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Abstract

�is thesis presents a series of quantum dot studies, performed with an eye towards improved conven-
tional and topological qubits. Chapters 1-3 focus on improved conventional (spin) qubits; Chapters 4-6
focus on the topological Majorana qubits.

Chapter 1
quantum dot, realized in a Ge/Si nanowire. Strong spin-orbit coupling in this hole-gas system leads to an-
tilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak height distribu-

lso < 20 nm),
consistent with values extracted in the Coulomb blockade regime (lso < 25 nm).

Chapters 2 & 3 demonstrate operation o�mproved spin qubits. Chapter 2 continues the investigation of
Ge/Si nanowires, demonstrating a qubit with tenfold-improved dephasing time compared to the standard
GaAs case. �e combination o�ong dephasing time and strong spin-orbit coupling suggests that Ge/Si
nanowires are promising for a spin-orbit qubit. In Chap. 3, multi-electron spin qubits are operated in GaAs,
and improved resilience to charge noise is found compared to the single-electron case.

Chapters 4 & 5, present a series of studies on composite superconductor/semiconductor Al/InAs quan-

are presented in Chap. 4, and the parity lifetime of a bound state in the nanowire is inferred to exceed 10
milliseconds. Next, in Chap. 5
length. Coulomb peak spacings are consistent with the emergence of Majorana modes in the quantum dot.

nential with increasing nanowire length. Coulomb peak heights are also investigated, and show signatures
of electron teleportation by Majorana fermions.

Finally, Chap. 6 outlines some schemes to create topological Majorana qubits. Using experimental tech-
niques similar to those in Chap.’s 2 & 3, it may be possible to demonstrate Majorana initialization, readout,
and fusion rules.
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0
Introduction

Q     in a wide range of materials, such as GaAs and Si DEGs[, ],

graphene [], nanotubes [], and nanowires []. Understanding and controlling the rich physics of quan-

tum dots has allowed qubits to be created in many of these materials [–].

e work contained herein follows the trend of materials exploration and qubit development, report-

ing the characterization of quantum dots in new materials and the realization of new qubits. Two qubit

approaches are explored: conventional and topological. e work on conventional qubits focuses on im-

proving operation in spin qubits by finding systems with large spin-orbit coupling (Chap. ), weak nuclear

dephasing (Chap. ), and improved resilience to electrical noise (Chap. ). e work on topological qubits

focuses on Majorana modes at the ends of superconductor/semiconductor nanowires. e topological

qubit lifetime, set by quasiparticle poisoning, is bounded in Chap. . Chapter  experimentally demon-

strates exponential robustness of the Majorana modes. Chapter  outlines a proposal for experimentally

testing nontrivial Majorana fusion rules.





Chapter : Introduction

. Q 

A qubit is a controlled, quantum mechanical two-level system. e two level system can be natural, such as

a single spin, or a part of a larger Hilbert space, as for S/T spin qubits and superconducting qubits. Qubits

are interesting because, if properly controlled, they are a resource for computation that exceeds classical

limits. Even as the general computing power of qubits is still being explored in theory, the identification of

a few quantum “killer apps” — in areas such as cryptography and chemistry — has motivated experimental

effort to develop practical technology.

.. C 

A wide range of qubit architectures are currently being explored, such as trapped ions, superconducting,

and spin qubits. Qubit operations in these systems are generally diabatic, meaning the Hamiltonian is

changed quickly to control dynamical phases acquired by the qubit. As a concrete example of diabatic con-

trol, consider a single spin aligned with an external magnetic field in the z-direction. Diabatically changing

the field to the x-direction causes the spin to precess. Alternatively, one can apply a drive field, diabatic

with respect to the qubit splitting (Bx cos(ωt), ω ≈ Bz) to induce Rabi oscillations, as is commonly per-

formed in trapped ion and superconducting qubits. Coupling between qubits is also required for computa-

tion, which is not discussed here.

In addition to the intentional control fields (e.g. Bx), inevitably there are uncontrolled fields, δB⃗. e

uncontrolled field causes dephasing, which is the central problem of qubit development. ere is no gen-

eral route to mitigate dephasing; work must proceed separately on each qubit architecture. However, once

certain dephasing thresholds are reached, there are proposed, general methods for constructing improved

logical qubits from collections of individual faulty ones [, ].

Chapters - present work to improve coherence in conventional (spin) qubits. Spin qubits in Ge/Si

nanowires are appealing because their strong spin-orbit coupling, which is investigated in Chap. , might

facilitate fast manipulation, and because the uncontrolled hyperfine interaction is weak, as shown in Chap. .

Chapter  shis to the traditional GaAs spin qubit system, and shows that the collective spin state of many

electrons has improved electric-field dephasing properties compared to the single electron case.


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.. T 

Topological qubits represent an entirely different approach to overcoming the decoherence problem. Whereas

conventional qubits rely on diabatic operation to control dynamical phases, topological qubits rely on adi-

abatic braiding operations to control topological phases. Qubits are encoded into quasiparticle occupa-

tion numbers of non-Abelian anyons, which have several special properties []. First, the N-quasiparticle

ground state is degenerate, which is an essential requirement for cyclic evolution to result in non-Abelian

rotations []. Second, the unitary transformation resulting from braiding depends only on the topology of

the braid. is distinguishes the topological system from non-topological systems with degenerate ground

states, which can conceivably exhibit arbitrary non-Abelian, geometric phases []. Finally, the degeneracy

of the anyons must be robust, meaning that it is insensitive to small perturbations.

Majorana modes are a useful example of this paradigm, and are particularly interesting because of pos-

sibilities for experimental realization [–]. For concreteness, consider a superconductor hosting four

Majorana modes γ, γ, γ, γ. Each pair of Majoranas combines to form a zero-energy fermionic state,

so there are two fermionic states that can be empty or full — the ground-state is fourfold degenerate .

Grouping the Majoranas into pairs (γ, γ) and (γ, γ) the degenerate states can be labeled by the super-

conducting quasiparticle parity |P, P⟩; they are are |⟩, |⟩, |⟩, |⟩. Suppose the system starts out

in the state |ψ⟩ = |⟩. Adiabatically exchanging (braiding) Majoranas  and  maps the ground state to

|ψ⟩ → /
√

(|⟩+ i |⟩ ) []. is operation constitutes a nontrivial rotation within the fixed-total-parity

degenerate subspace. Specifically, the braid gives a π/ rotation about the x-axis on a Bloch sphere with

|⟩ and |⟩ at the poles.

What are the failure modes for the topological qubit? e qubits are encoded in occupation numbers,

which are only approximately conserved at finite temperature. In the Majorana example, a quasiparticle

located in the superconductor can relax into the Majorana state, changing its parity. is process, referred

to as quasiparticle poisoning, is an uncorrectable error on the Majorana qubit []. Chapter  shows that

the characteristic time for poisoning events exceeds  ms in a particular Majorana system.

Another potential failure mode of topological qubits is that Majoranas separated by finite L are only

approximately degenerate, with energy splitting predicted to scale as e−L/ξ . Chapter  experimentally mea-

sures this exponential dependence.


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. C  

From an experimental point of view, work in this thesis centers around quantum dots. Many excellent re-

views of quantum dot physics are available in the literature [, , ]. is section introduces the main

concepts.

A quantum dot, as referred to in this thesis, is a confined portion of semiconductor with two leads. Work

in this thesis is focused on dots in the isolated regime (g < e/h, conductance g) and in Coulomb blockade

(kT < Ec, charging energy C) [, ]. Due to the large charging energy, the quantum dot has a fixed num-

ber of electrons, causing Coulomb blockade of transport. At fine-tuned points, where two charge states are

degenerate, Coulomb blockade conductance peaks occur.

.. P 

e energy of a quantum dot with N electrons is

E(N) = eN

C
+ eNVg

Cg

C
+

∑
n

εn ()

for gate voltage Vg with capacitance Cg, and total dot capacitance C. e single-particle energies, εN, have a

typical spacing δ = EF/N for a semiconductor quantum dot, and are simply added to the Coulomb term,

which is valid for weak interactions [].

At zero temperature the energy is minimized, so Coulomb peaks occur at degeneracies, E(N) = E(N+).

It is common to add an N-independent term to make E(N) parabolic,

Ẽ(N) = e

C
(N− n) +

∑
n

εn = E(N)− n ()

where n = −CGVG. e additional term does not change results for ground-state occupation, that is,

E(N) = E(N+ ) iff Ẽ(N) = Ẽ(N+ ).

In the metallic limit, εn → , Coulomb peaks are evenly spaced, as shown in Fig. a. Finite single-

particle energies can make Coulomb peaks irregular; evenly spaced, spin-degenerate levels, for example,

result in even-odd peak spacings (Fig. b). e presence of superconductivity, which results in parity-
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Figure 1: a, Parabolic energies Ẽ(N) versus gate-charge n, for N = −,−,−, , , ,  for zero level spacing
case. Coulomb peak spacings, labeled with arrows, are all the same. b, Same as a, but with evenly spaced,
spin-degenerate levels. Coulomb peak spacings, labeled with arrows, show an even-odd effect.

dependent single-particle energies, can also give even-odd structure, as discussed in Chap. .

At finite temperature, the free energy, F = E− TS, as opposed to the energy, is minimized. An additional

peak shi can then be caused by the entropic contribution to the free energy. For example, the free energy

of a spin-degenerate state is lowered by kT ln(), shiing Coulomb peaks associated with spin-degenerate

levels at finite temperature, which can be verified explicitly by solving rate equations for the Coulomb peaks

[].

Experiments on gate-defined GaAs quantum dots do not show the expected even-odd structure in peak

spacing [], and neither do the Coulomb peaks in Ge/Si nanowires (Chap. ), naively pointing to the

breaking of spin degeneracy at zero field. However, Coulomb peak heights, both in GaAs [] and Ge/Si

(Chap. ), are, consistent with the presence of spin-rotation symmetry at zero magnetic field. Even-odd

peak spacings have been observed for metallic superconductors [], and for superconductor-semiconductor

systems (Chap. ). Shell filling, closely related to the even-odd effect due to spin, has been observed in cir-

cular dots and nanowires in the few-electron regime [, ], and nanotubes in the many-electron regime


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[].

.. W

Electrons inside a quantum dot are subject to the periodic lattice potential, plus a weak, smooth confine-

ment potential from electrostatic gates. e confinement potential, small compared to band gap, is a per-

turbation on the electrostatics of the crystal. Adding in the confinement perturbation, the electron wave-

functions become a product of the k =  Bloch wavefunction, un, and an envelope function, Fn(r). e

envelope function satisfies the Schrödinger equation for a free particle with the effective mass m∗ and con-

finement potential Ugate: ( p̂

m∗ + Ugate) · Fn(r) = E · Fn(r), where energy E is measured from the band

edge []. Due to the analogy with a free particle, the envelope function is usually referred to simply as the

wavefunction, and the presence of the Bloch prefactor is ignored.

In the low-temperature limit, transport occurs through single wavefunction, and Coulomb peak heights

give information on wavefunction weight at the leads. is physics is explored in Chap. , for a Ge/Si nanowire

and Chap.  for a superconductor-semiconductor Al/InAs nanowire.


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Antilocalization in Coulomb blockade

T   experiments on Ge/Si core/shell-nanowire single quantum dots. e bulk of the

chapter was published as Ref. [], with some extra discussion added to Sec.’s .,. for clarity. e devices

were fabricated and measured under the supervision of Charles Marcus, with assistance from Ferdinand

Kuemmeth, orvald Larsen, and Mattias Fitzpatrick during measurement and manuscript preparation.

e nanowires were grown in the group of Charles Lieber by Jun Yao and Hao Yan. Discussions with Igor

Aleiner were important for clarifying nuances of the theory.

. I

Antilocalization is a quantum-interference correction to the Drude conductivity, resulting in enhanced

conductance at zero magnetic field. It is commonly observed in mesoscopic conductors with strong spin-

orbit coupling [, ], and has been well studied in low-dimensional systems over the past two decades

[–]. In quantum wires (D) and dots (D), the combination of coherence and spin-orbit coupling is a
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topic of renewed interest in part due to numerous quantum information processing proposals—from spin

qubits to Majorana modes—where these ingredients play a fundamental role [, , , ]. Antilocal-

ization in D systems has been investigated in detail both theoretically [–] and experimentally [–

]. In D systems, antilocalization in both the opened and nearly-isolated Coulomb blockade regime has

been studied theoretically [, ], but to date experiments have only addressed the open-transport regime,

where Coulomb effects play a minor role [, ].

is chapter summarizes an investigation of full distributions of Coulomb blockade peak height as a

function of magnetic field in a gated Ge/Si core/shell nanowire. e hole gas formed in the Ge core of a

Ge/Si core/shell nanowire [] is an attractive system for exploring the coexisting effects of coherence, con-

finement, and spin-orbit coupling. Tunable quantum dots have been demonstrated in this system [, ],

and antilocalization has been demonstrated in the open-transport regime []. Band structure calcula-

tions indicate that Ge/Si nanowires may have extremely strong spin-orbit coupling []. D confinement,

combined with a symmetry-breaking electric field (generically present due to gating and substrate), splits

and mixes the heavy hole states, generating a Rashba-like spin-orbit interaction . Since the mixing occurs

within the valence subbands, this effect is much stronger than conventional Rashba spin-orbit, which is due

to mixing of s and p states at finite k, and is therefore suppressed by the band gap (scaling as /gap) [].

e principle experimental result in this Chapter is that distribution of Coulomb peak heights reveals

the presence of strong spin-orbit coupling, and allows a bounding on the spin-orbit strength consistent

with measurements performed in the same wire in the open regime. e zero-field distribution is found

to differ markedly from that measured in GaAs quantum dots, where spin-orbit coupling is relatively weak

[], and are consistent with random matrix theory [] of Coulomb blockade transport through a D

system with symplectic symmetry (valid for strong spin-orbit coupling). e high-field peak height dis-

tribution is found to be a scaled version of the low-field distribution, as expected from theory. However,

the observed scale factor, ∼ ., is significantly larger than the theoretical factor of . []. Temperature

dependence of the peak-height variance is consistent with theory using a value for orbital level spacing

measured independently via Coulomb blockade spectroscopy. Consistent bounds on the spin-orbit length,

lso ≲  −  nm, are found in the Coulomb blockade and open transport regimes.

We first review random matrix theory results that relate peak statistics to wave function symmetries,
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then present experimental results for a gated Ge/Si nanowire sample in the Coulomb blockade and open

wire regimes.

. T  C     - 

Antilocalization in Coulomb blockade, as studied in this chapter, amounts to a change in the distribution of

Coulomb peak heights in a quantum dot. Spin-orbit coupling makes wavefunction nodes less likely, result-

ing in enhanced Coulomb peak heights. As discussed below, this effect comes from general considerations

of the symmetries of the quantum dot.

Consider a quantum dot in the deep Coulomb blockade regime, that is, with temperature, voltage bias,

and lifetime broadening small compared to charging energy, kT,V, Γ ≪ e/C. When, in addition, kT,

V, and Γ are less than the orbital level spacing, Δ, tunneling occurs through a single (ground-state) wave

function. In this latter case, Coulomb blockade conductance peaks fluctuate in height from peak to peak

(cf. Fig. . bottom trace), depending on the coupling of the ground-state wave function to modes in the

leads.

In the large-temperature limit, Γ ≪ kT, the Coulomb peak height, gp, can be found by solving a system

of rate equations []. e result is

gp =
e

ℏ
χs
kT

ΓlΓr
Γl + Γr

=
e

ℏ
Γ

kT
χsα, (.)

e factors χs= = / and χs= =  − 
√

 arise from the presence (s = ) or absence (s = ) Kramers

degeneracy []. e factor α = ΓlΓr/[Γ(Γl+Γr)] with Γ = Γl+Γr, encodes the dependence of peak height

on wavefunctions. For a wavefunction ψ inside the quantum dot, the couplings are proportional to norms

evaluated at the device leads, Γl,r ∝ |ψl,r()|, so

α ∝
|ψl||ψr|

|ψl| + |ψr|
(.)

For a quantum dot lacking any specially designed spatial symmetries, the classical trajectories are chaotic,

and the quantum system is quantum chaotic. e general technique for dealing with quantum chaotic sys-

tems, employed both in mesoscopic and nuclear physics, is to assume that the Hamiltonian is made of up
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random, independent, Gaussian-distributed elements. It is not a priori obvious that such an assumption

is valid, although it is known to hold in the specific case of a disordered metallic grain []. e implica-

tion for wavefunctions is surprisingly simple: each wavefunction degree of freedom is Gaussian distributed

[]. Without spin-orbit coupling and at B =  wavefunctions are real*, and thus have one degree of free-

dom; then |ψ| is chi-square distributed with one degree of freedom (χ
 ). Breaking time-reversal symmetry

makes wavefunctions complex-valued; then there are two degrees of freedom and |ψ| is χ
 distributed. Fi-

nally, in the presence of spin-orbit coupling (at any magnetic field) the wavefunction is complex-valued and

spin-dependent; then there are four degrees of freedom and |ψ| is χ
 distributed. e distribution of |ψ|

determines the distribution of α, and thus gp [Eq.’s (.-.)].

