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"Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that
we may fear less."

Maria Skłodowska Curie, Nobel Prize in Physics 1903

"The way you do science should have an intrinsic beauty to it."

Elizabeth H. Blackburn, Nobel Prize in Physiology or Medicine 2009
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Abstract

This work revolves around the mathematical modelling of biological oscillators and seeks to explore

how their dynamics shapes the functionality of the associated systems; the thesis comprises three

main parts.

In the first part, we investigated the ability of biological oscillators, in particular neurons, to

synchronize their activities when coupled to each other. Understanding the spontaneous emergence

of synchronization is of the utmost importance, as several neuronal diseases, such as Parkinson’s

disease or epileptic seizures, are believed to arise as a result of an abnormal synchronization in certain

brain regions. We studied a network made of two subpopulations of neurons, an excitatory and an

inhibitory one, interconnected through a negative feedback loop with time-delayed couplings. We

observed that with strong inter-population couplings, neurons could not only internally synchronize

within each population, but also portray a type of complex dynamics known as chimera state. In this

state, one population is synchronized while the other remains unsynchronized, with the time delay

ensuring the stability of this state. Indeed, with instantaneous connections, the chimera state became

neutrally stable, with a family of so-called breathing chimeras around it, namely with one population

synchronized and the other periodically switching between more coherent and incoherent states.

In the second part, we analysed the dynamics of oscillating transcription factors, in particular, p53,

and its downstream effect in the process of DNA repair. p53 is also known as "guardian of the

genome" for its role in cancer prevention and maintenance of genomic stability. As a result of severe

DNA damage, p53 nuclear abundance starts to oscillate, with a periodicity of 5.5 h, whose role is

still highly debated. At the same time, the formation of microenvironments rich of repair proteins

has been observed around the sites of damage, which are believed to arise from liquid-liquid phase

separation, effectively giving rise to biomolecular condensates. In this context, the question we

sought to address was: how can the cell regulate the distribution of repair material in the presence

of multiple DNA damages? Does p53 oscillatory dynamics, and its specific frequency, play a role

in this process? We found that p53 oscillations ensure the optimal repair rate in the presence of

multiple DNA breaks, by regulating the formation and coarsening of the condensates around the

sites of damage, thus ensuring a spatio-temporal resource distribution within the cell.

In the third part, we explored the possibility of entraining p53 oscillations to an external pulsing

signal, in order to regulate its frequency. Through a microfluidic device coupled with live-cell imaging,

we were able to track the dynamics of p53 oscillations after administering single or repeated pulses of

small molecule nutlin-3a. By examining the response of p53 to single perturbations, we successfully

predicted the system’s behaviour in response to a train of pulses, leading to the identification of

Arnold tongues - an essential characteristic of entrainment. Our investigations revealed that the
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system becomes entrained to the external signal, giving rise to not only higher order entrainment, but

also multi-stability and period-doubling. Finally, we highlighted a potential relationship between p53

frequency and its downstream target, p21. Remarkably, we observed that the natural p53 frequency

minimizes p21 accumulation, potentially serving as a mechanism to prevent rapid commitment of

cells to specific fates. Collectively, our findings provide valuable insights into the dynamic interplay

between p53 oscillations, external stimuli, and downstream cellular processes, contributing to our

understanding of cellular regulation and decision-making.
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Resume

Denne Ph.D. afhandling omhandler den matematisk-fysiske modellering af biologiske oscillatorer og

søger at udforske, hvordan deres dynamik påvirker funktionen af de tilknyttede systemer. Afhandlin-

gen består af tre hoveddele.

I den første del undersøgte vi biologiske oscillatorers, især neuroners, evne til at synkronisere

deres aktivitet, når de er koblet til hinanden. At forstå en spontan synkronisering er af afgørende

betydning, da flere neuronale sygdomme, såsom Parkinsons sygdom eller epileptiske anfald, menes

at opstå som følge af en unormal synkronisering i visse hjerneområder. Vi studerede således et

netværk bestående af to subpopulationer af neuroner, en excitatorisk og en hæmmende, forbundet

gennem en negativ feedback-loop med tidsforsinkede koblinger. Vi observerede, at med stærke

inter-populationskoblinger kunne neuroner ikke blot synkronisere internt i de enkelte populationer,

men også udvise en type kompleks dynamik kendt som chimera state. I denne tilstand, hvis stabilitet

bestemmes af tidsforskellen mellem neuronerne, er én population synkroniseret, mens den anden

forbliver usynkroniseret. Med instantane forbindelser blev chimera state faktisk neutralt stabil, med

tilstande af såkaldte breathing chimeras omkring sig. Her var en population synkroniseret, mens den

anden skiftede periodisk mellem mere kohærente og u-kohærente tilstande.

I den anden del analyserede vi dynamikken af oscillerende transkriptionsfaktorer, især p53, og dens

effekt på andre gener i forbindelse med reparation af skader på DNA-strengen. p53 er også kendt

som "guardian of the genome" for dens rolle i cancerforebyggelse og opretholdelse af genomisk

stabilitet. Som et resultat af alvorlig DNA-skade begynder concentrationen af p53 i cellekernen at

oscillere med en periode på 5,5 timer. Oscillationernes rolle stadig er meget diskuteret. Samtidig

er dannelsen af mikromiljøer rige på reparationsproteiner blevet observeret omkring de skadede

områder. Disse mikromiljøer menes at opstå som resultat af en væske-væske faseseparation, som så

danner biomolekylære kondensater. I denne sammenhæng var spørgsmålet, vi ønskede at adressere:

hvordan kan cellen regulere fordelingen af reparationsmateriale, hvis der er flere DNA-skader?

Spiller p53 oscillerende dynamik og dens specifikke frekvens en rolle i denne proces? Vi fandt ud af,

at p53-oscillationer sikrer optimal reparationshastighed, hvis der er flere DNA-brud ved at regulere

dannelsen og ændringen i størrelserne af kondensaterne omkring de skadede områder, og dermed

sikre en rumlig-temporal ressourcefordeling i cellen.

I den tredje del undersøgte vi muligheden for at koble p53-oscillationer til et eksternt pulserende

signal for på den måde at regulere dets frekvens. Gennem en mikro-fluid enhed koblet med ’live-

cells imaging’ kunne vi følge dynamikken i p53-oscillationer efter vi påførte enkelte eller gentagne

pulser af molekylet nutlin-3a. Ved at undersøge hvordan p53 reagerede på enkelte perturbationer,

forudsagde vi succesfuldt systemets opførsel som reaktion på en serie af pulser, hvilket førte til

ix



identifikation af Arnold-tunger - en væsentlig egenskab ved faselåsning Vores undersøgelser viste,

at systemet udviser faselåsning til det eksterne signal, hvilket ikke kun giver anledning til højere

ordens faselåsning, men også til kompleks dynamisk som multistabilitet og periodefordobling.

Endelig fremhævede vi et potentielt forhold mellem p53 frekvensen og dets underlæggende gen, p21.

Bemærkelsesværdigt observerede vi, at den naturlige p53-frekvens minimerer p21-akkumulering,

hvilket potentielt fungerer som en mekanisme til at forhindre, at celler hurtigt ender i en bestemt

endelig tilstand. Samlet giver vores resultater værdifuld indsigt i det dynamiske samspil mellem

p53-oscillationer, eksterne stimuli og cellulære processer as relaterede gener, hvilket bidrager til

vores forståelse af cellulær regulering og genetisk kontrol.
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List of abbreviations

Double-Strand Break (DSB) A type of DNA damage that occurs when both strands of the DNA

molecule are severed. It is one of the most dangerous forms of DNA damage and can have

significant consequences for cell function and genetic stability. DSBs can be caused by various

factors, including exposure to ionizing radiation (such as X-rays or γ-rays), certain chemicals,

and errors during DNA replication.

Nuclear Factor kappa B (Nf-κB) A protein complex that plays a key role in regulating the immune

response and controlling the expression of genes involved in inflammation, cell proliferation,

and cell survival. It acts as a transcription factor, influencing the production of various proteins

important for immune and inflammatory processes.

Ostwald Ripening (OR) A phenomenon observed in solid or liquid solutions above the supersat-

uration level, where it is energetically favourable for the dispersed phase to phase-separate

into droplets. At this stage, the droplets start competing for material, with the larger droplets

growing at the expense of smaller one, via a diffusive transfer of molecules. This stems from the

fact that molecules on the surface of small droplets are more easily lost, due to the difference

in surface curvature, therefore have fewer favourable interactions between themselves. The

result is a gradual increase in the average size of the particles in the system, until only one

dominant droplet remains, that absorbs all the available material in the solution.

Ott-Antonsen (OA) Introduced by Arne Ott and Thomas Antonsen, it is a mathematical framework

used in the analysis of synchronization phenomena in coupled oscillator systems. It provides

a powerful tool for reducing the dimensionality of large networks of coupled oscillators, by

assuming rotational symmetry in the phase space of the oscillators and exploiting the fact that

the coupling between oscillators depends solely on their relative phase differences.

Phase Response Curve (PRC) A function that measures the phase shift ∆θ of an oscillatory

system in response to stimuli delivered at different times in its cycle.

Phase Transition Curve (PTC) A function that describes the final phase θf of an oscillatory system

when perturbed by an external signal, as a function of the phase θi at which the stimulus is

received.

Radial Isochron Clock (RIC) Also known as Poincaré oscillator, it is a simple 2D model that has

been used to describe the circadian clock, and neuronal and cardiac rhythms. It is the

xiii



topological normal form for any system near an Andronov-Hopf bifurcation. The name stems

from the fact that the isochrons of the model (i.e. the loci of all points with the same phase)

radially spread from the center of the limit cycle, which is a circle.

Saddle Node on Invariant Circle (SNIC) A type of dynamical system bifurcation where the cre-

ation or destruction of a stable closed trajectory (invariant circle) occurs as a control parameter

varies, by coalescence of a stable and an unstable fixed point that lie on the circle.

Transcription Factor (TF) A protein that regulates gene expression by binding to specific DNA

sequences called enhancers or promoters. TFs play a crucial role in controlling the activation or

repression of genes, thereby influencing various biological processes, including development,

growth, and response to stimuli. They act as molecular switches, initiating or blocking the

transcription of genes into RNA molecules, which ultimately determines the synthesis of specific

proteins in the cell. TFs are essential for the proper functioning and regulation of genetic

information in living organisms.
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1Introduction

In recent decades, the field of biology has witnessed a transformative shift, propelled by the growing

recognition that mathematical and physical modelling are great tools for unraveling the intricate

mechanisms governing the organization and function of natural phenomena (Murray, 2002). By

providing simple quantitative and mechanistic descriptions of biological processes, theoretical models

offer unique insights, enabling biologists not only to explain current experimental data, but also to

have testable predictions which can guide future research (Bianchi et al., 2019). The collaboration

of experimentalists and physicists/mathematicians has already proven invaluable in a plethora of

classical examples, from the Hodgkin-Huxley model to describe the electrical activity of neurons

(Hodgkin and Huxley, 1952), to the Lotka-Volterra equations to describe predator-prey dynamics

in ecology (Lotka, 1910; Volterra, 1927), from Turing patterns (Turing, 1952) which explain the

formation of spatial patterns in developing biological systems, to the many mathematical models of

carcinogenesis and tumour growth (Byrne, 2010).

Currently, one of the most promising collaborative areas between biologists and physicists lies in

comprehending how functional information can be encoded not only in the structural components of

a biological system, but also in the dynamics (i.e. the temporal behaviour) of its constituents (Purvis

and Lahav, 2013). As an example, consider neurons, the cells of the nervous system (Figure 1.1A):

their structure, which is elongated and branched, has been shaped by evolution to efficiently transmit

electrical signals to many other neurons (if they were cube-shaped and arranged orderly within the

brain, a single neuron could, at most, form connections with six others). This shows how information

on neuronal function can be retrieved by looking at their structure. However, much more information

can be retrieved by analysing the dynamics of neuronal signalling, in particular the frequency (which

separates states of sleep and consciousness), but also the amplitude and the duration of electrical

pulses. The ability of different neurons to portray different dynamics in response to external signals

is at the core of the phenomenon of emergent collective synchronization in the brain (Izhikevich,

2018). This has tremendous clinical implications, given that several diseases, such as Parkinson’s

disease or epileptic seizures, are believed to arise as a result of an aberrant synchronization of

neuronal activity in certain brain regions (Uhlhaas and Singer, 2006).

Another example in which function is reflected in structure is gene expression (Purvis and Lahav,

2013), the process by which information encoded in a gene’s DNA sequence is used to create

functional products, typically proteins (Figure 1.1B). It involves transcription, where a gene’s DNA is

copied into a molecule called messenger RNA (mRNA), and translation, where the mRNA is used

as a template to assemble the corresponding protein. This process is tightly regulated by the so

called Transcription Factors (TFs), which control the activation or repression of genes, thus acting

as molecular switches. In this context, a growing number of studies are now revealing a striking

feature, that is how the concentration of certain TFs in the nucleus of cells display time variation in

the form of pulses and oscillations, prompting questions about their evolutionary significance (Purvis

1



Figure 1.1: The relation between structure, dynamics and function of biological systems in the context of (A)
Neuronal signalling (B) Gene expression.

and Lahav, 2013; Behar and Hoffmann, 2010; Venkatachalam et al., 2022; Heltberg et al., 2019;

Heltberg et al., 2022). For example, it has been shown how different dynamics in the TF p53, in

response to DNA damage, lead to different cell fates: while pulses of p53 lead to cell-cycle arrest, a

constant high level in p53 nuclear concentration leads to apoptosis (cell death) (Purvis et al., 2012).

Overall, understanding how these dynamics contribute to finely-tuned genetic pathway regulation is

nowadays largely considered the Holy Grail of biology. In particular, the mechanisms underlying how

cells regulate the expression of an astounding number of genes in a coordinated manner in response

to environmental signals, external stresses and stimuli, is somehow still a mystery (Lambert et al.,
2018).

1.1 Dynamical systems theory

These seemingly different topics can be investigated within the same mathematical framework,

which is used to describe phenomena that evolve in time and is called dynamical systems theory. The

biological processes that we are interested in can be generally described as variables that follow

ordinary differential equations (ODEs), which, for an n-dimensional system, take the form (Strogatz,

2018) 
ẋ1 = f1(x1, . . . , xn, t)

...

ẋn = fn(x1, . . . , xn, t)

(1.1)

2 Chapter 1 Introduction



Figure 1.2: (A) Left: Example of a phase portrait for a 2D system (x1, x2) with a fixed point and a limit cycle.
Right: x1(t) and x2(t) traces corresponding to the fixed point and the limit cycle. (B) Linear
Stability Analysis: the eigenvalues of the Jacobian are computed in order to determine whether the
fixed point is an attractor or a repeller.

where the overdot on the LHS represents differentiation over time. Solving such equations analytically

is usually an impossible task even for trivial low-dimensional systems, and although nowadays it

is often possible to get numerical solutions for specific initial conditions, more information can be

obtained by getting a geometrical intuition of the whole phase portrait where the trajectories lie

(Figure 1.2A). In particular, the goal is to determine the presence of:

• the fixed points, x∗, such that f(x∗) = 0, which correspond to equilibrium solutions, and their

stability, i.e. if they are attractors or repellers;

• the closed orbits, such that x(t + T ) = x(t) ∀t, for some T > 0, which represent periodic

solutions, and the flow close to them.

In order to determine the stability of the fixed points, the system is linearized around the equilibria

(Linear Stability Analysis) and the Jacobian matrix J is computed at the fixed point,

J =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...

∂fn

∂x1
... ∂fn

∂xn
.

 (1.2)

The eigenvalues (λ1, . . . , λn) of J can be found by solving det(J − λI) = 0, and define whether a

small disturbance will grow (repeller) or decay (attractor) over time, as shown in Figure 1.2B (see

Theory Box 1.1 for more details).
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Theory Box 1.1.1: Stability of fixed points in 2D

We can easily illustrate how to determine the stability of fixed points via Linear Stability
Analysis in 2D (Strogatz, 2018). Let’s consider the systemẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)
(1.3)

with a fixed point (x∗
1, x

∗
2). We linearize around the fixed point obtaining first order and

higher order (h.o.) terms:ẋ1 = f1(x∗
1, x

∗
2)+ ∂f1

∂x1 |x∗
1 ,x

∗
2
(x1 − x∗

1) + ∂f1
∂x2 |x∗

1 ,x
∗
2
(x2 − x∗

2) + h.o.

ẋ2 = f2(x∗
1, x

∗
2)+ ∂f2

∂x1 |x∗
1 ,x

∗
2
(x1 − x∗

1) + ∂f2
∂x2 |x∗

1 ,x
∗
2
(x2 − x∗

2) + h.o.
(1.4)

Given that f1(x∗
1, x

∗
2) = f2(x∗

1, x
∗
2) = 0, if we define u1 = x1 − x∗

1 and u2 = x2 − x∗
2, we can

rewrite the system in vector form as:

[
u̇1

u̇2

]
=

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2


|x∗

1 ,x
∗
2

·

[
u1

u2

]
. (1.5)

The linearization matrix

J =

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2


|x∗

1 ,x
∗
2

(1.6)

is the Jacobian of the system around the fixed point (x∗
1, x

∗
2). To determine the stability of

the fixed point, we first look for "straight-line" solutions of the form x(t) = eλtv, where v
is a constant vector. These solutions simply exhibit exponential growth (λ > 0) or decay

(λ < 0) along the direction of the vector. If we substitute such a solution in Equation (1.5)

we get the condition Jv = λv, meaning that λ and v are respectively the eigenvalues and

eigenvectors of the Jacobian matrix J. To find them, we have to solve the characteristic
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equation det(J − λI) = 0 which can be written as λ2 − τλ+ ∆ = 0, where τ,∆ are the trace

and the determinant of J respectively. Thus, the two eigenvalues, written in terms of τ,∆ are

λ1,2 = τ ±
√
τ2 − 4∆
2 .

Depending on the sign of the eigenvalues, and whether they are real or complex values,

different possible fixed points originate, such as spirals, nodes, saddles, which are summarized

in the figure above.

It is generally safe to neglect second-order terms, as long as the fixed point for the linearized

system is not a marginal case, such as a center, where both eigenvalues are purely imaginary.

For centers, which are neutrally stable since the trajectories are neither attracted nor repelled

from the fixed point, one can make use of the following theorem: if x∗ = 0 is a linear

center for Equation (1.3), and the system is reversible (i.e. f1(x1,−x2) = −f1(x1, x2) and

f2(x1,−x2) = f2(x1, x2)), then sufficiently closed to the origin, all trajectories are close,

meaning that the fixed point is a non-linear center (Strogatz, 2018).

1.2 Biological oscillators
Limit cycles are special closed orbits which are isolated from the others, meaning that neighboring

trajectories are not close, as they spiral either toward or away from the limit cycle (Strogatz, 2018).

They are a non-linear phenomenon: the only type of closed orbits that can be found in linear systems

are the centers, which are not isolated. Indeed, for a linear system ẋ = Ax, if x(t) is a periodic

trajectory, so is cx(t) for any constant c, as illustrated in Figure 1.3A.

In general, limit cycles can be created (or destroyed) through different types of bifurcations. A

bifurcation is a change in parameter which gives rise to a qualitative change in the phase portrait

of the system. Fixed points can be created or destroyed through bifurcations, or their stability can

change. Bifurcations that create limit cycles are, among others, Hopf bifurcations or Saddle Node on

Invariant Circle (SNIC) bifurcations. In the first case, a stable spiral looses stability, along with the

emergence of a stable limit cycle (super-critical) or with the disappearance of an unstable limit cycle

(subcritical) (Izhikevich, 2018). In the second case, a stable and an unstable fixed point that lie on a

circle coalesce and disappear, giving rise to the limit cycle (Figure 1.3B).

