due to a gravitational wave background in the early universe [13–15].
In addition to the normal harmonicmethod, it is possible to construct E and Bmaps

directly out of Q and U . _e E–B decomposition is realized as

(Q
U
) = (QE

UE
) + (QB

UB
). (2.1)

_is conception of the E–B decomposition is implied by equation (1.41), although there the
interest was the scalar E and B potentials. In this chapter, the subject is the Stokes-space E
and Bmodes themselves, which are named the E and B families.

E and Bmodes in the space of the Stokes parameters are discussed briefly in some early
works, e.g. [118], and they have also appeared in [119]. But they remain understudied from
an analytic point of view, and their potential applications for data analysis are unexploited.
_ere are several specific objectives of the study presented here. _e first is the repre-
sentation of the E–B decomposition as a linear convolution in the map space, and the
computation of the corresponding convolution kernels. _ese kernels, which are 2 × 2
matrices denoted GE(n̂, n̂′) and GB(n̂, n̂′), link the input polarization data (Q ,U) to the
output E and Bmodes via integration over the full sky:

(QE(n̂)
UE(n̂)) = ∫ GE(n̂, n̂′)(Q(n̂′)U(n̂′)) d n̂′; (2.2a)

(QB(n̂)
UB(n̂)) = ∫ GB(n̂, n̂′)(Q(n̂′)U(n̂′)) d n̂′ . (2.2b)

_e kernels therefore describe the influence of the point n̂ on the point n̂′, and they provide
a concrete and visualizable insight into the geometric workings of the E–B decomposition.
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_e second objective is the design of new estimators which characterize the E and B
modes. Since the E and B families retain the two Stokes dimensions, it is possible to define
polarization intensities and polarization angles associated with each of the E and Bmodes
separately. _ese estimators are applied to polarized foreground analysis, where they reveal
new features of the thermal dust foregrounds. _e analysis is illustrative of the utility of
the estimators.

_ese results underliemuch of the remainder of the thesis. _emap-space E–B decom-
position is the foundation of a new leakage correction method proposed in chapter 3. _e
statistics of the polarization angle, including the specific statistical properties of the E and
B polarization angles, is the subject of chapter 4, and the E and B polarization intensities
are involved in the non-polarized point analysis in chapter 5.
_e basic ideas of the map-space E–B decomposition and the E and B convolution

kernels were published in [16], together with the application to polarized foreground
analysis. Shortly therea�er, these subjects were also discussed in a work by Rotti &
Huffenberger [69], and they were applied to filamentary structures. _e formalisms of [16]
and [69] contain slight differences from each other, but they are completely compatible.

2.1 e–b decomposition of the stokes vector

_e Stokes vector holding the Q and U Stokes parameters is

P⃗ = (Q
U
). (2.3)

Q and U are real numbers. But, the Stokes vector field on the sphere, P⃗(n̂), does not
transform as an R

2 vector under coordinate transformations: instead, Q and U aremixed
according to the rules of a spin-2 field, as discussed in section 1.3. _is is a slightly subtle
point because P⃗ will sometimes be treated as a “vector” in an operational sense; for example,
2 × 2matrices will multiply it.
Under the decomposition of equation (2.1), the Stokes parameters can be split into E

and B components separately:

Q = QE + QB (2.4a)

U = UE +UB (2.4b)

_e division is determined by the requirement that (QE ,UE) will, when treated as an
input polarization map under the traditional harmonic space construction, yield only an
E mode, and (QB ,UB) only a Bmode. _e traditional expansion of Q(n̂) + iU(n̂) into
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spin ±2 spherical harmonics is:1

Q(n̂) ± iU(n̂) = ∑
ℓ ,m

a±2,ℓm±2Yℓm(n̂), (2.5)

and the coefficients are computed in the standard way:

a±2,ℓm = ∫ (Q(n̂) + iU(n̂))±2Yℓm(n̂)∗ dn̂. (2.6)

_e separate equations for Q and U are

Q(n̂) = 1

2
(∑
ℓ ,m

a2,ℓm2Yℓm(n̂) +∑
ℓ ,m

a−2,ℓm−2Yℓm(n̂)); (2.7a)

U(n̂) = 1

2i
(∑
ℓ ,m

a2,ℓm2Yℓm(n̂) −∑
ℓ ,m

a−2,ℓm−2Yℓm(n̂)). (2.7b)

In terms of the a±2,ℓm coefficients, the E and Bmodes in harmonic space are

aEℓm = − a2,ℓm + a−2,ℓm2
; (2.8a)

aBℓm = − a2,ℓm − a−2,ℓm2i
. (2.8b)

_erefore, the condition of zero E or Bmode implies a constraint on the a±2,ℓm coefficients.
Zero E mode corresponds to

a2,ℓm = −a−2,ℓm , (2.9)

and zero Bmode corresponds to

a2,ℓm = a−2,ℓm . (2.10)

Substituting these constraints in equation (2.7) yields respectively Stokes parameters with
no E and no B component, and therefore they can be associated solely with the B and the
E mode:

QE=0(n̂) = QB(n̂) = 1

2
∑
ℓ ,m

a2,ℓm(2Yℓm(n̂) − −2Yℓm(n̂)); (2.11a)

UE=0(n̂) = UB(n̂) = 1

2i
∑
ℓ ,m

a2,ℓm(2Yℓm(n̂) + −2Yℓm(n̂)); (2.11b)

QB=0(n̂) = QE(n̂) = 1

2
∑
ℓ ,m

a2,ℓm(2Yℓm(n̂) + −2Yℓm(n̂)); (2.11c)

UB=0(n̂) = UE(n̂) = 1

2i
∑
ℓ ,m

a2,ℓm(2Yℓm(n̂) − −2Yℓm(n̂)). (2.11d)

1In this chapter,∑ℓ ,m generally stands for∑
ℓmax
ℓ=2 ∑

ℓ
m=−ℓ , where ℓmax can be∞, but it is not assumed to be. But

see the discussions on pages 27 and 29.
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_ese sum together to the original, i.e.

QE(n̂) + QB(n̂) = Q(n̂); (2.12a)

UE(n̂) +UB(n̂) = U(n̂). (2.12b)

Defining linear combinations of the spin-weighted spherical harmonics,

F+ℓm(n̂) = − 12(2Yℓm(n̂) + −2Yℓm(n̂)); (2.13a)

F−ℓm(n̂) = − 1

2i
(2Yℓm(n̂) − −2Yℓm(n̂)), (2.13b)

the E and B Stokes parameters can be written as

QE(n̂) = ∑
ℓ ,m

aEℓmF
+
ℓm(n̂); (2.14a)

UE(n̂) = ∑
ℓ ,m

aEℓmF
−
ℓm(n̂); (2.14b)

QB(n̂) = −∑
ℓ ,m

aBℓmF
−
ℓm(n̂); (2.14c)

UB(n̂) = ∑
ℓ ,m

aBℓmF
+
ℓm(n̂). (2.14d)

_erefore the E Stokes parameters are functions of aEℓm alone, and similarly for B. _e
decomposition is linear and orthogonal. _e E and B families are:

P⃗E(n̂) = (QE(n̂)
UE(n̂)); (2.15a)

P⃗B(n̂) = (QB(n̂)
UB(n̂)). (2.15b)

Polarization intensities and polarization angles

Now that the E and Bmodes are each expressed as Stokes vectors, it is possible to define a
polarization intensity and a polarization angle associated with each mode, as follows:

PE =√Q2
E +U 2

E ; (2.16a)

PB =√Q2
B +U 2

B ; (2.16b)

ψE = 1

2
arctan(UE

QE

); (2.16c)

ψB = 1

2
arctan(UB

QB

). (2.16d)
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_e total polarization intensity can be expanded in terms of the E and B polarization
intensities, but the nonlinearity introduces an extra term:

P2 = Q2 +U 2 = P2
E + P2

B + ∆EB , (2.17)

where

∆EB = 2(QEQB +UEUB). (2.18)

_e cross term ∆EB can be rewritten in terms of the polarization angles, as

∆EB = 2PEPB cos(2ψE − 2ψB), (2.19)

or, returning to the harmonic expansions,

∆EB = 2∑
ℓ ,m

∑
ℓ′ ,m′

aEℓm(aBℓm)∗(F−ℓm(F+ℓ′m′)∗ − F+ℓm(F−ℓ′m′)∗). (2.20)

From equation (2.20) it is clear that ∆EB is composed entirely of cross quadratic E–B terms.
_emixing coefficients are

Gℓmℓ′m′ = F−ℓm(F+ℓ′m′)∗ − F+ℓm(F−ℓ′m′)∗ . (2.21)

2.2 real-space convolution kernels

_e decomposition of the Stokes vector presented above assumes the existence of full-
sky data. P⃗E and P⃗B have been expressed in terms of harmonic coefficients. However, it
is possible to recast the equations to define the E and B families locally through linear
convolution of the Stokes vector. Apart from theoretical interest, this enables the E and B
families to be calculated using partial sky data, without the need to perform any harmonic
transformation. _ey are still subject to E–B leakage effects.

Integral representation of the E–B decomposition

_e harmonic coefficients a±2,ℓm are calculated by integration of the Stokes parameters
in equation (2.6). Combining this with the definitions of aEℓm and aBℓm in equation (2.8),
these can be written as

aEℓm = ∫ (Q(n̂)F+ℓm(n̂)∗ +U(n̂)F−ℓm(n̂)∗) d n̂; (2.22a)

aBℓm = ∫ (−Q(n̂)F−ℓm(n̂)∗ +U(n̂)F+ℓm(n̂)∗) d n̂. (2.22b)
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_en, substituting into equation (2.14),

QE(n̂) = ∫ (G1(n̂, n̂′)Q(n̂′) +G2(n̂, n̂′)U(n̂′)) dn̂′ (2.23a)

UE(n̂) = ∫ (G3(n̂, n̂′)Q(n̂′) +G4(n̂, n̂′)U(n̂′)) dn̂′; (2.23b)

QB(n̂) = ∫ (G4(n̂, n̂′)Q(n̂′) −G3(n̂, n̂′)U(n̂′)) d n̂′; (2.23c)

UB(n̂) = ∫ (−G2(n̂, n̂′)Q(n̂′) +G1(n̂, n̂′)U(n̂′)) d n̂′ . (2.23d)

where the coefficients G i are defined as

G1(n̂, n̂′) =∑
ℓ ,m

F+ℓm(n̂)F+ℓm(n̂′)∗; (2.24a)

G2(n̂, n̂′) =∑
ℓ ,m

F+ℓm(n̂)F−ℓm(n̂′)∗; (2.24b)

G3(n̂, n̂′) =∑
ℓ ,m

F−ℓm(n̂)F+ℓm(n̂′)∗; (2.24c)

G4(n̂, n̂′) =∑
ℓ ,m

F−ℓm(n̂)F−ℓm(n̂′)∗ . (2.24d)

_e decomposition in equations (2.23) can be written as an integral transform:

P⃗E(n̂) = ∫ GE(n̂, n̂′)P⃗(n̂′) d n̂′; (2.25a)

P⃗B(n̂) = ∫ GB(n̂, n̂′)P⃗(n̂′) d n̂′ . (2.25b)

GE and GB are the E and B kernels, which weight the contribution of the polarization
intensity at n̂ to E or B at the point n̂′. _e kernels can be written as sums over spherical
harmonics. _e explicitmatrix representation is

GE(n̂, n̂′) = (G1(n̂, n̂′) G2(n̂, n̂′)
G3(n̂, n̂′) G4(n̂, n̂′)); (2.26a)

GB(n̂, n̂′) = ( G4(n̂, n̂′) −G3(n̂, n̂′)−G2(n̂, n̂′) G1(n̂, n̂′) ). (2.26b)

Properties of the E/B kernels

Some analytic properties of the kernels deserve to be worked out first, before attempting
to compute them. _e main tool is the completeness of the spin-weighted spherical
harmonics,

∞∑
ℓ=2

ℓ∑
m=−ℓ

sYℓm(n̂′)∗sYℓm(n̂) = δ(n̂ − n̂′), (2.27)
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together with other standard identities. In equation (2.27), the sum over ℓ is taken to∞. Only in this limit is a true delta function recovered. However, as discussed below,
the notion of a band-limited delta function is important in any practical application of
the theory to pixelized data. A band-limited delta function is therefore defined as the
truncation of the series at some finite ℓmax:

ℓmax∑
ℓ=2

ℓ∑
m=−ℓ

2Yℓm(n̂′)∗2Yℓm(n̂) = δℓmax(n̂ − n̂′). (2.28)

_e behaviour of δℓmax(n̂− n̂′) on angular scales ℓ < ℓmax is comparable to a delta function,
and as the value of ℓmax is increased, the corresponding δ

ℓmax(n̂− n̂′) becomes increasingly
localized. Generally, the ℓmax superscript can be omitted in the equations, which usually
apply to the normal and band-limited delta functions alike.

First, it is claimed that the kernels are real-valued. _is is not obvious from the equations
above. But, choosing G1 in particular, it can be written

G1(n̂, n̂′) = ∑
ℓ ,m

F+,ℓm(n̂)F∗+,ℓm(n̂′) (2.29a)

= 1

2
δ(n̂ − n̂′) + 1

4
∑
ℓ ,m

(2Yℓm(n̂)−2Yℓm(n̂′)∗ + −2Yℓm(n̂)2Yℓm(n̂′)∗). (2.29b)

_e sum over m is split into three parts:

∑
ℓ ,m

= ∑
ℓ

(∑
m>0

+ ∑
m<0

+ ∑
m=0

). (2.30)

_e sum over negativem can bemodified using the identity (sYℓm)∗ = (−1)s+m−sYℓ(−m):

∑
m<0

(2Yℓm(n̂)−2Yℓm(n̂′)∗ + −2Yℓm(n̂)2Yℓm(n̂′)∗)
= ∑

m<0

(−2Yℓ(−m)(n̂)∗2Yℓ(−m)(n̂′) + 2Yℓ(−m)(n̂)∗−2Yℓ(−m)(n̂′)) (2.31a)

= ∑
m>0

(−2Yℓm(n̂)∗2Yℓm(n̂′) + 2Yℓm(n̂)∗−2Yℓm(n̂′)) (2.31b)

= (∑
m>0

(2Yℓm(n̂)−2Yℓm(n̂′)∗ + −2Yℓm(n̂)2Yℓm(n̂′)∗))∗ . (2.31c)

_erefore the m > 0 and m < 0 sums are complex conjugates to each other, and together
they are real. Furthermore, the m = 0 term can also bemodified using the same identity:

2Yℓ0(n̂)−2Yℓ0(n̂′)∗ + −2Yℓ0(n̂)2Yℓ0(n̂′)∗ = 2Yℓ0(n̂)2Yℓ0(n̂′) + 2Yℓ0(n̂)∗2Yℓ0(n̂′)∗ ,
(2.32)
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which is a sum of complex conjugates and is therefore also real. _erefore each term in
the∑ℓ is real, and G1 is real.
By similar calculations it can be shown that G2, G3, and G4 are also real.
Furthermore, it can be shown thatG2 = G3._is is also not obvious from equation (2.24).

_e difference can be written

G2(n̂, n̂′) −G3(n̂, n̂′) =∑
ℓ ,m

F+,ℓm(n̂)F∗−,ℓm(n̂′) −∑
ℓ ,m

F−,ℓm(n̂)F∗+,ℓm(n̂′) (2.33a)

= 1

4i
∑
ℓ ,m

(2Yℓm(n̂)2Yℓm(n̂′)∗ − 2Yℓm(n̂)−2Yℓm(n̂′)∗
+ −2Yℓm(n̂)2Yℓm(n̂′)∗ − −2Yℓm(n̂)−2Yℓm(n̂′)∗
− 2Yℓm(n̂)2Yℓm(n̂′)∗ + 2Yℓm(n̂)−2Yℓm(n̂′)∗
− −2Yℓm(n̂)2Yℓm(n̂′)∗ + −2Yℓm(n̂)−2Yℓm(n̂′)∗) (2.33b)

= 0. (2.33c)

All terms cancel out.1

Finally, it can be shown, by similar techniques, that

G1(n̂, n̂′) +G4(n̂, n̂′) = δ(n̂ − n̂′). (2.34)

As discussed above, when a finite ℓmax is in use, this is a band-limited delta function.
_erefore, the kernels can be written concisely and coordinately in terms of delta

functions and a single symmetricmatrix, denoted G(n̂, n̂′),2
GE(n̂, n̂′) = 1

2
δ(n̂ − n̂′) +G(n̂, n̂′); (2.35a)

GB(n̂, n̂′) = 1

2
δ(n̂ − n̂′) −G(n̂, n̂′), (2.35b)

where

G(n̂, n̂′) = ( д+(n̂, n̂′) −i д−(n̂, n̂′)−i д−(n̂, n̂′) −д+(n̂, n̂′) ), (2.36)

and

д±(n̂, n̂′) = 1

4
∑
ℓ ,m

(2Yℓm(n̂)−2Yℓm(n̂′)∗ ± −2Yℓm(n̂)2Yℓm(n̂′)∗). (2.37)

It is remarked that G is traceless,

G(n̂, n̂′) = 1

2
(GE(n̂, n̂′) −GB(n̂, n̂′)). (2.38)

1_is original description in [16] is therefore overspecified, but it is the description that emerges naturally from
the construction of the kernels in the preceding manner.
2It is understood in equation (2.35) and elsewhere that the delta function ismultiplied by a 2 × 2 identitymatrix.
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In terms of the original kernel components G i , the G kernel is

G(n̂, n̂′) = (G1(n̂, n̂′) − 1
2
δ(n̂ − n̂′) G2(n̂, n̂′)

G2(n̂, n̂′) −G1(n̂, n̂′) + 1
2
δ(n̂ − n̂′)) (2.39a)

= (−G4(n̂, n̂′) + 1
2
δ(n̂ − n̂′) G2(n̂, n̂′)

G2(n̂, n̂′) G4(n̂, n̂′) − 1
2
δ(n̂ − n̂′)). (2.39b)

_is representation will be returned to in the next chapter. It suffices to consider and com-
pute only the kernel G(n̂, n̂′), or its two independent real-valued components д±(n̂, n̂′),
which divides the input signal into E and B families.

Computation of E and B kernels

In theory, the E–B decomposition as introduced in section 1.3 was based on local differen-
tiation. In practice, observational data has some finite resolution, and the computable E
and Bmodes are band-limited versions of the differential concept. _is is very naturally
compatible with the formalism developed in this chapter: the sums∑ℓ ,m should be under-
stood to have some finite upper bound on ℓ. _is dependence on ℓmax can be considered
a property of the kernel itself, and if relevant the band-limited kernels can be denoted
by Gℓmax

E/B
. In [69], the possibility of a lower limit ℓmin > 2 is also considered; again, this is

naturally accommodated in the current formalism, although it is unused in this thesis and
no notation is adopted. In the limit ℓmax →∞, the series definitions of G i(n̂, n̂′) are not
generally expected to converge. _e limits like

lim
ℓmax→∞

ℓmax∑
ℓ=2

ℓ∑
m=−ℓ

2Yℓm(n̂)−2Yℓm(n̂)
may not exist, but will turn into some combination of delta functions. When an upper
bound on ℓ in the sums is adopted, the kernels are finite valued.

_e central point is: the band-limited E–B decomposition is eminently non-local. _e
values of P⃗E(n̂) and P⃗B(n̂) at a particular point depend on the values of P⃗(n̂) over the
entire sky, or, in other words, the convolution kernels GE/B(n̂, n̂′) are nonzero for almost
all n̂ and n̂′.