Before giving the explicit formulae for P(α), it is useful to introduce the formal terminology for sym-

metry classes of disordered and chaotic dots. ey are: orthogonal (β = ) for time-reversal symmetric

systems, unitary (β = ) for systems with broken time-reversal symmetry, and symplectic (β = ) for

time-reversal symmetric systems with broken spin rotation symmetry. Including spin-orbit and Zeeman

coupling yields an extended random matrix theory with two more parameters, s and Σ, in addition to the

usual Dyson parameter, β [].

At zero magnetic field, the distribution of α for weak spin-orbit coupling is given by [, , ]

Pβ=,Σ=,s=(α) =
√


πα

e−α, (.)

whereas for strong spin-orbit coupling it is given by

Pβ=,Σ=,s=(α) = αe−α
(
K(α) +

(
 +


α

)
K(α)

)
, (.)

where K and K are modified Bessel functions. e distributions have α = / and α = / for weak

and strong spin-orbit coupling, respectively. As discussed above, breaking time-reversal symmetry does not

alter the statistics of α, so

Pβ=,Σ=,s=(α) = Pβ=,Σ=,s=(α). (.)

Note that breaking time reversal symmetry does in fact change χs so that, for strong spin-orbit coupling,

*is can be shown by time-reversing the Schrödinger equation
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the peak height distribution at high field is expected to be a scaled version of the zero-field distribution,

decreased by the ratio χs=/χs= ∼ . [] due to liing of Kramers degeneracy. is is in contrast to the

weak spin-orbit case, where the high-field distribution differs markedly in shape from the zero-field distri-

bution, and the high-field mean height is increased by a factor of / compared to zero field [], consistent

with experiment [, ].

. E 

e measured device was formed from a Ge/Si core/shell nanowire ( nm Ge core,  nm Si shell)† placed

on an array of Cr/Au bottom gates ( nm/ nm thick,  nm wide,  nm pitch) patterned by electron

beam lithography on a lightly doped Si wafer, then covered with  nm of HfO (grown by atomic layer

deposition at ◦C) before depositing the wires. Patterned Ti/Pd ohmic contacts were deposited following

a  s buffered HF etch. Conductance was measured in a dilution refrigerator with electron temperature

T ∼  mK using standard lock-in techniques with ac excitation Vac =  μV, except where noted. e

lock-in excitation was chosen to be as large as possible without altering the peak height distribution. An

in-line resistance of . kΩ was subtracted from all data.

A typical orbital level spacing of Δ ∼ . meV was measured from Coulomb blockade spectroscopy,

as shown in Fig. ., inset. e number of holes, NH, in the Coulomb blockade regime was estimated to

be roughly , based on counting Coulomb oscillations. e length of the quantum dot was in the range

L =  −  nm, corresponding to the length of the middle segment and the wire. For wire width w =

 nm, this gives M = w/λF =  −  occupied transverse modes, using a D estimate for the Fermi

wavelength, λF = (πLw/NH)
/ ∼  −  nm. e elastic scattering length l = hμ/λFe =  −  nm

and mobility μ ∼  cm/Vs were extracted from the slope of the pinch-off curve (Fig. ., inset) using

g = (πw/L)μne [, ]. Values in the open regime differ somewhat, as discussed in Sec. ..

It is worth noting from the outset, that the requirements of Eqs. (.-.) are satisfied in this experiment.

ese equations require Γ < kT < Δ. Γ, kT < Δ ensures transport through single energy levels, and

Γ < kT ensures that the rate equations apply [, ]. e temperature of the quantum dot is kT =  μeV,

determined from Coulomb blockade thermometry. Note that T > Tbase because of the large lock-in excita-
†e device shown in Fig. . is lithographically identical to the one studied here. However, in the measured

device the nanowire forms a smaller angle with B of ◦ determined from optical microscopy.
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Figure 1.1: Device conductance, g, as a function of gate voltages, V− [notation indicates V = V = V],
with Vac =  μV. The device can be configured as an open wire (top trace), or an isolated quantum dot
(bottom trace). Left inset: SEM micrograph of lithographically identical device. Direction of magnetic field B
indicated by vertical arrow. Right inset: dg/dVB in (e/h)/mV as a function of dc bias, Vb, and gate voltages,
V−, yield orbital energy spacing Δ ∼ . meV.
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tions used when gathering Coulomb peak statistics. e average tunnel rate is Γ =  μeV, determined from

the zero-field average Coulomb peak height at zero field using gp = χs=
e
ℏ

Γ
kTα. e mean level spacing

is Δ = . meV, determined from Coulomb blockade spectroscopy and confirmed by temperature depen-

dence [Fig. ., Fig. .(c)]s. e requirement Γ < kT < Δ is therefore squarely satisfied in this experiment.

Equations (.-.) also require the quantum dot to be diffusive or chaotic. e quantum dot studied

here is diffusive. ere are at least NH =  holes in the dot, determined from counting Coulomb oscilla-

tions. e length of the quantum dot lies in the range L = − nm, corresponding to the length of the

middle segment and the entire wire. is implies M = w/λF = −  occupied transverse modes. Here we

have used the three-dimensional expression to estimate the Fermi wavelength λF = L(πw)(NH)
−/ ∼

 −  nm (justified when M ≫ ). e Drude elastic scattering length is l = hμ/λFe =  −  nm. e

mobility μ =  cm/Vs, determined from the slope of the pinch-off curve in Fig. . inset and the Drude

relation g = πwμne/(L), is consistent with previous estimates under similar conditions [, ]. e dot

therefore satisfies l < L and is diffusive.

. C  

Figure . shows the two-terminal conductance of the nanowire as a function of a common voltage on gates

,  and , denoted V−, for a common voltage on gates  and , V,, corresponding to open regime (top

trace) and tunneling regime (bottom trace). V− tune the hole density, while V tunes the le barrier and

V tunes the right barrier. Coulomb blockade peaks appear when le and right barriers have conductance

less than e/h. e open regime shows weak dependence on gate voltage, with an onset of Coulomb oscil-

lations as conductance decreases; the tunneling regime showed well defined Coulomb blockade peaks with

fluctuating heights. e heights of neighboring peaks appear correlated over roughly two peaks, even at the

lowest temperatures, similar to [], which decreases the effective ensemble size.

Representative sets of Coulomb blockade peaks at B ∼  and  T [Figs. .(a,b)] show a decrease

in average peak height at high field, as expected for strong spin-orbit coupling. As temperature was in-

creased above Δ, fluctuations in peak height decreased rapidly, consistent with a simple model that assumes

resonant transport through multiple, uniformly spaced levels [Fig. .(c)] (see “picket fence” model in

Ref. []). Note that the same ensemble was used for each temperature. is presumably accounts for the





Chapter : Antilocalization in Coulomb blockade

0.5

0

0.1 1 10
T (K)

0

0.03

g 
(e

2 /h
)

-1.1 -1.0
V2-5 (V)0

0.08

g 
(e

2 /h
)

0

0.08

g 
(e

2 /h
)

0-0.25-0.50
V2-3 (V)

(a)

(b)

0

0.04

g 
(e

2 /h
)

-1.1 -1.0
V2-5 (V)

(c)B = 0

B = 6 T  / g
p

Δ

Figure 1.2: Conductance, g, as a function of gate voltages V− with the device configured as a quantum
dot for (a) B =  and (b) B =  T. The application of a magnetic field reduces the average peak height. (c)
Peak height standard deviation normalized by the ensemble-averaged peak height, σ/gp, versus temperature T
at B =  (Vac =  μV), based on ∼ 50 peaks per point. Fluctuations of peak heights decrease for kT ∼ Δ.
Theory curve has no free parameters (see text). Insets: sample of peaks showing diminished fluctuations at
higher temperature.

correlated departures from theory at low temperature. e discrepancy with theory at high temperature is

unexplained, and is reminiscent of [].

We now turn to an examination of the statistical properties of the Coulomb peaks. To increase the num-

ber of statistically independent Coulomb peaks, the gate V was swept until Coulomb peaks became uncor-

related, as shown in Fig. .. e number of peaks that can be acquired using this technique is eventually

limited by the fact that large excursions in V change the tunnel rates to the leads. Two families of Coulomb

peaks, at V = . V and V = −. V were selected and their height distributions examined.

Peak height histograms for all m =  Coulomb peaks show the evolution of the distribution as a func-

tion of magnetic field [Fig. .(a)]. e observed decreasing average peak height at higher fields—Coulomb

blockade antilocalization—as well as the maximum in the distribution away from zero height at all fields,

are both signatures of strong spin-orbit coupling.

Figures .(b,c) show peak height distributions, P(gp) = (α/gp)Pβ,Σ,s(αgp/gp) = N/(mW), where W is

the bin width and N is the bin count in Fig. .(a), at low and high magnetic fields.

e low-field data in Fig. .(b) agree with the theoretical distribution for strong spin-orbit coupling

(β = ), with the mean peak height taken from Fig. .(a), and are inconsistent with the theoretical distri-
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Figure 1.3: Device conductance g as a function of gate voltages V− and V. Red lines indicate the values of
V used for the Coulomb peak ensemble in Fig. 1.4.

bution for weak spin-orbit coupling (β = ). e high-field data in Fig. .(c) are consistent with a scaled

version of the low-field theoretical distribution, as expected for strong spin-orbit coupling, but with a scale

factor of ∼ . rather than the theoretically predicted factor of .. e reason for this discrepancy—

qualitative scaling, but not by the predicted factor—is not understood, but may result from changes in

tunnel rates out of the dot or changes in density of states in the leads, which are also likely segments of the

nanowire.

e distribution of Coulomb peak spacings, another statistical property that in principle contains in-

formation about symmetries of wave functions, have also been examined []. e measured distribu-

tions appear Gaussian with similar widths for zero and higher magnetic fields, with a standard deviation

of . meV. is width is comparable to the single-particle level spacing, as seen in previous experimental

studies [, ]. Peak spacing distributions are more susceptible to experimental noise than peak height

distributions, so it is not surprising that peak height distributions show field dependence while spacing dis-

tributions do not. Symplectic statistics associated with strong spin-orbit coupling have been measured in

the spacings between excited states in metallic quantum dots [].

. O  

To compare antilocalization in the Coulomb blockade regime to the open-wire regime, we tuned the de-

vice to more negative gate voltages, where Coulomb blockade oscillations were absent [see Fig. .(a)]. e
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Figure 1.4: (a) Histograms of Coulomb blockade peak heights (color scale) as a function of magnetic field,
B. Line traces show the smoothed conductance of three individual Coulomb peaks. Average peak height de-
creases with B, while individual peak heights fluctuate. Inset: Measured mean peak height, gp, as a function of
B, extracted from data in main figure. (b) Peak height distribution, P(gp), for B ∼  (range shown as blue band
at the top of (a)). Theory curves from Eq. (1.4) (solid) and Eq. (1.3) (dashed). (c) Peak height distribution,
P(gp), for |B| ∼  T (range shown as red bands at the top of (a)). Theory curves from Eq. (1.5) (solid), which
is the same as Eq. (1.4) scaled by (− 

√
) ∼ . and Eq. (1.4) scaled by a factor of 2.3 (dashed). The single

experimental parameter Γ/(kT) is fixed using gp at B =  from (a) inset.
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Inset: Pinch-off curve at bias Vb =  mV. Saturation at g ∼ . e/h indicates decreasing mobility in the open
regime (see text).

number of holes was larger in the open regime, NH ∼  and λF ∼  nm, again determined by count-

ing Coulomb oscillations and assuming the device is depleted at pinch-off. e inset of Fig. . shows that

high-bias conductance saturates at larger negative gate voltages, indicating a decreasing mobility with in-

creasing density. Similar behavior has been reported in Ge/Si nanowires [], Ge nanowires [], and Si

heterostructures []. In Si heterostructures, this decrease in mobility was explained as resulting from car-

riers being pulled toward the rough heterointerface, as well as an increase in phase space for scattering as

more transverse subbands are occupied [, ]. Presumably, comparable effects occur in wires.

Magnetoconductance, g(B), measured in the open-wire regime, is shown in Fig. . along with a theory

curve that includes contributions from the wire, gw(B)−, as well as from the two contacts, each set to g−
c =

e/h near the onset of Coulomb blockade, g(B) = [g−
c + gw(B)−]−. Following Ref. [], we use the

expression

gw(B) = g∞ − e

h

L

[



(


Dτφ
+


Dτso

+


DτB

)−/
(.)

− 


(


Dτφ
+


DτB

)−/

−


(


Dτφ
+


Dτso

+


Dτe
+


DτB

)−/

+



(


Dτφ
+


Dτe

+


DτB

)−/]
,
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for the magnetoconductance of the wire, where g∞ is the classical (background) conductance, L ∼  nm

is the length of the occupied region of the nanowire, D is the diffusion constant, and τφ, τso, τB, τe are the

dephasing, spin relaxation, magnetic, and impurity-impurity scattering times. In the present study, where

le ≪ lφ, the last two terms of Eq. (.) do not play an important role, and in principle could be dropped.

We retain these terms, though they have no discernible effect on the fits, for consistency with the existing

literature [, , , ] for w < le.

e transport scattering length, lt = D/vf, where vf is the Fermi velocity, the dephasing length, lφ, and

the spin precession length, lso, then appear as [, ] Dτφ = lφ/, Dτe = ltle/, DτB = C ltlB/w +

C ltlelB/w, and Dτso = C ltlso/w, where lB = ℏ/eB. Constants C = π (.), C =  (/) apply

for diffusive (specular) boundary scattering [], and we interpolate between these values for specularity,

ε, between zero (fully diffusive) and one (fully specular). We use the specular value C =  [], lacking

a theoretical value for diffusive boundary scattering. e ratio of scattering lengths depends on specularity

and sample width, lt/le = F(w/le, ε), with F(· , ) =  ‡. ese expressions require λF < w and w < le, the

former barely satisfied for λF =  nm.

Four free parameters, lso, g∞, le, and lφ, are used to fit theory to data. e transport scattering length

is found from lt = (L/πw)hg∞/λFne, where n = NH/πwL is the D hole density (a reasonable

model, given six occupied transverse modes). Specularity can then be found by inverting lt/le = F(w/le, ε),

and the Fermi wavelength can be found from the D density, λF = (π/n)/. As seen in Fig. ., the

model fits the data very well, and gives the following ranges for transport parameters, g∞ = . − . e/h,

le <  μm, lt = - nm lφ = (. − .) μm, specularity in the range ε = . − , and lso <  nm.

(Allowing lso >  nm gives good fits only with le >  μm, which we rule out as unphysical.)

To give a better sense for the dependence of the conductance g(B) on the four fit parameters, some sam-

ple curves are shown in Fig. ., with parameter values summarized in Table .. Calculating a normalized
‡ F is given by []

F(κ, ε) = − 
π
( − ε)

∞∑
ν=

νεν−
∫ 


dx
√

 − xS(νκx),

where S(λ) =
∫ π/
 dθe−λ/ sin θ cos θ sin θ.
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Figure 1.6: Device conductance, g, as a function of magnetic field, B, identical to Fig. 1.5 . The green and
purple curves correspond to lso =  nm and lso =  nm with g∞, le, and lφ treated as fit parameters. The
red curve is a fit assuming perfectly specular boundary scattering with lso, g∞, lφ treated as fit parameters. Fit
parameters for all curves are given in Table 1.1. Inset: Goodness of fit, χ, as a function of lso with g∞, le,
and lφ treated as fit parameters. The dots correspond to the lso values of the curves in the main portion of the
figure.

description color lso (nm) g∞ (e/h) le (nm) lφ (nm)
lso =  nm purple fixed .  
lso =  nm green fixed .  
specular red . .  

Table 1.1: Parameters for curves in Fig. 1.6.

χ statistic for a series of spin-orbit lengths while leaving the other three parameters g∞, le, and lφ free, re-

veals that χ is essentially flat for sufficiently small spin-orbit lengths. We interpret this as as indicating that

the data are consistent with lso <  nm, although the presence of correlated errors due to /f device noise

excludes the use of a formal χ analysis. e roll of specularity was also explored; fixing perfectly specular

reflection gives an extremely short spin-orbit lengths, of order  nm.

For meaningful fits, it was important to constrain a maximum elastic scattering length, here le <  μm.

is constraint is generous; high mobility GaAs samples typically have scattering lengths of order microns,

and the mobility of nanowires is many orders of magnitude lower. Tightening the constraint on le would

lower the bound on lso.
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. D

As a comparison between open and nearly isolated regimes, we note that the observation of antilocalization

in Coulomb blockade implies εso > Δ where εso is the spin-orbit energy in the dot []. To convert this into

a spin-orbit length we assume the simple relation εso = ℏ/(m∗lso) [] and the bulk heavy-hole effective

mass m∗ = .me. is gives lso <  nm, consistent with the open regime measurement of lso <  nm.