Limit cycles are used to model a variety of real-world oscillatory systems, in a wide range of

timescales, from hours to milliseconds, including slower processes like the circadian clock (Goldbeter,

1995; Kondo et al., 1997) and the cell cycle (Ferrell et al., 2011), as well as faster phenomena like

oscillatory TF dynamics in cells (Lahav et al., 2004; Zambrano et al., 2016), cardiac rhythm (Glass

et al., 1987), and neuronal activity (Gerstner et al., 2014) (Figure 1.3C).

In many cases, oscillations arise as a result of some negative feedback loop with time delay that

is intrinsic in the system under consideration (Hastings et al., 1977; Novák and Tyson, 2008). To

understand why, let’s imagine this very simple scenario: consider a thermostat that maintains a

room temperature at 20 °C. If the temperature goes above or below this value, the thermostat takes

action to bring it back to 20 °C. However, the thermostat cannot instantly respond to the temperature

change, but instead reacts to a past temperature reading (time delay in the feedback). Due to this
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Figure 1.3: (A) Difference between limit cycles and centers. (B) Bifurcations that lead to the formation of limit
cycles. (C) Examples of biological oscillators which span a wide range of timescales, from hours
to milliseconds. The relation between transcription factor p53 and its own inhibitor Mdm2 is an
example of a delayed negative feedback loop which gives rise to p53 oscillatory dynamics in cells.

delay, the thermostat may overcompensate for the temperature change, causing the temperature

to overshoot the desired value. In response to this overshoot, the thermostat adjusts the system

in the opposite direction, again based on a delayed temperature reading. This cycle of delayed

response and overcorrection can lead to sustained oscillations in the system, in this case, causing the

temperature to continuously fluctuate above and below the desired value. In biology, one of the most

trivial examples is that of a protein that suppresses the transcription of its own gene (Holehouse et al.,
2020). In this case, the time delay corresponds to the actual time of transcription and translation of

the protein. Another example is a TF that stimulates the production of a protein, which then binds to

the TF and degrades it, such as in the case of p53 and Mdm2 (Lahav et al., 2004) (Figure 1.3C).

1.3 Noise in biology

In the above description, we have essentially considered deterministic systems, where it is possible to

predict the behaviour of the system uniquely from the governing equations and the initial conditions,

without any uncertainty. However, noise is an essential factor that must be considered when
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describing many biological processes at different spatial and temporal scales, such as neuronal

activity or gene expression, which we are interested in.

Indeed, while noise is often negligible in the macroscopic world due to the Central Limit Theorem,

which states that for a system at equilibrium the relative magnitude of fluctuations scales as 1/
√
N

(N being the degrees of freedom), in many cases this does not apply in biological systems, which

are driven out of equilibrium (Tsimring, 2014). At the cellular level, noise in gene expression

manifests as thermal fluctuations of biochemical reactions, which occur through random collisions

and transient binding of molecules such as genes, RNAs and proteins, that are present at low number

of copies, thus prone to high stochasticity (Tsimring, 2014).

Noise origin can be traced back to intrinsic and extrinsic factors (Figure 1.4, left panel). While the

first originates from the probabilistic nature of biochemical reactions within the system itself, the

latter refers to environmental fluctuations outside the system under consideration that are global to

a single cell. Experimentally, intrinsic noise for a given gene corresponds to the extent to which the

activities of two identical copies of that gene fail to correlate in the same environment (Elowitz et al.,
2002). The two sources of noise can therefore be separated with a dual-reporter method (Elowitz

et al., 2002): by fluorescent-tagging of two genes (shown in green and red in Figure 1.4) whose

transcription is driven by the same TFs, one can show that, in the absence of intrinsic noise, the

fluorescence of both proteins would be correlated, thus resulting in the cells appearing all yellow. In

the presence of intrinsic noise, cells would express more of one protein than the other, resulting in

cells appearing more green or more red (Figure 1.4, right panel).

Discerning whether observed patterns arise from intrinsic biological oscillations or are the result

of stochastic noise, is crucial to provide critical insights into the underlying dynamics and control

mechanisms within the cell. Oscillations generally have a specific intrinsic frequency and follow

precise, predictable patterns, resulting from underlying feedback loops and interactions within

the system architecture. Random fluctuations, conversely, lack consistent frequencies and exhibit

irregular behaviours over time, and also lack a discernible pattern, arising from probabilistic events

and chance interactions.

For decades noise has been considered not only a nuisance for experimentalists, as it makes experi-

ments difficult to interpret, but also for nature itself, that has evolved techniques to deal with its

negative entropy-increasing effects of limiting the robustness, the fidelity and the channel capacity

of information transmission (Tsimring, 2014). However, it is becoming apparent that evolution

might have fine-tuned biological systems to being able to also take advantage of natural stochastic

fluctuations, which might have a more constructive role than previously thought. In particular, in the

context of oscillatory environments, researchers have found that there may be a positive interplay

between random fluctuations and environmental oscillations, which take advantage of each other:

the transmission of noisy signals may be advantageous in oscillatory environments (a phenomenon

known as stochastic resonance (Douglass et al., 1993)) and viceversa, that oscillations may take

advantage of fluctuations in the environment: for instance, Kellogg and Tay (2015) have recently

shown how intrinsic noise within individual cells improve oscillations in Nuclear Factor kappa B

(Nf-κB), a TF central in the organism immune response, whereas extrinsic noise (i.e. heterogeneity

among different cells) improves the robustness of the population.
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Figure 1.4: Noise permeates biology on all levels. In gene expression, noise can be intrinsic, from stochasticity
of biochemical reactions, which result in uncorrelated gene expression, or extrinsic (e.g. from
fluctuations in activity and concentration of Transcription Factors (TFs)) which results in correlated
gene expression. The right panel is adapted from Elowitz et al. (2002)

In order to model stochastic processes, one can make use of the Langevin equation, which describes

the dynamics of particles in fluctuating environments, considering both deterministic and random

forces:

m
dv

dt
= −λv + η(t)

where v is the particle velocity, m is the particle mass, λ is the friction coefficient, representing the

damping effect of the surrounding medium on the particle’s motion, and η(t) represents the random

force or noise acting on the particle at time t. One generally assumes that the average random force

is zero, ⟨η(t)⟩ = 0, and that the correlation function is ⟨η(t)η(t′)⟩ = 2λkBTδ(t − t′), where kB is

Boltzmann’s constant, and T is the temperature.

In order to numerically simulate systems with noise, it is possible to either simulate the Langevin

equation directly, by using the Euler-Maruyama method: the equation is discretized (integrating

it from t to t + ∆t) and a random number, drawn from a Gaussian distribution, is added at each

timestep ∆t. Alternatively, it is common to use event-driven methods such as the Gillespie algorithm

(Gillespie, 1976): in this case, the algorithm generates a trajectory of events by iteratively selecting

the next event based on its associated rate, which reflects the likelihood of occurrence (this will be

described in details in Chapter 3).

1.4 Thesis overview
The following thesis comprises three chapters that correspond to the three major projects I worked

on during my PhD, which all revolve around the concept of biological oscillators, their properties and

functionality. When oscillators are coupled to each other, they constitute a complex system, where

emergent behaviour, such as synchronization, may take place. This will be the focus of Chapter 2

(Figure 1.5, top), in which we analyse a network of coupled neurons, finding interesting phenomena

called chimera states, where only part of the population synchronizes to a common rhythm while the

rest keep firing at seemingly random times, despite being all-to-all-coupled. Oscillators in biology

may also regulate certain phenomena downstream: this will be the focus of Chapter 3 (Figure 1.5,

center). We will see how the oscillations in the TF p53 and in particular its specific periodicity of 5 h
may be optimal for the process of DNA repair after being damaged by radiation. Finally, oscillators
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may also be coupled to an external forcing. Chapter 4 will be devoted to this aspect (Figure 1.5,

bottom). In particular, again in the context of p53, we will see how it is possible to modulate the

frequency of its oscillations by entraining its signal to an external pulsing signal. Every chapter

comprises an Introduction and a Theoretical Background section, which give the tools to understand

the following parts. The first two chapters then portray a sum-up of the main results, which can be

found in greater details in the corresponding published papers reported at the end of each chapter.

The third chapter, for which a manuscript is not available yet, reports the full results.
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Figure 1.5: Chapters overview with the main result of each project and the corresponding graphical abstract.
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2Emergence of chimera states in a
neuronal model of delayed oscillators

2.1 Introduction and Objectives
Imagine this experiment: a group of people is instructed to clap their hands in unison, without

any underling rhythm to follow. After an initial random noise, one can expect that the crowd

would spontaneously set to a certain rhythm. Who decided? No one. What happened is that at

every clap, people spontaneously adjusted their frequency, increasing or decreasing it, based on

the feedback they received from the people around (in the form of their clapping sound). This

is an example of spontaneous synchrony, that emerges naturally from the interplay between the

components, without any leader to direct the process. What is extraordinary is that a spontaneous

emergence of order pervades nature at every scale. From the initial discovery of the Dutch physicist

C. Huygens (1665) that pendulum clocks placed side by side on a wall would eventually synchronize,

researchers have later discovered many other examples: from the interplay of heart cells which gives

rise to the heartbeat, to the coherent activity of millions of neurons that enable breathing, to the

synchronization of certain species of fireflies which flash in unison (Strogatz and Stewart, 1993).

Now consider again the previous thought experiment: what if only a subgroup of people were

instructed to clap in unison, while the rest kept clapping at random times? How hard could it be for

the subgroup to find a uniform rhythm, surrounded by the random clapping noise? One could argue

that this would indeed be impossible. If the discovery that natural systems can spontaneously fall

into a steady, uniform rhythm is already mesmerizing, the idea of a spontaneous symmetry break
for a population of identical oscillators, which split into two distinct groups (a synchronized and an

asynchronized one), had never been thought of until only 20 years ago. Kuramoto and Battogtokh

(2002) were the first to mathematically predict the possibility of this state, which was later defined

as a chimera by Abrams and Strogatz (2004), from the name of the mythological creature made of

incongruous parts. Since their discovery, chimera states have been reproduced not only in numerical

simulations but also in several experimental settings, which include, among others, populations of

coupled chemical oscillators (Tinsley et al., 2012), identical metronomes (Martens et al., 2013), as

well as optical (Hagerstrom et al., 2012) and electronic systems (Larger et al., 2013).

Much of the current research effort in the field is concentrated on revealing if and under which

conditions these patterns of synchronization could occur in real-world scenarios (see Panaggio

and Abrams (2015), Omel’chenko (2018), and Haugland (2021) for extensive reviews). In the

context of neuroscience, understanding how to predict and control the emergence of neuronal

synchronization would have tremendous implications: indeed, not only cognitive processes, such as

visual information processing and memory formation, rely on the ability of different brain regions to

coordinate their activity (Rodriguez et al., 1999; Fell and Axmacher, 2011). Several pathological
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states, such as Parkinson’s disease or epileptic seizures, stem from an aberrant, excessive neural

synchronization localized within certain brain regions only (Uhlhaas and Singer, 2006), which drives

many researchers to believe it might be some sort of chimera state (Majhi et al., 2019).

One natural question to ask, in this context, is whether all neurons in the brain have the same ability

to coordinate their activities, and portray these exotic patterns of synchronization. When neurons

process and transmit information, they may essentially behave in two modes: either as resonators or

integrators (Izhikevich, 2018). In the first case, neurons exhibit selective responses to specific input

frequencies, amplifying and resonating with inputs at their preferred frequency. In the second case,

they instead accumulate inputs over time, summing and integrating signals to produce an output that

represents the temporal history of the inputs. In other words, while integrators are basically low-pass

filters of the electric inputs, resonators are band-pass filters (Galán et al., 2007). Cortical pyramidal

neurons, as well as thalamocortical neurons and neostriatal spiny projection neurons, are integrators;

on the other hand, most cortical inhibitory interneurons are resonators (Izhikevich, 2018). The

majority of studies in the field has up to now focused on the emergent properties of populations of

resonators (Yeung and Strogatz, 1999; Wu and Dhamala, 2018), since integrators are considered to

have limited propensity to synchronize, especially when bound by excitatory connections (Hansel

et al., 1995; Ermentrout, 1996; Galán et al., 2007; Mofakham et al., 2016; Ziaeemehr et al., 2020).

The primary objective of this study is to determine if and under which conditions, a population

of neurons, of the type integrators, can synchronize, and if chimera states can be observed.

Specifically, we investigate a neuronal network made of two coupled subpopulations, an excitatory

and an inhibitory one, with time-delayed connections. The interplay between excitation and

inhibition is a known mechanism linked to rhythmogenesis in the brain, i.e. the emergence of large-

scale neuronal oscillations which stem from the synchronized rhythmic activity of large populations

of neurons. Moreover, including time-delay is essential to model the properties of spatially distributed

systems, where the connection between neurons is not instantaneous. Therefore, the following

objectives will be pursued:

• Analyse the conditions under which all the neurons in the system synchronize and the stability

of this state;

• Explore the conditions necessary for the occurrence of chimera states in the coupled populations

of neurons and their stability;

• Analyse the competition between excitation and inhibition and the role of the time-delay in the

couplings.

Defining the rules for when and why various synchronization patterns emerge depending on the

type of neurons, the type of connection and the time delay in the couplings, will provide invaluable

insights in order to predict and control the possible intricate collective dynamics that can arise in

networks of coupled neurons.
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Figure 2.1: (A) Schematic of neuronal electrochemical signalling in tonically spiking neurons (i.e. with constant
frequency of firing T=const) and weak couplings which only cause a delay/advance of subsequent
spikes. (B) The oscillator phase of a neuron progresses along the unit circle and is reset to 0 every
2π, when the neuron fires. (C) An external input from another neuron causes a shift ∆θ in the
neuron phase θ(t). (D) The two classes of Phase Response Curves (PRCs).

2.2 Background theory

2.2.1 Neurons as oscillators
Neurons constitute the building blocks of the nervous system, whose main role is to process and

transmit information throughout the brain and body, in the form of electrochemical signals, called

action potentials. The electric signal travels along the neuron as a wave of depolarization of its

membrane potential, that displays the characteristic "spikes", and is transmitted to another neuron

via neurotransmitters (which are chemical messengers) (Figure 2.1A). In the following, we consider

populations of tonically-spiking neurons (Izhikevich, 2004), namely with an intrinsic constant

frequency of spiking, in which the inputs they receive from each other is weak so that it does not

elicit an immediate spike, but has the effect to either delay or advance the timing of the next spike

in neighbouring neurons. Therefore, we disregard the specific waveform of action potentials, and

instead only focus on the timing of neuronal spikes. In this context, neurons are treated as oscillators,

whose periodic activity is well described by a stable limit cycle that is temporarily perturbed by the

mutual coupling. Despite the simplicity of this description, networks of weakly-coupled oscillators

still carry enough complexity to display interesting emergent behaviours, such as the onset of

collective synchronization (Hoppensteadt and Izhikevich, 1997).

2.2.2 Phase models
The simplest framework to describe populations of interacting neurons is that of phase models
(Ermentrout, 1986; Izhikevich, 2000). Here, the complex neuronal activity is reduced to one variable,

the phase of the neuron, which varies in the range [0, 2π], and is reset to 0 every 2π (Figure 2.1B).

The phase thus measures the "readiness of firing" for each neuron: it defines the position along the
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Figure 2.2: (A) The Kuramoto order parameter describes the level of synchronization of the neuronal population.
(B) Schematic of a chimera state (top) and a breathing chimera (bottom) in a neuronal network
made of two subpopulations.

limit cycle and can be thought of as a clock hand, which rotates at a certain intrinsic frequency. Every

time the hand makes one full rotation, the neuron spikes an action potential. The effect of the other

neurons is to slightly delay or advance the phase θ, bringing it to a new phase θnew (i.e. causing a

small rotation in the clockwise or counterclockwise direction of the hand) (Figure 2.1C). Such shift

(∆θ) may depend on the time at which the perturbation is received, which is expressed in the Phase

Response Curve (PRC) (Hastings and Sweeney, 1958; Izhikevich, 2018) (Figure 2.1D).

PRC(θ) = ∆θ = {θnew − θ}. (2.1)

PRCs can be essentially classified in two types (Ermentrout and Kopell, 1986; Smeal et al., 2010):

• Class 1: The curve is always positive, hence a small perturbation always results in an advance

of the phase; the normal form in case of weak couplings has shape ∝ 1 − cos θ (Figure 2.1D,

left).

• Class 2: The curve has both positive and negative values, hence a depolarizing perturbation

may result in an advance or delay of the phase depending on the time of the signal. The normal

form in case of weak couplings has shape ∝ sin θ (Figure 2.1D, right).

Neurons can be excitatory or inhibitory, meaning that in response to their signals, the neighbouring

neurons will be more or less likely to fire. When it comes to inhibitory neurons, they follow the

same PRCs as excitatory neurons, except with a negative sign. For example, in the case of Class 1

inhibitory neurons, a small perturbation would always result in a delay of the phase.

Given that the PRC of Class 1 excitatory neurons is always positive, these neurons have the ability to

synchronize effectively with rapid inputs, yet struggle to synchronize with slower ones. Essentially,

the oscillators can adjust their phases to align with faster pulse trains, but they lack the capacity to

postpone their phases to match slower inputs (Izhikevich, 2018). On the other hand, Class 2 neurons
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can synchronize with both faster and slower inputs, given that their PRC has well-defined positive and

negative regions (Izhikevich, 2018). The shape of the two PRCs directly stems from the way neurons

transition from silent (the resting state) to firing mode, which corresponds to a Saddle Node on

Invariant Circle (SNIC) and a Hopf bifurcation for Class 1 and Class 2 respectively (Izhikevich, 2018).

The two bifurcations also result in neurons having different behaviours in response to incoming

pulses of currents: while Class 1 neurons act as integrators, Class 2 neurons act as resonators (see

Theory Box 2.2.1 for more details).

Theory Box 2.2.1: Classes of Excitability

Neurons are excitable systems, meaning that they are typically at rest, but can fire action

potentials as a result of an external stimulation, such as an external current I (Izhikevich,

2018). From a dynamical system’s point of view, it means that they are near a bifurcation

from resting to sustained spiking activity. Based on the frequency of firing in response to

different pulses of the injected current, Hodgkin (1948) defined two classes of excitability:

• Class 1: Neurons can fire spikes with arbitrarily low frequency

• Class 2: Neurons fire spikes in a narrow frequency band that does not really depend on

the injected current
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Rinzel and Ermentrout (1989) later discovered that these two classes arise as a result of

two different bifurcations: in Class 1 neurons, the bifurcation is a SNIC bifurcation, whose

normal form corresponds to the theta model dθ/dt = 1 − cos θ + (1 + cos θ)I (Ermentrout

and Kopell, 1986). Two fixed points, an unstable and a stable one, coexist on the invariant

circle, coalesce and disappear as I increases past zero. This leaves the limit cycle as the only

stable state (firing mode). It can be shown that this model is closely related to the quadratic

integrate-and-fire model of neurons (Hoppensteadt and Izhikevich, 1997). Class 2 neurons,

instead, go through a Hopf bifurcation. The normal form is the Poincaré oscillator or Radial

Isochron Clock (RIC): dr/dt = (I − r2)r, dθ/dt = 1. Here, for I < 0, the resting state (r = 0)

is a stable spiral. When I > 0, the stable state loses stability and a stable limit cycle emerges

around it (r =
√
I). The two bifurcations also lead to different behaviours for the two neuron

classes: in the first case, neurons behave as integrators, so that subsequent pulses of currents

are integrated and lead to stronger responses. Class 2 neurons, instead, act as resonators.
Indeed, the presence of a stable spiral leads to sub-threshold oscillations for small external

pulses. Thus, there is a preferred frequency with which the neurons resonate. It can also

be shown that the two excitability classes correspond to two different PRCs, which can be

found explicitly for the normal forms: in the first case, PRC = π/2 + arctan(I − cot θ) − θ,

which, for small I, has shape proportional to 1 − cos θ, thus always positive. In the second

case, PRC = ∓ψ if θ ≶ π with ψ = arccos
(

1+I cos θ√
1+2I cos θ+I2

)
, which has shape proportional to

sin θ for small I, thus admitting both advances and delays of the phase.