Otherwise, there is little difficulty in transitioning from the continuous to the pixelized
case. _e integrals in equations (2.22), (2.23), and (2.25) become Riemann sums; the sums
in equation (2.24) should be evaluated up to at least the ℓmax that corresponds to the
resolution afforded by the pixelization. If the data is band-limited or filtered itself, then the
corresponding lower ℓmax for the kernels suffices. In general, if the kernels are evaluated
to a higher ℓ than the ℓmax of the data, it makes no difference to the result, because of
the orthogonality of the spherical harmonics with different ℓ. _erefore a pre-computed
Gℓmax

E/B
kernel can be used on any data with multipole content up to ℓmax. _e notion of
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д+

−4 × 10−5 4 × 10−5

−i д−

−4 × 10−5 4 × 10−5
Figure 2.1: д+(n̂, n̂′) and −i д−(n̂, n̂′), plotted as functions of n̂ with n̂′ fixed at the center
of themaps. _e two components are related to each other by a 22.5○ rotation around the
central point.

“band-limited delta functions”,mentioned above, is also discussed at greater length in [69].
_is is what happens to all δ(n̂ − n̂′)→ δℓmax(n̂ − n̂0) in the pixelized case.

When a value of ℓmax has been adopted, there are several strategies possible fornumerical
computation of the E/B kernels. _e sums in equation (2.24) can be computed directly
using the definition of the spin-weighted spherical harmonics. However, depending on
the implementation, this kind of calculation can be slow, and it is only feasible for low
ℓmax. A faster approach is based on harmonic transformation of unit vector inputmaps.
Harmonic transformation itself can be performed using healpy or other so�ware packages
like ssht [120].
Also, the real and imaginary parts ofD in [69] correspond to the two real-valued д+

and д− kernel components; the I in [69] corresponds to the band-limited delta function,
which behaves similarly in both formalisms.
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Linear algebra notation

_e convolution kernels, either G(n̂, n̂′) or GE/B(n̂, n̂′), are functions S2 × S2 → R
2×2, i.e.

theymap any two points on the sphere to a real 2 × 2matrix. _e E and B families then
follow from matrixmultiplication and integration with the input signal P⃗(n̂). Because
matrixmultiplication and integration are linear, the entire process can be represented by a
linear operator which maps the input polarization signal to the E and B families. In the
pixelized domain, thiswill be somemappingRNpix ×RNpix

→ R
Npix ×RNpix . It is convenient

to imagine the Q and U values stacked upon each other, in which case the mapping is
R

2Npix
→ R

2Npix , which corresponds to a 2Npix × 2Npix real-valuedmatrix. _ismatrix
will have four sectors, as below for GE :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

QE(n1)⋯
QE(nN)
UE(n1)⋯
UE(nN)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝ GQQ

⎞⎟⎠
⎛⎜⎝ GQU

⎞⎟⎠
⎛⎜⎝ GUQ

⎞⎟⎠
⎛⎜⎝ GUU

⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q(n1)⋯
Q(nN)
U(n1)⋯
U(nN)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.40)

A linear operator algebra is therefore at hand. _e pixelized polarization data P ∈ R2Npix

is decomposed into E and B families by the action of linear operators GE and GB. _ese
operators are accompanied by the band-limited delta function, denoted I, which behaves
in most respects as an identity, and they still can be represented in terms of a common
decomposition operator G as

GE = 1

2
I +G; (2.41a)

GB = 1

2
I −G. (2.41b)

_e operators obey such identities as

GEGE = GE; (2.42a)

GBGB = GB; (2.42b)

GEGB = 0; (2.42c)

GE +GB = I; (2.42d)

GI = IG = G. (2.42e)

_e objects in these equations can be understood as the actual 2Npix × 2Npix matrices,
which act on pixelizedmaps, or they can be understood abstractly as standing for integral
operators in the original continuous theory. _e fact that the E–B decomposition could be
fashioned in this way follows simply from its linearity. However, now thematrices have
explicit formulas, and the entire scheme can be implemented and computed.
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ℓmax = 15
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Figure 2.2: Full-sky plots of дℓmax

+ (n̂, n̂′) for two different values of ℓmax, plotted as a
function of n̂ with n̂′ fixed in the center of themap.
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Figure 2.3: Cross sections of the kernels in figure 2.2 along the ring b = 0○.

Visualization of kernels

In figure 2.2, д+(n̂, n̂0) is shown for two different values of ℓmax. _e basic structure is an
8-petal flower-like shape of alternating positive and negative contributions to the central
point. Wave-like oscillations emanate from each petal and loop around the sky. Figure 2.3
shows a cross-section around the sphere along the equator. _e kernel evaluates to exactly
zero at the central point (all self-contribution is carried by the band-limited delta function
part of the kernel). _e two strongest peaks are on either side, surrounded by diminishing
sidelobes. A subsidiary sole peak, exactly opposite to the central point, is also present.
_is peak can be either positive or negative depending on the value of ℓmax.

In figures 2.4 and 2.5, themaps and cross-sections of the band-limited delta functions
are shown. _is part of the kernel has spherical symmetry around the central point.
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ℓmax = 15
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Figure 2.4: Full-sky plots of δℓmax(n̂ − n̂′) for two different values of ℓmax, plotted as a
function of n̂ with n̂′ fixed in the center of themap.
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Figure 2.5: Cross sections of the kernels in figure 2.4 along the ring b = 0○.

Oscillations with diminishing amplitude radiate in all directions around the sky, which
converge to exactly zero at the antipodal point. In general, the δℓmax ismore localized than
дℓmax
+ when both are evaluated at the same ℓmax. In the limit ℓmax →∞, the normal delta

function is approached.
д+ and д− are related by a 22.5○ rotation around the central point. д+ and д− are

illustrated side by side in figure 2.1.

Scalar E and B kernels

It is also possible to define the normal, scalar E and B modes in terms of a real space
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д1
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д2
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Figure 2.6: Convolution kernels for the normal scalar E and Bmodes. _ey are related by
a rotation of 45○.

convolution. _e corresponding kernels are real 1×2matrices of the form дE = (д1 −д2),
and дB = (д2 д1). _ese kernels are shown in figure 2.6.

_ese kernels, as they are defined here, have the same local shape on all points of the sky.
_e kernels of the E and B families will be slightly distorted at high latitudes, reflecting
the dependence of Q and U on the coordinate system.

2.3 polarization analysis of foregrounds

One advantage of the real space E–B decomposition is that it immediately introduces two
pairs of new estimators: the polarization angles and polarization intensities associated with
the E and Bmodes separately, defined in equation (2.16). In this section, these estimators
are applied to the polarized dust foregrounds using the Planck frequencymaps as tracers
for polarized foregrounds.

Frequencymaps above 100GHz are dominated by thermal dust emission (see figure 1.4)
[79, 121, 122]. _e thermal dust emission is linearly polarized, potentially at a significant
level, up to around 20% [77, 79, 87, 123]. _e Planck 217 and 353 GHzmaps are adopted
here to trace thermal dust emission. _ese maps also contain relatively small signals
from the CMB, the cosmic infrared background, and extra-Galactic point sources. _e
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217 GHz
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353 GHz
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−π/2 π/2

353 GHz (E)
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217 GHz (B)

−π/2 π/2

353 GHz (B)

−π/2 π/2
Figure 2.7: Polarization angles of the 217 GHz and 353 GHz frequencymaps, originally
(top row) and of the E and Bmodes separately (middle and lower rows).

possibility of separating these sources is discussed in [124].
Synchroton radiation dominates at lower frequencies (see figure 1.4). Synchrotron

radiation can also be significantly polarized, up to around 40% in localized filamentary
structures associated with the Galacticmagnetic field [125, 126]. In [16] theWMAP K and
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Figure 2.8: Difference of the 217 GHz and 353 GHz polarization angles before and a�er
E/B separation. _e difference is calculated using the always positive, absolute angular
difference defined in equation (2.43). _e same color scale is in use in all plots. _e E
polarization angles exhibits the greatest cross-frequency similarity.

Ka bands (22 GHz and 30 GHz) were chosen as low-intensity maps, intended to track
synchrotron emission but bearing in mind the limited accuracy of this identification due
to contamination by various other foregrounds and noise.

Polarization angles

_e polarization angles ψ, ψE , and ψB from the 217 GHz and 353 GHzmaps are shown in
figure 2.7. _e similarity between 217 GHz and 353 GHz is apparent, not only in the total
maps but also in the E and B channels separately. To characterize the residuals between
the two frequencies, the absolute angular difference is defined as

ψ1 − ψ2 ∼ ∆ψ = ∣ 1
2
arctan(sin(2ψ1 − 2ψ2), cos(2ψ1 − 2ψ2))∣. (2.43)
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Total E B

Full sky 0.948 0.990 0.987
BICEP 0.970 0.998 0.996

Table 2.1: C(ψ217 ,ψ353) for the unseparated, E, and B anglemaps, computed over the full
sky or the BICEP zone.

Note that this formula has been adapted specifically for polarization angles, whose range
is [− π

2
, π
2
]. However, the difference ∆ψ is defined absolutely without sign, and its range is

[0, π
2
]. _e angular differences are plotted together with their distribution functions in

figure 2.8. Individually, the E and B angles are similar to each other, deviatingmost strongly
in mid-Galactic latitudes around b = ±30○. _e angles from the original unseparatedmaps
show stronger deviations across the high-latitude sky, visible in the flattened distribution
function.

Polarization angles in the BICEP zone

_e observation area of the BICEP experiment [127, 128] is particularly interesting part of
the sky. _is sky zone was chosen because it is one of the cleanest patches of the sky that
can be continuously scanned from the observatory location at the South Pole. However, it
is not totally free of foreground contamination. Nevertheless, the region is interesting for
foreground analysis because of the low amplitudes in this region; it also serves as a generic
illustration of partial sky foreground analysis, within which the calculation of polarization
angle differences is now repeated.

In figure 2.9, the angle differences are shown as in figure 2.8. Again, the E and Bmodes
separately differ very little between the two frequencies. Much greater differences are
found between the unseparated angles.
Ameasure of the similarity between two maps of polarization angles is given by the

cross-correlation coefficient,

C(ψ1 ,ψ2) = 1

N

N∑
i=1

cos(2ψ1(n i) − 2ψ2(n i)), (2.44)

where the sum is taken over all N pixels n i . Note that again this formula is specific for
polarization angle. Like the normal Pearson cross-correlation coefficient, C(ψ1 ,ψ2) takes
values between −1 and 1. _e correlations between ψ217 and ψ353 are shown in table 2.1.

In [16], the expected distribution of C(ψ1 ,ψ2) was estimated in the case that the un-
derlying signals are Gaussian noise, using theWMAP K and Ka bands with randomized
phases. For Gaussian noise, the expectation of C(ψ1 ,ψ2) is 0, and the standard deviation
depends on the sky area and the smoothing angle. _e analysis is not repeated here, but
the results let us assert that the values in table 2.1 are inconsistent with a noise hypothesis
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Figure 2.9: Difference of the 217 GHz and 353 GHz polarization angles before and a�er
E–B separation, within the BICEP region. _e E and B angles separately show greater
consistency.

at high significance. _e ψE and ψB estimators are therefore associated with intrinsic
properties of the polarization signal.

Further, [16] also considered correlations between theWMAP K-band and the Planck
217/353 GHz maps. Significant correlations were found, sufficient to reject models in
which ψE and ψB have no band-to-band correlation.
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_e polarization angles ψ, ψE , and ψB are related by

tan(2ψ) = PE sin(2ψE) + PB sin(2ψB)
PE cos(2ψE) + PB cos(2ψB) (2.45a)

= ρ sin(2ψE) + sin(2ψB)
ρ cos(2ψE) + cos(2ψB) , (2.45b)

where ρ = PE
PB
. If ρ ≫ 1, then the total polarization signal is dominated by the E mode

(P⃗ ≈ P⃗E), which also carries over to the angles, for which asymptotically

ψ ≈ ψE − 1

2ρ
sin(2ψE − 2ψB). (2.46)

_is simplemodel is apparent in figure 2.7, although it does not necessarily hold every-
where on the sky. _eNorth Polar Spur regionwas identified as having a particularly strong
agreement between ψ and ψE [16]. To understand this, next the polarization intensities
and the ratio ρ are examined directly.

Polarization intensities

_e polarization intensities and the ratios are shown for the 217 and 353 GHz maps in
figures 2.10 and 2.11. From these plots, it is visible that the Emode dominates (ρ ≫ 1) in the
Galactic plane as well as certain other regions at higher Galactic latitudes. Also, loop-like
structures associated with the Galactic radio loops are visible in the E mode but not the B
mode polarization intensities. An estimator which captures themorphological similarity
between regions of E mode dominance and the overall strength of the polarization signal
is

C(P, ρ) = ∑i(P(n i) − ⟨P(n i)⟩)(ρ(n i) − ⟨ρ(n i)⟩∑i(P(n i) − ⟨P(n i)⟩)2∑i(ρ(n i) − ⟨ρ(n i)2⟩ . (2.47)

_is correlation can be applied to regions of ρ < 1 and ρ > 1 separately. _emeaning is the
following. Where ρ ≫ 1, the E mode is dominant, and a positive correlation is expected
between ρ and P. Where ρ < 1, the Bmode is stronger, and an anti-correlation between ρ
and P is expected. _erefore a negative value of C(P, ρ)∣ρ<1 constitutes detection of the B
mode. See figure 2.12.

Frequency dependence

Following the analysis of the 217 GHz and 353 GHz frequencymaps, next we consider the
general frequency dependence of the E and Bmodes across the spectrum. _emedian
value of ρ = PE/PB is shown in figure 2.13 for all frequency bands from 30 GHz to 353
GHz. _ere is general convergence around ρ ≈ 1.4 for the higher frequencies. Below 100
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Figure 2.10: Polarization intensities (units = K). E family emission is tightly concentrated
in the Galactic plane, unlike B family emission, which ismore diffuse. _e Galactic radio
loops are easily visible in E but are absent in B.

GHz, themedian ρ appears to have some anti-correlation with the frequency. _e same
pattern ismore or less consistent in theWMAP bands [16].
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Figure 2.11: Ratio of E to B polarization intensities. Red regions, indicating the dominance
of the E mode, are concentrated tightly along the Galactic plane, plus some other regions
that can be associated with the Galactic radio loops.
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Figure 2.12: Scatter plots of P and ρ for the 353 GHzmap and Gaussian noise. In the pure
Gaussian case, the expected correlation is greater than observed in the foregroundmaps.
_e clustering on the right and le� sides of the line ρ = 1 is an indicator of the E and B
components of the foregroundmap respectively.

Spectral indices

Assuming a power lawmodel, the spectral index can be estimated as1

β(n̂) = log( P1(n̂)
P2(n̂)
)

log( ν1
ν2
) , (2.48)

1See Appendix A of [16] for a note on this simplification.
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Figure 2.13: _e median ρ for each of the Planck frequency bands up to 353 GHz. _e
44 GHz and 70 GHz are the closest to E–B equality; other frequencies tend towards E
dominance by around 30–50%.

where P1 and P2 are two skymapswith frequencies ν1 and ν2. In this definition, the spectral
index is defined independently at each n̂, and therefore is allowed to vary across the sky.
In figure 2.14, the distribution functions of this estimator are shown using the 217 and 353
GHzmaps, for the total signal and the E and Bmodes separately. _ermal dust emission is
expected to have a spectral index of 4, and the spectral indices are generally well clustered
near this point, although there is a slight generic deficit. _e spectral index of the E mode
ismore homogeneous than of the Bmode, which is, in turn,more homogeneous than the
total signal.
_e same distribution functions are shown in the lower panel of figure 2.14 for the

BICEP zone only. In this region, we see a slight tension between the E and Bmode, with
the E mode having a slightly higher spectral index than the Bmode. Unsurprisingly, the
distribution for the total signal takes a significantly greater variance.
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Figure 2.14: _e upper panel shows the distribution of estimated spectral indices between
217 GHz and 353 GHz. _e distribution is over the unmasked sky, and indicates the range
of the spectral index. _e lower panel shows the same using pixels from the BICEP zone
only. _e total polarization signal exhibits greater variation of the spectral index compared
to the E and B components separately.
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Figure 2.15: Γ parameter for 217 and 353 GHzmaps. _e E and Bmodes are correlated
when Γ < 1, indicated by the blue zones, which dominate at lower Galactic latitudes.

E–B coupling

_e final estimator introduced in this series of analyses is Γ:

Γ2 = P2
E + P2

B

P2
= 1 + ρ2
1 + 2ρ cos(2ψE − 2ψB) + ρ2 . (2.49)

_e Γ parameter reflects the coupling between the E and Bmodes. Comparing Γ to 1 is
comparing P2

E + P2
B to ∣P⃗E + P⃗B ∣2; the difference is the cross-term proportional to P⃗E ⋅ P⃗B .

If the E and B modes are correlated, then Γ < 1. _is can also be seen in the sign of
cos(2ψE − 2ψB). Γ is plotted in figure 2.15. E–B correlation is concentrated in the Galactic
plane; but the polar regions indicate E–B anticorrelation. _e transition between the two
regimes is, in most places, fairly sharp.

To conclude this section, the E–B family decomposition provides new tools for the analysis
of the foreground polarization, particularly polarization orientations and intensities. _e
polarization angles of the E and B families in the 217 GHz and 353 GHzmaps were shown
to be fairly stable between frequencies. _e patterns in these polarization angle maps
should hopefully be sensitive to systematics and can be applied to small regions of the
sky. _e ratio of the polarization intensities, denoted ρ, reveals E dominance over B in the
Galactic plane and certain other regions on the sky.
_e spectral index of the thermal dust emission shows that its variance differs in the

E and B families compared to the total signal, especially in the BICEP zone, where the E
spectral index especially has a small variance._is has implications for foreground removal:
in some sense, the greater variance of the spectral index will behave like increased noise in
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the algorithms. In general, it is seen that themixture of E and B in the total unseparated
signal results in greater variance of the estimators, reflecting some coherence in the E and
B emission at these frequencies.

A general consideration that applies to the results in this chapter, and to all map-domain
analyses, is the smoothing angle. Here the Q and U data were subject to smoothing at
2.5○ before computation of the polarization angles and polarization intensities, except in
figures 2.14 and 2.15, where 0.5○ was used.
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3 E–B LEAKAGE

_e E–B decomposition is originally conceived in a full-sky setting, but realistic CMB data
sets do not have full-sky coverage, due to residual contamination from the Galactic plane
and other foregrounds which must bemasked, and possibly also because of the scanning
limitations of ground-based telescopes. _e original E and Bmodes are not unique nor
well-defined on the partial sky. E–B leakage refers to the tendency of the true E mode to
“leak” power into the apparent partial-sky B mode, ruining its most desirable property.

Early attempts to overcome this obstacle sought to definemodified versions of the E and
Bmodes conforming to the specific shape of the available sky [129, 130]. Such methods
are not unlike themethods used for estimation of the power spectrum of the temperature
anisotropy from partial sky data [131, 132], which entail e.g. orthogonalization of the
spherical harmonics and result in pseudo-Cℓ estimators. _emain result of these efforts
[72, 73, 119, 130, 133] is, roughly speaking, a tripartite decomposition of the partial-sky
polarization signal into pure E and Bmodes and an ambiguousmode, which represents a
part of the signal that cannot be assigned to either. _e pure E and Bmodes are unique
and well-defined: but there is no expectation that they should be equal to the true E
and B modes, which would be calculated if full-sky data were available. _ey are still
useful estimators insofar as the pure Bmode is sensitive to cosmological signals, and some
methods exist to estimate the true E and Bmodes from the pure E and Bmodes.