It is interesting to consider the reason for the large magnetic field scale associated with antilocalization

in both regimes. Flux cancellation due to boundary scattering is known to enhance the effective magnetic

length []. For Rashba type spin-orbit interactions, which are expected in Ge-Si, flux cancellations of the

effective spin-orbit magnetic field can also occur []. ese effects roughly cancel out, and the field scale

for antilocalization is then lB = lso, or B∗ = ℏ/(elso) =  T for lso =  nm.

In summary, this chapter presented an experimental study of Coulomb blockade peak height statistics

in a Ge/Si nanowire quantum dot. Peak height distributions as well as the field dependence of average

peak height (antilocalization) are consistent with the effects of strong spin-orbit coupling. However, the

observed decrease in average peak height with applied magnetic field is larger than expected. Magnetocon-

ductance of the same device configured as an open wire yields consistent results. Further investigation of

the spin-orbit strength in this system could come from spectroscopic measurements of orbital anticrossings

in a quantum-dot, or from electric-dipole spin resonance measurements in a Ge/Si double quantum dot.

Combined with the expectation of long spin dephasing times in Ge/Si quantum dots, the strong spin-orbit

coupling found in this work makes Ge/Si nanowire quantum dots attractive for spin qubit applications. A

Ge/Si spin qubit is demonstrated in Chap. .





2
Hole dephasing in a Ge/Si nanowire

T   a measurement of the hole dephasing time in a Ge/Si core/shell nanowire spin

qubit. e bulk of the chapter was published as Ref. [], which orvald Larsen helped write. Exper-

iments were carried out under the supervision of Charles Marcus and Ferdinand Kuemmeth, with ex-

perimental assistance from Patrick Herring. Nanowires were grown by Jun Yao and Hao Yan, under the

supervision of Charles Lieber. Discussions with Félix Beaudoin, Bill Coish, Jeroen Danon, Xuedong Hu,

Christoph Kloeffel, Franziska Maier and Mark Rudner were very helpful while writing up the data.

. I

Realizing qubits that simultaneously provide long coherence times and fast control is a key challenge for

quantum information processing. Spins in III-V semiconductor quantum dots can be electrically manip-

ulated, but lose coherence due to interactions with nuclear spins [, , ]. While dynamical decoupling

and feedback have greatly improved coherence in III-V qubits [–], the simple approach of eliminat-


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ing nuclear spins using group IV materials remains favorable. Carbon nanotubes have been investigated

for this application [, –], but are difficult to work with due to uncontrolled, chirality-dependent elec-

tronic properties. So far, coherence has not been improved over III-V spin qubits.

Si devices have shown improved coherence for gate-defined electron quantum dots [, –], and for

electron and nuclear spins of phosphorous donors [–]. e Ge/Si core/shell heterostructure nanowire

is an example of a predominantly zero-nuclear-spin system that is particularly tunable and scalable [, –

]. As discussed in Chapter  holes in Ge/Si nanowires exhibit large spin-orbit coupling [, , ], a

useful resource for fast, all-electrical control of single spins [, , –]. Moving to holes should also

improve coherence because the contact hyperfine interaction, though strong for electrons associated with

s-orbitals, is absent for holes associated with p-orbitals []. Indeed, a suppression of electron-nuclear cou-

pling in hole conductors was recently demonstrated in InSb [].

Here, we measure spin coherence times of gate-confined hole spins in a Ge/Si nanowire double quantum

dot using high bandwidth electrical control and read out of the spin state. We find inhomogeneous dephas-

ing times T∗
 up to . μs, twenty times longer than in III-V semiconductors. is timescale is consistent

with dephasing due to sparse Ge nuclear spins (see Sec. .). e observed exponential coherence decay

suggests a dephasing source with high-frequency spectral content, and we discuss a few candidate mech-

anisms. ese results pave the way towards improved spin-orbit qubits and strong spin-cavity coupling in

circuit quantum electrodynamics [].

. T   T∗


In this section we present a theoretical estimate of the timescale of hole spin dephasing due to dipolar hy-

perfine coupling. e dephasing time is set by the dipolar coupling constant for the Ge isotope, AGe
h ,

which is not well known. We estimate its magnitude using the contact hyperfine constant in GaAs, AGaAs
e ,

determined by spin qubit dephasing times in these systems.

T∗
 =

√
h/σ is related to the nuclear hyperfine coupling constants by []

σ =


N
∑
j
vjIj(Ij + )(Aj), (.)
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where the sum is over the nuclear species with abundance vj and spin Ij, and N is the total number of nuclei

overlapped by the hole wavefunction. e wavefunction amplitude is assumed to be homogeneous at each

nuclear site. Because all isotopes of Ga and As have Ij = IGaAs = /, Eq. (.) can be rewritten as

σ =


N
IGaAs(IGaAs + )

∑
j
vj(A

j
e)

 =


N
IGaAs(IGaAs + )(AGaAs

e ), (.)

where the last equality defines AGaAs
e . In GaAs T∗

 = − ns [, , , ], implying AGaAs
e = − μeV

assuming  nuclei.

We assume that AGaAs
e ≈ AGe

e because both result from contact hyperfine interaction in s orbitals, and

use the approximate scaling factor from Fischer et al [] to estimate AGe
h :

Ah
Ae

=



(
Zeff(Ge, p)
Zeff(Ge, s)

)
. (.)

e ratio of effective nuclear charges is Zeff(Ge,p)
Zeff(Ge,s) = . []. AGe

e = − μeV then implies AGe
h =

− μeV. Eq. (.) agrees with experimental measurements in III/V semiconductor dots to within -

  [, ]. σ is then calculated using Eq. (.), assuming N = ×  (dot length  nm) and the natural

abundance values . for I =  (Ge, Ge, Ge) and . for I=/ (Ge). is gives σ = − neV.

e expected dephasing time for holes confined in the germanium core of our devices is therefore T∗
 =

√
h
σ = − ns, in agreement with the experimental value T∗

 =  ns, found below. We emphasize that

this estimate is rough. In particular the actual size of both GaAs and Ge dots are not well known, which

introduces uncertainty in the estimate for N.

. S   

Ge/Si core/shell nanowires host a tunable hole gas in the Ge core [Fig. .(a)] with typical mobility μ ∼

 cm/(V · s). In the presence of realistic external electric fields, the D hole gas is expected to occupy

a single Rashba-split subband with ∼  meV spin-orbit splitting, based on theory [] and previous exper-

iments [, ]. Fabrication of double dots with discrete hole states, and measurements of spin relaxation

have been reported [, ].

e device, diagrammed in Fig. .(b), is fabricated on a lightly doped Si substrate. e substrate, in-
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Figure 2.1: Ge/Si double quantum dot device. a, Cross section and energy diagram of conduction band
(CB) and valence band (VB). The quantum well supporting the hole gas forms in the VB of Ge. b, Device
schematic. c, False color scanning electron micrograph. High-bandwidth plunger gates VL and VR are labeled.
VRF is reflected from the LC circuit attached on the right lead. d, Demodulated VRF versus VL and VR at B = 
T. Negatively sloped gray lines correspond to single-hole transfers between the right dot and right lead. Positive
slopes are due to hole transfers directly between dots. Guides to the eye (dashed lines) indicate hole transfers
between the left dot and lead, too faint to be visible in the data because the resonator is on the right side.

sulating at T <  K, is covered with HfO using atomic layer deposition. Nanowires are deposited from

methanol solution and contacted by evaporating Al following a buffered hydrofluoric acid dip. A second

layer of HfO covers the wire, and Cr/Au electrostatic gates are placed on top. ese gates tune the hole

density along the length of the wire. All data are obtained at temperature T <  mK in a dilution refrig-

erator with external magnetic field B = , unless otherwise noted.

Gate voltages are tuned to form a double quantum dot in the nanowire with control over charge occu-

pancy and tunnel rates. High-bandwidth ( MHz) plunger gates VL and VR, labeled in Fig. .(c), con-

trol hole occupation in the le and right dots. e readout circuit is formed by wire bonding a  nH in-

ductor directly to the source electrode of the device. Combined with a total parasitic capacitance of . pF,

this forms an LC resonance at  MHz with bandwidth  MHz. Tunneling of holes between dots or be-

tween the right dot and lead results in a capacitive load on the readout circuit, shiing its resonant fre-

quency. [, ]. e circuit response is monitored by applying near-resonant excitation to the readout

circuit and recording changes in the reflected voltage, VRF, aer amplification at T =  K and demodula-

tion using a ◦ power splitter and two mixers at room temperature *.
* S. Weinreb LNA SN. Minicircuits ZP-MH mixers. Tektronix AWG waveform generator used on VL and
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e charge stability diagram of the double dot is measured by monitoring VRF at fixed frequency while

slowly sweeping VL and VR [Fig. .(d)]. To reject low-frequency electrical noise the RF carrier (frequency

≈  MHz) is turned on and off at a rate of  Hz, and the reflected RF signal, demodulated by homo-

dyne mixing, is fed into a SR lock-in amplifier. is lock-in technique was used only for Fig. .(d),

although conceptually similar differential methods are employed below. In addition to the lock-in tech-

nique, the plunger gates are pulsed in a square wave along the detuning axis on a microsecond timescale.

ese fast pulses, designed to search for Pauli blockade, result in a “negative copy” of the stability diagram,

which are not shown.

Lines are observed whenever single holes are transferred to or from the right dot. Transitions between

the le dot and le lead are below the noise floor (not visible) because the LC circuit is attached to the right

lead. Enhanced signal is observed at the triple points, where tunneling is energetically allowed across the

entire device. e observed “honeycomb” pattern is consistent with that of a capacitively-coupled double

quantum dot []. e charging energies for the le and right dots are estimated . meV and . meV

from Fig. .(d), using a plunger lever arm of . eV/V, determined from finite bias measurements on simi-

lar devices []. e few-hole regime was accessible only in the right dot, identified by an increase in charg-

ing energy. Based on the location of the few-hole regime in the right dot, we estimate the le and right hole

occupations to be  and  at the studied tuning. We found that operating in the many-hole regime im-

proved device stability, facilitating gate tuning and readout. We do not know if this affects the quality of the

qubit, as recently found for electron spins in GaAs [].

. S 

e spin state of the double dot is read out by mapping it onto a charge state using the Pauli blockade pulse

sequence diagrammed in Fig. .. At the points E and E (“empty”) the double dot is in the (m+, n+)

charge state, assuming that m (n) paired holes occupy lower orbitals in the le (right) dot. Pulsing to P

(“prepare”) in (m+, n+) discards one hole from the le dot, leaving the spin state of the double dot in a

random mixture of singlet and triplet states. Moving to M (“measure”) adjusts the energy detuning between

the dots, making interdot tunneling favorable. When M is located at zero detuning, ε = , tunneling is

VR. Coilcra CS chip inductor.
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Figure 2.2: Spin readout using Pauli blockade. VRF at the measurement point M = (VL,VR) of the pulse
sequence indicated by white arrows. Dashed lines estimate changes in double dot hole occupancy (m, n), where
m (n) denotes the occupancy of the left (right) dot. Large solid triangle outlines the region over which direct
interdot charge transitions occur. The interdot transition at ε =  (marked by a red line) is weak due to Pauli
blockade of triplet states, illustrated in the red diagram. The interdot transition at ε = ΔST (marked by a blue
line) is strong due to tunneling of triplet states, illustrated in the blue diagram.

allowed for singlet but Pauli-blocked for triplet states. When M is at the singlet-triplet splitting, ε = ΔST,

triplet states can tunnel. e location of the interdot charge transition therefore reads out the spin state

of the double dot. We expect this picture to be valid for multi-hole dots with an effective spin- 
 ground

state [, –]. We use singlet-triplet terminology for clarity, but note that strong spin-orbit coupling

changes the spin makeup of the blockaded states without destroying Pauli blockade [].

e fast pulse sequence E→E→P→M→E is repeated continuously while rastering the position of

M = (VL,VR) near the (m+, n+)-(m+, n) charge transition (Fig. .). e RF carrier is applied only at

the measurement point, M. As shown in Fig. .(d), features with negative slope are observed correspond-

ing to transitions across the right barrier. We interpret the weak interdot transition at zero detuning ac-

companied by a relatively strong interdot feature at large detuning as Pauli blockade of the ground-state

interdot transition (ε = ), and liing of blockade at the singlet-triplet splitting (ε = ΔST). e strength

of the ε =  interdot transition thus measures the probability of loading a singlet at point P, while the

strength at ε = ΔST measures the probability of loading a triplet.

As a control, the Pauli blockade pulse sequence was run in the opposite direction, where it is not ex-

pected to result in the appearance of a triplet trunneling feature. e reasoning is that the reverse sequenc

initializes an (m+, n) at point P, which can always be separated into the (m+, n+) charge state at the
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Figure 2.3: Reversed T pulse sequence. VRF at the measurement point M = (VL,VR) of the reversed, cyclical
Pauli blockade pulse sequence, indicated by white arrows. The pulse diagram has been scaled by a factor of 0.8
to fit on the plot. Dashed lines estimate changes in double dot hole occupancy (m, n), where m (n) denotes
the occupancy of the left (right) dot. Large solid triangle outlines the region over which direct interdot charge
transitions can occur.

interdot transition. e reversed sequence initializes only singlets, so no blockade signal is expected. Run-

ning the reversed sequence, only the singlet-singlet interdot transition is observed (Fig. .), as expected

for Pauli blockade.

. S 

Spin relaxation is measured by varying the dwell time τM at the measurement point for the counterclock-

wise Pauli-blockade sequence. As τM increases the triplet transition weakens and the singlet transition

strengthens [Fig. .(a,b)] due to triplet-to-singlet spin relaxation. Note that these relaxation processes have

different charge characters at different measurement points. For example, at ε =  the initial charge state is

(m+, n+), whereas at ε = ΔST the initial charge state is hybridized with (m+, n).

e T spin relaxation time is measured by analyzing a cut along the Vε axis [shown in Fig. .(b)] and

varying τM. Two example cuts are shown in Fig. .(c) e cuts were obtained in soware post-processing

in three steps. First, the colorscale of the D images [e.g. Fig. .(a,b)] are scaled to take into account the

duty cycles of the different pulse sequences, by multiplying each pixel by τΣ/τM where τΣ is the total pulse

sequence length. Second, a constant voltage is subtracted from each image such that VRF =  corresponds

to Coulomb blockade. Finally, we removed a small glitch due to a time-constant effect in the dc DAC
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Figure 2.4: Spin relaxation. a, VRF at the measurement point M = (VL,VR) of T pulse sequence (arrows).
The dwell time at M is τM = . μs. b, Same as (a), but with τM =  μs. c, Cuts along the Vε region indi-
cated in (b) for τM = . μs (□) and τM =  μs (△). Each cut is fit with the sum of two Lorentzians, the
left of height V(S)

p and right of height V(T)
p . The center of the left Lorentzian defines zero detuning, Vε = .

d, Readout visibility I(S,T) = V(S,T)
p /V(S,T)

 as a function of τM. Fits are to Eqs. (2.4,2.5) and have character-
istic decay times T(S)

 =  ns and T(T)
 =  ns for singlet and triplet states. Normalization factors are

V(S)
 =  μeV and V(T)

 =  μeV.
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VR ≈  mV by subtracting a suitable background near VR =  mV. is glitch occurred whenever

the DC component of VR crossed  mV, independent of VL. At this plunger gate voltage, data acquisi-

tion briefly paused while new calibrated plunger voltage values were loaded into the DC voltage source.

is lookup process caused a small voltage spike in VRF that does not represent any properties of the de-

vice itself. Soware post-processing is done in three steps. First, the colorscale of images in Figures - are

scaled to take into account different duty cycles of the different pulse sequences, by multiplying each pixel

by τΣ/τM where τΣ is the total pulse sequence length. Second, a constant voltage is subtracted from each

image such that VRF =  corresponds to Coulomb blockade. Finally, we removed a glitch due to a time-

constant effect in the dc voltage source occurring near VR =  mV, independent of VL. At this plunger

gate voltage, data acquisition briefly paused while new values were loaded into the DC voltage source. e

additional settling time caused a small voltage spike in VRF that does not represent any properties of the

device itself. Cuts along the Vε axis are taken in soware and numerically smoothed to remove pixelation

errors.

For each τM, the cut is fit to the sum of two Lorentzians with equal widths and constant spacing, as

shown in Fig. .(c). e Lorentzian heights, V(T)
p for the triplet peak and V(S)

p for the singlet peak, are fit

to the exponential forms

V(S)
p (τM) = 

V
(S)


[
 − p

(
τM,T(S)



)]
, (.)

V(T)
p (τM) = 

V
(T)
 p

(
τM,T(T)



)
, (.)

where p(τM,T) = (/τM)
∫ τM
 e−t/Tdt is the exponential decay averaged over the measurement time.

