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Abstract

The development of the global quantum internet has progressed significantly in
the recent years. It requires the simultaneous progress of very diverse quantum
platforms, which thus entitles multitude of different challenges both theoretically
and experimentally. In this thesis we approach several of these tasks by proposing
single-photon sources as an important resource that provides with many valuable
solutions, from an efficient loophole-free violation of Bell’s inequality (González-
Ruiz et al., 2022a) to optimal implementations of Device-Independent Quantum
Key Distribution protocols (González-Ruiz et al., 2022b). To this end we introduce
a detailed analysis that model realistic imperfections of the sources (Bjerlin et al.,
2023; González-Ruiz et al., 2022a), in order to reach a deeper understanding that
allows us to set a clearer route for near-future experimental implementations. In
addition, we present a full theoretical analysis (González-Ruiz et al., 2023) of the
path-entangled states experimentally realised by Østfeldt et al. (2022) by means of a
quantum-dot biexciton cascade placed in a chiral nanowaveguide, investigating their
entanglement properties after the effect of several realistic imperfections. Finally, we
propose an experimental set-up to match the typical broad bandwidth of photons
generated by quantum-dot single-photon sources with that of quantum memories
candidates such high-Q optomechanical membranes, with a bandwidth several orders
of magnitude narrower. Our proposal allows thus to efficiently store the qubit carried
by the photon.
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Dansk resumé

Udviklingen af det globale kvanteinternet har set markante fremskridt de seneste
år. Det kræver den samtidige udvikling af mange forskellige kvanteplatforme, som
dermed bringer mange forskellige udfordringer, både teoretiske og eksperimentelle,
med sig. Denne afhandling undersøger vi flere af disse udfordringer ved at foreslå
enkeltfotonkilder som en vigtig ressource, der giver mange værdigfulde løsninger, lige
fra en effektiv smuthulfri krænkelse af Bells ulighed (González-Ruiz et al., 2022a) til
optimale implementeringer af Device-Independent Quantum Key Distribution pro-
tokoller (González-Ruiz et al., 2022b). Til dette formål introducere vi en detaljeret
analyse der modellerer realistiske ufuldkommenheder af kilderne (Bjerlin et al., 2023;
González-Ruiz et al., 2022a), for at opnå en dybere forståelse, der giver os mulighed
for at sætte en klarere for nær-fremtidige eksperimentelle implementeringer. Deru-
dover præsentere vi en fuldstændig teoretisk analyse (González-Ruiz et al., 2023)
at de vej-entanglede tilstande eksperimentelt realiseret af Østfeldt et al. (2022) ved
hjælp af en kvante-dot biexciton-kaskade placeret i en chiral nanowaveguide, der
undersøger deres entanglement-egenskaber påvirkning af flere realistiske fejlkilder.
Endelig foreslår vi et eksperimentielt set-up til at tilpasse den typiske brede bånd-
bredde af fotonerne genereret af en kvante-dot-enkeltfotonkilde med kvantehukom-
melseskandidaten høj-Q optomekaniske membraner, med en flere størrelsesordner
smallere båndbredde, med målet om at kunne være i stand til effektivt at lagre
kvante-bits båret af fotoner.
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Introduction: towards the
quantum internet

In the recent years the quantum physics community has witnessed an increasing
interest towards the development of quantum technologies (McKinsey&Company,
2021). These technologies have progressively attracted the interest of the biggest
multinational technology companies and worldwide economic powers’ short and long-
term investing plans. This enthusiasm has in many cases smoothly developed into
a competition towards a hyped first-come, first served quantum prize (Candelon
et al., 2022). Such prize has very different forms in the context of quantum tech-
nologies, and ranges from the first quantum computer to claim quantum advantage
(Arute et al., 2019), a pioneer quantum simulator that could create breakthroughs
in the pharmaceutical industry or contribute to explore fundamental science not
reachable before (Daley et al., 2022), a quantum metrology system that could ap-
proach the very limits of measurement precision (LIGO Scientific Collaboration and
Virgo Collaboration et al., 2016; Zhao et al., 2020; McCuller et al., 2020), to the
first global network for quantum communications (Wehner et al., 2018; Lu et al.,
2021). The latter could be extended to an actual quantum internet infrastructure
(Kimble, 2008) that allows for safer and more efficient exchange of information, in
times where this is more important than ever.

The development of both a mature and realistic quantum internet requires the
close collaboration of many different disciplines: new algorithms, hardware, control
and theoretical modelling are needed in the process (European Quantum Flagship,
2022). All of which can be assigned to different building blocks that constitute the
structure of the quantum internet, each addressed separately though with the same
common goal.

Each of the chapters in this thesis will deal with a few of these building blocks.
We explore a few of the current challenges withing some of the research areas and
contribute in complementary ways to the development of the quantum internet. In
this introductory chapter we aim to present and contextualise the essential concepts
that will be of use for the subsequent chapters, as well as the main motivation
and story behind the different projects. This broader motivation glues the smaller
pieces of research presented in this thesis together towards the common purpose of
contributing to the development of a global and safe universal quantum network.
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INTRODUCTION: TOWARDS THE QUANTUM INTERNET

I. Quantum information sources

The first step towards designing any communication and processing network is to
establish how to actually generate each of the smaller "chunks" in which we plan
of splitting the information. While classical computing uses the bit (a unit of in-
formation consisting either on a 0 or a 1), quantum processing systems encode the
information in qubits. These quantum units of information are a more advanced
resource than their classical counter parts. In fact, the mathematical description of
a qubit requires a C2 number1.

So what is special about using qubits as the information units in our network?
The two main resources that quantum units of information can provide with, com-
pared to classical bits, are superposition and entanglement. The first one is an
intrinsic property of quantum systems that allows for preparing the qubit in neither
only the "0" or "1" state, but actually both simultaneously. An example of such a
state is the even superposition

|ψ〉 = 1√
2

( |0〉+ |1〉 ) . (1)

An entangled state is that which can not be expressed as a product of its constituents
(in which case is called a product state). In other words, if an entangled state is
shared among several parties, it is impossible to describe it fully as the composition
of each of the bits owned by them individually. Mathematically, an entangled state ρ
can never be expressed as ∑i piρA,i⊗ ρB,i, where ρA,i and ρB,i are the corresponding
states of the individual parties and pi are positive valued probabilities. An example
of entangled states are the four Bell states∣∣∣ψ±〉 = 1√

2
(|01〉 ± |10〉) ,

∣∣∣φ±〉 = 1√
2

(|00〉 ± |11〉) , (2)

which form a complete basis of the two-qubit Hilbert space.
Both the superposition and entanglement of qubits constitute the very basic

fuel of any achievable advantage by means of quantum processing. These special
properties come however at a price. Unfortunately2 these properties arise at a scale
size way smaller than that we live in: the nanometer scale. In fact, one of the
initial motivations for the quantum computing research was the foreseen end of the
empirical Moore’s law (Moore, 1998), when transistors reach such a small size that
the physical laws governing its design up to that point are no longer applicable.
Once the nano-meter scale is reached, the physical laws governing are those from
quantum mechanics. One thus needs to find a new suitable platform to carry the
units of information, and such source of information must live in the mentioned
smalled length scale.

1This, however, could lead to the misleading interpretation that the benefits of quantum mechanics could be just
as fine simulated only by real numbers. This assertion was recently proven wrong in Renou et al. (2021).

2or fortunately, though?
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This is nevertheless not the only requirement. A platform for qubits must of
course be accessible for us macroscopic creatures in some relatively easy way, if we
aim to control these features for information processing. We need physical systems
that can be sufficiently well manipulated and measured despite their small size. This
also imposes restrictions regarding how good the qubit platform is at interacting with
other qubits in a deterministic and controllable way, and with how much certainty
would one be able to read out its state. Once these challenges are overcome, one must
also ensure that the interaction of the qubit with its environment is sufficiently low
such that the encoded information is not contaminated or lost during its processing.
This is what is known as a decoherence process, and is one of the main challenges in
any quantum information hardware. Other features of the source of qubits of choice
that are also of high relevance, specially for communication purposes, are the rate
at which they can be generated, their fidelity (this is, how similar the qubit actually
created is to the one that ideally wanted to generate), and how easy would it be to
produce and use them at a large scale in the future.

Despite all the hard conditions to be complied with, there are several strong can-
didates to perform as a source of qubits. There is, however, always a compromise
between their compared features: for example, some qubit platforms may almost
perfectly suitable regarding most requirements, however suffering from a difficult
prospect of large-scale integration. This is the case of the first realisation of qubits,
performed by means of ion traps as first proposed in Cirac et al. (1995) and, for
instance, experimentally utilised for quantum simulation in Zhang et al. (2017).
Other successful candidates are superconducting qubits, with great control and mea-
surement possibilities but stronger interactions with their solid state environment
makes them more susceptible to decoherence processes (Kjaergaard et al., 2020;
Arute et al., 2019); topological qubits, that use topological protection against deco-
herence but that have been however highly challenging to produce and manipulate
up to date (Aghaee et al., 2022); the spin degree of freedom in quantum dots (Chan
et al., 2022; Hendrickx et al., 2020), whose ability to generate single photons will be
widely described in the following sections; and nitrogen-vacancy (NV) centers (Wang
et al., 2020) can also constitute a promising solid-state qubit and, finally, photonic
qubits (see for example Takeda et al. (2019) for continuous variable implementations
or Uppu et al. (2021a) and Slussarenko et al. (2019) for discrete variables). Photons
suffer from very little decoherence as (provided their frequency is chosen suitably)
they can propagate through air or optical fibers almost without interacting with
their surroundings and are easily measured by means of photodetecting devices.
Their low interaction also results in their main flaw, since qubit-qubit interactions
exclusively by means of photons is not achievable without light-matter interaction
(Gorshkov et al., 2011; Li et al., 2021).

The work of this thesis is mostly focused on sources of photonic qubits, aiming
towards a photonic realisation of the quantum internet. In the following subsections
we introduce both the sources needed for generating single photons and entangled
states of photons.
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Single-photon sources

If we want to encode quantum information in photons, the light generated by ev-
eryday light sources such as light bulbs and LEDs is ill-suited as it can not manifest
the quantum features that we are interested in. We need to use one and only one
photon at a time, to pursue such processing. In fact defining what a single pho-
ton actually means is not that simple. We can not have a space-localised photon
of a single frequency, or vice-versa, as this would violate Heisenberg’s uncertainty
principle. One then rather defines a single photon as either having a very narrow
frequency bandwidth or as a superposition of several monochromatic photons. In
other words, a single photon is one partially space-time localised excitation of the
electromagnetic field (Eisaman et al., 2011).

Generating one and only one photon at a time is not a trivial task. Photons per se
are a good qubit platform and satisfy most of the requirements exposed above. They
are nevertheless required to also have certain characteristics, which will rely on the
single-photon source generating them. In particular, the single-photon source (SPS)
needs to be able to generate indistinguishable photons: that is, photons that can
not be differentiated through any of their features. The source must also be highly
pure, which means that not more than one single-photon is released at a time, and
efficient, so that photons are emitted with high probability upon the excitation of
the source. As any other quantum source of qubits, the SPS should also be able to
generate them at a high rate and be easily scalable to large-scale production.

There are two main types of SPS: on-demand and heralded sources. Heralded
or probabilistic sources consist of those which in fact emit a pair of photons with a
certain probability, but which can be used as a SPS by detecting one of the photons
of the pair as an indication that the generation process indeed succeeded. These
sources can be excited at very high rates, but the probability of successful heralding
events is lower than other on-demand sources. The main examples of heralded SPS
are based on non-linear processes and are Spontaneous Parametric Down-Conversion
(SPDC) sources (Harris et al., 1967; Magde et al., 1967), which generates pairs of
entangled photons, and the less extended Four-Wave Mixing (FWM) sources (Fan et
al., 2007). On-demand or deterministic SPS, on the other hand, generate single pho-
tons by means of a non-probabilistic process that succeeds up to a certain efficiency,
typically leading to a higher single-photon emission rate. They are usually based
on a two-level system that emits a photon after being excited. Some deterministic
single-photon sources involve molecules (Lounis et al., 2000), the aforementioned
NV centers (Babinec et al., 2010), Rydberg atoms (Ripka et al., 2018) or quantum
dots (QD) (Uppu et al., 2020).

In this thesis we analyse in depth the performance of quantum-dot single-photon
sources for various applications. In particular, we focus on InGaAs self-assembled
QDs (see Fig. 1). With respect to the required characteristics explained above,
InGaAs QDs are highly proficient, since the indistinguishability of the generated
photons has been shown to be up to 96% and their purity has been measured to
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b)a)

Growth direction

InAs

Figure 1: a) STM image of a InGaAs QD (Source: Márquez et al. (2001)). b) Level structure of a InGaAs
QD. The valence band (in red) and the conduction band (in blue) are modified with the insertion of the
InAs layer, creating an effective atomic level structure for the electrons (orange dots) and holes (white
dots) (Source: González-Ruiz (2018)).

be up to 99.4%3 (Tomm et al., 2021; Uppu et al., 2020). These QDs are obtained
by means of InAs embedded in GaAs layers, that due to the lattice mismatch be-
tween the two, randomly generates QDs on the surface by strain in a method called
Stranski-Krastanov growth (Stranski et al., 1937). The difference in potential be-
tween the two materials creates an effective two level system between the valence
and conduction bands for the electrons and holes (see Fig. 1b). Thus, the QDs be-
have like artificial atoms despite being solid state systems, therefore with the same
capability of emitting single photons upon excitation and relaxation. Depending on
the excitation process and the bias voltage4 applied to the QD, there will be one or
more electrons upgraded from the valence to the conduction band. If two electron-
hole pairs are created, the state is known as biexciton (|XX〉), while a single pair
constitutes an exciton (|X〉). Each of the states have different spin properties that
dictate the allowed transitions to lower energy states (Lodahl et al., 2015). The
exciton state is typically used to emulate a two level system, and thus widely used
for generating single photons. The biexciton state, on the other hand, generates a
pair of entangled photons, and will be one of the entanglement sources introduced
in the following subsection.

In Chapter 1 we introduce a model for realistic quantum-dot single-photon
sources that allows us to analyse their indistinguishability, purity and efficiency
in connection with their usual decoherence mechanisms. Although the goal of the
chapter is to analyse those characteristics of the single-photon sources in order to
perform a higher violation of Bell’s inequality, this model is completely general and

3A detailed model for realistic quantum-dot single-photon sources and how the related imperfections can affect
their required properties is introduced in Chapter 1.

4A constant voltage is typically applied to tune the QDs such that electrons from the solid state environment do
not affect the intended level structure (Østfeldt, 2020).
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applicable for analysis the performance of other protocols or simply understanding
better the limitations of quantum-dot single-photon sources. Furthermore, Chap-
ter 2 explores the connection between the indistinguishability of photons and the
purity of the single-photon source that originated them.

Entanglement sources

We have already mentioned that entanglement is one of the main resources that
quantum systems provide with in order to outperform classical information protocols
(Jozsa et al., 2003). Therefore the ability to generate entangled states is a very
important requirement towards the development of the quantum internet. There
has been developed many different approaches to the generation of entangled states
throughout the years, and similarly to the challenging generation of single photons,
each of the proposals has stronger and weaker characteristics.

The entanglement source of choice will also depend on the type of qubit to be
entangled. Creating entanglement by measurement is for example of great utility
for entangling distant atoms or atomic ensembles (see Bose et al. (1999) or Duan
et al. (2001) for the DLCZ protocol). Photonic entangled states, on the other hand,
can be generated probabilistically by means of different linear optics set-ups, how-
ever with a maximum probability of success of 50% (Calsamiglia et al., 2001). This
can quickly become an issue, if a protocol requires the simultaneous generation of
many entangled states. Similarly, the aforementioned probabilistic SPDC sources
can be used as entangled-state sources instead of single-photon sources, as the emit-
ted photon pairs from the non-linearity are entangled (Zhong et al., 2018). For
instance, the idea of entanglement swapping (Żukowski et al., 1993) was proposed
using SPDC as the initial entanglement source. They nevertheless suffer from the
same inconvenience as the linear optics set-ups: regardless of being able to excite the
non-linearity at relatively high rates, the probabilistic nature of the SPDC sources
fundamentally limits its application to quantum information protocols. Therefore
the study and development of alternative deterministic entanglement sources that
can work on demand is of much relevance.

In this thesis we have thus focused on the later analysis. In particular, we already
mentioned that QDs can be excited in a way such that two photons are emitted by
means of the biexciton cascade. This pair of photons is in fact entangled in the po-
larisation degree of freedom of the emitted photons and has been widely investigated
as an on-demand entanglement source (Benson et al., 2000; Akopian et al., 2006; Liu
et al., 2019; Huber et al., 2018). In Chapter 3 we have studied the implementation
of a biexciton cascade in a nanophotonic chiral waveguide, experimentally realised
by Østfeldt et al. (2022). The chirality of the waveguide translates the polarisation
entanglement from the biexciton cascade into a path-entangled state and thus allows
for the integration of these entanglement sources in photonic circuits (that typically
only support a single polarisation mode).
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II. A safe quantum network

The next building block that we focus on is the distribution of the quantum informa-
tion, similarly to how the classical internet connects our laptops and smartphones
nowadays. This network must be able to connect the qubits generated by means of
the sources described in the previous subsection with the corresponding receivers,
that we will call nodes of the network (see Fig. 2). The nodes can consist of quantum
computers, storage stations, or simply the intended recipients of the information,
besides further sources. Note that the development of a mature quantum internet is
thus not subject to having a universal quantum computer. In fact, a specific number
of qubits is not required to show quantum advantage in a quantum network (Wehner
et al., 2018).

Since photonic qubits barely interact with their environment and are the fastest
in transmission, they are the obvious choice for establishing a network over long
distances. Free-space transmission can be implemented through a satellite net-
work (Yin et al., 2020) or free-space links on ground (Ursin et al., 2007), whose
main advantage is that the predominant losses occur only at the lowers sections of
the atmosphere. This allows for loss-free, long-distance transmission at the height
where satellites typically operate. Moreover, fiber transmission is already widely
implemented around the globe. It would thus greatly simplify the build-up of the
quantum internet to make use of this technology. In fact, there are already many
research efforts into generating photonic qubits at telecommunication wavelength
(900-950 nm wavelength range) in order to be able to make use of such installations
(Da Lio et al., 2022).

With the transmission of qubits through optical fibers follows many challenges
that their classical counterparts do not suffer from. Losses in optical fibers scale
exponentially with the length of the fiber, having a typical attenuation coefficient of
the order of 1-5 dB/km (Fosco-Connect, 2023). This already makes a transmission
where the source and the node are separated only by 10 km succeed with 10%
probability, which thus makes long distance communication almost impossible due
to the low available rates. For classical communication, this issue is soled by means of
repeaters that amplify the signal every certain number of kilometers. However, one
of the advantages of qubits is that there is no way of systematically making a copy of
an arbitrary state (Wootters et al., 1982). As much as this intrinsic consequence of
quantum mechanics is a clear asset of quantum communications in terms of safety, it
makes the direct implementation of classical repeaters useless. Therefore developing
a quantum network entails designing quantum repeaters (Sangouard et al., 2011;
Ruihong et al., 2019; Borregaard et al., 2020), that take advantage of different
entanglement distribution schemes to effectively increase the transmission distance
by performing teleportation (Bennett et al., 1993) of the quantum state5.

5Many of the quantum repeater protocols require the use of quantum memories for optimal performance (An-
dersen, 2019). The storage of quantum information and its challenges will be introduced in the last section of the
Introduction.
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Figure 2: A possible scheme of the quantum internet implementation, with both ground- and satellite
photonic links connecting the different nodes, which include quantum memories, repeater stations and
quantum computing processors. Adapted from Lu et al. (2021).

The following natural question to ask ourselves is how to make sure that the level
of safety of any quantum network is sufficient for today’s communications, and its
performance in comparison to the security of the current cryptography protocols.
We introduce this discussion in the following subsection.

Quantum cryptography

The promise of a universal quantum computer in the near future is an exciting per-
spective for the progress of numerous fields thanks to its immense computational
power compared to classical computers for certain computational tasks. Neverthe-
less, our current cybersecurity is based on RSA (Rivest et al., 1978) public key
protocols. The security of these protocols is based on the computational complex-
ity of the problem needed to solve to break the code. Thus a sufficiently powerful
computer can in principle dismantle the task and expose the encrypted information.
These types of protocols are thus only computationally secure: while solving this
problem would take a classical computer an amount of time that exceeds the aver-
age human lifespan, a quantum computer could solve it orders of magnitude faster,
thanks to its quantum advantage. Therefore, we want to develop a security protocol
that, regardless of the computational power of the eavesdropper, can remain secure
under a minimal number of assumptions. Such protocols are known as information-
theoretically secure (Renner et al., 2022). We could thus turn the apparent vul-
nerable position of our current cybersecurity around by using the same quantum
features that empower quantum computers, to develop information-theoretically se-
cure cryptographic schemes.

It can be proven that if a secret string of truly random bits is shared between
Alice and Bob6, they can freely encrypt the information they wish to share in an

6Alice and Bob are the usual characters that represent the roles of emitter and receiver in the cryptography
jargon. Later we will also need a third person involved in the communication, which is usually called Charlie. Eve
is usually the malicious eavesdropper.
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information-theoretically secure way (Shannon, 1949). The string of random bits
is known as the secret key and both Alice and Bob need to be in possession of it
before any sensitive information is publicly announced between them. The key can
only be used once and must be at least as long as the message to be transmitted
between Alice and Bob. This technique is known as One Time Pad (OTP) and
was already invented by an American banker named Frank Miller in 1882 (Bellovin,
2011). The remaining challenge is to ensure that Alice and Bob can share as many
secret keys as needed, and always prior to their communication regardless of their
spatial separation. This non-trivial transmission of the key is known as key dis-
tribution. Moreover, one can take advantage of quantum mechanics and design a
quantum key distribution (QKD) version that executes the task in a more secure
way than any other classical approach7.

In the first place, the aforementioned no-cloning theorem (Wootters et al., 1982)
prevents any potential eavesdropper from making a direct copy of a qubit transmit-
ted from Alice to Bob. This theorem, however, does not impede Eve from stealing
the qubit, measure its state, and resend it to Bob. Luckily her actions on the qubit
are noticeable by Bob with a certain probability, since we know from quantum me-
chanics that performing a measurement over a state essentially perturbs it. The first
QKD protocol BB84 (Bennett et al., 1984), and its equivalent version with entangle-
ment distribution E91 (Ekert, 1991), make use of these two quantum characteristics
of the qubit to safely transmit the secret key between Alice and Bob. These two
protocols, as well as other similar QKD protocols (for state-of-the-art experimental
implementations, see for example Yuan et al. (2018) and Boaron et al. (2018) for
decoy-state QKD and Wang et al. (2022) for twin field QKD), take nevertheless
several assumptions that need to hold in order to ensure security. In particular,
regarding the level of trust in the devices utilized in the process. In the following
subsection we will introduce a different type of quantum cryptography that relaxes
this latter assumption.

Device-Independent Quantum Key Distribution

We have so far qualitatively described how quantum mechanics provides the tools to
improve the security of long-distance communications. In particular, QKD protocols
like BB84 or E91 can detect the actions of Eve up to a certain error as long as the
following assumptions are satisfied (Pironio et al., 2009):

• Alice’s and Bob’s laboratories are shielded such that no information can leak
outside of them. This further means that the classical memories where they
store the un-encrypted messages are secure.

7Whether a trusted common friend travelling between their locations or a very professional courier company
could be strong classical candidates to distribute the secret key will not be discussed. Proving the level of trust in a
person or company quantitatively is out of our scope if ever possible, not to speak of the low-rate and high-emissions
derived from the related transportation of the secret keys.
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• They possess a true random number generator that they trust to generate the
random bits needed for basis choice and the generation of the secret key.

• They can communicate via an authenticated classical channel, that is, a channel
whose content can be publicly accessed but not manipulated.

• Quantum mechanics is correct.

• Alice and Bob must have certain knowledge about and trust in their quantum
devices, which are inaccessible to Eve.

The last assumption is, however, rather hard to fulfill. In an ideal not very far
future, Alice and Bob could acquire a couple of boxes from a telecommunications
company that promises to perform QKD for them. They would only have to carry
out a specified protocol and press certain buttons on the boxes they just bought.
However, how can they be certain that these boxes work as they should? Can they
ensure that no error occurred during its manufacture that compromises the security
of their communication? And what is even worse, Eve could even be the owner of
the communications company and mess deliberately with the devices with the worst
of the intentions.

Fortunately, one can take a step further to be able to skip the last assumption.
Device-Independent Quantum Key Distribution (DIQKD) protocols do not rely on
trusting the quantum devices thanks to taking advantage of non-local quantum
correlations. Consider a situation where the internal functioning of Alice’s and
Bob’s measurement boxes is unknown to them: Alice (Bob) only provides with a
classical input a (b) and the box returns a classical output A (B). Their measured
statistics are therefore the probabilities P (A|a) and P (B|b) (and thus the also the
joint statistics P (A,B|a, b)) of obtaining A and B respectively given the inputs a
and b. Furthermore, the boxes can be assumed to be accessible by Eve, as the
security of the protocol relies fully on the statistics that Alice and Bob measure
from them. In particular, a violation of Bell’s inequality (Bell, 1964) is required. If
the measured statistics do not violate Bell’s inequality, then Alice and Bob know
that the shared key’s secrecy is compromised and thus disregard it and try again.

But why does a failure in violating Bell’s inequality mean that Eve attempted
an attack? Bell’s inequality, in its more common representation: the CHSH form
(Clauser et al., 1969), reads

E(a, b) + E(a′, b) + E(a, b′)− E(a′, b′) ≤ 2 , (3)

where E(a, b) is a correlator that depends on the statistics measured by Alice and
Bob as

E(a, b) =
∑
i,j

(−1)i⊕jP (Ai, Bj|a, b) , (4)

where ⊕ represents the modulo-two sum and the main sum runs over the classical
outputs Ai and Bj.
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Bell’s inequality is derived upon the assumption that the correlations between
Alice and Bob are both realist and local, which implies that Alice’s and Bob’s mea-
surements are completely independent and unable to influence the other’s outcomes
(Bell, 1964). In other words, under these conditions the correlations can be expressed
as

P (AB|ab) =
∑
λ

P (λ)P (A|a, λ)P (B|b, λ) , (5)

where λ is known as a classical hidden variable that correlates Alice’s and Bob’s
statistics. This would compromise the security of the protocol: Eve could have
access to this hidden variable and use this knowledge to infer the secret key. One
can show, however, that a maximally entangled state can yield up to a violation of
2
√

2 (which is also the maximal violation achievable according to Tsirelson’s bound
(Cirel’son, 1980)). This means that for certain states the correlations between Alice
and Bob can not be described as locally deterministic, and therefore such a hidden
variable does not exist. Particularly, the violation of the inequality shows the non-
local nature of the correlations making it impossible for a third party to predict
these statistics beforehand. Violating Bell’s inequality is however experimentally
very demanding since there are several loopholes to be closed (Shalm et al., 2015;
Hensen et al., 2015; Giustina et al., 2015). In Chapter 1 we extensively discuss
this and analyse the requirements for violating Bell’s inequality with quantum-dot
single-photon sources (González-Ruiz et al., 2022b), that were introduced in the
Section I. of the Introduction.

Although necessary, a violation of Bell’s inequality is unfortunately not sufficient
for proving the security of a DIQKD protocol. One needs to prove that it is possible
to distil a positive key rate, which is not implied by the violation of the inequality
per se. At the end of the day, what we need to demonstrate is that the information
accessible by Eve is not larger than that shared between Alice and Bob. To this end
we start by introducing several important quantities. The uncertainty contained
in any probability distribution P (x) can be quantified with the help of its entropy
H(P ), known as Shannon entropy,

H(P ) = −
∑
x

P (x) logP (x) . (6)

We can similarly define the equivalent entropy S(ρ) of a quantum state ρ, the von
Neumann entropy8

S(ρ) = −Tr ρ log ρ . (7)

Moreover the conditional entropy shows how conditioning on classical side informa-
tion decreases uncertainty as

H(A|B) = H(AB)−H(B) . (8)
8In our notation, the von Neumann entropy of a state S(ρA) would be the quantum ”equivalent" of the classical

Shannon case H(A).
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I(A:B)
H(A)

H(B)

H(AB)

Figure 3: Diagram that shows the relation between Alice’s and Bob’s entropies (H(A) in red and H(B)
in blue, respectively). The entropy of their joint state is given by H(AB) (in green), while their mutual
information corresponds to I(A : B) (in purple).

Please note that contrary to the classical conditional entropy, the quantum case can
have negative values, for example by means of a maximally entangled state. This
is very interesting, since it can be interpreted as "knowing less than nothing" (Gour
et al., 2022). We can also define the mutual information between the states ρA and
ρB as

I(A : B) = H(A) +H(B)−H(A,B) . (9)
We can get a better intuition about the mutual information in the sketch depicted
in Fig. 3, where we see that it corresponds to the intersection between the entropies
of the two systems A and B. The quantum mutual information has nevertheless
properties than are essentially different from or nonexistent in its classical coun-
terpart. In particular, the quantum mutual information can be upper bounded by

I(A : B) ≤ S(ρB)−
∑
x

P (x)S(ρB,x) ≡ χ(A : B) , (10)

where ρB = ∑
x P (x)ρB,x and the probability distribution depends on the system A

(Pironio et al., 2009). This bound χ(A : B) is called the Holevo bound and proves
that there is a limit in the accessible information from the system (Nielsen et al.,
2010, p. 531). It can also be interpreted as the analogue of mutual information for
classical information sent through a quantum channel.

We can now introduce a theorem that allows us to prove the security of a DIQKD
protocol. For any state ρ, it holds that

r ≥ I(A : B)− χ(B : E) , (11)

where r is the one-way secret key, I(A : B) is the mutual information shared between
Alice and Bob for the specified measurement input, and χ(B : E) is the Holevo
bound on the mutual information shared between Bob and Eve. This theorem is
the Devetak-Winter bound (Devetak et al., 2005). Intuitively, it shows that a positive
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key rate can be distilled as long as there is more information shared between Alice
and Bob than with the eavesdropper. While I(A : B) is directly obtained from the
statistics measured by Alice and Bob, χ(B : E) is very hard to calculate. It needs
to account for all possible strategies from Eve. Proving the security of a DIQKD
protocol results in a complex minimisation problem9 over the joint state between
Alice and Bob ρAB. After the minimisation, one finds the worst case scenario for
them, and checks if even in that case a positive key rate is achievable.

DIQKD protocols have been recently implemented experimentally for the first
time, by means of trapped Rubidium atoms (Zhang et al., 2022) and ion traps
(Nadlinger et al., 2022). In Chapter 4 we alternatively analyse the potential of
quantum-dot single-photon sources for implementing DIQKD experimentally, using
the recent bounding method for χ(B : E) derived by Brown et al. (2021).

III. Storing the quantum information

Finally we will briefly introduce quantum memories and their main challenges for
the purpose of storing quantum information. Several of the protocols that we
have already mentioned, such most of quantum repeaters or quantum cryptogra-
phy schemes, require their nodes to be able to keep their qubits unmeasured, but
efficiently stored. This is a challenging task, since as we have discussed, decoherence
will more or less rapidly erase the quantum features of the stored state.

Since the quantum memories will be located at the nodes of the quantum internet,
the physical platform that supports them must mostly focus on having as long
coherent times as possible, together with high storage-retrieval efficiency. Some
examples of good candidates to be efficient quantum memories are summarized
in Simon et al. (2010): solid-state atomic ensembles in rare-earth doped crystals,
NV centers in diamond, semiconductor quantum dots, single trapped atoms, room-
temperature and cold atomic gases, and optical phonons in bulk diamond. Another
system that is an excellent candidate to become a good quantum memory is high-Q
optomechanical membranes, since they show coherence times up to ms (Rossi et al.,
2018).