2.2.3 The Kuramoto model and chimera states

The Kuramoto model (Kuramoto, 1975) has been massively used in the literature to describe the

emergent synchronization of a population of N weakly coupled tonically spiking neurons. The

equation that governs the behaviour of the i-th oscillator phase θi is (see Theory Box 2.2.2 for the

derivation)

θ̇i = ωi + K

N

N∑
j=1

sin(θj − θi), i = 1, . . . , N (2.2)

where ωi is the intrinsic frequency, K is the coupling strength between neurons and the coupling is

sinusoidal, therefore representing Class 2 neurons. In order to quantify the degree of synchronization

of the population, the complex sum of all the neuron phases is calculated as

Zeiψ = 1
N

N∑
j=1

eiθj , (2.3)

with ψ(t) being the average phase of all the neurons at time t and Z(t) the degree of phase coherence.

The long-term behaviour can thus be estimated by taking the time average of the absolute value,

which corresponds to the Kuramoto order parameter Z2 (Figure 2.2A)

Z2 =
〈∣∣∣Z(t)eiψ(t)

∣∣∣2〉
t

=
〈

1
N2

N∑
i,j=1

cos(θi − θj)
〉
t

. (2.4)
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Figure 2.3: (A) In the continuum limit, the single phases are replaced by a probability density function f,
whose time evolution is described by the Fokker-Planck equation. (B) The Ott-Antonsen (OA)
ansatz considers Poisson kernels as probability density functions, which can be described in polar
coordinates ρ, ψ; the chimera state in this representation corresponds to the fixed point of the 2D
system in the coordinates (ψ, r), while a breathing chimera corresponds to a state with constant ψ
and oscillatory r.

Z2 thus varies in the range [0-1], with 0 corresponding to no synchronization and 1 being the

perfectly synchronized case. Intermediate values represent partially synchronized states, with only

clusters of synchronized neurons.

Until around 20 years ago, it was believed that only heterogeneous oscillators (i.e. having different

intrinsic frequencies) would show partial synchronization under certain conditions (Panaggio and

Abrams, 2015), whereas identical oscillators could only either fully synchronize to the same rhythm

or remain incoherent. As mentioned in the previous section, it was Kuramoto and Battogtokh (2002)

who first discovered the coexistence of regions of coherence and incoherence within a population of

identical neurons, which was later defined as a chimera by Abrams and Strogatz (2004)(Figure 2.2B).

Other even more complicated states have also been observed in the literature, such as breathing
chimeras (Abrams et al., 2008), where one population is perfectly synchronized, while the other

oscillates periodically between phases of higher and lower coherence.

2.2.4 The continuum limit

In order to describe the evolution of a population of neurons, it is common to consider the limit

case of an infinite number of neurons (N → ∞) (Figure 2.3A, top), such that the discrete set of

phases and frequencies [θi, ωi] turns into a continuum of oscillators distributed in the unit circle,

with probability density function f , where f(θ, ω)dθ describes the probability of finding neurons

with frequency ω having phase within θ and θ + dθ. In this limit, the order parameter becomes,

Z(t) =
∫ 2π

0

∫ +∞

−∞
eiθf(θ|t, ω)g(ω)dωdθ,
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where g(ω) is the frequency distribution. The time evolution of f is described by the Fokker-Planck

equation as schematized in the bottom panel of Figure 2.3A, which is defined as

∂tf = −∂θ(fv) +D∂2
θf, (2.5)

with v corresponding to the drift velocity of the oscillators. Moreover, in order to study the stability

of the solutions, it is convenient to make a Fourier transform of f , which yields

f(θ|ω, t) = 1
2π
∑
l

fl(ω, t)eilθ, (2.6)

and to add a small perturbation to it

f → f + η δf = 1
2π
∑
l

(fl + η δfl)eilθ, (2.7)

with ϵ ≪ 1, and see whether the perturbation grows or decays in time for the different modes.

2.2.5 The Ott-Antonsen (OA) ansatz
A useful tool to study the synchronization of a neuronal network, is the so-called Ott-Antonsen (OA)

ansatz (Ott and Antonsen, 2008), which considers a particular type of density functions f , that

corresponds to a Poisson kernel:

f(θ|ω, t) = 1
2π

{
1 +

∞∑
l=1

[
f1e

iθ
]l}+ c.c, (2.8)

where c.c. is the complex conjugate. These functions have the same coefficients in all the Fourier

harmonics, except that they are raised to the l-th power for the l-th harmonic, fl>1(ω, t) = [f1(ω, t)]l.
In polar coordinates (ρ, ϕ), the l-th harmonic becomes f1 = ρe−iϕ, where ϕ can be thought of as the

"center" of the density f , while ρ quantifies the width of the peak (Abrams et al., 2008). Indeed, when

ρ → 1, f(θ|ω, t) → δ(θ − ϕ(t)), i.e. a delta function which is centered in ϕ(t). This is schematically

represented in the left panel of Figure 2.3B. With this formalism, in the case of a population of

neurons made of two coupled subpopulations, the chimera state corresponds to the state of constant

phase shift between the center of the distributions f1 and f2, (ψ = const), f1 (the asynchronous

population) having a constant spread ρ1 = r = const while f2 (the synchronous one) being a delta

function (ρ2 = 1) (Figure 2.3B, right panel). In this way, the complexity of the system reduces

immensely, to a 2D system in coordinates (ψ, r) in which the chimera state corresponds to the fixed

point. The "breathing chimera" would instead correspond to the state in which ψ = const and r

oscillates, as shown in the lower panel of Figure 2.3B.
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Theory Box 2.2.2: Derivation of phase models in case of weak couplings

Given a dynamical system that follows

ẋ = f(x) + ϵp(t), (2.9)

which defines a periodic oscillator, ẋ = f(x), forced by an external input ϵp(t), that depends

on time, with ϵ ≪ 1, we want to show how to derive the phase equation for weakly-coupled

oscillators. The following derivation can be found in Izhikevich (2018). First, it can be shown

that the system transforms into the phase model

θ̇ = 1 + ϵPRC(θ)p(t) + o(ϵ), (2.10)

where p(t) represents the input of current from other oscillators in the network, such as

p(t) =
∑
s

gs(x(t), xs(t)).

Here xs(t) represents the oscillators connected to x and gs defines the type of interaction.

We then make a separation of timescales by defining each θi(t) as θi(t) = t + ϕi: the

first component represents the inherent oscillation that occurs naturally, while the second

component pertains to the gradual build-up of phase deviation caused by the network.

Substituting the previous relation in Equation (2.10), yields

ϕ̇i = ϵPRC(t+ ϕi) ·
n∑
j=1

gij(xi(t+ ϕi), xj(t+ ϕj)).

Being the RHS of order ϵ, it reflects the slow dynamics of ϕi. Therefore, the two time scales,

given by the fast oscillations and the slow phase modulations, can be split by the classical

averaging method (Hoppensteadt and Izhikevich, 1997). The system thus becomes

ϕ̇i = ϵωi + ϵ

n∑
j ̸=i

Hij(ϕj − ϕi), (2.11)

with

Hij(ϕj − ϕi) = 1
T

∫ T

0
PRC(t) · gij(xi(t), xj(t+ ϕj − ϕi))dt.

In the case of pulse-coupling, the function H is just a re-scaled PRC.

The Kuramoto model thus follows directly from Equation (2.11), when considering the slow

time (τ = ϵt) and H being replaced by its first Fourier term. In this case, the frequency

deviations ωi are interpreted as intrinsic frequencies of oscillators.

2.3 Main results

Our work aimed to explore the characteristics of Class I neurons, which are traditionally considered to

have a limited tendency to synchronize. Therefore, we developed a model incorporating a feedback

loop between an excitatory (E) and an inhibitory (I) population, a known neural mechanism for
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generating oscillations, and time-delayed couplings, with positive PRC (thus proportional to 1−cos θ)
(Figure 2.4A). The equations for the evolution of the phases of the two populations (E-I) are

˙θEi =ωEi + kEI
NI

NI∑
j=1

1 − cos
(
θEi − θIj (t− τEI)

)
2 +

+ kEE
NE

NE∑
j=1

1 − cos
(
θEi − θEj (t− τEE)

)
2 + ξEi

θ̇Ii =ωIi + kIE
NE

NE∑
j=1

1 − cos
(
θIi − θEj (t− τIE)

)
2 +

+ kII
NI

NI∑
j=1

1 − cos
(
θIi − θIj (t− τII)

)
2 + ξIi ,

(2.12)

where ωE,Ii are the intrinsic frequencies of each neuron, NE,I are the number of neurons in each

population, kEI < 0 and kIE > 0 are the inter-population coupling strengths, kEE > 0 and

kII < 0 are the intra-population coupling strengths and τEI,IE,EE,II are constant time delays in

the connections. Gaussian noise is introduced in the system through ξ, where ⟨ξ(t)⟩ = 0 and

⟨ξ(t)ξ(t′)⟩ = 2Dδ(t− t′), with D = const.

In the following, we will only report the main steps of the derivations regarding the main results of

the paper, which can be read in full at the end of the chapter. First, we analysed the system in the

continuum limit, namely with an infinite number of neurons in each population, thus we defined the

probability density function f , which satisfies the Fokker-Planck equation

∂tf
E,I = −∂θE,I (fE,Iv) +D∂2

θE,If
E,I , (2.13)

with v being the drift velocity, which can be obtained from Equation (2.12). We then made a Fourier

expansion of f , and performed a Linear Stability Analysis around the fully asynchronized state

(where the order parameter Z2 = 0 for both sub-populations), which is a trivial solution of the

system. The goal is to find the Boundaries of Stable Incoherence (BSI), i.e. to determine the region

in parameter space - and its borders - where the system behaves in an asynchronous manner, in

order to subsequently simulate the system around this region and see what other (more interesting)

behaviours are possible.

Our analysis revealed that, for a system without external noise (D = 0), only inter-population

couplings (kEE,II = 0) and identical intrinsic frequencies and coupling strengths for the two

sub-populations (ωE = ωI = ω0, |kEI,IE | = K ), the BSI are described by the following equation

K

ω0
=

± 2√
3
m+2τ/T
τ/T if m is even

± 2√
5
m+2τ/T
τ/T if m is odd,

(2.14)

where τ is the sum of the delays of the two pathways (τ = τEI + τIE) and T = 2π/ω0 is the intrinsic

period of the oscillators. This shows that these BSI are periodic in the delay, and also that the

dependence is only on the sum of the delays between excitatory and the inhibitory population

(Figure 2.4B, red lines). We then simulated the system over a range of coupling strengths and time

delays, and computed the order parameters Z2
E,I for each population, which is shown in Figure 2.4B

as a 2D-gradient. This not only confirmed the presence of regions in parameter space in which the
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two populations do not synchronize (Figure 2.4B, region III, black areas), but also revealed the

emergence of regions in which either both populations are synchronized (Figure 2.4B, region II,

white areas) or only one population synchronized to a common rhythm while the other kept firing

out of sync (Figure 2.4B, region I-IV, blue and orange areas). The four possible regions are shown in

the bottom of the panel, which portrays a snapshot of the phase of each neuron at a certain time

t. Therefore, a line of dots (where each dot is a neuron) represents synchronization, whereas dots

scattered around the plane corresponds to no synchronization. In this case, the chimera state was

also found to be robust to noise.

Subsequently, we aimed to further investigate the role of time delay for this system and determine

whether it was a prerequisite to observe synchronization and chimera states: what we found is that

the presence of time delay significantly enhanced the dynamics of the network and contributed to

the stability of the synchronized and chimera states. First of all, to gain analytical understanding

of the system without time delay, we first examined a specific category of density functions. These

functions adopt the structure of a Poisson kernel, where the coefficients remain consistent across all

Fourier harmonics, except they are elevated to the power of l for the l-th harmonic (making use of

the OA ansatz)

fE,I(θ|ω, t) = 1
2π

{
1 +

+∞∑
l=1

[
fE,I1 eiθ

]l}+ c.c, (2.15)

where c.c. stands for the complex conjugate. As explained in Section 2.2.5, we can use polar

coordinates (ρ, ψ) to express the l-th armonic as f1 = ρE,Ie
−iϕE,I . Here, ϕ indicates the position of

the density f ’s center, while ρ quantifies the sharpness of the curve’s peak (Abrams et al., 2008). With

this formalism, the chimera state corresponds to the state in which there is a constant phase shift

between the two distributions (ψ = ϕE − ϕI = const), with one distribution (the synchronized one)

being a delta function (ρE → 1), and the other having a certain constant spread (ρI = r = const).

We thus reduced the complexity of the system to a 2D system in coordinates (ψ, r)ṙ = K
4 (1 − r2) sinψ

ψ̇ = ∆ω −K + K
4
(
2r + r2+1

r

)
cosψ,

(2.16)

where ∆ω = ωE − ωI . The fixed point for this system (which corresponds to the chimera state), can

be found very easily by taking ṙ = ψ̇ = 0, which yieldsψ∗ = mπ, m ∈ Z

r∗
1,2 = −2(∆ω−K)±

√
4(∆ω−K)2−3K2

3(−1)mK .

In order to compute the stability of the fixed point we performed a Linear Stability Analysis. Given

the system of differential equations of the form

ṙ = f(r, ψ)

ψ̇ = g(r, ψ),
, the Jacobian J is

J =
[
df
dr

df
dψ

dg
dr

dg
dψ

]
|r∗,ψ∗

=
[

0 2/9K
−3/2K 0

]
.

Since the trace is zero and the determinant is ∆ = K2/3 > 0, the linearization predicts that

the fixed point should be a linear center. As we have seen in Chapter 1, this is a marginal case

for which linearization does not always work. However, since the system is invariant under the
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Figure 2.4: (A) The model: a negative feedback loop between an excitatory and an inhibitory population, with
type 1 Phase Response Curve (PRC). (B) The emergence of stable chimera states (blue and orange
areas, such as region I and region IV) in the parameter space given by time delay (x-axis) and
coupling strength (y-axis). (C) The emergence of "breathing chimeras" as shown by the oscillatory
trace of the order parameter Z2, that are neutrally stable. (A-B-C) are adapted from Lucchetti et al.
(2021)
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change of variables t → −t, ψ → −ψ, it can be proven that the fixed point is also a nonlinear center

(Figure 2.4C, top). Overall, these findings show that the chimera state should exist also without time

delay, but that it is neutrally stable and that it has a family of periodic orbits around it. To see if this

is the case also with a finite number of neurons, we simulated the system initializing one of the two

subpopulation with phases drawn from a Poisson kernel, such as

f I(θ) =
∞∑

n=−∞
ρ

|n|
I einθ = 1 − ρ2

I

1 − 2ρI cos(θ − ϕI) + ρ2
I

,

while the phases of the other were all initially synchronized. The simulations confirmed the

presence of the chimera state and also of the "breathing chimeras", where one population is always

synchronized while the other oscillates between periods of higher and lower synchrony (Figure 2.4C,

middle). Finally, we tried to simulate the system in the three coordinates (ρE , ρI , ψ). This showed

that the plane in which we had restricted the system before (ρE = 1) is not attracting, therefore

the system should be initialized in this state in order to observe it (Figure 2.4C, bottom). Overall,

our results show that Class 1 neurons can display a more rich variety of collective behaviours than

previously thought, including total synchronization and chimera states and that time delays help to

stabilize these states which become neutrally stable with instantaneous connections.

2.4 Discussion and Perspectives
Since their discovery in 2004, chimera states have been studied extensively and found to occur

in a plethora of examples, both theoretical and experimental, as summed-up in several review

papers (Omel’chenko, 2018; Schöll, 2016; Panaggio and Abrams, 2015; Haugland, 2021). In the

beginning, they were believed to be a peculiar characteristic of networks with non-locally coupled

oscillators, namely networks whose coupling was neither local (nearest neighbour), nor global

(all-to-all coupling) (Kuramoto and Battogtokh, 2002; Abrams and Strogatz, 2006). The original

coupling explored by Kuramoto and Battogtokh (2002) was an exponentially decaying coupling

kernel. Subsequently, it was observed that one of the simplest configurations supporting chimera

states was a population made of two subpopulations with all-to-all coupling within each group and

weaker couplings between the groups (Abrams et al., 2008). More recently, chimera states have been

shown to exist also in systems with global coupling (Schmidt et al., 2014) and only local couplings

(Laing, 2015).

However, as of today, the direct applicability of this theory in the context of neuroscience remains

rather vague and superficial (Haugland, 2021), and there is still a lot of ongoing research on

determining how and when chimera states can be observed in real-world scenarios. One of the most

cited phenomena which may constitute a chimera state is that of uni-emispheric sleep (Rattenborg

et al., 2000): this is observed in certain species of animals, such as dolphins or birds, where only one

hemisphere of the brain enters into a sleep state while the other hemisphere remains awake. The

sleeping hemisphere typically exhibits a synchronized activity which gives rise to slow brainwaves,

while the awake hemisphere displays wakefulness characterized by an asynchronous rhythm. This

allows animals to maintain some level of vigilance and perform critical functions while still getting

the benefits of sleep. In this case, though, modelling the whole brain as a system of phase oscillators

seems an immense simplification, given the implicit assumption of constant intrinsic frequency and

weak couplings, so that amplitude changes of the limit cycle can be neglected.
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In the context of pathological synchronization of neurons, such as in Parkinson’s disease, it has been

shown that some therapeutic strategies may highly benefit from administering an external stimulation

at a specific patient-dependent phase of the ongoing rhythm, highlighting the importance of phase

models (Holt et al., 2019). In this case, the neuronal synchronization does occur in certain regions

only, so that the chimera state theory could potentially be applied. However, it is important to note

that the strict definition of chimera states applies to "identical oscillators," namely oscillators with

the same inherent firing frequency. This assumption may be overly simplistic in real-world scenarios.

Therefore, it is somewhat speculative to effectively classify this local clustered synchronization as a

true chimera state.

To make the model less abstract, it would be interesting to include spatial coordinates and see if the

chimera states are preserved and to what extent. Additionally, one could consider populations of

neurons of different sizes, which could better represent the ratio of excitatory-inhibitory neurons in

the brain (estimated to be approximately 4:1 in typical mammalian brains).