Figure (d) plots the readout visibility, I(S,T) = V(S,T)
p /V(S,T)

 , extracted from the Vε cuts. e fit relaxation

time is T(T)
 =  ns at the triplet position [blue line in Figs. (a,b)], and T(S)

 =  ns at the singlet

position [red line in Figs. (a,b)]. We note that these spin relaxation times are three orders of magnitude

shorter than those previously measured in a similar device in a more isolated gate configuration and away

from interdot transitions []. Detuning dependence of spin relaxation has been observed previously and

attributed to detuning-dependent coupling to the leads as well as hyperfine effects (presumably the former

dominate here) [, ]. Relaxation due to the spin-orbit interaction is expected to take microseconds
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Figure 2.5: Spin dephasing. a, VRF at the measurement point M = (VL,VR) of T∗
 pulse sequence (arrows).

The dwell time at S is τS =  ns. b, Same as (a), but with τs =  μs. c, Normalized differential voltage at
the triplet line Δv ≡ [V(τS) − V∞]/[V() − V∞] as a function of τS. The B =  T data are measured at
(VL,VR) indicated in (b), yielding a T∗

 dephasing time of . μs. The B =  T data are obtained at a dif-
ferent dot occupancy and tuning using the same method, yielding T∗

 = . μs. The normalization factor is
VRF()−V∞ =  μV. Solid and dashed lines are fits to exponentials. d, Probability P(S,T) = V(S,T)

p /V(S,T)
 ob-

tained from data as in (a,b), analyzed as in Fig. 2.4(c). Fits are to Eqs. (2.6,2.7) with T∗
 = . μs fixed from

(c). Normalization factors are V(S)
 =  μeV and V(T)

 =  μeV.

or longer []. e difference between V(S)
 and V(T)

 can possibly be attributed to differences in singlet-

singlet and triplet-triplet tunnel couplings or enhanced coupling near the edges of the pulse triangle. e

separation between Lorentzian peaks by . mV can be interpreted as ΔST =  μeV, using a plunger

lever arms of . eV/V.

. S 

To investigate spin dephasing, an alternate pulse sequence is used that first initializes the system into a sin-

glet state in (m+, n) at point P, then separates to point S (“separate”) in (m+, n+) for a time τS [Fig. .(a)].

e spin state of the double dot is measured at M by pulsing back towards (m+, n). For short τS [Fig. .(a)]

a strong singlet return feature is observed, consistent with negligible spin dephasing. For long τS [Fig. .(b)],

a strong triplet return feature is observed, consistent with complete spin dephasing.

e T∗
 dephasing time is found by measuring VRF(τS) at the triplet transition, and plotting the normal-
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ized differential voltage Δv ≡ [VRF(τS)−V∞]/[VRF()−V∞] as a function of separation time [Fig. .(c)].

Here, V∞ ≡ VRF( ns) is the demodulated voltage for a pulse sequence with long dephasing time. e

quantity [VRF(τS)−V∞] is directly measured by alternating between the T∗
 sequence and a reference se-

quence with long dephasing time, and feeding the demodulated voltage into a lock-in amplifier. Fitting the

B =  data to exp[−(τS/T∗
)

α] yields α = . ± .. Figure (c) shows exponential fits (α = ) for both

data sets. e B =  data decays exponentially on a timescale T∗
 = . μs. Data acquired at B =  T at a

different double-dot occupation give a similar timescale and functional form.

Although this timescale is approaching the limit expected for dephasing due to random Zeeman gradi-

ents from sparse Ge nuclear spins (see Sec .), the observed exponential loss of coherence is by and large

unexpected for nuclei. A low-frequency-dominated nuclear bath is expected to yield a Gaussian fall-off of

coherence with time [], in contrast to the observed exponential dependence, which instead indicates

a rapidly varying bath []. Nuclei can produce high-bandwidth noise in the presence of spatially vary-

ing effective magnetic fields, for example due to inhomogeneous strain-induced quadrupolar interactions

[]. e similarity of data at B =  and B =  T in Fig. .(c), however, would indicate an unusually

large energy-scale for nuclear effects. Electrical noise, most likely from the sample itself, combined with

spin-orbit coupling is a plausible alternative. For electrons, the ubiquitous /f electrical noise alone does

not result in pure dephasing [], but can add high-frequency noise to the low-frequency contribution

from the nuclear bath. It is conceivable that the behavior is different for holes, but this has not been stud-

ied to our knowledge. e relative importance of nuclei versus electrical noise could be quantified in future

experiments by studying spin coherence in isotopically pure Ge/Si nanowires.

Cuts along the Vε axis in Fig. .(b) as a function of τS provide a second method for obtaining T∗
 , fol-

lowing analysis along the lines of Fig. .(c). e resulting probability P(S,T) = V(S,T)
p /V(S,T)

 versus τS is

shown in Fig. .(d), along with exponential curves

V(S)
p (τS) = P∞V(S)


[
 − ( − /P∞)e−τS/T∗


]
, (.)

V(T)
p (τS) = ( − P∞)V(T)


[
 − e−τS/T∗


]
, (.)

using T∗
 = . μs, with P∞ and V(S,T)

 as fit parameters. Depending on the nature of the dephasing, the
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singlet probability settling value, P∞, is expected to range from / for quasi-static Zeeman gradients to

/ for rapidly varying baths [–]. We find P∞ = . ± .. Equations (.,.) do not take into

account spin relaxation at the measurement point, meaning that the fitted P∞ systematically overestimates

the true settling value †. erefore, we conclude that the data weakly support P∞ = / rather than P∞ =

/, consistent with our inference of a rapidly varying bath.

. D

Unexplained high-frequency noise has recently been observed in other strong spin-orbit systems, such

as InAs nanowires [], InSb nanowires [], and carbon nanotubes []. In these systems slowly varying

nuclear effects were removed using dynamical decoupling, revealing the presence of unexplained high-

frequency noise. In our system the effect of nuclei is reduced by the choice of material, and an unexplained

high-frequency noise source appears directly in the T∗
 . ese similarities suggest the existence of a shared

dephasing mechanism that involves spin-orbit coupling.

Future qubits based on Ge/Si wires could be coupled capacitively [, ] or through a cavity using

circuit quantum electrodynamics [, ]. In the latter case, the long dephasing times measured here sug-

gest that the strong coupling regime may be accessible.

†We do not correct for T effects in Eqs. (.,.), as V(S,T)
max differed significantly from those observed in Fig. ..
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Multi-electron spin qubit in GaAs

T   experiments demonstrating operation of a multi-electron spin qubit, performed

under the supervision of Ferdinand Kuemmeth and Charles Marcus. e bulk of the chapter was pub-

lished as Ref. [], with Sec. . added to discuss dephasing in the small exchange limit. GaAs wafers were

grown by M. P. Hanson and A. C. Gossard, and the device was fabricated by Christian Barthel.

. I

Spin-/ quantum dots with controlled exchange coupling form a potentially powerful platform for ma-

nipulating quantum information []. Single electrons confined by electrostatic gates in semiconductors

are a well-developed realization of this system, and meet many of the basic requirements of quantum infor-

mation processing. A broad research effort has emerged under this approach, focused on materials such as

GaAs [, , ], carbon nanotubes [], InAs [, ], InSb [], and Si [, ]. In each system, pro-

ducing large numbers of single-electron quantum dots places severe demands on materials and device de-
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sign, and is a considerable obstacle to scalability. * Moving from single confined electrons to multi-electron

qubits alleviates these difficulties, and, as we show, can also improve performance.

Requirements for conventional spin qubits include a spin-/ ground state, and a gap to excited states

larger than temperature and the energy scales associated with control and coupling. For realistic densities,

interactions are relatively weak, typically (though not always) resulting in a spin-/ ground state for odd

occupancy []. Multi-electron dots can have higher-spin ground states and smaller-than-average gaps

to the first excited state, due for instance to accidental degeneracies in their excitation spectrum. is con-

cern may partially explain why there have been relatively few studies of their use as spin qubits. In practice,

however, such degeneracies are typically lied by desymmetrizing the confining potential or changing the

applied magnetic field [, ].

Previous experimental work on multi-electron quantum dots has demonstrated Pauli blockade [, ,

, , –] and coherent operation []. In single-electron dots, both nuclear [, ] and elec-

trical [, ] dephasing have been characterized, with electrical noise modeled as a fluctuating detuning

between double-dot levels. Multi-electron quantum dots have also received theoretical attention due to

ease of realization as well as possibly improved performance [, , –].

In this Chapter, we investigate coherent exchange oscillations in coupled multi-electron GaAs quantum

dots—this operation was specifically chosen to be sensitive to electrical noise—and compare results to os-

cillations in the same device operated with single-electron dots. Our primary finding is that multi-electron

qubits can be operated analogously to the single-electron case, which alleviates the need for singly-occupied

dots. We also find significantly improved coherence in the multi-electron case, consistent with expectations

of screening by core electrons [, ]. By analyzing the dephasing during the exchange-gate operation,

we characterize the electrical noise environment for each occupancy. For both single and multiple occu-

pancies, voltage noise affecting the detuning between dots dominates dephasing for large exchange, and

fluctuating hyperfine (Overhauser) fields dominate dephasing for small exchange. For a range of intermedi-

ate exchange, an exchange-independent dephasing mechanism of unknown origin is dominant. e upshot

of this work is that one can simultaneously relax fabrication requirements and improve qubit performance
*Fabrication yield for gate-defined dots is above . for established recipes. Tuning multi-dot devices to the single-

electron regime has lower yield, ∼. per dot, due to disorder and unoptimzed gate designs. Tuning to the few (-)
electron regime is highly reliable, with yield above ..
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by working in the multi-electron regime. We also investigate the effect of multi-electron operation on nu-

clear dephasing and read-out, finding that both are weakly altered by multi-electron operation.

. S  O

e double quantum dot has an integrated charge sensor, formed by Ti/Au depletion gates patterned by

electron beam lithography on the surface of a GaAs/Al.Ga.As heterostructure with two-dimensional

electron gas (DEG) of density ∼  ×  m− and mobility  m/Vs, located  nm below the wafer

surface. e charge configuration of the double dot is detected using a conductance measurement of a

proximal quantum dot (Fig. .(a)) []. All measurements are performed in a dilution refrigerator with

an electron temperature of ∼ mK. A sufficiently large in-plane magnetic field is applied to isolate the

mS =  subspace of the double dot Hamiltonian. Specific values of field are given for particular data sets,

with no observed dependence on the value of field within the range  –  mT.

Negative voltages were applied to the gate electrodes in order to form two quantum dots with several

GHz of tunnel coupling. Plunger gate voltages VL and VR control electron occupancy in the le and right

dots, denoted (n,m), and also control interdot tunneling via the detuning, ε ∝ (VL − VR). When each dot

forms a spin-/ system, tunneling occurs only between singlet-correlated dots due to Pauli blockade. e

result is that the singlet (S) state can lower its energy with respect to the triplet (T) by an exchange energy

J (cf. Fig. .(b)). When these states are split by J, the device is in a superposition of different charge states,

and is therefore susceptible to electrical noise.

To set up the exchange oscillation measurement, an adiabatic ramp to J =  maps the initialized S state

to the lower zero-spin eigenstates of the Overhauser nuclear field (see Fig. .(b)). Next, a square exchange

pulse applied to ε turns on exchange J(ε) for a time τ, accumulating a phase of πJ(ε)τ between S and T.

In terms of the J =  eigenstates, this phase accumulation corresponds to oscillations between the ground

and excited state at frequency of J. Finally, the J =  eigenstates are mapped via a reverse ramp onto S

and T, which project differently into charge states of the double-dot, resulting in a different sensor dot

conductance.

By varying ε and τ, and repeating the cycle for > minutes to average over the nuclear and electrical

fluctuations, we generate a family of oscillating curves for the device configured with single (Fig. .(c))
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Figure 3.1: (a) Scanning electron micrograph of lithographically identical device, indicating double dot (blue)
and charge sensor (yellow). Scale bar indicates 500 nm, arrow indicates magnetic field direction [200 mT for
(1,1), 50 mT for (7,5)] and [110] crystal axis. (b) Schematic exchange pulse sequence. An adiabatic ramp to
J =  initializes the system in the lowest energy mS =  eigenstate before an exchange pulse of duration τ to
detuning ε is applied. Detuning noise, δε, induces exchange fluctuations, δJ, which limits the number of visible
exchange oscillations at high detuning. (c) Probability of detecting a singlet, P(S), as a function of detuning
and exchange time for single-electron dots. (d) Same as (c) but for multi-electron dots. Coherence is signifi-
cantly improved for the multi-electron exchange case. Insets: Simulated exchange oscillations (see text). Color
scale shared for all 2D plots.
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and multiple (Fig. .(d)) electrons. e sensor conductance was normalized to  at its first maximum and

/ at its settling value such that it reflects a singlet return probability, P(S).

e central result is that not only are exchange oscillations observed between multiply-occupied dots,

showing that a multi-electron dot forms a good qubit, but that the quality of these oscillations is improved

over the singly-occupied case. is is shown in Fig. ., where we observe high-quality exchange oscilla-

tions between multi-electron dots that clearly outperform the single-electron case in the same device. We

have examined exchange gates between multi-electron dots at different electron-number occupations for

three different cool-downs and two different devices with similar results.

. N 

We now examine the origin of the improvement observed in the multi-electron exchange gate. We con-

sider a model that includes several contributions to the total dephasing rate, Γ, including ε-equivalent noise

(Fig. .(b)), which dominates at large J, ε-independent dephasing, which dominates at intermediate J, and

dephasing due to random gradients in the Overhauser field in the z-direction, which dominates for small J.

We find that this model is sufficient to describe our observations over the entire parameter range of Fig. .

(insets).

Exchange oscillations were fit with a decaying sinusoid of the form

exp[−(Γτ)] cos(πJτ + φ), (.)

with fit parameters Γ, J, and φ. A phase shi φ can arise from bandwidth limits in the apparatus. Exchange

oscillations are well fit by this Gaussian envelope, and inconsistent with an exponential envelope (see Sec. .),

consistent with []. e form of this decay envelope has physical implications: an exponential envelope

can indicate either Gaussian-distributed white noise or Lorentzian-distributed low-frequency noise in ex-

change. A Gaussian envelope, on the other hand, reflects Gaussian-distributed low frequency (compared to

/τ) exchange noise [, ].

Figure .(a) shows extracted values of J(ε) from the fits. For single-electron occupation, J(ε) can be

found in regions where oscillations are not visible from the position of the S-T+ anticrossing. is anti-
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Figure 3.2: (a) Exchange coupling, J(ε), as a function of detuning, ε, for the single- and multi-electron ex-
change gate. Data extracted from exchange oscillations (represented in insets) below (square,circle markers)
and above (triangle markers) the range of the waveform generator (Tektronix AWG5014), measured by ex-
ternally stepping the clock, and from the location of the S-T+ anticrossing (♢), where Zeeman and exchange
energies are equal. Fits are to bi-exponential models (see text). (b) (dJ/dε)/J, obtained numerically from the
fits in (a), reflects the dephasing per exchange pulse due to ε-noise. As ε approaches zero, the multi-electron
exchange gate should display improved coherence for equal amounts of ε-noise. This is consistent with the ob-
servation of improved coherence in the multi-electron case.





Chapter : Multi-electron spin qubit in GaAs

crossing occurs when the Zeeman splitting, EZ = gμBB, is equal to the exchange J(ε) (see Fig. .(b) for

J(ε) = |EZ|), resulting in a change of sensor conductance (color scale of inset ♢, Fig. .(a)) due to leakage

into the T+ state. J is extracted assuming the bulk g-factor g = −..

e component of dephasing attributable to fluctuations in detuning, denoted Γε, depends on dJ/dε, as

illustrated in Fig. .(b). For Gaussian low-frequency (compared to /τ) ε-noise,

Γε =
dJ
dε

π
√

δε, (.)

where δε is the rms ε-equivalent noise [, ]. To determine dJ/dε, exchange profiles [Fig. .(a)] were

fit using a bi-exponential form, A + B exp[−kε] + C exp[−kε]. Figure .(b) shows that as ε approaches

zero, (dJ/dε)/J grows for the single-electron case, but saturates at a small value for the multi-electron case,

consistent with the screening of ε-noise by core electrons. us, the shape of the exchange profile J(ε) for

the multi-electron dots explains some immunity to ε-equivalent noise. However, at more negative detuning

Γε for (,) falls below that of (,). is is qualitatively inconsistent with our observations in Fig. .(c)

and suggests a deviation from the ε-equivalent noise model. e remainder of this Letter is concerned with

developing a phenomenological noise model that describes our data.

We quantitatively examine the ε-noise model by extracting δε from our data. is can be done with-

out assuming a particular functional form for dJ/dε by recasting Eq. . in integral form. Note that in the

presence of only ε-noise the number (quality), Q, of observed oscillations satisfies the identity J = Q · Γε.