All of them, however, face yet another issue: being able to efficiently store the
quantum information from the travelling qubit implies being able to "talk" together.
This is generally not the case: for example, superconducting qubits typically operate
in the microwave wavelength, while quantum-dot single-photons timescale is in the
pico-second range, or the aforementioned optomechanical membranes oscillate with
MHz frequencies. This imposes a bandwidth matching problem. In Chapter 5 we
propose an experimental implementation to efficiently elongate the pulse length of
single-photons in order to match their broad bandwidth with narrower-bandwidth
systems, such optomechanical membranes.

9These problems are typically computed by means of Semi-Definite Programming (SDP). For more details, see
Chapter 4.
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Structure of the thesis

I. Quantum information sources

• In Chapter 1 we present the results published in González-Ruiz et al. (2022a),
where we model the experimental imperfections of quantum-dot single-photon
sources to analyse their capacity to violate Bell’s inequality.

• In Chapter 2 we introduce unpublished results soon to be submitted (Bjerlin
et al., 2023), where we investigate the relation between the purity of single-
photon sources and the indistinguishability of the photons they generate.

• InChapter 3 we show the theoretical analysis presented in González-Ruiz et al.
(2023). In this work we present a full theoretical analysis of the entanglement
quality of the on-demand path-entangled states generated experimentally by
Østfeldt et al. (2022) through a QD biexciton cascade.

II. A safe quantum network

• In Chapter 4 we present the submitted results from González-Ruiz et al.
(2022b). In this study we take a step further from Chapter 1 by relating the
obtainment of non-zero secret-key rates in DIQKD protocols with the experi-
mental imperfections modelled in González-Ruiz et al. (2022a). We thus derive
conditions on the single-photon sources that mark the way for near-future im-
plementations of DIQKD protocols.

III. Storing the quantum information

• In Chapter 5 we present unpublished work where we introduce a new method
to make an efficient bandwidth compression of single photons, in order to be
able to store them efficiently in narrow-bandwidth quantum memories.
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Chapter 1

Violation of Bell’s inequality with
quantum-dot single-photon sources

This chapter is based on the work presented in González-Ruiz et al. (2022a)1. We
investigate the possibility of realizing a loophole-free violation of Bell’s inequal-
ity using deterministic single-photon sources. We provide a detailed analysis of a
scheme to achieve such violations over long distances with immediate extensions
to device-independent quantum key distribution. We investigate the effect of key
experimental imperfections that are unavoidable in real-world single-photon sources
including the finite degree of photon indistinguishability, single-photon purity, and
the overall source efficiency. We benchmark the performance requirements to state-
of-the-art deterministic single-photon sources based on quantum dots in photonic
nanostructures and find that experimental realizations appear to be within reach.
We also evaluate the requirements for a post-selected version of the protocol, which
relaxes the demanding requirements with respect to the source efficiency.

1.1 Introduction

Violation of Bell’s inequality is of fundamental significance for our understanding
of nature and has been the subject of a broad experimental endeavour for the last
few decades. A complete violation is highly challenging due to the presence of the
locality and detection loopholes (Larsson, 2014), which must be closed simultane-
ously to realize loophole-free experiments (Giustina et al., 2015; Shalm et al., 2015;
Hensen et al., 2015). While the locality loophole only requires measurement stations
to be sufficiently separated, overcoming the detection loophole demands high trans-
mission efficiencies (Pironio et al., 2009), which is particularly challenging at the

1The Ph.D. student was involved in the discussions that shaped the project, discussing together with the supervi-
sor which experimental errors should be included in the study as well as the analysis of the decoherence mechanisms
of the single-photon sources. She performed all the calculations and simulations with the supervision of AS. Finally,
she wrote the main text and appendices and contributed to the iteration of corrections together with the other
co-authors.
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large distances required to close the locality loophole. In addition to its fundamen-
tal significance, closing the loopholes enables important technological applications.
In particular, a detector-loophole-free violation of Bell’s inequality is required for
device-independent quantum key distribution (DIQKD) (Pironio et al., 2009), which
allows ultimately secure communication protected even against hacking attempts on
the applied hardware. Although these applications do not necessarily need to close
the locality loophole, they impose similar demands since cryptography is based on
the communicating parties to be far apart.

Recently three different experiments have successfully closed both loopholes si-
multaneously. On one side, Bell violation has been achieved based on a heralding
scheme with NV centers (Hensen et al., 2015), but the operation of these systems is
rather complicated and typically slow leading, e.g., to limited key rates for DIQKD.
Faster operations have been achieved in purely photonic systems by exploiting effi-
cient superconducting detectors, but at the cost of only working over short distances
(< 200 m) (Giustina et al., 2015; Shalm et al., 2015).

A solution to overcome these problems has been proposed in Kołodyński et al.
(2020) based on a photonic approach using deterministic single-photon sources. This
method exploits heralding measurements at a central station and is thus applicable
to long distances with limited transmission probability. If the photons are transmit-
ted through vacuum this could allow the implementation of loophole-free violation
of Bell’s inequality. For photons transmitted through optical fibers on the hand, the
slower propagation speed in the fibers potentially open the locality loophole (dis-
cussed in detail below). Nevertheless the proposal still enables closing the detector
loophole over long distances and thus the application of the scheme for DIQKD.
The scheme could also be implemented with spontaneous parametric down conver-
sion (SPDC) sources, but this was found to have a less favorable scaling with the
transmission efficiency (Kołodyński et al., 2020). For instance it achieves lowers
a key rate in DIQKD and this makes an implementation with on-demand single-
photon sources more attractive. Real single photons, however, have a number of
imperfections which could potentially prevent the violation of Bell’s inequality. The
influence of these imperfections thus needs to be carefully assessed to determine the
applicability of existing single-photon sources.

In this article we theoretically investigate the performance of real single-photon
sources for the (detector-)loophole-free Bell test of Kołodyński et al. (2020) taking
into account the quality of the single-photon sources and the efficiency of the local
stations. We focus on InGaAs quantum dots embedded in a photonic-crystal waveg-
uide as single-photon sources. These have recently shown near ideal performance,
generating on-demand single photons with up to a 99.4% purity and 96% indistin-
guishability (Uppu et al., 2020; Tomm et al., 2021). The results derived here 2 are
also applicable to other types of single-photons sources. We investigate the generic
imperfections and analyse the relation between the achievable violation of Bell’s

2The codes used in this study are available at the University of Copenhagen public repository ERDA. DOI:
https://doi.org/10.17894/ucph.00388c73-1c04-4005-9138-69fbcd0ebe7a
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50:50

Figure 1.1: a) Set-up proposed in Kołodyński et al. (2020), consisting of two local stations (Alice and
Bob) and a central heralding station (CHS). The different optical components involved are indicated:
beam splitters with transmittances T (at Alice and Bob’s stations) and 50% (at the CHS); half and
quarter-waveplates (HWP and QWP), switchable mirrors (SM), polarizing beam splitters (PBS) and single-
photon sources (SPS). The photodetectors are labeled as D1, D2, D3, and D4 at the CHS and AH
(BH) and AV (BV ) for Alice’s (Bob’s) detectors, with the sub index indicating the polarization of the
corresponding incoming photons. The operators that model the creation of photons at each section of
the set-up are indicated as well. b) Example of quantum-dot single-photon source and its energy level
schemes. The light-matter interaction between a quantum-dot and a waveguide mode is enhanced by the
nanostructure realizing a deterministic single-photon source. The quantum dot is driven by a resonant
excitation pulse (Ωi) and subsequently emits a single photon into the waveguide by spontaneous emission.
Insert: The optical transitions are subject to two different types of decoherence: 1) rapidly fluctuating
phonon interactions induce pure dephasing with a rate γd and 2) slow drifts of the levels induce a slowly
varying detuning ∆i.

inequality and the indistinguishability of the generated photons through the Hong-
Ou-Mandel (HOM) visibility, their second-order correlation function (g(2)) and the
single-photon source efficiency. We hope that the analysis will motivate experimen-
tal demonstrations of long-distance photonics based (detector-)loophole-free Bell
inequality violations in the near future.

1.2 Ideal implementation

We investigate the scheme originally put forward in Kołodyński et al. (2020). It
is based on a heralding scheme in which two parties, Alice and Bob, each gener-
ate a pair of single photons with orthogonal polarization (see Fig. 1.1). Here we
will consider an implementation based on having only a single on-demand single-
photon source at each station. As we will show below an implementation based
on subsequent emissions from the same source is highly advantageous since several
imperfections associated with slow drifts in the sources naturally cancel out.

The single-photon sources each emit a pair of photons with vertical polarization
but with one of them delayed in time with respect to the other. The photons are
sent to different optical paths by means of a switchable mirror. The early photon
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is sent through the longest arm, while the late photon is sent to the short arm
and is rotated to horizontal polarisation with a half-wave plate. The early and late
photons arrive simultaneously at a polarizing beam-splitter (PBS), which merges
the two inputs generating a state described by

â†s,H â
†
s,V |∅〉A = |1H〉 |1V 〉A , b̂†s,H b̂

†
s,V |∅〉B = |1H〉 |1V 〉B , (1.1)

where â†s (b̂†s) denotes the photon creation operator acting on the vacuum state |∅〉
either at Alice’s (A) or Bob’s (B) station, with the second index denoting horizontal
(H) or vertical (V ) polarization.

After the PBS, the photon pair is sent towards a beam-splitter of transmittance
T. The reflected field is then sent to a detection set-up, whereas the transmitted
field is sent towards a central heralding station (CHS) placed between Alice and
Bob. At the CHS the photons pass through additional optical components until
they are finally detected by four single photon detectors Dl with l = 1, ..4. As we
will show later, entanglement will be generated if the photons detected at the CHS
have orthogonal polarization. This restricts the possible accepted detection patterns
to clicks on pairs of detectors D1D2, D3D4, D1D4 and D2D3 (see Fig. 1.1).

Ideally, two photons (one from each side) are transmitted to the CHS while the
other photons remain in the station where they were generated. At the CHS, Bell
state measurements on the received photons are performed (Kwiat et al., 1998)
thereby creating a polarization entangled state between the photons that remained
in the local stations. Importantly, the protocol is still applicable even for a very low
transmission probability to the CHS, since photon loss only reduces the heralding
rate but not the performance of the protocol. Finally, Alice and Bob measure their
respective qubits by means of a pair of half-wave and quarter-wave plates (HWP
and QWP) and a pair of photodetectors.

The basic operational principle of the set up is that of the Hong-Ou-Mandel
(HOM) effect (Hong et al., 1987). In each station, beam splitters of transmittance
T transmit single photons from Alice and Bob to the CHS. Conditioning on two clicks
at the CHS means that at least two photons were transmitted, and by choosing a low
transmittance T � 1 we ensure that there is a negligible probability of transmitting
more than two. In this case there will thus be two photons at Alice and Bob’s
stations for the final Bell’s test with a very high probability if T � 1. The two
photons at the CHS photons could, however, be from the same station, such that
either Alice or Bob will have two photons while the other would have none. To
exclude this possibility a HWP is inserted in each of the arms leading to the CHS.
This HWP rotates each of the polarizations by 45 degrees. Seen in the horizontal-
vertical basis the HWP essentially acts as a beam-splitter transformation between
the two polarization states described by

â†H →
1√
2
(
â†H + â†V

)
, â†V →

1√
2
(
â†H − â

†
V

)
. (1.2)

Thereby it acts as a beam splitter in a HOM-like setup such that two photons in the
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same arm will bunch and never end up with opposite polarization when measured
in the horizontal-vertical basis. Conditioning on photons with different polarization
will thus ensure that the detected photons came from different stations and that
there is always a photon at both Alice and Bob’s stations.

If the two photons transmitted to the heralding station have the same polarization
they will bunch at the 50:50 central beam splitter due to their indistinguishability,
leading to the possible detector combinations D1D2 and D3D4. These patterns do
not, however, provide any information about the initial polarization of the photons
before the HWP except that they were identical. Thus, the state of the pair that
Alice and Bob will share in this case is the Bell state |φ−〉 = 1√

2

(
â†H b̂

†
H − â

†
V b̂
†
V

)
|∅〉

(with the minus sign coming from a more detailed analysis of the protocol).
On the other hand, if the pair of photons arriving at the CHS has opposite po-

larizations, they are distinguishable and therefore will not show the HOM bunching
effect at the beam splitter. If they are transmitted to the same port of the beam
splitter they will click on the same detector since the PBS acts as a HOM setup for
the photons encoded in diagonal polarizations by the HWPs and will be discarded.
On the contrary, if they are transmitted to different PBS, the combinations D1D4
and D2D3 can occur and since their polarizations were initially different, the state
that Alice and Bob share must be proportional to |ψ−〉 = 1√

2

(
â†H b̂

†
V − â

†
V b̂
†
H

)
|∅〉

(again the minus sign is found from a more detailed analysis).
From the above analysis we thus find that recording clicks in detectors with op-

posite polarizations implies that there will be a photon at each of Alice and Bob’s
stations prepared in an entangled state conditioned on the outcome at the CHS. Sub-
sequent measurements in different bases implemented by rotating the polarization
with the HWPs and QWPs at the local stations can then be used to demonstrate the
violation of Bell’s inequality. The combinations that generate entanglement (D1D2,
D3D4, D1D4 and D2D3) represent 50% of the total number of detection events. This
is in accordance with the fact that any linear-optical circuit that performs Bell-state
measurement can only generate distinguishable entangled states with at most 50%
probability (Calsamiglia et al., 2001). In particular, in this work we analyse the
state heralded by the detection patterns D1D4 and D2D3, which is |ψ−〉.

From the above idealized description it is clear that the protocol relies heavily
on high-quality single-photon sources. In practice, real sources will always have
small multi-photon components and non-perfect indistinguishability. In addition,
optical systems are prone to losses. To assess the performance of the protocol for
real sources we thus need to evaluate the effect of these imperfections.

1.3 Model for real sources

The ultimate purpose of this work is to analyse the influence that the quality of a
realistic single-photon source can have on the success of the protocol. In this section
we present the main parameters that describe the source. We will account both
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Figure 1.2: Degree of indistinguishability of photons from different sources, i.e. the HOM visibility
V

(0)
β . The indistinguishability depends on the width σ of the probability distribution for the frequency

fluctuations ∆ as well as the rate of pure dephasing γd relative to the spontaneous emission rate γ.

for the loss of indistinguishability of photons due to decoherence processes and the
purity of the source, as well as the efficiency of the set-up.

1.3.1 Dephasing

The single-photon source i emits a photon in a state â†i |∅〉 . Here the single mode
operators âi fulfill the single mode commutation relation [âi, â†j] = δij and are defined
by

âi =
∫ ∞
−∞

fi(t)âi(t)dt , (1.3)

where âi(t) is a photon annihilation operator for a photon at time t fulfilling the
continuous time commutation relations

[
â(t), â†(t′)

]
= δ(t − t′), [â(t), â(t′)] =[

â†(t), â†(t′)
]

= 0. We have here introduced the function fi(t), with i ∈ {1, 2, 3, 4},
(different for every source in which the photons are generated) which describes the
shape of each photons wavepacket. fi(t) convolutes each photon’s creation opera-
tor differently in time, according to the properties of the emitter. Ideally fi(t) will
be the same for all sources, resulting in fully indistinguishable photons. Variations
between emitters and temporal fluctuations, however, imply that they may vary be-
tween different emitters and between different experimental runs. These functions
thus encode the relevant photon coherences.

The functions fi(t) satisfy the normalization
∫∞
−∞|fi(t)|2dt = 1 and their overlap

defines the degree of indistinguishability of the photons, that we define as αij or βij
depending on whether the pair of photons was produced at the same or different
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stations:
〈
âi(t)â†j(t′)

〉
=
∫ ∞
−∞

f ∗i (t)fj(t)dt ≡

αij, if ij = 12, 34
βij, if ij = 13, 14, 23, 24

. (1.4)

This distinction between photons generated at the same or opposite stations is im-
portant, since their degree of indistinguishability is expected to be different (αij >
βij) because sources at the same station are likely easier to be identical. We can
relate αij or βij to the raw HOM visibility V (0)

α,β by calculating the probability of de-
tecting coincidence counts after a 50:50 beam splitter, obtaining Pcc = 1

2 (1− |αij|2)
(or βij, if photons were generated at different stations). Given that the maximum
probability of coincidence counts that can be achieved is Pmax = 1/2, we obtain the
relation between visibility and mode overlap (Brańczyk, 2017):

V (0)
α = 1− Pcc

Pmax
= |αij|2 , (1.5)

where we have defined X to be the average of the quantity X over all experimental
runs due to the variability of fi(t).

The convoluting functions fi(t) contain the decoherence processes of the quan-
tum dot that decrease the indistinguishability of the emitted photons. Generally
decoherence arises due to a number of different mechanisms acting on different time
scales. We divide these processes into two categories: slow and fast processes rel-
ative to the decay rate of the emitter. For quantum dot sources the fast process
originates from phonon dephasing, whereas intrinsic charge or nuclear spin noise as
well as drift in the experimental setup will contribute to the slow detuning processes
(Uppu et al., 2021b). We assume that the two photons generated at each station
are obtained by multiplexing photons emitted from the same quantum dot (Hummel
et al., 2019), i.e. photons from the same stations are insensitive to slow processes,
which will have the same influence on two consecutive photons, but will be affected
by fast processes which change the mode function fi(t) between the two photons.
On the contrary, photons emitted from different stations will also be affected by slow
drift depending on the degree to which these can be stabilized between the distant
emitters.

The fast processes are modeled as white noise with a pure dephasing rate γd
corresponding to the typical model used to describe phonon dephasing (Tighineanu
et al., 2018; Muljarov et al., 2004). In Appendix A.1 we show that this leads to a
visibility

V (0)
α = |αij|2 = γ

γ + 2γd
, (1.6)

where γ is the spontaneous decay rate of the quantum dot.
The crossed visibility, V (0)

β , is also affected by the slow dephasing processes that
creates an energy difference ∆ij in the frequency splitting between quantum dots.
This difference is assumed to follow a Gaussian distribution with a width σ when
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averaging over the experimental runs. Evaluating the visibility for detuned emitters
and performing the average we obtain the averaged visibility

V
(0)
β = |βij|2 =

√
π

2
γ

σ
e

(γ+2γd)2

2σ2 erfc
(
γ + 2γd√

2σ

)
. (1.7)

A similar result was obtained in Kambs et al. (2018).
In Fig. 1.2 we show the relation between visibility and width of the distribution

for various dephasing rates. The relations derived in Eqs. (4.4) and (1.7) between
the intrinsic parameters of the quantum dot and the indistinguishability of the
emitted photons can be used to calibrate the width σ to the measured HOM visibility
through Eq. (1.5). For the remaining of this article all plots will thus be shown as a
function of the experimentally accessible visibilities V (0)

α and V (0)
β rather than γd and

σ. We note however, that expressing it in terms of visibilities is dependent on the
specific model we have assumed for the noise. Below we shall also need higher order
moments e.g. 〈αijβikβjk〉. Such higher order correlations cannot be directly related
to the visibility, which only depends on second order moments. Any relation between
higher order terms and the HOM visibility will thus always be model dependent.

1.3.2 Optical loss

Although the heralding scheme ensures that the outcome of the protocol is not
affected by the transmission efficiency between stations ηt, we must account for
losses occurring locally since such losses potentially open the detection loophole.
We define η1,i as the probability to reach the first beam splitter, and η2,i as the
probability for the reflected photons to be detected (including detection efficiency)
as sketched in Fig. 1.3. The additional index i = 1, 2, 3, 4 specifies the source that
generated the photon. This distinction between sources is for instance relevant in
demultiplexing schemes, which can have different efficiencies in the different channels
of transmission (Hummel et al., 2019). Including the losses at the beam splitter, the
local efficiency ηl,i is therefore given by ηl,i ≡ η1,iη2,i(1− T ).

Experimentally, the coupling of light from quantum dots to photonic nanostruc-
tures has been proven to reach up to 98% (Arcari et al., 2014). As it will be quantified
below, the main challenge will be to couple the photons from the nanostructure and
to a detector with near-unity efficiency. With a demultiplexed single-photon source
this would require highly-efficient coupling of the photon source to a fiber combined
with efficient switching and detection. A significant step towards this demanding
goal was the recent demonstration of a fiber-coupled device with 57% overall effi-
ciency (Tomm et al., 2021). Another implementation would require operating two
quantum dots per station that are mutually interfered. In such a configuration the
two sources and detectors could potentially be integrated on a single chip, which
likely would be the most efficient approach. A bottleneck for this implementation
would be the need to make two quantum-dot sources indistinguishable, but encour-
agingly 93% HOM visibility was recently reported between two remote quantum
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Figure 1.3: Sketch of the efficiencies ηi and definitions of the creation operators of the lost photons ĉ†.

dots (Zhai et al., 2021).

1.3.3 Purity

Finally, we consider that the single-photon sources might in fact emit two or more
photons at once with a certain probability. This generates the state ρ̂ = P0ρ̂0 +
P1ρ̂1 +P2ρ̂2 +O(P3), where ρ̂k is the density matrix representing the state of the k-th
photon component. The multi-photon component would originate in an experiment
either from imperfect suppression of the optical pulses used to pump the quantum
dot or from multi-photon emission due to the finite duration of the excitation pulse.

We furthermore assume that the probability for the quantum dot not to emit a
photon is negligible P0 ' 0, so that P1+P2 = 1. This limit is valid as long as the lack
of creation of photons by the quantum dot is included in the efficiency parameters
η1,i.

The effect of multi-photon generation can be measured via the second order
correlation function g(2)

g(2) =

〈∫∫
dτ1dτ2â

†(τ1)â†(τ2)â(τ2)â(τ1)
〉

〈
∫
dτ1â†(τ1)â(τ1)〉 〈

∫
dτ2â†(τ2)â(τ2)〉 , (1.8)

which, for the multi-photon state ρ̂ yields

g(2) = 2P2

(P1 + 2P2)2 '
2P2

P 2
1
, (1.9)

to first order in P2. Throughout this paper we consider the limit g(2) � 1 such that
the probability that more than one photon is emitted by more than one of the sources
is negligible. This means that all results derived here should be considered lowest
order expansion in g(2) and are only applicable in the limit g(2) . 0.1. Moreover, the
second-emitted photon is modelled to be completely distinguishable from the other
four photons. The purity of the source will affect the measured HOM visibility Vα,β
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with a small contribution proportional to g(2):

Vα,β = V
(0)
α,β − κg(2) , (1.10)

where in general 1 < κ < 3, depending on the distinguishability of the 1 and 2-
photon components. For the model considered here, κ = 2 where the additional
photon is assumed to be fully distinguishable. (Ollivier et al., 2021; Bjerlin et al.,
2023). In the following, when plotting quantities as a function of V (0)

α,β we refer to
the value which would be obtained in the absence of any two photon contribution.
Hence V (0)

α,β will be higher than the values measured experimentally.

1.4 Analysis

Having defined the model used to describe the imperfections, we now turn to the
analysis of the performance of the protocol. We do this by analyzing how each
of the field operators transform in the Heisenberg picture under the linear optics
setup shown in Fig. 1.1 when the losses in Fig. 1.3 are taken into account. After
this transformation we then evaluate all expressions using the model for the real
single-photon sources.

After being generated, the two pairs of photons with orthogonal polarization
will encounter a beam splitter with transmittance T , that transforms the creation
operators according to

â†s,ς = i
√

1− T â†ς +
√
T â†t,ς , (1.11)

and similarly for Bob’s photons, where â†ς represents a reflected photon at the first
beam splitter with polarization ς ∈ {H,V } and â†t,ς a transmitted one. Next, by
fixing the angle φ = −π/8 for both HWP, we see that the transmitted photons are
transformed as:

â†s,ς = i
√

1− T â†ς +
√
ηtT

2 (â
′†
t,H ± â

′†
t,V ) . (1.12)

where we have inserted the probability of successful transmission between Alice
and Bob and the CHS, ηt. Since we include losses, this transformation should, in
principle, also include creation operators for the lost photons. However, since we
consider photon counting (and multi-photon errors are considered separately below),
such lost photons do not contribute to the final results and we omit the lost photon
terms for brevity. Once the photons reach the heralded station they encounter
another beam splitter, this time with 50% transmittance, followed by polarizing
beam splitters that direct horizontally (vertically) polarized photons to detectors
D1 and D3 (D2 and D4).

We can now incorporate all the steps into a single transformation of the initial
operators â†S (b̂†S), obtaining

â†s,ς,i →
√
η1,iηtT

2 Ô†i + i
√
η1,iη2,i(1− T )â†ς,i + L̂†i , (1.13)
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Figure 1.4: a) Violation of the CHSH inequality S ≥ 2, as a function of the HOM visibility of the
local sources V (0)

α . The curves represent both the case in which photons from Alice and Bob’s stations
and equally indistinguishable (V (0)

α = V
(0)
β ) and when there is inhomogeneous broadening with a width

σ 6= 0 so that V (0)
α > V

(0)
β . The threshold for CHSH violation S = 2 corresponds to the visibilities

(V (0)
α , V

(0)
β ) = {(0.79, 0.79), (0.86, 0.67), (0.93, 0.51), (0.96, 0.40)}. b) Contour plot of the CHSH value S as

a function of the visibilities Vα and Vβ . The dashed isoline S = 2 delimits the regions with and without
violation of Bell’s inequality.

and similarly for Bob’s operators. We have here defined creation operators for
photons at the CHS as

Ô†1,2 ≡
1√
2
(
i
(
p†H,1,2 ± p

†
V,1,2

)
+
(
q†H,1,2 ± q

†
V,1,2

))
,

Ô†3,4 ≡
1√
2
((
p†H,3,4 ± p

†
V,3,4

)
+ i

(
q†H,3,4 ± q

†
V,3,4

))
. (1.14)

Eq. (B.7) expresses that a photon can be either successfully transmitted to the
CHS (Ô†i ), reflected at the first beam splitter and detected locally (â†ς,i) or lost (L̂

†
i ).

The definition of these operators simplify the transformation applied to the initial
state and is described in detail in Appendix A.2.

Eq. (B.7) allows us to calculate the density matrix ρ̂ shared by Alice and Bob
after the heralding by just tracing the CHS and loss operators out from the initial
state conditioned on the correct detection patterns:

ρ̂ = Trloss,CHS
{
â†s,H â

†
s,V b̂

†
s,H b̂

†
s,V |∅〉 〈∅| âs,H âs,V b̂s,H b̂s,V

}
, (1.15)

where the partial trace of the CHS is already conditioned to the accepted measure-
ment outcomes D1D4 and D2D3.

Alice and Bob measure this state by means of two consecutive QWP and HWP,
with the total transformation Ûtot(θ, φ) = ÛHWP (φ)ÛQWP (θ) (Appendix A.2). It
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transforms the creation operators of the photons into the operators Â†H and Â†V (B̂†H
and B̂†V ), which represent the creation operators at the corresponding detectors (see
Fig. 1.1):

Â ≡
(
ÂH
ÂV

)
= Ûtot(θA, φA)

(
âH,1
âV,2

)
≡ Ûtot(θA, φA)â (1.16)

, and similarly with Bob’s operators. We further define the measurement operators
M̂+,A ≡ I − |∅〉 〈∅|A,H and M̂−,A ≡ I − |∅〉 〈∅|A,V , and similarly for Bob. These
operators project into the subspace in which any number of clicks occurs at the
detectors. We thus assume that the detectors cannot distinguish how many photons
arrived but only measure the presence or absence of photons. Events in which there
is a wrong number of photons involved are thus also included. We identify a click
in the detectors AH and BH with an outcome +, and AV and BV with −. We
can then calculate the joint probability Px,y that the outcomes x, y ∈ {+,−} are
simultaneously measured by Alice and Bob as

Px,y = Tr
{
M̂x,yρ̂

′
}
, (1.17)

where M̂x,y = M̂x,A ⊗ M̂y,B and we have defined:

ρ̂′ = Ûtot(θA, θB, φA, φB)ρ̂Û †tot(θA, θB, φA, φB) , (1.18)

and Ûtot(θA, θB, φA, φB) = Ûtot(θA, φA)⊗Ûtot(θB, φB). Note that for convenience the
probabilities defined here, include the probability of detecting the photons at the
CHS. We therefore need to normalize the probabilities with the success probability
when we want to evaluate results conditioned on detections at the CHS. This allows
us to calculate the CHSH (Clauser et al., 1969) correlations C(a,b) = ab, where a
and b are two unitary observables that can take the values {−1, 1}, as a function of
the projected probabilities:

C(a,b) = P+,+ − P+,− − P−,+ + P−,−
Psuccess

, (1.19)

where the choice of a and b is determined by the HWP and QWP angles θA, θB, φA,
and φB. Note that the denominator of Eq. (1.4), Psuccess, corresponds to the total
success probability for the photons to arrive at the heralding station conditioned on
the correct measurement outcomes D1D4 and D2D3. We can now analyse how the
violation of the CHSH inequality

S = |C(a,b) + C(a′,b) + C(a,b′)− C(a′,b′)|≤ 2 , (1.20)

is affected by all the processes related to real sources described in Section 1.3.

1.4.1 Effect of distinguishability of photons

We start by analysing solely the influence of decoherence of the emitter, ignoring
multi-photon generation (g(2) = 0) and local losses (ηl,i = 1). Furthermore, we
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assume for now that apart from the decoherence the protocol behaves ideally: Alice
and Bob keep one photon each and send one to the CHS, which is detected in the
desired patterns. Physically, this corresponds to post selecting only events where
there are always two detected photons at the CHS and one at each station. Applying
these conditions to the transformation in Eq. (B.7) and operating on the initial state,
we obtain:

|ψ〉 = −ηtT (1− T )
2 (Ô†2Ô†4â†H,1b̂

†
H,3 + Ô†2Ô

†
3â
†
H,1b̂

†
V,4+

Ô†1Ô
†
4â
†
V,2b̂

†
H,3 + Ô†1Ô

†
3â
†
V,2b̂

†
V,4) |∅〉 . (1.21)

We then calculate the partial trace over the the CHS described by the operators Ô†i .
Contrary to the ideal case, the state shared by Alice and Bob after conditioning on
the desired detection pattern is no longer a pure state due to the imperfect indistin-
guishability of the photons. This can be seen from the (unnormalized) density matrix
obtained by conditioning on the correct detection patterns

〈
ÔiÔjÔ

†
kÔ
†
l

〉
D1D4,D2D3

.
The full results are given in Appendix A.3. For simplicity we here only reproduce
the density matrix in a simpler form assuming αij ≡ α and βij ≡ β for all i, j:

ρ̂ = ηt
2T 2(1− T )2

4


1− |β|2 0 0 |β|2 − |α|2

0 1 + |β|2 − (|α|2 + |β|2) 0
0 − (|α|2 + |β|2) 1 + |β|2 0

|β|2 − |α|2 0 0 1− |β|2

 ,

(1.22)
where we have applied the definitions for indistinguishability introduced in Eq. (1.4).
The density matrix shown in Eq. (1.22) is written in a basis that is dependent on
polarization, as well as the mode functions which may vary from shot to shot of the
experiment. This dependence will be traced out once the measurement at the local
stations is performed. Note that the state described by Eq. (1.22) is a mixed state
in contrast to the indistinguishable limit (α = β = 1), in which we in fact recover
the pure state |ψ−〉.

We can now evaluate the results of the measurement with the density matrix ρ̂
and calculate the different joint probability contributions by means of Eqs. (1.4)
and (1.4). We note, however, that the density matrix in Eq. (1.22) is expressed in
terms of photon operators which also contain mode functions that vary in time due
to noise. All expectation values will involve a total of 8 mode functions fi, which
we need to average over. Therefore, this results in higher order moments in αij and
βij, which have to be averaged e.g. giving terms of the form α2β2.