A crucial point is that the target of thesemethods, and others that have been discussed
and used in the literature (e.g. [134–136]), is generally the pseudo-Cℓ power spectrum
estimate, rather than the pixel-domain Bmodemap itself. Pure E and Bmodemaps are,
however, constructed in [119], as discussed below in section 4.1.
In this chapter, the E–B leakage problem is reexamined, drawing heavily on the new

understanding of the E–B decomposition provided by the convolution kernel analysis in
the previous chapter. _emain goal is to correct leakage in the pixel domain and produce
a corrected Bmodemap. Also, we avoid redefinition of the E and Bmodes. _e target is
the true E and Bmodes as they were originally defined on the full sky: which, although
unknowable, can still be studied to understand how the apparent E and Bmodes differ
from the true E and Bmodes, and how this difference can be reduced. _is work has been
published in a series of papers [17, 19, 137], and there is some overlap with chapter 5 in
[138].
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_ere aremany potential advantages of leakage correction in the pixel domain. _ey
are discussed in [17, 19, 137, 138]. It is also useful to know where the leakage is coming
from, especially in the study of foregrounds and their possible contamination. _e E–B
convolution kernels enable this to be investigated closely and carefully.

Although E–B leakage occurswhenever part of the sky ismasked, the upcoming ground-
based CMB experiments that are constrained to observe a part of the sky are especially
susceptible. Accurate reconstruction of the Bmode from partial sky data is an important
component of the data analysis pipelines in order to enablemeasurements of r at the 10−3

level or below.

Terminology and notation

Some conventions in terminology are adopted for this chapter. A subset of the sphere,
Ω ⊂ S2, is observed. _e boundary of Ω is denoted by ∂Ω. Ω will be called the “observed
region” or “region 1”, and this region will be indicated by an ordinal 1 in equations or
integrals. _e complement of Ω is the unobserved region, from which data is missing,
sometimes called “region 2”, and appearing as a subscript 2 in integrals. _ese two regions
of the sky are characterized by amask M(n̂), defined as

M(n̂) = ⎧⎪⎪⎨⎪⎪⎩
1, n̂ ∈ 1;
0, n̂ ∈ 2. (3.1)

It is not assumed that Ω is simply connected. M(n̂) can be a realistic confidencemask
thatmasks the Galactic plane together with other high-latitude point sources. However,
most of the examples in this chapter use very simple spherical and rectangularmasks, to
illustrate the principles of leakage and its correction.
A “fiducial” (leakage-corrupted) E–B decomposition is taken over region 1 by setting

P⃗ = 0 in the entirety of region 2, and then treating this as a full-sky map. _e normal
definitions andmethods of E–B decomposition can be applied as before, in other words,
taking the E–B decomposition of the map M(n̂) × P⃗(n̂). _e fiducial E and B modes
resulting from this decomposition will be denoted with primes, by P⃗′E and P⃗′B .

3.1 diffusive inpainting

In [119], the leakage question is framed in terms of an ambiguous mode with potential
Ψ(n̂), which satisfies the spherical biharmonic equation on the observed sky:

∇2(∇2 + 2)Ψ(n̂) = 0. (3.2)

It can be shown that this equation implies that the ambiguousmode satisfies D†
BDEΨ =

D†
EDBΨ = 0, and so it could be attributed to either the E or Bmode or some combination
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thereof. Beginning with some arbitrary fiducial decomposition (affected by leakage),

P⃗′ = P⃗′E + P⃗′B = DEΨ
′
E + DBΨ

′
B , (3.3)

[119] solves equation (3.2) twice with boundary conditions given by the fiducial E/B
potentials Ψ′X , X ∈ {E , B}. _e full boundary value problem is:

∇2(∇2 + 2)αX = 0; (3.4a)

αX ∣∂Ω = Ψ′X ∣∂Ω ; (3.4b)

n̂ ⋅ ∇αX ∣∂Ω = n̂ ⋅ ∇Ψ′X ∣∂Ω . (3.4c)

_en, purified potentials are defined

ΨE = Ψ′E − αE ; (3.5a)

ΨB = Ψ′B − αB . (3.5b)

Differentiation as follows yields pure Emode, pure Bmode, and ambiguousmode fields:

P⃗pE = DEΨE ; (3.6a)

P⃗pB = DBΨB ; (3.6b)

P⃗a = DEαE + DBαB . (3.6c)

Solving equation (3.2) is challenging computationally, especially if the region and the
boundary conditions are irregular, but a successful implementation (within a flat-sky
approximation) is described in [119].
In [17], a simplification of Bunn’smethod is presented, termedmethod 1 in that paper

(method 2 of [17], which is themain part of the work, follows below in sections 4.2 and 4.3).
_ere are two principles of the simplification that lead tomethod 1. First, the bi-Laplacian
is replaced by the Laplacian, which ismathematically simpler, and the Laplacian problem
has trivial and rapid numerical solutions using relaxation methods. _e solutions of the
Laplacian problem are expected to retain the basic structure of the true bi-Laplacian
solutions, especially on large angular scales, although they will differ on smaller scales.
Furthermore, equation (3.4c) is discarded. _e Laplacian equation is overspecified by both
Neumann and Dirichlet boundary conditions.
Also, in [17], the entire procedure is transferred to the Bmode itself, rather than the

potential. _e normal Bmode (defined in equation (1.24)) is closely related to the potential
ΨB , and itmakes little difference which is used. In fact, themethod can work similarly
on each Stokes parametermap, QB(n̂) and UB(n̂), as well. _e theoretical justification
behind these simplifications andmodifications of themethod is weak: the proof of the
method is its performance on simulations, which is impressive.

In summary, the Laplacian equation is solved once, using the corrupted Bmode as the
boundary condition. _en, the true Bmode can be approximated from themeasured B
mode by subtraction of Laplacian solution.
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It may seem irredeemable to discard Bunn’s exact method and replace it with this
theoretically unsubstantiatedmethod. But, it is emphasized that the “pure” Bmode which
results from Bunn’smethod, however exactly it is defined, is not equal to the real Bmode.
_erefore approximation is inevitable, and both methods depend on empirical validation
of their usefulness.
It is also possible to surmise some properties of the simplification of the method in

more concrete terms. Any harmonic function α, which satisfies ∇2α = 0 in the interior of
the region, is also biharmonic, satisfying ∇2(∇2 + 2)α = 0. _e difference between the
original and the simplified solutions is a function that is biharmonic but not harmonic. In
a one-dimensional analogy of the problem, where the solutions would be polynomials, the
difference would be composed of quadratic and cubic terms only and therefore associated
with small-scale oscillations around the linear harmonic solution. _e same principle
applies to the two-dimensional case, although manymore kinds of features are possible
in two-dimensional biharmonic functions. _e difference is zero on the boundary and
satisfies the original Neumann boundary conditions, which seed the oscillations in the
interior.

_e implementation ofmethod 1 uses relaxation to solve Laplace’s equation, subject to
the boundary condition of the corrupted Bmode at the edge of themask; the loop will
look like

B(n̂)← 1

4
∑B(n̂ + d n̂) for all interior pixels n̂, (3.7)

where the sum is taken over all adjacent pixels. _e boundary condition is reimposed a�er
each iteration. Asmentioned above, B can be the standard scalar Bmode, the Bmode
potential, or QB or UB . _is type of computation is called diffusive inpainting because the
boundary condition is diffused into the interior of the solution region. _e convergence
rate will depend on the resolution, but in general it is quite fast. Different convergence
criteria are usable. Apart from the initial fiducial E–B decomposition, the entiremethod
works in the pixel domain, and the output is a template that can be subtracted from the
corrupted Bmode to produce an estimate of the true Bmodemap.

3.2 real space leakage model

_e premise is to approach the question of leakage within the real space decomposition
formalism, summarized in equation (2.25), which is repeated here:

P⃗E(n̂) = ∫ GE(n̂, n̂′)P⃗(n̂′) d n̂′ , (3.8a)

P⃗B(n̂) = ∫ GB(n̂, n̂′)P⃗(n̂′) d n̂′ . (3.8b)

_ere are different approaches to characterizing leakage in real space. _e first is based on
the notation of contributors introduced in [17]. _is leads to the leakage equation giving
the leakage as integration over region 2, which is visualized.
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Contributors

To describe the polarization data in regions 1 and 2 separately, the following notation is
introduced:

P⃗E1
(n̂) = ⎧⎪⎪⎨⎪⎪⎩

P⃗E(n̂) n̂ ∈ 1
0 n̂ ∈ 2 P⃗B1

(n̂) = ⎧⎪⎪⎨⎪⎪⎩
P⃗B(n̂) n̂ ∈ 1
0 n̂ ∈ 2 (3.9a)

P⃗E2
(n̂) = ⎧⎪⎪⎨⎪⎪⎩

0 n̂ ∈ 1
P⃗E(n̂) n̂ ∈ 2 P⃗B2

(n̂) = ⎧⎪⎪⎨⎪⎪⎩
0 n̂ ∈ 1
P⃗B(n̂) n̂ ∈ 2 (3.9b)

In [17], the notation is sometimes simplified like P⃗E1
= E1, etc. _ese four functions are all

full-skymaps defined at every point, butwith the value of 0 outside their respective regions.
_erefore, for all n̂, we have P⃗E1

(n̂) + P⃗E2
(n̂) = P⃗E(n̂) and P⃗B1

(n̂) + P⃗B2
(n̂) = P⃗B(n̂). In

total,

P⃗E1
(n̂) + P⃗E2

(n̂) + P⃗B1
(n̂) + P⃗B2

(n̂) = P⃗(n̂). (3.10)

_e calculation of P⃗E and P⃗B entails full-sky integration of P⃗ with a suitable kernel, as in
equation (3.8). Substituting equation (3.10) into equation (3.8) gives rise to equations like

P⃗E1
= M(n̂) ×∫ GE(n̂, n̂′)(P⃗E1

(n̂′) + P⃗E2
(n̂′) + P⃗B1

(n̂′) + P⃗B2
(n̂′)) d n̂′ . (3.11)

Similar equations for the other quantities are possible, with different permutations of GE

with GB and M(n̂) with 1 −M(n̂). _ese equations are tautological, but they illustrate
how each of the four output quantities (the E or B families in region 1 or 2) in some sense
depends, through the real-space convolution, on the input of the same four quantities,
but unseparated between E and B. In [17], these contributions are denoted with the arrow
notation, in which equation (3.11) would be written

P⃗E1
= (E1 → E1) + (E2 → E1) + (B1 → E1) + (B2 → E1). (3.12)

Explicitly, these four contributions are found by separating the integral in equation (3.10):
for example,

(E1 → E1) = M(n̂) ×∫ GE(n̂, n̂′)P⃗E1
(n̂′) d n̂′ , (3.13)

and, in general,

(X i → Yj) = ∫ GY(n̂, n̂′)P⃗X i (n̂′) d n̂′ ×
⎧⎪⎪⎨⎪⎪⎩
M(n̂), if j = 1;
1 −M(n̂), if j = 2; (3.14a)

= ∫
i
GY(n̂, n̂′)P⃗X(n̂′) d n̂′ ×

⎧⎪⎪⎨⎪⎪⎩
M(n̂), if j = 1;
1 −M(n̂), if j = 2. (3.14b)
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In equation (3.14b), the full-sky integration has been replaced by integration over the region
in which the integrand is nonzero. However, the outcome of this integral is generically
nonzero for all n̂, before it ismultiplied by either M(n̂) or 1 −M(n̂).

_e contributors satisfy an orthogonality identity, which easily follows from the integral
definitions:

(X1 → Yi) + (X2 → Yi) = 0. (3.15)

_is is the statement that an E–B decomposition on a full-sky E mode will yield no B
mode, and vice versa.

_is notation and formalismmake salient the subtle distinction between “E-to-B” leak-
age and “B-to-B” leakage. When only data from region 1 is available, the calculated E and
Bmodes aremissing two contributors. Particularly, the corrupted B family (restricted to
region 1) is

P⃗′B1
= (E1 → B1) + (B1 → B1). (3.16)

_efirst term is the “E-to-B” leakage. In a full-skyE–B decomposition, this term is canceled
by (E2 → B1); but in the fiducial partial sky E–B decomposition, it remains, corrupting
the Bmode. _e second term is the B-to-B deformation, which differs from the true P⃗B1

by the term (B2 → B1): this effect is called “B-to-B” leakage.

Integral representation and visualization

Now we return to the true E and Bmodes, expressed as full-sky integrals using (3.8). For
emphasis, the integration domain is explicitly denoted f .s. here, standing for “full sky”:

P⃗E(n̂) = ∫
f .s.

GE(n̂, n̂′)P⃗(n̂′) d n̂′ , (3.17a)

P⃗B(n̂) = ∫
f .s.

GB(n̂, n̂′)P⃗(n̂′) d n̂′ . (3.17b)

If only part of the sky is observed, it is possible to nevertheless attempt an E–B decomposi-
tion using the available data. _en the fiducial E and B modes can be written either as
integrals over region 1, or as full-sky integrals with M(n̂)moved into the integrand:

P⃗′E(n̂) = ∫
1
GE(n̂, n̂′)P⃗(n̂′) d n̂′ = ∫

f .s.
GE(n̂, n̂′)M(n̂′)P⃗(n̂′) d n̂′ , (3.18a)

P⃗′B(n̂) = ∫
1
GB(n̂, n̂′)P⃗(n̂′) d n̂′ = ∫

f .s.
GB(n̂, n̂′)M(n̂′)P⃗(n̂′) d n̂′ . (3.18b)

Like any E–B decomposition performed in this way, even with some zones of the sky
zeroed, the fiducial E and Bmodes still add up exactly to the input, however, in the partial
sky case, the input is 0 outside the observed region. Formally, this can be denoted

P⃗′E(n̂) + P⃗′B(n̂) = M(n̂)P(n̂); (3.19)
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which reduces to equation (2.1) for all observed n̂. However, although the fiducial E and B
modes behave like the true E and Bmodes in this respect, there is no guarantee that they
should be equal, and in general they will not be. _e difference between P⃗′B and P⃗B is what
is called the total leakage, which is a real-space function of n̂. _rough equation (3.19), P⃗E
is also subject to leakage. _e two leakage terms are denoted L⃗E and L⃗B :

P⃗′E(n̂) = P⃗E(n̂) − L⃗E(n̂), (3.20a)

P⃗′B(n̂) = P⃗B(n̂) − L⃗B(n̂). (3.20b)

Now, in this framework, the leakage has an explicit integral representation, but itmust
be handled carefully in the case of n̂ ∈ 2. Equation (3.20) makes sense when n̂ ∈ 1. _e
case of n̂ ∈ 2 is more subtle. When n̂ ∈ 2, the fiducial E and B modes are by no means
equal to 0; however, they satisfy the constraint

P⃗′E(n̂) + P⃗′B(n̂) = 0. (3.21)

_e leakage is the E or B decomposition of themissing data only, so it can be written as an
integration over region 2. _e explicit leakage integrals are

L⃗E(n̂) = ∫
2
GE(n̂, n̂′)P⃗(n̂′) d n̂′ (3.22a)

L⃗B(n̂) = ∫
2
GB(n̂, n̂′)P⃗(n̂′) d n̂′ . (3.22b)

_erefore

L⃗E(n̂) + L⃗B(n̂) = ∫
2
(GE(n̂, n̂′) +GB(n̂, n̂′))P⃗(n̂′) d n̂′ (3.23a)

= ∫
2
δ(n̂ − n̂′)P⃗(n̂′) d n̂′ (3.23b)

= ⎧⎪⎪⎨⎪⎪⎩
0, n̂ ∈ 1;
P⃗(n̂), n̂ ∈ 2. (3.23c)

Within the observed region, then,

L⃗E(n̂) = −L⃗B(n̂) ≡ L⃗(n̂) (n̂ ∈ 1). (3.24)

Similarly to before, integrals over region 2 can be converted to integration over the full
sky by introducing a factor 1 −M(n̂′) into the integrand:

L⃗(n̂) = −∫
f .s.

GB(n, n′)(1 −M(n̂′))P⃗(n̂′) d n̂′ (n̂ ∈ 1) (3.25a)

= ∫
f .s.

GE(n, n′)(1 −M(n̂′))P⃗(n̂′) d n̂′ . (n̂ ∈ 1) (3.25b)
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_erefore a leakage kernel can be defined as

GL(n̂, n̂′) = −GB(n̂, n̂′)(1 −M(n̂′)) = GE(n̂, n̂′)(1 −M(n̂′)). (n̂ ∈ 1) (3.26)

_ese equations show the emergence of symmetry between E and B, in which the leakage
can be written either as a sort of E mode (equation (3.25a)) or a sort of B mode (equa-
tion (3.25b)). _e leakage convolution kernel, too, is related symmetrically to the E and B
kernels, up to aminus sign. _ere is an analogy with the ambiguousmode, satisfying both
DEΨ = 0 and DBΨ = 0 in Bunn’s formalism
Recall equation (2.35), repeated here:

GE(n̂, n̂′) = 1

2
δ(n̂ − n̂′) +G(n̂, n̂′); (3.27a)

GB(n̂, n̂′) = 1

2
δ(n̂ − n̂′) −G(n̂, n̂′). (3.27b)

_e leakage kernel can therefore be written as

GL(n̂, n̂′) = G(n̂, n̂′)(1 −M(n̂′)), (n̂ ∈ 1) (3.28)

which follows because

1

2
δ(n̂ − n̂′)(1 −M(n̂′)) = 0. (n̂ ∈ 1) (3.29)

_e ± asymmetry between E and B in equation (3.27) nicely balances the ± between the
two expressions for GL . As before, it is the single kernel G(n̂, n̂′) which underlies the
mathematics of both the E–B decomposition and E–B leakage. It is a virtue of the real
space E–Bmodel that all is reduced to this one simple object.
_e leakage kernel is determined by themask. Figure 3.1 shows a plot of the leakage

kernel of a circular mask. Note that all the considerations about resolution and ℓmax,
discussed in the previous chapter for the E and B kernels, also apply to the leakage kernel.

In [139], it was observed that the leakage is concentrated near the edge of themask, and
negligible in regions distant from themasked sky. _is observation is now fully explainable
in terms of the leakage kernels. We can expect that leakage will be especially concentrated
in corners, or regions where themask is narrow.
An important remark is that the leakage kernel defined here applies to the E and B

families in the space of Q, U . _e traditional scalar E and Bmodes, which were studied in
[139], are associated with slightly different kernels as discussed in the previous chapter. In
particular, the dependence on latitude is different between the two types of kernels. Never-
theless, they have the same localization properties and the same near-circular arrangement
of “petals”.
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Figure 3.1: _e le� panel shows G(n̂, n̂′) as a function of n̂′, with n̂ fixed at the black
cross. _e right panel shows GL(n̂, n̂′) in the same way, when the mask is the circular
disk shown on both plots. Given somemask, GL(n̂, n̂′) is G(n̂, n̂′) with the inversemask
applied over n̂′ (see equation (3.28)).

Linear algebra notation

At the end of section 2.2, a notation for E–B decomposition based on linear operators was
introduced. It should now be extended by adding themask operatorM, which is a diagonal
matrix with diagonal entries either 0 or 1 depending on whether the corresponding pixel is
masked or unmasked. _emask operator is idempotent,MM =M. _e leakage operator is

LM = −GB(I −M). (3.30)

_ese operators are generally non-commutative; in fact, the leakage within region 1 can be
expressed neatly as a commutator, [M,G]P.
3.3 recycling method

_e feasibility of correcting leakage

Figure 3.1, though lying atop a significant effort to make a mathematical analysis and
framework of E–B leakage, is very simple, and at first appearance, seems hopeless: the
leakage term is convolution with missing data alone. _e leakage kernel includes no
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contribution from the observed region. If it did, this part of the leakage could be easily
calculated and subtracted; but as it stands, it seems all available information has been used.