Substituting Eq. . for Γε and integrating both sides of this identity with respect to ε gives

∫
Jdε = π

√
δε

∫
QdJ
dε

dε. (.)

Considering Q to be a function of J, these integrals can be rewritten

∫ εi

Jdε = π
√

δε
∫ J(εi)

QdJ. (.)

In Fig. .(a,b) we numerically compute the integrals in Eq. . as a function of the upper-bound detun-

ing point εi using the J and Q values from exchange oscillations in Fig. .. A linear relationship reflects
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Figure 3.3: Plotting the left side integral, L(εi), versus the right side integral, R(εi), of Eq. 3.4 allows us to
extract an rms ε-noise of (a) δε = . μeV for (1,1) and (b) δε = . μeV for (7,5) dot occupations (dashed
lines). Deviations from linear behavior indicate the presence of non-ε-noise. Using the extracted values for
dJ/dε and δε, the dephasing rate due to ε-noise, Γε, can be predicted without any free parameters. For both
(c) (1,1) and (d) (7,5), the system is dominated by ε-noise at large J, but decoheres due to an unknown source
at small J. The excess dephasing rate is not explained by nuclei (Γn), but is well captured by a model (ΓΣ) that
includes a constant dephasing rate Γ as its only free parameter (see text).
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the dominant ε-equivalent noise, and the slope gives the noise strength. We find that the linear relation-

ship between these integrals holds for large J, but not for intermediate and small J where other sources of

dephasing dominate.

e measured dephasing rates, Γ(J), are shown in Fig. .(c,d) for single- and multi-electron cases. e

deviation of Γ(J) from the detuning-noise-only component, Γε(J), is evident for both the single- and multi-

electron exchange operation. We next account for contributions to dephasing from fluctuations in the

hyperfine field gradient, Γn, determined independently from measured dephasing time T∗
,n in a diabatic

singlet-separation measurement, following the analysis in Ref. []. e formula we use for Γn is valid for

J ≳ /T∗
,n. In the limit of J ≪ /T∗

,n, Γn decreases in proportion to J, as can be verified by explicitly inte-

grating over the nuclear ensemble. is behavior is due to the following physical effect: nuclear fluctuations

larger than J stop phase accumulation, but do not cause dephasing. us when J becomes small, random

Overhauser field gradients cause the visibility of oscillations to go to zero but do not contribute more noise

(see Sec. .).

For intermediate values of J, the measured dephasing rate exceeds contributions from Γε and Γn for the

single- and multi-electron cases. e excess dephasing is well described by including a phenomenological

additional dephasing rate, Γ, that is independent of detuning. Fits to the data in Fig. .(c,d) yield Γ =

 MHz for the single-electron case and Γ =  MHz for the multi-electron case.

We take the total dephasing rate, ΓΣ = (Γ
ε + Γ

n + Γ
)

/, as the quadrature sum of these contribu-

tions. Strictly speaking, nuclear noise and electrical noise should not be combined in quadrature because

the exchange oscillation is not separable into nuclear and electrical contributions. However, we have veri-

fied numerically that this introduces a small error. Figure .(a) compares the quality factor, Q, of exchange

oscillations with the model value J · ΓΣ. e agreement between model and experiment is excellent in both

the single- and multi-electron regimes. Model calculations shown in the insets of Figs. .(c,d) also use

these parameters.

e additional rate Γ cannot be readily explained by higher-frequency electrical noise, as whitening

the noise power spectrum would presumably increase dephasing for short exchange pulses. is would

tend to increase dephasing at large J, opposite of the observed trend. As in [] we observed no significant

temperature dependence of quality factors when heating the mixing chamber from below  mK to 
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Figure 3.4: (a) Quality of exchange rotations, Q, as a function of J for (7,5) and (1,1). For large J, the multi-
electron exchange gate significantly outperforms the single-electron gate. The model (solid lines) includes de-
phasing due to ε-noise, nuclei, and a constant Γ to account for the unknown noise source discussed in Fig. 3.3.
Also shown (dotted lines) are the same models without the contribution from Γ. (b) The observed reduction
of Q when applying external voltage fluctuations of fixed amplitude δVext to the detuning axis is in good agree-
ment with the model including Γ (solid line), and is in disagreement with the model excluding Γ (dotted line).
All model parameters determined from other measurements. This serves as an independent check of our model
parameters.

mK.

As a check of our noise model, we use the plunger gates to artificially expose the quantum dots to a

known electrical noise environment and observe its effect on the quality of exchange rotations. A two-

channel arbitrary waveform generator (Agilent A) can emulate different noise spectra, as well as dif-

ferent noise correlations between right and le plunger voltages, that can be superimposed to the control

voltages during the exchange pulse. To simulate ε-equivalent noise, we add anti-correlated voltage fluctu-

ations of increasing rms amplitude to VL and VR, and observe exchange oscillations of decreasing quality

factor. Figure .(b) shows the expected decrease in Q for single-dot occupation at J = . GHz †, in good

agreement with the predictions from our noise model (solid line, no free parameters).

. F    

For completeness, we now give more complete details of the full dephasing model. e full decoherence

model used, including the effects of Γ, Γn and Γε, involves integrating over both the nuclear and electrical
†For Fig. .(b), the Agilent A waveform generator was programmed to output a  MHz sine wave (i.e.

≪ J), phase-modulated at  kHz.
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noise ensembles.

We begin with the usual Hamiltonian in the S-T subspace []

H =
J

( + τz) + δhzτx. (.)

Here the τi are the Pauli matrices defined such that τz |T⟩ = |T⟩, τz |S⟩ = − |S⟩. J is the exchange en-

ergy (assumed to be noiseless for now) and δhz is a random Overhauser gradient along the direction of the

externally applied magnetic field. For the purposes of these calculations, we set ℏ =  and assume that

|+x⟩ = |S⟩ + |T⟩ is an eigenstate of the local effective Zeeman field in each dot. is is valid if we neglect

transverse components of the Overhauser field, which holds for Zeeman fields due to the external magnetic

fields much larger than the typical Overhauser fields (i.e., ≫ mT).

We are interested in the probability to rotate between |+x⟩ and |−x⟩ when applying H for a time t,

which is an experimental relevant quantity because |+x⟩ and |−x⟩ can be mapped to and from S and T,

respectively, via an adiabatic ramp. In this case the expected oscillations are determined by the probabil-

ity P(T) =  − P(S) = | ⟨−x| e−iHt |+x⟩ |. Here the overline · · · denotes an average over the nuclear

ensemble. Using standard identities we find

⟨−x| e−iHt |+x⟩ = eiJ/t J/√
(δhz) + (J/)

sin(
√

(δhz) + (J/)t), (.)

hence

| ⟨−x| e−iHt |+x⟩ | = 


J

J + (δhz)
( − cos(

√
(δhz) + Jt)). (.)

Integrating of Gaussian distributed nuclear and exchange ensembles then gives

P(T) =

∫ ∞

−∞

∫ ∞

−∞
dJdhP(J, σJ)P(h, σh)K(J, h, t) (.)

where

P(f, σf) =
√
πσf

e−f/σ
f (.)
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J (GHz) J (GHz) J (GHz) k (meV−) k (meV−) δε (μeV) Γ (MHz) σh (MHz) α (e)
(,) . . .   .   .
(,) -. . . .  .   .

Table 3.1: Parameters for dephasing model. See text for parameter definitions

and

K(J, h, t) = 


J

J + (h)
( − cos(

√
(h) + Jπt)) (.)

Note that we have changed units so that J and h are frequencies (not angular frequencies).

e parameters in this model are σh and σJ which quantify the total amount of exchange and nuclear

noise. σh is determined from T∗
,n measurements according to

σh =


π
√

T∗
,n

(.)

where T∗
,n is the /e time from the curves in Fig. ..

σJ includes the contribution from both ε-noise (Γε) and the unknown noise source (Γ) according to

σJ =


π
√


(
Γ
ε + Γ


)/

, (.)

where

Γε = π
√


dJ
dε

δε, (.)

and δε is the rms ε-equivalent electrical noise extracted from the slopes of Figs. (a,b).

Finally, dJ
dε is extracted by fitting J(ε) to the double-exponential form as described in Fig. .

J = J + Jekε + Jekε. (.)

All model parameters used in the text are summarized in Table .. In this table α is the lever arm found

from bias-triangles in transport.





Chapter : Multi-electron spin qubit in GaAs

. D   -J 

is section discusses dephasing in the small-J limit. e finding is that, even for vanishingly small ex-

change, electrical noise dominates the long-time behavior of the exchange oscillations.

To see how this arises, consider first the behavior of Eq. . in the absence of electrical noise. e triplet

return probability with σJ =  is

P(T) =

∫ ∞

−∞
dh √

πσh
e−h/σ

h



J

J + (h)
( − cos(

√
(h) + Jt)). (.)

To make the behavior of this integral more obvious we issue the change of variables h → h/J, σ = σh/J,

τ = Jt. e integral becomes

J

√

πσh

∫ ∞

−∞
dh 

 + h e
−h/σ

( − cos(
√

 + hτ). (.)

In the small-J limit (σ ≫ ) the integral is dominated by terms of order J (h ≲ ) because of the

Lorentzian term. Physically, this is because large gradients δhz freeze the system along the transverse axis

of the Bloch sphere rather than introducing a random phase. e result is that exchange oscillations, in the

absence of J noise, should be a universal function F(Jt) scaled by J/σh:

P(T) = | ⟨−x| e−iHt |+x⟩ | = J
σh

F(Jt) (.)

where

F(Jt) = 

√

π

∫ ∞

−∞
dh 

 + h ( − cos(
√

 + hJt) (.)

is independent of the nuclear distribution.

To verify this reasoning, we numerically compute the integral in Eq. . for different values of σ. e

results are presented in Fig. .. Indeed, when J ≪ σh the exchange oscillations tend towards a zero-

visibility function with a universal form (dashed blue line, Fig. .(b)).

us, in the limit of arbitrarily large nuclear noise such that J ≪ σh, the envelope of the exchange oscil-

lations decays slowly in a universal way (see Fig. .). In a real experiment, J-noise, always finite in practice,
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Figure 3.5: (a) Numerically integrated P(T) versus Jt for σh/J = , , , , ,  from top to bottom. The
visibility of oscillations is clearly reduced when J < σh. (b) σh/J · P(T) versus Jt for σh/J = , , , , , 
from top to bottom. Black line indicates the mathematical function F(Jt). Scaling P(S) by σ/J reveals that the
quality of exchange oscillations tends towards the function F(Jt) when σh >> J. This behavior is consistent with
the asymptotic prediction of Eq. 3.17.

will dominate the envelope at long times, even though exchange is a small parameter (J ≪ σh).

. J  G 

Here, we discuss our assumption of a Gaussian envelope of exchange oscillations, as given in Eq. .. We

consider different envelopes of the form

e−(Γt)p , (.)

where Γ is the decoherence rate and p is the envelope exponent (e.g., p =  is an exponential envelope,

p =  is a Gaussian envelope). Figure .(a) shows fits for large and small exchange, J, for single-electron

dots, with p treated as a fit parameter. For J < ., where nuclear fluctuations play an important role, the

data are consistent with p ≲ . However, in this regime theory predicts polynomial tails which differ from

the form assumed by Eq. . []. e tendency towards small p in the nuclear dominated regime is due

to the contribution of these polynomial tails, which result in a slower decay rate. For J > . GHz, where

detuning noise dominates, data are consistent with p = , or a Gaussian envelope. Figure .(b) shows an

example of a trace that is well described by a Gaussian envelope.

We also consider the sensitivity of the extracted decoherence rate, Γ, to our choice in p. As shown in

Fig. .(c), Γ is essentially independent of p for p ≥ . Since the data are better described by p =  in
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Figure 3.6: (a) Noise envelope power, p, as a function of exchange frequency, J. p is determined from a least-
squares fit to exchange oscillations. For J < . GHz (shaded region) nuclear noise plays an important role and
the envelopes are altered away from p = . For J > . GHz, where detuning noise dominates, the data are
consistent with p = , or a Gaussian envelope. (b) Example of a fit for p at J =  MHz. The fit is consistent
with p = , or a Gaussian envelope. (c) Experimental decoherence rate Γ, as a function of J for different noise
envelope powers, p. The values p=1...5 show qualitatively similar behavior. For J > . GHz, where ε-noise
dominates, the fit data are consistent with p = , and Γ is insensitive to the value of p.
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Figure 3.7: (a) Singlet return probability, P(S), versus exchange time, τ, between multi-electron dots for de-
vice #2. High quality exchange oscillations are observed. (b) ε-noise extraction using the same method as Figs.
3(a, b). An rms ε-noise of . μeV is found. This is consistent with the values found in device #1, even though
the lever-arm, α, in device #2 is almost three times as big. This suggests the ε-noise does not actually arise
from voltage fluctuations on the plunger gates.

the nuclear regime, the analysis in the main text may underestimate the nuclear decoherence in the small

J regime by roughly  MHz. However, these deviations are small and do not alter the conclusions of the

paper. Since we only extract the /e time from our data, the insensitivity to p is expected.

. M-     

High-quality exchange oscillations between multi-electron dots of various occupancies where observed

in device  in several cool downs. Multi-electron exchange oscillations from an independent device ,

lithographically identical to device  that has been discussed so far, are shown in Fig. .. Both the quality

of the oscillations, Q ∼ , and the extracted ε-noise are consistent with the results found in device . For

device  the gate lever arm with respect to the detuning axis was found larger than in device  (.e

as opposed to .e), suggesting that the ε-noise does not actually originate from the plunger gates or

cryostat. Also, we have observed that the quality factors do not improve when adding attenuators to the

output of the waveform generator, indicating that instrumental voltage fluctuations are not the dominating

electrical noise source either. We believe that the dominating noise arises from within the GaAs substrate,

but observed no significant temperature dependence of quality factors when heating the sample from below

 mK to  mK.
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. C   -    - - 

We demonstrate that multi-electron spin qubits can be initialized, manipulated, and read-out using the

same procedures developed for single-electron spin qubits, including fast single-shot readout with integra-

tion times less than μs. In the main text we are interested in averaging over a slowly fluctuating ensemble,

and so do not make use of single-shot readout. It is important, however, to demonstrate that single-shot

readout works in the multi-electron regime.

Fig. .(a) shows the stability diagram near the (, )-(, ) transition. e zero-bias conductance g

through a sensor quantum dot is measured with a lock-in. e gate voltages of the sensor dot were linearly

cross compensated for changes in the right and le plunger gate voltages of the double quantum dot, VR

and VL, defined as in [, Fig. .(a)]. e change of sensor conductance due to a charge rearrangement

from (, ) to (, ) is shown in Fig. .(b), and is large enough to allow high-fidelity single-shot readout.

Fig. .(c) shows single-shot traces obtained by radio-frequency reflectometry similar to that described

in [] and employed in [, ]. A radio-frequency carrier ( MHz, - dBm) is applied to a tank

circuit ( nH surface-mount inductor by Coilcra) connected to the sensor quantum dot. e car-

rier is only applied during the measurement segment a pulse cycle. e reflected power is preamplified

by a low-noise cryogenic amplifier mounted on the still plate of the dilution refrigerator (Quinstar QCA-

U-HZI), and further amplified at room temperature. Homodyne detection with appropriate low-

pass filtering (Picosecond Pulse Labs --. MHz low-pass filter) then demodulates the sensor

signal to a DC voltage, Vrf, that is sampled by a high-impedance input digital storage oscilloscope (Agilent

MSOA, high-resolution mode, sampling speed MS/s). e sampled data shows abrupt changes in Vrf

when a triplet state (high Vrf) decays into a singlet state (low Vrf). One such event is shown in Fig. .(d).

By averaging an ensemble of such single-shot traces the longitudinal relaxation time in the readout point

of the qubit can be determined, here T =  μs. If the integration subinterval aer qubit manipulation is

kept short compared to T, then a high-fidelity readout of the qubit states can be achieved by simply com-

paring the integrated Vrf to a threshold that separates singlet from triplet outcomes. For an integration time

of  ns, we obtain a signal-to-noise ratio (SNR) of  mV/. mVrms = .. For comparison, using the

quantum point contact signal of a (,)-(,) qubit, SNR ∼  for  ns of integration in []. Using a sin-

gle quantum dot sensor, a SNR ∼  at  ns integration time was found using - dBm applied rf power
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Figure 3.8: Charge sensing of a multi-electron double quantum dot and single-shot qubit readout. (a) Stability
diagram near the (4,4)-(3,5) transition acquired by standard locking detection of the zero-bias conductance of
the sensor quantum dot (rms excitation ≈ 10 μV). Plunger gate voltages VR and VL are defined as in [130,
Fig. 3.1(a)]. (b) Cut along vertical line indicated in (a), revealing the sensitivity of the sensor conductance to
the interdot transition. (c) Single-shot traces obtained by radio-frequency reflectometry. Each vertical trace
shows the demodulated sensor signal Vrf after bringing a triplet-initialized qubit state to its measurement point.
(d) Sensor signal when reading out shot #40 indicated in (c), demonstrating a qubit readout signal-to-noise
ratio of 4.1 for an integration subinterval of 200 ns. (e) 12100 consecutive single-shot measurements of Vrf
using the pulse sequence sketched in Fig. 3.1(b) with integration subinterval of 750 ns and exchange time τ
incremented every 100 cycles. (f) Thresholding data similar to (e), the singlet return probability P(S) reveals
a high-Q exchange oscillation. Each data point was calculated from an ensemble of 1000 single-shot outcomes
obtained at B=400 mT. Note: Panel (a) and (b) can be directly compared to analogous, previous work on (1,1)
dot occupations in an lithographically identical device [130, Figs. 2(a,c)]. Multi-electron single-shot data in
panels (c-e) can be compared with [93, Figs. 1(d), 2(a)].
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(∼. mV) [].