We calculate the value of the CHSH Bell parameter S as a function of the HOM
visibility V (0)

α , that is, the HOM visibility of the sources from the same station
(see Fig. 1.4(a)). We study two different limits: first, we consider the limit in
which all photons are equally indistinguishable (α = β). An optimization over
the measurement angles is carried out for each value of the visibility in other to
maximise S. In this limit a HOM visibility of at least ≈ 79% is needed to violate
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Figure 1.5: Evaluation of CHSH threshold for a postselected protocol and with finite multi-photon
contributions. In both figures the CHSH parameter S is shown as a function of the second order correlation
function for different values of the HOM visibility, in the limit in which the transmission and local efficiencies
are low (ηt = η2,i = 0.1) and for post-selected events. As post-selection is performed, we set T = 0.5,
which will increase the heralding rate without affecting the performance of the protocol. a) The crossed
and local HOM visibilities Vα and Vβ are identical. b) The local HOM visibility is fixed to Vα = 0.95 and
Vβ varies between 0.6 and Vα.

Bell’s inequality. We further study the limit in which the cross visibility V (0)
β from

both stations is lower than the visibility from the same station V (0)
α by varying the

inhomogeneous broadening σ. As shown in Fig. 1.4(a), with increasing slow spectral
diffusion a higher visibility of the photons from the same stations is required to
achieve a Bell violation. In Fig. 1.4(b) we show the size of the violation for all sets
of visibilities, keeping in mind that V (0)

α ≥ V
(0)
β . Note that if a good local visibility

V (0)
α is achieved, the requirement for the crossed visibility V

(0)
β between stations

is rather limited. Remarkably and as an exemplary case, for the experimentally
realized value of V (0)

α = 96% (Uppu et al., 2020) it suffices to reach V (0)
β > 40% to

violate Bell’s inequality. This is an encouraging requirement that seems well within
reach with quantum-dot sources.

1.4.2 Losses and multi-photon errors

When losses and multi-photon errors are included the detection of the correct pat-
terns at the CHS does not guarantee that Alice and Bob share the state predicted by
Eq. (1.22). For instance, Alice and Bob might get a positive message from the CHS
station, but when attempting to measure the state, Bob does not detect anything
at his measurement station. Several events can lead to this situation, depending on
whether one of the sources generated more than one photon. Therefore we must
identify all of these cases. To simplify the analysis, we introduce the notation Pijkl

28



CHAPTER 1. VIOLATION OF BELL’S INEQUALITY WITH QUANTUM-DOT
SINGLE-PHOTON SOURCES

P (A = x, B = y) P (A = x, B = ∅) P (A = ∅, B = y) P (A = ∅, B = ∅)
P2110 P2200,SD P2020,SD P2002 P2020,DD

P2101 P2011 P3001
P3100 P3010 P2200,DD

P2111 P2102 P3200,SD P2012 P3020,DD P2003 P2030,DD

P2210,SD P2201,SD P2120,DD P2021,SD P2210,DD P3002 P3200,DD

P2120,SD P2300,SD P2030,SD P2201,DD P3020,SD

P3110 P3101 P3011 P2021,DD P2300,DD

Table 1.1: Different contributions to the probabilities P (A = x,B = y), P (A = x,B = ∅), P (A =
∅, B = y) and P (A = ∅, B = ∅), where x and y stand for the outcome of Alice and Bob’s measurement,
respectively. Note that, in the case in which more than one photon is detected at the local stations, we must
distinguish between them clicking at the same (denoted with subscript SD) or different (DD) detectors.
The first case is seen as an acceptable outcome x or y, since we assume that detectors are not number
resolving, whereas DD cases are recognized as wrong events by Alice and Bob and are thus assigned to an
erroneous outcome ∅.

to denote the probability associated with each of these events. The indices stand
for i photons arriving at the CHS, j and k photons being detected by Alice and
Bob, respectively, and l photons lost at any point in the set-up. To first order in
g(2) and with vacuum emission included in the local efficiency, we can restrict the
analysis to total photons numbers of 4 and 5 so that 4 ≤ i+ j+k+ l ≤ 5. Moreover,
i ≥ 2, since the accepted detection patterns at the CHS require two photons be-
ing detected. Table A.1 in Appendix A.4 shows all the different contributions that
contribute to each probability term.

We now divide the contributions into four categories: P (A = x,B = y) with
x, y = ±1 includes all the terms in which both Alice and Bob measure a click in one
and only one of their detectors; P (A = x,B = ∅) and P (A = ∅, B = y) describe
events where one of them does not detect any photon and P (A = ∅, B = ∅) is the
probability that none of them detected anything, as specified in Table 4.1. It is
important to note that when more than one photon is reflected at the first beam
splitter, they can either be detected at the same (denoted with subscript SD) or
different (DD) detectors. In the first situation, this probability will contribute to
P (A = x,B = ∅) and P (A = ∅, B = y), since we assume that detectors are not
number resolving and the two photons at the CHS must have originated from the
same source. On the other hand, for the DD cases Alice or Bob will know that the
result is incorrect. Here we will just assign it to the same category as a lost photon.
Furthermore, the two photons from the other station must again have gone to the
CHS and these events thus contribute to P (A = ∅, B = ∅).

We start by considering the effect of multi-photon emission, in the situation
typically encountered in current experiments, where the local efficiency is limited
and a violation of Bell’s inequality can only be obtained by post selection (thereby
not closing the detection loophole). In this limit we discard all events in which Alice
or Bob did not detect any photon (i.e., the probability terms P (A = x,B = ∅),
P (A = ∅, B = y) and P (A = ∅, B = ∅)). Since this situation is insensitive to
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local losses it is desirable to set the transmittance to T = 0.5, which increases the
heralding rate. Therefore, compared to the situation in Sec. 1.4.1, the only new
contributions to the CHSH correlations are the 5-photon terms P2111, P2210, P2120
and P3110 (see Table A.1).

As mentioned above we will only go to lowest order in the two photon emission
probability P2 (or equivalently g(2) according to Eq. (2.19)). We can thus restrict the
analysis to events where there are 4 and 5 photons in total and the final probability
distributions are therefore given by a new probability distribution for the accepted
events

PT (A = x,B = y) = P 4
1P4(A = x,B = y) + P 3

1P2P5(A = x,B = y)
P 4

1 + 4P2P 3
1

, (1.23)

where P4(A = x,B = y) and P5(A = x,B = y) correspond to the probability of
4 and 5 photon event contributions, respectively. Here P5(A = x,B = y) accounts
for the possibility of any of the four single-photon sources emitting two photons.
Applying Eq. (2.19) we obtain that the total probability that accounts for all the
events equals

PT (A = x,B = y) =
P4(A = x,B = y) + 1

2g
(2)P5(A = x,B = y)

1 + 2g(2) . (1.24)

This allows us to calculate the CHSH S-parameter by means of Eq. (1.4) as a
function of the second order correlation function g(2), the efficiencies of every channel,
and the indistinguishability of the photons through the moments of αij and βij.

The value of the CHSH parameter S is plotted as a function of the second order
correlation function g(2) in Fig. 1.5. We observe a Bell violation for low values of g(2)

that ceases once the two-photon probability exceeds a certain value of not more than
10 %. The robustness towards multi-photon contributions is dependent on the HOM
visibility of the photons. The predicted values are compatible with state-of-the-art
single-photon sources, where g(2) . 2% is currently achieved by quantum-dot single-
photon sources embedded in photonic nanostructures (Ding et al., 2016; Tomm et
al., 2021; Uppu et al., 2020). In the figure we focus on the regime corresponding
to a typical post-selected experiment where the local and transmission efficiencies
are rather small ηt = η2,1 = 0.1. These presented results thus roughly represent the
limit η → 0. For the situations considered below with higher higher local efficiency
η2,i ≈ 1 we find that the scheme is more robust to g(2).

Finally we consider the detection loophole by accepting all events (including
those in which no photons are detected, i.e. P (A = ∅, B = y), P (A = x,B = ∅),
P (A = ∅, B = ∅)). In the derivation of the CHSH inequality it is assumed that
the measurement can only take on two values -1 and 1. Experimentally we will also
have the possibility of an inconclusive outcome ∅, so we must decide on a strategy
for dealing with those outcomes. Here we chose that every time Alice and Bob do
not detect a photon they assign a determined outcome to it (Pironio et al., 2009)
such that there are only two possible outcomes of the experiment that we can assign

30



CHAPTER 1. VIOLATION OF BELL’S INEQUALITY WITH QUANTUM-DOT
SINGLE-PHOTON SOURCES

Figure 1.6: CHSH parameter S as a function of the local efficiency ηl = η1,iη2,i(1 − T ) of Alice and
Bob’s stations for different HOM visibilities. To focus on the effect of the local efficiency we consider a
situation with a very limited transmission to the CHS (T = 10−3 and ηt = 0.1) and vary the efficiency of
the final arm η2 with η1,i = 1.

to ±1, as required by the CHSH inequality. In particular, Alice and Bob assign a
positive detection x, y = {+} whenever they do not detect any photon. Thus, we
arrive at a probability P̃ distribution

P̃ (A = x,B = y) = P (A = x,B = y) + δy,+P (A = x,B = ∅)
+ δx,+P (A = ∅, B = y) + δx,+δy,+P (A = ∅, B = ∅) . (1.25)

This allows us to study the effect of the local efficiency on the performance of
the protocol (see Fig. B.1) independently of the other effects, by setting g(2) = 0,
choosing different values of HOM visibility, and calculating the effective probabilities
by applying Eq. (1.4.2) to Eqs. (1.4.2) and (1.4.2).

To mimic a situation corresponding to long distance communication where there
is limited transmittance and a negligible probability to detect more than one photon
at the CHS, we consider a very low transmittance of the beam splitter, T = 10−3,
and a transmittance to the CHS ηt = 0.1. We vary the local efficiency by changing
the loss rate in the detection arm η2 with η1 = 1. These choices, however, have
very little influence on the results as long as we can neglect multiphoton events at
the CHS. For perfect HOM visibility, the threshold that delimits S = 2 is ηl =
82.8%, which corresponds to the lowest efficiency that any CHSH Bell test can
tolerate for loophole-free violation (Massar et al., 2002). The simple strategy for
dealing with null detections, as introduced above, thus have similar performance as
the best achievable strategy. As we introduce additional errors, see Fig. 1.7, the
required local efficiency increases and goes beyond 90% for realistic values of g(2)
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Figure 1.7: Threshold for the violation of the CHSH Bell’s inequality (S ≤ 2). We vary η2,i for different
values of the second order correlation function and determine the threshold visibility V

(0)
β required to

violate the CHSH inequality. The local HOM visibility has been set to V (0)
α = 1 and we assume a low

transmission efficiency (T = 10−3, ηt = 0.1).

and HOM visibility. Such high local efficiency is not yet achievable in state-of-the-
art implementations, although a lot of progress in this direction has been achieved
in recent years (Tomm et al., 2021; Uppu et al., 2020). Note that compared to
the post-selected limit (Fig. 1.5), the violation of the inequality is less sensitive to
g(2). This is due to the difference in the local efficiency in the two plots. In the post
selected limit events in which two photons are emitted have a higher chance of being
accepted relative to the single-photon events, because either of the two photons can
make it to the detectors. Had we considered post selection in the limit of high local
efficiency, it would be less sensitive to g(2) since some undesired results, e.g. DD
events, can be discarded.

1.4.3 Optimizing the probability of transmission T

In previous sections we have calculated and optimised the CHSH value S within the
limit of a very small transmission to the CHS. This ensures a higher local efficiency
and thus allows us to investigate how well the protocol might ideally work as well as
identify thresholds for the success of the protocol. A low probability of transmission,
however, also implies that the number of successful heralding events will be low. In
this subsection we find the optimal transmittance T of the beam splitters at the
local stations (see Fig. 1.1(a)) to violate Bell’s inequality with the highest number
of standard deviations σS.

The CHSH parameter (Eq. (1.20)) is the sum of four independently measured
correlations C(a,b). This allows us to write the standard deviation σS of the CHSH
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Figure 1.8: Effect of finite transmittance T . a) CHSH parameter S as a function of the transmittance
T of the beam-splitters at the end stations for several sets of single-source error parameters: visibility
(V (0)
α = V

(0)
β ), purity (g(2)), and the local efficiency (η2 with η1,i = 1). A large transmission probability

decreases the performance of the protocol since there will be more events where no photons are detected at
end stations. b) Number of standard deviations Z′ with which a violation of Bell’s inequality is achieved
(normalised to the number of experimental runs) as a function of the transmittance T . In an experiment
with n experimental runs the CHSH inequality is violated by Z′

√
n standard deviations. An optimal T

value that maximises the Bell violation can be found for each parameter set. Note that the legend is
divided into two parts inserted in part a) and b) but applies to both subfigures a) and b), i.e. half the lines
are defined by the legend in a), the others in b).

parameter S as

σ2
S =

〈
S2
〉
− 〈S〉2 = σ2

C(a,b) + σ2
C(a′,b) + σ2

C(a,b′) + σ2
C(a′,b′) . (1.26)

Furthermore, given that C2(a,b) = a2b2 = 1 we obtain the standard deviation
of S for a single run of the experiment

σ2
S = 4− C(a,b)2 − C(a′,b)2 − C(a,b′)2 − C(a′,b′)2 . (1.27)

After a number of independent experimental runs n, there have been N = nPCHS
successful events, where PCHS is the total probability of acceptance, equal to the
sum of all the probability contributions that return a positive message from the
CHS. The standard deviation of the average of S yields

σ̄S = σS√
N/4

= 2σS√
nPCHS

, (1.28)

where the factor of 4 arises from the four different measurement configurations of
the CHSH parameter S. We define Z as the number of standard deviations with
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which the Bell inequality can be violated

Z = S − 2
σ̄S

= S − 2
2σS

√
nPCHS , (1.29)

where we have inserted Eq. (1.28) and take into account that the violation occurs
for S > 2.

We have optimized the set of angles for the final measurement at each station for
various sets of visibility, losses and multi-photon parameters and a variable trans-
mittance T. Using Eq. (1.29) this allows us to calculate a dimensionless number
Z ′ ≡ Z/

√
n expressing the number of standard deviations normalised by the num-

ber of experimental runs. The number of standard deviations obtained after n
experimental runs is then Z ′

√
n. As we can observe in Fig. 1.8(b), the compromise

between a strong violation and the probability of success manifests itself in differ-
ent optimal transmission coefficients that maximises Z ′ for different parameter sets.
Generally the optimal transmission decreases as other errors become more signifi-
cant, since in that case there is less room for errors introduced by the transmission.
Furthermore, in the limit of low transmission efficiency (ηt = 0.1), the main con-
tributions to the probability of acceptance at the CHS arise from events in which
two photons arrive (and not three). This leads to PCHS ∝ T 2 resulting in a linear
increase of Z ′ ∝

√
PCHS ∝ T for small T , as observed in Fig. 1.8(b).

Having calculated the optimal T , it is straightforward to evaluate the number of
experimental runs n necessary to violate Bell’s inequality with a certain number of
standard deviations Z

n =
(
Z

Z ′

)2
. (1.30)

Current experiments can easily reach V (0)
α ≥ 0.9 and g(2) = 0.02 (Tomm et al., 2021;

Uppu et al., 2020) and for simplicity we assume that a similar visibility is reached
between different stations V (0)

β = V (0)
α . A much more challenging requirement is

the local efficiency. If we assume optimistic values of η1 = 1 and η2 = 0.95, we get
Z ′ = 6.2 · 10−6 with ηt = 0.1 at the optimal transmission. This means that Bell’s
inequality can be violated with three standard deviations after 2.3 · 1011 runs. Note
that for the sake of simplicity, we use the number of standard deviations with which
a Bell violation is achieved as the figure of merit. For a more precise characterization
of the violation in an actual experiment it would be desirable to consider the the p-
value (Zhang et al., 2011). Considering the number of standard deviations, however,
allows for a simpler evaluation of the requirement to achieve a violation by a different
amount Z by means of Eq. (1.30).

For a typical repetition rate of the laser that excites the quantum-dot single-
photon sources (' 75 MHz (Uppu et al., 2020; Tomm et al., 2021; Ding et al.,
2016)) this approximately corresponds to only 52 minutes. If we further assume an
attenuation length of 20 km, given that the data was obtained for ηt = 0.1, this
allows for a separation distance between Alice and Bob’s stations of more than 90
km. This is a promising result for future experimental implementations.
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1.4.4 Memory considerations

For experiments based on photons emitted from a central source the locality loop-
hole can typically be closed by rapidly switching the measurement basis at each
station. The requirement for closing this loophole is then achieved by having the
measurement stations sufficiently separated such that no signalling is possible, i.e.
by placing the detectors outside their respective light cones.

Note, however, that for protocols based on heralding this requirement concerns
the heralding station as well as Alice and Bob’s stations. For photons transmitted
through vacuum this can be achieved by adding only a minor delay at each station
corresponding to the time it takes to detect the photons at the CHS. On the other
hand if Alice and Bob are far apart it is desirable to use optical fibers for the
transmission of photons between the measurement stations and the CHS. Since the
speed of light is reduced when travelling in the fiber, the heralding is likely to happen
inside the light cone of the stations, thus opening the locality loophole.

This problem can be solved by using local memories at the measurement stations
of Alice and Bob. They would then need to store their corresponding photons until
the heralding is outside the light cone. In this way, any signalling produced by
the CHS would not affect the measurement of the state of the photon, thus closing
the locality loophole. State-of-the-art quantum memories have reached an efficiency
above 85% (Cao et al., 2020) which is in principle sufficient to allow an efficient
violation using this setup, but this would put very stringent requirements on the
other local efficiencies. On the other hand for the application of the considered setup
for DIQKD, the locality loophole is less important and the main challenge is to close
the detection loophole, which can still be achieved without memories.

1.5 Conclusion and outlook

We have studied the feasibility of using single-photon sources for loophole-free Bell
test following the proposal of Kołodyński et al. (2020). The method is general and
applies to any single-photon sources, but for concreteness we focus on sources based
on quantum dots. Since the considered protocol is completely photonic and has a
built-in robustness to losses in the transmission to the CHS, it is highly promising
for violating Bell inequalities over long distances, although the reduced transmission
speed of optical fibers will likely open the locality loophole for fiber based implemen-
tations. Beyond their fundamental interest such detection-loophole-free violations
are of immense technological interest since they allow DIQKD, providing ultimate
security in communication.

The success of the protocol is strongly dependent on the visibility, purity, and
efficiency of the single-photon sources. We find that a HOM visibility of at least
79% and second-order correlation function g(2) < 10% suffice for violating the CHSH
inequality when post-selecting events (not loophole-free). Such metrics are already
demonstrated with state-of-the-art quantum dot sources (Tomm et al., 2021; Uppu
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et al., 2020). Performing a fully loophole-free violation of Bell’s inequality, however,
remains a challenge since this puts very stringent requirements on the efficiency
of the single-photon sources. For realistic parameters we find that efficiencies on
the order of η = 90% are required. This is beyond what has been achieved so far,
but continuous improvements in efficiencies have been achieved in recent years. We
thus believe that sources capable of achieving such efficiencies will be available in
the future. Once the necessary efficiencies are achieved it is highly encouraging
that we find the requirements for the crossed visibility between stations to be lower
than those for photons generated at the same station. For instance comparing Figs.
1.2 and 1.7 we see that if the local indistinguishability is high (V (0)

α ≈ 1) we may
obtain a violation even if the spectral fluctuations between the two quantum dots
are comparable to the decay rate σ ∼ γ. This highly relaxed performance reduces
considerably the experimental complexity.

The stringent requirements on the efficiencies may be remedied by designing more
advanced protocols. In particular it has been shown that by using non-maximally
entangled states and Eberhard’s inequality (or, equivalently, CHSH with the assig-
nation strategy used in the present work) the efficiency threshold for Bell tests can be
lowered to η = 66.7% (Eberhard, 1993). For the current setup such non-maximally
entangled states can by obtained by replacing the beam-splitter at the CHS by a
beam-splitter with a different transmission (Kołodyński et al., 2020). It is therefore
very likely that a similar advantage can be gained for this system. It has, however,
recently been proven that the security of some generalised DIQKD protocols involv-
ing non-maximally entangled states can be bounded to a similar threshold as the
CHSH inequality (Woodhead et al., 2020; Sekatski et al., 2021). It is thus unclear if
a similar advantage can also be obtained for DIQKD. In the future it will be highly
interesting to explore the precise relation between the results we have obtained here
and the conditions for performing DIQKD as well as the possible advantages of
changing to non-maximally entangled states.
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Chapter 2

Two-photon correlations for a
quantum dot single-photon source

This chapter is based on selected sections from the paper in preparation Bjerlin
et al. (2023)1. In the cited work we study the two-photon emission from a reso-
nantly driven single quantum dot. The quantum dot is driven by a pulsed coherent
field, and we find that the excitation pulse length strongly influences the properties
of the quantum dot as a single-photon source. We propose a theory in which the
single-photon properties are given by two effective parameters for the quantum dot,
and proceed to show how two-photon bunching can be strongly suppressed by post
filtering of the outgoing fields. In this chapter we showcase the pulse length’s influ-
ence on the Hong-Ou-Mandel (HOM) visibility, and show how the approximation
V = 1−F · g(2) with the commonly utilized factor F = 2 is incorrect in most of the
short-pulse regime.

2.1 Introduction

One of the crucial components in the development of scalable photonic quantum
technologies is reliable single-photon sources (Thomas et al., 2021), as argued in
the Introduction. They are necessary both in the implementation of photon based
optical quantum computing (Knill et al., 2001; O’brien, 2007), quantum simula-
tion (Aspuru-Guzik et al., 2012), and long-distance quantum communication (Duan
et al., 2001; Sangouard et al., 2011), with the latter point forming the bedrock of the
quantum internet (Kimble, 2008). One avenue towards reliable single-photon sources
are single quantum emitters, like semiconductor quantum dots (QDs) (Aharonovich
et al., 2016; Senellart et al., 2017; Wang et al., 2016). Recent advances have in-
cluded scalable on-demand sources with strings of more than a 100 indistinguishable

1With regards to the paper in preparation, the Ph.D. student participated in the discussions that shaped the
final structure of the study. She derived the relation between the HOM visibility and the second order correlation
function and contributed to the discussion of the rest of the results of the paper. Finally she contributed to the
writing of the analysis of the relation between the HOM visibility and the second order correlation function (and
the corresponding appendix) as well as the conclusion, and contributed to writing the introduction.
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photons (Uppu et al., 2020). Such setups serve as likely candidates for loophole-
free violation of Bell’s inequality (González-Ruiz et al., 2022a) (see Chapter 1) and
Device-Independent Quantum Key Distribution (González-Ruiz et al., 2022b) (see
Chapter 4).

In Chapter 1 we introduced our model for a realistic quantum-dot single-photon
source. This model involved using the Hong-Ou-Mandel (HOM) visibility (Hong
et al., 1987) V to characterise the indistinguishability of the source, and the second-
order correlation function g(2) to describe its purity. When studying the HOM
visibility, however, we limited ourselves to only model the intrinsic visibility V (0)

α,β of
the sources, and not the effect of imperfect purity on it (see Eq. 1.10). We could
not correct the effect of g(2) on the intrinsic visibility due to the fact that we did
not study the different possible natures of the second generated photon. We model
the realistic implementation of this physical setting by considering a QD that is
coherently driven by a pulse of a specific length, which can leak into the detection
mode with a certain probability. In addition, depending on the length of the input
pulse the QD can be excited more than once, thus emitting more than a single
photon.

Although the relation between HOM visibility of a source and its g(2) has been
traditionally oversimplified to V = V (0) − 2g(2) (Somaschi et al., 2016; Wang et
al., 2019), recent work has dug into the problem for separable noise and how the
indistinguishability of the extra photons emitted affects this relation (Ollivier et al.,
2021). In this Chapter we extend the analysis to show the effect of the input pulse
length, as well as include a more detailed description of the cause of impurity and
how it influences the HOM visibility.

2.2 Analysis

In Chapter 1 we have explained how the HOM visibility of single photons provides
with information about their degree of indistinguishability. We start by using the
wave-function ansatz model introduced by Das et al. (2019) to model the state of the
photon after the excitation of the QD, accounting for the two different mechanisms
that affect the impurity mentioned above (re-excitation of the QD and leakage from
the driving pulse). This ansatz is presented and motivated in detail in Bjerlin et al.
(2023). It contains states for fields and emitters with up to two excitations, such
that it is described by∣∣∣Ψ̃(t)

〉
= cg(t) |g,∅〉+ ce(t) |e,∅〉

+
∫
dteφg1(t, te)Ê†(vg(t− te)) |g,∅〉+

∫
dteφe1(t, te)Ê†(vg(t− te)) |e,∅〉

+
∫ ∫

dte2dte1φ2(t, te2, te1)Ê†(vg(t− te2))Ê†(vg(t− te1)) |g,∅〉 ,
(2.1)
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with amplitudes cg(t) and ce(t) of the emitter’s ground- (|g〉) and excited state (|e〉),
respectively. The amplitudes φg1(t, te) and φe1(t, te) correspond to a state with one
photon, emitted at a time te traveling in the waveguide while the emitter is in the
ground state or excited state, respectively. The amplitude φ2(t, te2, te1) corresponds
to two emitted photons, emitted at te1 and te2 > te1, while the emitter is in the
ground state. Since we only consider a maximum of two emissions, we exclude the
possibility of the emitter being excited for the two-photon state. This truncation
after two photon emissions is justified by considering a weak excitation field, and/or
a short pulse such that the emitter does not have time to emit multiple photons2.
We then introduce the QD decay rate Γ rescale the time to simplify the future
calculations, such that ζ = Γt. The interaction between light and matter has been
conveniently described by the slowly-varying field operator

Ê(z) = 1√
2π

∫
dkâke

i(k−k0)z+iω0t , (2.2)

describing the annihilation of photons with wave numbers k and frequencies ωk at
a position z. This field operator obeys the commutation relation

[
Ê(z), Ê†(z′)

]
=

δ(z− z′). A fraction of the coherent input field E should however be included in the
output field, to account for the impurity generated by the leakage. For simplicity
we describe it with a simple two parameter scheme such that for the output field we
include the contribution

E → E|x|e−iθ . (2.3)

The factor |x|< 1 is the fraction of the driving field that leaks into the waveguide,
and θ is the phase shift of that the field acquired through the scattering process.
In Bjerlin et al. (2023) we detail how we transform the output field as it becomes
a combination of the field scattered by the emitter in the transformed picture and
the incident field Ê → Ê+ E (see Fig. [X]). In the complete study, we further apply
different filters to the output field and study their effect. For what concerns this
chapter, we are interested in the two main parameters that affect the measured
purity of the source: the leakage factor x = |x|e−iθ and the rescaled total pulse
length ξT .

2.2.1 HOM Visibility

In order to calculate the HOM visibility we consider a 50:50 beam splitter with
input modes â1 and â2, and output modes â3 and â4. The probability of detecting
coincidence counts Pcc in both output ports simultaneously is given by

Pcc =
〈
â†3(ζe)â3(ζe)â†4(ζ ′e)â4(ζ ′e)

〉
, (2.4)

2This latter point will be revisited in later sections where we calculate two-photon correlations.
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which allows us to obtain the visibility as (Brańczyk, 2017)

V = 1− Pcc
Pcc,dist

, (2.5)

where Pcc,dist is the maximum coincidence counts probability achievable, that is,
for completely distinguishable extra photons.Note that we have assumed that the
good single-photons from the QD are indistinguishable between them (V (0) = 1).
Applying the usual 50:50 beam splitter transformations

â†1 →
1√
2
(
iâ†3 + â†4

)
, â†2 →

1√
2
(
â†3 + iâ†4

)
, (2.6)

and the commutation relations [âi(ζe), â†j(ζ ′e)] = δijδ(ζe − ζ ′e) for the annihilation
operators to Eq.2.4 we obtain the probability of coincidence counts as a function of
the input operators

Pcc = 1
4

(〈
â†1(ζe)â†1(ζ ′e)â1(ζ ′e)â1(ζe)

〉
+
〈
â†2(ζe)â†2(ζ ′e)â2(ζ ′e)â2(ζe)

〉
+2

〈
â†1(ζe)â1(ζe)â†2(ζ ′e)â2(ζ ′e)

〉
− 2

〈
â†1(ζe)â†2(ζ ′e)â1(ζ ′e)â2(ζe)

〉)
.

(2.7)

As we can see, the first two terms are related to the unnormalised second order
correlation function G(2) of the input fields

G(2) (ζT , ζe1, ζe2) =
〈
Ψ̃(ζT )

∣∣∣ â†(ζe1)â†(ζe2)â(ζe2)â(ζe1)
∣∣∣Ψ̃(ζT )

〉
, (2.8)

while the last two are connected to the first order correlation function G(1)

G(1) (ζT , ζe1, ζe2) =
〈
Ψ̃(ζT )

∣∣∣ â†(ζe1)â†(ζe2)
∣∣∣Ψ̃(ζT )

〉
. (2.9)

Thus Pcc yields

Pcc = 1
4

∫∫
dζedζ

′
e

(
G

(2)
1 (ζe, ζ ′e) +G

(2)
2 (ζe, ζ ′e)

+ 2G(1)
1 (ζe, ζe)G(1)

2 (ζ ′e, ζ ′e)− 2G(1)
1 (ζe, ζ ′e)G

(1)
2 (ζ ′e, ζe)

)
. (2.10)

Note that the last term in Eq. 2.10 indicates the level of indistinguishability of the
photons, while the others refer to the usual one and two-photon correlations. On
the other hand, we obtain Pcc,dis taking Eq. (2.10) in the limit where G(1)

i (ζ ′e, ζ ′e) = 0
for i = 1, 2:

Pcc,dist = 1
4

∫∫
dζedζ

′
e(G

(2)
1 (ζe, ζ ′e) +G

(2)
2 (ζe, ζ ′e) + 2G(1)

1 (ζe, ζe)G(1)
2 (ζ ′e, ζ ′e)) . (2.11)

If we assume the sources to be identical for both of the input ports of the beam
splitter (meaning G(1)

1 = G
(1)
2 ≡ G(1) and G(2)

1 = G
(2)
2 ≡ G(2)), from Eqs. 2.10 and
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2.11 we obtain that the HOM visibility yields

V =
∫∫
dζedζ

′
e

∣∣∣G(1)(ζe, ζ ′e)
∣∣∣2∫∫

dζedζ ′e (G(2)(ζe, ζ ′e) +G(1)(ζe, ζe)G(1)(ζ ′e, ζ ′e))
, (2.12)

which we will analyse further in the following section.

2.2.2 Bounds on the relation between HOM visibility and purity

We start by describing the multiphoton state. The density matrix is

ρ̂ =
∑
i

Pi |i〉 〈i| = P0 |∅〉 〈∅|+ P1 |1〉 〈1|+ P2 |2〉 〈2|+ ... (2.13)

where ∑i Pi = 1 holds. We consider the probability generation of three or more
simultaneous photons very small, thus truncating the sum as ρ̂ = P0ρ̂0 +P1ρ̂1 +P2ρ̂2,
where we have defined the vacuum term as ρ̂0 ≡ |∅〉 〈∅|, the single-photon term as

ρ̂1 =
∫∫

dt1dt2ψ
∗(t1)ψ(t2)â†(t1) |∅〉 〈∅| â(t2) , (2.14)

and the two-photon term:

ρ̂2 = 1
N2

∫∫∫∫
dt1dt2dt3dt4φ

∗(t1)ζ∗(t2)φ(t3)ζ(t4)â†(t1)â†(t2) |∅〉 〈∅| â(t3)â(t4) ,
(2.15)

where N2 = 1 +
∫∫
dt1dt2φ

∗(t1)φ(t2)ζ∗(t2)ζ(t1) by normalisation (we claim that all
the spectral distributions are normalized:

∫∞
−∞|f(t)|2dt = 1). On the other hand,

the second order correlation function g(2) is given by:

g(2) =
∫∫
dτ1dτ2G

(2)(τ1, τ2)∫∫
dτ1dτ2G(1)(τ1, τ1)G(1)(τ2, τ2) =

〈∫∫
dτ1dτ2â

†(τ1)â†(τ2)â(τ2)â(τ1)
〉

〈
∫
dτ1â†(τ1)â(τ1)〉 〈

∫
dτ2â†(τ2)â(τ2)〉 .