However, it is possible to proceed. First, it will be argued that correction is feasible; then,
the thematic derivation of the recycling method (method 2 of [17]) will bemade.
_e feasibility of correcting E–B leakage, and in some sense reaching into themasked

sky, is based on the fact that themap is continuous. Interesting CMBmaps are not white
noise, but they have a non-flat power spectrum; they are further smoothed (at high ℓ) by
Silk damping, the telescope beam pattern, and possibly further deliberate data processing.
_erefore they are continuous in the pixel domain. _e values of Q and U near the edge,
but inside, of the observed region inform us about the values of Q and U outside of the
observed region, near the edge. _is knowledge is then translated into knowledge about
leakage through the leakage kernel, which is exactly known anywhere on the sky. In
figure 3.1, one could imagine, as a very crude implementation of this idea, reflecting the
observed Q and U over the boundary of themask,multiplying by the leakage kernel, and
subtracting this from the fiducial Bmode.1 _e further away from the edge of themask, the
less informative continuity is. But, at the same time, the contribution to the leakage also
diminishes further away from the edge. Similarly, on smaller angular scales, the continuity
is less useful, but the leakage is also more localized on smaller angular scales.
_e information provided by the shape of themask and the continuity of themap is

probabilistic. Multiple differentmethods can be designed to exploit this information. _e
method below, called the recycling method, works by repeating an E–B decomposition on
the corrupted Emode, in which the leakage can be calculated exactly because the input B
mode of the second decomposition is known to be 0. _emethod relies on the dominance
of the Emode over the Bmode to approximate the

Recycling method

Consider the corrupted E family P⃗′E resulting from a fiducial decomposition, which has
the generic decomposition P⃗′E = P⃗′E1

+ P⃗′E2
, and neither P⃗′E1

nor P⃗′E2
is expected to be zero.

_e idea is to perform a second E–B decomposition starting from the corrupted E family
in region 1 only. When the E mode dominates the B mode, this second decomposition
resembles the first, and it is hoped that it produces a similar leakage term; but, because
there was no input Bmode in the second decomposition, the resulting Bmode consists
only of the leakage contribution.
_e linear algebra notation is convenient here. Let P denote the full-sky, unknown

polarization data. OnlyMP is known. _e fiducial E and Bmodes are GEMP and GBMP;

1_is strategy would resemble the principle of the diffusive inpainting method.
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they are related to the true E and Bmodes by leakage:

GEMP = GEP − LMP; (3.31a)

GBMP = GBP + LMP. (3.31b)

_e E–B decomposition of the fiducial Emode in region 1 is

MGEMP = GEMGEMP +GBMGEMP. (3.32)

_ese E and Bmodes are subject to leakage according to the leakage operator, which acts
like in equation (3.31), but withMP replaced with GEMP:

GEMGEMP = GEGEMP − LMGEMP; (3.33a)

GBMGEMP = GBGEMP + LMGEMP. (3.33b)

_ese equations simplify using GEGE = GE and GBGE = 0. _en, substituting equa-
tion (3.31a) into the new leakage terms,

GEMGEMP = GEMP − LM(GEP − LMP); (3.34a)

GBMGEMP = LM(GEP − LMP). (3.34b)

So far the equations are exact. Two approximations aremade which yield the template.
Relying on the dominance of the E mode over the Bmode, we first assume that LMGEP ≈
LMP. Second, the double leakage term LMLMP is assumed to be half the original leakage:
LMLMP ≈ 1

2
LMP, which can bemotivated by the notion that the leakage operator applied

to increasingly corruptedmaps will tend (on average) to mix them evenly between E and
B. Assuming that the Bmode is small, then the first approximation should hold with good
accuracy, and the second is also observed to be approximately true.
_erefore, the leakage LMP is approximately proportional to GBMGEMP, and the

constant of proportionality is expected to be approximately 2. _e quantity GBMGEMP is
known and can be computed with the available data.1 It is therefore the template for the
leakage, which is subtracted from the corrupted Bmap to estimate the true Bmap.
In an implementation, it is not necessary to use the assumption that the constant of

proportionality is 2. Instead, the template GBMGEMP can be linearly removed from the
corrupted Bmode. It is observed that the corresponding coefficient calculated empirically
in this way is almost always close to 2.

3.4 tests

In figures 3.2 and 3.3, individual realizations of each of themethods are illustrated in two
shapes ofmask. Larger illustrations ofmethod 2 on a lower-resolution map are also shown
in figures 3.10 and 3.11 at the end of the chapter.

1Known quantities are easily identified because they end withMP; unknown quantities include a P that is not
acted on by anM.
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Real leakage term Real B map Corrupted B map

Template (method 1) Fixed B map (method 1) Residual (method 1)

Template (method 2) Fixed B map (method 2) Residual (method 2)

−0.6 0.6µK

Figure 3.2: Leakage, templates, and correction for a narrow beltmask.

In the following, the performance method is tested on FFP9 simulations [140], con-
structed with a tensor-to-scalar ratio of r = 0.05. Region 1 is taken to be a disk with radius
47○, which covers about 15% of the sky. _is region is comparable with the observation
region in the specification of the GreenPol experiment.

Zero Bmode

A simple null test is possible in which the true Bmode is artificially set to 0. In addition to
removing the cosmological signal, we also remove noise and lensing effects, so the true B
mode is exactly 0. Under these idealistic circumstances, the entire recovered Bmode is
due to leakage.

_e le� panel of figure 3.4 shows the observed Bmode, which consists entirely of leakage.
_emiddle panel shows the template derived from the recycling method. _e agreement
is very strong.

_e Bmode power spectra estimated from this example are shown in figure 3.5 before
and a�er correction. _e spectra are calculated both with and without apodization using a
Tukey window function with a taper fraction of 0.1, illustrated in the inset of figure 3.5. A
taper fraction of 0.1 corresponds approximately to a smoothing scale of 5○ for thismask.
_e window function reduces high-ℓ power in both the corrupted and corrected Bmodes.
On the whole, the corrected spectrum is smaller, and thereforemore accurate, than the
corrupted one by about 5 orders ofmagnitude for ℓ < 100, and about 4 orders ofmagnitude
for 100 < ℓ < 1000.

Combination with theMASTER method

_emap-domain E–B leakage correction, though worthy in its own right, can also be used
as part of the reconstruction of the Bmode spectrum. In this case, however, the problem
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Real leakage term Real B map Corrupted B map

Template (1) Fixed B map (1) Residual (1)

Template (2) Fixed B map (2) Residual (2)

−0.6 0.6µK

Figure 3.3: Leakage, templates, and correction for a large disk mask.

is estimation of the power spectrum of amasked scalar function, which is well studied
[100, 141–144], and any of the various techniques is applicable. A widely used technique
is theMASTERmethod, which is a well-known algorithm giving an unbiased estimate
of the full-sky power spectrum from partial sky data [142]. MASTER is used here with
the namaster implementation [145]. _e full-sky power spectrum is estimated from the
simulated partial sky data in two ways: first, purification of the B mode, based on the
Smith method [134–136], which is similar to the Bunn method discussed in section 4.1;
and second, a normal non-polarized power spectrum estimation, using MASTER alone,
on the Bmodemap corrected in the pixel domain using the recycling method as above.
_ese are then compared to the true power spectrum estimated byMASTER using the
real Bmap.
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Corrupted Template Residual (×10)

−0.3 0.3µK

Figure 3.4: From le� to right: the observed Bmode (which is entirely leakage), the template
derived from the recycling method, and their differencemagnified by a factor of 10 for
visibility.
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Figure 3.5: Estimated Bmode power spectra from figure 3.4. _e inset shows the apodiza-
tion used for estimation of the dashed power spectra.

_e error is characterized using an rootmean square over simulations. _e starting
point is the absolute difference of the true B mode spectra and the estimated B mode
spectra, from either the puremethod or the real-space-correction method:

∆ i(ℓ) = (Cℓ)i − (Ctrue
ℓ )i , (3.35)

where the index i numbers each simulation. _en the overall error of each method is
measured using

∆(ℓ) =
¿ÁÁÀ 1

Nsim

Nsim∑
i=1

∆ i(ℓ)2 . (3.36)

Using 50 simulations with the same specifications as before, the values of ∆ are shown
in figures 3.6 and 3.7. _e same plots show the true Bmode spectra for r = 10−2, r = 10−3,
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Figure 3.6: Performance of E–B leakage correction according to the RMS (defined in the
text) from purifiedMASTER (red) andMASTER plus the recycling method (blue). _e
real B spectrum is shown in green, and the lensing spectrum is shown by the black dashed
line, together with expected primordial Bmode spectra expected from r = 10−2, r = 10−3,
and r = 10−4.

and r = 10−4. In general, the real-space correction reduces the error in the final power
spectrum estimation by about 2 orders ofmagnitude compared to the puremethod, in
the interesting region around ℓ ≈ 100. _e improvement is dependent on ℓ. At small
ℓ < 20, there is no improvement, and at large ℓ > 200, the improvement is at the level
of 3 orders of magnitude or more. _is behavior with ℓ is by no means assumed to be
general: the size and shape of the observed region, and other properties of the simulations,
likely have a significant influence on how the errors scale with ℓ. Nevertheless, under
the conditions simulated here, which are not unrealistic, the real-space correction offers
substantial improvement over the puremethod.
_e uncertainties using the real space correction are below the level of the theoretical

r = 10−4 power spectrum at the first peak and above, compared to r ≈ 10−3 for the pure
method. For lowermultipoles, the sensitivity of both methods approaches r ≈ 10−2. Of
course, this setup excludes the errors due to foreground residuals, noise, delensing, etc., so
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Figure 3.7: Similar to figure 3.6. Performance of E–B leakage correction from purified
MASTER (orange) andMASTER plus the recycling method (blue). _e real B spectrum,
shown in black, is here simulated with r = 0.1.

the conclusion is not that r = 10−5 is detectable, but that leakage does not exclude detection
of r = 10−5.

Optimization of the posterior apodization

_eMASTER code was run using the default 10○ apodization length for both the pure
method and the real-space correction method. Optimization of the window function for
the puremethod was studied in [146]. Under comparable circumstances with a circular
mask, an improvement of significantly less than one order of magnitude in the power
spectrum error was achievable. We test different window functions for the real space
correction method. _e optimal window function is expected to depend strongly on the
shape of themask. _erefore, each specific simulation setup should be tested in realistic
circumstances. Below, we continue to use the 47○ disk mask based on the GreenPol
telescope.
In the signal processing literature, window functions are normally defined in one

dimension. _e window function is w(x), where 0 ≤ x ≤ 1, and it is also usually sym-
metric: w(0.5 − x) = w(0.5 + x). One-dimensional window functions can be applied
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to an unmasked region of arbitrary shape on the sky by defining the corresponding two-
dimensional window function as

WΩ(n̂) = w( d(n̂)
2maxn̂∈Ω(d(n̂))), (3.37)

where d(n̂) is the distance from n̂ to the edge of themask. According to this definition,
WΩ(n̂) is 0 at the edge of the region, and equal to the central value w(0.5) (usually 1) at
pointsmost distant to the edge.

_e computation of d(n̂) in practice is by no means trivial, depending on how themask
is defined; a simple brute forcemethod can be prohibitively expensive at high resolution.
Where possible, symmetry of themask should be exploited to simplify the calculation of
d(n̂).
Several different window functions are considered:

• Hamming (ha) and Tukey windows. _e Tukey window depends on a taper fraction
in the range [0, 1], which is varied in increments of 0.1.

• Bartlett window (ba)

• Nuttall window (nu)

• Exact Blackman window (bl)

_e performance of each window function is evaluated in two dimensions, which does
not yield a simple optimum, but enables a clearer understanding of the tradeoff involved
in apodization optimization. _e effective sky fraction of the window function is

fW = 1

N

N∑
i=1

W2(n̂ i), (3.38)

where n̂ i , i = 1, . . . ,N , are the coordinates of all pixels in the available region. fW measures
the aggressiveness of the window function. A top-hat mask has fW = 1, while more
aggressive masks have smaller fW . Furthermore, the performance of the method a�er
apodization is evaluated using an average of the relative error over a set of simulations,
confined to amultipole range ℓ1 ≤ ℓ ≤ ℓ2:

R =
¿ÁÁÁÀ 1

Nsim(ℓ2 − ℓ1 + 1)
ℓ2∑
ℓ=ℓ1

Nsim∑
i=1

( ∆ i(ℓ)(Ctrue
ℓ )i )

2

. (3.39)

R is similar to the ∆(ℓ) error estimate in equation (3.36) averaged over the specificmulti-
pole range, except that a relative error is used instead of an absolute error. R is defined
with respect to a specific multipole range [ℓ1 , ℓ2], which should be adjusted to suit the
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Figure 3.8: Performancemetrics ofmethod 1 (diffusive inpainting) for different choices of
the apodization.

angular size of themask under analysis as well as the scientific target. For the large and
featureless disk mask used here, almost anymultipole range is appropriate; for illustration
below, [ℓ1 , ℓ2] = [60, 120] is used, including the recombination bump.

_e performance of the window functions in the R/ fW space is shown in figures 3.8 and
3.9, formethod 1 andmethod 2 respectively. Windows with smaller R givemore accurate
results, while windows with larger fW retain more of the data. _e optimal window
functions therefore lie towards the lower right corner of the plots. _e ideal optimum is a
balance between these two considerations that depends on the specifics of the problem. In
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Figure 3.9: Performancemetrics ofmethod 2 (recycling method) for different choices of
the apodization. Compared to figure 3.8,method 2 gives an error about 50% lower than
method 1.

general, the Tukey window with 100% taper fraction is a good compromise; theHamming
and Bartlett windows are less aggressive but less accurate, and the Nuttall and Blackman
windows aremore aggressive butmore accurate. Scaling back the Tukey taper fraction
can significantly reduce the aggressiveness of the window with modest worsening of the
accuracy, at least down to a taper fraction of about 0.5. _ese tapered Tukey windows
make the Hamming and Bartlett windows almost redundant. Note, however, that this
is a posterior apodization that applies specifically to the large circular disk mask in use,
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in which leakage is very concentrated in the outermost parts of the mask. Masks with
small-scale features will likely suffer greater in terms of accuracy using the less aggressive
tapered Tukey windows. _e lower panels of figure 3.8 and 3.9 plot the simple ratio fW/R,
which prefers a taper fraction of around 0.7.
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GEMP GBMP

MGEMP

GEMGEMP GBMGEMP

Figure 3.10: Overall summary of the recycling method scheme and thematrix notation,
illustrated using one simulation. _e Q component of P⃗ is shown in all maps. _e top
map shows the true full-sky data, which is only observed in the disk region shown in the
second row. _e third row shows the full-sky E and B families of themasked data. _e
E family is remasked and further split into E and B. _e resulting B component is the
template for correcting the corruptedmap. All maps use the same color scale.
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Figure 3.11: Same as figure 3.10, together with the true QB map, the fixed QB map, and the
residual leakage a�er correction. All maps use the same color scale.
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4 STATISTICS OF POLARIZATION ANGLES

_e polarization of electromagnetic radiation has an orientation, but not a direction. _e
orientation can be described by an angle in the half plane, hence the factor of 1/2 in the
definition of the polarization angle ψ,

ψ = 1

2
arctan(U

Q
), (4.1)

constraining it to the range −π/2 ≤ ψ ≤ π/2. _is factor is naturally compatible with the
spin-2 transformation law obeyed by Q and U , found in equations (1.16) and (1.17).

_e polarization angle is an understudied estimator so far. _e dependence of ψ on the
Q–U covariance was studied in [147] in the context of theWMAP data, although thiswork
has received little attention. As discussed in [148], an independentmeasurement of the
polarization angle leads to amethod for debiasing the polarization intensity. _is applies
to, among other things, analysis of the polarized foregrounds, where the polarization angle
is expected to be constant across frequency for certain types of foreground emission.
In this chapter, the goal is to generalize the theory of [147] to allow nonzero Q and

U means, thereby fully characterizing the polarization angle expected from an arbitrary
two-dimensional multivariate Gaussian distribution. _is shows how the statistics of the
Stokes parameters are reflected in the statistics of ψ. Asymptotics to leading order in the Q,
U means, the Q–U covariance, and the difference between the Q andU variances produce
a simple model of the pointwise distribution function of ψ, which takes the form of a
constant 1/π density plus a non-uniform part consisting of sin(2ψ), cos(2ψ)modes and
sin(4ψ), cos(4ψ)modes, each corresponding to a certain departure from the symmetric,
uncorrelated case.1

Furthermore, the polarization angles corresponding to the E and Bmodes are consid-
ered. _ese angles were defined previously in terms of the E and B families of the Stokes

1_e distribution of the polarization angle is exactly uniform only when Q and U are independent of each other
and have zero mean and zero covariance.
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parameters:

ψE = 1

2
arctan(UE

QE
); (4.2a)

ψB = 1

2
arctan(UB

QB

). (4.2b)

_e geometric nature of the E and Bmodes constrains the statistics of their corresponding
polarization angles.

_ese properties are derived and tested in the Planck 2018maps. _is work is published
in [20].

4.1 polarization angle distribution functions

_e Stokesparametershavepixel-domain correlations, e.g.Q(n̂1) andQ(n̂2) are correlated
random variables for different n̂1 and n̂2: therefore, for instance, the set of all Q(n̂) values
in a map are not independent and identically distributed. For now, we consider point
statistics only, and Q and U should be understood to be the single Q and U values at a
certain point.

Q and U , then, are assumed to be random Gaussian variables with means µQ , µU and
covariance

ΣQU = (σQQ σQU

σQU σUU
). (4.3)

_e determinant of the covariancematrix is

∣ΣQU ∣ = σQQσUU − σ 2
QU . (4.4)

_e joint probability density of Q and U is

P(Q ,U) = 1

2π∣ΣQU ∣ exp(−
1

2
(P⃗ − µ⃗)TΣ−1QU(P⃗ − µ⃗)), (4.5)

where

P⃗ = (Q
U
) and µ⃗ = (µQ

µU
) (4.6)

are “vector-like” representations of the Stokes parameters and theirmeans.
_e distribution function of the polarization angle ψ is essentially amarginalization

of equation (4.5), obtained by integration over all values of the polarization intensity
I =√Q2 +U 2. _is was calculated in [147] in the case that µQ = µU = 0; the result is

P(ψ) = 2
√∣ΣQU ∣
π fσ(ψ) , (4.7)
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where fσ(ψ) is defined as

fσ(ψ) = σQQ + σUU + (σUU − σQQ) cos(4ψ) − 2σQU sin(4ψ). (4.8)

_e simplest possible special case is uncorrelated Q and U with equal variances. Under
substitution of σQQ = σUU and σQU = 0, the distribution function reduces to a uniform
distribution on the domain, i.e. P(ψ) = 1/π. Otherwise, the distribution is made non-
uniform by the cos(4ψ) and sin(4ψ) terms in fσ(ψ), whose amplitudes are proportional
to the variance difference and the covariance.
It is informative to consider asymptotics of equation (4.7) because in many situations

both the variance differential (i.e. σUU − σQQ ) and the covariance σQU can be expected to
be small quantities. _e leading order expansion of equation (4.7) in these quantities is

P(ψ) = 1

π
(1 + (1 − R) cos(4ψ) + κ sin(4ψ)

1 + R ), (4.9)

written in terms of the variance ratio

R = σUU

σQQ
(4.10)

and the relative covariance

κ = σQU

σQQ
. (4.11)

_is distribution function is a linear combination of 4ψ sines and cosines. _e sine and
cosine terms in equation (4.8) have coefficients that are small.
Equations (4.7) and (4.9) only hold when themeans of Q and U are zero. In general,

thismay not be exactly true. _erefore it is necessary to modify the foregoing theory to
allow for nonzero means. _e general result is1

P(ψ) = 2 fµ(ψ)
π fσ(ψ)3/2 exp(−

(µU cos(2ψ) − µQ sin(2ψ))2
fσ(ψ) )⎛⎝ e

− fµσ(ψ)
2

fµσ(ψ) −
√
πerfc( fσ µ(ψ))⎞⎠.