On the other hand, the abstract nature of this model could be exploited for its potential application

in various contexts, as it lacks specificity to neurons. In fact, it could be extended to any other system

of oscillators that exhibits similar phase responses to external perturbations.
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Neurons are traditionally grouped in two excitability classes, which correspond to two different responses to
external inputs, called phase response curves (PRCs). In this paper we have considered a network of two neural
populations with delayed couplings, bound in a negative feedback loop by a positive PRC (type I). Making use
of both analytical and numerical techniques, we derived the boundaries of stable incoherence in the continuum
limit, studying their dependance on the time delay and the strengths of both interpopulation and intrapopulation
couplings. This led us to discover, in a system with stronger delayed external compared to internal couplings,
the coexistence of areas of coherence and incoherence, called chimera states, that were robust to noise. On the
other hand, in the absence of time delays and with negligible internal couplings, the system portrays a family of
neutrally stable periodic orbits, known as “breathing chimeras.”

DOI: 10.1103/PhysRevResearch.3.033041

I. INTRODUCTION

For the past few decades, models of coupled phase oscil-
lators have proved to be particularly successful to describe
the emergence of macroscopic rhythmic patterns in a huge
variety of natural and artificial contexts [1]. In this framework,
it is useful to consider the interplay between excitatory and
inhibitory (E-I) time-delayed connections, in order to model
spatially distributed self-organized systems, such as neuronal
networks, that are known to exhibit synchronous behavior.
This is associated with many cognitive processes such as
memory formation [2], directed attention [3], and the process-
ing of sensory stimuli [4], but it can also be the hallmark of
certain disease states such as Parkinson’s disease or epileptic
seizures [5–7]. In these cases, synchronization is generally
localized to certain cerebral regions only, and coherence and
incoherence coexist within the brain.

In the context of phase models, states in which syn-
chronous and asynchronous clusters of identical oscillators
coexist were discovered by Kuramoto and Battogtokh [8],
and they were later defined “chimera states” by Abrams
and Strogatz [9]. Since then, they were observed in a huge
variety of settings, for instance in more realistic neuronal
models [10–14], in time-discrete systems (maps) [15,16], in
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Published by the American Physical Society under the terms of the
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social agent-based models [17], or even in certain experimen-
tal setups [18–20] (see [21–23] for extensive reviews).

Synchronization patterns largely depend on the individ-
ual oscillators properties. It is known that neurons can be
grouped into two excitability classes, that differ in the bifur-
cation observed while transitioning from the silent mode to
the firing mode, in particular, a saddle node on an invariant
circle bifurcation or a Hopf bifurcation. Moreover, they are
directly linked to two types of phase response curves (PRCs):
either always positive (type I) or both positive and negative
(type II) [24]. The dynamics of networks of type II neurons
has been widely explored in the past, e.g., making use of
the Kuramoto model and its many generalizations [25–30].
In this context, chimera states appear commonly in networks
of two subpopulations with nonlocal couplings [31], typ-
ically with a large ensemble of oscillators (although they
have also been observed with as few as two oscillators per
group [32]). It has also been shown, in an adaptive Kuramoto
model, that asymmetric inter- or intrapopulation couplings
enhance the transition from the chimera state to the synchro-
nized state [33]. Moreover, the presence of delayed couplings,
which enriches the dynamics of the system by making it
infinite dimensional, has been also observed to lead to the
emergence of chimera states, for instance in Kuramoto-like
oscillators [34,35] or in multilayer networks of Fits-Hugh
Nagumo oscillators [36].

On the other hand, there have been fewer investigations on
the properties of type I neurons, which are generally consid-
ered to have low propensity for synchronization when coupled
by excitation [37,38]. Most of the studies [39] only focused
on either purely excitatory or inhibitory couplings, whereas
Keane et al. [40] studied a small-world network with a ring
of excitatory type I oscillators, with some random inhibitory
delayed long interactions. It was shown that, as opposed to the
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FIG. 1. (a) Schematic representation of the system with two
subpopulations [blue, excitatory (E); orange, inhibitory (I)] having
NE ,I number of oscillators with intrinsic frequency ωE ,I . They are
bound in a negative feedback loop with delayed connections (with
time delay τEI,IE ,EE ,II , interpopulation coupling strengths kEI,IE , and
intrapopulation coupling strengths kEE ,II ). (b) Type I PRC, with the
form (1 − cos θ )/2.

same network of type II neurons, where adding the inhibitory
couplings results in a sharp transition to incoherence [41],
in this case there were multiple transitions between syn-
chronization and desynchronization. The interplay between
E and I was also studied by Ladenbauer et al. [42] in a
two-population model of delayed integrate-and-fire neurons,
where they observed how adaptation controls synchronization
and the formation of cluster states. Moreover, Montbrió and
Pazó [43] recently analyzed a network of instantaneously cou-
pled E-I oscillators, showing that synchronization can emerge
only if the E population is intrinsically faster than the I one. Fi-
nally, clustered chimera states have been observed by Vüllings
et al. [44] in a ring of type I neurons, which depended on the
distance from the excitability threshold, the range of nonlocal
couplings, and the coupling strength.

We build on the basis of these results and apply this to a
network of two populations of E-I identical type I oscillators
with time delayed couplings [Figs. 1(a) and 1(b)]. The purpose
of this paper is to analyze the dynamics of the system, with a
particular focus on determining whether chimera states may
arise in this framework and how they depend on the delay
and the coupling strengths, both within and between the two
populations.

The paper is organized as follows: the stability of the fully
incoherent state is analyzed in Sec. II A with identical oscilla-
tors, no noise, and time delayed interpopulation connections;
in Sec. II B with the addition of delayed or instantaneous
internal couplings; and in Sec. II C with heterogeneous natural
frequencies, noise, and instantaneous interpopulation cou-
plings. Since it was observed that, starting from random initial
conditions, the system approaches a chimera state for periodic
values of the external time delay greater than zero, in Sec. II D
the basin of attraction of the chimera is discussed making use
of the Ott-Antonsen (OA) ansatz [45], in the absence of time
delay. Finally, in Sec. II E the optimal parameters to display
chimera states and the robustness of the system towards noise
are evaluated.

II. METHODS AND RESULTS

The governing equations for the phases θ of the ith os-
cillator in the E and the I populations, with positive PRC,

are [24,37,38]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙θE
i =ωE

i + kEI

NI

NI∑
j=1

1 − cos(θE
i − θ I

j (t − τEI ))

2

+ kEE

NE

NE∑
j=1

1 − cos(θE
i − θE

j (t − τEE ))

2
+ ξE

i ,

θ̇ I
i =ωI

i + kIE

NE

NE∑
j=1

1 − cos(θ I
i − θE

j (t − τIE ))

2

+ kII

NI

NI∑
j=1

1 − cos(θ I
i − θ I

j (t − τII ))

2
+ ξ I

i ,

(1)

where ωE ,I is the natural frequency, NE ,I is the number of
oscillators in each population, kEI < 0 and kIE > 0 are the in-
terpopulation coupling strengths, kEE > 0 and kII < 0 are the
intrapopulation coupling strengths, and τEI,IE ,EE ,II indicates
constant time delays in the couplings. Moreover, ξ repre-
sents Gaussian noise, such that 〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 =
2Dδ(t − t ′), D being a constant value.

Moreover, Eq. (1) can be expressed in a more compact
form as

θ̇ σ
i = ω̃σ

i − kσσ ′

2Nσ ′

Nσ ′∑
j=1

cos(θσ
i − θσ ′

j (t − τσσ ′ ))

− kσσ

2Nσ

Nσ∑
j=1

cos(θσ
i − θσ

j (t − τσσ )) + ξσ
i , (2)

where σ = {E , I} and ω̃σ
i = ωσ

i + 1
2 (kσσ ′ + kσσ ), showing

that the excitatory and the inhibitory couplings have the effect
to slightly shift the natural frequency of the oscillators.

The order parameter that quantifies the level of synchro-
nization within each population is defined as

Zσ (t ) = Rσ (t )eiψσ (t ) = 1

Nσ

Nσ∑
j=1

eiθσ
j (t ).

For later use, taking the long time average 〈·〉t of the absolute
value of the order parameter, it is possible to obtain a single
measure for the phase ordering, Z2

σ , given by

Z2
σ = 〈|Rσ (t )eiψσ (t )|2〉t =

〈
1

N2
σ

Nσ∑
i, j=1

cos(θσ
i − θσ

j )

〉
t

. (3)

Finally, the average order parameter between the two popula-
tions is defined as

〈Z2〉 = (
Z2

E + Z2
I

)
/2.

Equation (2) can be expressed in terms of the order parameter,
such that

θ̇ σ
i =ω̃σ

i − kσσ ′

4
(eiθσ

i Z∗
σ ′ (t − τσσ ′ ) + e−iθσ

i Zσ ′ (t − τσσ ′ ))

− kσσ

4
(eiθσ

i Z∗
σ (t − τσσ ) + e−iθσ

i Zσ (t − τσσ )) + ξσ
i ,

(4)

where * indicates the complex conjugate.
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The analysis of this system can be efficiently carried on in
the case Nσ → ∞, so that the discrete sets of phases and fre-
quencies turns into the continuum limit {θσ

i , ωσ
i } → {θσ , ωσ }.

In other words, for each ω there is a continuum of oscil-
lators distributed along the unit circle; the probability density
function is characterized by f σ (θ |t, ω) such that f σ (θ |t, ω)dθ

gives the fraction of oscillators with frequency ω which lie
between θ and θ + dθ at time t [29].

In general, in this limit the order parameter can be ex-
pressed as

Zσ (t ) =
∫ 2π

0

∫ +∞

−∞
eiθ f σ (θ, ω|t )gσ (ω)dωdθ,

where gσ (ω) is the frequency distribution. Hence, f σ (θ, ω, t )
satisfies the Fokker-Planck equation

∂t f σ = −∂θσ ( f σv) + D∂2
θσ f σ , (5)

with

v =ω̃σ − kσσ ′

4
(eiθσ

Z∗
σ ′ (t − τσσ ′ ) + e−iθσ

Zσ ′ (t − τσσ ′ ))

− kσσ

4
(eiθσ

Z∗
σ (t − τσσ ) + e−iθσ

Zσ (t − τσσ )).

It is convenient, for the following analysis, to introduce the
Fourier expansion of f σ :

f σ (θ |ω, t ) = 1

2π

∑
l

f σ
l (ω, t )eilθσ

. (6)

Substituting Eq. (6) into Eq. (5) and setting the correspondent
modes equal yields

˙f σ
l = −(ilω̃σ + l2D) f σ

l

+ il
kσσ ′

4

(
f σ
l−1Z∗

σ ′ (t − τσσ ′ ) + f σ
l+1Zσ ′ (t − τσσ ′ )

)
+ il

kσσ

4

(
f σ
l−1Z∗

σ (t − τσσ ) + f σ
l+1Zσ (t − τσσ )

)
. (7)

To simplify the future notation, we define

〈 f (ω)〉σ =
∫ +∞

−∞
f (ω)gσ (ω)dω,

so that the order parameter becomes Zσ (t ) = 〈 f σ
−1(ω, t )〉σ .

A linear stability analysis was performed around the fully
incoherent state (Zσ = 0), where all the oscillators are ran-
domly distributed along the unit circle ( f σ = 1/2π ). This is
always a trivial solution. To do so, a small perturbation was
added to the probability density function:

f σ → f σ + η δ f σ = 1

2π

∑
l

(
f σ
l + η δ f σ

l

)
eilθ , (8)

with η � 1. The analysis, reported in the Supplemental Ma-
terial [46], reveals that the only possible unstable modes are
l = ±1 and considering the case l = 1 results in

δ ˙f σ
1 = − (iω̃σ + D)δ f σ

1

+ i

[
kσσ ′

4
〈δ f σ ′

1 〉t−τσσ ′ + kσσ

4
〈δ f σ

1 〉t−τσσ

]
, (9)

where 〈·〉t−τσσ ′ means that the quantity within the brackets is
evaluated at time t − τσσ ′ .

A. Identical oscillators with no internal couplings
and positive external delay

First we considered the simplest case with identical oscilla-
tors (ωE = ωI ≡ ω0), no noise (D = 0), no internal couplings
(kEE = kII = 0), and the same external coupling strength
(|kEI | = |kIE | ≡ K). After substituting the ansatz δ f σ

1 (ω, t ) =
bσ (ω)eλt , and considering that the frequency distribution is
a delta function for both populations (g(ω) = δ(ω − ω0)), a
brief analysis, reported in the Supplemental Material [46],
leads to the characteristic equation for λ:

16((λ + iω0)2 + K2/4)e(τEI +τIE )λ = K2. (10)

Since the dependence is only on the sum of the two delays, we
define τEI + τIE ≡ τ for simplicity of notation.

At the bifurcation point between stable and unstable in-
coherence λ crosses the imaginary axis, λ = iR with R ∈ R,
therefore

16(−(R + ω0)2 + K2/4)[cos(Rτ ) + i sin(Rτ )] = K2. (11)

Given that the right-hand side is real, the left-hand side must
also be real, so sin(Rτ ) = 0, which leads to the condition

Rτ = mπ with m ∈ Z. (12)

Finally, substituting Eq. (12) into Eq. (11) and considering
that the natural period is T = 2π/ω0, Eq. (11) can be solved
for K/ω0, which yields

K

ω0
=

{± 2√
3

m+2τ/T
τ/T if m is even

± 2√
5

m+2τ/T
τ/T if m is odd.

(13)

Therefore, the boundaries of stable incoherence (BSI) are
periodic in the delay and only depend on the sum of the delays
in the two pathways.

This aspect was fully confirmed by the numerical anal-
ysis, with the correspondent parameters used listed in the
Supplemental Material [46]. The simulations were performed
in MATLAB2020B, making use of the built-in function dde23
(Fig. 2) and also confirmed via the Euler method (not
shown). They were performed first with time delay in the
inhibitory connection only [Fig. 2(a)], excitatory connection
only (shown in the Supplemental Material [46]), and then in
both [Fig. 2(b)]. Moreover, they were repeated over a range
of values for K and τ . As initial condition, the phases of
both populations followed a normal distribution centered at
zero and with standard deviation 2π . Once the system had
equilibrated, Z2 was computed for each population. From
the simulations, four possible scenarios emerged, that repeat
periodically (denoted I–IV). In particular, the black areas (for
instance, area III) were confirmed to be the areas in which
both populations are internally not synchronized (Z2

E ≈ Z2
I ≈

0), at the intersection between the curves. In white areas, for
instance in area II, both populations were internally synchro-
nized (Z2

E ≈ Z2
I ≈ 1). However, the remarkable phenomenon

is the emergence of the blue and orange areas such as I and
IV, where only one population is coherent while the other is
incoherent. These corresponded to chimera states. In Fig. 2(c),
a snapshot of the oscillator phases is reported at a fixed time,
which confirms the four scenarios depicted above.

Considering only intercouplings between the two popu-
lations is a very particular case, that enabled us to highly
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FIG. 2. Phase diagram obtained by simulating Eq. (1) with only
external couplings and computing Z2

E , Z2
I with (a) τEI > 0, τIE = 0

and (b) τEI = τIE > 0. The x axis represents the sum of the delays
τ in units of the natural period T , while the y axis corresponds to
the coupling strength K in terms of the natural frequency ω0. The
value of the order parameters is indicated by the two-dimensional
color gradient on the right. The parameters used are reported in the
Supplemental Material [46]. The BSI are obtained from Eq. (13).
(c) Snapshots of the oscillator phases with parameters in regions I–
IV which confirm the presence of chimera states in region I and IV.
Color scheme as in Fig. 1.

simplify the analytical calculations; however, it is not very
realistic, therefore we analyzed whether the system phase
diagram depicted in Fig. 2 would be robust to the inclusion
of small intracouplings.

B. Identical oscillators with both internal and
external couplings

First, we considered the case of equal external coupling
strengths kEI = kIE ≡ kext, as well as equal internal ones
kEE = kII ≡ kint. Then we analyzed the robustness of the
phase diagram depicted in Fig. 2, computing the number of
overall synchronous, asynchronous, and chimera states while
increasing the values of the internal couplings. As shown in
Fig. 3(a), the number of asynchronous and chimera states
are robust to the inclusion of internal couplings until kint ≈
10−1kext, when the system starts to transition to an overall
synchronous state.

Secondly, we considered the case of internal and external
couplings of equal strength (|kEI,IE ,EE ,II | ≡ K) while assum-
ing instantaneous intracouplings (τEE ,II = 0) and the same
delayed cross-couplings (τEI,IE > 0), which could represent
the case of two neuronal populations that are spatially sepa-
rated by some distance. In this case, Eq. (10) becomes (shown

FIG. 3. (a) Percentage of “synchronized” (squares), “asynchro-
nized” (crosses), and “chimera” states (circles) among all the
measured states at increasing values of the internal couplings (kint)
compared to the external ones (kext). (b) Phase diagram obtained by
simulating Eq. (1) with external delayed and internal instantaneous
couplings and computing Z2

E , Z2
I . The x axis represents the sum of the

delays τ in units of the natural period T , while the y axis corresponds
to the coupling strength K in terms of the natural frequency ω0. The
value of the order parameters is indicated by the two-dimensional
color gradient on the right. The parameters used are reported in the
Supplemental Material [46]. The BSI are obtained from Eq. (15).
Color scheme as in Fig. 1.

in the Supplemental Material [46])

(16(λ + iω0)2 + K2)eλτ = K2, (14)

where again τ = τEI + τIE . Following the same reasoning as
before, we found the BSI as{

τ/T = −m/2 if m is even
K
ω0

= ±√
2 m+2τ/T

τ/T if m is odd.
(15)

Therefore, the equations representing the BSI are hyperbolas
and vertical lines in the (τ/T, K/ω0) space. This is in accor-
dance with the simulations, as depicted in Fig. 3(b). In this
case, compared to Fig. 2, the regions of incoherence shrink
around integer values of τ/T , while the area corresponding
to the chimera states decreases for increasing values of the
external delay. Because the inclusion of small delayed inter-
nal couplings did not alter significantly the plot depicted in
Fig. 2, while it highly complicated the analytical calculations,
we decided, for the rest of the paper, to consider negligible
internal couplings.

From the simulations it seemed that the system would
never display chimeras without external time delay, hence we
analyzed whether the delay was the only necessary condition
or whether other parameters could play a role in it as well.
In order to do so, we relaxed some of the constraints, in
particular that of identical oscillators and identical couplings,
and included also some external noise in the system.

C. Heterogeneous oscillators without time delay

We considered the case with no time delay in the con-
nections (τEI,IE = 0), some external Gaussian noise (D >

0), and heterogeneity in the frequencies of the oscillators.
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The calculations are particularly accessible when consider-
ing Lorentzian distributions for the frequencies, gσ (ω) =
L(ω̄σ , γσ ) ≡ γσ /π

(ω−ω̄σ )2+γ 2
σ

. For simplicity we set γE = γI = γ

and ω̄E = −ω̄I = ω̄, so that �ω ≡ ωE − ωI = 2ω̄.
Considering symmetric frequencies over the origin is

equivalent to considering a system of reference that is rotating
with frequency � = (ωE + ωI )/2 and does not modify the
analysis of the stability. Moreover, we define |kEI | = ε|kIE | =
εk both for simplicity of notation and because we will be
interested in observing the ratio of the two coupling strengths,
ε.

The following analysis builds on the work done by Mont-
brió and Pazó [43]. A brief linear stability analysis (see the
Supplemental Material [46] for more details), again close to
the incoherent state, leads to the condition

16�2 − 8i(ε − 1)k� + 4�ω2 − 4k(ε + 1)�ω + 3εk2 = 0,

(16)

where � ≡ λ + D + γ for simplicity of notation. Solving for
λ results in

λ+,− = − γ − D ± 1

4
[4k(ε + 1)�ω − 4�ω2

− (3ε + (ε − 1)2)k2]1/2 + i

(
(ε − 1)k

4
− �

)
. (17)

Finally, imposing the condition that Re(λ+) = 0 gives the
BSI:

�ω

γ + D
= 1

2
(ε + 1)

k

γ + D
± 1

2

√
ε

(
k

γ + D

)2

− 16. (18)

This result confirms, as already shown by Montbrió and
Pazó [43], that without time delay, coherence is only possible
for positive values of �ω, namely, when the E population is
faster than the I population. Moreover, increasing the disparity
between the E-I couplings causes the area of coherence to
shrink.