(2.16)
Let us calculate each of the expectation values independently. We start by calculat-
ing:∫

dτ1G
(1)(τ1, τ1) =

〈∫
dτ1â

†(τ1)â(τ1)
〉

= Tr
{

(P0ρ̂0 + P1ρ̂1 + P2ρ̂2)
∫
dτ1â

†(τ1)â(τ1)
}

= P1 + 2P2 . (2.17)

The expectation value
〈∫
dτ1dτ2â

†(τ1)â†(τ2)â(τ2)â(τ1)
〉
is calculated in a very similar

way. This time, only the two-photon component of the density matrix gives a non-
zero contribution:∫∫

dτ1dτ2G
(2)(τ1, τ2) =

〈∫
dτ1dτ2â

†(τ1)â†(τ2)â(τ2)â(τ1)
〉

= 2P2 . (2.18)
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Inserting Eqs. (2.17) and (2.18) in the definition of g(2) (Eq. (2.16)) we finally
obtain:

g(2) = 2P2

(P1 + 2P2)2 '
2P2

P 2
1
, (2.19)

approximating to first order in P2. Furthermore, we insert Eqs. (2.17) and (2.18)
into the probabilities from Eq. (2.5) to obtain the HOM visibility as a function of
the one-photon (P1) and two-photon probabilities (P2):

V = 1−
P 2

1 + 4P1P2 + 2P2 −
∫∫
dζedζ

′
e

∣∣∣G(1)(ζe, ζ ′e)
∣∣∣2

P 2
1 + 4P1P2 + 2P2

. (2.20)

We are most interested in finding the slope of the second order correlation function
with regards to the HOM visibility,

V = 1− Fg(2) (2.21)
which we just defined as F . We then further calculate∣∣∣G(1)(t, t′)

∣∣∣2 =
〈
â†(t)â(t′)

〉 〈
â†(t)â(t′)

〉
=
(
P1ψ(t)ψ∗(t′)

+P2
φ(t)φ∗(t′) + ζ(t)ζ∗(t′) + φ∗(t′)ζ(t)

∫
dτφ(τ)ζ∗(τ) + φ(t)ζ∗(t′)

∫
dτφ∗(τ)ζ(τ)

1 +
∫
dτdτ ′φ∗(τ)ζ∗(τ ′)φ(τ ′)ζ(τ)

)(
C.c.

)
.

(2.22)
Now integrating over time and approximating to first order in P2:∫∫

dtdt′
∣∣∣G(1)(t, t′)

∣∣∣2 = P 2
1 + 2P1P2

1 +
∫
dτdτ ′φ∗(τ)ζ∗(τ ′)φ(τ ′)ζ(τ) ·∫∫

dtdt′
[
φ∗(t)ψ(t)ψ∗(t′)φ(t′) + ζ∗(t)ψ(t)ψ∗(t′)ζ(t′)

+
∫
dτ
(
ψ∗(t′)ζ(t′)φ∗(t)ψ(t)ζ∗(τ)φ(τ) + ψ∗(t′)φ(t′)ζ∗(t)ψ(t)φ∗(τ)ζ(τ)

)]
, (2.23)

so that we can fully calculate Eq. 2.20.

Indistinguishable photons

If all photons from the single-photon sources are indistinguishable, then so are their
spectral functions ψ(t) = φ(t) = ζ(t). Thus∫∫

dtdt′
∣∣∣G(1)(t, t′)

∣∣∣2 = P 2
1 + 2P1P2

1 +
∫
dτdτ ′ψ∗(τ)ψ∗(τ ′)ψ(τ ′)ψ(τ) ·∫∫

dtdt′
[
ψ∗(t)ψ(t)ψ∗(t′)ψ(t′) + ψ∗(t)ψ(t)ψ∗(t′)ψ(t′)

+
∫
dτ
(
ψ∗(t′)ψ(t′)ψ∗(t)ψ(t)ψ∗(τ)ψ(τ) + ψ∗(t′)ψ(t′)ψ∗(t)ψ(t)ψ∗(τ)ψ(τ)

)]
= P 2

1 + 2P1P2

2 (1 + 1 + 1 + 1)) = P 2
1 + 4P1P2 , (2.24)
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and therefore the visibility yields

V = 1− 2P2

P 2
1 + 4P1P2 + 2P2

' 1− 2P2

P 2
1

= 1− g(2) → F = 1 . (2.25)

However, in case we consider a coherent state, then P 2
1 ≈ 2P2. Then

Vcoh ' 1− 2P2

P 2
1 + 2P2

≈ 1− 2P2

2P 2
1

= 1− g(2)

2 → Fcoh = 1
2 .

(2.26)

This result agrees with the fact that g(2) = 1 for a coherent pulse.

Secondly emitted photons are distinguishable from the others

The extra photons are distinguishable from the good single-photons. All the extra
photons are however identical, then ψ(t) = φ(t) holds. Thus∫∫

dtdt′
∣∣∣G(1)(t, t′)

∣∣∣2 = P 2
1 + 2P1P2 , (2.27)

and the visibility for both the single-photon and coherent case:

V ' 1− (1 + P1) 2P2

P 2
1

= 1− (1 + P1) g(2) → F = 1 + P1

Vcoh ≈ 1− (1 + P1) 2P2

2P 2
1

= 1− (1 + P1)
2 g(2) → Fcoh = 1 + P1

2 .

(2.28)

For a good single-photon source P1 is close to 1, and therefore F ≈ 2. It is in this
case (and only under these conditions) that the HOM visibility can be expressed as
V = 1− 2g(2), as usually expressed in the single-photon source community.

All photons are distinguishable

Finally if all photons are distinguishable, then ψ(t) 6= φ(t) 6= ζ(t) holds. Thus∫∫
dtdt′

∣∣∣G(1)(t, t′)
∣∣∣2 = P 2

1 , (2.29)

such that the distinguishability term only has the one-photon contribution. Then
the visibilities reduce to

V ' 1− (1 + P1) 2P2

P 2
1

= 1− (1 + 2P1) g(2) → F = 1 + 2P1

Vcoh ≈ 1− (1 + 2P1) 2P2

2P 2
1

= 1− (1 + 2P1)
2 g(2) → Fcoh = 1 + 2P1

2 ,

(2.30)

which again for good single-photon sources (P1 ≈ 1) means that F = 3.
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Figure 2.1: HOM visibility of QD in a leaky waveguide with phase shift θ = π/2, representing an
estimate of the average phase, at different pulse lengths, plotted against the corresponding value of g(2).
The functions are multivalued, since the visibility is reduced both in the long- and the short-pulse limit.
The turning point corresponds to the maximum visibility and the minimum in g(2).

2.3 Results

To investigate the relation between the two-photon correlations and visibility, we
consider the factor F , implicitly defined through V = 1−F ·g(2) (see Fig. 2.1). This
factor is commonly employed in visibility calculations to account for the reduction in
visibility due to two-photon pollution from single-photon sources. As shown in the
previous section, the factor can be approximated by assuming a certain distinguisha-
bility between the main single-photon components and the additional photons. For
a more realistic model of the single-photon source, however, the true relations can
be calculated directly from computing F = (1− V )/g(2). This gives insight into the
subtle interplay between pulse length, two-photon pollution, and visibility.

In Fig. 2.2, the factor F is calculated for three different leakage factors |x| over a
range of phases and pulse lengths. We first note the behavior of the factor for θ = 0,
which is strongly peaked around a pulse length that corresponds to the minimum of
g(2). This is an effect of interference between the leaked field and the field emitted
by the QD. For the other phases, the factor is bounded so that F < 3. This
indicates that in the maximally distinguishable limit, where the second emitted
photon has minimal overlap with the first emitted photon, one should estimate
V = 1−3 ·g(2). It is also clear that the effective factor is increased by the application
of a filter in the short-pulse limit. This can be interpreted as the filter increasing
the distinguishablility of first and second emitted photons, since higher F equals
higher distinguishability. An explanation of this behavior is that both the single-
and two-photon components of the leaked field are filtered out in the short-pulse
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π /2

Figure 2.2: Factor F = (1 − V )/g(2) at different pulse lengths. The factor F represents a commonly
utilized parameter used to estimate the intrinsic visibility V (0) of single-photon sources from measurements
of V and g(2). The measured factor varies across different pulse lengths, phases and leakage fractions |x|,
so should therefore not be approximated as constant by default.
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limit. Photons remain distinguishable to a larger extent since the QD single photon
remains in the output. At some short pulse the entire leaked field is filtered out,
and the two-photon component is lost. At this point F becomes undefined.

2.4 Conclusions and Outlook

We have studied the two-photon correlations of a quantum-dot single-photon source
placed in a leaky waveguide when excited by a coherent field. We study the relation
between the second order correlation function g(2) and the HOM visibility V . Con-
trary to the common representation in the literature of F = (1 − V )/g(2) = 2, the
factor F is in fact bounded between F ∈ [1, 3] for single photon sources depending
on the degree of photon distinguishability. The distinguishability of the interfered
photons will depend on the mechanism that reduces the purity of the sources, and
thus the input pulse length. By choosing the pulse length at which g(2) is minimum,
we see how the HOM visibility can be maximised, which we explored the importance
of in Chapters 1 and further in 4.
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Chapter 3

Entanglement properties of a
quantum-dot biexciton cascade in
a chiral nanophotonic waveguide

This chapter is based on the preprint González-Ruiz et al. (2023)1. We analyse the
entanglement properties of deterministic path-entangled photonic states generated
by coupling the emission of a quantum-dot biexciton cascade to a chiral nanopho-
tonic waveguide, as implemented by Østfeldt et al. (2022). We model the degree
of entanglement through the concurrence of the two-photon entangled state in the
presence of realistic experimental imperfections. The model accounts for imperfect
chiral emitter-photon interactions in the waveguide and the asymmetric coupling
of the exciton levels introduced by fine-structure splitting along with time-jitter in
the detection of photons. The analysis shows that the approach offers a promising
platform for deterministically generating entanglement in integrated nanophotonic
systems in the presence of realistic experimental imperfections.

3.1 Introduction

The generation of high-fidelity entanglement is key for the development of modern
quantum technologies (Horodecki et al., 2009; Jozsa et al., 2003). Entangled states
of photons have been widely generated probabilistically by employing spontaneous
parametric down-conversion (SPDC) (Zhong et al., 2018), but the probabilistic na-
ture of this process is a major obstacle for scaling up to high photon numbers. The
possibility of entanglement generation on demand is of utmost importance for a
wide range of quantum information applications, such as measurement-based quan-

1The paper contains a theoretical investigation of an experiment carried out in the quantum Photonics group
(Østfeldt et al., 2022). The Ph.D. student participated in the planning of how the analysis would be structured. She
did the theoretical analysis and modelling under the supervision of AS. FT, RU and PL designed the experimental
implementation of the system and contributed with relevant discussions of the theoretical analysis. The Ph.D.
student wrote the first version of the complete manuscript and contributed to the posterior revisions.
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Figure 3.1: Entanglement generation scheme and level structure of the quantum dot (QD). The QD
(yellow semisphere) is placed in a chiral nanowaveguide, and is excited from above, perpendicularly to the
nanostructure plane. The photons emitted by the QD can couple to the left (A path) or to the right (B
path). The light is collected and frequency-filtered to separate between the biexciton (ωXX) and exciton
(ωX) photons in order to measure the desired temporal correlations as a function of τ , the difference
between the two emission times. The level structure of the QD can be expressed in two different bases:
a) Circular basis. The biexciton level |XX〉, with energy h̄ωXX , emits two opposite circularly-polarised
photons (circular right and left polarised with γ± decay rates, respectively). In this picture, the two exciton
levels |X+〉 and |X−〉 have the same energy h̄ωX , but are coupled at a frequency equal to the fine-structure
splitting S, which makes the state time-dependent. The exciton |X+〉 decays at rate γ′− to the ground
state |g〉, and so does |X−〉 at a rate γ′+. b) Linear basis. The biexciton level |XX〉 has the same energy as
in the circular basis, but the two emitted photons have opposite linear polarisation (horizontal and vertical
with γx and γy decay rates, respectively). The two exciton levels are no longer degenerate, but split into
the exciton levels |Xx〉 and |Xy〉, that are stationary in time. The exciton level |Xx〉 (|Xy〉) couples to the
x (y) in-plane dipole component and has energy ωx + S/2 (ωx − S/2). It decays to the ground state |g〉 at
a rate γ′x (γ′y).
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tum computing (Bartolucci et al., 2021; Briegel et al., 2009). The biexciton cascade
from quantum-dot (QD) photon sources has been investigated as an on-demand en-
tanglement generator (Benson et al., 2000; Akopian et al., 2006; Liu et al., 2019;
Huber et al., 2018). The emitted states are, however, entangled in the polarisa-
tion degree of freedom, which is incompatible with implementations in integrated
photonic circuits (Politi et al., 2009) that typically support only a single polarisa-
tion mode. This poses a challenge for future integration and scalability of quantum
technologies (Wang et al., 2020) relying on biexciton-cascade entanglement sources.

A solution to the integration of the biexciton source into nanophotonic devices
was presented in Østfeldt et al. (2022). Here the photon emission from a cascaded-
biexciton decay from InGaAs quantum dots was coupled to a chiral nanophotonic
waveguide (Söllner et al., 2015) (see Fig. 5.2). The polarisation-dependent direc-
tional emission enabled by chiral coupling of dipoles in these waveguides enable a
promising route for on-chip, path-entangled photon generation. Two-photon exci-
tation of the quantum dot prepares the system in the biexciton state |XX〉 with
energy ωXX + ωX , which decays through two possible channels to the exciton levels
|X±〉 (see Fig. 5.2(a)). In a homogenous medium, the biexciton decays radiatively
to one of the exciton levels, emitting a photon with either right (σ+) or left (σ−)
circular polarisation. The two exciton levels, |X+〉 and |X−〉, are degenerate with
energy ωX and decay to the ground state |g〉 emitting photons with opposite circular
polarisation to that emitted during the biexciton decay due to angular momentum
conservation. The two emitted photons are thus entangled in polarisation as there
is no information regarding which decay path the system followed. To turn this into
a chip-compatible, path-entangled photon source, the QD is placed in a single-mode
chiral photonic crystal waveguide which allows converting the polarisation of the
transition dipole moment to the emission direction of the photon, i.e. σ− dipoles
emit to the left (path A) and σ+ dipoles emit to the right (path B). The polarisation
entangled state created by the biexciton cascade is thus translated into path encod-
ing that can be used in integrated photonic circuits. Østfeldt et al. (2022) reported
on experimental measurements of the dynamics by out-coupling the photons from
the waveguide and frequency-filtering them in order to separate photons emitted on
the biexciton and exciton transitions. The desired correlations were then measured
through a Hanbury-Brown-Twiss (HBT) experiment (Brown et al., 1954), as shown
in Fig. 5.2.

While an ideal QD that is precisely positioned at a chiral point could generate
maximally entangled, path-encoded photon pairs, imperfections in the QD as well
as in the chiral coupling could impact the degree of entanglement. In particular, in-
trinsic asymmetry of the QD could lead to coupling between the exciton states |X±〉
through a spin-flip oscillation with a frequency S that is known as the fine-structure
splitting (FSS) of the QD. In this work we provide a full theoretical analysis of the
entanglement properties of the path-entangled state accounting for all these imper-
fections. This analysis already successfully described the experimental findings in
Østfeldt et al. (2022), but here we provide the full details of the theory and apply it
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to systematically analyse the impact of various errors on the degree of entanglement.
In particular, the aforementioned FSS induces a frequency splitting of the exciton
levels (see Fig. 5.2), which effectively creates a time dependence of the entangled
polarisation states. This can reduce the quality of entanglement when imperfect
time detection of photons is taken into account. Moreover, since the photons emit-
ted in the two different decay paths in Fig. 5.2(b) have different polarisations, the
two paths may occur with different probabilities in photonic nanostructures, given
by the polarisation dependent local density of states. These effects, together with
imperfect chiral coupling to the waveguide, can reduce the amount of entanglement.
The analysis and understanding of these effects will be important for further explo-
rations of the biexciton cascade as an on-demand source of path-entangled photons
in integrated quantum information platforms.

3.2 Analysis

We start our analysis by introducing the Hamiltonian of the system and a wavefunc-
tion ansatz for the state generated by means of the light-mater interaction with the
QD. The state is then fully characterised through studying its evolution by solving
Schrödinger’s equation.

3.2.1 The Hamiltonian and wavefunction ansatz

The biexciton level structure can be expressed in two different bases. In the linear
polarisation basis (Fig. 5.2(b)), the emitted photons are linearly polarised (either
horizontally or vertically, with γx and γy decay rates, respectively), while in the
circular basis (Fig. 5.2(a)) the photons are circularly polarised (with right- and left-
circularly polarised photons, and γ+ and γ− decay rates, respectively). In the linear
basis the two exciton levels have different energies, split by the FSS S, while in the
circular basis the levels are degenerate. In the latter basis, there is a time-dependent
oscillation between the two exciton levels at a frequency S.

The full system is described by the total Hamiltonian Ĥ = Ĥ0 +Ĥf +Ĥint, which
can be decomposed into the free energy of the emitter- Ĥ0, the free field- Ĥf and
the interaction Ĥint Hamiltonians. These are given by

Ĥ0 = h̄ (ωXX + ωX) |XX〉 〈XX|+ h̄
(
ωX + S

2

)
|Xx〉 〈Xx|

+ h̄
(
ωX −

S

2

)
|Xy〉 〈Xy|

Ĥf = h̄
∫ (

ωX,kâ
†
kâk + ωXX,kâ

′†
kâ
′
k

)
dk

Ĥint = − q

m0
Â · p̂ ,

(3.1)
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where we have chosen the Coulomb gauge with vector potential A. The QD is de-
scribed by the coordinate r with the conjugate variable or generalised momentum
p, charge q and mass m0 (Lodahl et al., 2015). Ideally, the energy of the biexci-
ton (|XX〉) and exciton (|Xα〉 with α = x, y) levels is given by h̄ωXX and h̄ωX ,
respectively. The FSS S, however, splits the exciton levels into h̄(ωX ± S/2) in the
linear polarisation basis. Note that we express the total Hamiltonian in a linear
polarisation basis as it simplifies the temporal dynamics of the system. The field
annihilation operators âk are momentum dependent, where k expresses the corre-
sponding wavevector,and the prime indicates whether it annihilates a biexciton (â′k)
or an exciton (âk) photon. The biexciton and exciton binding energies are assumed
to be sufficiently different to treat them as two independent reservoirs. This as-
sumption is motivated by the 2 – 3 meV energy splitting between the exciton and
biexciton binding energies observed in QDs, which is over three orders of magnitude
larger than the natural linewidths of these transitions (Pedersen et al., 2020).

To put the interaction Hamiltonian into a simpler form, the conjugate variable
p (proportional to the dipole operator) can be expressed in terms of the transition
matrix elements p̂ = ∑

l,m 〈l| p̂ |m〉 |l〉 〈m|, where the indexes l and m represent the
excited and ground states of the transition, respectively. This allows us to express
the interaction Hamiltonian as

Ĥint =
∑
l,m,k
〈l| p̂ |m〉 ·Uk(r)âk |l〉 〈m|+ H.c. , (3.2)

where Uk(r) is the modefunction of the field. We consider that the field propagates
in the waveguide along the x direction. Following Bloch’s theorem we thus have
Uk(r) = ek(r)eikx, where ek(r) is the Bloch function describing the electric field
with wavenumber k at the QD position r, and the field only propagates in the x
direction. Moreover we assume that the QD only interacts within a narrow frequency
range around the resonance frequency with wavenumbers ±k0 yielding

Ĥint =
∑
l,m

k≈±k0

〈l| p̂ |m〉 · ek(r)eikxâk |l〉 〈m|+ H.c. , (3.3)

where for brevity we have taken only the non primed annihilation operators, with
the sign of k indicating whether the field propagates to the right (+k0) or to the
left (−k0). By assuming the same wavenumber in both directions, we implicitly
assume time-reversal symmetry for the propagation of the field in the waveguide
(i.e. without the QDs). This is valid as long as we can e.g. neglect the intrinsic
Faraday effect of the waveguide. Since waveguides are very broad band this is
typically an excellent approximation and does not exclude any possible violation of
time-reversal symmetry of the QD if an external magnetic field was applied.

The polarisation of the emitted light is determined by the symmetry of the states,
which results in the following matrix elements for the dipole forbidden transitions
in the linear polarisation basis

〈XX| p̂x |Xy〉 = 〈XX| p̂y |Xx〉 = 〈Xx| p̂y |g〉 = 〈Xy| p̂x |g〉 = 0 , (3.4)
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as the x (y) component of the dipole only couples to the horizontally (vertically)
polarised light. Moreover, the allowed transitions from the exciton levels have a
dipole moment defined as P ,

〈Xx| p̂x |g〉 = 〈Xy| p̂y |g〉 = P , (3.5)

whereas the two possible biexciton decay transitions are given by (Lodahl et al.,
2015)

〈XX| p̂x |Xx〉 = 〈XX| p̂y |Xy〉 =
√

2P . (3.6)
We now insert these dipole transitions in the interaction Hamiltonian from Eq. (3.3)
and calculate its Fourier transform. For now we only consider the modes propagating
to the right, yielding

Ĥint = −P ·
[√

2
(
εk0,x(r) |XX〉 〈Xx|+ εk0,y(r) |XX〉 〈Xy|

)
eik0x0 âB(x0)

+
(
εk′0,x(r) |Xx〉 〈g|+ εk′0,y(r) |Xy〉 〈g|

)
eik0x0 â′B(x0)

]
+ H.c., (3.7)

where the position-dependent annihilation operator ân(x) is defined as

ân(x) = 1√
2π

∫ ∞
0

ân,±ke
i(k−k0)xdk , (3.8)

with n = B(A) denoting fields propagating to the right (left) and the sign being
positive (negative) for path B (A) and x0 is the position of the emitter. We note that
since we separate the annihilation operator into left and right propagating modes (A
and B) the limit of the integration is k = 0. In practice, however, we only expect the
annihilation operator to give a contribution for k ≈ ±k0. We can therefore extend
the limit of integration to −∞ yielding the commutator

[ân(x), â†n′(x′)] = δn,n′δ(x− x′) . (3.9)

We further note that with the definition in Eq. (3.8) we make the convention that
both left and right propagating fields are traveling towards positive x, i.e. the
direction of the x-axis is reversed for the left propagating modes.

To relate the coupling of the right propagating modes with the left propagating
modes we again invoke time-reversal symmetry of the waveguide modes. If the
local electric field εk0,x(r) is a solution for the waveguide, then by time-reversal
symmetry the solution for a wave propagating in the opposite direction is given
by ε−k0(r) = ε∗k0(r). This allows us to obtain the full interaction Hamiltonian by
combining Eq. (3.7) with the corresponding expression for back-propagating waves.
This results in

Ĥint = −h̄
∑
α

[(
gA,αâA(0) + gB,αâB(0)

)
|XX〉 〈Xα|

+
(
g′A,αâ

′
A(0) + g′B,αâ

′
B(0)

)
|Xα〉 〈g|+ H.c.

]
, (3.10)
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where we have set x0 = 0 for simplicity and defined the complex coupling constants
gn,α = |gn,α,n|eiφn,α and their phases in relation to the local electric field components
ε±k0,i as

gA,x =
√

2Pε∗k0,x(r),
gB,x =

√
2Pεk0,x(r),

g′A,x = Pε′∗k0,x(r),
g′B,x = Pε′k0,x(r) .

gA,y =
√

2Pε∗k0,y(r),
gB,y =

√
2Pεk0,y(r),

g′A,y = Pε′∗k0,y(r),
g′B,y = Pε′k0,y(r) .

(3.11)

The coupling constants in Eq. (3.11) describe the light-matter interaction between
the field and the waveguide including the chirality. In particular, their magnitude
describes the coupling of a horizontally or vertically polarised photon (through the
x and y components of the dipole, respectively) to the left or to the right paths.
From Eq. (3.11) we note that |gA,α|= |gB,α| for α = x, y, so that linearly polarized
dipoles always have the same coupling constant and hence the same decay rate in
both directions A and B. This does not, however, exclude that circular dipoles can
have chiral interaction and predominantly decay in one direction. The existence of
such chiral interactions is encoded in the relative phase of the coupling constants.
From Eq. (3.11) we find that the phase difference Φ between the phases of the x
and y components of the electric field is

Φ ≡ φx − φy = φA,x − φA,y = − (φB,x − φB,y) , (3.12)

and similarly for the exciton phase difference Φ′. Consider now a circularly polarized
state |X±〉 = (|Xx〉 ± i |Xy〉)/

√
2. We can calculate the coupling constants g′n,+

for the decay of these states into the n = A,B directions from the interaction
Hamiltonian (3.10), yielding

g′n,± = 1√
2

(g′n,x ∓ ig′n,y) . (3.13)

If |g′n,x|= |g′n,y|= g′, the decay rate of the circular states into the two directions will
thus fulfill

γ′A,± ∝ |g′A,±|2= g′
2(1± sin Φ′), γ′B,± ∝ |g′B,±|2= g′

2(1∓ sin Φ′) . (3.14)

For Φ′ = π/2 the x and y components of the field in the waveguide are phase-
shifted corresponding to circular polarisation. Furthermore, whether the waveguide
mode is left- or right-hand circularly polarized is linked to the propagation direction
of the light. As a consequence, the system exhibits perfect chiral coupling with
the circularly polarized states coupling only to a single propagation direction, i.e.
γ′A,+ 6= 0 and γ′B,+ = 0, with the directions reversed for the opposite circular state.
Complete absence of chirality occurs when Φ′ = 0, where the field in the waveguide is
linearly polzarized. Thus, the parameters Φ and Φ′ represent the degree of chirality
of the system, which we employ in the subsequent sections of this article.
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To describe the emission into the waveguide, it is convenient to change the Hamil-
tonian into the position basis. While the Fourier transform of the free energy term
in the total Hamiltonian (3.1) is itself, Fourier transforming the free field term yields

Ĥf =
∑
n

[
ih̄
∫ (

vgXX
∂â†n(x)
∂x

ân(x) + vgX
∂â′†n(x)
∂x

â′n(x)
)
dx

+ h̄
∫ (

ωX,kâ
†
n,kân,k + h̄ωXX,kâ

′†
n,kâ

′
n,k

)
dk
]
, (3.15)

where the group velocities associated with the biexciton and exciton energy levels
are given by vg,XX = ∂ωXX,k/∂k and vg,X = ∂ωX,k/∂k respectively. Note that these
two group velocities could be different due to the dispersion of the waveguide at the
different emission wavelengths of the exciton and biexciton levels.

We can now write a wavefunction ansatz for the total state of the system in
the real space domain. The state should describe that up to two photons can
be emitted by the biexciton decay and that they couple into the left- or right-
propagating waveguide modes. Based on the methods from Das et al. (2019) (with
similar methods being developed in Refs. (Fischer et al., 2018; Trivedi et al., 2018;
Heuck et al., 2020)) we use the following ansatz:

|ψ(t)〉 = e−i(ωXX+ωX)t
(
cXX(t) |XX〉 |∅〉

+√vgXX
∑
α,n

∫
dtXXψα,n(t, tXX)â†n(vgXX(t− tXX)) |Xα〉 |∅〉

+√vgXXvgX
∑
n,m

∫∫
dtXXdtXψn,m(t, tXX , tX)â†n(vgXX(t−tXX))â′†m(vgX(t−tX)) |g〉 |∅〉

)
,

(3.16)

where tX and tXX are the two emission times with tXX < tX . This state describes
that with an amplitude cXX(t) the system is in the biexciton state with the field
being in the vacuum state |∅〉. Since the system is initially excited to this state
we have cXX(t = 0) = 1. The amplitude ψα,n(t, tXX) describes the state after the
emission of a photon in the direction n = A,B at time tXX by the decay into the
exciton state |Xα〉. Since the photon propagates in the waveguide, this is associated
with a photon at position x = vgXX(t − tXX). As this state still evolves in time
the amplitude has an explicit dependence on time t with the amplitude vanishing
before the emission, ψα,n(t, tXX) = 0 if t ≤ tXX . Finally, after the emission of both
photons, the system is in the ground state |g〉 and the two photons are emitted
in directions n,m with amplitude ψn,m(t, tXX , tX). This amplitude vanishes unless
t ≥ tX ≥ tXX . It should be noted that both for the left and right propagation
directions in the waveguide x ∈ [0,∞], i.e. the reference frame is placed such that
in both directions x is positive after the QD.
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3.2.2 Solving the Schrödinger equation

The wavefunctions |ψ(t)〉 from Eq. (3.16) should be calculated to describe the state.
We thus apply Schrödinger’s equation ih̄∂ |ψ〉 /∂t = Ĥ |ψ〉 to the wavefunction
ansatz using the space-domain Hamiltonian. Following the procedure from Das
et al. (2019), we obtain the set of coupled differential equations:

ċXX(t) = − i
√
vgXXh̄

∑
α,n

gα,nψα,n(t, t),

ψ̇x,n(t, tXX) = iS

2h̄ψx,n(t, tXX)−
ig∗x,ncXX(t)
√
vgXXh̄

δ(t− tXX),

− i
√
vgXh̄

∑
m

g′x,nψn,m(t, tXX , t),

ψ̇y,n(t, tXX) = − iS2h̄ψy,n(t, tXX)−
ig∗y,ncXX(t)
√
vgXXh̄

δ(t− tXX)

− i
√
vgXh̄

∑
m

g′y,nψn,m(t, tXX , t),

ψ̇n,m(t, tXX , tX) = − i
√
vgXh̄

∑
α

g′∗α,nψα,n(t, tXX)δ(t− tX) .

(3.17)

We then apply the Laplace transform to the nine equations in Eq. (3.17), with the
system initially prepared in the biexciton state (cXX(t = 0) = 1). Inverting the
Laplace transformation now yields

ψ̇x,n(t, tXX) = −
ig∗x,ncXX(t)
√
vgXXh̄

δ(t− tXX)

−
(
−iS + γ′x

2h̄

)
ψx,n(t, tXX)− Γ

2h̄ψy,n(t, tXX)

ψ̇y,n(t, tXX) = −
ig∗y,ncXX(t)
√
vgXXh̄

δ(t− tXX)

−
(
iS + γ′y

2h̄

)
ψy,n(t, tXX)− Γ∗

2h̄ψx,n(t, tXX) ,

(3.18)
with the spontaneous emission rates given by

γ(′)
α =

∑
n

γ(′)
α,n ≡

∑
n

|g(′)
α,n|2

vgX
. (3.19)

A coupling between the |Xx〉 and |Xy〉 states mediated by the local electric field of
the waveguide is captured by the cross terms with coupling coefficient

Γ =
g′A,xg

′∗
A,y + g′B,xg

′∗
B,y

vgX
, (3.20)
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which is real due to time-reversal symmetry (3.11). This coupling is important if
e.g. the local electric field in the waveguide is diagonally polarized, which leads to
Γ = γ′x = γ′y.