We note that the possibility of single-shot readout may facilitate qubit initialization in multi-electron

double quantum dots. Unlike the (,) singlet, which can easily be initialized by temporarily emptying the

le dot (,), and reloading the right dot (,), a multi-electron singlet in (n+, m+) can be more com-

plicated to achieve: Pulsing into (n, m+) may result in an excited state of the le dot with high total spin

and long relaxation time, resulting in an unknown state even if the right dot is subsequently loaded in a sin-

glet configuration. Single-shot readout alleviates these concerns in two ways. First, because data are only

acquired during the readout step, we are are able to initialize for a sufficiently long time without decreas-

ing the signal-to-noise ratio. Second, single-shot data are naturally normalized by counting shot-by-shot,

allowing one to accurately detect preparation infidelities.

High quality-factor exchange oscillations measured in single-shot mode are demonstrated in Figs. .(e,

f). Panel (e) shows  consecutive single-shot measurements of Vrf using the pulse sequence sketched in

Fig. .(b). In this sequence τ is varied from  to  ns, with each τ value repeated  times. Each point

in Fig. .(e) is identified as either singlet or triplet based on a simple threshold criterion (blue and green

regions in Fig. .(e)) []. By counting the number of singlet occurrences for each τ value, a singlet return

probability can then be determined. is is done in Fig. .(f) for a similar data set with  repetitions to

reduce shot noise. A sinusoidal fit with a Gaussian envelope yields a quality factor Q ∼ .

. M  T∗
,n  (,)  (,)  

In order to quantify the amount of nuclear noise for each electron occupation, we employ a dephasing

pulse sequence (inset of Fig. .) that directly measures the inhomogeneous dephasing time, T∗
,n. For (,),

a singlet-correlated pair of spins is initialized in (,) and separated quickly (compared to /T∗
,n) deep into

(,). During the separation time, τS, the two separated spins accumulate a relative phase due to the fluc-

tuating nuclear gradient, δhz. e singlet return probability, P(S), is found by averaging over many cycles

of this pulse sequence, thus many values of δhz. We find that the strength of nuclear spin fluctuations for

(,) /T∗
,n = . GHz is similar to that of (,), /T∗

,n = . GHz. ese values were used as input

parameters for the ΓΣ and Γn fits in Figs. (c, d).
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Figure 3.9: Measured singlet return probability P(S) as a function of separation time τS (open circles) using a
pulse sequence designed to probe the inhomogeneous dephasing time, T∗

,n, due to nuclear spins (inset). Gaus-
sian fits (solid lines) yield T∗

,n = . ns for (1,1) occupation and a comparable number, T∗
,n = . ns, for (7,5)

occupation. The applied magnetic field was B = . T.

. C

In conclusion, we have compared noise-sensitive exchange oscillations in single- and and multi- electron

spin qubits. e multi-electron dots are subject to less exchange noise than single-electron dots both be-

cause of a lowered noise susceptibility, dJ/dε, and a lower rms noise value, δε. Our observation of high-

quality exchange oscillations between multiply-occupied dots suggests a route to simplifying device fab-

rication while simultaneously improving performance. It is worth emphasizing that the true source of the

detuning-equivalent ε noise is not clear, but that is probably does not arise form the gates themselves. In

addition, there is a dephasing source, Γ, which has both unknown origin and is non-detuning-equivalent.

One possibility is that it arises from transverse electric fields effecting the tunnel-coupling of the device. We

have also demonstrated single-shot readout and nuclear dephasing in the multi-electron regime, finding

similar results to the single-electron case. In general, multi-electron qubits are provide similar functionality

to the single-electron case, but with enhanced electrical noise performance.
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4
Quasiparticles in an Al-InAs quantum dot

T   Coulomb blockade experiments on an Al-InAs quantum dot. e bulk of the

chapter also appears in Ref. [], co-written with Sven Albrecht. e devices were fabricated by Sven Al-

brecht, and measured in collaboration with him under the supervision of Charles Marcus. Willy Chang,

Ferdinand Kuemmeth, and omas Jespersen assisted with the experiments, and theory work was per-

formed by Gediminas Kiršanskas and Karsten Flensberg. e nanowires were grown by Peter Krogstrup.

Leonid Glazman, Bert Halperin, Roman Lutchyn and Jukka Pekola gave helpful comments while the work

in this chapter was being prepared for publication.

. I

Quasiparticle excitations can compromise the performance of superconducting devices, causing high fre-

quency dissipation, decoherence in Josephson qubits [–], and braiding errors in proposed Majorana-

based topological quantum computers [–]. Quasiparticle dynamics have been studied in detail in
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metallic superconductors [–] but remain relatively unexplored in semiconductor-superconductor

structures, which are now being intensely pursued in the context of topological superconductivity.

Quantum dots are useful for studying quasiparticles; a large charging energy can make single-quasiparticle

occupation energetically favorable, allowing the “injection” of quasiparticles with a gate voltage. At zero

bias, the equilibrium properties of quasiparticles can be tested, and at finite bias the dynamics become im-

portant.

To study the physics of quasiparticles in a Majorana system, we introduce an Al-InAs quantum dot com-

prising a gate-confined semiconductor nanowire with an epitaxially grown superconductor layer, yielding

an isolated, proximitized nanowire segment. Bound states in the semiconductor are identified via bias spec-

troscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and

extract a parity lifetime (poisoning time) of the bound state in the semiconductor exceeding  ms.

Semiconductor-superconductor hybrids have been investigated for many years [–], but recently

have received renewed interest in the context of topological superconductivity, motivated by the realiza-

tion that combining spin-orbit interaction, Zeeman splitting and proximity coupling to a conventional

s-wave superconductor provides the necessary ingredients to create Majorana modes at the ends of a one-

dimensional (D) wire. Such modes are expected to show nonabelian statistics, allowing, in principle, topo-

logical encoding of quantum information [, , ] among other interesting effects [, ].

Transport experiments on semiconductor nanowires proximitized by a grounded superconductor have

recently revealed characteristic features of Majorana modes [, ]. Semiconductor quantum dots with

superconducting leads have also been explored experimentally [–], and have been proposed as a

basis for Majorana chains [–]. Here, we expand the geometries investigated in this context by creat-

ing an isolated semiconductor-supercondutor hybrid quantum dot (HQD) connected to normal leads. e

device forms the basis of an isolated Majorana system with protected total parity, where both the semicon-

ductor nanowire and the metallic superconductor are mesoscopic [, ].

. E S

e measured device consists of an InAs nanowire with epitaxial superconducting Al on two facets of the

hexagonal wire, with Au ohmic contacts (Figs. .a,b), forming a normal metal-superconductor-normal
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Figure 4.1: a, Scanning electron micrograph of the reported device, consisting of an InAs nanowire (gray)
with segment of epitaxial Al on two facets (blue) and Ti/Au contacts and side gates (yellow) on a doped silicon
substrate. b, Device schematic and measurement setup, showing orientation of magnetic field, B.

metal (NSN) device. e nanowires were grown in the [] direction with wurzite crystal structure and

the Al was matched to [] on two of the six {̄} sidefacets. ey were then deposited randomly onto

a doped silicon substrate with  nm of thermal oxide, followed by electron-beam lithographically pat-

terned wet etch of the epitaxial Al shell (Transene Al Etchant D,  C,  s) resulted in a submicron Al seg-

ment ( nm, Fig. .a). Ti/Au (/ nm) ohmic contacts were then deposited on the ends following in

situ Ar milling ( mTorr,  V,  s), with side gates deposited in the same step. For the present device, the

end of the upper le gate broke off during processing. However, the device could be tuned well without it.

Four devices showing similar behavior have been measured.

Differential conductance, g, was measured in a dilution refrigerator with base electron temperature T ∼

 mK using standard ac lock-in techniques. Local side gates, patterned with electron beam lithography,

and a global back gate were adjusted to form an Al-InAs HQD in the Coulomb blockade regime, with gate-

controlled weak tunneling to the leads. e lower right gate, VR, was used to tune the occupation of the

dot, with a linear compensation from the lower le gate, VL, to keep tunneling to the leads symmetric. We

parameterize this with a single effective gate voltage, VG, related to the actual gate voltage VL and VR by

VR = VR, + κVG,

VL = VL, +
√

 − κVG,

with κ = . and offset voltages VR, = −. V, VL, = −. V. ese transformation rules ensure

that V
G = (VR − VR,)

 + (VL − VL,)
, so that VG can be interpreted as the distance from (VR,,VL,) in

the VR − VL plane. All measurements are performed at backgate voltage VBG = . V.
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Figure 4.2: Differential conductance, g, as a function of effective gate voltage, VG, and source-drain voltage,
VSD, at B = . Even (e) and odd (o) occupied Coulomb valleys labeled.

. C 

Differential conductance as a function of VG and source-drain bias, VSD, reveals a series of Coulomb dia-

monds, corresponding to incremental single-charge states of the HQD (Fig. .). While conductance fea-

tures at high bias are essentially identical in each diamond, at low bias, VSD < . mV, a repeating even-

odd pattern of le- and right-facing conductance features is observed. is results in an even-odd alterna-

tion of Coulomb blockade peak spacings at zero bias, similar to even-odd spacings seen in metallic super-

conductors [, ]. However, the parity-dependent reversing pattern of subgap features at nonzero bias

has not been reported before, to our knowledge. e repeating even-odd pattern indicates that a parity-

sensitive (but otherwise relatively invariant) bound state is being repeatedly filled and emptied as electrons

are added to the HQD.

Measured charging energy, EC = . meV, and superconducting gap, Δ =  μeV, satisfy the condition

(Δ < EC) for single electron charging [, ]. Differential conductance at low bias occurs in a series

of narrow features symmetric about zero bias, suggesting transport through a bound state, with negative

differential conductance (NDC) observed at the border of odd diamonds. NDC arises from slow quasipar-

ticle escape, as discussed below, similar to current-blocking seen in metallic superconducting islands in the

opposite regime, Δ > EC [, ].

To gain quantitative understanding of these features, we present a simple model of transport through

a single bound state in the InAs plus a Bardeen-Cooper-Schriffer (BCS) continuum in the Al. e model
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Figure 4.3: a, Experimental differential conductance, g, as a function of gate voltage VG and source-drain
VSD, shows characteristic pattern including negative differential conductivity (NDC). b, Transport model of a.
vG = αVG up to an offset, where α is the gate lever arm. Axis units are Δ/e =  μV, where Δ is the super-
conducting gap. See text for model parameters. c, Source and drain (gold) chemical potentials align with the
middle of the gap in the HQD density of states. No transport occurs due to the presence of superconductivity.
d, Discrete state in resonance with the leads at zero bias. Transport occurs through single quasiparticle states.
e, Discrete state in resonance with the leads at high bias. Transport occurs through single and double (particle-
hole) quasiparticle states. f, Discrete state and BCS continuum in the bias window. Transport is blocked when
a quasiparticle is in the continuum, resulting in NDC.
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makes several simplifying assumptions: symmetric coupling of both the bound state and continuum to the

leads, motivated by the observed symmetry in VSD of the Coulomb diamonds, and a fixed-energy bound

state, motivated by the repetitive pattern observed in the Coulomb diamonds as well as the expectation that

the Al dominates the gate-dot capacitance. Transition rates were calculated from Fermi’s golden rule and a

steady-state Pauli master equation was solved for state occupancies. e master equations consider states

with fixed total parity, composed of the combined parity of quasiparticles in the thermalized continuum

and the , , or  quasiparticles in the bound state. Conductance was then calculated from occupancies and

transition rates (see Ref. [] supplement for theory details).

Measured and model conductances are compared in Figs. .a,b. e coupling of the bound state to each

lead, noting the near-symmetry of the diamonds, was estimated to be Γ = . GHz, based on zero-bias

conductance (Fig. .d). e energy of the discrete state, E =  μeV at zero magnetic field, was mea-

sured using finite bias spectroscopy (Fig. .e). e normal-state conductance from each lead to the contin-

uum, gAl = . e/h, was estimated by comparing Coulomb blockaded transport features in the high bias

regime (VSD = . mV). e superconducting gap, Δ =  μeV, was found from the onset of NDC, which

is expected to occur at eVSD = Δ − E (Fig. .f). While the rate model shows good agreement with exper-

imental data, some features are not captured, including broadening at high bias, with greater broadening

correlated with weaker NDC, and peak-to-peak fluctuations in the slope of the NDC feature. ese features

may be related to heating or cotunneling, not accounted for by the model.

To increase intuition for the rate model, it is useful to interpret each Coulomb diamond conductance

threshold, as shown in Fig. .. For example, the highest bias at which NDC is observed occurs is vSD =

(Δ + E)/e, at the intersection of black and green lines.

.. I    

e observation of negative differential conductance places a bound on the relaxation rate of a single quasi-

particle in the HQD from the continuum (in the Al) to the bound state (in the InAs nanowire). Nega-

tive differential conductance arises when an electron tunnels into the weakly coupled BCS continuum,

blockading transport until it exits via the lead. e blocking condition is shown for a hole-like excitation

in Fig. .f. Unblocking occurs when the single quasiparticle relaxes into the bound state, followed by a


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Figure 4.4: a, Calculated conductance g versus vSD and vG. E = .Δ, all other model parameters same as
Fig. 4.3 Dotted lines are vSD/ = ±(vG + Δ/e) [black], vSD/ = ±(vG + E/e) [blue], vSD/ = ±(vG − E/e)
[green], vSD/ = ±(vG − Δ/e) [red]. b, E = .Δ, all model parameters same as main text. c, E = .Δ, all
other model parameters same as main text. Color scale shared across all plots.

fast escape to the leads. When the typical time for quasiparticle relaxation is shorter than characteristic

transport timescales, the NDC is predicted to disappear, as shown in Fig. .. NDC thus indicates a long

quasiparticle relaxation time, τqp, from the continuum to the bound state.

e depth strength of NDC is quantified by introducing the relative conductance ratio

R =
g′ + gNDC
g′ − gNDC

(.)

where gNDC is the minimum of the negative differential conductance, and g′ is the maximum of the extra

conductance threshold that appears when τqp →  (see Fig. .). Figs. .f-j shows example conductance

traces at constant bias and the associated R-values. e traces show that R ≈ − corresponds to slow quasi-

particle relaxation, and R ≈  corresponds to fast quasiparticle relaxation.

e data give R = . ± ., found by averaging over all negative differential conductance features in

Fig. .. e measured R-value is consistent with τqp > . μs, as shown in Fig. ., giving the experimental

bound on the single quasiparticle relaxation time.

us, using independently determined parameters, the observed NDC is only compatible with the

model when τqp > .μs.
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. Z- 

Turning our attention to the even-odd structure of zero-bias Coulomb peaks (Figs. .a,b), we observed

consistent large-small peak spacings, associating the larger spacings with even occupation, as expected the-

oretically [, ] and already evident in Fig. .. Occasional even-odd parity reversals on the timescale

of hours were observed in some devices, similar to what is seen in metallic devices []. Peak spacing al-

ternation disappears at higher magnetic fields, B, consistent with the superconducting-to-normal transi-

tion, and also disappears at elevated temperature, T > .K, significantly below the superconducting criti-

cal temperature, Tc ∼ K. e temperature dependence is consistent with similar behavior seen in metallic

structures [, ], and can be understood as the result of thermal activation of quasiparticles within the

HQD with fixed total charge.

As seen in Fig. .c, individual Coulomb peaks are asymmetric in shape, with their centroids (first mo-

ments) on the even sides of the peak maxima. Note that the asymmetry leads to higher near-peak conduc-

tance in even valleys, the opposite of the Kondo effect. e asymmetric shape is most pronounced at low

temperature, T < .K, and decreases with increasing magnetic field. e degree of asymmetry is not
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predicted by the rate model, even taking into account the known small asymmetry due to spin degeneracy

[]. In the analysis below, we consider peak positions defined both by peak maxima and centroids.

A model of even-odd Coulomb peak spacing that includes thermal quasiparticle excitations follows ear-

lier treatments [, , ], including a discrete subgap state as well as the BCS continuum [] (Fig. .d).