(4.12)
In addition to the variance factor fσ(ψ), equation (4.12) also includes themean factor

fµ(ψ) = (µUσQU − µQσUU) cos(2ψ) + (µQσQU − µUσQQ) sin(2ψ) (4.13)

and themean–variance factor

fµσ(ψ) = fµ(ψ)√∣ΣQU ∣ fσ(ψ) . (4.14)

1_is is a standard result in the statistical theory of directional data; see, e.g., [149, 150].
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Mode Source Amplitude

cos(2ψ) nonzero Q mean µQ/√σ
sin(2ψ) nonzero U mean µU/√σ
cos(4ψ) unequal Q, U variances ∆σ/σ
sin(4ψ) nonzero Q–U covariance σQU/σ

Table 4.1: _e leading order nonuniform modes in the polarization angle distribution
function, their sources, and the scaling of their amplitudes.

Despite foreboding appearances, it can be seen in these equations that the nonuniformity
enters in the form of cos(2ψ) and sin(2ψ) terms with amplitudes linearly depending on
themeans µQ and µU . Straightforward substitution of µQ = µU = 0 into equation (4.12)
produces indeterminate forms like 0/0, which when handled correctly simplify to equa-
tion (4.7).
Various other special cases of equation (4.12) can be considered. _e nonuniformity

induced by nonzero means at first order is

P(ψ) = 1

π
+ µQ cos(2ψ) + µU sin(2ψ)√

2πσQQ

. (4.15)

Together with equation (4.9), themain forms ofmodulations expected in near-uniformpo-
larization angle distributions are shown in table 4.1, and the shapes are shown in figures 4.1
and 4.2.

Q, U means and the E and Bmodes

_emeans µQ and µU appearing in the point distribution functions are constant parame-
ters in a statistical model. _ey are conceptually different from the full-sky averages of any
particular Q and U maps, i.e. theirmonopoles, which deviate from the underlying means
due to random fluctuations on a finite sample. However, provided that the correlation
length of themap is sufficiently small, there is convergence in these two values. _e full-sky
average of a Q map,

Q = 1

4π
∫ Q(n̂) d n̂, (4.16)

can itself be considered a Gaussian random variable (with respect to different realizations
of the CMB) with expectation value µQ and standard deviation related to the correlation
length. _is distinction isminor in most practical circumstances, but themonopoles will
continue to be denoted by Q and U instead of µQ and µU .
_e full-skymap means of Q and U , i.e. theirmonopoles, are closely related to the E

and B power spectra. Substituting equation (2.7) for the harmonic decomposition of Q(n̂)
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and U(n̂) into equation (4.16), themean of Q can be expressed as

Q = 1

8π
∑
ℓm
∫ (a2,ℓm2Yℓm(n̂) + a−2,ℓm−2Yℓm(n̂)) dn̂. (4.17)

_e full-sky integration of the spin-weighted spherical harmonics vanishes except for
m = 0, whence further possible simplifications emerge because the m = 0 spin-weighted
spherical harmonics are real-valued and obey 2Yℓ0 = −2Yℓ0.

Q = 1

8π
∑
ℓ
∫ (a2,ℓ02Yℓ0(n̂) + a−2,ℓ0−2Yℓ0(n̂)) dn̂ (4.18a)

= 1

8π
∑
ℓ
∫ (a2,ℓ0 + a−2,ℓ0)2Yℓ0(n̂) dn̂ (4.18b)

= − 1

4π
∑
ℓ

aEℓ0 ∫ 2Yℓ0(n̂) dn̂. (4.18c)

In the last line, the definition of aEℓm has been used, equation (2.8). A similar derivation
yields the same type of expression for U , but the Bmode coefficient appears in place of
the Emode coefficients:

U = − 1

4π
∑
ℓ

aBℓ0 ∫ 2Yℓ0(n̂) d n̂. (4.19)

_e series

Yℓ = 1

4π
∫ 2Yℓ0(n̂) d n̂, (4.20)

which functions as the weights acting on aℓ0 in the above equations, has the closed form

Yℓ =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

¿ÁÁÀ2ℓ + 1
π

(ℓ − 2)!
(ℓ + 2)! , if ℓ is even

0, if ℓ is odd

(4.21)

_erefore it is the even-ℓ coefficients which contribute to the full-skymeans. Yℓ diminishes
rapidly with increasing ℓ; the contribution is dominated by the first few even modes,
depending on how rapidly the power spectra decay. In fact, to good approximation, Q
and U is determined by just ℓ = 2 and ℓ = 4; the series Yℓ is plotted in figure 4.3.

In general, there is usually not a priori expectation for the specific values of a
E/B
ℓm , on

which Q and U depend. When only the power spectra CEE
ℓ and CBB

ℓ are specified, then Q
andU are not determined. However, if we assumeGaussianity such that Cℓ is the expected
variance of aℓm at that ℓ, then CEE

ℓ and CBB
ℓ do determine the probability distributions for

Q and U . In each Gaussian realization of the CMB, Q and U can bemodelled as random
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Figure 4.1: Phases of the cos(4ψ) and sin(4ψ)modes.

variables drawn from Gaussian distributions having zero mean and variance

var(Q) = ∑
ℓ

CEE
ℓ Y 2

ℓ ; (4.22a)

var(U) = ∑
ℓ

CBB
ℓ Y 2

ℓ . (4.22b)

Based on this formalism, we expect the distribution function for Q monopoles to be
significantly broader than the distribution function for U monopoles, assuming that
CEE
ℓ ≫ CBB

ℓ at low ℓ.
_e recurring association between Q and E, and between U and B, appears in these

equations.

E and B polarization angles

In equation (2.16), polarization angles of the E and Bmodes were defined as

ψE = 1

2
arctan(UE

QE

); (4.23a)

ψB = 1

2
arctan(UB

QB

). (4.23b)

In principle, these obey the same statistics as the normal polarization angle ψ discussed
above. However, there is an important constraint on the Stokes parameters of the E and B
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Figure 4.2: Phases of the cos(2ψ) and sin(2ψ)modes from the nonzero means µQ and
µU . _e E and B families are constrained to have zero U and Q means respectively, so
ψE and ψB are constrained to one of these two specific phases. In general, unseparated
polarization data can have an arbitrary phase.

modes. _eUE and QB maps are forbidden from having anymonopole component—their
full-sky averages are exactly zero, UE = QB = 0. Meanwhile, QE and UB have the same
monopole as the original unseparated Q and U respectively. _ese results follow from
equations (4.18) and (4.19).
_us there are unique E and B patterns of the 2ψ mode, distinguished by the phase,

labelled in figure 4.2. _ese patterns reflect the geometry of the E and Bmodes.1

Partial-sky analysis

Several issues apply to partial-sky analysis of polarization angles. First, we repeat that
equation (4.5) is the distribution function for a single pixel. A region of the sky cannot be
modeled in this way if the correlation length is comparable to the size of the region. _is is
briefly and vaguelymentioned in [147], in which the authors point out that the inter-pixel
correlations do not affect expectation values, and themean number of pixels in each bin
of a histogram calculated from the data is given by the point distribution function in the

1Although ψE and ψB were constructed through the use of the E and B families (QE ,UE) and (QB ,UB),
the patterns in the angle distribution functions are not tied to this construction. For example, the normal
unseparated polarization angle ψ of a polarization field, which is purely E and has no Bmode, will have the
same shape.
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Figure 4.3: _e series Y 2
ℓ , which are the weights of the contribution of the E or B power

spectra to the variance of µQ or µU , as stated in equations (4.22a) and (4.22b). _e curve
in the right panel shows the values for even ℓ only.

simplest way. Most likely, it is necessary to work with simulations, when small regions of
the sky are considered, in which the sampling uncertainty is significant.
Furthermore, the zero mean constraints on QB and UE are broken on the partial sky.

_ere is also the question of leakage.
In the results that follow, the common polarization mask or the confidencemask associ-

ated with the component separation method are generally used.

Polarization angle distributions in SMICA

In figure 4.4, the polarization angle distribution measured from SMICA is shown. _e
sky has been masked with the polarization confidencemask, and themap is otherwise
unprocessed (Nside = 2048). Also plotted are curves corresponding to three Gaussian
models: the fully Gaussian model of equation (4.12), the equal variance/zero covariance
model of equation (4.9), and the zero-mean model of equation (4.15). In all three cases,
the unneglectedmeans and variances are sample estimates from the data.

Figure 4.4 shows clearly that the polarization angles in the full-resolution SMICAmap
have fluctuations of approximately ±2% from a uniform 1/π distribution. _e overall non-
uniform part is a roughly even superposition of 2ψ and 4ψ modes (the two dashed curves
in figure 4.4 have almost the same amplitude). It need not necessarily be that themeans
and variances have similar statistical departures from the null assumptions. Smoothing or
downgrading themap, which keeps themeans fixed but reduces the variances, tends to
diminish the 4ψ mode and produce polarization angle distributions dominated by the 2ψ
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Figure 4.4: Empirical distribution function of the polarization angle from SMICA (black)
compared to the theoretical Gaussian model (blue). _e 2ψ and 4ψ modes are shown
separately as dashed curves.

mode.
As a final remark, we consider the validation of the leading ordermodels in (4.9) and

equation (4.15). _e total leading ordermodel is constructed by adding the non-uniform
parts of each asympototicmodel to 1/π:

Pµσ = 1

π
+ (Pµ(ψ) − 1

π
) + (Pσ(ψ) − 1

π
) (4.24a)

= 1

π
+ µQ cos(2ψ) + µU sin(2ψ)√

2πσQQ

+ (1 − R) cos(4ψ) + κ sin(4ψ)
π(1 + R) . (4.24b)

_e same asymptoticmodel can be derived by a series expansion of equation (4.12), but
there are cumbersome singularities. For the values of µQ , µU , and ΣQU estimated from full-
resolution SMICA, equation (4.24b) is the same as equation (4.12) to within an absolute
error of around 10−5, indicating that we are well within the leading order regime.

_e polarization angle theory naturally invites an investigation of the sample statistics
themselves, especially in light of equations (4.22a) and (4.22b), which show how these are
related to the cosmologically interesting E and B power spectra.

4.2 statistics of gaussianity parameters

A natural companion to the investigation of the polarization angles in the Planckmaps is a
study of theGaussianity parameters themselves: themeans ofQ andU , and the asymmetry
parameters R and κ.
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Figure 4.5: Distribution functions of SMICA Q (black) and U (red) for Nside =
2048, 512, 128 (top row) and Nside = 64, 32, 16 (bottom row). With decreasing resolu-
tion, the standard deviations shrink and the different Q, U means become increasingly
visible.

Dependence on resolution

When a map is smoothed by a Gaussian filter or downgraded by averaging of merged
subpixels, themean stays the same, but the variance is reduced. _erefore the study of the
Gaussianity parameters is resolution-dependent.

In figure 4.5, the empirical distribution functions of Q and U for the 2018 SMICAmap
are shown at different angular resolutions. _e distributions are visibly Gaussian at high
resolutions, with increasing random fluctuations at lower resolutions. As expected, the
width of the distribution functions is seen to decrease with decreasing resolution. _e
means remain constant, and therefore the relative difference of the Q and U distribution
functions from each other due to the offset shi� induced by different Q and U means,
which is almost negligible at full resolution, becomes very visible at lower resolution.

_e trend is increasing sensitivity to nonzero means at lower resolutions, which is
entirely expected. _is is pronounced in the polarization angle distribution function,
for which the amplitudes of the 2ψ modes are enhanced by diminishing variances (see
table 4.1). _e amplitudes of the 4ψ modes, which are ratios of variances, tend to stay the
same. _is behavior is illustrated for SMICA in figure 4.6. At low smoothing, all four
modes have approximately the same amplitude around the 0.01 level (cf. figure 4.4), but at
1○ smoothing, the 2ψ modes havemore than quadrupled in amplitude.
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Figure 4.6: Amplitudes of the 4ψ and 2ψ modes as a function of the smoothing angle.
_ese curves are based on 2018 SMICA, but the general behaviour is typical.

At very large smoothing angles, the trend breaks down when there can be significant
random fluctuations in the variances.

Variance parameters

_e variance-related asymmetry parameters of SMICA, NILC, Commander, and SEVEM
at Nside = 2048, are shown in table 4.2. For all the CMBmaps, we see ∣R − 1∣ and ∣κ∣ are of
approximately similar size,meaning that both unequal variances and nonzero covariance
are present in the data to a similar extent, and the polarization angle distributions have
sin(4ψ) and cos(4ψ)modes with comparable amplitudes.

_e variances of the SMICA and Commandermaps are nearly equal to each other, while
the variances in NILC and SEVEM are smaller. _is is likely a reflection of the different
high-ℓ cutoffs of the different component separation methods. In particular, SEVEM is
limited by the resolution of the lowest-resolution input, which results in a final map with
a lower resolution. _e situation for the covariances is similar. Masking has aminor effect
on the variances and a slightlymore significant effect on the covariances, indicating that
the Galactic plane region is a source of significant Q–U covariance.

Q, U means

_emeans µQ and µU estimated from the SMICA,NILC, Commander, and SEVEMmaps
at Nside = 2048 are shown in table 4.3. Figure 4.7 shows the actual measured Q and U
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Map σQQ (µK2) σQU (µK2) R κ

SMICA 813.552 −3.683 1.0089 −0.0045
Commander 802.189 −2.628 1.0089 −0.0033

NILC 646.368 −1.933 1.0072 −0.0029
SEVEM 436.429 −1.201 1.0076 −0.0028

Table 4.2: Q variance,Q–U covariance, and the R and κ parameters characterizing unequal
variances and relative nonzero covariance at full resolution Nside = 2048.

Map µQ (µK) µU (µK) pQ pU
SMICA −0.107 0.116 0.024 0.0

Commander −0.093 0.116 0.049 0.0
NILC −0.146 0.097 0.002 0.0
SEVEM −0.118 0.143 0.012 0.0

Table 4.3: Q and U means and the two-sided p values with respect to the distributions
implied by the power spectra.

means in each map, compared to the Gaussian distributions predicted by equation (4.22a)
and (4.22b) evaluated using the E and B power spectra corresponding to the best-fitΛCDM
model.1 For Q, the means are generally negative at around the −0.1 µK level, which is
departed from the expected value with a p value of less than p = 0.05. For U , on the other
hand, themeans are around the +0.1 µK level, which is inconsistent with the Gaussian
theory at almost unfathomably high significance.
In the 2015 Planck component separation products [98], the polarization maps were

high-pass filtered, removing multipoles ℓ < 20. _esemaps have effectively zero Q and U
means, and they yield p values of nearly 0.5 when analyzed in the same way. As discussed
in [98], the polarization maps were still heavily corrupted by systematics on scales above
10○, which is why these scales were simply filtered out of themaps. Following continued
improvement in reducing systematics (discussed in [151–154]), the 2018 Planck component
separation products [99] are not treated in this way. However, [99] warns that:

“We observe broad large-scale structures in both Stokes Q and U that are
aligned with the Planck scanning strategy. _ese structures are effectively due
to gain-modelling uncertainties coupled to monopole and dipole leakage, and
corresponding features are present in the associated simulaitons. . . . In practice,
however, we note that these modes are associated with significant additional
systematic uncertainties, and we therefore caution against over-interpretation
of the very largest scales in thesemaps.”

Bearing this in mind, the tension between the Q and U monopoles and the E and B

1Specifically, the baseline Planck TT,TE,EE+lowE+lensing file is used.
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Figure 4.7: Actual extracted Q and U monopoles from the four Planck 2018 CMBmaps,
compared to the background distributions allowed assuming Gaussianity of Q and U and
the best-fit E and B power spectra published by Planck. _ese two results aremoderately
incompatible for Q (i.e. the Emode) and extremely different for U (i.e. the Bmode).

power spectra found here is almost certainly amanifestation of the large-scale systematics
affecting the polarization maps. _e distribution function of the polarization angle is
sensitive to these systematic errors, and subtraction of themonopoles of Q and U , which
may seem like a simple operation, can significantly alter the statistics of the polarization
angle.
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5 NON-POLARIZED POINTS AND THEIR STATIS-

TICS

As discussed in chapter 1, in standard theories of inflationary cosmology, the CMB tem-
perature anisotropy is expected to be a realization of a Gaussian random field, which
is normally characterized by its power spectrum a�er harmonic transformation. _e
statistical description of Gaussian random fields in themap domain is somewhatmore
complicated, and there have been varied attempts to characterize the Gaussianity of the
CMB in themap domain. Early works focused on peak statistics and “hot spots” in the
maps [155–157]. Gaussianity puts statistical constraints on the frequency and shape of
those regions exceeding some threshold intensity. More recently, saddle points have been
exploited in a similar way [158].

Among other geometrical and topological estimators investigated for their sensitivity to
Gaussianity (reviewed in [159]), theMinkowski functionals are themost popular [160–164].
Minkowski functionals depend on a threshold Tt , with respect to which are measured
(1) the “hot” area of the sky where T(n̂) > Tt , (2) the length of the boundary between
the hot and cold regions, and (3) the Euler characteristic, which is calculated as the
number of isolated regions above the thresholdminus the number of regions below the
threshold. Under Gaussianity, there exist analytic expressions for the expected values of
the Minkowski functionals. Complementary to the peak statistics and the Minkowski
functionals are the zero points, where T(n̂) = 0, which should occurwith a regular density
in a Gaussian random field.
One of themajor advantages ofmap domain analysis is that it is simple to constrain

to certain parts of the sky. In this way, map domain estimators can be used to test not
only Gaussianity but also isotropy. In [165], for example, Minkowski functionals and
related estimators are applied to the northern and southern hemispheres separately, and
the discrepancy between them is linked to the power asymmetry anomaly. Map domain
estimators are also especially suitable for local analysis of small regions of the sky and
upcoming ground-based datasets.
_e possibilities formap-domain analysis are richer in polarization. _eMinkowski

functionals can also be adapted for use on polarization data [166]. _e general existence
of zero points in the polarization field, or non-polarized points, where the polarization
intensity is identically zero, is feasible from the intermediate value theorem, although less
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obvious. _e Stokes parameters Q and U comprise a continuous, spin-2 function defined
on the sphere. Continuity implies that there should exist well-defined contours where
Q = 0, and similarly contours where U = 0 (so-called the “contours of percolation” [167]).
_e intersections of these contours are exactly the non-polarized points. Physically, at
these points, the polarization signal is entirely canceled along the line of sight.
_e zero points in polarization can be classified into three kinds according to the

geometry of the local polarization field. _e basic theory was largely presented in [166] and
[168]. Here the theory is reviewed and extended, exploiting the Stokes-space decomposition
of E and B, which allows the analysis to also be applied to the E and Bmodes. It is also
shown that gravitational lensing has a specific signature in the non-polarized point density.

Additionally, concrete tests of Gaussianity using the theory of the non-polarized points
are constructed. _is complicates the analysis because it is not simply necessary to have
a mean expectation, but also a variance. In practice, simulated data are used. Two
test methodologies are described, based on the Kullback–Leibler divergence and the
Kolmogorov–Smirnov estimator, intended to compare the properties of the non-polarized
points in the actual data with simulations. _e tests are localizable.