The simulations were performed with D = 0, spanning
the parameter space given by (k/γ ,�ω/γ ), and they were
repeated first with ε = 1 [Fig. 4(a)], namely, with the same
coupling strength in the two pathways, and then with ε = 10
[Fig. 4(b)]; again, the precise parameters used are reported in
the Supplemental Material [46]. In both cases the simulations
were in good agreement with the analytical curves, reported
as continuous lines. In this case, though, no chimera states
were observed. Indeed, the two populations either both syn-
chronized (in the dark green areas where 〈Z2〉 ≈ 1) or both
did not (in light areas where 〈Z2〉 ≈ 0).

D. Existence of chimera states without time delay

In the end, we investigated the possibility that chimera
states theoretically exist without time delay in the couplings,
even if they have not been observed in the previous simu-
lations. In this context, inspired by Abrams et al. [47], we
considered a special class of density functions f σ , that have
the form of a Poisson kernel, such that they satisfy the so-

FIG. 4. Phase diagram obtained by simulating Eq. (1) and com-
puting 〈Z2〉 with τEI = τIE = 0, Lorentzian distributed frequencies
D = 0, and (a) same coupling strengths (ε = 1) and (b) inhibitory
coupling strengths greater than the excitatory one (ε = 10). On the x
and y axis there are the coupling strength k and the difference in the
natural frequencies �ω, respectively, both in units of γ , the spread
of the frequency distribution. The value of the order parameter is
indicated by the color gradient. The parameters used are reported in
the Supplemental Material [46]. The BSI are obtained from Eq. (18).

called OA ansatz [45]:

f σ (θ |ω, t ) = 1

2π

{
1 +

+∞∑
l=1

[ f σ
1 eiθ ]l

}
+ c.c. (19)

These functions are characterized by having the same coeffi-
cients in all the Fourier harmonics, except that they are raised
to the lth power for the lth harmonic, f σ

l>1(ω, t ) = [ f σ
1 (ω, t )]l .

Substituting Eq. (19) in Eq. (7) with D = 0, and given that
Zσ = f σ∗

1 , yields

˙f σ
1 + i

(
ω̃σ f σ

1 − kσσ ′

4
(Z∗

σ ′ + f σ2
1 Zσ ′ )

)
= 0. (20)

Therefore, if this condition is fulfilled, such kernels satisfy the
governing equations exactly. The OA ansatz is useful because
it reduces the dynamics from infinite to finite dimensional.

It is convenient to introduce polar coordinates such
as (ρ, φ), defined by f σ

1 = ρσ e−iφσ . When ρσ → 1,
f σ (θ |ω, t ) → δ(θ − φσ (t )) centered at the phase φσ (t ).
Therefore, φσ can be considered the “center” of the density
fσ and ρσ measures how sharply peaked it is [47]. Hence, in
terms of its real and imaginary part, Eq. (20) can be written as{

ρ̇σ − kσσ ′
4 (ρ2

σ − 1)ρσ ′ sin(φσ − φσ ′ ) = 0

φ̇σ − ω̃σ + kσσ ′
4

ρσ ′
ρσ

(ρ2
σ + 1) cos(φσ − φσ ′ ) = 0.

(21)

For simplicity, we considered the case with |kEI | = |kIE | ≡
K and we defined ψ ≡ φE − φI . Therefore, Eq. (21), written
explicitly in terms of E and I, reduces to⎧⎪⎨⎪⎩

ρ̇E + K
4

(
ρ2

E − 1
)
ρI sin ψ = 0

ρ̇I + K
4

(
ρ2

I − 1
)
ρE sin ψ = 0

ψ̇+�ω − K − K
4

(
ρI

ρE

(
ρ2

E + 1
) + ρE

ρI

(
ρ2

I + 1
))

cos ψ = 0,

(22)

where �ω ≡ ωE − ωI . We then considered the case in which
the E population is perfectly synchronized (ρE = 1) and the
other is not (ρI ≡ r), as shown in Fig. 5(a). This further
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FIG. 5. (a) Distributions of E-I: I follows a Poisson kernel
[Eq. (24)] centered at φI , with the spread dependent on ρI = r;
E is a δ function centered at φE , with ρE = 1, as E is perfectly
synchronized. The distance between the centers of the two distri-
butions is ψ = φE − φI . (b) Trajectories in the (r, ψ ) plane, in polar
coordinates, obtained by simulating Eq. (23) with � = chimera state
and • = perfectly synchronized case. (�, �,�) correspond to the
parameters used in (c). (c) Order parameter plotted as a function
of time for the E, I populations with NE ,I = 250. (d) Raster plot of
the E-I neurons at the breathing chimera state for t ∈ [100–150 s].
(e) Simulation of the system in the space (ρE , ρI , ψ ) following
Eq. (22) represented here in cylindrical coordinates. Color scheme
as in Fig. 1.

reduces the dynamics to a two-dimensional system:{
ṙ = K

4 (1 − r2) sin ψ

ψ̇ = �ω − K + K
4

(
2r + r2+1

r

)
cos ψ.

(23)

In this way, the chimera states correspond to the fixed
points, namely, r(t ) = const and r 
= 1 (since r = 1 corre-
sponds to the perfectly synchronized case, that is always a
trivial solution) and ψ (t ) = const. Calculating the values of
the fixed points yields{

ψ∗ = mπ, m ∈ Z

r∗
1,2 = −2(�ω−K )±

√
4(�ω−K )2−3K2

3(−1)mK .

As expected, considering the opposite case with ρI = 1 led to
the same results [46], given that the system is symmetric.

When �ω = 0, that is, with identical oscillators,
(r∗, ψ∗) = (1/3, 2mπ ), independently of K , which means
that chimera states could in principle exist even without
time delay, because fixed points different from the perfectly
synchronized case exist. To find out the stability of these
fixed points, we linearized around them, by computing the
Jacobian J . Given the system of differential equations of the

form {ṙ = f (r, ψ )
ψ̇ = g(r, ψ )

, the Jacobian J is defined as

J =
[ df

dr
df
dψ

dg
dr

dg
dψ

]
|r∗,ψ∗

=
[

0 2/9K

−3/2K 0

]
.

As the trace is null and the determinant is � = K2/3 > 0, the
linearization predicts a linear center. Moreover, since the sys-
tem is invariant under the change of variables t → −t, ψ →
−ψ , the fixed point is also a nonlinear center [48]. Hence, a
family of periodic orbits surrounds the chimera, which can be
defined as neutrally stable “breathing chimeras” [47].

Both the presence and the nature of the chimeras were fully
confirmed by the numerical simulation, which was performed
in the case of �ω = 0, K = 0.5 [Fig. 5(b)]. At the same
time, the numerical analysis also showed the presence of the
perfectly synchronized state, in which both populations syn-
chronize to the same phase, that corresponds to r = 1, ψ = 0,
which is a saddle on an invariant circle.

Consequently, we aimed to test whether this description—
in the continuum limit—would agree with the simulations
performed with finite N . For this purpose, it could be exploited
that the distribution function f , in the OA ansatz, has the shape
of a Poisson kernel, such as

Pr (θ ) =
∞∑

n=−∞
r|n|einθ = 1 − r2

1 − 2r cos θ + r2
,

which, in this case, becomes

f σ (θ ) = 1 − ρ2
σ

1 − 2ρσ cos(θ − φσ ) + ρ2
σ

. (24)

Hence, the simulations were performed with the I population
initially distributed according to f I for some chosen (ρI , φI ),
whereas the E population was perfectly synchronized (ρE =
1), as shown in Fig. 5(a). We obtained, as expected, that while
ZE (t ) = const = 1, ZI (t ) oscillates over time, corresponding
to the periodic orbit in the (r, ψ ) plane [Fig. 5(c)]. To explain
this concept further, in Fig. 5(d) we report the raster plot of
the two populations, with the corresponding order parameter
Z2(t ) superimposed. Every dot represents the moment each
neuron is firing, i.e., when the phase of each neuron completes
one full rotation: therefore, the blue dots are perfectly aligned,
since the E neurons fire in synchrony, whereas the I neurons
oscillate between moments of higher and lower synchrony,
corresponding to peaks and troughs of Z2

I (t ). As expected,
the situation was totally symmetric when starting from
ρI = 1 [46].

Moreover, the whole system was simulated in the coor-
dinates (ρE , ρI , ψ) following Eq. (22), shown in the figure
as cylindrical coordinates [Fig. 5(e)]. This revealed that the
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FIG. 6. (a) Fraction of chimera states registered in Fig. 2(b) cal-
culated per coupling strength, which corresponds to the light-blue
curve, and per time delay, shown by the red curve. (b) Noise ro-
bustness comparison of the chimera states between delayed (dashed
and dotted lines) and instantaneous couplings (solid line), obtained
computing the order parameter of the synchronized population (Z2

E )
for increasing values of D.

manifold ρE = 1, in which the system was restricted in
Fig. 5(b), is not attracting. In other words, the system should
be “prepared” in this initial condition in order to observe it,
which is coherent with our previous simulations.

E. Robustness of chimera states

First, we considered what are the most likely configura-
tions in the parameter space to display the coexistence of
coherence and incoherence, by calculating the fraction of
chimera states per time delay and per coupling strength ob-
served in Fig. 2(b). This showed that a small (nonzero) time
delay, for any value of K , would result in a chimera state;

moreover, increasing either τ or K progressively leads to the
loss of these states [Fig. 6(a)].

Secondly, the robustness of the chimeras towards external
perturbations was also evaluated, simulating the system with
and without time delay in the cross-couplings with increasing
values of D, which quantifies the level of stochastic noise
[Fig. 6(b)]. As expected, it appears that the system without
time delay is not very robust, as the manifold that corresponds
to the chimera is not attracting, whereas time delays help to
stabilize the system until higher values of noise.

III. CONCLUSIONS

In this paper we have sought to shed light on the prop-
erties of type I oscillators, that are traditionally believed to
have low propensity to synchronize. To do so, we modeled a
feedback loop between an excitatory and an inhibitory pop-
ulation, which is a known neural mechanism that produces
oscillations. The analysis revealed that including time delayed
couplings highly enriches the dynamics of the network. In
case of stronger external than internal couplings, we observed
the emergence of stable periodic chimera states, that are robust
to noise. On the other hand, with negligible internal connec-
tions and instantaneous external ones, a family of “breathing
chimeras” was observed, that is neutrally stable and less ro-
bust to external perturbations.

Future work may investigate whether the chimera states
are preserved also in more realistic scenarios, such as when
considering local couplings in a spatially distributed system.
Moreover, this paper offers a theoretical framework to investi-
gate more biologically inspired neuronal models and testable
predictions that can be potentially verified experimentally.
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Derivation of Eq. (9)

Inserting Eq. (8) into Eq. (5) in the main text, while leaving only terms up to order η and setting
the correspondent modes equal, yields

δ ˙fσl =− (ilω̃σ + l2D)δfσl +

+ il

[
kσσ′

4

(
δfσl−1Z

∗
σ′(t− τσσ′) + fσl−1〈δfσ

′
1 〉t−τσσ′ + δfσl+1Zσ′(t− τσσ′) + fσl+1〈δfσ

′
−1〉t−τσσ′

)
+

+
kσσ
4

(
δfσl−1Z

∗
σ(t− τσσ) + fσl−1〈δfσ1 〉t−τσσ + δfσl+1Zσ(t− τσσ) + fσl+1〈δfσ−1〉t−τσσ

)]
.

In the incoherent state Z = 0, all the modes save the 0-th disappear (fσl 6=0 = 0) and fσ0 = 1.
Therefore, the equations reduce to

{
δ ˙fσ±1 = −(±iω̃σ +D)δfσ±1 ± i

[kσσ′
4 〈δfσ

′
±1〉t−τσσ′ + kσσ

4 〈δfσ±1〉t−τσσ
]

when l = ±1

δ ˙fσl = −(ilω̃σ + l2D)δfσl when |l| ≥ 2.
(S.1)

The only potential unstable modes are l = ±1, but we restrict our analysis to l = +1 only, since
l = −1 is just the complex conjugate. Therefore, considering the case l = 1 directly leads to Eq. (9)
in the main text.

Derivation of Eq. (10) and Eq. (14)

First, we substituted the ansatz δfσ1 (ω, t) = bσ(ω)eλt into Eq. (9). Then, we multiplied by g(ω) and
finally integrated in dω, which yields

4〈bσ(ω)〉σ
kσσ′〈bσ′(ω)〉e−λτσσ′ + kσσ〈bσ(ω)〉e−λτσσ = i

∫ +∞

−∞

gσ(ω)

λ+ iω̃σ
dω,

If we consider that the frequency distribution is a delta function for both populations, g(ω) =
δ(ω − ω0) centered around the same frequency (ωE = ωI = ω0), the integral can be trivially solved
to obtain an homogeneous system of two equations

[
4(λ+ iω̃E)− ikEEe−λτEE −ikEIe−λτEI

−ikIEe−λτIE 4(λ+ iω̃I)− ikIIe−λτII
]
×
[
〈bE〉
〈bI〉

]
=

[
0
0

]
.

The only non trivial solution corresponds to having a null determinant, which, given the conditions
of section A, leads directly to Eq. (10) and given the conditions of section B, to Eq. (14).
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Time delay in the excitatory connection

Simulating the system with time delay in the external excitatory connection confirms that the
dependence is only on the sum of the delays in the external excitatory and inhibitory pathways (Fig.
S1).

  

0        1

1 

0

𝑍𝐼
2

𝑍𝐸
2

Figure S1: Phase diagram obtained by simulating Eq. (1) in the main text and computing Z2
E,I with

τEI = 0, τIE > 0.

Parameters

Fig. (2) Fig. (3) Fig. (4)

(a) (b) (c) (a) (b) (a) (b)

NE,I 100 100 100 100 100 100 100
ω0 [rad/s] 2π · 0.1 2π · 0.1 2π · 0.1 2π · 0.1 2π · 0.1 2π · 0.1 /

τEI [s] [0-20] [0-20] [I: 1, II: 3, III: 5, IV: 6] [0-20] [0-20] 0 0
τIE [s] 0 [0-20] [I: 1, II: 3, III: 5, IV: 6] [0-20] [0-20] 0 0
τEE [s] / / / [0-20] 0 / /
τII [s] / / / [0-20] 0 / /

|kEI | [rad/s] [0.1-1] [0.1-1] 0.5 [0.1-1] [0.1-1] [0.1-1] [0.25-10]
|kIE | [rad/s] [0.1-1] [0.1-1] 0.5 [0.1-1] [0.1-1] [0.1-1] [0.025-1]
|kEE | [rad/s] 0 0 0 [10−2-1]·|kEI | [0.1-1] 0 0
|kII | [rad/s] 0 0 0 [10−2-1]·|kEI | [0.1-1] 0 0

γ [rad/s] / / / / / 0.01 0.01
∆ω [rad/s] / / / / / [0.05-1] [0.05-1]
Tot time [s] 600 600 600 600 600 600 600

Table 1: Parameters used in the simulations of Fig. (2,3,4)
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Derivation of Eq. (16)

Inserting the ansatz δfσ1 (ω, t) = bσ(ω)eλt into (S.1), with l = 1, yields

4bσ(ω)

kσσ′〈bσ′(ω)〉σ′
= i

1

λ+D + iω̃σ
.

Multiplying both sides by gσ(ω) and integrating results in

4〈bσ(ω)〉σ
kσσ′〈bσ′(ω)〉σ′

= i

∫ +∞

−∞

1

λ+D + iω̃σ
gσ(ω)dω. (S.2)

The integral on the RHS can be calculated exactly if we consider Lorentzian distributions for the

frequencies, gσ(ω) = γσ/π
(ω−ω̄σ)2+γ2

σ
. Thus the integral we aim to calculate is

∫ +∞

−∞

1

λ+D + i(ωσ + kσσ′
2 )

γσ/π

(ω − ω̄σ)2 + γ2
σ

dω.

Substituting ω ∈ R with z ∈ C, the integral path can be closed with a semicircle with radius R→∞,
in the half-plane with negative imaginary part. The only singularity that lies within the path is
z1 = ω̄σ − iγ, so that, for the Residue Theorem, (S.2) becomes

4〈bσ(ω)〉σ
kσσ′〈bσ′(ω)〉σ′

=
1

ω̄σ + kσσ′
2 − i(λ+D + γσ)

. (S.3)

Inserting (S.3) in (S.2) yields a system of two homogeneous equations in 〈bE〉E and 〈bI〉I as un-
knowns, that can be written explicitly for the two populations as





4〈bE〉E
kEI〈bI〉I = 1

ω̄E+
kEI
2 −i(λ+D+γE)

4〈bI〉I
kIE〈bE〉E = 1

ω̄I+
kIE
2 −i(λ+D+γI)

(S.4)

and in matrix form
[
4ω̄E + 2kEI − 4iΛE −kEI

−kIE 4ω̄I + 2kIE − 4iΛI

]
×
[
〈bE〉E
〈bI〉I

]
=

[
0
0

]

where we have defined ΛE = λ + D + γE and ΛI = λ + D + γI to simplify the notation. We set
γE = γI = γ and ω̄E = −ω̄I = ω̄, so that ∆ω = 2ω̄. Moreover, we defined |kEI | = ε|kIE | = εk.
The only possibility to have a solution different from the trivial one is that the determinant of the
matrix of the coefficients is zero, that leads directly to Eq. (16) in the main text.

Chimera state with no time delay: Symmetric case when ρI = 1

A simulation was performed with the E population (blue) initially distributed according to fE for
some chosen (ρE , φE), whereas the I population (orange) was perfectly synchronized (ρI = 1), as
shown in Fig. S2. We obtained, as expected, that while ZI(t) = const = 1, ZE(t) oscillates over
time, corresponding to the periodic orbit in the (ρ, ψ) plane.
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Figure S2: Order parameter plotted as a function of time for the E (blue), I (orange) populations
with NE,I = 250, with I initially synchronized and E distributed as a Poisson kernel. The symbols
(�,N,�) correspond to the three orbits shown in Fig 5b in the main text.
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3Enhanced DNA repair through droplet
formation and p53 oscillations

3.1 Introduction and Objectives
Genes are DNA segments that contain the instructions for the production of a functional product,

usually a protein. However, not all genes are active simultaneously. The DNA can be pictured as a

complex symphony, with each gene holding a musical note waiting to be played. In this analogy, the

molecular maestros, who dictate when and how each note is played, are the Transcription Factors

(TFs), which ultimately ensure the harmonious melody of life itself. This process is called gene
regulation. Indeed, the TFs (which are proteins themselves), by binding to specific DNA sequences,

define which of the "instructions" present in the DNA will be translated into the corresponding

products, thus acting as switches that turn the expression of specific genes on or off. This allows,

among others, cells to differentiate into specific cell types (so that blood cells are substantially

different from neurons, despite carrying the same DNA), and to respond to environmental signals

(for example, activating genes related to melanin production after exposure to sunlight, resulting in

a darker skin tone, which protects from UV radiation) (Alberts, 2017).