When solving the coupled set of differential equations (3.18) it is convenient to
work in a basis that diagonalizes the dynamics, i.e. where the equations decouple.
For a rotationally symmetric system, this is the case for any basis, but it is no longer
the case once the symmetry is broken. The FSS is induced by the asymmetry of the
QD and is assumed to be in the x and y-directions such that Eqs. (3.18) decouple
in that basis. On the other hand, the local waveguide field may have a different
orientation, which also breaks the symmetry and thus leads to a coupling between
the equations, i.e. Γ 6= 0. In practice, however, we typically have S � Γ, e.g. in the
experimental implementation in Østfeldt et al. (2022) the fine structure splitting S
was an order of magnitude larger than the exciton emission rate (γ′x + γ′y)/2. The
coupling between the exciton levels (|Xx〉 and |Xy〉) can therefore be neglected and
we set Γ = 0. We note that this assumption may lead to inconsistencies in the
obtained results due to incorrect normalization of the state in QDs with small FSS,
i.e., S comparable to (γ′x+γ′y)/2. In the subsequent sections, we use S = 4(γ′x+γ′y)/2
for which we find that the magnitude differs from unity by <6%.

We now solve the two coupled differential equations from Eq. (3.18) by taking
the aforementioned limit Γ = 0, such that the equations decouple. We can then
straightforwardly solve them by again applying the Laplace transform, obtaining

cXX(t) = e−
1
2h̄ (γx+γy)t

ψx,n(t, tXX) = −i√γx,ne−
1
2h̄ (γx+γy)tXX− 1

2h̄ (γ′x+iS)(t−tXX)−iφx,nθ(t− tXX)
ψy,n(t, tXX) = −i√γy,ne−

1
2h̄ (γx+γy)tXX− 1

2h̄ (γ′x−iS)(t−tXX)−iφy,nθ(t− tXX)

ψn,m(t, tXX , tX) = −e− 1
2h̄ (γx+γy)tXX

(√
γx,nγ′x,me

− 1
2h̄ (γ′x+iS)(tX−tXX)−i(φx,n+φ′x,m)

+
√
γy,nγ′y,me

− 1
2h̄(γ′y−iS)(tX−tXX)−i(φy,n+φ′y,m)

)
θ(t− tX)θ(tX − tXX) .

(3.21)

We now calculate the probability of detecting two photons simultaneously at the
output of the waveguide in order to analyse the quality of the entanglement. To do
so we correlate the biexciton and exciton photons with a time delay τ in two different
settings: when both are coupled to the forward or back-propagating direction (noted
as AXAXX and BXBXX respectively) and when they couple to opposite directions
(AXBXX and BXAXX):

Pn,m(t, tXX , tXX + τ) = |vgXX ||vgX |〈ψ(t)| â†n(vgXXt)ân(vgXXt)
· â′m† (vgX(t− τ)) â′m (vgX(t− τ)) |ψ(t)〉 .

(3.22)
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With the wavefunction ansatz Eq. (3.16) and the results from Eq. (3.21) we obtain

Pn,m = |ψn,m(t, tXX , tXX + τ)|2

= e−(γx+γy)tXX
[
γx,nγ

′
x,ne

−γ′xτ + γy,nγ
′
y,ne

−γ′yτ + 2
√
γx,nγy,nγ′x,mγ

′
y,me

− 1
2 (γ′x+γ′y)τ

· cos
(
Sτ + (φx,n − φy,n) + (φ′x,m − φ′y,m)

) ]
θ(t− tXX − τ) .

(3.23)

3.2.3 Entanglement generation

The state produced by the biexciton cascade coupled to the chiral waveguide has
two different degrees of freedom: the path followed (to the left, A, or to the right,
B) and the respective times of emission of the biexciton (tXX) and exciton (tX)
photons. We project this state in time space by fixing the two times of detection
tX − tXX ≡ τ > 0. Note that the characteristics of the state produced depends only
on the time difference τ .

From our wavefunction ansatz in Eq. (3.16), we post-select the two-photon emis-
sion terms by conditioning on detecting photons at times t = tXX and t = tX , thus
obtaining the state

|ψ(τ)〉 = 1√
N

(
ψAA(τ) |AA〉+ψAB(τ) |AB〉+ψBA(τ) |BA〉+ψBB(τ) |BB〉

)
, (3.24)

where,
N = |ψAA(τ)|2 + |ψAB(τ)|2 + |ψBA(τ)|2 + |ψBB(τ)|2 , (3.25)

is the normalisation factor. Note that we dropped the explicit subscripts for exciton
X and biexciton XX photons on the direction index. Instead, we utilize time-
ordered emission in the simplified notation, i.e. the subscript AB should be read as
AXXBX .

In general the two possible decay channels do not have the same spontaneous
emission rates, i.e., γx 6= γy due to differences of the local electric field components
in the waveguide. However, to achieve a high degree of chirality in the waveguide,
the two exciton decay rates have to be similar γx ≈ γy. This was also the case in the
recent experiment in Østfeldt et al. (2022). For most of the article we therefore set
γx = γy and γ′x = γ′y, but investigate the influence of differences in the rates in Sec.
3.3.4. Moreover, the biexciton and exciton spontaneous emission rates are given by

γx + γy ≡ γXX , γ′x = γ′y ≡ γX . (3.26)

Since the biexciton decays twice as fast according to Eq. (3.6), if we assume identical
group velocities we have that γX = γXX/2. In the rest of the article, we assume this
relation between the spontaneous emission rates.

The difference in the phase of the transition dipoles for biexciton and exciton
decays, Φ and Φ′ respectively, satisfies Eq. (3.12). Moreover as the optical wave-
lengths of the photons emitted from biexciton and the exciton decay channels are
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comparable, we can approximate the phase differences to be equal, i.e. Φ = Φ′.
Under these assumptions, the total probability of detecting the first photon at time
t = tXX is

P (t = tXX) = (γx + γy)e−(γx+γy)tXX/h̄ = 2γXe−2γX tXX/h̄ . (3.27)

We can thus calculate the path-dependent, two-photon emission probabilities to be

PAA = γX
4 e−γXτ/h̄ (1 + cos (Sτ + 2Φ))

PBB = γX
4 e−γXτ/h̄ (1 + cos (Sτ − 2Φ))

PAB = PBA = γX
4 e−γXτ/h̄ (1 + cos (Sτ)) .

(3.28)

A QD with S = 0 that is perfectly chiral coupled to the waveguide, i.e., Φ = Φ′ =
π/2, results in PAA = PBB = 0. In this case we thus have the ideal entangled state
(|AB〉 + |BA〉)/

√
2, where the emission direction of the two photons is perfectly

anticorrelated, as shown with blue and orange lines in Fig. 3.2. Note that, for
S = 0, our model can only accurately represent the perfect chiral coupling case and
will lead to erroneous conclusions if Φ 6= π/2 since this leads to Γ 6= 0. For the
general case of S > 0, we can calculate the resulting entangled two-photon state by
conditioning the solution in Eq. (3.21) on the detection of a photon at time t = tXX .
For perfect chiral coupling the state is

|ψ(τ)〉Φ=π/2 = 1
2(cos

(
Sτ

2

)
(|AB〉+ |BA〉) + i sin

(
Sτ

2

)
(|AA〉+ |BB〉)) , (3.29)

To understand the entanglement in this state we rewrite it as

|ψ(τ)〉Φ=π/2 = 1
2(|A〉 |ξ〉+ |B〉 |ξ′〉) , (3.30)

which is in fact a maximally entangled state, with |ξ〉 = cos (Sτ/2) |B〉+i sin (Sτ/2) |A〉
and |ξ′〉 = cos (Sτ/2) |A〉 + i sin (Sτ/2) |B〉. For perfect chirality the entanglement
is thus maximal regardless of the detection time, although the specific entangled
state varies with the emission time, resulting in a time varying detection pattern in
Fig. 3.2. In contrast, if the waveguide interaction is not chiral (Φ = 0, π) the state
is given by

|ψ(τ)〉Φ=0,π = 1
2 (|AB〉+ |BA〉+ |AA〉+ |BB〉)

= 1
2 (|A〉+ |B〉)X (|A〉+ |B〉)XX ,

(3.31)

which is a separable state. As a consequence all detection patterns of two photons
are equally probable. In real experimental settings, the directional (chiral) coupling
could lie in between these two extreme cases depending on the local electric field at
the location of the QD within the waveguide. This imperfect chirality will lower the
entanglement quality of the source, which is quantified in the next section.
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Figure 3.2: Time correlations PAA and PAB as a function of the difference in the emission time τ . The
blue and orange lines have been calculated with perfect symmetry between the exciton levels (S = 0) while
the yellow and purple lines have been obtained for S = 4γX . The waveguide coupling is perfectly chiral
(Φ = π/2) in all cases. Inset. Concurrence C of the state as a function of the difference in emission times
τ . The concurrence remains unity at all times for any value of S. This shows that the state is maximally
entangled independently of the time τ , as also shown in Eq. (3.29).

3.3 Results

As we have seen in the previous section, the emitted two-photon entangled state
depends on the time difference τ between the biexciton and exciton emission times.
We thus expect that any uncertainty in the emission times will affect the entangle-
ment quality of the state. Moreover, imperfect chirality of the waveguide reduces the
directionality of emission, thereby leading to non-perfect conversion into path en-
coding of the entangled state. In this section, we quantify the effect of imperfections
on the entanglement quality of the state.

To this end, we employ the concurrence C as the entanglement measure to char-
acterise the quality of the state. The concurrence of any quantum state with a
density matrix ρ is given by (Fan et al., 2003)

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} , (3.32)

where {λi} are the square root of the eigenvalues of ρρ̃ in descending order and
ρ̃ = (σ̂y ⊗ σ̂y)ρ∗(σ̂y ⊗ σ̂y). We calculate the density matrix ρ that represents the
path-encoded state obtained from the biexciton cascade to be

ρ(τ) =
∑
n,n′

m,m′

ψn,m(τ)ψ∗n′,m′(τ) |n,m〉 〈n′,m′| . (3.33)
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a) b)

Figure 3.3: a) Time correlations PAA, PAB , PBA, PBB as a function of the difference in the emission
time τ with a FSS of S = 4γX and waveguide chirality of Φ = π/3. We observe that PAA and PBB are
out of phase with each other. This may seem surprising, since the two directions are naively the same, but
occurs due to an interplay between the imperfect chirality and the sign of the FSS (see text). This effect
was experimentally observed in Østfeldt et al. (2022). Inset. Concurrence C of the state as a function of
the difference in emission times τ . The concurrence oscillates between 0 and 1, as the state evolves. b)
Colour map of the concurrence C of the state as a function of the difference in phase Φ and the difference
in emission times τ . The concurrence oscillates in time for a given chirality, with the exception of perfect
chirality (Φ = π/2 which gives C = 1) and non-chiral waveguide coupling (Φ = 0, π which gives C = 0).
The red “×”-markers indicate the points investigated in Figure 3.4(a).

By calculating the resulting eigenvalues {λi}, we obtain the concurrence using
Eq. (3.32)

C(τ) = 2
N
|ψAA(τ)ψBB(τ)− ψAB(τ)ψBA(τ)| . (3.34)

Inserting the wavefunctions from Eq. (3.21) and approximating γx = γy as discussed
earlier (cf. Eq. (3.26)), the dependence of C on the chiral phase Φ and the time
delay between biexciton and exciton emissions τ is found to be

C(Φ, τ) = sin2 (Φ)
1 + cos (Sτ) cos2 (Φ) . (3.35)

We obtain perfect concurrence C = 1 when the waveguide is perfectly chiral (Φ =
π/2) as discussed above. Furthermore, if the waveguide is completely non-chiral
(Φ = 0, π) the concurrence vanishes C = 0, agreeing with the separable state ob-
tained in Eq. (3.31). In the following subsections we will independently analyse the
effect of each of the imperfections in more detail.

3.3.1 Fine-structure splitting

In this subsection, we analyse the effect of the FSS on the entanglement quality of the
path-entangled state. Non-zero FSS leads to a spin-flip between the exciton levels
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(|X±〉), and it is therefore convenient to describe the decay in the linear polarisation
basis with x- and y-polarized states, |Xx〉 and |Xy〉 respectively (c.f. Fig. 5.2(b)). In
this basis, the states are decoupled and the FSS induced spin-flip frequency S cor-
responds to an energy splitting between the exciton levels. The splitting makes the
emitted photons distinguishable in energy, and crucially their frequencies are cor-
related with their polarisations. This leads to “which-way” information about the
polarisation state, which means reduction in the degree of entanglement. To over-
come this issue Fognini et al. (2018) has proposed using electro-optical modulators
that rotate the polarisation of the biexciton and exciton photons separately to ef-
fectively erase the information gained from the splitting in the polarisation-encoded
state. A phase modulator could similarly be applied to improve path-entangled
states. Alternatively, narrow spectral filtering in between the two frequency com-
ponents of either the exciton or biexciton emission can be implemented to erase
the “which-path” information, however, at the expense of significantly reducing the
entanglement generation rate (Akopian et al., 2006). Another approach is to imple-
ment QDs with improved symmetry in order to obtain a smaller splitting S (Huo
et al., 2013).

The reference situation corresponds to an ideal system without fine structure
splitting and perfect directional (chiral) coupling (S = 0 and Φ = π/2). This sit-
uation is easily understood from the level structure in Fig. 5.2(a), where emission
occurs with two oppositely polarized circular dipoles (σ− and σ+). With perfect
chiral coupling these decay in opposite directions creating that maximally entan-
gled state (|AB〉 + |BA〉)/

√
2. As a consequence, the probability of detecting both

photons on the same side of the waveguide vanishes (blue line in Fig. 3.2). The
probability of detecting one photon at each of the opposite ends of the waveguide
decays exponentially with the exciton spontaneous emission rate (γ′x+γ′y)/2 (orange
line in Fig. 3.2) as expected from the lifetime of the exciton states.

We now consider a scenario where the FSS creates an asymmetry between the
exciton levels (S 6= 0), while the chiral coupling is still ideal (Φ = π/2). This
generates an oscillation between two maximally entangled states as discussed below
Eq. (3.30). The corresponding probabilities of the various detection patterns is
shown with the yellow and purple lines in Fig. 3.2. The amplitude of oscillations
decays exponentially with the time constant set by the exciton spontaneous emission
rate. As discussed in the previous section, although the emitted state changes over
time, it remains maximally entangled, i.e., C(τ ≥ 0) = 1, and it is a superposition
of standard Bell states.

3.3.2 Imperfect chirality

We now analyse the joint effect of both imperfect chirality (Φ 6= π/2) and non-zero
FSS (S 6= 0). An example of the detection probability for this situation is shown
in Fig. 3.3(a). Curiously, the probabilities PAA and PBB are out of phase, meaning
that with a given time delay there is a difference in the probabilities of detecting two
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photons at the two ends of the waveguide. This effect happens due to an interplay of
the imperfect chirality and the FSS. A decay from the biexciton state and subsequent
detection of the photon at one end creates a coherent superposition between the two
exciton states |Xx〉 and |Xy〉 with a phase ∓Φ depending on where the photon was
detected. The subsequent dynamics induced by the FSS S may then evolve the state
towards or away from the relative phase ±Φ, which gives the maximal emission in
the same direction.

With non-perfect chirality, the concurrence C of the path-entangled, bi-photon
state emitted by the biexciton cascade is reduced since the imperfect chirality limits
the directional coupling of the QD emission. The dependence of C(τ) on Φ is shown
in Fig. 3.3(b). We observe that C is independent of τ only if Φ = nπ/2, where n is
a non-zero integer. If n is even, C(τ ≥ 0) = 0 and corresponds to the completely
non-chiral case. If n is odd, we reproduce the results of the perfect chiral case that
results in a maximally entangled state with C(τ ≥ 0) = 1 as discussed in the previous
subsection. For partial chirality Φ 6= π/2, the FSS induces oscillations between non-
maximally entangled states and C oscillates as a function of the detection time τ .
In general, C is below unity except for Sτ = π, where the concurrence is unity for
all Φ 6= 0, π.

3.3.3 Timing jitter

In this subsection we analyse the effect of uncertainty in the timing of photodetection
events on the entanglement quality. We model the uncertainty in detection time by
averaging the density matrix (3.33) elements ρn,n′,m,m′ with a Gaussian probability
distribution with standard deviation σ

ρ̄n,n′,m,m′(τ) =
∫ ∞

0
dτ ′ exp

[
−(τ ′ − τ)2

2σ2

]
ψn,m(τ ′)ψ∗n′,m′(τ ′) . (3.36)

The time-averaged density matrix ρ̄(τ) is then given by

ρ̄(τ) = 1
N̄(τ)


ρ̄AAAA(τ) ρ̄AAAB(τ) . . . ρ̄AABB(τ)
ρ̄ABAA(τ) . . . ...

... . . . ...
ρ̄BBAA(τ) . . . . . . ρ̄BBBB(τ)

 , (3.37)

where N̄ =
∫∞
−∞ dτ

′ exp[−(τ ′ − τ)2/(2σ2)]N is a normalisation constant equal to the
probability density of the detection time and N is given by Eq. (3.25). From this
density matrix we can then calculate the concurrence C.

Figure 3.4(a) shows the dependence of the concurrence C on the detection timing
jitter σ at different combinations of chirality and time delay. As seen in the figure
the concurrence drops when the uncertainty in detection time becomes comparable
to the oscillation period 1/S. This highlights the importance of keeping track of
the time dependence for the quality of the final path-entangled state. Unlike the
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Figure 3.4: a) Concurrence C of the state as a function of the detection timing jitter, quantified by the
Gaussian RMS width σ, for several values of chirality Φ and time difference τ (the selected values are
marked with red ×-symbols in Fig. 3.3(b)). b) Concurrence C of the state for different degree of chirality,
quantified by the phase Φ, with a timing jitter of σ = 0.3/γX . The concurrence can be larger at negative
than positive time intervals (grey shaded region) since such events effectively have less timing uncertainty
than those with positive time intervals (see text). c) Corresponding probability density N̄ of the detection
time for the situation analysed in (b). Note that the probability density quickly approaches zero for τ < 0
(grey) in contrast to the increase in concurrence. Throughout the figure we assume a non-zero FSS of
S = 4γX .
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jitter-free case, even systems with perfect chirality (Φ = π/2) exhibit C < 1 for
non-zero values of σ since we do not know precisely which state we have. The
asymptote of C with increasing time jitter is observed to depend only on the phase
Φ, i.e., when the time jitter is comparable to or larger than the spread in emission
time; the precise time of the detection is not important. Figure 3.4(b) shows the
time evolution of C for a fixed timing jitter σ = 0.3/γX for different values of
the chiral phase and S = 4γX . Note that a peculiar effect occurs for Φ = π/2
(Fig. 3.4(b)), where we observe that C increases at negative time delays (grey shaded
region). Since the emission of the exciton always occurs after the biexciton emission
(tX − tXX = τ > 0), negative detection intervals (τ < 0) correspond to the case
where the emission of the photon must have occurred close to τ = 0, i.e. with
minimal time delay, but was measured to be at a negative value due to the time
jitter. Therefore the uncertainty in the emission time, which is otherwise given by
the detection time jitter, is effectively reduced for negative detection times, leading
to a higher concurrence. The probability of measuring the state at negative time
intervals, however, decays very rapidly as τ decreases, as shown in Fig. 3.4(c). The
larger concurrence at small positive time delays (0 < τ . σ) compared to later times
can be understood with similar arguments. On the other hand for Φ = π/4 and
Φ = π/8 the fidelity in the absence of time jitter is lower around τ = 0 than at later
times, c.f. Fig. 3.3(b). As a consequence the peak concurrence still occurs around
Sτ = π. The probability density in Fig. 3.4(c) decays with the decay rate γX of the
exciton states. On top of this it oscillates with increasing amplitude as the system
becomes less chiral (Φ→ 0). The reason is that the polarisation of waveguide modes
becomes linear as the system loses chirality. After the decay of the biexciton, the
polarisation of the exciton state rotates due to the FSS S and may thus be more
or less aligned with the waveguide polarisation. In contrast, for the chiral case the
waveguide polarisation is circular and the rotation of the polarisation does not affect
the decay rate.

3.3.4 Asymmetric exciton decay

In the experiments presented in Østfeldt et al. (2022), the decay rates of the x
and y-polarized exciton levels were nearly identical (i.e. γx ≈ γy). However, in
general these two decay rates may differ depending on the position of the QD in
the waveguide, with the asymmetry more dominant at locations with a low degree
of directional emission, i.e., far from perfect chirality. In this subsection we analyse
how this asymmetry can affect the quality of entanglement.

Figure 3.5(a,b) shows the impact of asymmetry ε ≡ (γx − γy)(γx + γy) on the
concurrence for the case of ε = −0.4. As the decay rates of the x- and the y-
polarized exciton levels are different, one can gain ”which path” information about
the photon decay from the photodetection time, i.e. the highest decay rate would
result in increased likelihood of early detection of photon, and vice versa. This extra
information about the emission process reduces the entanglement. Furthermore, the
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a) b) c)

Figure 3.5: a) Concurrence C of the state as a function of the time delay τ at different degrees of the
chirality, quantified by Φ. The asymmetry between the exciton decay rates is described by the parameter
ε = (γx − γy)/(γx + γy) and fixed to be ε = −0.4. The oscillations in the concurrence due to the FSS
S = 4γX are modulated by the difference in exciton decay rates. b) Colour map of the concurrence of the
state as a function of the difference in phase Φ and the time τ for ε = −0.4. The concurrence oscillates in
time due to the FSS S, and reaches a maximum for a non-zero time τ . This optimal difference in emission
time is reached when the difference in populations of the exciton states arising from a difference in biexciton
decay rates is cancelled by the faster decay of the most likely state. c) Colour map of the concurrence C̄
averaged over all emission times τ as a function of the difference in phase Φ and the asymmetry parameter
ε with S = 4γx and a time jitter of σ = 3/γX . We observe that the concurrence is optimal for perfectly
symmetric exciton decays, as expected.

difference in decay rates of the biexciton state creates a difference in populations
of the |Xx〉 and |Xy〉 states. However, if the difference in the emission time is
comparable to the difference in decay rates, the ‘which path’ information arising
from the asymmetric decay rates is erased and the entanglement is recovered. This
interplay between the difference in emission times and the asymmetry ε leads to an
optimal time delay τ that maximizes the concurrence as observed in Fig. 3.5(a,b).
In addition to this optimality, we still observe that C oscillates with emission time
delay due to the non-zero S as discussed in Sec. III.A.

For a systematic study of the effect of asymmetry, we calculate the average con-
currence C̄ over all τ detection times, defined as

C̄ =
∫ ∞
−∞

P (τ)C(τ)dτ , (3.38)

where P (τ) is the corresponding probability density of the state at time τ . The
dependence of C̄ on the asymmetry parameter ε and the phase difference Φ is shown
in Fig. 3.5(c), which highlights that C̄ is maximized for symmetric decay of the
exciton dipoles, i.e. ε = 0.

3.4 Conclusion

We have provided an in-depth analysis of the entanglement properties of a QD
biexciton cascade embedded in a chiral nanophotonic waveguide, as experimentally
realised in Østfeldt et al. (2022). We have calculated how the biexciton cascade can
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deterministically prepare a path-encoded state mediated by the chiral-coupling of the
waveguide. The entanglement of the state is, however, affected by errors unavoidably
present in the experimental implementation of the system. In particular, we have
shown how the time dependence of the state induced by the FSS plays a crucial
role in determining the generated entanglement. The amount of path-entanglement
generated by the biexciton cascade can strongly depend on the emission time, while
the presence of detection time jitter reduces the concurrence of the state. Finally,
imperfect directional-coupling in the waveguide reduce the concurrence of the path-
encoded entangled state as well. Our work quantifies the role of such imperfections
and lay out a route to a deterministic source of path-encoded entangled photons of
high entanglement quality. We hope our work will motivate further experimental
improvements of this novel entanglement source.
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Chapter 4

New key-rate lower bounds for
DIQKD implementations with
single-photon sources

This chapter is based on the preprint González-Ruiz et al. (2022b)1. We investigate
the proposal for performing fully photonic DIQKD already introduced in Chapter
1, based on single-photon sources and heralding measurements at a central station
placed between the two parties. We derive conditions to attain non-zero secret-key
rates in terms of the the photon efficiency, indistinguishability and the second order
autocorrelation function of the single-photon sources. Exploiting new results on the
security bound of such protocols allows us to reduce the requirements on the physical
parameters of the setup. Our analysis shows that in the considered schemes, key
rates of several hundreds of secret bits per second are within reach at distances of
several tens of kilometers.

4.1 Introduction

The use of quantum mechanics to establish secure communication between two par-
ties, Alice and Bob, is the essence of Quantum Key Distribution (QKD) where the
parties use a quantum channel to establish a secret key (Bennett et al., 1984; Ek-
ert, 1991). Experimental demonstrations of QKD protocols have been successfully
carried out in a number of setups, see for instance Scarani et al. (2009), and QKD
devices are now commercially available. The security of QKD protocols relies on
several assumptions, in particular:

1. Quantum mechanics is a valid theory,
1The Ph.D. student participated in the discussions that shaped both the initial version of the project and the

following directions it took. She carried out all the analysis and relevant optimisations together with JRD, who
contributed equally as much. She contributed to writing the Introduction and Conclusion and was responsible for
the Experimental setup section, together with the first two appendices of the paper.
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2. Alice and Bob trust their device and therefore assume that they are performing
the operations described by the QKD protocol.

The aim of Device Independent Quantum Key Distribution (DIQKD) (Acín et
al., 2007) is to remove the last assumption, which can be a source of various possible
hacking attacks (Lydersen et al., 2010). The security of a DIQKD protocol depends
on the statistics obtained by the parties without requiring any physical model of the
measurements or of the state used in the protocol. The security of such protocols
has been successfully proven even when allowing an eavesdropper, Eve, to perform
general attacks, see e.g. Arnon-Friedman et al. (2019).

A DIQKD protocol is an entanglement based protocol where Alice and Bob pos-
sess two measurement apparatus, which are considered to be black boxes, on which
one can define settings and obtain outcomes. The security of the protocol relies
on the violation of a Bell inequality (Acín et al., 2007). Intuitively, for some Bell
inequalities, e.g. the Clauser-Horne-Shimony-Holt (CHSH) inequality (Clauser et
al., 1969), if the two parties observe a maximal violation, they share a maximally
entangled two-qubit state (Mayers et al., 2004; Kaniewski, 2016) and thus cannot
be correlated with a third party. In practice, however, the maximum violation of
such an inequality can never be achieved because of the inevitable noise present in
experiments. Reduced violations introduce the possibility that the two parties are
correlated with Eve, so that when the Bell violation becomes smaller than a critical
value, no secret key can be established. In fact, the noise requirements needed to
produce a secret key happen to be very challenging to meet in practice.

The implementation of standard entanglement-based QKD is based on the distri-
bution of entangled photons. However, the high requirements with respect to noise
make direct transmission of an entangled pair of photons undesirable for DIQKD.
Indeed the unavoidable transmission losses between the two parties prevent such
scheme from working unless losses are very small, that is, the users are very close. To
circumvent transmission losses one can use a heralding scheme, where entanglement
is generated between the local stations conditioned on the detection of photons at a
central heralding station (CHS), which performs a Bell state measurement (BSM)
on photonic fields entangled with each of the two stations. This gives the major
advantage since successful entanglement is heralded, photon loss does not influence
the quality of the entangled states; it lowers the success probability but the protocol
remains secure.

The first experimental demonstrations of DIQKD have been performed very re-
cently using heralding schemes (Nadlinger et al., 2022; Zhang et al., 2022). In those
experiments the state at the local stations are encoded in material qubits, in partic-
ular Nadlinger et al. (2022) uses two trapped ions and Zhang et al. (2022) uses two
trapped rubidium atoms. The advantage of such encoding lies in the very high effi-
ciency of the measurement of the matter degree of freedom, allowing for a sufficiently
high violation of the CHSH inequality to perform DIQKD. On the other hand, such
encodings into material qubits typically require rather advanced setups and often
suffer from low repetition rates, making the application of such setups less desirable
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for practical applications. In fact, the experiment of Nadlinger et al. (2022) was able
to report a positive rate between users distant 2 meters, while the experiment of
Zhang et al. (2022) demonstrated a Bell violation between users distant 400 meters
that was large enough in principle to establish a secure key, although the number of
runs in the experiment were not enough to achieve this.

Photonic experiments can in principle alleviate these problems because they have
a higher repetition rate, but suffer from limited measurement efficiency. Heralding
schemes based on photonic implementations using a spontaneous parametric down
conversion (SPDC) source and a qubit amplifier (Gisin et al., 2010) have been pro-
posed as a means to perform DIQKD, but suffer from an unfavorable scaling with
distance see e.g Appendix B of Kołodyński et al. (2020). On the other hand, single-
photon sources, and in particular those based on InGaAs quantum-dot, are able to
generate on-demand single photons with high indistinguishability and purity, up to
96% and 99.4% respectively (Tomm et al., 2021; Uppu et al., 2020). These single-
photon sources are currently being developed towards fully integrated devices, and
are thus suitable candidates for scalability of DIQKD implementations in the near
future. Recently, heralding schemes for DIQKD based on such single-photon sources
(Kołodyński et al., 2020) have been developed and these were shown to have a more
promising scaling with distance, although requiring high detection efficiencies.

The security of the experimental protocols presented above were based on the vi-
olation of the CHSH inequality. Such security proofs of DIQKD have been extended
to generalized CHSH inequalities (Sekatski et al., 2021; Woodhead et al., 2021). The
choice of the correct Bell inequality is crucial, as different inequalities can lead to
higher robustness of the protocol with respect to noise2. Recently, a breakthrough
regarding the choice of inequality was achieved in Brown et al. (2021), where the
authors derived a method for guaranteeing the security of protocols based on all the
observed statistics. This method is equivalent to the optimization of the security of
the protocol with respect to all possible Bell inequalities. This approach thus allows
for improving the noise robustness of DIQKD protocols.

In this work, we improve the previous derived experimental requirements for the
purely photonic implementation of DIQKD with single-photon sources proposed in
Kołodyński et al. (2020), and further analyzed in González-Ruiz et al. (2022a) (see
Chapter 1). The main contribution of this work is to study the experimental require-
ments for photonic DIQKD experiments with single-photon sources. In particular
we focus on single-photon emission from quantum dots. In Section 4.2, we present
the proposed setup and characterize the main parameters that limit the experimen-
tal implementation. In Section 4.3, we briefly review the security of the protocol
and the method used in Brown et al. (2021). In Section 4.4, we analyze the robust-
ness of the protocol in a realistic scenario where we consider limited local efficiency,
indistinguishability and purity of the single-photon source. Here, we also perform
a finite statistics analysis of our results and study the security of the protocol with

2Appendix ?? shows the equivalence between CHSH and Eberhard’s inequalities when one assigns a determined
outcome to inconclusive events.
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Figure 4.1: Heralded set-up introduced in Ref. (Kołodyński et al., 2020). Alice and Bob each possess
a single-photon source, which by means of an optical delay circuit provides two simultaneous photons
with orthogonal polarizations. One of them is transmitted from each lab through a low transmittance
beam splitter (T → 0) with efficiency ηt to a central heralded station (CHS) that performs a Bell state
measurement. The entanglement of the the polarization state of Alice and Bob’s remaining photons after
the CHS measurement can be tuned depending on the transmittance t of the beam splitter at the CHS.
The basis choice of the local measurements is defined by the angle θA (θB) of a certain combination of
half-wave and quarter-wave plates (González-Ruiz et al., 2022a). The total local efficiency at Alice and
Bob’s stations is denoted by ηl.

respect to time and distance.

4.2 Experimental setup

In this work, we consider the set-up that is pictorially presented in Fig. 4.1, where
Alice and Bob generate two single-photons, each with orthogonal polarization, by
means of a single-photon source and an optical delay line (González-Ruiz et al.,
2022a). The photons are sent towards a low-transmittance (T → 0) beam-splitter
such that, with very good approximation, the detection of two photons at the (CHS)
signals that at each user’s local station, one of the photons was sent to the CHS
and the other is kept. Thus, the outcome of the measurement at the CHS heralds
the successful generation of the desired entangled polarization state between the
remaining photons at Alice and Bob’s stations. In this way the expected low trans-
mission efficiency between Alice and Bob due to their spatial separation does not
open the detection loophole; since photons at the local stations have propagated a
short distance, they have only suffered limited loss, and are thus detected with very
high probability.