Further practical considerations for the detection of non-polarized points in pixelized
skymaps are discussed and an overall algorithm is presented, followed by an application
to the Planck 2018maps. _is work is published in [21].

5.1 gaussian theory

_e correlated Gaussian model for Q and U , specified in equations (4.3) through (4.6),
continues. Q and U are assumed to be random Gaussian variables with joint distribution

P(Q ,U) = 1

2π
√∣ΣQU ∣ exp(−

1

2
(P⃗ − µ⃗)TΣ−1QU(P⃗ − µ⃗)). (5.1)

In [166, 168], Q and U are assumed to be uncorrelated have the same variance, denoted
σ 2
0 , and the means of Q and U are also assumed to be zero in this study, which is the

primordial expectation. Under these assumptions, the distribution function is

P(Q ,U) = 1

2πσ 2
0

exp(− 1
2

Q2 +U 2

σ 2
0

). (5.2)

It is also necessary to describe the statistics of the field derivatives. _e Jacobian is

J = ⎛⎝
∂Q
∂θ

∂Q
∂ϕ

∂U
∂θ

∂U
∂ϕ

⎞⎠. (5.3)

_e components of the Jacobian are, like Q and U , assumed to be zero-mean Gaussian
random variables with a common variance, denoted σ 2

1 /2, uncorrelated with each other
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or Q and U . In this case, an overall joint distribution of Q, U , and their derivatives can be
constructed as a simple product of Gaussians:

P(Q ,U ,
∂Q

∂θ
,
∂Q

∂ϕ
,
∂U

∂θ
,
∂U

∂ϕ
) =

4(2π)3σ 2
0 σ

4
1

exp
⎛⎜⎝−

1

2

⎛⎜⎝
Q2 +U 2

σ 2
0

+ 2
∂Q
∂θ

2 + ∂Q
∂ϕ

2 + ∂U
∂θ

2 + ∂U
∂ϕ

2

σ 2
1

⎞⎟⎠
⎞⎟⎠. (5.4)

_e factor of 1/2 in the definition of the variance of the derivativesmeans that the gradients
of Q and U ,

∇Q = ( ∂Q
∂θ
∂Q
∂ϕ

); ∇U = ( ∂U
∂θ
∂U
∂ϕ

), (5.5)

havemagnitudes with variance σ 2
1 . _e ratio of σ0 and σ1 is then the correlation length of

themap,

rc = σ0
σ1
. (5.6)

Number density of non-polarized points

_e probability density of non-polarized points is

∫ P(Q = 0,U = 0, J) d J =
4(2π)3σ 2

0 σ
4
1
∫ exp(− 1

σ 2
1

(∂Q
∂θ

2 + ∂Q

∂ϕ

2 + ∂U

∂θ

2 + ∂U

∂ϕ

2)) dQθdQϕdUθdUϕ . (5.7)

_e Taylor expansion to first order around a non-polarized point at (θ0 , ϕ0),
P(θ0 + dθ , ϕ0 + dϕ) = P(θ0 , ϕ0) + J(θ0 , ϕ0)(dθdϕ). (5.8)

_e constant term vanishes by definition, leaving the linear term

J(θ0 , ϕ0)(dθdϕ) = ⎛⎝
∂Q
∂θ

∂Q
∂ϕ

∂U
∂θ

∂U
∂ϕ

⎞⎠(dθdϕ). (5.9)

_e linear regime in the immediate vicinity of a non-polarized point has Q and U in
bijection with θ and ϕ. By a change of coordinates, the number density can therefore be
written using the probability density, but it acquires a factor of ∣det(J)∣:
Nnp = 4(2π)3σ 2

0 σ
4
1
∫ exp(− 1

σ 2
1

(∂Q
∂θ

2 + ∂Q

∂ϕ

2 + ∂U

∂θ

2 + ∂U

∂ϕ

2))∣det(J)∣ dQθ dQϕ dUθ dUϕ .

(5.10)
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Field trajectories near non-polarized points

Near a non-polarized point, the eigenvalues of the Jacobian J determine the local dynamics
of the polarization field. We work in local coordinates, and assume that the derivatives
are constant. _e linearization is based on the derivatives evaluated exactly at the non-
polarized point itself. _e differential equation governing the field trajectories, which are
parametrized as (θ(t), ϕ(t)), is

(θ̇
ϕ̇
) = J(θ

ϕ
) = (Qθ Qϕ

Uθ Uϕ
)(θ

ϕ
). (5.11)

_e general solution can be given in terms of the eigenvalues of the Jacobian, which are
the solutions to the characteristic equation

λ2 − Tr(J) + det(J) = 0, (5.12)

i.e.,

λ± = 1

2
(Tr(J) ±√Tr(J)2 − 4det(J)). (5.13)

_en the solution to equation (5.11) is

θ(t) = C1

Qϕ

λ+ − Qθ

eλ+ t + C2

λ− −Uϕ

Uθ

eλ− t ; (5.14a)

ϕ(t) = C1e
λ+ t + C2e

λ− t . (5.14b)

C1 and C2 are constants of integration, which are fixed by an initial condition (θ(0), ϕ(0)).
It has been assumed that the Q and U derivatives in the Jacobian are constant.

Classification of non-polarized points

_e non-polarized point itself, (θ , φ) = (0, 0), is a equilibrium point of the dynamical
system. _ere are three qualitative behaviors of the trajectories, depending on the signs of
the eigenvalues:

1. If both eigenvalues are real and have the same sign, then the point is a node. If
λ+ > λ− > 0, then the node is called unstable, and all trajectories diverge to infinity;
if λ+ < λ− < 0, then the node is called stable, and all trajectories approach the node.

2. If the eigenvalues are real and have opposite signs, the point is a saddle. All trajecto-
ries converge to the axis of the positive eigenvector.

3. If the eigenvalues are a pair of complex conjugates, then the point is a focus. _e
trajectories are spirals that approach the point if the real part is negative and diverge
if the real part is positive.
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Figure 5.1: Different types of non-polarized points, from le� to right, a saddle, a knot,
and a focus. _e first row shows the polarization field lines. _e second row shows the
polarization angle pattern local to the singular point, based on the derivatives of Q and U
at the point.

_e conditions on the eigenvalues can be stated equivalently in terms of the determinant
and trace:

det(J) > ( 1
2
Tr(J))2 > 0 ∶ focus;

( 1
2
Tr(J))2 > det(J) > 0 ∶ node;

det(J) < 0 ∶ saddle.

In figure 5.1, sample trajectories are shown for the three types of points.

Number densities of nodes, saddles, and focuses

So far, this classification based on the qualitative behavior of the field line trajectories is
entirely generic to any two-dimensional dynamical system. Now we return to the original
premise, in which the dynamical systems in question arise at the zeros of the polarization
intensity field. Within the Gaussian model, the Jacobian has specific statistical properties,
which implies a distribution for the eigenvalues and therefore for the densities of the nodes,
saddles, and focuses. _e goal is to calculate the expected number density for each type.
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What follows is the integration of the probability density over suitable regions of the
phase space corresponding to each type of non-polarized point. _e most important
reference is the appendix of [166], where a sketch of the derivation is given.

_e calculation begins with a change of variables as follows:

Qθ

σ1
= x

2
+ R

2
cos(α); (5.15a)

Qϕ

σ1
= R

2
sin(α) − w

2
; (5.15b)

Uθ

σ1
= R

2
sin(α) + w

2
; (5.15c)

Uϕ

σ1
= x

2
− R

2
cos(α). (5.15d)

_e corresponding Jacobian, JQU (to be distinguished from the Jacobian above), is

∣det(JQU)∣ = R

4σ 4
1

. (5.16)

_erefore,

dQθ dQϕ dUθ dUϕ = R

4σ 4
1

dR dx dw dα (5.17)

Applying the change of variables within the integral in equation (5.10),

Nnp = σ 2
1

4(2π)3σ 2
0
∫ exp(−x2 +w2 + R2

2
)∣x2 +w2 − R2∣ dR dx dw dα. (5.18)

Integration over α is a factor of 2π, so

Nnp = σ 2
1

4(2π)2σ 2
0
∫ exp(−x2 +w2 + R2

2
)∣x2 +w2 − R2∣ dR dx dw . (5.19)

_e integral can be almost separated by a further change of variables, defining b = R2 −w2,

Nnp = σ 2
1

8(2π)2σ 2
0
∫ ∞

−∞
e−x

2/2 dx ∫ ∞

−∞
e−w

2

dw ∫ ∞

−w2
∣x2 − b∣e−b/2 db. (5.20)

b has a finite lower bound by construction. _e number density of non-polarized points
has been recast into integration over the three-dimensional x ,w , b space. In terms of these
coordinates, the trace and determinant of the original Jacobian J are

Tr(J) = x (5.21)
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and

det(J) = 1

4
(x2 +w2 − R2) = 1

4
(x2 − b). (5.22)

_e eigenvalues, expressed before in terms of the trace and determinant in equation (5.13),
thus take the simple form

λ± = 1

2
(x ±√b). (5.23)

Also, the classifications of non-polarized points can be specified as:

−w2 < b < 0 ∶ focus;

0 < b < x2 ∶ node;

x2 < b <∞ ∶ saddle.

_erefore, the number density of each type can be computed by restricting the bounds
of the innermost integral in equation (5.20). When the bounds are specified, all the
integrations are elementary. _e results are

Nf =
√
2

16πr2c
, Nk = 2 −√2

16πr2c
, Ns = 1

8πr2c
, (5.24)

which are all multiples of 1/r2c = σ 2
1 /σ 2

0 . _ese sum to the total density of non-polarized
points,

Ntotal = Nf + Nk + Ns = 1

4πr2c
, (5.25)

from which it is clear that the number of non-polarized points on the full sky is given by
the simple expression 1/r2c .

_ecorrelation radius rc depends on thepower spectrum, whichdependence is inherited
by the densities Nf , Nk, and Ns. However, the ratios of the densities are independent of rc:

Nf

Nk

= √2 + 1, Nf

Ns

=
√
2

2
. (5.26)

_ese ratios are true constants depending only on the Gaussian character of Q and U .
_is is the basis for the Gaussianity tests that follow.

F-statistics of the correlation length

At this point, it should be restated that, thus far, we have dealt with expectation values.
A sky map, or any subset thereof, is a finite sample in which the empirical numbers of
non-polarized points and their ratios are allowed to vary. It is not possible to predict
the variance directly from equation (5.26). Instead, we should return to the individual
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Figure 5.2: F-distributionfit to simulations of rc in aGaussianmodel._eshapeparameters
of the F-distribution will depend on the specific power spectrum of the CMB sky; given
these parameters, the allowed variation in rc , and therefore the number density Nnp, is
specified by the F-distribution.

expressions found for the number densities in equation (5.24). rc is a ratio of chi-squared
variables, which follows a beta distribution of the second kind:

P(rc) = rα−1c (1 + rc)−α−β
∫ 1

0
tα−1(1 − t)β−1 dt . (5.27)

With suitable rescalings of Q and U , which can be subsumed into a change of units, the
beta distribution can be reduced into an F-distribution:

P(rc) = (α/β)α
∫ 1

0
tα−1(1 − t)β−1 dt r

α−1
c (1 + α

β
rc)−α−β . (5.28)

If Q and U are allowed to have nonzero means, the noncentral F-distribution applies,
which is not fundamentally different except for having amore complicated formula. _e
parameters α and β depend on the number of degrees of freedom of the chi-squared
distributions—which in practice depend on the power spectrum and the smoothing angle.
Rather than attempting to work out the details of this dependence, it is simpler to consider
α and β as power-spectrum-dependent parameters which can be empirically fitted if
necessary. From the distribution of rc, the distribution of the number densities follows
immediately.

90



Polarization angles near non-polarized points

A final aspect of the Gaussian theory of non-polarized points is the local behavior of the
polarization angle. Adopting polar coordinates in the tangent space,

dθ = dr cos(ϖ), dϕ = dr sin(ϖ), (5.29)

the polarization angle ψ obeys

d

dϖ
tan(2ψ) = det(J)

Q2
. (5.30)

_erefore the sign of the determinant determines whether the polarization angle increases
in a clockwise or anticlockwise direction around the point. In a clockwise trajectory, ψ
decreases if the point is a saddle and increases if it is a knot or focus. _is is illustrated in
figure 5.1.

5.2 lensing and the e/b modes

_e E and Bmodes, decomposed in the space of the Stokes parameters as explained in
chapter 2, are subject to the same Gaussian theory when the QE/B and UE/B maps are
Gaussian. However, in general the correlation length can vary between the unseparated
and the E/Bmodes. _is variation is constrained by equation (2.4). _e Q/U variance, σ 2

0 ,
obeys

σ 2
0 = ⟨(QE + QB)2⟩ = ⟨(U 2

E +UB)2⟩ . (5.31)

_erefore,

2σ 2
0 = ⟨(QE + QB)2 + (UE +UB)2⟩ (5.32a)

= ⟨Q2
E + Q2

B +U 2
E +U 2

B⟩ (5.32b)

= ∆2
E + ∆2

B , (5.32c)

where ∆2
E = ⟨Q2

E⟩ + ⟨U 2
E⟩ and ∆2

B = ⟨Q2
B⟩ + ⟨U 2

B⟩. _ese equations assume zero E–B
correlation. _ere is no expectation that ∆E = ∆B . However, within the same equal-
variance model assumed in section 5.1, we can assume that ⟨Q2

E⟩ = ⟨U 2
E⟩ = ∆2

E/2, and
similarly for the Bmode. For the derivatives,

σ 2
1 = 2var(Q′E + Q′B) = 2var(U ′E +U ′B) (5.33a)

= var(Q′E + Q′B) + var(U ′E +U ′B) (5.33b)

= var(Q′E) + var(U ′E) + var(Q′B) + var(U ′B) (5.33c)

= γ2E + γ2B
2

, (5.33d)
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where γ2E = 4var(Q′E) = 4var(U ′E) and γ2B = 4var(Q′B) = 4var(U ′B). _e same equal-
variance and zero-covariance assumptions are in use, and, in general, γE and γB are
different from each other.
_e correlation lengths of the E and Bmodes are

NE/B
np = 1

(rE/Bc )2 =
γ2E/B/2
∆2
E/B
/2 =

γ2E/B

∆2
E/B

. (5.34)

_e total number of non-polarized points can be decomposed as

Nnp = 1

r2c
= σ 2

1

σ 2
0

= γ2E + γ2B
∆2
E + ∆2

B

(5.35a)

≈ NE
np(1 + γ2B

γ2E
− ∆2

B

∆2
E

) (5.35b)

= NE
np

⎛⎝1 − ∆2
B

∆2
E

⎛⎝1 −
NB

np

NE
np

⎞⎠⎞⎠. (5.35c)

_us, if NB
np < NE

np, then the E mode has more non-polarized points than the total
unseparatedmap. _is is observed in practice (figure 5.3). _eexcess growswith increasing
Bmode, i.e., with increasing ∆2

B .
For the primordial Bmode signal, both γ2B and ∆2

B are proportional to the tensor-to-
scalar ratio r. _erefore the total number of non-polarized points in the primordial B
mode does not depend on r. However, this proportionality is broken in the presence of
weak lensing of the E mode, which induces a Bmode signal unrelated to r. _is raises the
possibility of lensing detection based on simple total density estimators.

_e dependence of NB
np on r, including the effect of gravitational lensing, is nontrivial.

Assuming that the smoothing scale of themap is greater than the correlation radius of the
cosmological signal, then the variances can be represented as

∆2
B ≈ ∆2

B ,cmb(r) + ∆2
B ,lens (5.36)

and
γ2B ≈ γ2B ,cmb(r) + γ2B ,lens . (5.37)

_e first terms are the variances from the primordial CMB, which are functions of the
tensor-to-scalar ratio r. _e second terms are due to lensing, which are independent of r.

_e dependence of the primordial variances on r is linear. _erefore they can be written

∆2
B(r) = r

r∗
∆2
B(r∗) (5.38)

and
γ2B(r) = r

r∗
γ2B(r∗), (5.39)
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where r∗ is an arbitrary normalization value. _en the total number of non-polarized
points is

NB
np(r) =

r
r∗
γ2B(r∗) + γ2B ,lens

r
r∗
∆2
B(r∗) + ∆2

B ,lens

. (5.40)

_e asymptotics are easy to calculate. _e small-r limit (lensing dominates) is

lim
r→0

NB
np(r) = γ2B ,lens

∆2
B ,lens

, (5.41)

and the large-r limit is

lim
r→∞

NB
np(r) = γ2B ,lens(r∗)

∆2
B ,lens(r∗) , (5.42)

which is equal to NB
np,cmb for any r∗.

In the large-r limit, NB
np(r) can be extended to linear order:

NB
np(r)

NB
np,cmb

≈ 1 − ∆2
B ,lens

∆2
B(r∗)(

r∗
r
)⎛⎝1 −

NB
np,lens

NB
np,cmb

⎞
⎠. (5.43)

In the other limit

NB
np(r)

NB
np,cmb

≈ 1 − ∆2
B(r∗)

∆2
B ,lens

( r

r∗
)⎛⎝1 −

NB
np,cmb

NB
np,lens

⎞
⎠. (5.44)

_ese results are investigated in simulated CMBmaps generated using CAMB, in which
the tensor-to-scalar ratio and the lensing potential can be adjusted. _e derived effects
will only be visible when the maps are at a resolution comparable to the lensing scale.
Figure 5.3 shows results at a smoothing scale of 0.5○, where the sensitivity to lensing in
the Bmode is very strongly visible.

5.3 non-polarized point analysis in the 2018 planck

maps

_e goal is to use the non-polarized points, and in particular the ratios Nf/Ns and Nk/Ns,
as statistical estimators. As we have seen above, these ratios have specific expectation
values when the data are Gaussian. Departures from Gaussianity are expected to perturb
the ratios.
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Figure 5.3: Total numbers of non-polarized points, for the E and Bmodes separately and
the total unseparated signal, under conditions of lensing and no lensing. _e shaded region
shoes the 68% confidence region over the simulations, which were generated using CAMB
[169]. _e simulations validate the results found in the preceding theoretical section.
Except when r = 0 in the no lensing simulations, there are slightlymore E non-polarized
points than the total unseparated signal. _e stronger the B mode is, the bigger the E
excess will be.

Detection of non-polarized points

In the abstract theory, where Q and U are continuous real-valued functions on the sphere,
the existence of points where simultaneously Q = 0 and U = 0 is a trivial matter, which
is easily handled by the intermediate value theorem. _is is essentially the argument at
the beginning of this chapter. But the simplicity of this argument disguises some genuine
difficulties of locating non-polarized points in the practical reality, where Q and U are
pixelized skymaps. Immediately, we face the challenge that there is not expected to be any
pixel in which either Q = 0 or U = 0 because the pixel values are samples.

_emain computational strategies are based on simultaneous root-finding in the Q and
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U maps, orminimization of the polarization intensitymap (P = √Q2 +U 2). Combining
these strategies, the following necessary and sufficient conditions are proposed for root-
finding in the CMB polarization.
A particular pixel n̂0 is a non-polarized point if:

1. _e Stokes parameters at n̂0 satisfy ∣Q(n̂0)∣ < є and ∣U(n̂0)∣ < є for some small
threshold intensity є.1

2. n̂0 is a local minimum of the polarization intensity with respect to all neighbouring
pixels, i.e. P(n̂0) < P(n̂ i) for all n̂ i adjacent to n̂0.

3. Within the connected sub-є region containing n̂0, there are pixels taking both
positive and negative values of Q and U .

4. _ere are no other pixels that meet conditions 1–3 with a smaller polarization
intensity within an angular distance αmax of n̂0.