A myriad of different TFs coexist in the cell, therefore their concentration needs to be tightly regulated

as well, switching from low to high levels to ensure that genes are activated or deactivated as needed

for the cell’s proper functioning. However, TF concentration has been shown to portray a wide range

of dynamical patterns which goes beyond being either constant low or high, such as single-pulsed

or oscillatory (Purvis and Lahav, 2013). This has been observed, among others, for the nuclear

concentration of TFs such as Nuclear Factor kappa B (Nf-κB), involved in the immune response

(Hoffmann et al., 2002; Nelson et al., 2004; Zambrano et al., 2016), Hes1, involved in cell fate

determination and differentiation during development (Kay et al., 2017; Kobayashi et al., 2009;

Jensen et al., 2003), or p53 (Lahav et al., 2004; Purvis et al., 2012), that is crucial in DNA repair.

As of today, the role of these different dynamics remains largely elusive (Kruse and Jülicher, 2005;

Levine et al., 2013).

Among these TFs, p53, also called guardian of the genome (Lane, 1992), famously serves as a master

tumour suppressor, by ensuring that cells with damaged DNA are either repaired or eliminated (Riley

et al., 2008; Murray-Zmijewski et al., 2008; Aylon and Oren, 2007), thereby maintaining the integrity

of the genome and preventing the spread of mutations which would eventually give rise to malignant

tumours. For decades, researchers have worked to understand its biological functions, in order

to identify new cancer treatment strategies. Usually held at low concentration, in the presence of

multiple DNA breaks, it shows sustained oscillations with a precise periodicity of 5.5 h (Lahav et al.,
2004), whose role is still highly debated.
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Figure 3.1: The system which consists of three main building blocks: p53 oscillatory dynamics, foci dynamics
and the process of DNA repair. Adapted from Heltberg et al. (2022).

While the concentration of p53 portrays time-variation, the concentration of proteins that are

responsible for DNA repair (recruited, among others, by p53), portrays substantial spatial-variations

in the nucleus. Indeed, these proteins have been shown to segregate, around the sites of DNA ruptures,

into membraneless compartments (known as foci) (Lisby et al., 2004), which resemble liquid droplets,

as they seem to arise as a result of phase-separation (the same mechanism that leads to the formation

of droplets of oil in water). These micro-environments have been observed experimentally to form

and dissolve at a timescale of hours (Pessina et al., 2019), which is approximately the same as p53

periodicity. Despite that, a precise link between p53 and foci is still unknown.

The creation of these compartments results in an inhomogeneous environment within the nucleus, in

which proteins must navigate in order to locate their target for repair. If we assume that the repair

processes are diffusion-limited, meaning that the repair speed is primarily determined by how fast

the proteins can move within the nucleus, and consequently, how long it takes to find their target,

we can envision that the presence of foci will have a significant impact on how fast and efficiently

DNA damage can be fixed.

The aim of this work, which is summarized in Figure 3.1, is to answer the questions:

"What is the evolutionary advantage of having oscillations in p53 dynamics, in particular on

a timescale of hours? Is there a link between p53 oscillatory dynamics and the formation of

repair foci? Could the combined action of p53 oscillations (in time) and the distribution of

repair material through the foci (in space) enhance the repair rate?

To answer these questions, we build a theoretical model in which we describe the foci as arising from

liquid-liquid phase separation (Heltberg, Miné-Hattab, et al., 2021), whose formation and dissolution

is dictated by the p53 oscillatory concentration. In particular, our main goals are to:
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• Investigate how the repair rates of multiple damaged sites are affected by the presence of foci

in the environment;

• Establish a connection between the p53 protein dynamics and the observed phase separation

that occurs in the nucleus;

• Analyse the role of p53 amplitude and frequency in this process;

Overall, we aim to unravel a natural reason for p53 oscillatory dynamics and understand the interplay

between the temporal regulation of p53 and the spatial organization of repair foci.

3.2 Background theory

3.2.1 Transcription Factors (TFs) role in biology: p53 as "guardian
of the genome"

The way genetic information flows within living organisms follows the so-called central dogma of
biology (Crick, 1958), which consists of three essential steps: DNA replication, transcription, and

translation (Figure 3.2A). During DNA replication, the DNA molecule is copied to ensure each new

cell receives a complete set of genetic information. Transcription is the process in which genetic

information encoded in DNA is transcribed into a complementary RNA molecule called mRNA. This

mRNA carries the genetic code to the site of protein synthesis. Translation is the final step, where

the mRNA code is read by ribosomes, and proteins are synthesized using transfer RNA (tRNA). This

genetic information transfer is influenced by a wide array of regulatory factors. As introduced in

the previous section, one crucial group of regulatory proteins is TFs, which bind to specific DNA

sequences near genes and modulate their expression. By acting as switches, TFs can activate or

repress gene transcription, enabling precise control over gene expression and contribute to the

diversity and functionality of cells and organisms (Latchman, 1997). In particular, they play a

pivotal role in determining which genes are turned on or off in response to various signals and

environmental cues or stresses, such as chemical agents or radiation which cause severe DNA damage

(Figure 3.2B).

Among all the TFs, p53 is perhaps one of the most widely studied: during the first thirty years

after its discovery, almost 50 thousands articles have been published on p53 (Lane and Levine,

2010). Its encoding gene, TP53, is indeed found to be mutated in around 50% of human cancers

(Vogelstein et al., 2000). Under normal conditions, p53 is kept at low concentrations within cells, as

it is negatively regulated by interaction with the oncoprotein MDM2 (Haupt et al., 1997; Honda et al.,
1997; Kubbutat et al., 1997).MDM2 and p53 engage in a negative-feedback loop, where p53 triggers

the production of MDM2, which subsequently facilitates the breakdown of p53 (Ma et al., 2005;

Nag et al., 2013). However, when multiple DNA damages (defined as Double-Strand Breaks (DSBs))

occur, as a result of radiation or other external stresses, MDM2 is suppressed, releasing the "break"

on p53, whose concentration rises (Meek, 2004)(Figure 3.2C). Depending on the severity of the DNA

damage, p53 portrays different dynamics. In case of severe damage, p53 transitions into a constant

high level, which promotes senescence (growth arrest and cessation of cell division) or apoptosis

(programmed cell-death)(Yeargin and Haas, 1995). In this way, the organism prevents the spread of

cells with potentially harmful genetic alterations. On the other hand, if the damage is moderate, p53
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Figure 3.2: (A) Central dogma of biology. (B) Radiation may cause DNA Double-Strand Breaks (DSBs). (C)
p53 as "guardian of the genome": it activates in response to DNA damage and portrays different
dynamics (sustained vs oscillatory) which result in different cell fates (senescence/apoptosis vs cell
cycle arrest/DNA repair) depending on the amount of DNA damage.

levels oscillate with a specific periodicity of 5.5 h, and the number of pulses is positively correlated

to the amount of DNA damage (Lahav et al., 2004). This dynamics is linked to cell cycle arrest and

transcription of genes related to DNA repair: by halting the cell cycle, p53 provides an opportunity

for DNA repair mechanisms to fix damaged DNA before replication occurs. Despite the molecular

mechanism which gives rise to the oscillations being well-known (the negative feedback loop with

MDM2), the evolutionary advantage of this type of dynamics is still highly debated.

In order to model the p53-Mdm2 network in the simplest way possible, while still capturing its

essential dynamics, one can define a set of Ordinary Differential Equations (ODEs), such as (Mengel

et al., 2010): 
dp
dt = k1 − k2M

p
k3+p

dm
dt = k4p

2 − k5m,

dM
dt = k6m− k7M,

(3.1)

where p,m and M are the concentration of p53, of Mdm2-mRNA and Mdm2, respectively. The

model assumes that p53 is produced at a constant rate k1 and is degraded by binding to Mdm2 (with

constants k2, k3). The Mdm2-mRNA is produced proportionally to a constant k4 times the p53 level

squared, given that p53 acts as a dimer, and is subjected to exponential decay (k5). Mdm2 follows

linearly the concentration of Mdm2-mRNA with constant k6 and is also subjected to exponential

decay (k7). Depending on the parameters, this model shows all the possible dynamics portrayed by

p53 (constant low levels, oscillations, and high levels).

42 Chapter 3 Enhanced DNA repair through droplet formation and p53 oscillations



3.2.2 Foci formation and physics of phase separation
Another central aspect that has been observed in DNA damage repair is the formation of so-called

ionizing radiation-induced foci (IRIF) (Lisby et al., 2001), which will be referred to simply as foci in

the following. As mentioned in the introduction, these membraneless structures consist of micro-

environments rich of repair proteins which arise around the site of damage, and are essentially

biomolecular condensates (Figure 3.3A), as they are believed to stem from liquid-liquid phase

separation (Heltberg, Miné-Hattab, et al., 2021). Their role is to concentrate repair factors and DNA

repair machinery at the site of damage, providing a confined and concentrated environment that

facilitates efficient and coordinated repair processes. The formation of foci not only promotes the

recruitment and assembly of repair factors, but also enables the spatial organization and segregation

of repair activities within the nucleus, preventing the spread of DNA damage to other genomic

regions.

The mathematical framework which describes the process of phase separation was developed by

Lifshitz and Slyozov (1961). Intuitively, when there is a solute (proteins) that is dissolved in a

solvent (water) such that the two species have more favourable interactions with the same than with

the other species, there is a critical concentration of proteins above which it is more energetically

favourable for them to segregate in a condensed state (the droplets) instead of been dissolved in

water. Increasing the concentration even more would lead to a dense phase (Figure 3.3B).

In the presence of multiple droplets, competition for material arises. Proteins on the surface of small

droplets will be more easily lost, given that they have fewer interactions than proteins on the surface

of larger droplets. This leads to a concentration gradient which results in a flux of proteins from

small to large droplets (Figure 3.3C). All the droplets smaller than a critical radius shrink, while the

others grow. Since the critical radius also grows in time (Figure 3.3D), only one droplet dominates

in the end, taking up all the material. This phenomenon is called Ostwald Ripening (OR) and can be

visualized in the schematics of Figure 3.3E. The equation that regulates the time evolution of the

radius of the i-th droplet is

dRi
dt

= Dcout
cin

1
Ri

(c∞(t)
cout

− 1 − lγ
Ri

)
, (3.2)

where D is the diffusion constant, cin,out are the concentration inside/outside of a droplet in the

thermodynamic limit (R → ∞), c∞ is the concentration far away from the droplets and lγ is the

capillary length. Moreover, material conservation dictates that the medium concentration c̄ in the

entire volume Vn must follow:

c̄Vn = cin

N∑
i

Vi + c∞(t)
(
Vn −

N∑
i

Vi

)
. (3.3)

where Vi is the volume of each droplet. The full mathematical derivation is reported in the Theory

Box 3.2.1.

Theory Box 3.2.1: Derivation of droplets coarsening

Let’s consider a system of infinite size with two inhomogeneous phases, with free energy

F = V1f(c1) + V2f(c2). Here f is the free energy density, V1,2 are the volumes and c1,2 are
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the equilibrium concentrations of the two phases. The total volume VT is assumed to be

constant, as well as the number of molecules, so that VT = V1 + V2 and cTVT = V1c1 + V2c2,

with cT being the average concentration. Expressed in terms of c1, V1, cT , VT , the expression

for F yields

F = V1f(c1) + (VT − V1)f
(cTVT − V1c1

VT − V1

)
.

To determine the stability condition of the system, we aim to minimize the free energy with

respect to the concentration and volume of one of the two phases. This involves computing

the derivatives of F with respect to c1 and V1 and setting them to zero. This results in:

∂c1F =0 ⇒ f ′(c1) − f ′(c2) = 0, (3.4)

∂V1F =0 ⇒ f(c1) − f(c2) + f ′(c2) · [c2 − c1] = 0. (3.5)

While surface effects may be negligible in the thermodynamic limit, they become pivotal in

the context of droplets. Here, the free energy includes an additional term +Aγ, where A

represents the interface area and γ signifies the surface tension. Therefore, for a spherical

droplet, the free energy is expressed as:

F = Vdf(cin) + (V − Vd)f(cout) + 4πR2γ,

where Vd = 4π
3 R

3 is the volume of a spherical droplet of radius R, cin/out are the internal/ex-

ternal concentrations and V is the volume of the whole system. Differentiating with respect

to cin and Vd leads to two equilibrium conditions

0 = f ′(ceqin) − f ′(ceqout), 0 = f(ceqin) − f(ceqout) + (ceqout − ceqin)f ′(ceqout) + 2γ
R
,

where ceqin/out are the internal/external equilibrium concentrations. The only difference with

the infinite size system (Equations (3.4) and (3.5)) is the last term, the Laplace pressure,

which is negligible in the thermodynamic limit.

To approximate the equilibrium concentrations, we consider them as being a linear correction

of the corresponding concentrations in the thermodynamic limit (c(0)
in/out), such that ceqin/out =

c
(0)
in + δcin/out.

In this way we find the Gibbs-Thomson relations

δcout ≈ 2γ
(c(0)
in − c

(0)
out)f ′′(c(0)

out)R
, δcin ≈ f ′′(c(0)

out)
f ′′(c(0)

in )
δcout,

which allow us to express the equilibrium concentrations as

ceqout = c
(0)
out ·

(
1 + lγ,out

R

)
, ceqin = c

(0)
in ·

(
1 + lγ,in

R

)
,

with lγ,in/out defined as the capillary lengths

lγ,out = 2γ
(c(0)
in − c

(0)
out)f ′′(c(0)

out)c
(0)
out

, lγ,in = f ′′(c(0)
out)c

(0)
out

f ′′(c(0)
in )c(0)

in

lγ,out.
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In the limit of c(0)
in ≫ c

(0)
out, thus lγ,in ≪ lγ,out = lγ and ceqin ≈ c

(0)
in , we get

ceqout = c
(0)
out ·

(
1 + lγ

R

)
, ceqin = c

(0)
in .

Our objective is to establish an equation describing the concentration c of molecules at a

distance r from a solitary droplet with radius R, situated within an unbounded medium. The

concentration at a significant distance from the droplet remains fixed to a constant c∞. Due

to the system’s symmetry, the concentration c solely depends on the distance r. Additionally,

we make the assumption that the droplet’s radius changes slowly enough, allowing us to treat

it as approximately constant compared to the timescale of molecules diffusion.

Hence, a gradient in concentration results in a diffusive flux through a spherical shell at

radius r. This flux, denoted j(r), is j(r) = −D ∂
∂r c(r), with D as the diffusion coefficient.

As total molecule count remains constant, so does flux across the shell’s surface at r. This

constant total flux is given by:

J = −4πDr2 ∂

∂r
c(r) = const.

This equation has solution c(r) = k1 + k2/R, with constants k1,2 given by the boundary

conditions at R and ∞
(
c(R) = ceqout and c(∞) = c∞

)
. From this it follows that

c(r) = c∞ + (ceqout − c∞)R
r

r > R,

c(r) = ceqin r < R.

The total protein outflow from the droplet is

JR = −4πDR2 ∂

∂r
c(r)|r=R = 4πDR(ceqout − c∞). (3.6)

The variation of the droplet volume is given by dVd

dt = −JR/ceqin, that is

d

dt

(
4π
3 R3

)
= − 1

ceqin
4πDR(ceqout − c∞),

which, in terms of dRdt and of c(0)
in/out yields

dR

dt
= Dc

(0)
out

Rc
(0)
in

(
c∞

c
(0)
out

− 1 − lγ
R

)
.

This expression can be readily extended to the scenario involving N droplets that are widely

separated from each other, allowing us to neglect direct interactions between the droplets. In

this case, the droplets solely compete for material exchange through the shared surrounding

medium. This directly yields Equation (3.2) in the main text, where, for simplicity of notation,

we have defined c
(0)
in/out as cin/out. Material conservation implies that material is shared

between the droplets, (of volume Vi and inner concentration cin), and the outer space, (of

volume Vn −
∑N
i Vi and concentration c∞). Thus, the mean concentration c̄ in the entire

volume Vn will follow Equation (3.3) in the main text.
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Figure 3.3: (A) Foci formation in correspondence to DNA damage sites. (B) Foci form as a result of liquid-liquid
phase separation in supersaturated environments. (C) The competition of material leads to the
phenomenon of Ostwald Ripening (OR) (D) Dynamics of several droplets: all those smaller than a
critical radius shrink. (E) 2D schematics of the OR mechanism in which only one droplet dominates
in the end and takes up all the material. (B-C) are adapted from Söding et al., 2020.
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Figure 3.4: (A) Process of DNA repair in the presence of foci (B) Time to find the target is made of two
contributions: the time necessary to find the focus edge from the boundary of the nucleus, plus the
time necessary to reach the target from there (Heltberg, Miné-Hattab, et al., 2021). Adapted from
Heltberg et al. (2022).

3.2.3 Diffusion-limited repair processes

The process of DNA repair is a rather intricate and complicated phenomenon, involving a huge

number of steps (Friedberg, 2003). A way to mathematically model it in the simplest way possible is

to consider it as a Markov chain made of M steps, where each step corresponds to a small action in

the chain of DNA repair that is performed at a certain rate 1/τ , and all steps need to be completed

sequentially (Figure 3.4A). If we assume that the process is diffusion-limited, meaning that the

time it takes to perform each step of repair τ essentially coincides with the time it takes for the

repair proteins to reach the target (Figure 3.4B), we can use first-passage times argumentations to

determine how long it takes for the molecules to reach the target in the presence of foci. Heltberg,

Miné-Hattab, et al. (2021) have shown that, if the free energy is lowered inside the droplets, the foci

basically act as "funnels", which accelerate the search time τ , following the equation (see Theory Box

3.2.2 for the full derivation)

τ ≈ R3

3D0r0
+ r3

n

3DR. (3.7)

Here R is the radius of the droplet, D0 the diffusion coefficient inside the droplet, r0 the radius of the

target, rn the radius of the nucleus, and D the diffusion coefficient in the nucleus. Therefore, the rate

consists of the sum of two terms: the time it takes to reach the boundary of the focus in the nucleus,

plus the time it takes to reach the boundary of the target in the focus (Figure 3.4C). Given that

within the focus the diffusion coefficient is lower than outside (D0 ≪ D), because the environment

is denser, there exists a focus radius such that the rate to find the target is optimized. Intuitively, if

the focus is too big, the particle will find it fast, but then it will take a long time to navigate inside it.

If it is too small, it will take a long time to find it in the first place. In the absence of a focus, the

expression simply reduces to the search-time of the target from the nucleus boundary,

τnofocus = r3
n

3Dr0
.
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Theory Box 3.2.2: Derivation of first passage times

We first consider a Langevin equation of the form

dr = dt

[
∇D(r) − D(r)

kBT
∇U(r)

]
+
√

2D(r)dW,

where W is a 3D-Wiener process, U(r) is the potential perceived by the particle and D(r) is

the diffusion coefficient.

The following derivation can be found in Heltberg, Miné-Hattab, et al. (2021). We assume that

the focus is a spherical liquid droplet characterized by a sudden change in the energy land-

scape, thus having diffusion coefficient D(r) and sigmoidal potential U(r), both spherically

symmetric around the center of the focus:

D(r) = D0 + Dn −D0

1 + e−b(r−R) , U(r) = A

1 + e−b(r−R) .

Here D0 is the diffusion coefficient inside the focus, Dn the diffusion coefficient inside the

nucleus, R is the radius of the focus, b the steepness of the sigmoidals and A the surface

potential.

With these assumptions, the Langevin equation can be written as

dr = dt

[
2D
r

+ ∂rD − D

kBT
∂rU(r)

]
+
√

2D(r)dW,

where W is a 1-D Wiener process.