The heralding signal at the CHS creates an entangled state in polarization by
performing a Bell state measurement (Kwiat et al., 1998). The entangled state is
proportional to

|ψ〉 ∝ |+−〉 − t

1− t |−+〉 , (4.1)
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Figure 4.2: Measurement set-up in Alice’s station. The half-wave plate (HWP) and quarter-wave plate
(QWP) set the basis choice by fixing the relative angle θA. A polarising beam splitter (PBS) directs
photons with orthogonal polarisation to two detectors, whose outcomes are identified as ±1 respectively.

where |±〉 = 1√
2 (|H〉 ± |V 〉), with |H〉 and |V 〉 the states with horizontal and vertical

polarization respectively and t is the transmittance of the beam splitter at the CHS.
Note that by varying t, the state shared by Alice and Bob can vary from a Bell
state to a non-maximally entangled state arbitrary close to a separable state. If
t = 0.5, the state corresponds to the Bell state |ψ−〉 = 1√

2 (|HV 〉 − |V H〉) and we
recover the set-up and results from González-Ruiz et al. (2022a), while if t = 0 or
1 no entanglement is created. Being able to optimize the degree of entanglement
in non-maximally entangled states is a very useful feature, as it can reduce the
required efficiency for the violation of Bell’s inequality (Eberhard, 1993). Crucially,
with the presented scheme the state shared between the two parties does not depend
on the channel transmission efficiency ηt, and therefore it allows for extending the
communication distance without compromising the violation of a Bell inequality and
hence the security of the protocol. The local efficiency ηl between the source and
measurement at Alice and Bob’s stations remains, however, the main challenge since
this measurement is not heralded. Furthermore, due to the different experimental
errors (limited indistinguishability, purity and non number-resolving detectors) the
state is not a pure state.

The local measurements of Alice and Bob are performed in the polarization basis.
Before detecting the photons, they transform the state according to a linear trans-
formation U(θA) ⊗ U(θB) by means of a set of half-wave plates and quarter-wave
plates (see Fig. 4.2). Once the state has been successfully rotated to the desired
basis the photons are directed to a polarising beam splitter that sends them to two
different detectors. Thereby they can measure the state in any desired basis. Note
that one can find a plane in the Bloch sphere such that only the relative angle
between the half-wave and quarter-wave plates (which we define as θA and θB for
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p(a = ±1, b = ±1|x, y) p(a = ±1, b = ∅|x, y) p(a = ∅, b = ±1|x, y) p(a = ∅, b = ∅|x, y)
p2110 p2200,SD p2020,SD p2002

p2101 p2011 p2200,DD

p2020,DD

p2111 p2102 p2012 p2003
p2210,SD p2201,SD p2021,SD p2201,DD

p2120,SD p2120,DD p2210,DD p2021,DD

p2300,SD p2030,SD p2300,DD

p2030,DD

Table 4.1: Probability contributions to the total probability of detection p(ai, bi|xi, yi), where the
outcome a, b = ∅ indicates that no photon was detected and a = ±1 (b = ±1) is a classical binary output.
The four sub-indexes indicate the number of photons detected at the CHS, Alice’s and Bob’s stations and
that were undetected, respectively. The probability contributions are divided between those involving four
photons (above the middle line) or five (below the middle line), where the fifth one is generated due to
imperfect purity of the single-photon source (g(2) 6= 0). If more than one photon is detected at the local
stations we specify whether they were detected at the same (SD) or different (DD) detectors. As we do
not consider number-resolving detectors, in the first case Alice and Bob identify these events as correct.
However, if photons click in different detectors they recognise that an error occurred and thus assign the
outcome to be ∅.

Alice’s and Bob’s measurement, respectively) is the degree of freedom to optimise,
which simplifies greatly the computation later on.

We consider non photon-number resolving detectors, this is, they only measure
the arrival of photons. Thus the detectors are defined by the Positive-Operator-
Valued-Measure (POVM) operators {M̂j,A} ({M̂j,B}) with j ∈ {0, 1}, where

∑
j M̂j,A =

I (∑j M̂j,B = I) and

M̂0,A = |∅〉 〈∅|A , M̂1,A = I− |∅〉 〈∅|A , (4.2)

and similarly for Bob. The state |∅〉 is the vacuum state, and the subscripts 1 and
0 define the different outcomes that can be obtained. Depending on which detector
clicked, they obtain a classical outcome ±1. If no detector clicked (∅), they assign
the outcome to +1. Since the detectors are not number-resolving, this induces
errors for certain detection combinations. For instance, the two photons generated
by Alice may be reflected at the first beam splitter, while both of Bob’s photons are
transmitted to the CHS giving the correct detection pattern.

We denote by ρ̂ the state of Alice and Bob after an heralding event at the CHS.
The probability of detection p(ai, bj|xd, yq) has classical inputs {xd, yq} and classical
outputs {ai, bj}, where xd = θA,d (yq = θB,q) represents Alice (Bob) inputs. Thus
the probability of detection is given by

p(ai, bj|xd, yq) = Tr
{(
M̂i,A ⊗ M̂j,B

)
ρ̂′
}
, (4.3)

where ρ̂′ = U(θA,d) ⊗ U(θB,q)ρ̂U †(θA,d) ⊗ U †(θB,q). Each of these probability con-
tributions includes the probability of all the events that lead to the acceptance at
the CHS and not only the ideal scenario (see Table 4.1). Following González-Ruiz
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et al. (2022a) we label each of these probability terms as pklmn, where the indexes
indicate the number of photons detected at the CHS (k), Alice’s and Bob’s stations
(l and m) and undetected (n), respectively.

Another source of errors is the indistinguishability of two photons. This is di-
rectly related to the Hong-Ou-Mandel (HOM) visibility VHOM (González-Ruiz et al.,
2022a): the higher the visibility, the more indistinguishable the photons are. The
precise nature of the indistinguishability, on the other hand, depends on the de-
coherence mechanisms of the single-photon source. Since in this work we consider
implementations using single-photon sources based on quantum dots, we focus on
fast (pure) dephasing with rate γd, e.g. due to phonon interaction with the quantum
dot, as this is the biggest source of noise for quantum dots at the relevant timescale
(Tighineanu et al., 2018). The visibility and dephasing rate can then be shown to
be related by (González-Ruiz et al., 2022a)

VHOM = γ

γ + 2γd
, (4.4)

where γ is the spontaneous decay rate of the quantum-dot. Additionally, slow drifts
can make Alice and Bob’s emitters go in and out of resonance over time. We neglect
this effect for simplicity and assume that all photons are equally indistinguishable
and that the limited visibility is only due to the fast dephasing rate γd.

Finally, we consider multi-photon emission, as characterised by the second order
correlation function

g(2) = 2P2

(P1 + 2P2)2 , (4.5)

for a multiphoton state described by the density matrix

ρ̂ =
∑
k

Pkρ̂k , (4.6)

where ρ̂k represents the k-th photon component state with probability Pk and where∑
k Pk = 1. We assume that ρ̂ ' P0ρ̂0 +P1ρ̂1 +P2ρ̂2 +O(P3), since for quantum-dot

single-photon sources the probability of generating more than one photon is low. In
fact we approximate all results to first order in P2, such that we consider it to be
very unlikely that two sources produce a two-photon state simultaneously (P 2

2 ' 0).
Moreover the second-generated photon is assumed to be completely distinguishable
from the other four. The presence of an extra photon in the set up thus induces an
error that is effectively equivalent to having a detector dark count.

4.3 DIQKD protocol

We consider the scenario described in the previous section, where Alice and Bob
are in secure laboratories and want to share a secret key. Furthermore, Alice and
Bob only record their measurement when they receive a yes from the CHS. In our
implementation, we consider a 2322 scenario where Alice has two measurement
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settings x ∈ {0, 1} and Bob has three settings y ∈ {0, 1, 2}, while both of them get
two possible outcomes. In the following, we denote by x′ and y′ the key generating
inputs, and we consider that an eavesdropper Eve has access to arbitrary quantum
resources. The asymptotic rate r of a DIQKD protocol with one-way error correction
is given by the Devetak-Winter bound (Devetak et al., 2005)

r ≥ H(A|X = x′, E)−H(A|B,X = x′, Y = y′) , (4.7)

where H(A|B) stands for the conditional von Neumann entropy of A given B.
From the statistics coming from the set-up described in the previous section,

one can easily compute H(A|B,X = x′, Y = y′). Thus, the main difficulty arises
in bounding H(A|X = x′, E) knowing some statistical test p(ai, bi|xi, yi) = ci
∀i ∈ {0, 1}. In Acín et al. (2007), an analytical lower bound on H(A|X = x′, E)
was derived by considering a particular statistical test which is given by the CHSH
inequality (Clauser et al., 1969). The robustness of the protocol with respect to
losses has been improved using noisy prepossessing on Alice’s side which can increase
H(A|X = x′, E) more than H(A|B,X = x′, Y = y′) (Ho et al., 2020). Recently,
the authors of Brown et al. (2021) derived a convergent series of lower bounds on
H(A|X = x′, E) where the statistical test is given by the value of the probabilities
p(a, b|x, y)

H(A|X = x′, E) ≥ cm +
m−1∑
i=1

wi
ti ln 2

∑
a

inf
Za∈B(E)

〈
f(ti,Ma|x, Za,i)

〉
, (4.8)

where the function f(ti,Ma|x, Za,i) is defined as

f(ti,Ma|x, Za,i) = Ma|x(Za,i + Z∗a,i + (1− ti)Z∗a,iZa,i) + tiZ
∗
a,iZ

∗
a,i (4.9)

where wi and ti are the ith Gauss-Radau quadrature, such that increasing m leads
to better bounds (see Brown et al. (2021) for details); and where Ma|x and Nb|x
represent Alice’s and Bob’s POVM elements respectively, and Za,i describes Eve’s
operators. In this expression, the following constraints need to be satisfied ∀ i ∈
{0, 1}, ∀ x ∈ {0, 1}, ∀ y ∈ {0, 2}:

〈Ma|xNb|y〉 = p(a, b|x, y)
〈Ma|x〉 = p(a|x), 〈Nb|y〉 = p(b|y),
Ma|x > 0, Nb|y > 0,Ma|x, Nb|y and Za,i ∈ B(H).

(4.10)

The positivity of the POVM together with the condition Ma|x, Nb,y and Za,i ∈
B(H), where B(H) is the ensemble of bounded operators, can be relaxed using the
Navascues-Pironio-Acín hierarchy (NPA) (Navascués et al., 2007; Navascués et al.,
2008). In the following, we refer to such relaxation by OPT(m,A,B, x, y, t) with t
the transmissivity of the beam splitter located in the CHS. Note that, usually, Alice
uses her two settings both to test CHSH and generate the key, while Bob uses his two
first settings to test CHSH and the third to generate the key. Here, we changed a bit
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the scenario and we allow Bob to use his three settings to compute an additional joint
probability which will sometimes be used as an additional statistical test. We aim
to find the best experimental parameters for DIQKD using single photon sources.
To this end, we perform the numerical optimization

r = max
x,y

(OPT(m,A,B, x, y)−H(A|B,X = x′, Y = y′)), (4.11)

where the maximization runs over the possible experimental settings x and y, which
in our case are determined by the measurement angles of Alice (θA,0, θA,1) and over
the three measurement angles of Bob (θB,0, θB,1, θB,2), and over the transmissivity t
of the beam splitter at the CHS.

4.4 Results

In this section we present the results we obtained by solving the optimization prob-
lem presented in Eq. (4.3). We first compare it with other analytical techniques
that have been developed in the literature (Ma et al., 2012; Ho et al., 2020; Brown
et al., 2021), and then study the dependence of the key rate on the visibility VHOM
and the autocorrelation function g(2). Finally, we consider the scenario where Alice
and Bob only have access to a limited number of rounds for generating the key. The
details of the numerical implementation can be found in Appendix B.3.

4.4.1 Comparison with analytical formulas

Here, we compare the results of the optimization problem in Eq. (4.3) with the
analytical bounds presented in Refs. (Ma et al., 2012; Ho et al., 2020). In both
references, the bound is obtained by considering a similar 2322 scenario where Alice
performs two measurements, Bob performs three measurements and they both get
two outcomes. Two of Bob’s measurements are used to optimize the CHSH inequal-
ity, while the outcomes of the third are used to construct the key between both
parties. By doing this, Ma et al. (2012) found the following bound on the key rate

r ≥ 1− h
(1 +

√
(S/2)2 − 1

2

)
−H(B2|A0), (4.12)

where h(·) represents the binary entropy and S corresponds to the CHSH score

S = E(x0, y0) + E(x1, y0) + E(x0, y1)− E(x1, y1) , (4.13)

and where
E(xd, yq) =

∑
i,j

(−1)i⊕jp(ai, bj|xd, yq) . (4.14)

On the other hand, in Ho et al. (2020) the authors considered a different approach
under which the data undergoes a preprocessing operation before being turned into
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Figure 4.3: Dependence of the key rate on the detection efficiency ηl for the case of VHOM = 1.0 and
g(2) = 0. Here, we have set the transmission efficiency to T = 10−3. In blue, we show the key rate obtained
by solving the optimization problem in Eq. (4.3), where the solid (dashed) curve shows the rate obtained
by (not) implementing the preprocessing strategy. In orange, we show the results obtained by using the
analytical formulas in Eqs. (4.4.1) (dashed curve) and (4.15) (solid curve). The use of the optimization
technique in general leads to better bounds on the obtained key rate, compared to the corresponding
analytic bounds. These results coincide with those obtained in Brown et al. (2021). Finally, with the
black solid curve we show an upper bound on the Devetak-Winter bound obtained by implementing the
so-called Convex-Combination (CC) attack (Farkas et al., 2021; Łukanowski et al., 2022) using one-way
communication reconciliation techniques.

the key. In particular, Alice performs a bit-flip operation on her outputs with
probability q, which is equivalent to a change of her measurement operators from
the set {M0,M1} to {(1− q)M0 + qM1, qM0 + (1− q)M1}. Therefore, the bound of
the key rate is given by

r ≥ 1−h
(1 +

√
(S/2)2 − 1

2

)
−H(B2|A0) +h

(1 +
√

1− q(q − 1)(8− S2)
2

)
, (4.15)

where one can see that, depending on the CHSH score S, the introduction of the bit-
flip operation q may increase Eve’s ignorance on Alice’s output more than Bob’s.
This strategy thus allows enhancing the rate obtained in Eq. (4.4.1). The same
preprocessing technique can also be applied to our optimization problem in Eq. (4.3).
The implementation of it, however, increases the number of variables we have to
consider in the optimization.

With the aim of comparing the different techniques, we show in Fig. 4.3 the results
for the ideal scenario VHOM = 1.0 and g(2) = 0.0, i.e., where the photons generated
by the quantum dots are completely indistinguishable and the generated state is
pure. For now we consider the secret key rate per successful heralding event at
the CHS. Hereupon, and unless otherwise stated, we therefore set the transmission
efficiency to T = 10−3 to investigate the limit where it has a negligible influence
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on the local efficiency. This will allow us to identify the minimal experimental
requirements for obtaining a secret key (González-Ruiz et al., 2022a). We will later
relax this assumption and investigate the influence of a higher transmission. The
orange curves correspond to the bounds obtained from Eq. (4.4.1) (orange dashed
curve) and Eq. (4.15) (orange solid curve), while blue curves show the solution found
for the optimization problem presented in Eq. (4.3) when setting m = 8, with and
without noisy preprocessing (blue solid and dashed curves, respectively). We see
that, in both cases, the improved bound for the relative entropy between Alice and
Eve shown in Eq. (4.8) allows for enhancing the final value of the key rate and
lowers the limits for when this quantity starts to be positive. In particular, for the
situation without noisy preprocessing we find that the key rate starts to be positive
for ηl > 0.909, according to the analytic bound in Eq. (4.4.1), while the solution to
Eq. (4.3) leads to ηl > 0.848. As ηl increases, the difference between both results
becomes smaller, and they converge at ηl = 1 where r ≈ 1 bit. On the other hand,
the implementation of the noisy preprocessing strategy leads to an improvement
with respect to the bound in Eq. (4.4.1), and provides positive values of the key rate
for ηl > 0.832. Introducing this strategy at the level of Eq. (4.3) further reduces
this limit to ηl > 0.818. Nevertheless, while the use of the noisy preprocessing truly
improves the obtained bound on the efficiency, the differences in the key rate we get
for VHOM = 1.0 are almost negligible in comparison with the ones obtained without
implementing it. For instance, at ηl = 0.848, when the rate for the latter is already
zero, the rate obtained with the noisy preprocessing is r ≈ 10−3 bits. We expect
this improvement to be negligible in real experimental implementations, where finite
statistics have to be considered. In the following and unless otherwise stated, we use
Eq. (4.3) with m = 8 for the evaluation of the relative entropy between Alice and
Eve. Finally, with the black curve we show an upper bound to the Devetak-Winter
bound obtained by implementing the so-called Convex-Combination attack (Farkas
et al., 2021; Łukanowski et al., 2022). As seen in the figure our results are close to
the upper bound. This upper bound imposes a limit on what is the minimal value
of ηl (in this case η = 0.791) for which one could potentially find positive key rates
using one-way communication reconciliation techniques.

4.4.2 Dependence of the key rate on the distinguishability of the gener-
ated photons

As mentioned before, the HOM-visibility VHOM determines how distinguishable the
photons are. In typical experimental implementations with quantum-dot single-
photon sources, the values of the visibility that can be achieved are around 96%
(Tomm et al., 2021; Uppu et al., 2020). This parameter affects the quality of the
generated states, leading to a reduction of the CHSH inequality violation for a fixed
value of the local efficiency (González-Ruiz et al., 2022a). Thus, we expect its role
to be fundamental for DIQKD implementations.

In Fig. 4.4, we show the dependence of the key rate on the local efficiency for three
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Figure 4.4: Dependence of the key rate on the visibility VHOM. Here, we have set g(2) = 0.0 and the
transmission efficiency to T = 10−3. The solid curves show the key rate achieved when a noisy preprocessing
strategy has been used for the generation of the key, while the dashed curves consider the case where the
preprocessing has not been applied. In all curves, we have solved the optimization problem in Eq. (4.3)
setting m = 8 and going up to second level in the NPA hierarchy (see Appendix B.3 for more details).

different values of the visibility, namely VHOM = 0.95 (red curves), VHOM = 0.975
(green curves) and VHOM = 1.00 (blue curves). In all cases we set g(2) = 0.00. For
a given value of the visibility, we show two curves: the dashed curve without the
noisy preprocessing strategy, and the solid curve for which this strategy has been
applied. As we observe, the introduction of the preprocessing strategy in general
allows enhancing the key rate for small values of the local efficiency ηl, lowering the
value of ηl for which they key starts to be positive. In particular, for VHOM = 0.975
we find that the key rate starts to be positive for ηl > 0.918 and ηl > 0.938 with
and without the noisy preprocessing step respectively, while for VHOM = 0.95 we get
ηl > 0.949 and ηl > 0.958. On the other hand, as η → 1, the solid and dashed curves
converge to the same value, and lead to r = 0.648 for VHOM = 0.975, and r = 0.409
for VHOM = 0.95.

4.4.3 Dependence of the key rate on the purity of the generated state

The probability of generating a second photon from the source can be quantified
in terms of the second order autocorrelation function, as shown in Eq. (4.5). In
experimental implementations, the degree of purity that can be attained is typically
very high g(2) ≤ 0.05 (Tomm et al., 2021; Uppu et al., 2020). Nevertheless, and
as it happens with the visibility, this quantity is also fundamental for establishing
nonlocal correlations between Alice and Bob (González-Ruiz et al., 2022a), and
therefore for generating a secure key between both parties.

In Fig. 4.5, we show the dependence of the key rate on the local efficiency for three
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Figure 4.5: Dependence of the key rate on the autocorrelation function g(2) in log scale. Here, we have
set VHOM = 1.0 and the transmission efficiency to T = 10−3. The solid curves show the key rate achieved
when a noisy preprocessing strategy has been used for the generation of the key, while the dashed curves
consider the case where the preprocessing has not been applied. In all these curves, we have solved the
optimization problem in Eq. (4.3) setting m = 8 and going up to second level in the NPA hierarchy (see
Appendix B.3 for more information).

different values of the autocorrelation function, g(2) = 0.05 (red curves), g(2) = 0.01
(green curves) and g(2) = 0.00 (blue curves). Here, we have set VHOM = 1.00.
Similar to the visibility analysis, we show the situation where the noisy preprocessing
strategy is (not) applied with solid (dashed) curves. We observed that, as it happens
with the HOM-visibility, small modifications in the g(2) autocorrelation function have
important consequences on the requirements for the detection efficiencies needed
for obtaining positive values of the key rate. The noisy preprocessing strategy is,
however, again useful for relaxing these requirements. In particular, we observe
that for g(2) = 0.01 we get positive key rates for ηl > 0.872 and ηl > 0.894 with and
without the noisy preprocessing, respectively. On the other hand, for g(2) = 0.05
the key rates starts to be positive for ηl > 0.935 and ηl > 0.955. Furthermore, in
the limit of large efficiency (ηl → 1), the solid and dashed lines converge to the same
value, which is r = 0.766 for g(2) = 0.01 and r = 0.311 for g(2) = 0.05.

From the analysis we have done in this section, we observe that in the asymp-
totic limit of infinite rounds of the protocol, the main limiting factor in current
experimental implementations lies in the local detection efficiency ηl. The limiting
value of ηl for which the key rate becomes positive can be improved by means of
noisy preprocessing techniques. For large values of ηl the difference with the stan-
dard protocol is, however, negligible. In the range of values for the visibility and
second order autocorrelation function that is currently accessible experimentally for
quantum dot single-photon sources (VHOM ∼ 0.96, g(2) ≤ 0.05 (Tomm et al., 2021;
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Figure 4.6: Key rate in bits per second as a function of the distance. We consider a single-photon
source that generates photons at a rate of ν = 75 MHz. The blue solid curves show the ideal case where
ηl = 1.0, VHOM = 1.0 and g(2) = 0.00. The red dashed curves show a more realistic case where ηl = 0.957,
VHOM = 0.975 and g(2) = 0.01. Each of the curves shown in the plot are obtained for different number
of rounds n (see legend), such that the time required to perform this number of rounds is obtained as
τ = n/ν. Here we have optimized the transmissivity of the beam splitter T for each set of experimental
parameters. The optimal values are T = 0.0622 for the blue solid curves, and T = 0.0106 for the red
dashed curves.

Uppu et al., 2020)), the key established between Alice and Bob starts to be secure
for ηl & 0.9. In the following, we consider a more realistic scenario where Alice and
Bob have access to a limited amount of rounds n for the protocol, which adds an
extra constraint to realistic DIQKD implementations.

4.4.4 Finite size analysis

Here, Alice and Bob only have access to a finite number of rounds n, which reduces
the length l of secure key they can generate. On top of that, both parties are far
away one from the other, and thus the photons that are sent to the CHS may be
absorbed by the medium. In this section, we take these two experimental limitations
into account. This allows us to provide a bound on the time and distance for which
a secret key can be shared between Alice and Bob in photonic DIQKD experiments
with quantum dots.

A recent breakthrough regarding the computation of key rates for finite statistics
is the entropy accumulation theorem (EAT) (Dupuis et al., 2020). The EAT bounds
the amount of randomness generated by two parties (RandAlice-Bob) in n rounds
against an arbitrary powerful quantum adversary Eve given a statistical test, here
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the CHSH score S, according to

RandAlice-Bob ≥ nh(S)−
√
nk (4.16)

where h(S) is the worst-case von Neumann entropy of an individual round of the
protocol with expected score S, and k is a correction factor which comes from the
finite statistics. The length of the key is then given by the difference between the
amount of entropy certified by the EAT, and the amount of information shared in
the classical message during privacy amplification and error correction. We follow
the approach of Tan et al. (2020), for bounding the single round von Neumann
entropy (Liu et al., 2021; Nadlinger et al., 2022). Therefore, Theorem 1 in Tan et al.
(2020) allows us to obtain an upper bound on the length l of the secure key that we
are able to generate with the presented protocol. The length l is linked to the key
rate by the number of protocol rounds n that Alice and Bob undergo, i.e. r = l/n,
such that in the asymptotic limit n→∞ we recover Eq. (4.4.1).

In realistic experimental implementations, the number of rounds is usually de-
termined by the rate at which the single-photon source generates photons, and the
amount of time Alice and Bob spend running the protocol to generate the key. In
typical quantum dot implementations, the rate is typically around ν = 75 MHz
(Uppu et al., 2020; Tomm et al., 2021; Wang et al., 2019). Furthermore, in order to
consider one out of the n protocol rounds to be successful, Alice and Bob need to
get a positive response from the CHS. Therefore, the distance between both parties
is a key aspect to take into account. Large distances between Alice and Bob lead to
a decreasing probability of heralding, as it is more likely for the heralding photon
to get lost on its route to the CHS. In general, the transmission efficiency can be
written as

ηt = e
−
L

2L0 , (4.17)

where L is the distance between Alice and Bob and L0 is the attenuation length
of the media through which the light travels (the factor of two arises because the
distance to the CHS is only half the distance between Alice and Bob). For optical
fibers at the telecommunication wavelength a typical value is L0 = 22 km. Thus,
the transmission efficiency ηt affects the probability of heralding Ph, which we get
by summing all the probability terms that correspond to acceptance from the CHS
(see Table 4.1). These terms already account for all possibilities of emission of a
second-generated photon when g(2) 6= 0. We note that this probability is as well a
function of the beam splitter transmittance T (see Fig. 4.1), such that small values
of T lead to low values of the heralding probability but to higher asymptotic key
rates per successful heralding, as we reduce the chance of sending two photons to
the CHS. On the other hand, big values of T increase the heralding probability
at the cost of reducing the security of the key. Thus, in order to establish long
enough keys between Alice and Bob, the probability of heralding, and therefore the
transmissivity T , plays a fundamental role.
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In Fig. 4.6, we show the dependence of the key rate (in bits per second) as a
function of the distance for different experimental parameter when using a quantum
dot single-photon source that generates photons with a rate of ν = 75 MHz. We
have followed Tan et al. (2020) in order to perform the finite size analysis, and
we have imposed our protocol to be 10−2-sound and 10−6-complete (see Tan et al.
(2020) for definition). In particular, with the blue solid curves we consider an ideal
scenario where ηl = 1.0, VHOM = 1.00 and g(2) = 0.00. On the other hand, the red
dashed curves present a more realistic scenario where ηl = 0.957, VHOM = 0.975 and
g(2) = 0.01. Each of the curves shown in the figure correspond to a different number
of protocol rounds n used by Alice and Bob for generating the key (see legends).
Here, τ = n/ν corresponds to the time it takes a single-photon source that generates
photons with rate ν = 75 MHz to perform n rounds of the protocol. For both kind
of curves (blue solid and red dashed), we observe that the bigger n is, the higher
the key rate. Furthermore, in both cases we find that for n ≤ 107 it is not possible
to extract a key, according to the soundness and completeness requirements that
we use. An increase in the number of rounds leads to larger values of key rate, up
to a maximum value that corresponds to the asymptotic regime which we represent
with the cases where n = 1012 (shown with the darkest solid and dashed curves).
Running this number of rounds takes on the order of τ ∼ 104 seconds when using
a source that generates photons with a rate of ν = 75 MHz. However, we observe
that with τ ∼ 1 s, Alice and Bob could obtain key rates comparable to those found
in the asymptotic regime.

Unlike the plots shown in the previous section, in Fig. 4.6 we have considered an
extra optimization over the transmissivity T of the beam splitter in each of Alice’s
and Bob’s stations, assuming them to be equal. This way, we can increase the
probability of heralding Ph up to the order of 10−2, allowing us to obtain secure
keys at longer distances after a limited time. In particular, we observe that in the
worst of the considered scenarios, i.e. the red dashed curves, the key rate reduces
to 0.1 bits/s at a range of distances L ∈ [144, 200] km (the limits obtained for
n = 6.0 × 107 and n = 1012 rounds respectively). On the other hand, for the ideal
case we find the same key rate for distances L ∈ [230, 292] km (the limits obtained
for n = 3.0 × 107 and n = 1012 rounds respectively). Therefore, the increase of
the heralding probability allows establishing secure rates for longer distances, at the
cost of reducing the length of key per second. An alternative approach would be to
increase the repetition rate ν of the single-photon source, although it might require
more effort from the experimental side.

4.5 Conclusion

We have used new theoretical tools to evaluate the experimental requirements in
order to perform DIQKD using single-photon sources in a heralded scheme. We
focused on the parameters which are routinely used to characterize single-photon
sources, such as the time-zero second order correlation function g(2), the HOM vis-
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ibility VHOM and the local detection efficiency ηl of the source. We have computed
the asymptotic key rate using the novel method of Brown et al. (2021) for bounding
the relative entropy between Alice and Eve, and we showed that this improves the
analytical bounds obtained in Refs. (Ma et al., 2012; Ho et al., 2020). Finally,
we considered a situation where the number of rounds for obtaining a secure key
rate is limited, i.e., a finite statistics analysis. We studied the time and distance
requirements needed to establish a secure rate between Alice and Bob with realistic
parameters obtainable with quantum dot single-photon sources. However, although
we have focused on single-photon sources using quantum dots, the methods we have
employed can be trivially extended to any other single-photon source.

Our analysis improves the experimental requirements for performing DIQKD
with single-photon sources, and we reach numbers which are within reach for near-
future experimental implementations. We believe that our work represents a strong
motivation for the improvement of existing single-photon sources, so that they can
be used to perform DIQKD. A step towards this implementation could be to relax
the assumptions that Alice and Bob do not have knowledge on their device, or to
allow Eve for less general attacks. This would lead to more relaxed experimental
requirements.
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Chapter 5

The single-photon stretcher

This chapter is based on preliminary and unpublished results from a project cur-
rently in progress. The objective is to be able to store the quantum information
encoded in single-photons into high-Q optomechanical membranes. These quan-
tum oscillators have reported to have up to ms coherence times (Rossi et al., 2018;
Seis et al., 2022). The challenge resides in that while the usual single-photon pulse
length ranges in the pico-second scale (Uppu et al., 2020), optomechanical quantum
memories oscillate in the range of MHz. This creates a bandwidth mismatch of
between four and six orders of magnitude between the timescale of the two systems.
In simpler words, by the time the membrane starts to sense the interaction with

Figure 5.1: Artist’s impression of the single-photon stretcher. Credits: Elena González Ruiz (2022).
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the single-photon, the pulse carrying the qubit is already gone. As a solution, we
propose to use a cavity and a non-linear crystal as an effective stretcher of the pho-
ton pulse length to coherently extend the interaction time between the memory and
the photonic qubit. That is, the photon stretcher will effectively narrow the origi-
nal bandwidth of the photon such that it can fit the bandwidth of the mechanical
membrane, ideally at a low efficiency cost.

5.1 Introduction

The basic idea behind the single-photon stretcher is to place a high-efficiency non-
linearity (NL) inside of a optical cavity at a specific position. This non-linear ma-
terial can be for instance a non-linear crystal (Da Lio et al., 2022), and it must
have relatively low losses for the conversion to succeed. The functioning principle of
the stretcher then consists on that the NL will adiabatically decrease the frequency
of the single-photon with each iteration in the cavity, until it has been completely
”stretched" (see Fig. 5.1 for an artistic impression). However, no NL has perfect
efficiency (and neither does the cavity), and thus the longer the photon stays inside
of the cavity the more likely it will be that it will be lost before successfully exiting
the stretcher. Therefore the main goal of the study is to find the optimal cavity
parameters such that the photon stays in the cavity an optimal amount of time,
given the relevant realistic imperfections of the system.