_e parameters є and αmax are not necessarily fixed by the criteria. In practice, some
heuristic definitions of these parameters enable a search. In [21], these parameters are
determined as follows. It was observed above that the total number of non-polarized
points expected on the full sky is 1/r2c . є and αmax can be adjusted until the total number
of points detected is equal to 1/r2c , rescaled suitably for the partial sky. Acting in this
way removes information about the total number of non-polarized points while retaining
information about their ratios only: in essence, it is assumed that the total number is exactly
the Gaussian expectation, and then the corresponding ratios are found. _e meaning
has a slight fuzziness, but in practice, provided that the data resolution enables a large
number of non-polarized points to be extracted, the ratios are rarely strongly sensitive to
the parameters є and αmax.

Analysis in subareas

_eratiosNf/Ns andNk/Ns can be computedwithin any given region of the sky. Assuming
isotropy, their expectation value is the same in any subarea, although smaller subareas
will have fewer total counts of non-polarized points and corresponding greater expected
variances of the empirical ratios.

Statistical analysis on subareas has two possible advantages. First, it is sensitive to local
anomalies in the non-polarized points which may be outweighed in the full-sky analysis.
Second, it permits the data to be studied with different variances, depending on the size of
the subareas.
A simple scheme for subarea analysis is based on the nested nature ofHEALPix. Low

resolution “mother pixels”, corresponding to theHEALPix pixels from a small Nside, are

1Alternatively, the polarization intensity at n̂0 satisfies P(n̂0) < є for some small threshold intensity є, which is
statistically equivalent, but in practice will result in a slightly a different sample of points.
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Figure 5.4: Illustration of detection of non-polarized points in a single Nside = 16 subpixel.
_e le� panel shows the red dots resulting from the initial descent algorithm. _e right
panel shows the final NPPs that remained a�er filtering for αmax. _e nearly adjacent
streams ofNPPs, which are not distinguished in the pixel domain,must be removed in
this way. Focuses are drawn marked by circles, knots by triangles, and saddles by stars.

used as the subareas for analysis. _ese subareas automatically cover the entire sky, and
each subarea has the same size. _e analysis in this chapter, based on [21], uses Nside = 8
for themother pixel resolution. _e full sky is therefore divided into 768 subareas.
Corrupted sky regions are easily excluded from the subarea analysis by masking at

themother pixel resolution. A simple approach, used here, is downgrading the Planck
polarization confidencemasks, which are provided at the data resolution of Nside = 2048,
using an area-preserving method. Area-preserving mask downgrading does not retain
the original statistical definition of the mask confidence, but it is a compromise on a
continuum ofmore conservative and less conservative choices.

Comparing ratio distributions

At last, we can look at the ratios in the 2018 Planckmaps. All maps are smoothed with
a Gaussian filter having a full width at halfmaximum of 0.5○, and divided into subareas
corresponding to Nside = 8 as described above and illustrated in figure 5.6. From the ratios
evaluated in each subpixel, a distribution function can be calculated. _is is shown in
figure 5.7.

_e histograms are calculated with a relatively small number of bins. In order to reduce
noise, the conservative Sturge’s formula is used, giving log2(N) + 1 bins, which is 9 for the
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Figure 5.5: Polarization intensities and polarization angles (shown as black dashes) in the
E and B families in a small zone of the sky. Several non-polarized points are visible.

dataset.1

To compare the distribution functions from the Planckmaps with a background Gaus-
sian expectation, the Kullback–Leibler entropy is used. _e definition of the Kullback-
Leibler entropy between a sample distribution P and a background distribution Q is

ΘKL(P∣Q) = ∑
i

Pi log( Pi
Q i
), (5.45)

where the sum is taken over all bins i, and Pi and Q i are the densities in each bin. Smaller
values of ΘKL correspond to better consensus between the two distribution functions.

Any bin for which Q i = 0 contributes an infinity to the Kullback–Leibler entropy.
_ere are several fixes for this problem, including doping bins by adding an extra data
point,minimally smoothing the distributions, or excluding bins with zero points from
the analysis. All methods gave similar results, and generally, this is not expected to be a
problem because there are very few bins that have zeros. In the results below, zero bins are
excluded.
To produce a p value from the Kullback–Leibler entropy, the KL-statistics between

1 log2(768) + 1 ≈ 10.5, but some subpixels aremasked in this analysis. See figure 5.6.
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Figure 5.6: Absolute ratio differences in the Nside = 8 subareas. _e upper four panels
show Nf/Nk and the lower four panels show Nf/Ns. _e differences are calculated by
subtraction of the theoretical ratios Nf/Nk = √2 + 1 and Nf/Ns = √2/2. Downgraded
confidencemasks are used to exclude some highly corrupted subareas from the analysis.
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Figure 5.7: _e upper panel shows the distribution function of Nf/Nk over the Nside = 8
subregions of the four Planck CMBmaps. _e lower panel shows the same of Nf/Ns.

the Planckmaps and background Gaussian simulations are compared to an ensemble of
KL-statistics generated by comparing different Gaussian simulations to each other. A total
of 46 unique Gaussian simulations are used, yielding 1035 unique pairs in the background
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distribution. _is is not enough to overcome entirely the issues of sampling uncertainty,
however, it is enough to give reasonably stable results and to illustrate the performance of
themethod.
An alternative estimator is the Kolmogorov–Smirnov test. _e Kolmogorov–Smirnov

estimator is the maximum distance between the cumulative distribution functions of
two samples, which, under relatively weak assumptions, is distributed according to the
Kolmogorov distribution depend on the number of samples (but not the shape of the
underlying distribution functions). _e Kolmogorov–Smirnov test therefore provides a
low-assumption p value, and, unlike the Kullback–Leibler entropy, it does not depend
on the binning. A possible source of trouble, however, is that the ratios are not, strictly
speaking, continuous, which violates one of the assumptions underlying the validity of
the Kolmogorov distribution. It is hoped that the ratios are close enough to continuous
that this is a small source of error.

Results and p values

Tables 5.1 and 5.2 summarize the statistics of the ratio distributions, the estimators, and p
values calculated according to themethodology detailed above. According to theKullback–
Leibler estimator, the strongest discrepancies are seen in Commander and NILC, with
p values of 0.07 and 0.15 respectively. _e Kolmogorov–Smirnov test points to more
peculiarities, especially in SEVEM, in which Gaussian behavior of the ratios is rejected
with p < 0.01. _e two estimators are complementary, with theKS test beingmore sensitive
to local deviations and deviations in the tails compared to the KL entropy.
None of the p values are highly significant, although themodest significance of some

of the ratios (especially in SEVEM) could merit future investigation. _e p values, being
calculated as percentiles in empirical histograms, are themselves uncertain and could be
unstable when too few simulations are in use. _is does not seem to be the case here,
although some of the variations in the p values are remarkable.

A final comment ismade about the interpretation of the results. _e theoretical number
densities of the different types of non-polarized points implied by Gaussianity have not
been tested. Instead, we have tested two things: the total number density of non-polarized
points and the ratios. Recall that the procedure for identification of the non-polarized
points is effectively imposing rc through the αmax and є parameters. _erefore it is only
the two ratios themselves, not the underlying three number densities, which are probed.
Because it is impossible to detect exact zeros in pixelized data, this limitation is inevitable
in this kind of analysis; however, tests show that the choicesmade here result in a non-
polarized point search algorithm that is reasonably stable and well-motivated.
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Figure 5.8: Distribution functions of the Kullback–Leibler divergence, ΘKL , calculated
from between the ratio distributions of Gaussian simulations, compared to the specific
ΘKL values between the Planck 2018 CMBmaps and the averaged background Gaussian.
From these plots, the p values in table 5.2 are calculated.

Map name ex( f /k) stdev( f /k) ex( f /s) stdev( f /s)
Gaussian 2.0349 0.3240 0.6763 0.0071
SMICA 2.0149 0.3357 0.6716 0.0076
NILC 2.0143 0.3756 0.6719 0.0084
SEVEM 1.9934 0.3377 0.6702 0.0067
CMDR 2.0073 0.3190 0.6712 0.0087

Table 5.1: _e statistics of the ratio distributions for the CMB and Gaussian simulations.
For the two ratios, Nf/Nk and Nf/Ns, calculated in subareas as discussed in the text, the
observedmeans (ex) and standard deviations (stdev) are shown.

KL f /k KL-entropy f /k p value f /s KL-entropy f /s p value
SMICA 0.0017 0.9884 0.0058 0.5044
NILC 0.0072 0.6135 0.0117 0.1560
CMDR 0.0083 0.5130 0.0145 0.0713
SEVEM 0.0102 0.3324 0.0065 0.4661

KS f /k KS-score f /k p value f /s KS-score f /s p value
SMICA 0.0400 0.2076 0.0459 0.1017
NILC 0.0380 0.3248 0.0466 0.1317
CMDR 0.0424 0.1859 0.0506 0.0686
SEVEM 0.0662 0.0095 0.0518 0.0747

Table 5.2: Kullback–Leibler and Kolmogorov–Smirnov test results for all themaps. _e p
values are the probability of finding a statistic at least that large.
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6 LARGE SCALE ANOMALIES IN TEMPERATURE

AND POLARIZATION

Despite the excellent overall agreement of the recent observations of the CMB with stan-
dard cosmological theory, tests of isotropy and Gaussianity at large angular scales have
uncovered several deviations with noticeable, but not undeniable, significance. _ese
features are termed anomalies. _ey include:

• _e parity asymmetry, the excess of odd-multipole power and/or deficit of even-
multipole power. _is was detected in the power spectrumof theWMAP and Planck
data [170–173]. Perhaps a special case of the parity asymmetry is the unusually low
amplitude of the quadrupole (ℓ = 2), although thismight also deserve treatment as
a separate anomaly.

• _e power asymmetry, the excess of power in the southern hemisphere compared
to the northern, or a generic dipole asymmetry directed approximately orthogonal
to the ecliptic. _is effect was first detected in the first-yearWMAP data [174] and
has been investigated in the subsequentWMAP and Planck releases [175–177]. In
[178], a simplemodel of dipolemodulation, accompanied by a proposed physical
explanation, is suggested:

T(n̂)modulated = (1 + w⃗ ⋅ n̂)T(n̂)unmodulated . (6.1)

_e direction and norm of the vector w⃗ parametrize the dipolemodulation model.
In normal processing ofmicrowave data, the entire dipole (ℓ = 1) is attributed to
the redshi� of the CMB caused by themotion of the observatory in the CMB rest
frame.

• _e quadrupole–octupole alignment, which entails several peculiar aspects of the
orientation of the ℓ = 2 and ℓ = 3 multipoles. _e planarity of the octupole (ℓ =
3) is greater than expected, and its direction is aligned with the direction of the
quadrupole, which is planar by nature. _emutual alignment of the quadrupole
and octupole is also similar to the direction of the kinematic dipole and the ecliptic
plane. _ese features were observed in theWMAP data [179, 180] and persist in the
Planck data [181, 182].
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Other important anomalies include the lack of power on large angular scales [183, 184]
and the cold spot [185, 186].
_e possible origins can be classified into four kinds: random coincidence, systematic

errors, foreground contamination, and cosmological. _e last of these has attracted the
most attention and spawned theory papers that attempt to modify the cosmological the-
ory to explain the anomalies [178, 187, 188] However, the other explanations cannot be
overlooked. Systematic errors and the residuals of foreground cleaning are well-known to
pervade the data, although the overall general agreement between theWMAP and Planck
analyses of the anomalies disfavors an obvious systematic explanation. It has been demon-
strated that not only Galactic foregrounds, but also Solar System foregrounds and Kuiper
Belt objects, could influence the power and parity asymmetries [189]. _e significance of
these anomalies has been questioned, especially in consideration of cosmic variance, and
it has been argued that it is unimpressive. _e position of the Planck collaboration on the
anomalies is summarized in [66]:

“_e existence of these features is uncontested, but, given themodest significances
at which they deviate from the standard ΛCDM cosmological model, and the a
posteriori nature of their detection, the extent to which they provide evidence
for a violation of isotropy in the CMB remains unclear. It is plausible that they
are indeed simply statistical fluctuations. Nevertheless, if any one of them has a
physical origin, it would be extremely important, and hence further investigation
is certainly worthwhile.”

_e large-scale anomalies have been widely studied using different estimators in the
literature, especially in theWMAP and Planck data (some reviews include [190, 191]). It
has been shown that the significance of the anomalies has considerable dependence on
the mask [192], and the joint estimation of their significance, and the correlation and
independence of the anomalies with each other, as well as the possibilities and difficulties
of a common explanation, have also been widely investigated [193–199]. _e possibility
of using the polarization data together with the temperature data for joint analysis of the
anomalies in both datasets has also been considered [200–202].
_e purpose of this chapter is some new analysis of the anomalies in the latest Planck

data, especially the parity asymmetry, with the continued spirit of attempting to use
map-domain methods and estimators. _e asymmetry between the even and oddmodes
can be localized by separating them, returning to themap domain, and comparing their
local power. In this way, it is shown that that the parity asymmetry is not distributed
evenly across the sky, but is particularly clustered in several small regions. From here the
interaction of the parity asymmetry withmasking, and with the other anomalies, especially
the octupole–quadrupole alignment, can be investigated.
In map-domain analysis of the anomalies, the multipole range is controlled by the

smoothing angle of themap. Most of the results in this chapter are based onmaps smoothed
at 5○, corresponding to approximately all multipoles ℓ ≲ 20; in several places the smoothing
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angle is reduced to 2.5○, corresponding to approximately ℓ ≲ 40. _is correspondence
is only approximate. Furthermore, the Planck SMICA map is chosen for most of the
illustrations, although the results are not strongly dependent on the choice of component
separation method. _e work is contained in recent publications [22, 23].

6.1 point parity asymmetry

_e investigation of the parity asymmetry naturally begins in the power spectrum. Several
power spectrum estimators have been proposed. In [171, 172] is introduced the estimator

д(ℓmax) =
ℓmax∑
ℓ=2

ℓ(ℓ + 1)C+ℓ
ℓmax∑
ℓ=2

ℓ(ℓ + 1)C−ℓ
, (6.2)

where C±ℓ is the power spectrum of even/oddmodes only, i.e.

C+ℓ = Cℓ cos
2(πℓ); (6.3a)

C−ℓ = Cℓ sin
2(πℓ). (6.3b)

_is estimator is slightly amended in the Planck Isotropy & Statistics papers [66, 203] to
explicitly correct for the unequal number ofmultipoles in each sum for odd ℓmax:

R(ℓmax) =
1

ℓ+tot

ℓmax∑
ℓ=2

ℓ(ℓ + 1)C+ℓ
1

ℓ−tot

ℓmax∑
ℓ=2

ℓ(ℓ + 1)C−ℓ
, (6.4)

_e Planck result for R(ℓmax) from [66] is plotted in figure 6.1. Apart from showing a
preference for oddmultipoles (д(ℓmax) < 1 and R(ℓmax) < 1 consistently), the estimator is
not informative without examination of the variance. _e strongest departure is found
around ℓmax ≈ 25 at around the 1% level.1 _is is broadly consistent with the results from
the 2015maps [204], as well as similar analyses in the Planck studies [203].

It is clear from figure 6.1 that the expectation value of R(ℓmax) is not 1, although it does
seem to converge to 1 in the ℓmax →∞ limit. _ismay be surprising, but consider that the
leading-order quadrupole term (ℓ = 2) in an approximately quadratic power spectrum
(Cℓ ≈ 1/ℓ(ℓ + 1)) will give a strong overall even-parity preference. _is leading-order
preference is related to the decay of the power spectrum and not compensated by the ℓ±tot

1But the “look-elsewhere” effect applies to estimators of this kind. Nevertheless, near-1% significance is observed
in a fairly wide range of ℓmax .
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Figure 6.1: R(ℓmax) for the Planck component separation maps up to ℓmax ≈ 50. A
persistent odd-parity preference is visible. Commander, NILC, SEVEM, and SMICA are
plotted in red, orange, green, and blue respectively; the differences between themaps are
minor. _e grey background shows the 1, 2, and 3σ ranges of the estimator for isotropic
simulations. Figure taken from [66].

factors in R(ℓmax), but it is diluted when enoughmultipoles are counted. _ere is therefore
some subtlety in assigning even/odd-parity preference: comparison of the estimators with
1 is biased by the inherent even-parity preference of zero-mean, zero-dipole sky data. Also
noteworthy in the low-ℓmax region is the very large variance of the estimators.

Pixel-domain estimation of parity asymmetry

_e study of the parity asymmetry in the power spectrum domain using the д(ℓmax) and
R(ℓmax) estimators above indicates an odd-parity preference in the first ≈ 40multipoles.
From this analysis, it is unclear if this asymmetry is localized or distributed in themap
domain, because the estimators involve sky averaging, implicitly through the power spec-
trum. To investigate this question, a map domain estimator is proposed, which is the
product of antipodal temperatures, as follows.

We define the symmetric and asymmetric combinations of the CMB temperature T(n̂)
and its antipode, T(−n̂):

S(n̂) = T(n̂) + T(−n̂)
2

; (6.5a)

A(n̂) = T(n̂) − T(−n̂)
2

. (6.5b)

_e two parts sum to the original input: T(n̂) = S(n̂) + A(n̂). _e desirable property of

106



S(n̂) and A(n̂) is that they decompose into only the even and oddmultipoles respectively:

S(n̂) = ℓmax∑
ℓ=2

ℓ∑
m=−ℓ

aℓmYℓm(n̂) cos2(πℓ/2); (6.6a)

S(n̂) = ℓmax∑
ℓ=2

ℓ∑
m=−ℓ

aℓmYℓm(n̂) sin2(πℓ/2). (6.6b)

We can characterize the asymmetry between the even and oddmultipoles by the difference
in their power, which is

Z(n̂) = S2(n̂) − A2(n̂) = T(n̂)T(−n̂). (6.7)

When Z(n̂) > 0, then the n̂ is correlated with −n̂, and the symmetric (even ℓ) modes
exceed the asymmetric (odd ℓ) modes at that point. When Z(n̂) < 0, the situation is
reversed, and n̂ is anti-correlated with −n̂, and the asymmetric part is greater than the
symmetric part.
_e expectation value of the full-skymean of Z(n̂) is computed as follows:

⟨Z(n̂)⟩ = ∫ Z(n̂) d n̂ = ∫ T(n̂)T(−n̂) d n̂ (6.8a)

=∑
ℓ ,m

∑
ℓ′ ,m′

aℓma
∗
ℓ′m′ ∫ Yℓm(n̂)Yℓ′m′(−n̂)∗ d n̂ (6.8b)

=∑
ℓ ,m

∑
ℓ′ ,m′

aℓma
∗
ℓ′m′(−1)ℓ′ ∫ Yℓm(n̂)Yℓ′m′(n̂)∗ d n̂ (6.8c)

=∑
ℓ ,m

∑
ℓ′ ,m′

aℓma
∗
ℓ′m′(−1)ℓ′δℓℓ′δmm′ (6.8d)

=∑
ℓ ,m

∣aℓm ∣2(−1)ℓ , (6.8e)

whose expectation value is∑ℓ(2ℓ + 1)(−1)ℓCℓ . From this expression, something can be
said about the expected sign of ⟨Z(n̂)⟩. Cℓ is positive for all ℓ, so even-ℓmodes contribute
positively and odd-ℓ modes contribute negatively. Assuming that the power spectrum for
ℓ ≥ 2 is approximately proportional to Dℓ/ℓ(ℓ + 1), the contribution of each Dℓ to ⟨Z(n̂)⟩
will fall off asymptotically as 1/ℓ:

⟨Z(n̂)⟩ ≈∑
ℓ

(−1)ℓ Dℓ

ℓ
.