The goal is to find if the focus, with its enhanced concentration of proteins, can act as a

"funnel" allowing diffusing proteins to find the target faster. We thus assume a simplified

scenario, with a perfectly absorbing target of radius r0, in the center of a focus of radius R,

which is in turn centered in the nucleus of radius rn. This creates a probability flux J = 1/τ ,

which represents the rate of finding the target for one molecule. If we denote by p(r) = p(r)
the probability distribution of a molecule, then the corresponding probability density q(r), of

being at a certain distance r from the absorbing center, thus follows q(r) = 4πr2p(r).
The Fokker-Planck equation for q(r) is therefore defined as

∂tq = −∂r
[(

2D
r

+ ∂rD − D

kBT
∂rU(r)

)
q

]
+ ∂2

r (Dq) = −∂rJ.

At steady state with a non-vanishing flux J = const,(
2D
r

− D

kBT
∂rU

)
q = D∂rq − J.

Introducing the variable ϕ = −2 ln(r) + U/kBT , we simplify this as:

q∂rϕ+ ∂rq = J

D
.

Multiplying by eϕ, yields

∂r(eϕq) = J

D
eϕ,
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whose general solution is

q(r) = Ce−ϕ(r) + Je−ϕ(r)
∫ r

r0

eϕ(r′)

D(r′)dr
′.

Because of the absorbing boundary condition q(r0) = 0, C is null in this case. The constant J

follows from the normalization
∫ rn

r0
dr q(r) = 1, yielding:

J−1 = τ =
∫ rn

r0

dr e−ϕ(r)
∫ r

r0

dr′ e
ϕ(r′)

D(r′) .

We then insert the definition of ϕ(r) and assume a strong surface potential of the droplet, so

that we get

τ =
∫ rn

r0

dr r2e−U(r)/kBT

∫ r

r0

dr′

D(r′)r′2 e
U(r′)/kBT .

Considering a sharp boundary bR >> 1 so that U and D can be considered step-functions, the

integral has the following exact solution

τ = R3 − r3
0

3D0r0
+ r2

0 −R2

2D0
+ e

− A
kB T

(
r3
n −R3

3D0r0
+ R3 − r3

n

3D0R

)
+ r3

n −R3

3DnR
+ R2 − r2

n

2Dn
.

In the limit r0 << R << rn and of a strong potential A >> kBT , the previous equation

simplifies to

τ ≈ R3

3D0r0
+ r3

n

3DnR
.

It should be noted that in the main text, the diffusion coefficient in the nucleus is denoted as

D instead of Dn.

3.2.4 How to simulate stochastic processes: the Gillespie
algorithm

The Gillespie algorithm (Gillespie, 1976) is a powerful tool for modelling and simulating the dynamics

of chemical reactions and other stochastic processes occurring in biological systems for which the

reaction rates are known. It is an event-driven algorithm, meaning that the time proceeds by events

and not by fixed time-steps.

Given a Poisson process, i.e. a process where events happen at a constant rate r, it can be easily

shown that the probability density of the time between two events P (τ) follows an exponential

distribution P (τ) = re−rτ . In this case, the algorithm consists of the following steps:

1. Draw a random number τ > 0 from the distribution P (τ);

2. Proceed the time by τ and make an event happen (updating the corresponding state variable);

3. Repeat 1. and 2.

However, in most scenarios, multiple types of events can happen simultaneously: the algorithm can

be generalized to take into account this possibility too. We thus consider m possible events, with

ri being the rate of the i-th kind event (i = 1 . . .m). We also assume that the rates can depend
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on the system status, but do not change between events. This implies that the inter-event interval

distribution still follows an exponential distribution characterized by ri. In this case, the algorithm is

the following:

1. Calculate the probability that any of the possible events occur (RTOT =
∑m
i=1 ri);

2. Find the time it takes for the event to occur, by drawing a random number τ > 0 from the

distribution P (τ) = RTOT e
−RT OT τ ;

3. Find which of the m events is the one taking place: draw a random number a from the uniform

distribution in [0, 1]. If
∑i−1
j=1 rj/RTOT < a <

∑i
j=1 rj/RTOT , it means the event occurring is

the i-th.

4. Repeat 1. to 3.

The Gillespie algorithm is therefore a valuable tool for accurate stochastic modelling of biological

systems, as it captures molecular fluctuations and provides insights into the system behaviour that

deterministic approaches cannot reveal. By simulating individual reactions in a system, it provides

a dynamic view of how molecules interact, making it particularly well-suited for understanding

complex biochemical processes. In the following example, we illustrate how we can apply the

algorithm in a simple scenario with two possible chemical reactions, namely binding and dissociation

between two species A and B.

Example 3.2.1: Reversible binding of A and B into AB dimers

Given a system with two species (A,B) which can reversibly form a dimer (AB), the possible

reactions are:

A+B
kB−−→ AB

AB
kD−−→ A+B,

with kB,D being the binding/dissociation constants. The rates of the two events are therefore

r1 =kB · nA · nB (binding),

r2 =kD · nAB (dissociation),
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where nA, nB are the number of A and B molecules, and nAB the number of dimers present

in the system. For this system:

1. The total reaction rate is RTOT = r1 + r2.

2. The probability that any of the two events (binding or dissociation) occurs after time τ

follows the distribution P (τ) = RTOT e
−RT OT τ . We draw a random number from P (τ).

3. To determine whether the events occurring is binding or dissociation, we draw a random

number a from a uniform distribution between [0,1]. If a < r1/RTOT , binding occurs

(meaning that nAB → nAB + 1 and nA,B → nA,B − 1, otherwise, dissociation occurs

(nAB → nAB − 1 and nA,B → nA,B + 1).

4. We repeat 1.- 3.

3.3 Main results
In Figure 3.5 we sum up the mathematical model that we developed to describe the system. The three

parts correspond to the three building blocks of the system described in Figure 3.1. First, the p53

signal is assumed to be simply sinusoidal, and to stimulate the production of repair proteins, whose

concentration linearly follows p53 concentration (only subsequently we reintroduced the model of

the p53-Mdm2 network as described in Mengel et al. (2010)). Secondly, we assume that N droplets

emerge, which start competing for material, following Lifshitz and Slyozov (1961) theory, resulting

in the phenomenon of Ostwald Ripening (OR). This is a mean-field model, so the spatial distribution

of the droplets is not taken into account, as the droplets share material through the surrounding

medium. Thirdly, the process of damage repair is modelled as a Markov chain, such that completing

the whole repair consists of M steps. Each step has a certain probability to be accomplished and

another constant rate to be reversed. Assuming that the repair process is diffusion-limited, we can

consider that the repair rate coincides with the first passage time of proteins to reach the target,

with radius r0, within the focus of radius R, as described in the previous section. The whole system

is modelled through the Gillespie algorithm, where there are four possible events for each droplet,

namely:

• Growth of droplet from addition of a protein;

• Shrinkage of the droplet from loss of a protein;

• One step of damage repair;

• One step of damage addition.

The presence of noise in the system is essential to generate a mixed initial state and to ensure the

initial expansion of the droplets after nucleation. Afterwards, stochasticity only plays a minor role.

With this model, we first showed that an oscillatory p53 nuclear abundance results in suppression

of OR (Figure 3.6A): as p53 increases, the droplets grow, and are subsequently forced to shrink as

p53 decreases below saturation levels. This provides a window of time for the cell to distribute its

resources to few cells at each oscillation, giving them the possibility to repair the damage before
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Figure 3.5: Description of the mathematical model used. Adapted from Heltberg et al. (2022).

redistributing the material to other sites at a subsequent oscillation. This essentially leads to a

sequential damage removal (Figure 3.6B, central panel). We thus realized that there must be an

optimal time-window for cells to repair the damage, which should neither be too long (or else

OR would dominate, as shown in Figure 3.6B, left panel) nor too short, or else cells would not

have enough time to repair the damage (Figure 3.6B, right panel). Simulating a wide range of

frequencies for p53 oscillations, we thus found an optimum in the timescale of hours, which is where

the experimental value of p53 lies (Figure 3.6C).

Moreover, we investigated the role of the amplitude of the oscillations: interestingly, we found an

optimal region at low mean concentration and high amplitudes where the repair could occur much

faster than at high constant levels of p53. Even if experimentally it is not possible to determine the

absolute values of p53 concentration, given that the experiments only measure fluorescent levels

through imaging techniques, it is still possible to measure relative quantities, such as the ratio

amplitude/mean concentration. What we observed is that the region of optimal repair overlapped

with the line that corresponds to the ratio of amplitude/mean concentration measured for p53.

We thus aimed to experimentally test these predictions, in particular, compare the repair efficiency

between oscillatory levels of p53 and sustained levels. The experiments were fully performed by our

experimental collaborators at Academia Sinica, Taiwan, led by professor Sheng-hong Chen. First,

DNA damage was induced by adding neocarzinostatin (NCS), a γ−irradiation mimetic drug, as a

result of which, p53 naturally starts to oscillate. In order to obtain constant high p53 levels, the non-

genotoxic small molecule nutlin-3a was administered at 2.5 h and 5.5 h after DNA damage induction,

in correspondence to p53 troughs. Indeed, nutlin has the effect to prevent Mdm2-inhibition by
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binding to Mdm2 itself, thus rescuing p53 levels when they are low, resulting in constant high

levels (Figure 3.6E). DNA damage was quantified after 1h and after 24h from induction, by

immunofluorescent staining of the γ−H2AX foci. It should be noted that these damge-foci are

distinct from the repair-foci that we have discussed up to this point, since they have not been shown

to arise as a result of phase-separation, and merely represent the level of DNA damage. Our analysis

shows that the number of γ−H2AX foci is lower for cells with oscillatory dynamics compared to

those with sustained levels of p53 (Figure 3.6F). This is confirmed by plotting the distribution of the

number of damaged sites in cells (Figure 3.6G). Finally, comparing different cell lines, we overall

observed that the fraction of repaired cells is always lower for sustained levels than for oscillatory

ones (Figure 3.6H).

To sum up, our model makes several predictions (Figure 3.7):

• Oscillatory p53 levels lead to better DNA repair compared to high constant levels;

• Oscillatory p53 levels suppress OR in the repair foci;

• The repair foci have an oscillatory dynamics which follows the p53 one;

• p53 experimental amplitude and frequency leads to optimal repair.

The first of these hypotheses has been experimentally tested and confirmed, while the others remain

to be tested.

3.4 Discussion and Perspectives
The role of oscillations in TFs and their connection to DNA repair mechanisms are complex and

unresolved questions. Recent findings on the formation of DNA repair foci through liquid-liquid

phase separation motivated our investigation into how oscillations in TFs, specifically p53, interact

with droplet formation. With this work, we thus establish a bridge between the dynamics of TFs and

the formation of biomolecular condensates in cells, showing how the cell can exploit the physics of

phase separation to perform an optimal distribution of resources in case of stress. This mechanism

would be particularly beneficial in the case of low amount of resources compared to the amount of

damage. Indeed, in our model, all the repair material is distributed sequentially in different sites.

On the other hand, different ways of stabilizing the droplets against OR have been proposed, such

as with trapped species (Webster and Cates, 2001) or by lowering the surface tension. These may

not be necessarily beneficial for the cell, though: if material is equally shared between all the sites

simultaneously, the foci may not reach the right size to efficiently repair the damage.

Our research focuses on the stimulation of downstream repair by p53 and assumes a linear rela-

tionship between p53 concentration and the proteins involved in phase transition. To support this

assumption, it has been shown that p53 directly recruits key proteins involved in repair, such as

53BP1 (Wang et al., 2022), and p53 itself can form liquid droplets (Petronilho et al., 2021; Kamagata

et al., 2020). However, even in the case of a non-linear relationship between p53 and droplet proteins,

we showed that the output would still be oscillatory.

Furthermore, we speculate that there might even be a mutual relation between foci and oscillations

in p53. Tsabar et al. (2020) have recently shown that approximately 10% of irradiated cells transition

from oscillatory p53 levels to a sustained high level after 24 h. Therefore, it would be intriguing to
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Figure 3.6: (A) Oscillatory p53 levels lead to a sequential growth and shrinkage of droplets, thus a specific
spatio-temporal distribution of resources. (B) p53 oscillations (II) lead to optimal DNA repair
compared to constant levels (I) or compared to much faster oscillations (III). (C) The experimental
p53 frequency is optimal to repair multiple DNA damages. (D) Amplitude heatmap shows a region
of optimal repair for high amplitude and low mean concentration. (E) p53 oscillatory and sustained
dynamics in three example cells from A549 cell line. (F) Quantification of γ-H2AX DNA damage
foci in A549 cell line. (G) Distribution of number of damaged sites in cells for A172 cell line. (H)
Bar plot on fraction of fully repaired sites for different cell lines. Adapted from Heltberg et al.
(2022).
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Figure 3.7: Theoretical predictions which have been experimentally tested and those that remain to be tested.
Adapted from Heltberg et al. (2022).

determine whether it is possible to predict the switch from oscillatory p53 to constant high levels

based on foci behaviour. Indeed, it is conceivable that the foci also serve as a protective barrier

against Mdm2 inhibition, which could further contribute to elevate p53 concentration and cause the

switch.

Other aspects worth investigating include, for instance, how the phenomenon of coalescence of

different droplets impacts the repair efficacy: one can imagine that fusing several droplets and

therefore combining different DNA breakpoints would come at risk of chromosomal translocation.

Moreover, recent studies show that the p53 period tends to increase as time passes: it would be

intriguing to model if this transition could also arise as a feedback mechanism from the foci.

Our study reveals the importance of oscillations in TFs, both in terms of amplitude and periodicity, for

optimal DNA repair. It suggests that other types of dynamics, such as random fluctuations, stability,

or chaos, would not perform as effectively. Experimental verification confirms the positive role of

p53 oscillations in DNA repair. Oscillations may work in conjunction with other mechanisms to

stabilize foci and optimize repair processes. Given the prevalence of liquid sub-compartments in

cellular regulation (Brangwynne et al., 2009; Larson et al., 2017; Strom et al., 2017), these findings

may have broader implications for gene regulation. Understanding the role of oscillations in p53

would significantly advance our knowledge of damage repair and reveal the connection between

fundamental physical processes and essential regulatory mechanisms in life.
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SUMMARY

Living organisms are constantly exposed to DNA damage, and optimal repair is therefore crucial. A charac-
teristic hallmark of the response is the formation of sub-compartments around the site of damage, known as
foci. Following multiple DNA breaks, the transcription factor p53 exhibits oscillations in its nuclear concen-
tration, but how this dynamics can affect the repair remains unknown. Here, we formulate a theory for foci
formation through droplet condensation and discover how oscillations in p53, with its specific periodicity
and amplitude, optimize the repair process by preventing Ostwald ripening and distributing protein material
in space and time. Based on the theory predictions, we reveal experimentally that the oscillatory dynamics of
p53 does enhance the repair efficiency. These results connect the dynamical signaling of p53 with the micro-
scopic repair process and create a new paradigm for the interplay of complex dynamics and phase transi-
tions in biology.

INTRODUCTION

Living organisms need to have highly specialized and optimized

responses to external stresses, as a result of which many tran-

scription factors (TFs) portray a complex dynamics. Indeed, de-

cades of research in the field have shown how proteins such as

nuclear factor kB (NF-kB) (Hoffmann et al., 2002; Nelson et al.,

2004), Hes1 (Kobayashi et al., 2009), and p53 (Lahav et al.,

2004) showoscillations in their nuclear concentrationwith periods

on the timescaleof hours.A typical quantitativeapproachconsists

of studying the underlying biochemical network structure and

formulating coupled differential equations in order to understand

the occurrence of these oscillations (Tiana et al., 2002; Jensen

et al., 2003;Geva-Zatorsky et al., 2006). However, as of today sur-

prisingly little effort has been made to investigate what advan-

tages the cell may gain by exhibiting this dynamics, and this

fundamental question has been too often left for qualitative dis-

cussions (Heltberg et al., 2021a). It has previously been revealed

how large amplitudes can stimulate groups of downstreamgenes

(Heltberg et al., 2016, 2019b), but how themost fundamental trace

of oscillations—the periodicity—may be beneficial has been

largely overlooked. It would be evolutionary surprising if these os-

cillations, occurring in some of the most vital TFs, did not serve a

distinct role, and it is therefore crucial that biological research ap-

plies the biophysical foundations to investigate why the cell has

included such dynamical response in specific situations.

In this context, the tumor suppressor protein, p53, is a master

regulator of DNA damage response, stimulating numerous

genes related to DNA repair. When the cell is exposed to DNA

damage, through for instance chemical components or radia-

tion, p53 nuclear concentration is typically elevated. However,

following multiple DNA double-strand breaks (DSBs), it exhibits

sustained oscillations with a well-defined period of approxi-

mately 5.5 h (Lahav et al., 2004; Chen et al., 2016). These oscil-

lations mainly originate as a result of the negative feedback loop

with the downstream target Mdm2, even though several other

proteins play a role in this loop (Batchelor et al., 2008; Heltberg

et al., 2019a).

While the process of DNA repair is complicated, involving a

large number of steps, one characteristic hallmark of the

response to DSBs is the formation of small sub-compartments

rich of repair proteins around the site of damage (Lisby et al.,

2004). These have been named ionizing radiation-induced foci

(IRIF) and will be referred to simply as foci in this paper. Recently

it has been shown that repair foci have properties similar to liquid

droplets, and their formation can therefore be described as a

second-order phase transition (Oshidari et al., 2020; Miné-Hat-

tab et al., 2021; Pessina et al., 2019; Kilic et al., 2019).

Themain focusof this paper is to investigatehow the featuresof

liquiddroplets canaffect the reaction ratesof repair proteins in the

diffusion-limited regime, and consequently, how the formation of

foci can enhance the DNA repair process. In the presence of
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multiple liquid droplets, only the largest can grow due to the pro-

cess of Ostwald ripening. Therefore, serious problems arisewhen

the cell needs to repair multiple damaged sites. What we discov-

ered is that this issue is resolved directly by the presence of oscil-

lations in the TF p53. First, we investigated the case of fast droplet

formation, in which case we revealed an optimal period similar to

the one found in p53. Secondly, we investigated the regime of

slowly forming droplets, where oscillations lead to stabilization

of droplet sizes depending on the concentration of proteins to

form liquid droplets. Then, we used these results in combination

with the mathematical modeling of p53, outlining how single pa-

rameters perturbations might alter the underlying repair process.

Finally, we tested experimentally the very fundamental hypothesis

of the theory—i.e., that p53 oscillations enhance the efficiency of

DNA repair—and discovered a significantly reduced level of DNA

damage in cellswith p53 oscillations. Hence, thiswork introduces

a new role for p53 oscillations and establishes a bridge between

the dynamical properties of a TF and the microscopic processes

of droplet formation and DNA repair.

RESULTS

Repair of DNA damage through droplet formation
Following multiple DSBs, the cell needs to respond as quickly

and efficiently as possible through the process of repairing the

damaged sites, by distributing resources at the right position

at the right time (Figure 1A). In this context, the three main

players that characterize the building blocks of our model are:

(1) the p53 oscillatory dynamics,

(2) the formation of liquid foci, and

(3) the actual process of damage repair.