To estimate the capabilities of such an implementation before proceeding with
the detailed analysis, let us make a short calculation. The ratio χ between the the
single-photon pulse length T and the characteristic response time of the membrane
τ is the quantity that we wish to enhance with the set up, which in terms of the
membrane narrow bandwidth ∆ω = 1/τ is just

χ = ∆ωT . (5.1)

On the other hand, we calculate the same ratio after the effect of the stretcher (χ′).
The stretched pulse length will be inversely proportional to the cavity coupling rate
κ, thus

χ′ = ∆ω
κ/(2π) , (5.2)

The total coupling has the contributions κ = κloss + κout, this is, the rates at which
photons are lost and correctly out-coupled, respectively. If we look at the probability
Pout to couple out of the cavity

Pout = κout
κloss + κout

, (5.3)

we see that the maximum out-coupling probability is ensured when κloss = κout
1.

Furthermore, when the round-trip time inside of the cavity 1/νFSR (νFSR being
1This is commonly known as a limit in which the cavity is critically coupled.

86



CHAPTER 5. THE SINGLE-PHOTON STRETCHER

the cavity’s free spectral range) equals the input pulse length, i.e. 1/νFSR = T ,
the neighbouring longitudinal modes, one free spectral range away of the resonant
frequency, of the cavity begin to get populated (see Fig. [X]). This bad case scenario
is thus the limit for our optimal conversion for a certain cavity size L. We finally
define the stretching factor η and substitute these values, obtaining

η ≡ χ′

χ
≤ 2π∆ω/κ

∆ω(1/νFSR) = 2πνFSR
κ

= F , (5.4)

where F is the finesse of the cavity. This is great news: we can expect a bandwidth
conversion of several orders of magnitude, upper bounded by the finesse of the cavity.
In the following sections we perform the detailed calculations where we present the
subtleties of this quick, hand-wavy initial result. In particular, we will show how
the adiabatic conditions are in fact hard to fulfill, which is simplified by assuming
a certain amount of losses in order to be able to perform perturbation theory, and
how the coupling to neighboring longitudinal modes limits the stretching parmeter.

5.2 Analysis

We start by defining the cavity mode as â(t), while the photons from the input pulse
(those to be stretched) are defined to be in the mode b̂(t). For simplicity we model
the input photons to be in a second cavity perpendicular to the actual optical cavity
from the set-up (see Fig. 5.2). This picture is valid since we assume the b̂(t) mode to
be off-resonant with respect to the optical cavity. From the input-output formalism
(Walls et al., 2008, p. 131) we know that the time evolution of the two modes â(t)
and b̂(t) satisfies

˙̂a(t) = −i
h̄

[â(t), Ĥ]− κa
2 â(t) +√κout,aâin(t), âin(t) + âout(t) = √κout,aâ(t)

˙̂
b(t) = −i

h̄
[b̂(t), H]− κb

2 b̂(t) +√κout,bb̂in(t), b̂in(t) + b̂out(t) = √κout,bb̂(t) ,
(5.5)

where Ĥ is the system’s Hamiltonian and the total decay rates κa and κb are given
by

κa = κout,a + κloss, κb = κout,b + κloss , (5.6)
where κout,i (i = a, b) is the rate at which photons couple out from the cavity and κloss
expresses the rate at which photons from either modes are lost. We further assume
that there are no input photons in the cavity mode (âin(t) = 0) since the only input
will be the photons to be bandwidth matched, and that no output photons will
remain in the off-resonant mode (b̂out(t) = 0), yielding the relations

âout(t) = √κout,aâ(t), b̂in(t) = √κout,bb̂(t) . (5.7)

The objective is thus to design an optimal cavity such that the total cavity output
field âout(t) has the biggest number of photons with the desired bandwidth. On the
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z

b̂in(t)

b̂out(t)

̂ain(t)

̂aout(t)

single photon stretched photon

NL

L

b̂(t)

̂a(t)
ωω

κloss κout,a

Figure 5.2: Scheme of the functioning of the photon stretcher set-up. The cavity mode â(t) is resonant
with the optical cavity (all in blue), while the b̂(t) modes are only resonant with the fictitious cavity
represented in dashed lines (in red). The cavity has a length L and the non-linearity (NL) is placed at a
position z. The most relevant coupling rates are also shown in the picture.

other hand, the Hamiltonian of the system is given by

Ĥ = h̄
∑
i

ωa,iâ
†
i âi + h̄ωbb̂

†b̂+ h̄
∑
i

(
Ω(t)â†i b̂+ Ω(t)∗b̂†âi

)
, (5.8)

where we have included the field Hamiltonians of the cavity field (∑i ωa,iâ
†
i âi) and the

input field (h̄ωbb̂†b̂), together with the interaction Hamiltonian where Ω(t) acts as the
coupling constant through the NL between the two. The frequencies ωa,i (i = ±∞)
and ωb are thus the resonant frequencies of each photonic mode. The interaction
between the two fields occurs by means of the NL, therefore we can interpret Ω(t)
as a pulse shape we can optimise over in order to maximise the efficiency of the
process. Note that we have assumed the input field to be single-mode, while the
cavity one is multimode. This will allow us to model the realistic imperfection of
coupling the cavity field to undesired modes beyond the resonant one.

The total output field from the cavity âout(t) has two different contributions, as
explained above: the single mode âout,SM(t), that corresponds to the resonant mode
of the cavity with frequency ωa,0 (this is, ideally, the only mode we would like to
couple to), and the multimode component âout,MM(t), that represents the rest of the
cavity modes. Therefore the total output cavity mode is given by

âout(t) = âout,SM(t) + âout,MM(t) . (5.9)

These separation into single-mode and multimode contributions will be very useful
for understanding the effect of imperfections in the following sections. We can now
calculate the total number of stretched photons N

N ≡
∫ ∞
∞

dωâ†out(ω)âout(ω) '
∫ ∆ω/2

−∆ω/2
dωâ†out(ω)âout(ω) , (5.10)

where ∆ω is the bandwidth, that we have assumed to be narrow. The number of
photons N is the quantity that we want to maximise, for which we will optimise the
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different cavity parameters. The expression above has different contributions

N =
∫ ∆ω/2

−∆ω/2
dω
(
â†out,SM(ω)âout,SM(ω) + â†out,MM(ω)âout,MM(ω)

+ (â†out,MM(ω)âout,SM(ω) + H.c.)
)
, (5.11)

that we calculate separately in the following subsections.

5.2.1 Single-mode contribution

For the analysis of this contribution we can simplify the Hamiltonian from Eq. 5.8
to

Ĥ = h̄ωa,0â
†â+ h̄ωb,0b̂

†b̂+ h̄
(
Ω(t)â†b̂+ Ω(t)∗b̂†â

)
. (5.12)

We then switch to a rotating frame around the driving frequencies ω′a,0 and ω′b,0,
detuned ∆a = ωa,0 − ω′a,0 and ∆b = ωb,0 − ω′b,0 from the resonant mode frequencies.
That is, we change to the interaction picture Hamiltonian by applying the following
transformation to Eq. (5.12)

Ĥ ′ = eiĤ0t/h̄Ĥe−iĤ0t/h̄ − Ĥ0 , (5.13)

where we have defined Ĥ0 = h̄ω′a,0â
†â + h̄ω′b,0b̂

†b̂. Thus the Hamiltonian in the
rotating field is

Ĥ ′ = h̄∆aâ
†â+ h̄∆bb̂

†b̂+ h̄
(
Ω̃(t)â†b̂+ Ω̃(t)∗b̂†â

)
, (5.14)

where we have defined the rotating-frame coupling constant Ω̃(t) as

Ω̃(t) = Ω(t)ei(ωa,0−∆a−(ωb,0−∆b))t . (5.15)

We can then insert the rotating-frame Hamiltonian from Eq. 5.14 in Eqs. 5.5, ob-
taining

˙̂a(t) = −
(
i∆a + κa

2

)
â(t)− iΩ̃(t)b̂(t), âout(t) = √κout,aâ(t)

˙̂
b(t) = −

(
i∆b + κb

2

)
b̂(t)− iΩ̃∗(t)â(t) +√κout,bb̂in(t), b̂in(t) = √κout,bb̂(t) .

(5.16)

Solving above’s system of coupled differential equations in general is quite difficult.
We simplify the system by adiabatically eliminating the cavity for the control mode
b̂(t), since it is not resonant with the cavity and is therefore a very lossy mode in
comparison with the resonant mode â(t) (κb � κa). In other words, we identify
â(t) as variable that varies very slowly in time compared to b̂(t). We can thus use
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the result for adiabatic elimination of a fast variable x2(t) respect to a slow variable
x1(t) related by

ẋ1 = κ1f1(x1, x2),
ẋ2 = κ2f2(x1, x2), (5.17)

that in the limit where κ2 � κ1 has the solution

x2(t) = g2(x1(t), x2(t))
∫ t−t0

0
e−κ2τdτ = 1

κ2
g2(x1(t), x2(t)) , (5.18)

where g2(x1, x2) = κ2f2(x1, x2) + κ2x2 (Lugiato et al., 2015, p. 106). We apply
above’s result to adiabatically eliminate the control mode b̂(t), obtaining

b̂(t) ' 1
i∆b + κb

2

(√
κout,bb̂in(t)− iΩ̃∗(t)â(t)

)
. (5.19)

Now we plug this approximation into Eqs. 5.35 and solve the differential equation
similarly to that solved in [Meystre & Sargent] to get

âout(t) = −i
√
κout,aκout,b

i∆b + κb
2

∫ t

t0
dt′b̂in(t′)Ω̃(t′)·

exp
{
−
(
i∆a + κa

2

)
(t− t′)− 1

i∆b + κb
2

∫ t

t′
dτ |Ω(τ)|2

}
, (5.20)

where we have assumed that there was no field present in the cavity prior to the
initial time t0, i.e., â(t0) = 0. Since the mode â(t) varies very slowly compared to
b̂(t), the input pulse b̂(t) is much shorter than the cavity decay time, and therefore
we can approximate that the term exp

{
−
(
i∆a + κa

2

)
(t− t′)

}
can be pulled out of

the integral. We thus obtain that

âout(t) ' −i
√
κout,aκout,b

i∆b + κb
2

e−κa(t−t0)/2
∫ t

t0
dt′b̂in(t′)Ω̃(t′) exp

{
− 1
i∆b + κb

2

∫ t

t′
dτ |Ω(τ)|2

}
,

(5.21)
where we have omitted a global phase from i∆a as it can be easily compensated by
the phase choice of Ω̃(t).

In Eq. (5.21) we can see how a smart choice of the pulse shape Ω(t) directly
influences the output field from the cavity âout(t). Let us then solve how Ω(t) should
ideally be to fully overlap with the mode b̂in(t) in Eq. (5.21) and thus maximise the
single-mode contribution to the N number of stretched output photons. For this
calculation we partially follow the method presented in Gorshkov et al. (2007). We
start by defining the wavefunction ψ(t′, t) as

ψ(t′, t) ≡
√
κb

i∆b + κb
2

Ω̃(t′) exp
{
− 1
i∆b + κb

2

∫ t

t′
dτ |Ω(τ)|2

}
. (5.22)
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We then evaluate |ψ(t′, t)|2 at a finite time T , that corresponds to the total pulse
length. We do so in order to avoid normalisation problems later on in the calculation.
We obtain

|ψ(t′, T )|2= κb
∆2
b + (κb2 )2 |Ω(t′)|2exp

{
− κb

∆2
b + (κb2 )2

∫ T

t′
dτ |Ω(τ)|2

}
. (5.23)

We then integrate above’s expression from the initial time t0 until a time t < T ,
yielding
∫ t

t0
dt′|ψ(t′, T )|2=

∫ t

t0
dt′

κb
∆2
b + (κb2 )2 |Ω(t′)|2exp

{
− κb

∆2
b + (κb2 )2

∫ T

t′
dτ |Ω(τ)|2

}

= exp
{
− κb

∆2
b + (κb2 )2

∫ T

t
dτ |Ω(τ)|2

}

− exp
{
− κb

∆2
b + (κb2 )2

∫ T

t0
dτ |Ω(τ)|2

}
, (5.24)

where we have applied the fundamental theorem of calculus2 to solve the integration
of the exponential term. Since the pulses are normalised such that they diverge when
integrated over the whole pulse length

∫ T
t0
dτ |Ω(τ)|2→ ∞, the second term of the

integral equals 0 and thus we get that∫ t

t0
dt′|ψ(t′, T )|2= exp

{
− κb

∆2
b + (κb2 )2

∫ T

t
dτ |Ω(τ)|2

}
, (5.25)

which indeed shows a correct normalisation when t = T , as
∫ t
t0
dt′|ψ(t′, T )|2= 1. The

last step in the calculation is to isolate the integral of the modulus squared of the
pulse Ω̃(t) and derive the expression with respect to the time t to finally obtain

|Ω(t)|=
√

∆2
b + (κb2 )2

κb

|ψ(t, T )|√∫ t
t0
dt′|ψ(t′, T )|2

. (5.26)

We can see that this expression intuitively makes sense, as it diverges when time
is evaluated at the initial time t = t0 as expected. Note that we are still missing
the calculation of the phase of the coupling pulse, since Eq. (5.26) only allows for
calculating the modulus |Ω(t)|. However, since the wavefunction ψ(t′, t) is known,
it can easily be obtained from Eq. (5.22).

The overlap between b̂in(t) and ψ(t′, t) can therefore be perfect when choosing
the appropriate pulse shape Ω(t) according to the solution found in Eq. (5.26), as
we can see in Fig.5.3. In other words, we can choose ψ(t′, T ) such that∫ T

t0
dt′b̂in(t′)ψ(t′, T ) = 1 ⇒ âout,SM(t) = −i

√
κout,aκout,b

κb
e−κa(t−t0)/2 , (5.27)

2i.e. d
dx

(∫ x
a
f(t)dt

)
= f(x) .
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(a) (b)

Figure 5.3: (a) Plot of the different wavefunctions involved in the optimisation of the number of single-
mode cavity photons for t0 = 0 and T = 4. The input pulse b̂in(t) is perfectly reproduced by ψ(t, T ) for
the choice of driving |Ω(t)| derived in equation 5.26. (b) In this plot we check the normalisation of the
different wavefunctions plotted in (a), as well as their crossed terms, for t0 = 0 and T = 4.

which maximises the output field from Eq. (5.21).
Finally we would like to calculate the optimal number of stretched photons when

we choose the optimal pulse |Ω(t)|. We take the Fourier transform of the output
cavity mode obtained in Eq. 5.27, yielding

âout,SM(ω) = −i
√
κout,aκout,b

2πκb

∫ ∞
t0

dte−κa(t−t0)/2+iωt = −i
√
κout,aκout,b

2πκb
1

κa
2 − iω

eiωt0 .

(5.28)
Therefore the single-mode contribution to the total number of photons N (Eq.
(5.11)) is∫ ∆ω/2

−∆ω/2
dωâ†out,SM(ω)âout,SM(ω) = κout,aκout,b

2πκb

∫ ∆ω/2

−∆ω/2

1
(κa2 )2 + ω2dω

= κout,aκout,b
2πκb

[
2 arctan 2ω/κa

κa

]∆ω/2

−∆ω/2
,

(5.29)

which for a small bandwidth ∆ω can be approximated by
∫ ∆ω/2

−∆ω/2
dωâ†out,SM(ω)âout,SM(ω) ' κout,aκout,b

2πκb

[
4ω
κ2
a

]∆ω/2

−∆ω/2
= 2∆ω

π

κout,b
κb

κout,a
(κout,a + κloss)2 ,

(5.30)
where we have substituted the contributions to the total decay rate κa from Eq. 5.6.
We can see that this result is practically equivalent to that from our initial quick
calculation in the Introduction. Above’s expression can now be optimised over the

92



CHAPTER 5. THE SINGLE-PHOTON STRETCHER

decay from the cavity κout,a in order to maximise the number of output photons. We
derive Eq. (5.30) and obtain that there is a maximum of stretched photons when it
holds that

κout,a = κloss, (5.31)

this is, when we balance out the losses of the cavity exactly with the output decay
from the cavity. If photons stayed longer in the cavity, losses would be too big, while
if they decayed faster to avoid the loss then the bandwidth would not be maximally
compressed.

5.2.2 Multi-mode contribution

In this subsection we want to study the effect of unwillingly coupling to neighbouring
longitudinal modes. From the single mode contribution, one could get the naive
picture that as long as the condition κout,a = κloss holds, the maximal number of
stretched photons would always be obtained. Thus, we could be tempted to make
a very big cavity to decrease its free spectral range and thus narrow the photon’s
bandwidth as much as desired. However, the bigger the cavity, the more likely it
will be that the input photons couple to other cavity modes beside the resonant one.
This error will effectively reduce the number of stretched photons, and therefore we
must find a compromise between the two effects.

In order to study the effect of the rest of the cavity modes we need to consider
the full Hamiltonian from Eq. (5.8). One can in principle switch to several rotating
frames. The optimal one is that where the Hamiltonian remains time-dependent,
such that the adiabatic elimination later on does not return trivial results (Brion
et al., 2007). This preferred frame is centered around the driving frequency ω′a,0,
which is resonant with the resonant cavity mode ωa,0. That is, a similar rotating
frame as in the single mode case, but where

Ĥ0 = h̄ω′a,0
∑
i

â†i âi + h̄ω′b,0b̂
†b̂ , (5.32)

instead. By applying Eq. (5.13) to this case we obtain the interaction-picture Hamil-
tonian

Ĥ ′ = h̄
∑
i

∆a,iâ
†
i âi + h̄∆bb̂

†b̂+ h̄
∑
i

(
Ω̃i(t)â†i b̂+ Ω̃i(t)∗b̂†âi

)
, (5.33)

where we have defined the detuning from the rest of the cavity modes as ∆a,i ≡
ωa,i − ω′a,0 and the mode-dependent coupling

Ω̃i(t) = Ω(t)ei((ωa,i−∆a,i)−(ωb−∆b))t . (5.34)
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We then apply Eqs. 5.5 to obtain a new set of coupled differential equations

˙̂ai(t) = −
(
i∆a,i + κa,i

2

)
âi(t)− iΩ̃i(t)b̂(t), âout,i(t) = √κout,a,iâi(t)

˙̂
b(t) = −

(
i∆b + κb

2

)
b̂(t)− i

∑
j

Ω̃∗j(t)âj(t) +√κout,bb̂in(t), b̂in(t) = √κout,bb̂(t) .

(5.35)

Performing the same adiabatic elimination as in the single mode case leads still
to a set of equations very difficult to solve analytically. In past attempts to solve
the system, our next approach was to adiabatically eliminate the modes âi as well,
assuming that they also decay fast from the cavity since they are not resonant. This
approximation also led to a complicated set of coupled differential equations. Alter-
natively we directly substituted our solution from the single mode case (Eq. 5.21),
but this approach also proved to lead to a difficult problem to solve analytically.
We thus make a stronger approximation: we perform perturbation theory to first
order, neglecting the interaction between cavity modes through the input mode b̂(t).
However, the system is unfortunately still difficult to solve only by requiring this
condition, so we finally do both perturbation theory and the adiabatic elimination of
the other cavity modes, assuming that the âi 6=0(t) modes are slow varying compared
to the resonant mode and not interacting among themselves such that

˙̂ai(t) = −
(
i∆a,i + κa,i

2

)
âi(t)− iΩ̃i(t)b̂(t) = 0

⇒ âi 6=0(t) ' −i Ω̃i(t)b̂(t)(
i∆a,i + κa,i

2

) = −i Ω̃i(t)b̂in(t)(
i∆a,i + κa,i

2

)√
κout,b

, (5.36)

where we have again assumed that there is no output field from the input mode
b̂out(t) = 0. Since we are solving the problem of maximising the output of stretched
photons to first order, we use the solution for the pulse Ω(t) that we found for the
single-mode case. We are nevertheless aware that this is not necessarily the optimal
solution when all the modes at considered at once (see Eq. (5.11)). For the single
mode case, we had chosen the wavefunction ψ(t′, T ) such that the overlap with the
input mode b̂in was maximal (see Eq. (5.27)). That is, we require ψ(t′, T ) to satisfy

ψ(t, T ) = b̂†in(t) =
√

2κQD
1− e−2κQD(T−t0) e

−κQD(t−t0) , (5.37)

where for the input mode we assume an exponential decay from the quantum dot
single-photon source at a rate κQD, normalised over the total pulse length T such that∫ T
t0
dt|b̂in(t)|2= 1. We then insert above’s equation into Eq. (5.36). For simplicity, we

decide to drive the b̂(t) input field resonantly, such that ∆b = 0 and that therefore
the coupling pulse is real, i.e. Ω̃i(t) ∈ <. This imposes the following condition over
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the complex phase φi, defined as Ωi(t) ≡ |Ω(t)|eiφi(t)

Ω̃i(t) ∈ < ⇐⇒ φi(t) = −(ωa,i −∆a,i − ωb,0)t . (5.38)

This phase was in fact expected to be cancelled out since we moved to the specified
rotating frame before.

Moving forward, by means of the single-mode pulse solution found in Eq. (5.26)
we find that

|Ω(t)|=
√

2κQD

√
∆2
b + (κb2 )2

κb

e−κQD(t−t0)
√

1− e−2κQD(t−t0)
, (5.39)

and since âout,MM(t) = ∑
i
√
κout,a,if(ki, z)âi(t) it follows that

âout,MM(t) = −i
∑
i

√
κout,a,i
κout,bκb

f(ki, z)
i∆a,i + κa,i

2
·

2κQD
√

∆2
b + (κb2 )2 e−2κQD(t−t0)√

(1− e−2κQD(T−t0))(1− e−2κQD(t−t0))
, (5.40)

where we have taken into account that each of the cavity modes contribute to the
total output cavity mode âout(t) weighted by its own decay rate from the cavity
κout,a,i and a spatial dependent function f(ki, z) that describe the spatial dependence
of each of the modes. It is expected to depend on the positioning of the NL, as well as
its finite size. We will describe the functions f(ki, z) more in detail in the following
sections. For now, we proceed to calculate the Fourier transform of the output mode
âout(t). For this, we need to calculate the following integral:

1√
2π

∫ ∞
t0

dte+iωt e−2κQD(t−t0)
√

1− e−2κQD(t−t0)
= 1

2κQD
√

2π
e−iωt0B

(
1− iω

2κQD
,
1
2

)
, (5.41)

where B(a, b) =
∫ 1

0 t
a−1(1− t)b−1dt is the Beta function, yielding

âout,MM(ω) =

= −i
∑
i

√
κout,a,i

2πκout,bκb
f(ki, z)

i∆a,i + κa,i
2

√
∆2
b + (κb2 )2 eiωt0√

1− e−2κQD(T−t0)
B

(
1− iω

2κQD
,
1
2

)
.

(5.42)

We can then finally obtain the number of photons that coupled to the off-resonant
cavity modes as
∫ ∆ω/2

−∆ω/2
dωâ†out,MM(ω)âout,MM(ω) '

' 2∆ω
π

κout,a
(
∆2
b + (κb2 )2

)
κout,bκb

(
1− e−2κQD(T−t0)

) ∑
ij

f(ki, z)f ∗(kj, z)
(κa2 + i∆a,i)(κa2 − i∆a,j)

, (5.43)
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where we have assumed that all the modes decay out of the cavity at the same rate
κout,a,i ≈ κout,a and where we have calculated that, for a small bandwidth ∆ω,

∫ ∆ω/2

−∆ω/2
dωB

(
1− iω

2κQD
,
1
2

)
B

(
1 + iω

2κQD
,
1
2

)
=

=
∫ ∆ω/2

−∆ω/2
dω

2πκQDω coth πω
2κQD

κ2
QD + ω2

'
∫ ∆ω/2

−∆ω/2
dω

(
4 + (π2 − 12)ω2

3κ2
QD

)
≈ 4∆ω .

(5.44)

We would like to remark that equation (5.43) depends on the spatial functions
f(ki, z). Thus if chosen appropriately, the position of the non-linearity can provide
a useful phase to further optimise the output, as we will analyse later on.

5.2.3 Crossed terms

We finally obtain the crossed terms from Eq. (5.11) by using the results obtained
in Eqs. (5.28) and (5.42), obtaining
∫ ∆ω/2

−∆ω/2
dωâ†out,SM(ω)âout,MM(ω) =

= κout,a
2πκb

√
∆2
b + (κb2 )2

√
1− e−2κQD(T−t0)

∑
i

f(ki, z)
i∆a,i + κa,i

2

∫ ∆ω/2

−∆ω/2
dω
B
(
1− iω

2κQD ,
1
2

)
κa + iω

.

(5.45)

We approximate to first order in ω the integral above by considering a small band-
width ∆ω, as in the previous subsections, yielding

B
(
1− iω

2κQD ,
1
2

)
κa + iω

' 2
κa
− 2i (κQD + κa(log 2− 1))

κ2
aκQD

ω . (5.46)

With above’s result we can then calculate the number of photons corresponding to
the crossed terms as
∫ ∆ω/2

−∆ω/2
dωâ†out,SM(ω)âout,MM(ω) =

= ∆ω
π

κout,a
(κout,a + κloss)κb

√
∆2
b + (κb2 )2

√
1− e−2κQD(T−t0)

∑
i

f(ki, z)
κa
2 + i∆a,i

, (5.47)

where we have substituted the total decay κa = κout,a + κloss.
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5.2.4 Total contribution

We can now calculate the total number of photons inserting the results from Eqs.
(5.43), (5.30), and (5.47) into Eq. (5.11)

N = 2∆ω
π

κout,b
κout,b + κloss

κout,a
(κout,a + κloss)2 ·[

1 + (κout,a + κloss)2

κ2
out,b

∆2
b + (κb2 )2

1− e−2κQD(T−t0) |α(z, κa)|2

+ <

κout,a + κloss
κout,b

√
∆2
b + (κb2 )2

1− e−2κQD(T−t0)α(z, κa)


]
, (5.48)

where we have defined the spatial-dependent functions α(z, κa) as

α(z, κa) ≡
∑
n

f(kn, z)
κa
2 + i∆a,n

. (5.49)

We can see how the coupling to the other cavity modes ωa,i modifies the function
to be optimised such that it is no longer ideal to choose κout,a = κloss, as we saw in
the single-mode case.

To proceed from here we need to calculate the sums in Eq. (5.49). For this,
the spatial functions f(ki, z) need to be determined. We can calculate them from
the consequent reflections of the electric field inside of the cavity and obtaining the
corresponding field that is emitted to one of the sides (see Fig. x):

Ex,R(r) = |Ex,R|
(
eikn(L−z) + r1r2e

ikn((L−z)+2L) + (r1r2)2eikn((L−z)+4L) + ...
)
, (5.50)

where R is the reflection coefficient of the cavity. We can then solve the geometric
series and obtain the Green’s function

G(kn, z) = eikn(L−z)

1− r1r2ei2knL
. (5.51)

We then substitute that ∆a,i = nπc
L

after calculating the poles of the Green’s function,
obtaining

f(kn, z) = ei∆a,i(L−z)/c . (5.52)
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Thus the sum yields

α(z, κa) =
∞∑

m=−∞
m6=0

ei∆a,i(L−z)/c

κa
2 + i∆a,i

=
∞∑

m=−∞
m 6=0

eimπ(1−z/L)

κa
2 + imπc

L

=

' κa
2

L2

π2c2

∞∑
m=−∞
m 6=0

eimπ(1−z/L)

m2 − i L
πc

∞∑
m=−∞
m6=0

eimπ(1−z/L)

m

= κa
2

L2

π2c2

(
Li2(e−iπ(1−z/L)) + Li2(e+iπ(1−z/L))

)
− i L

πc

(
log(1− e−iπ(1−z/L))− log(1− e+iπ(1−z/L))

)
,

(5.53)

where the function Li2(z) is the polylogarithm function Lin(z) with n = 2, where
we have used the approximation

1
κa
2 + i∆a,i

'
κa
2 − i∆a,i

∆2
a,i

, (5.54)

which is valid since the decay rate should be much smaller than that of the input
pulse, as in κa � 1/T , if we want to stretch the photon’s pulse-length. Furthermore,
since we want to couple as little as possible to the "bad" modes, also 1/T � |ωi|
must hold for i 6= 0. Thus κa � |ωi| and therefore we can approximate α(z, κa) to
first order in κa as shown above.

5.3 Conclusion and next steps

As stated in the beginning of the chapter, these are preliminary results from a project
that is still ongoing. Therefore, unfortunately we can not have all the figures and
final conclusions just yet. The following steps in the analysis would be to explicitly
show how the stretching factor η is penalised due to the multimode contributions,
both with the analytical approximation derived above and with a fully numerical
computation, which is on its way. We hope nevertheless to have shown the potential
of this implementation for closing the bandwidth mismatch between different qubit
platforms. In fact, the set-up is not limited to the coupling between single-photons
and optomechanical quantum memories and is applicable to other systems that suffer
from the same challenge.
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Final remarks

In the last chapter we collect the conclusions from the different projects presented
in the thesis, as well as a road map for future steps of the studies in the outlook
section.

Conclusion

In this thesis we have presented different studies that in different ways contribute to
developing a secure and global quantum network. Each of the projects has aimed to
face one of the challenges that this longer term goal imposes. We have started by in-
vestigating in depth different quantum information sources, in particular, quantum-
dot single-photon sources and an on-demand path-entanglement generation source.
Then we proceeded to analyse how to secure the quantum network where these
sources would be implemented by means of Device-Independent Quantum Key Dis-
tribution (DIQKD), relating their experimental imperfections to the violation of
Bell’s inequality and the obtainment of a positive secret key-rate between the emitter
and receiver nodes. Finally we proposed a new method to overcome the bandwidth
matching problem between single-photons and long-coherence quantum memories
such optomechanical membranes.

Specifically, in Chapter 1 we modelled the visibility, purity, and efficiency of the
single-photon sources, finding a clear correlation between them and the loophole-free
violation of Bell’s inequality by means of the discussed heralded scheme. While the
HOM visibility and g(2) of current quantum-dot single-photon sources are proficient
enough to comply with the requirements for the violation, the required local effi-
ciency (η ≈ 90% for realistic values of visibility and purity) is still far from that
present in current experiments nowadays. We thus wanted to investigate next if
this threshold would relax when using non-maximally entangled states instead of
the maximally entangled used in Chapter 1. We implemented this hypothesis in
the analysis from Chapter 4, together with a security proof to go beyond loophole-
free violation of Bell’s inequality and perform a full DIQKD protocol secure against
general attacks instead. The experimental conditions for performing DIQKD with
single-photon sources were indeed improved with respect to previous studies thanks
to basing our security proof on tighter bounds for a potential eavesdropper’s infor-
mation (Brown et al., 2021), and the local efficiency required for a loophole-free
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violation of Bell’s inequality was lowered with respect to the thresholds found in
Chapter 1.

Regarding the relation between HOM visibility and purity of the single-photon
sources introduced in Chapter 2, we found that the usual expression VHOM = 1−2g(2)

adopted by the experimental community is generally incorrect. Instead we presented
a detailed analysis where we show that the slope F that governs the relation VHOM =
1 − Fg(2) can in fact take values F ∈ [1, 3] for single-photon sources depending
on the degree of indistinguishability of the photons generated. With this result
we therefore encourage the community to fully characterise the HOM visibility of
their sources and use the correct value of F accordingly. In Chapter 3, on the
other hand, we presented the theoretical analysis of the entanglement quality of
the path-entanglement generation sources experimentally implemented by Østfeldt
et al. (2022). We found these entanglement sources to be highly promising after
modelling their main experimental imperfections: fine-structure splitting, timing
jitter and imperfect waveguide directional-coupling.