Even-odd peak spacing difference, Se − So, depends on the difference of free energies,

Se − So =

αe

(Fo − Fe) , (.)

where α is the (dimensionless) gate lever arm. e free energy difference, written in terms of the ratio of

partition functions is,

Fo − Fe = −kBT ln
(
Zo
Ze

)
. (.)

For even-occupancy,

Ze =  +
∑
i ̸=j

e−Ei/kBTe−Ej/kBT + ..., (.)

where the first term stands for zero quasiparticles, the second for two (at energies Ei and Ej), and additional

terms for four, six, etc. Zo similarly runs over odd occupied states. Rewriting the sums of Boltzmann factors

as integrals over the density of states, D(E), gives

Zo
Ze

=

∫ ∞


dE D(E) ln coth[E/(kBT)], (.)

where D(E) consists of one subgap state and the continuum,

D(E) = ρBCS(E) +


ρ+ (E) +



ρ− (E). (.)

We take ρBCS(E) to be a standard BCS density of states,

ρBCS(E) =
ρAlVE√

E − Δ(B)
θ(E− Δ) (.)
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(θ is the step function), and ρ to be a pair of Lorentzian-broadened spinful levels symmetric about zero,

ρ± (E) =
γ/π

(E− E± ) + (γ/)
+

γ/π
(E+ E± ) + (γ/)

. (.)

Zeeman splitting of the bound state and pair-breaking by the external magnetic field are modeled with the

equations

E± (B) =
Δ(B)
Δ

E ±


gμBB, (.)

Δ(B) = Δ

√
 −

(
B
Bc

)
, (.)

where E is the zero-field state energy and Δ is the zero field superconducting gap. In the event that a

bound state goes above the continuum, E+s > Δ(B), we no longer include the state in the free energy. Equa-

tions (.) and (.) are reasonable provided the lower spin-split state remains at positive energy, E− > .

For sufficiently large Bc, the bound state will reach zero energy, resulting in topological superconductivity

and Majorana modes, the subject of future work.

For Δ ≫ kBT, the Free energy can be approximated

Fo − Fe ≈ −kBT ln(Neffe−Δ/kBT + e−E/kBT), (.)

where Neff = ρAlVAl
√

πkBTΔ is the effective number of continuum states for Al with volume VAl and

electron density of states ρAl [, ] (see Appendix B for discussion of approximations).

Based on Eq. ., one can identify a characteristic temperature, T∗ ∼ Δ/[kB ln(Neff)], less than the gap,

above which even-odd peak spacing alternation is expected to disappear. Note in this expression Neff itself

depends on T, and also that T∗ does not depend on the bound state energy, E. A second (lower) charac-

teristic temperature, T∗∗ ∼ (Δ − E)/[kB ln(Neff/)], which does depend on E, is where the even-odd

alternation is affected by the bound state, leading to saturation at low temperature [, ]. For a spin-

resolved zero-energy (E = ) bound state—the case for unsplit Majorana zero modes—these characteristic

temperatures coincide and even-odd structure vanishes, as pointed out in Ref. []. In the opposite case,

where the bound state reaches the continuum (E = Δ), the saturation temperature vanishes, T∗∗ = , and
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the metallic result with no bound state is recovered [, ].

Experimentally, the average even-odd peak spacing difference, ⟨Se − So⟩, was determined by averaging

over a set of  consecutive Coulomb peak spacings, including those shown in Fig. ., at each temperature.

Figure  shows even-odd peak spacing difference appearing abruptly at Tonset ∼ . K, and saturating at

Tsat ∼ . K, with a saturation amplitude near the value expected from the measured bound state energy,

V = E/(αe). Figure  shows good agreement between experiment and the numerically-integrated

model, Eq. (.), using a density-of-states parameters determined independently from data in Fig. ., with

V = . × nm as a fit parameter, consistent with the micrograph (Fig. .a), and ρAl = eV−nm−

[].

e asymmetric peak shape complicates measurement of even-odd spacings, as one can either use the

centroids or maxima to measure spacings, the two methods giving different results. Larger peak tails on

the even valley side cause the centroids to be more regularly spaced than the maxima. is is evident in

Fig. ., where the centroid method shows a decreasing peak spacing difference at low temperature, while

with the maximum method the spacing remains flat. e thermal model of Se− So can also show a decrease

at low temperature if broadening of the bound state is included. We do not understand at present if the low

temperature decrease in the centroid data is related to the decrease seen in the model when broadening

is included. It is worth noting, however, that the fit to the centroid data gives a broadening γ = neV,

reasonably close to the value estimated from the lead couplings, (hΓ)
/Δ = neV.

Applied magnetic field (direction shown in Fig. .b) reduces the characteristic temperatures Tonset, Tsat,

and saturation amplitudes. Field dependence is modeled by including Zeeman splitting of the bound state

and orbital reduction of the gap and bound state energy, taking the g-factor and critical magnetic field

as two fit parameters applied to all data sets. e fit value g =  lies within the typical range for InAs

nanowires [, ], supporting our interpretation that the bound state resides in the InAs. e fit value

of critical field, Bc = mT, is typical for this geometry.

. N  

Agreement with the thermodynamic model suggests that ensemble averages of even-odd spacing, Se −

So, provides a measure of the equilibrium quasiparticle density, nqp. Figure  (right axis) gives the value
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fitted aluminum volume, VAl = . × nm. Dotted curve includes a discrete state broadening, γ = neV,
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critical field, Bc = mT, with other parameters fixed from main figure. Right inset: Representative Coulomb
peaks showing even (Se) and odd (So) spacings.

nqp(T) = V−
Al N


effe−Δ/kBT, an expression valid for large charging energy [] (see Appendix A). Note the

factor of Δ in the exponent occurs because of of the strong Coulomb blockade limit EC > Δ; it reflects

the fact that single quasiparticles are at energy EC + Δ and thus “freeze out” before double-quasiparticle

excitations at Δ

Below Tsat ∼ .K, even-odd spacing saturates at the bound-state value V, as expected, making it

difficult to infer a quasiparticle density in this low-temperature range. Instead, we conservatively take

nqp(Tsat) ∼ .μm− as an upper bound for the quasiparticle density at low temperature. is value is

within the range from the recent literature, . − μm− [–, ]. Because the volume of Al is

small in this device geometry, the upper bound on the number of quasiparticles, nqpVAl < −, is, corre-

spondingly, quite small.
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.. D

Using the results of this chapter, we determine a lower bound on the poisoning time, τp, of the bound state.

e physical mechanism for this poisoning is relaxation of a quasiparticle into the InAs from the Al, a

process that preserves the overall parity of the isolated island (InAs plus Al) but changes the parity of the

bound state. e process is intrinsic to the superconductor-semiconductor system, and is expected to set

the fundamental limit on parity lifetime []. e poisoning rate, /τp, is given by the product of the re-

laxation rate of a single quasiparticle from the Al, /τqp, and the number of quasiparticles in the Al [],

which, from above, is bounded by nqpVAl < −. Quantitative comparison of transport data to the nu-

merical model —in particular, the relative strength of negative differential conductivity at finite bias, which

vanishes for fast quasiparticle relaxation—provides a lower bound on the quasiparticle relaxation time,

τqp > .μs (see Sec...). Together, these values give a conservative lower bound on the poisoning time of

the bound state, τp = τqp/(nqpVAl) > ms.

Quasiparticle density depends sensitively on device geometry, filtering, and shielding, resulting in a wide

range of experimental values (. − μm−), and thus poisoning times. We note that recent work in

transmon qubits [] found nqp = .μm−, corresponding to state-poisoning times well above ms.

We also note that the Coulomb blockade geometry effectively enforces quasiparticles from the Al shell to be

created only in pairs, which is different from non-charging device geometries.

Based on previous work, τqp, hence τp, is expected to depend weakly on the bound-state energy for low-

energy bound states [, , ], including zero-energy Majorana modes with E = . e long poi-

soning time found here, τp > ms, is auspicious for application of this system to topological quantum

computing, suggesting that a large number of braiding operations of Majorana modes could be performed

before the parity of the bound state is poisoned by the proximitizing Al. Chapter  investigates the emer-

gence of Majorana modes in this system.
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Majorana quantum dot

T   magnetic field dependence of Coulomb peak spacings and heights in an Al-

InAs quantum dot. It is a continuation of the study in Chapter , and most of the content will appear in

a manuscript, currently in preparation. e devices were fabricated by Sven Albrecht, and measured in

collaboration with him under the supervision of Charles Marcus. Morten Madsen, Willy Chang, Ferdi-

nand Kuemmeth, and omas Jespersen assisted with the experiments. e nanowires were grown by Peter

Krogstrup.

. I

Majorana modes are predicted to possess nonabelian braiding statistics, making them appealing for topo-

logical quantum computing [, ]. Braids are protected by pinning of the ground state to zero energy,

which is ensured exponentially as the separation between Majorana modes is increased []. Following

proposals [, ], several experiments have found signatures of Majorana modes at the ends of super-
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Figure 5.1: a, Diagram of device concept. Devices of different shell length, L, are measured. b, Schematic
of nanowire cross-section showing high-critical-field directions B|| and B⊥. c, Measured conductance, g, versus
gate voltage VG at magnetic field B|| = , ,  mT.

conducting nanowires [, , –] and atomic chains [], with small mode-splitting potentially

explained by hybridization of the Majoranas [, ]. Exponential robustness with increasing separa-

tion, corresponding to the disappearance of hybridization for distantly separated Majoranas, has yet to be

experimentally tested.

is chapter reports the observation of exponentially suppressed energy splittings for zero-energy states

in an isolated Majorana island. State energies are inferred from Coulomb peak spacings. For short devices,

Coulomb peaks oscillate strongly, as expected for hybridized Majorana fermions. e amplitude of the os-

cillations decrease exponentially with device length, as expected for the exponential pinning of Majorana

modes to zero energy. Coulomb peak heights increase when the putative Majorana state emerges, consis-

tent with so-called electron teleportation by Majorana fermions [].

e devices reported in this chapter are fabricated and measured using the same techniques as Chapter

 [Fig. .(a,b)]. e two salient differences are that the Al shell length, L is varied between  nm and

. μm, and that the magnetic field is aligned to be in a direction giving large critical fields, in excess of

 mT.

. E

Sweeping gate while measuring conductance reveals Coulomb peaks (Fig. .c, L =  nm device). At

zero field, the peaks are e-periodic, which is a limiting case of the even-odd alternations in Chapter. .

is regime is expected to occur when all single-particle states have sufficiently large energy, Δ > EC,

causing the odd Coulomb valleys to shrink to zero width. Above a characteristic applied magnetic field B∗
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Figure 5.2: a, Conductance, g, as a function of gate voltage, VG and magnetic field, B||. b, Even valley
width, Se, and odd valley width, So versus magnetic field, extracted from a. Characteristic field, B∗, where
peaks cross over from -electron to -electron charging, labeled.

the Coulomb peaks split, resulting in a pronounced even-odd structure (B|| =  mT, Fig. .c). Splitting

Coulomb peaks indicate the emergence of a new charge state, presumably due to the presence of at least

one single-electron state satisfying E < EC. Further increasing magnetic field, the odd Coulomb valley

continues to grow until the peaks are evenly spaced at a second characteristic field B = B∗∗. Under gen-

eral considerations, evenly spaced peaks indicate that at least one state with zero single-particle energy is

present. e simplest interpretation of these data is that a single-particle state emerges in finite field and

moves to zero energy, which is consistent with the emergence of Majorana modes.

Sweeping gate and field while measuring conductance reveals more detailed behavior of the Coulomb

peaks as a function of field (Fig. .a,  nm device). At low field, when the peaks are e-periodic there is

essentially no field dependence. Aer splitting near B∗ =  mT, the peaks become roughly e periodic.

In the e-regime, the Coulomb valleys exhibit a characteristic breathing fine-structure, where the width of

odd and even valleys oscillates as a function of field. e oscillations are better resolved by extracting valley

widths and averaging over even and odd valleys separately, as shown in Fig. .b. e Coulomb valleys

oscillate with a characteristic amplitude of a . mV in gate voltage, corresponding to an energy-oscillation

of  μeV. It is worth emphasizing that the e to e transition and the Coulomb valley oscillations occur far
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Figure 5.3: Conductance, g, as a function of source-drain bias, voltage VSD, and magnetic field, B||. Charac-
teristic field B∗ (cf. Fig. 5.2), and superconducting critical field, BC labeled. Note that B∗ ≪ BC.

before the normal-state transition, as shown in Fig. .

In the Majorana picture, oscillations with magnetic field – due to residual overlap of Majorana wave-

functions – are expected to be exponentially suppressed as wire length increases. To test this prediction,

we measure Coulomb peak oscillations in devices of five different lengths, shown in Fig. .. In every mea-

sured device, Coulomb peaks are e-periodic at B =  — even-odd for L =  nm,  nm and e-

charging for L =  nm, . μm, . μm — reflecting the fact that the superconductor distinguishes be-

tween even and odd total parity. At a device-dependent B∗∗, between  mT and  mT, Coulomb peaks

become e periodic. For larger fields, B > B∗, even and odd valley width oscillate as a function of field, as

already discussed for the L = . nm device.

From Fig. . it is already clear that the energy associated with even-odd valley oscillations decreases as

L increases, qualitatively agreeing with the Majorana expectation. To quantify the dependence of oscilla-

tion amplitude, A, on device length we measure the characteristic oscillation amplitude for each device, as

indicated in Fig. .d. *

e measured oscillation amplitudes, A, shown in Fig. ., are consistent with the exponential depen-

dence on length, Ae−L/ξ . e fit Majorana coherence length, ξ =  nm, is reasonable given known

InAs material parameters []. us, the data are consistent with modes localized on the wire ends. e
*For L =  nm, Coulomb peak fluctuations became uncorrelated aer several peaks. In that case, fluctuations

were averaged over five sets of Coulomb peaks taken in different device tunings, and Fig. .a shows data from a
single set of peaks. For all other device lengths, A is extracted directly from Fig.’s .(b-e).
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observed exponential suppression constitutes an experimental test of the robustness; B-field perturbations

are exponentially suppressed as the wire length is increased. It should be noted, however, that the small-

est splitting measured here, A ∼  μeV = h ·  MHz, is still very large as far as time-domain braiding

experiments are concerned.

We conclude our discussion of Coulomb peak spacings, and turn attention to Coulomb peak heights. As

discussed in Chapter , Coulomb peak heights are proportional to wavefunction norms at both leads [,

], and therefore some indication of wavefunction shape. Comparing Coulomb peak heights for different

device lengths (Fig. .) shows that a region of strongly suppressed peak height develops in long devices

at intermediate fields B∗ < B < B∗∗, with weak peak height fluctuations at higher field. We found that

this effect occurs only in the weak-coupling regime; indeed, the data in Fig. . do not display this effect

and are with stronger coupling to the leads. e onset of suppressed conductance at B∗ coincides with the

crossover from Cooper pair to single-electron charging, suggesting that single-electron states are decoupled

from the leads below B∗∗. Strong brightening of peaks at B∗∗, coincident with the onset of e-periodicity,

is consistent with the emergence of a zero-energy state with enhanced wavefunction weight at the leads,

as predicted by the Majorana teleportation picture []. Brightening would also be observed, however, if

localized, zero-energy, single-particles states were present on each end []; numerical simulations of the

system may help distinguish the two cases.
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All data presented so far in this chapter have been zero-bias, and therefore do not contain any informa-

tion about excited states. In particular, for identifying Majorana modes, the presence of an excitation gap

is a key feature. Coulomb diamonds in the e-periodic (Majorana) regime are shown for an L = . μm

device in Fig. .a. Conductance is gapped at the closing point of the Coulomb diamonds, indicating the

presence of an excitation gap in the quantum dot. Bias spectroscopy at the diamond closing points, shown

in Fig. .b, reveals a repeatable Majorana zero-bias peak.

. D

is chapter reported a length study of Majorana islands composed of InAs nanowires with epitaxial Al

half-shells, extending the study in Chapter  to long wire lengths. Oscillating energy splittings, measured

using Coulomb peak spacings, are exponentially suppressed in wire length, with the characteristic Majo-

rana coherence length ξ =  nm. is constitutes an explicit demonstration of exponential protection

from external perturbations. Brightening of Coulomb peaks for longer devices suggests the presence of a

robust, delocalized state connecting the leads, and provides the first experimental support for electron tele-

portation by Majorana fermions. Finally, Coulomb diamonds show that the zero-energy state is gapped.
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T   a proposal for realizing Majorana-parity qubit initialization and readout that uses

techniques similar to spin qubits (Chap.’s -). is proposal, if implements, would also serve as a test of

the robustness of Majorana modes, as discussed in Sec. .. Many of the ideas in this proposal are already

present in many places in the literatures, especially [], which showed that charging energy is a resource

for computation and [] which discusses fusion rule demonstration. A full proposal is being prepared by,

in addition to myself, David Aasen, Michael Hell, Ryan Mishmash, Jeroen Danon, Martin Leijnse, Jason

Alicea, omas Jespersen, Joshua Folk, Karsten Flensberg, and Charles Marcus.
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Figure 6.1: a, Diagrams for open (high-conductance) and closed (zero conductance) tunnel barriers. b, A dot
with closed barriers and Majorana modes γ, γ. The parity eigenstates |±⟩ are split by the charging energy.
c, Adiabatically opening left and right barriers results in degenerate parity eigenstates. This configuration can
be held for a time τ. d, Closing the tunnel barriers maps parity back onto charge, to be detected by a proximal
sensor quantum dot.