Visualization of Z(n̂)

_e map of Z(n̂) is plotted in figure 6.2, calculated from the Planck 2018 SMICA map.
_ismap is symmetric by construction, because Z(n̂) = Z(−n̂). Visible in figure 6.2 are
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Figure 6.2: Map of Z(n̂) from Planck 2018 SMICA with 5○ smoothing. _emap is sym-
metric by construction.

two pairs of strong negative peaks, labeled 1a/1b and 2a/2b, and several peaks with smaller
amplitudes. _e coordinates of the peaks 1a/1b and 2a/2b are:

1a ∶ (212○ ,−21○), 1b ∶ (32○ , 21○);
2a ∶ (332○ ,−8○), 2b ∶ (152○ , 8○).

Something noticeable, and perhaps curious, about the direction of 1a/b is that it is very
similar to the direction of the power asymmetry anomaly, for which [205] reports (l , b) ≈(224○ ,−22○) ± 24○, and [66] adopts (l , b) = (221○ ,−20○) in a dipolemodulation model.

If the peaks 1a/1b and 2a/2b aremasked, even by relatively small disk masks that exclude
only the peaks themselves, then the odd-parity preference is reduced to a large extent, and
the power spectrum estimators, such as shown in figure 6.1, lose significance. Moderate
Galacticmasks can exclude 2a/b, and themost conservative Galacticmasks will exclude
1a/1b. It was known that conservativemasking can reduce the significance of the parity
asymmetry. But now it is seen it is not themasking of the Galaxy per se that is responsible
for this, but themasking of these particular anomalous regions.
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Figure 6.3: _e distribution function expected of Z(n̂) in the theoretical Gaussian model,
for ρ = 0 (black), ρ = −0.1357 (blue), and ρ = −0.3 (green). _e actual distribution from
SMICA is shown in red.

Statistical properties of Z(n̂)

If T(n̂) as a realization of an isotropic Gaussian random field, then so is T(−n̂), but T(n̂)
and T(−n̂) are not independent. Map-domain correlations between T(n̂) and T(−n̂) are
expected. _ese are reflected in the two-point correlation function of the field. A simpler,
but still useful, statistic is the cross-correlation between T(n̂) and T(−n̂), taken over the
sky. Since there is no mean, ∫ T(n̂) dn̂ = 0, the Pearson cross-correlation coefficient can
be written as

ρ = Corr(T(n̂), T(−n̂)) = ∫ T(n̂)T(−n̂) dn̂
∫ T(n̂)2 dn̂ =

∑
ℓ

(−1)ℓ∑
m

∣aℓm ∣2
∑
ℓ ,m

∣aℓm ∣2 . (6.9)

If the true value of ρ is known, then the point distribution function of Z(n̂) is [206, 207]
P(Z′) = 1

π
√
1 − ρ2 exp(

ρZ′

1 − ρ2 )K0( ∣Z′∣
1 − ρ2 ), (6.10)

whereK0 is the 0thordermodifiedBessel function of the second kind._ecross-correlation
coefficient ρ therefore characterizes the shape of the distribution function of Z(n̂). If
ρ = 0, then the distribution function is symmetric; otherwise, it skews le� (excess odd-ℓ
power) or right (excess even-ℓ power) when ρ < 0 or ρ > 0 respectively.
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Figure 6.4: _e le� panel shows the distribution of Z(n̂) from simulations (blue) and
actual distribution of Z(n̂) from SMICA (red) together with the other Planckmaps. _e
smoothing angle is Θ = 5○. _e shaded blue regions show the 68%, 95%, and 99.7%
uncertainty regions. _e departure in the right tail is at or slightly above the 3σ level. _e
right panel shows the same for SMICA at Θ = 2.5○.

_e value of ρ estimated from SMICA is −0.1357, suggesting an overall asymmetric
excess. _e empirical distribution function is shown in figure 6.3, together with themodel
of equation (6.10) for several values of ρ.

_e fluctuations of the distribution function visible in figure 6.3 aremore interesting. It
is seen that on the le�, there is a bump near Z ≈ −7 × 10−8 K2, which corresponds to the
four negative peaks 1a/1b and 2a/2b.

Comparison to simulations

To capture the full details of themap-domain morphology, and to estimate the significance
of the departure, it is necessary to use simulations. Figure 6.4 shows the mean and
uncertainty in the distribution functions determined from Gaussian simulations using the
Planck best-fit cosmological parameters [4, 60]. _e actual distribution functions agree
well with the pointwisemodel of equation (6.10). _e simulations have a slight positive
preference for ρ which is reflected in themean distribution function having a slight tilt to
the right. _e actual distribution function from SMICA, plotted again in figure 6.4, tilts
le�, departing from the uncertainty range of the simulations at about the 3σ level.

_e le� or right tilt of the distribution function is directly analogous to the д(ℓmax) or
R(ℓmax) power spectrum estimators being less than 1 or greater than 1. _e two approaches
(figure 6.1 and figure 6.4), although very different in principle, yield a similar presentation
of the anomaly with a similar significance. In figure 6.1, the anomaly can be localized
in themultipole domain, with themaximum departure from the simulations occurring
around ℓ ≈ 25. In figure 6.4, which is already associated with a certain multipole range via
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the smoothing in use, the anomaly can further be localized in themap domain.
Note that the histograms are constrained by normalization. Although it is difficult to

see in the figures due to the logarithmic vertical scale, it should be remarked that the
CMB maps show a slight excess near the peak (low ∣Z(n̂)∣) region. Such an excess is
complementary to the deficits in the tails.

Hemispherical power asymmetry

_ere are two conceptions of the hemispherical power asymmetry: either it is exactly
oriented and associated to the ecliptic plane, or it has an unknown generic orientation that
is oriented approximately to the ecliptic plane, andmay ormay not be associated with it.
In Galactic coordinates, the north and south ecliptic poles are

North ecliptic pole ∶ (l , b) = (96○ , 30○);
South ecliptic pole ∶ (l , b) = (276○ ,−30○).

_e direction of the dipolemodulation adopted by Planck [66] is (221○ ,−20○), while a
joint Bayesian analysis of the anomalies in [198] reports (248○ ,−20○). _e difference
reflects the approximate level of uncertainty in the direction posteriors. It can be said that
the direction recovered by general fitting of themodel of equation (6.1) is not inconsistent
with the South ecliptic pole.

It is possible to investigate the hemispherical power asymmetry in themap domain in a
very simple way. _e idea is to define an estimator which compares power at antipodal
points, following the same principle as above where total even and odd ℓ power was
compared at each point by Z(n̂). _e following estimator is defined:

G(n̂) = T(n̂)2 − T(−n̂)2 = 4S(n̂)A(n̂). (6.11)

Assuming the dipolarmodel T(n̂) = (1 + m̂ ⋅ n̂D)Tiso(n̂), where m̂ is the direction of the
dipolemodulation (now a unit vector) and D is a constant reflecting its amplitude, the
estimator G(n̂) can be written

G(n̂) = (−R(n̂) + 2D cos(ξ)(2 + R(n̂)) − R(n̂)D2 cos2(ξ))Tiso(n̂)2 . (6.12)

ξ is the angle between m̂ and n̂, and

R(n̂) + 1 = Tiso(−n̂)2
Tiso(n̂)2 . (6.13)

R(n̂) is an asymmetry parameter. When R(n̂) ≪ D,

G(n̂) ∝ S(n̂)A(n̂) ≈ D cos(ξ)Tiso(n̂)2 . (6.14)
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Dipole of G(n) Power asymmetry dipole

Figure 6.5: Dipole modulations recovered from S(n̂)A(n̂) (le�) and adopted in [66]
(right).

_erefore, in this limit, the absolute difference between the antipodal amplitudes, i.e.
T(n̂)2 −T(−n̂)2, which isG(n̂), is proportional to cos(ξ). Because Tiso(n̂) is isotropic by
assumption, this is amap of the dipolemodulation. _is is plotted in figure 6.5, compared
to the dipolemodulation adopted in [66].

6.2 quadrupole–octupole alignment

An anomalous alignment of the quadrupole and octupole was reported for theWMAP
data in [180]. Some sort of alignment is obvious from a comparison of the maps (see
figure 6.6); however, in general,multipoles with ℓ ≥ 3 do not immediately have an obvious
unique directionality, and this notion must be defined formally. In [180], the functional

D1(n̂) = ℓ∑
m=−ℓ

m2∣aℓm(n̂)∣2 (6.15)

is maximized over directions n̂, where aℓm(n̂) is the harmonic transform taken in a
coordinate system whose z-axis is oriented in the n̂ direction.1 No efficient algorithm was
known for thismaximization; the authors of [180] propose a brute force sampling method.
In addition to angularmomentummethods,more elaborate direction schemes have

been proposed. _emost notable is theMaxwell multipole vectors [208].
Once a definition of direction is established, numerous estimators for alignment are in

use. An overview of themain results which constitute the low-multipole alignment is the
following:

1. _e planarity of the octupole (dominance of m = ±ℓ) is peculiar at the 5% level.

2. _e quadrupole and octupole are aligned with a significance of 0.2% to 2%.

1_is is equivalent to maximizing the angularmomentum dispersion in quantummechanics, where the CMB
serves as a “wavefunction”.
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Figure 6.6: _e first 3multipoles and their directions. _e planarity of the octupole is also
visible in the nearly ring-like arrangement of its six strongest peaks.

3. _e common quadrupole–octupole axis coincides with the dipole axis (p < 0.5%).

4. _e dipole–quadrupole–octupole axis is perpendicular to the ecliptic (p = 2%).

If simply multiplied together, these results yield a fearsome p value, but one which is
unlikely to have any rigorous meaning: notmerely because such an estimator would be
highly posterior, but also because these alignments, despite their first appearance,may not
be statistically independent.

Kinematic dipole and the ring of attraction

_e peaks 1a/1b and 2a/2b, which were responsible for the odd parity preference, are
noticeably also featured in these alignments, although, like the ecliptic, they are orthogonal
to the dipole axis. _e dipole direction ismeasured to high accuracy: (l , b) = (264.00○ ±
0.03○ , 48.24○ ± 0.02○) [209]. If this direction is denoted q̂, then a general description of
orthogonality to the dipole axis is the ring of all directions д̂ such that

q̂ ⋅ д̂ = 0. (6.16)
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Figure 6.7: _e 30 GHz frequency map from [74], before subtraction of the kinematic
dipole, showing the ring of attraction and the peaks of the parity asymmetry.

Figure 6.7 and shows the position of this ring, which is called the “ring of attraction” in [23]
by virtue of apparent attraction of the parity asymmetry peaks and also the lowmultipole
peaks, discussed below.

Concentration of parity asymmetry peaks

It is noticeable in figure 6.7 that the peaks of the parity asymmetry, 1a/1b and 2a/2b, are
aligned to the ring. To quantify this apparent correlation and estimate its significance, an
estimator

d = max
∣Z(n̂)∣≥ν

(q̂ ⋅ n̂) (6.17)

is defined for some peak threshold ν. _emaximization is over all points exceeding the
peak threshold. d gives the distance from the ring of attraction to the peaks. Figure 6.8
shows the values of this estimator for 4000 isotropic Gaussian simulations based on the
Planck best-fit cosmological parameters, with the peak threshold ν = 7.5× 109 K2. Because
maps with fewer peak pixels are allowed a broader range in d, it is also necessary to
consider how many pixels exceed the peak. _ese two quantities are not independent.
_e actual CMBmap generally has fewer peak pixels than simulations, especially positive
peaks (see figure 6.4). Nevertheless it is still found at the edge of the region encompassed
by the simulations.
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Figure 6.8: Each black dot shows the value ofmax∣Z(n̂)∣≥ν(q̂ ⋅ n̂) and the total number of
peak pixels for 4000 simulations. _e same values for SMICA are shown in red.

Concentration of low multipole peaks

_emap of the ℓthmultipole can have up to 2ℓ peaks. In an isotropicGaussian random field,
all directions are equally probable. Examination of the lowmultipolemaps themselves
seems to suggest that there is, in the CMB, some concentration of these peaks to the ring of
attraction. Figure 6.9 shows the first 6multipoles of SMICA._emaps of ℓ = 2 and ℓ = 3
have very clear planar peak structure aligned as discussed above: this is the well-known
quadrupole–octupole alignment with the dipole. For ℓ ≥ 4, there are more peaks, and
the peak structure ismore complicated; nevertheless, there appear to be chains of peaks
aligned with the ring of attraction. _ese are not necessarily the strongest peaks, but
subsidiary chains of peaks. _e alignment is especially visible in ℓ = 5 and ℓ = 7.

6.3 polarization

Lastly, we briefly comment on the possibility of applying map-domain analysis of the
anomalies in polarization. Many of the estimators applied in this chapter can equally be
applied to the polarization. Analysis of the anomalies in the polarization domain has
important potential as an independent data set for verification of significance. Counter-
parts to the temperature anomalies, including the lack of correlations on large scales, have
been searched for in the polarization data, and the link between the hemispherical power
asymmetry and the Bmode has been investigated [187, 200, 201, 210]. In figure 6.10, the Z
asymmetrymaps for the Stokes parameters Q and U are shown, computed as

ZQ(n̂) = Q(n̂)Q(−n̂); (6.18)

ZU(n̂) = U(n̂)U(−n̂). (6.19)

115



ℓ = 2

0 3.37713e-10

ℓ = 3

-1.19074e-09 0

ℓ = 4

0 1.04483e-09

ℓ = 5

-1.79652e-09 0

ℓ = 6

0 6.28673e-10

ℓ = 7

-1.1735e-09 0

Figure 6.9: Maps of Zℓ(n̂) for even and oddmultipoles. Zℓ(n̂) is equal to (−1)ℓTℓ(n̂)2,
where Tℓ is themap of the ℓth multipole.

In the ZU map, there is a pair of positive Z peaks aligned with the ring of attraction. _ese
peaks are also aligned to the pair of temperature peaks 1a/1b (see figure 6.2). Further
study of this part of the sky, which is also near to the dipolemodulation direction, is an
important direction for future research.

Discussion of results

Beginning with the parity asymmetry, we have investigated the CMB anomalies in the
pixel domain. _e novel part of this analysis is that we can see what parts of the sky are

116



Q(n)Q(−n)

-1e-12 1e-12

U(n)U(−n)

-1e-12 1e-12

Figure 6.10: ZQ(n̂) and ZU(n̂) of SMICA at 5○ smoothing. In much of the sky themaps
are quite featureless, but ZU(n̂)map includes a pair of strong positive-parity excess regions
near to the ring of attraction, shown in black.
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contributing to the parity asymmetry, which was previously observed primarily in the
domain of the power spectrum. _e analysis shows that the parity asymmetry can be
localized into two pairs of antipodal peaks. Despite comprising a very small area of the
sky, these peaks are the origin of the 3σ parity asymmetry, and if they aremasked by small
pointmasks, the significance of the parity asymmetry can be greatly reduced.
_e parity asymmetry is aligned with the dipole modulation asymmetry, and these

anomalies share in the well-known quadrupole–octupole alignment and its counterpart,
the ring of attraction containing directions perpendicular to the kinematic dipole. _e
alignment appears to bemanifested in the subsidiary peaks of the low oddmultipoles.
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CONCLUSION AND OUTLOOK

In this thesis, new approaches to data analysis of the cosmicmicrowave background were
proposed and applied to the observationsmade by Planck. _e objective of this work is
the development of methods that are sensitive to the statistical properties of the CMB,
together with improvement in the understanding of the Bmode of the CMB polarization.
It is hoped that these tools can benefit the high-precision CMB observations expected in
the next decade.
A newmethod for calculating families of the Stokes parameters associated with the E

and Bmodes was presented. Unlike the standard E–B decomposition which is performed
by a harmonic transformation, the new approach has a natural formulation in themap
domain as a linear convolution. _e convolution kernels, which were explicitly computed,
show exactly the non-locality of the E and Bmodes.
_e description of polarization data in terms of a polarization intensity and an ori-

entation has been exploited in many contexts. By remaining in the space of the Stokes
parameters, it is now possible to define intensities and angles corresponding to each of the
E and Bmodes. _ese estimators have widespread applications in data analysis, some of
which were illustrated in the study of themorphology of the Planck 217 GHz and 353 GHz
frequencymaps, which are dominated by thermal dust foreground emission.
_e problem of E–B leakage was addressed and a newmethod for its correction was

presented. _emethod is simple in principle and easy to implement, and, under realistic
simulated parameters corresponding roughly to the upcoming GreenPol experiment, it
was able to improve the accuracy of the recovered Bmode considerably. Ground-based
observations will inevitably face E–B leakage, and themethod was able to reduce the error
down to a level that does not interfere with the detection of very small tensor-to-scalar
ratios at the r ≈ 105 level. _e performance of themethod is likely to depend on the shape
of themask. Further characterization of themethod under different circumstances is a
direction for future research. In particular, the performance for irregular Galacticmasks
or point sourcemasks should be examined.

Assuming underlying Gaussian polarization data, the distribution function of the polar-
ization angle was considered. _e statistical dependence of the polarization angle on the
properties of the Stokes parameters was established in the context of the E and Bmodes,
which were found to leave a specific signature in the polarization angle distribution func-
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tion, related to the Q and U means. _e histogram of the polarization angle seems to be
an attractive estimator not only for tests of systematic errors, which was applied herein to
the 2018 Planck CMBmaps and best-fit power spectra, but also to other corruptions like
E–B leakage. E–B leakagemay leave an imprint in the polarization angles, which could be
informative in the construction and validation of leakage correction methods, although
this has not yet been studied in detail.
It had been known that non-polarized points of the CMB polarization field can be

classified into saddles, knots, and focuses that occur with fixed ratios under Gaussian
statistics. _is fact was used to construct a new local test of Gaussianity that works in the
map domain, which was applied to the Planck CMBmaps. Several other theoretical results
were worked out, including the dependence of the total number density of non-polarized
points on gravitational lensing and the tensor-to-scalar ratio. _e non-polarized points
theory can now be applied to E and B separately in terms of the E and B families, which are
polarization fields with the samemathematical capabilities as the total unseparated signal.
Applied to the Planck 2018 CMBmaps, the non-polarized points appear to be generally
consistent with Gaussianity, despite amarginal (p ≈ 1%) signal in the SEVEMmap. _ere
is potential for the construction ofmany further tests of Gaussianity and isotropy based
on the non-polarized points, and, like the polarization angle, they too could be sensitive
to systematics. So�ware written in Python for the detection and analysis of non-polarized
points, developed for the project in this thesis, is now released in the public domain.
Lastly, the large-scale anomalies of the CMB were investigated using map-domain

methods. While the anomalies persist,withmarginal significance, in all applicable datasets,
their continued study is an important research question. Working with a simple map-
domain estimator to compare the even-parity and odd-parity power, it was shown that the
odd-parity excess can be localized to a relatively small part of the sky. Furthermore, the
parity asymmetry participates with the lowmultipoles in a suspicious alignment related
to the kinematic dipole direction. In particular, subsidiary peaks of the lowmultipoles,
especially ℓ = 5 and ℓ = 7, appear to be attracted to directions that are perpendicular
to the kinematic dipole, forming rings that resemble the well-known quadrupole and
octupole anomalies. _ese features in the lowmultipolemaps justify continued effort in
themap-domain study of the anomalies, especially the estimation of the significance of the
subsidiary peak alignments. It is considered likely that the anomalies reflect a systematic
error, rather than an error in the prevailing theories of cosmology. In view of the findings
here, the subtraction of the kinematic dipole seems to deserve further attention. •
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