Finally, in Chapter 5 we presented the single-photon stretcher as a proposal to
close the bandwidth mismatch between single-photons an narrow-bandwidth quan-
tum memories. Although still work in progress, we showed how placing a non-linear
crystal at a specific position in an optical cavity and driving it with an optimised
pulse shape can ideally efficiently elongate the pulse length of the single photon up
to a factor equal to the finesse of the cavity.

Outlook

The projects presented in this thesis opened the door to pursuing some research
directions further. In particular, we believe that new heralded schemes can be
designed in order to further improve the experimental requirements for the imple-
mentation of DIQKD protocols with optical devices. One direction could be to
design the optical circuit in a way such that Alice’s and Bob’s measurement are
also heralded, in a QND-measurement fashion. This could maybe be implemented
by means of extra entangled states shared between Alice and Bob, for example by
introducing the path-entangled states described in the thesis. Another option could
be to use the spin degree of freedom of QDs to encode the entangled state be-
tween Alice and Bob. If the spin state can be read-out efficiently with a single-shot
measurement, this would solve the issue of the local efficiency requirements. An
alternative is to study schemes that use quantum repeaters and quantum memories
(Sangouard et al., 2007). As a shorter term solution, if the required local efficiencies
are not yet complied, one could study the possibilities of one-sided DIQKD schemes
with single-photon sources (Branciard et al., 2012). Alternately, understanding if
Measurement-Device-Independent QKD schemes greatly simplify the local efficiency
requirements would depend upon a new analysis to correlate the imperfections with
the achievable key rate, since the map between fully DIQKD results to MDIQKD is
not completely trivial. On a different note, we believe it could be on the interest of
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the single-photon source community to develop a user-friendly library to perform an
accurate analysis of the relation between the HOM visibility and the second-order
correlation function, such that it becomes a routinely correction in the experimental
implementations.
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Appendix A

Appendix to Chapter 1

A.1 Dephasing in single-photon emitters

To evaluate the performance of the protocol we need to evaluate the indistinguisha-
bility parameters αij and βij (and higher order moments). In this section we cal-
culate these for a particular model of the dephasing, which was also considered in
(Kambs et al., 2018). We consider a Hamiltonian that describes the dynamics of the
system, containing the field, the emitter and their interaction (Das et al., 2019):

Ĥ =
(
ωieg + ∆i + Fi(t)

)
|ei〉 〈ei|+

∫
dkωkâ

†
kâk−

∫
dkgk |ei〉 〈gi| âkeikzi + h.c. , (A.1)

where ωieg is the natural frequency splitting of each emitter, perturbed by a slow
frequency drift ∆i and rapidly varying (e.g. phonon-induced) random fluctuations
represented by the uncorrelated force Fi(t). Solving the time evolution of the system
through Schrödinger’s equation with a suitable wavefunction ansatz (Das et al.,
2019) allows us to find the mode functions fi(t) appearing in Eq. (1.3):

fi(t, t0) = √γe−
γ
2 (t−t0)e

−i
(

∆i(t−t0)+
∫ t
t0
Fi(t′)dt′

)
≡ √γe−

γ
2 (t−t0)e−i(∆i(t−t0)+φi(t,t0)) ,

(A.2)
where we account for the spontaneous decay (with spontaneous emission rate γ)
and dephasing of the emitter through the random phase φi. We assume that the
uncorrelated force Fi(t) satisfies 〈Fi(t)〉 = 0 and (Bylander, J. et al., 2003)

〈Fi(t)Fj(t′)〉 = 2γdδijδ(t− t′) , (A.3)

where γd is the pure dephasing rate. This model for dephasing is equivalent to
the standard density matrix description where a decay rate γd is added to the off-
diagonal elements of the density matrix and has e.g. been shown to provide a good
description for phonon induced dephasing in quantum dots (Tighineanu et al., 2018;
Muljarov et al., 2004).

We can now use the above model above to evaluate the desired correlation func-
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tions. From Eq. (1.4) we have〈
|αij|2

〉
=
∫ ∞
t0

∫ ∞
t0

dtdt′
〈
f ∗i (t, t0)f ∗j (t′, t0)fi(t′, t0)fj(t, t0)

〉
. (A.4)

Substituting Eq. (A.3) into A.4, assuming that the energy level in the quantum dot
evolves slowly enough in time such that ∆i = ∆j, we find

〈
|αij|2

〉
=
∞∫∫
t0

dtdt′γ2 exp{−γ(t+ t′ − 2t0)} 〈exp{−i (φi(t′) + φj(t)− φi(t)− φj(t′))}〉 .

(A.5)

Since white noise is necessarily Gaussian, we have a Gaussian distribution for φi(t),
leading to〈
|αij|2

〉
=

=
∞∫∫
t0

dtdt′γ2 exp{−γ(t+ t′ − 2t0)} exp


〈
−

〈
(φi(t′) + φj(t)− φi(t)− φj(t′))2

〉
2

〉 .
(A.6)

Applying Eq. (A.3) the expectation value in the exponent yields〈
(φi(t′) + φj(t)− φi(t)− φj(t′))2〉 = 4γd|t′ − t| , (A.7)

finally after substituting in Eq. (A.6), this leads to〈
|αij|2

〉
= γ

γ + 2γd
. (A.8)

In a similar fashion, one can obtain higher order terms, that are relevant for the
three and four photon contributions:

〈αijαikαjk〉 = γ2

(γ + γd) (γ + 2γd)
, 〈αijαklαikαjl〉 = γ3 (3γ + 5γd)

(γ + γd) (γ + 2γd)2 (3γ + 2γd)
,

(A.9)

where i 6= j 6= k. Note that 〈αijαkl〉 = 〈αij〉 〈αkl〉 for i, j 6= k, l, since the noise is
uncorrelated.

On the other hand, when the photons are generated at different stations, we can
no longer assume that the energy splitting is zero during each run of the experi-
ment. The slow drift implies a splitting ∆ij ≡ ∆j −∆i 6= 0, yielding the following
expectation value of the indistinguishability parameter βij:

〈
|βij|2

〉
=
∞∫∫
t0

dtdt′γ2 exp{−γ(t+ t′ − 2t0)} exp{−i∆ij (t− t′)− 2γd|t′ − t|} ,

(A.10)
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where we have again calculated the expectation value as in Eq. (A.7). Solving these
integrals gives us 〈

|βij|2
〉

= γ (γ + 2γd)
(γ + 2γd)2 + ∆2

ij

. (A.11)

Similarly we can obtain the higher order terms that are needed for calculating
the necessary correlations:

〈αijβikβjk〉 =
γ2
(
12 (γ + γd)2 (γ + 2γd)2 + (3γ2 + 6γγd + 4γ2

d) ∆2
)

(
3 (γ + γd) (γ + 2γd)

(
4 (γ + γd)2 + ∆2

) (
(γ + 2γd)2 + ∆2

)) ,

〈αijαklβikβjl〉 = γ

3γ + 2γd

− 8γd (γ + γd) (2γ + γd)
(γ + 2γd)

(
4 (γ + γd)2 + ∆2

) + 3γ2 + 6γγd + 2γ2
d

(γ + 2γd)2 + ∆2

+ 2γ2
d (3γ + 2γd)2

(γ + 2γd)2
(
(3γ + 2γd)2 + ∆2

) . (A.12)

Note that as we assume that all photons are generated by only two quantum dots,
there is in fact only one value of the detuning. Therefore we can reduce it to a single
value ∆ regardless of the considered index.

To apply the above results we need to average over the slow variations of ∆. We
assume a Gaussian distribution centered around ∆ = 0 with standard deviation σ
described by P (∆) = 1/

(√
2πσ

)
exp

{
−∆2

2σ2

}
. When we take the average we obtain:

〈
|βij|2

〉
=
√
π

2
γ

σ
e

(γ+2γd)2

2σ2 erfc
(
γ + 2γd√

2σ

)
,

〈αijβikβjk〉 =
√
π

2
γ

3σ(γ + γd)(γ + 2γd)

(
e

(γ+2γd)2

2σ2 (γ + 2γd)(3γ + 2γd)erfc
(
γ + 2γd√

2σ

)

− 4e
2(γ+γd)2

σ2 γd(γ + γd)erfc
(√

2(γ + γd)
σ

))
,

〈αijαklβikβjl〉 =
√
π

2
γ

σ(3γ + 2γd)(γ + 2γd)2

(
2e

(3γ+2γd)2

2σ2 γ2
d(3γ+2γd)erfc

(
3γ + 2γd√

2σ

)
+

e
(γ+2γd)2

2σ2 (γ + 2γd)(3γ2 + 6γγd + 2γ2
d)erfc

(
γ + 2γd√

2σ

)

− 4e
2(γ+γd)2

σ2 γd(2γ + γd)(γ + 2γd)erfc
(√

2(γ + γd)
σ

))
. (A.13)

Although exact, the above expressions give trouble numerically when σ → 0.
Therefore, an asymptotic expansion of the complementary error functions has been
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used for σ < 0.1. We express it up to third non-vanishing order

erfc(x) ' 1√
π
e−x

2
(1
x
− 1

2x3 + 3
4x5

)
. (A.14)

For instance, 〈|βij|2〉 becomes
〈
|βij|2

〉
' γ

γ + 2γd

(
1− σ2

(γ + 2γd)2 + 3σ4

(γ + 2γd)4

)
, (A.15)

which shows that 〈|βij|2〉 (σ = 0) = 〈|αij|2〉, as expected. In a similar way, we
calculate the expansion for higher order of the indistinguishability parameters.

A.2 Photon operator transformations

In this appendix we show explicitly how the optical set up transforms the initial
creation operators and give more details of the model we use to describe the different
errors mechanisms. From Eqs. (1.4) and 1.12 we obtain the global transformation

â†s,ς =
√
ηtT

2
(
i
(
p̂†H ± p̂

†
V

)
+
(
q̂†H ± q̂

†
V

))
+ i
√

1− T â†ς , (A.16)

and similarly for Bob’s photons, where ς ∈ {H, V }. We now apply Eq. (A.16) to
all operators in the initial state of the system â†s,H â

†
s,V b̂

†
s,H b̂

†
s,V |∅〉 and trace out the

CHS operators p̂†H , p̂
†
V , q̂

†
H and q̂†V to obtain the state shared by Alice and Bob after

the heralding. This state, as explained in section 1.2, will depend on the detection
pattern at the CHS. If we ignore all imperfections and restrict the state to those
events where photons lead to clicks corresponding to opposite polarizations

|ψD1D4〉 = ηtT (1− T )√
2

∣∣∣ψ−〉 = − |ψD2D3〉 , (A.17)

whereas the state that is created after the patterns D1D2 and D3D4 is

|ψD1D2〉 = |ψD3D4〉 = iηtT (1− T )√
2

∣∣∣φ−〉 , (A.18)

agreeing with our HOM arguments from section 1.2.
In this work we focus the analysis on the patterns that generate the state |ψ−〉

(D1D4 and D2D3) in order to simplify the presentation of the results. Note that
the transmission probability only enters in the prefactor of the unnormalised state.
After renormalization to account for the state conditioned on the detection of the
photons, the states are independent of the transmission efficiency thanks to the
heralding scheme.

The heralding station notifies Alice and Bob when the correct pattern of clicks
has been detected. In the ideal scenario these patterns guarantee that the protocol
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succeeded in generating the desired state. To evaluate the performance under non-
ideal condition, however, we need to consider the error mechanisms described in the
previous section. To do this we start by describing the transformation of the mode
operators when a photon is lost:

â†i →
√
ηj,iâ

†
i +

√
1− ηj,iĉ†j,i , (A.19)

where ĉ†j,i creates a photon that escapes the set up. The index j ∈ {1, 2, t} indi-
cates where the loss happened following the notation from Fig. 1.3. Applying this
transformation to each segment of the setup leads us to the loss operator L̂†i :

L̂†i ≡
√

1− η1,iĉ
†
1,i + i

√
η1,i(1− η2,i)(1− T )ĉ†2,i +

√
η1,i(1− ηt)T ĉ†t,i . (A.20)

The operator directly provides the total probability for the photon to escape the set-
up
〈
L̂iL̂

†
i

〉
= 1−η1,iη2,i(1−T )−η1,iηtT . Note that

〈
L̂iL̂

†
j

〉
i 6=j

= 0 and
〈
L̂iL̂jL̂

†
kL̂
†
l

〉
i 6=k,j 6=l

=
0 expressing that lost photons do not interfere. By means of Eqs. (A.19) and A.20
we can obtain the global transformation in the main text (B.7).

Finally, we detail the action of the consecutive QWP and HWP on the creation
operators â†H,1, â

†
V,2, b̂

†
H,3 and b̂†V,4, represented by the Jones matrices. They are

described by the unitary operations (James et al., 2001):

ÛQWP (θ) = 1√
2

(
i− cos(2θ) sin(2θ)

sin(2θ) i+ cos(2θ)

)
, ÛHWP (φ) =

(
cos(2φ) − sin(2φ)
− sin(2φ) − cos(2φ)

)
.

(A.21)

The total transformation is thus Ûtot(θ, φ) = ÛHWP (φ)ÛQWP (θ).

A.3 Conditioning on the correct detection pattern

In this appendix we explicitly show the expectation values of the CHS operators Ôi

up to three-photon detections as a function of the indistinguishability parameters
αij and βij. Selecting only the combinations of operators that lead to a correct
event, that is, D1D4 and D2D3 and applying Eqs. (1.4) and (1.4), we obtain:

〈
Ô1Ô3Ô

†
1Ô
†
3

〉
D1D4,D2D3

= 1
2 〈((p̂H,3q̂H,1 + p̂V,3q̂H,1)− (p̂H,1q̂H,3 + p̂V,1q̂H,3)) ·

((p̂†H,3q̂
†
H,1 + p̂†V,3q̂

†
H,1)− (p̂†H,1q̂

†
H,3 + p̂†V,1q̂

†
H,3)) = 1− |β13|2 . (A.22)
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Similarly, for the other combinations:〈
Ô1Ô4Ô

†
1Ô
†
4

〉
D1D4,D2D3

= 2t(1− t)1 + |β14|2,
〈
Ô2Ô3Ô

†
2Ô
†
3

〉
D1D4,D2D3

= 1 + |β23|2,〈
Ô2Ô4Ô

†
2Ô
†
4

〉
D1D4,D2D3

= 1− |β24|2,
〈
Ô1Ô2Ô

†
1Ô
†
2

〉
D1D4,D2D3

= 1− |α12|2,〈
Ô3Ô4Ô

†
3Ô
†
4

〉
D1D4,D2D3

= 1− |α34|2,
〈
Ô1Ô4Ô

†
2Ô
†
3

〉
D1D4,D2D3

= −α12α34 − β13β24,〈
Ô1Ô3Ô

†
2Ô
†
4

〉
D1D4,D2D3

= −α12α34 + β14β23 .

(A.23)

It can be easily checked that any other combination of CHS operators has vanishing
expectation value. If no conditioning on the detection pattern is done, the sum
of the expectation values are independent of the indistinguishability of the pho-
tons and equal 4, reflecting that with the current normalization this is proportional
to the product of the number of photons at each side. Note that in the limit of
completely indistinguishable photons (α12 = α34 = 1),

〈
Ô1Ô2Ô

†
1Ô
†
2

〉
D1D4,D2D3

and〈
Ô3Ô4Ô

†
3Ô
†
4

〉
D1D4,D2D3

vanish, meaning that we never have a successful detection
event with two photons from the same station. As explained in Sec. 1.2, this occurs
because of the HOM effect, since two photons from from the same station will bunch
together after the half-wave plate (â†H,1â

†
V,2 → â

′†2
H − â

′†2
V ), and therefore no D1D4

or D2D3 clicks can ever happen. Finally, note that the expectation values in Eq.
(A.23) correspond to the generalised matrix elements of the density matrix in Eq.
(1.22).

In a similar manner, we can calculate the expectation values for the occurrence of
three photons at the CHS. We only keep those terms that correspond to combinations
of clicks perceived as correct by the CHS, D1D4 and D2D3, due to the detectors not
being photon-number resolving. For instance, a term such p̂†H,1q̂

†
V,3q̂

†
V,4 is taken into

consideration, while p̂†H,1p̂
†
V,3q̂

†
V,4 is not. Applying once more Eqs. (1.4) and (1.4) we

obtain
〈
Ô1Ô3Ô4Ô

†
1Ô
†
3Ô
†
4

〉
D1D4,D2D3

= 1
2
(
3− |α34|2 − |β13|2 + 3|β14|2 − 2α34β13β14

)
,〈

Ô2Ô3Ô4Ô
†
2Ô
†
3Ô
†
4

〉
D1D4,D2D3

= 1
2
(
3− |α34|2 + 3|β23|2 − |β24|2 − 2α34β23β24

)
,〈

Ô3Ô1Ô2Ô
†
3Ô
†
1Ô
†
2

〉
D1D4,D2D3

= 1
2
(
3− |α12|2 − |β13|2 + 3|β23|2 − 2α12β13β23

)
,〈

Ô4Ô1Ô2Ô
†
4Ô
†
1Ô
†
2

〉
D1D4,D2D3

= 1
2
(
3− |α12|2 + 3|β14|2 − |β24|2 − 2α12β14β24

)
,

(A.24)

where again any other combination of three CHS operators has an expectation value
equal zero.
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A.4 Probability events Pijkl

In this section we include Table A.1, where we detail the contribution of all 4 and
5-photon events.
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Event probability CHS Alice Bob Lost photons
P2110 AB A B ∅
P2200 BB AA ∅ ∅
P2020 AA ∅ BB ∅
P2101 AB A ∅ B

BB A ∅ A
P2011 AB ∅ B A

AA ∅ B B
P2002 AB ∅ ∅ AB

AA ∅ ∅ BB
BB ∅ ∅ AA

P3100 ABB A ∅ ∅
P3010 AAB ∅ B ∅
P3001 ABB ∅ ∅ A

AAB ∅ ∅ B
P2111 AB A B A

AA A B B
P2210 AB AA B ∅
P2120 AA A BB ∅
P2201 AB AA ∅ B

BB AA ∅ A
P2021 AA ∅ BB A
P2102 AB A ∅ AB

AA A ∅ BB
BB A ∅ AA

P2012 AB ∅ B AA
AA ∅ B AB

P2300 BB AAA ∅ ∅
P2030 AA BBB ∅ ∅
P2003 AB ∅ ∅ AAB

AA ∅ ∅ ABB
BB ∅ ∅ AAA

P3110 AAB A B ∅
P3101 AAB A ∅ B

ABB A ∅ A
P3011 AAA ∅ B B

AAB ∅ B A
P3200 ABB AA ∅ ∅
P3020 AAA ∅ BB ∅
P3002 AAA ∅ ∅ BB

AAB ∅ ∅ AB
ABB ∅ ∅ AA

Table A.1: 4-photon and 5-photon events that lead to a correct detection pattern at the CHS. A and B
indicate where the photons were generated, while the header tells where they were detected.
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Appendix to Chapter 4

B.1 Equivalence between the assignment strategy in CHSH
and Eberhard’s inequality

It is well known that the CHSH inequality has an efficiency threshold of 82.84%
(Massar et al., 2002) limited by its incapability of assuming non-detection events.
Alternatively, one can think of either assignment strategies (this is, to allocate a
determined output if nothing was detected) or consider inequalities such Eberhard
(Eberhard, 1993), which accounts for non-detection events and has an efficiency
threshold of 66%. There is, however, a common confusion in the literature regard-
ing the efficiency required by a Bell test experiment in order to close the detection
loophole. In many cases, as in two of the three loophole-free Bell test from 2015
(Giustina et al., 2015; Shalm et al., 2015), the use of Eberhard is expressed to be ad-
vantageous by means of non-maximally entangled states. It can be proved, however,
that if CHSH is used together with an assignment strategy, the two inequalities are
equivalent. In order to prove it we follow Czechlewski et al. (2018).

Proof. We start by writing Eberhard’s inequality (Eberhard, 1993):

J ≡ p(0, 0|0, 0)−p(0, 0|1, 1)−p(0, 1|0, 1)−p(1, 0|1, 0)−p(0, ∅|0, 1)−p(∅, 0|1, 0) ≤ 0 .
(B.1)

Now we calculate the marginal probabilities pA(0|0) and pB(0|0), adding the extra
terms due to the assignment strategy ∅ → 1:

pA(0|0) =
∑
b

p(0, b|0, y) = p(0, 0|0, y) + p(0, 1|0, y) + p(0, ∅|0, y)

pB(0|0) =
∑
a

p(a, 0|x, 0) = p(0, 0|x, 0) + p(1, 0|x, 0) + p(∅, 0|x, 0) .
(B.2)

Furthermore, the marginal probabilities of Alice and Bob are assumed to be indepen-
dent of each other inputs under the deterministic assumption, thus we conveniently
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choose

pA(0|0) =
∑
b

p(0, b|0, 1) = p(0, 0|0, 1) + p(0, 1|0, 1) + p(0, ∅|0, 1)

pB(0|0) =
∑
a

p(a, 0|1, 0) = p(0, 0|1, 0) + p(1, 0|1, 0) + p(∅, 0|1, 0) ,
(B.3)

and substitute in Eq. B.4, obtaining

p(0, 0|0, 0)− p(0, 0|1, 1) + p(0, 0|1, 0) + p(0, 0|0, 1)− pA(0|0)− pB(0|0) ≤ 0 , (B.4)

which is known as CH inequality (Clauser et al., 1974). Multiplying the CH inequal-
ity by 4, adding 2 on both sides of the inequality and ±2pA(0|1)± 2pB(0|1), we can
collect all terms as

1∑
xy

(−1)xy
(

4p(0, 0|x, y)− 2pA(0|x)− 2pB(0|y) + 1
)
≤ 2 , (B.5)

and recalling that we have assigned ∅ → 1, we insert the value of the marginals
pA(0|x) and pA(0|y), yielding

1∑
xy

(−1)xy
(
p(0, 0|x, y)− p(0, 1|x, y)− p(1, 0|x, y) + p(1, 1|x, y)

)
≤ 2 , (B.6)

which corresponds to CHSH inequality.

B.2 Modelling of real single-photon sources and detectors

The probabilities pijkl that contribute to the total heralding probability are closely
related to those derived in González-Ruiz et al. (2022a), but had to be recalcu-
lated. The reason is that the probability contributions were previously obtained by
averaging over the states heralded by the detector combinations D1D4 and D2D4
(see Table 4.1), which effectively cancels out the effect of the variable central beam
splitter transmittance t on the generated entangled state. In addition, compared to
González-Ruiz et al. (2022a) we neglect terms where three photons click simultane-
ously in an acceptable pattern at the CHS, since their probability of occurring is at
least an order of magnitude smaller than the 2-photon events.

The initial state is given by the creation of the single photon product state
â†1,H â

†
2,V â

†
3,H â

†
4,V |∅〉. The creation operators â†i,ς are then linearly transformed ac-

cording to

â†ς,i →
√
η1ηtT

2 Ô†i + i
√
ηlâ
†
ς,i + L̂†i , (B.7)

and similarly for Bob’s operators (González-Ruiz et al., 2022a). After the transfor-
mation we can see that a photon can be successfully transmitted to the CHS with
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a probability proportional to ηtT (Ô†i ), remain at the local stations after being re-
flected at the first beam splitter (â†i,ς) or lost (L̂

†
i ). Thus we can trace out the CHS

Ô†i and loss operators L̂†i and condition on the correct detection pattern to obtain
the state shared by the remaining photons. See González-Ruiz et al. (2022a) for
details.

In particular, for the correct conditioning of the desired detection pattern we
obtain several combinations of CHSH operators expectation values. The following
expectation values were added or modified with respect to González-Ruiz et al.
(2022a):
〈
Ô1Ô2Ô

†
1Ô
†
2

〉
= 2t(1− t)(1− |α12|2),

〈
Ô3Ô4Ô

†
3Ô
†
4

〉
= 2t(1− t)(1− |α34|2),〈

Ô1Ô3Ô
†
1Ô
†
3

〉
= 1− 2t(1− t)(1 + |β13|2),

〈
Ô1Ô4Ô

†
1Ô
†
4

〉
= 1− 2t(1− t)(1− |β14|2),〈

Ô2Ô3Ô
†
2Ô
†
3

〉
= 1− 2t(1− t)(1− |β23|2),

〈
Ô2Ô4Ô

†
2Ô
†
4

〉
= 1− 2t(1− t)(1 + |β24|2),〈

Ô1Ô4Ô
†
2Ô
†
3

〉
= −α12α34 + 2t(1− t)(α12α34 − β13β24),〈

Ô1Ô3Ô
†
2Ô
†
4

〉
= −α12α34 + 2t(1− t)(α12α34 + β14β23)〈

Ô1Ô3Ô
†
1Ô
†
4

〉
=
〈
Ô2Ô3Ô

†
2Ô
†
4

〉
= ∓(1− 2t)α34〈

Ô1Ô4Ô
†
2Ô
†
4

〉
=
〈
Ô1Ô3Ô

†
2Ô
†
3

〉
= ±(1− 2t)α12 .

(B.8)

Here the plus and minus solutions correspond to the heralding combinations D1D4
and D2D3 respectively and αij and βij (with i, j = 1, 2, 3, 4 indicating the source)
relate to the HOM visibility of photons generated in the same or opposite station
respectively, and the decoherence parameters as

Vα = |αij|2, Vβ = |βij|2 =
√
π

2
γ

σ
e

(γ+2γd)2

2σ2 erfc
(
γ + 2γd√

2σ

)
. (B.9)

For this work, we postselect on the D2D3 combination.
With the moments specified above we can evaluate the Bell parameter for any

settings. We then optimize the violation of CHSH over the measurement angles and
the transmittance t for different values of the noise and visibility (see Figure B.1).
Comparing to Figure 6 in González-Ruiz et al. (2022a), we not only lower the local
efficiency thresholds, but actually reach the theoretical limit ηl = 66.67% expected
for CHSH type inequalities with non-maximally entangled states (Eberhard, 1993;
Caprara Vivoli et al., 2015). For completeness we also include the CHSH parameter
S as a function of the local efficiency ηl for different values of the second order
correlation function g(2) in Fig. B.2, which also show improved efficiency thresholds
compared to González-Ruiz et al. (2022a).
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Figure B.1: CHSH parameter S as a function of the local efficiency ηl of Alice and Bob’s stations for
different HOM visibilities optimized with respect to the transmittance t. To focus on the effect of the local
efficiency we consider a situation with a very limited transmission to the CHS (T = 10−3 and ηt = 0.1)
and vary the efficiency of the final arm η2 with η1,i = 1. We extract a threshold of 66.7% for the efficiency
in the perfect visibility case, which agrees with Caprara Vivoli et al. (2015).

a) b) c)

Figure B.2: CHSH parameter S as a function of the local efficiency ηl of Alice and Bob’s stations
for different purities and HOM visibilities optimized with respect to the transmittance t. We set a low
transmittance (T = 10−3 and ηt = 0.1) and vary the efficiency of the final arm η2 with η1,i = 1.
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B.3 Numerical implementation

In this appendix we provide a description of the numerical implementation for com-
puting the key rate from Eq. (4.8). It consists of three parts:

1. An optimization over the experimental parameters, which has been done by
means of the minimize function of the Scipy package (Virtanen et al., 2020);

2. The generation of the SDP relaxation shown in Eq. (4.8), which has been done
by means of the ncpol2sdpa package (Wittek, 2015) and minimized using
Mosek (ApS, 2022).

3. A parallelization of the process by means of MPICH (Message Passing Interface
Forum, 2021), such that we can find the SDP relaxation of many non local
initial points simultaneously.

Our numerical implementation can be found in González-Ruiz et al. (2022c) and
is based on that developed by Peter Brown and coworkers (Brown et al., 2021),
using the same approximations as the ones implemented in these references. Let us
go, in more detail, through each of the points mentioned above.

B.3.1 Optimization of the experimental parameters

The optimization can be understood as an outside optimization that is done over the
SDP relaxation shown in Eq. (4.8). In other words, Eq. (4.8) (adding the relative
entropy between Alice and Bob) serves as a function over which we optimize, with
the constraints depending on the parameters used in the setup shown in Fig. 4.1 via
the probability distribution associated to the configuration. In particular, for the
situation where we do not apply noisy preprocessing, we have five parameters over
which we optimize, namely (t, θA0 , θA1 , θB0 , θB1 , θB2). These respectively correspond
to the beam splitter transmissivity used in the CHS, the two angles associated to the
two possible measurements Alice can perform, and the three angles associated to the
three possible measurements Bob can perform. In our numerical implementation,
we considered that the A0 measurement of Alice and the B2 measurement of Bob
are the ones from which Alice and Bob extract the key.

This external optimization has been done using the Nelder-Mead algorithm (Nelder
et al., 1965), which is a local optimization method that is particularly suitable for
constrained parameters. Concretely, the constraints we impose are t ∈ [0, 1] and
θAi , θBj ∈ [0, 2π]. However, the main drawback of this method is that it is local,
which implies that (i) it depends on an initial guess; (ii) we can fall into local minima
that happen to provide significantly different values for our figure of merit. Thus, it
is fundamental for these local methods to generate a big number of instances that
are relevant to the problem. In our case, we generated random points satisfying the
previous constraints, and filtered them by checking whether the probability they
give rise to belongs to the 2222 local polytope. This allow us to fix the parameters
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Figure B.3: Schematic representation of our numerical implementation. We first randomly generate a
point satisfying a set of conditions imposed by the physical implementation, and compute the associated
probability distribution P. Then, we check whether the generated point is within the local set L or not.
If it is, then we generate another point. Otherwise, we use it for running the SDP and maximize the key
rate.

(t, θAi , θBj), with i = 0, 1, while θB2 remains random. A pictorial representation of
this numerical implementation is shown in Fig. B.3.

Each of these nonlocal points are then used as starting points for the local op-
timization method. The next step is to optimize over the SDP to evaluate the key
rate for a given non-local point.

B.3.2 SDP relaxation

It is important to note that the expression we use in Eq. (4.8) is a SDP relaxation
to the exact expression considered in Theorem 2.11 of (Brown et al., 2021), based
on the Navascués-Pironio-Acín (NPA) hierarchy (Navascués et al., 2007; Navascués
et al., 2008). Furthermore, in our numerical implementation, we restrict ourselves
to the second level of the hierarchy such that we consider only up to second order
moments in our certificate. However, we introduce some extra third order moments,
in particular terms of the form ABZ and AZ†Z (where the Z are the Eve operators
appearing in Eq. (4.8)).

The SDP relaxation shown in Eq. (4.8) depends on m, which is the maximum
number of terms we consider when expanding the integrals that are defined in the
quantum relative entropy (for more details, see Theorem 2.11 in Ref. (Brown et al.,
2021)). Obviously, in the limitm→∞ we recover the exact definition of the integral
terms, and therefore obtain better bounds (see Fig. (B.4)).
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Figure B.4: Key rate for V = 0.95 computed with two different values of m: m = 2 (red dashed curve)
and m = 8 (black solid curve). As we can see, increasing the value of m for fixed experimental parameters,
leads to better bounds on the relative entropy between Alice and Eve, which translates into higher key
rates.

B.3.3 Parallelization

Once we have obtained a certain number of points outside the local set L that satisfy
the conditions of our implementation and have created the SDP relaxation problem,
we optimize the measurement angles such that the key rate is maximized. This
optimization problem is computationally hard, since it needs to perform the SDP
relaxation with each evaluation of the optimization function.

We create a parallelized approach in which the non-local points are optimized in
parallel with a MPI standard (Message Passing Interface Forum, 2021). Note that
increasing values of m lead to more terms in our SDP relaxation and thus more
computation time is needed. In order to get useful results in a reasonable amount of
time, we set m = 2 for each of the optimizations. By doing this, we filter all those
initially generated nonlocal points that clearly lead to bad (negative) values of the
key rate. With this we thus obtain a set of good points, which can then be evaluated
with a bigger value of m (m = 8), leading to the plots we show in the main text.
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