. F  

Imagine a superconductor/semiconductor nanowire with to Majorana modes at its ends. e two Majorana

modes, γ and γ, which obey the relations

γi = γ†i , (.)

γiγj + γjγi = δij, (.)

together form a single regular fermion c = 
(γ + iγ). In the presence of more than two Majoranas, the

decision of which modes to pair into regular fermions is called choosing a basis. e regular-fermion parity

is a well defined observable

P̂ = iγγ = n̂ − , (.)

where n̂ = c†c is the number operator. Parity, P̂ can have eigenvalues ±, with eigenstates |±⟩.

Imagine that the Majorana modes are present in a quantum dot, as potentially already realized in Chap. .
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When the dot is isolated from the leads, it has a charging energy, which splits the parity eigenstates (Fig. .a).

For example, if the dot is tuned to the n =  charge state, the parity state |−⟩ is the ground state, and

|+⟩ has energy of order EC. e charging energy is quenched if the leads are set to unity transmission,

making the parity states |−⟩, |+⟩ degenerate. In this open configuration it becomes important that the

device has superconducting leads, so that parity is conserved even in the absence of charging energy.

e single dot geometry already allows for some interesting experiments, as outlined in Fig. .. e

Majorana modes can be initialized into a fixed parity state, made degenerate for a time τ, then mapped

back onto charge for readout [see Fig. .(a-d)]. e charge readout can be performed with a nearby sensor

dot, similar to spin qubits (Chap. ). Note that this parity readout mechanism is sensitive only to over-

all parity of the dot, but is insensitive “internal” poisoning events where a quasiparticle enters enters the

continuum and another one flips the Majorana parity, which were discussed in Chap. . e entire pulse

sequence constitutes a time-domain parity lifetime measurement of the Majorana parity qubit, and remini-

scient of the prepare-separate-measure cycle for measuring T∗
 in Chap. 

Moving to a double quantum dot would allow even more sophisticated experiments. Now there are four

Majorana modes — γ, γ, γ, and γ — to work with, where the two central modes, γ and γ, are split

in the presence of finite inter-dot tunneling. Charging energy can be used to couple γ and γ over long

distance, while tunneling couples γ and γ locally.

e double dot geometry can be used to test Majorana fusion rules. Borrowing the first few steps from

Fig. ., we can initialized into an eigenstate of P, then open the leads to make |±⟩ degenerate (Fig. .a,b).

Next, the central tunnel barrier is closed adiabatically, which initializes Majoranas γ and γ into one of the

degenerate eigenstates |±⟩ (Fig. .c). e system is now initialized into an eigenstate of P̂ ⊗ P̂ (outer

⊗ inner). e le and right parities, P̂ and P̂, are then read out by closing tunnel barriers to the leads,

as shown in Fig. .d. e read out process can be considered a fusion of the le (γ,γ) and right (γ, γ).

e Majorana fusion rule is that ⟨P⟩ = ⟨P⟩ =  with individual P̂ and P̂ eigenvalues perfectly anti-

correlated.
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Figure 6.2: a, Left/right barriers closed with middle barrier open, initializing an eigenstate of P. b, Open-
ing all barriers makes the parity eigenstates |±⟩ degenerate. Central modes γ and γ are still split by tunnel
coupling. c, Closing the central tunnel barriers results in four degenerate parity eigenstates, |±⟩ and |±⟩.
Barrier should be closed adiabatically with respect to gap, but diabatically with respect to the exponentially
small hybridization between γ and γ. d,

. D

e fusion rule demonstration discussed above could serve as an experimental test of “how zero” the Ma-

jorana zero modes are. In the realistic case of some finite hybridization between γ and γ, a truly adiabatic

“separate” pulse, which generates the central Majoranas (Fig. .b → c), would always initialize into an

eigenstate of P̂. For fusion rules, the separate pulse therefore needs to be diabatic with respect to the resid-

ual splitting between γ and γ, which is exponentially small in theory. So far Majorana modes have only

been identified in bias spectroscopy and addition energy, limited to energy resolution ≈ kT. e fusion

rule demonstration would be a zero-energy test with resolution h/tseparate, where tseparate can be of order the

poisoning time. Putting in tseparate ∼  ms gives an anticipated energy resolution h/tseparate = − · kbT,

eight orders of magnitude better than bias spectroscopy.

Even more progress can be made if a controlled coupling between γ and γ is possible. en a parity

gate, similar to the exchange gate implemented in Chap.  should be possible. One could initialize in the

P, P basis (by waiting at Fig. .d), then coherently rotate into a P, P eigenstate. Demonstrating co-

herent oscillations would show that the Majorana mode is a well-behaved qubit. Turning off all couplings

part-way through the coherent rotation would constitute demonstration of a Majorana mode quantum

memory.


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Finally, its interesting to note that the sequence in Fig. . could be run in reverse, demonstrating ini-

tialization in the P̂ and P̂ eigenbasis, followed by readout of P̂. A potential problem with the reverse

sequence is that a quasiparticle generated from (γ, γ) fusion could poison the (γ, γ) system. Still, the

reverse sequence would demonstrate the unusual property that two zero-energy fermionic states (c, c)

always combine to form another zero-energy fermionic state (c), rather than “anticrossing” away from

zero.





A
ermodynamics of even-odd effect

is appendix gives a full derivation of the thermodynamic approach to the even-odd effect of Chapter ,

including the number of quasiparticles on the island. Section A. was led by Gediminas Kiršanskas and

Karsten Flensberg, with small inputs from me.

A. G 

e parity of the number of quasiparticles has to be equal to the parity of the number of electrons N on the

island. e free energy difference δF between the odd and even occupation is expressed as [, ]

δF = Fo − Fe = − 
β

ln
(
Zo
Ze

)
, (A.)

in terms of the partition functions for different parities

Zo/e =
∏
n,s

( + e−βEn)∓
∏
n,s

( − e−βEn). (A.)
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where β = /kBT denotes the inverse temperature of the island. For a sufficiently large island the single

particle spectrum can be described by the spectrum of a grounded superconductor where the single particle

spectrum is En =
√

εn + Δ, for electron dispersion εn.

Without a subgap state the free energy difference Eq. (A.) is expressed as

δFBCS = −kBT ln tanh

[


∑
n,s

ln coth
(
βEn


)]
= − 

β
ln tanh

∫ +∞

Δ
dE ρBCS(E) ln coth

(
βE


)
, (A.)

where ρBCS(E) is the BCS density of states for quasiparticles on the island given by

ρBCS(E) =
ρDE√
E − Δ

, (A.)

with ρD = ρAlV denoting the normal state density of states, including spin, and ρAl is aluminum density

of states per volume, and V is the volume of the island. For small temperatures βΔ ≫ , the free energy

difference (A.) can be approximated as

δFBCS ≈ −kBT ln tanh
[

∫ +∞

Δ
dE ρBCS(E)e

−βE
]
= −kBT ln tanh

[
Neffe−βΔ

]
≈ Δ − kBT ln(Neff), (A.)

where an effective number of quasiparticle states Neff is given by

Neff = 
∫ +∞

Δ
dE ρBCS(E)e

−β(E−Δ) = ρDΔeβΔK(βΔ) ≈ ρD

√
πkBTΔ (A.)

and Kν(x) denotes the modified Bessel function of the second kind.

With a subgap state the free energy difference Eq. (A.) acquires an additional term and one gets

δFABS = −kBT ln tanh
[∫ +∞

Δ
dE ρBCS(E) ln coth

(
βE


)
+ ln coth(βE/)

]
. (A.)

See also Eq. (B.) where the approximate expression for the first term in used.

In Chapter  we discuss how the low-temperature data deviates from the above Andreev-bound-state

model in terms of a life-time broadening of the subgap state. is is done by including a phenomenological
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broadening with width γ into the subgap density of states, which then gives the free energy difference

δFABS−LB = −kBT ln tanh

[∫ +∞

Δ
dE ρBCS(E) ln coth

(
βE


)
+



∑
τ=±
s=↑,↓

∫ +∞



dω
π

γ ln coth
(

βω


)
(ω− τE) + (γ/)

]
.

(A.)

In the kinetic equation calculation presented below, the equilibrium distributions of quasiparticle in the

continuum with an even or odd number of quasiparticles are needed. Since we will assume that the parti-

cles occupying the continuum are effectively equilibrated, we find the distribution functions by modifying

the usual Fermi-Dirac distribution function as

fP(E) =


eβE(ZP/ZP̄) + 
→


fe(E) =


eβ(E+δFBCS) + 

,

fo(E) =


eβ(E−δFBCS) + 
,

(A.)

where P ∈ {e, o}, and P̄ represents the opposite of P.

A. N  

Using the above results, we derive a simple expression for the number of quasiparticles in the absence of a

bound state. At low temperature, when δFBCS = Δ − kBT ln(Neff), the distribution functions take the form

fe = Neffe−β(E+Δ), (A.)

fo =


Neff
e−β(E−Δ), (A.)

where Neff is given by Eq. (A.).

e number of quasiparticles in each parity state can then be calculated using

NP = 
∫ +∞

Δ
dE ρBCS(E)fP(E). (A.)

Substituting the above expression for fo gives No = , as expected. Substituting fe gives the quasiparticle
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number

Ne = 
∫ +∞

Δ
dE ρBCS(E)Neffe−β(E+Δ)

= Neffe−βΔ
∫ +∞

Δ
dE ρBCS(E)e

−β(E−Δ)

=
(
Neffe−βΔ

)
. (A.)

Because of the large charging energy Ne is the square of the bulk value Neffe−βΔ, indicating that quasiparti-

cles must be created in pairs.

Dividing the above expression for Ne by the Al volume, VAl, gives the quasiparticle density

nqp = V−
Al N


effe−βΔ (A.)

consistent with Chapter . It is worth noting that the formula for nqp is volume dependent, ultimately a

result of the fact that the derivation is performed in the large charging energy limit. In the bulk limit EC →

, this equation would cease to be valid, with a crossover to the bulk result Neff/Ve−βΔ when EC < kT.

To understand the crossover, consider the full partition function as written by Lafarge []

Z =
∑
n

e−βEC(n−Ng)Zn, (A.)

where n denotes the charge on the island. For odd n, Zn corresponds to the previously defined Zo; like-

wise for even n it corresponds to Ze. In the low temperature limit (kBT ≪ Δ,EC) and for the gate voltage

Ng ∈ [−/, /] being in the region of the even diamond n = , it is enough to take into account the odd

particle states n = ±. e single particle distribution function is given by

f(E) ≈ poe−βEZe + pee−βEZo
poe−βEZe + pee−βEZo + peZe + poZo

=
 + po/peeβδFBCS

eβ(E+δFBCS) +  + po/pe(eβE + eβδFBCS)

≈ Neffe−β(E+Δ)

[
 −

(
po
pe

)
]
+

po
pe
e−βE

[
 − po

pe
e−βE

]
,

with po = e−β(−Ng)EC + e−β(+Ng)EC , pe = e−βN
g .

(A.)
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Here we again used the low temperature limit (kBT ≪ Δ,EC) and Ze/Zo = eβδFBCS ≈ eβΔ/Neff. Using the

above distribution (A.) the total number of quasiparticles becomes

Nqp = 
∫ +∞

Δ
dE ρBCS(E)f(E) ≈ N

effe−βΔ

[
 −

(
po
pe

)
]
+

po
pe
Neffe−βΔ

[
 − po√

pe
e−βΔ

]
. (A.)

e number of quasiparticles in the even Coulomb valley is then found by setting Ng = , which yields

Ne = Nqp(Ng = ) ≈ Neffe−β(Δ+EC) + N
effe−βΔ. (A.)

For our system, which has EC > Δ, the first term is − times smaller than the second at T = mK,

so

Ne ≈ N
effe−βΔ (A.)

is an excellent approximation, in agreement with Eq. (A.). In the small charging energy limit, EC ≪ kBT,

from Eq. (A.) one arrives at the bulk result Neffe−βΔ, as expected. It is important to note that the number

of quasiparticles is gate, Ng, dependent. For example, at Ng = / there is effectively no charging energy

and the bulk result is recovered.

To further emphasize that the e−βΔ result is generic for large EC, we take the simple limit where there

are N quasiparticle states at Δ. en we can binomial expand Ze ≈ +Ne−βΔ and Zo ≈ Ne−βΔ. Substitut-

ing into Eq. (A.), the overall partition function takes the intuitive form

Z =  + Ne−β(Δ+EC) + Ne−β(Δ). (A.)

e first term corresponds to zero quasiparticles, the second to one quasiparticle, and the third to two

quasiparticles. e energy of single quasiparticles is Δ + EC, indicating that the total charge on the dot

must change, whereas the energy of two quasiparticles is Δ, indicating that a Cooper pair can be broken

at fixed total charge. In the limit EC > Δ, the single quasiparticle term is negligible, leaving only an e−βΔ

term.
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B
Approximations in Chapter 

is appendix discusses various approximations made in the treatment of the even-odd effect of Chapter .

B. C    

is section gives examples of the free energy difference, Fo−Fe, calculated under different approximations,

considering the case without broadening γ =  and without an applied field B = . Under these conditions

the free energy difference is given by Eq. (A.). When βΔ >  the approximation ln coth(βE/) ≈ e−βE

can be used for the first term. Applying the identity
∫ +∞
Δ dE ρBCS(E)e−βE = ρAlVAlΔK(βΔ) then gives

Fo − Fe ≈ −kBT ln tanh

[
ρAlVAlΔK(βΔ) + ln coth

(
βE


)]
, (B.)
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Figure B.1: Free energy difference Fo − Fe versus temperature T for three different expressions for the free
energy. All parameters same as Chapter 4 (Δ = μeV, E = μeV, γ = , B = ). Black crosses are
numerically exact values from Eq. (A.7), red line is Eq. (B.1), blue line is Eq. (B.2).

where K(x) is a Bessel function of the second kind. In the very low temperature limit βΔ ≫ , βE >  the

approximations K(βΔ) ≈
√

π/(βΔ)e−βΔ, ln coth(βE/) ≈ e−βE , and tanh(x) ≈ x can be used, giving

Fo − Fe ≈ kBT ln

[
Neffe−βΔ + e−βE

]
, (B.)

where Neff = ρAlVAl
√

πkBTΔ.

Equations (B.) and (B.) constitute two levels of accuracy at which Eq. (A.) can be evaluated. Figure S

compares the methods. Equation (B.) is an excellent approximation to Eq. (A.) over the experimentally

relevant temperature range. Equation (B.) is poor approximation at intermediate temperatures.

B. E        

Figure S shows a comparison of the free energy difference, Fo − F, with and without the subgap bound

state. As the lowest energy unoccupied state, the bound state causes the free energy to saturate at Fo − Fe =

E at low temperature. It should be noted that the free energy difference with a subgap bound state was also

shown in Fig.  of Lafarge et al.[].
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Figure B.2: Free energy difference Fo − Fe versus temperature T with and without the semiconductor bound
state. All parameters the same as Chapter 4 (Δ = μeV, E = μeV, γ = , B = ). Blue trace includes the
BCS density of states only, red trace includes the BCS density of states and the discrete state.

B. C     

e thermodynamic and rate models can both be used to calculate Coulomb peak spacings. e thermo-

dynamic model assumes equilibrium conditions, and hypothesizes that Coulomb peaks are at free energy

degeneracies. e rate model takes into account thermodynamics, and also includes the differential bias

used for conductance measurement. It is worth emphasizing that the rate model is fully consistent with

thermodynamics; when used to calculate equilibrium quantities such as charge it exactly reproduces the

thermodynamic results [].

Figure. S shows the even-odd peak spacing data along with predictions of the thermodynamic and rate

approaches. e rate model gives the better fit of the two with a slightly different best-fit Al volume, al-

though the improvement is at a level comparable to experimental error. A theoretical description of the

difference between these two models, physically related to differential versus direct measurements of the

chemical potential, will be developed in future theoretical work.
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Figure B.3: Average even-odd spacing difference, ⟨Se − So⟩, versus temperature, T. Spacing between peak
maxima (triangle) and centroids (square) are shown. Solid curve is found by numerically solving Eq.’s (S38-S42)
and finding peak maxima. Parameters are same as Chapter 4, except the fit Al volume VAl = . × nm.
Dashed curve is thermodynamic model, Eq. (S16), identical to Fig. 4.1.
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