The experimental oscillatory trace of p53 (Figure 1B), which

arises following multiple DSBs, can be reproduced by modeling

the negative feedback loop between p53 and Mdm2, as shown

for instance by Mengel et al. (2010). In this model, the period

and amplitude can be altered by small changes in the parame-

ters, allowing fine-tuned oscillations (Figure 1C). p53 then stim-

ulates the production of repair proteins, which may segregate

into liquid droplets, the repair foci, giving rise to an uneven con-

centration c in the cell nucleus (of radius rn and volume Vn). It has

recently been observed that p53 rapidly accumulates at DSBs

sites and directly recruits repair proteins to the foci, suggesting

that p53 itself may have significant transcription-independent

functions in the DNA damage response (Wang et al., 2022a).

Due to the microscopic interactions, proteins will have energet-

ically favorable states inside the droplet, resulting in a lower free

energy in this region and therefore in a much higher concentra-

tion inside the droplet than right outside it (Figure 1D). In the pres-

ence of multiple foci, a fascinating interplay occurs known as

Ostwald ripening (Lifshitz and Slyozov, 1961; Wagner, 1961; Hy-

man et al., 2014; Nishanov and Sobyanin, 1986), where all drop-

lets larger than a critical radius grow, while all the others shrink.

Since the critical radius changes accordingly, only one domi-

nating droplet exists in the end. In the presence of N damaged

sites and thereby N droplets—assumed to be spherical and far

apart from each other—their surrounding can be considered to

be spherically symmetric with a common concentration cNðtÞ
far away from each droplet, which depends on time and medi-

ates the interactions between them. Therefore, the change of

radius of the i-th dropletRi is given by Lifshitz and Slyozov (1961)

dRi

dt
=

Dcout

cin

1

Ri

�
cNðtÞ
cout

� 1 � lg
Ri

�
; (1)

where D is the diffusion coefficient outside the droplet, cin;out are

the concentrations inside/outside the droplets in the limit R/N

and lg is the capillary length. Material conservation dictates that

material is shared between the droplets, of volume Vi and internal

concentration cin, and the dilute phase, which occupies the vol-

ume Vn � PN
i Vi and has a concentration given by cN. Therefore,

the average concentration �c in the total volume Vn is given by:

cVn = cin

XN

i
Vi + cNðtÞ

 
Vn �

XN

i
Vi

!
: (2)

Recently, it was discovered that the DNA repair foci do follow

the predictions of the Lifshitz-Slyozov theory to a surprising level.

After initial nucleation and growth of droplets, coarsening eventu-

ally tookplace,wheresmall dropletsdissolvedwhile largedroplets

continued to grow,with a rate of the radiusRft1=3. Furthermore, it

was revealed that coarsening predominantly happened without

physical contact among the droplets, thereby due to Ostwald

ripening, with a timescale of a few hours (Pessina et al., 2019).

To link the formation of liquid foci to p53, we assumed that the

concentration of proteins responsible for droplet formation ðcÞ
linearly follows the p53 concentration.

Simulating the system (Equation 1 and 2) with constant p53

levels—therefore constant c — results in a metastable system

with one dominating droplet. This is shown in Figure 1E, where

the radius of each droplet is portrayed in a different color, match-

ing the schematic representation of Figure 1D. Here, we used the

Gillespie algorithm to simulate the evolution of droplet sizes in a

stochastic environment (see STAR Methods).

Lastly, we considered the process of DNA damage repair on a

single site as a Markov chain consisting of M steps, which need

to be sequentially made in order to retrieve the intact DNA (Hahn-

feldt et al., 1992; Mohseni-Salehi et al., 2020). Each step is

accomplished at a certain rate 1=t, but it can also be reversed

at another constant rate l, until the site is fully repaired (Fig-

ure 1F). To calculate the repair rate 1=t, we assumed that this

was diffusion limited, allowing us to use first passage time calcu-

lations in the Smoluchowski limit (see STAR Methods). Here, we

applied a previously derived theory (Heltberg et al., 2021b) of

how the presence of a droplet can alter the first passage time

of a molecule, leading to an optimal droplet size that reduces

the search timemaximally (Figure 1G). If the free energy is signif-

icantly lowered inside the droplet, this equation takes the form

t =
R3

3D0r0
+

r3n
3DR

; (3)

where R is the radius of the droplet, D is the diffusion coefficient

in the nucleus, D0 is the diffusion coefficient inside the droplet,
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and r0 is the radius of the site of interest (Figure 1H, black line). In

the absence of foci, it reduces to the time it takes to find the

target from the edge of the nucleus, which corresponds to the

constant value (Figure 1H, gray dashed-dotted line)

tno focus =
r3n

3Dr0
: (4)

All the typical parameters used and the ranges investigated

can be found in Table 1 (see Tables S1–S4 for the specific pa-

rameters used in each figure). It is worth noting that the three

components of our model described above all build on previous

experimental observations combined with biophysical results.

Based on this mathematical framework, we first considered

the case with only one damaged site, no oscillations in the p53

Figure 1. Multiple DNA damage induces p53 oscillatory dynamics and the formation of liquid foci
(A) Schematic figure showing multiple DNA double-strand breaks (DSBs) in the nucleus of a cell following irradiation.

(B) Experimental trace of p53 following irradiation. The oscillatory dynamics is believed to stemmainly from the negative feedback loop between p53 and Mdm2.

p53 then stimulates the production of repair proteins.

(C) Simulations of the p53 network, where oscillations occur and periodicity and amplitude may be varied by modifying the parameters of the network.

(D) Schematic figure showing the formation of foci around the sites of damage and the parameters related in the process. Each droplet is represented by a

different color. Arrows indicate whether droplets are shrinking (red) or growing (green).

(E) The process of Ostwald ripening with one final dominating droplet shown by plotting the individual radii as a function of time. Same color code as in (D).

(F) Schematic figure showing the DNA repair at a specific site as a discrete Markov chain.

(G) Schematic figure revealing the droplet around a site of damage and the parameters related in the process.

(H) First passage time for repair molecules to find a target as a function of the size of the focus (Equation 3). The gray dotted line indicates the time to find a target in

the absence of foci (Equation 4).

(I) The damage as a function of time when only one site is damaged. The three lines indicate different constant average concentrations for the repair proteins. In

the legend, c is expressed in units of cout.

(J) The damage as a function of time when five sites are damaged. Same color code as in (D) and (E).

See Table S1 for the specific parameters used in this figure.
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dynamics and the constant level of c = c0 ct always above the

critical concentration cout (Figure 1I, full line). In this setting, we

observed a constant rate of damage repair that is optimized for

intermediate values of c (c0 = 1:05cout) (Figure 1I, dashed

line). Indeed, we found that increasing this value too much

(c0 = 2cout) leads to a reduced decay rate (Figure 1I, dotted

line), since the focus grows too large, thus increasing the search

time.

On the other hand, in the case of multiple DSBs subject to the

Ostwald ripening mechanism, some of them will dissolve, result-

ing in a significantly inhibited repair rate and an overall repair pro-

cess that is far from optimal (Figure 1J; note the same color code

as the droplets shown in Figures 1D and 1E). This result high-

lights the problems that the cell encounters with several

damaged sites. While the formation of liquid foci can lower the

search time of proteins significantly, it has the inherent problem

that when multiple sites are present, due to the metastability of

the system, small droplets will dissolve before the site is re-

paired. The next section will discuss how the oscillations found

in p53 might influence this situation.

Multiple sites reparation is enhanced by oscillations and
suggests the existence of optimal frequencies
In order to investigate the behavior of the system in the presence

of p53 oscillations, we first assumed that the p53 concentration

can be approximated by a sinusoidal, which would lead to the

same dynamics for the average repair proteins concentration:

c = c0 +AcsinðutÞ: (5)

Therefore, c is calculated at each time step and is then in-

serted in Equation 2, as mass conservation naturally still holds,

in order to determine the value of cNðtÞ. This, in turn, affects

the droplet growth through Equation 1. Thereby, the oscillations

of the droplet material are mediated through the proteins’

concentration far away ðcNÞ, thus indirectly affecting the foci.

In order to ensure robustness of the model, we tested other sim-

ple possible waveforms for p53 (Figure S1A), and non-linear de-

pendencies between p53 and droplet proteins concentration

(Figure S1B), still obtaining similar outputs.

By assuming c0Tcout, one could logically analyze the expected

behavior before turning to simulations. If either Ac = 0 or u = 0,

the behavior is analogous to the one seen in Figures 1E–1J; on

the other hand, as u becomes similar to the timescale of droplet

separation, one droplet would still grow and dominate, but only

in the time allowed by the external period. This means that oscil-

lations would effectively prevent Ostwald ripening, thereby allow-

ing the cell to distribute resources among the sites.

To test these predictions, we simulated the typical p53 period

of �5 h (Lahav et al., 2004) and observed the formation and

dissolution of droplets, with different droplets dominating in

different periods (Figure 2A). By combining this dynamics with

the damage removal mechanism, we observed that for slow os-

cillations only one site would be repaired within the simulation

time (Figure 2B, left). For the p53 period, the dominating droplets

grow to optimal sizes, giving enough time to repair the damaged

site properly within each oscillation (Figure 2B,middle). For oscil-

lations much faster than p53, droplets would still emerge, but

they would in this regime dissolve well before the sites could

be fully repaired (Figure 2B, right). Therefore, this result sug-

gested that optimal frequencies for oscillations could exist.

Simulating the system over a wide range of frequencies, we

found that the only ones able to achieve a full DNA repair—within

a maximum simulation time of 100 h—were those on the time-

scale of hours (Figure 2C). In those cases of full damage repair,

we further recorded the time to reach this condition, which we

indicated by a color gradient from blue to red (Figure 2C, see

right color bar): the experimental p53 frequency turned out to

be among the most efficient values to repair the damage in the

presence of multiple DNA breaks.

To validate these results, we first simulated the system with

several values of damaged sites N, studying whether a high

Table 1. Parameters used in this study with their typical values and the ranges investigated

Parameter Description Value Source Range Units

cin protein concentration inside droplets in the lim R/N 106 (Söding et al., 2020) 105–10�7 mm�3

cout protein concentration outside droplets in the lim R/N 103 (Söding et al., 2020) (0.8–1.5) 3 103 mm�3

c0 mean average concentration of proteins in the nucleus 103 (Söding et al., 2020) (0–3.5) 3 103 mm�3

Ac amplitude of average concentration in the nucleus 102 (Chen et al., 2016) (0–8) 3 102 mm�3

u frequency of p53/of average proteins concentration 0.02 (Geva-Zatorsky et al., 2006) 10�3–101 min�1

lg capillary length 5 3 10�6 (Söding et al., 2020) 10�6–10�4 mm

D diffusion coefficient outside droplets 10 (Matsuda et al., 2008) 1–100 mm2s�1

D0 diffusion coefficient inside droplets 0.1 (Miné-Hattab et al., 2021) 0.01–1 mm2s�1

rn radius of the nucleus 5.0 (Sun et al., 2000) fixed mm

r0 radius of the target to repair 0.01 (Heltberg et al., 2021b) fixed mm

N no. of damaged sites 15 (Pessina et al., 2019) 5–50 dimensionless

M no. of repair steps 40 (Mohseni-Salehi et al., 2020) 40–3,000 dimensionless

l rate of damage recreation 0.01 (Hahnfeldt et al., 1992) 0.01–1.5 min�1

See STAR Methods for further explanation on the choices of parameters values and ranges. See Tables S1–S4 for the specific parameters used in

each figure.
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competition among numerous sites would prevent the droplets

from reaching an optimal radius within the considered periods.

On the contrary, we found that the peak in the fraction of repaired

sites was conserved over a wide range of N (Figure 2D). Next, we

investigated how the result depended on the amplitude and

found that increasing amplitudes enhance the overall repair

rate of the system (Figure 2E). Finally, we tested the dependency

on c0, since this had so far only been evaluated at the critical

level. What we found is that for low values of c0, the repair rate

is significantly decreased, which is not surprising since the

Figure 2. p53 periodicity optimizes the damage repair process in the fast droplets formation regime

(A) Droplet sizes at various points in time (above) and the radii of five damaged sites (below) in the presence of p53 oscillatory dynamics (green gradient).

(B) Damage at each individual site as a function of time (note that, for simplicity, only three traces out of theN = 15 are shown here). Left:u = 0:01 rad h�1;middle:

u = 2p=5:5 rad h�1 (experimental value); right: u = 5 rad h�1.

(C) The total amount of damage left on the sites after 100 h as a function of applied frequency. For the sites that were fully repaired, the color bar indicates the time

necessary to remove all the damage.

(D) Fraction of repaired sites after 30 h as a function of frequency. The four curves represent different initial numbers of damaged sites N, while the shaded area

corresponds to the SD. The black dashed curve corresponds to the parameters used in (C) (with the only difference of a shorter simulation time).

(E) Same as (D) but shown for five different values of the oscillatory amplitude Ac.

(F) Same as (D) but shown for four different values of themean concentration level c0. The shaded region in (C)–(F) corresponds to the SD calculated by simulating

the system multiple times, and assuming Gaussian errors, dividing by the square root of the number of runs.

See Table S2 for the specific parameters used in this figure.
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Figure 3. p53 oscillations stabilize droplets sizes in the slow droplets formation regime

(A) Foci radius as a function of time. Three graphs shown for increasing timescales of coarsening (obtained by varying lg). The light-blue shaded region indicates

the optimal range of radii for which repair of one step of damage takes less than 0.5 min.

(B) Fraction of droplets around a specific site that spend time in the optimal range, for variations in the parameters lg, D, cin, and cout. See also Figure S2.

(C) Radii of individual foci as a function of time, when the average concentration is above the critical concentration. Different colors correspond to different foci.

Points 1 and 2 (below) visualize the droplet environment at these specific points in time.

(legend continued on next page)
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critical concentration spends less time above the critical state;

therefore, droplets exist for shorter times. However, by

increasing the level of c0, the repair rate is less sensitive to the

frequency, and the maximal repair rate is reduced compared

to the critical concentration (Figure 2F). This suggested a funda-

mental relation between the amplitude of oscillations Ac and the

average concentration level c0.

We speculated that enhancing the average concentration

might change the number of stable droplets as more material

might be available, thereby enhancing the overall repair rate

significantly.

Stabilization and optimization of multiple droplets by
enhancing amplitudes
At this stage, our results had revealed how the oscillatory

behavior of p53 could distribute the limited resources at the spe-

cific damaged sites over time. This naturally brought up the

questions (1) what would happen with a wider availability of

droplet material, and (2) how would the whole picture be altered

in case of a faster/slower droplet coarsening?

To shed light on this, we first considered two factors: in partic-

ular, the point when competition for material starts and the point

when Ostwald ripening is ‘‘complete’’—i.e., when one droplet

has become dominant. The first occurs when cNzcout, and

following Equation 2, one can derive the formula for the volume

of the i-th droplet Vi at which competition for material starts

(see STAR Methods),

Viz
�c� cout

cin � cout

$
Vn

N
z

�c� cout

cin

$
Vn

N
; (6)

the last holding since cin [ cout. Consequently, we derived the

timescale of Ostwald ripening (TOR), that is the time necessary

for one droplet to dominate on the others (Söding et al., 2020)

(see STAR Methods), which takes the form

TORðRÞ =
Rc

Dlg

cin

cout

R2; (7)

where Rc is the critical radius for the system in steady state. If the

timescale of coarsening is lower than the period of p53 oscilla-

tions, the dominating droplet quickly prevails within each period,

preventing all the others from growing (Figure 3A, top). On the

other hand, for longer TOR, multiple droplets, with volume given

by Equation 6, may co-exist within each oscillation (Figure 3A,

bottom) asOstwald ripening (and competition for material) would

occur at a much later time. The latter would seem like the optimal

scenario for the cell, which would be able to repair multiple sites

simultaneously within each period. It should be noted, though,

that in this case the maximum radius reached by the droplets

is lower than before, as material is distributed equally among

all of them. Following this reasoning, we defined an ‘‘optimal

range’’ of radii (light-blue shaded region of Figure 3A) around

the minimum of t (Equation 3), where damage repair would be

the fastest and chose an interval such that one damage removal

would take less than 0.5 min. At this point it was clear that a

slower timescale of coarsening would benefit the cell only in

the presence of enough material to distribute among the foci,

in order to perform a parallel repair of multiple damaged sites.

Following Equation 7, we then investigated the role of the

different parameters ðD; cin; lg; coutÞ in altering the timescale of

coarsening and consequently the number of droplets whose

radius is within the optimal range (Figure 3B). We found that

increasing lg leads to a shorter timescale of coarsening and

therefore a lower number of droplets whose size is in the optimal

range. Increasing the diffusion coefficient D both results in a fast

timescale of coarsening but also in a wider range of optimal radii.

On the other hand, greater cin results in progressively smaller

droplets that do not grow in the optimal range. Finally, we real-

ized that varying cout over two orders of magnitude, such that

the system transitions from being constantly supersaturated

ðcout < cÞ to undersaturated ðcout > cÞ leads to stabilization of

droplets in the first case and impossibility to grow in the latter

(see Figure S2 for explanatory panels).

Next, we further investigated what would happen if the mean

concentration were significantly increased, such that oscillations

of cwould always be above the critical concentration cout. In this

case the system revealed an interesting property: while Ostwald

ripening still occurs in the sense that one droplet dominates in

the end (Figure 3C, point 2), the meta-stable state can exist for

a very long time (Figure 3C, point 1), and many of the otherwise

dissolved sites still show droplets emerging. However, in this

picture the Ostwald ripening also results in a vast amount of ma-

terial centered around a few number of sites until only one

dominates.

Therefore, we wondered how the number of repaired sites

would scale as the mean concentration were elevated. We found

that in the absence of oscillations, there is a linear relation be-

tween the number of repaired sites and the mean concentration

(Figure 3D, pink curve). The reason is that increasing the amount

ofmaterial leads tomore states that can co-exist in themeta-sta-

ble state before they dissolve, resulting in more repaired sites.

However, introducing oscillations and increasing the amplitude,

we observed a new region emerging, where the damage is

resolved at a much higher rate (Figure 3D, brown curve). In this

regime the effect of the oscillations is large enough to prevent

theOstwald ripening, while there is still enoughmaterial available

for droplets to grow to optimal sizes. This suggested a non-trivial

relation between the average concentration and the values of the

(D) Fraction of fully repaired sites as a function of the mean concentration level. Curves are shown for three different values of the amplitude.

(E) Heatmap showing the fraction of repaired sites (indicated by colormap) as a function of the amplitude (x axis) and the mean concentration level (y axis). The

three small arrows on the top correspond to the three values ofAc investigated in (D). The light-blue dashed line represents the experimental p53 ratio between the

average p53 level and its amplitude. The green and blue squares show the parameters used in (F).

(F) Fraction of repaired sites assuming different timescales for damage induction, spanning from fast (radiation induced) to slow (chemically induced); oscillatory

p53 (green line) is always advantageous against constant p53 level (blue line). The shaded region in (B), (D), and (F) corresponds to the SD calculated by simulating

the system multiple times, and assuming Gaussian errors, dividing by the square root of the number of runs.

See Table S3 for the specific parameters used in this figure.
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amplitude, and we realized that a region of optimal DNA repair

emerged for large values of the amplitude and intermediate

values of the mean concentration (Figure 3E). Moreover, we

quantified the ratio r between mean level and amplitude in the

experimental p53 signal (Figure 1B), obtaining r = 2:050±

0:023. Very interestingly, by plotting the line with slope corre-

sponding to r, we discovered that it spans precisely the region

of optimal repair (light-blue dashed line, Figure 3E).

Up to now, we have considered an instantaneous initial nucle-

ation (corresponding to irradiation), but in nature damage might

often be chemically induced reflected by a longer timescale, and

thereby higher variation, in the initial nucleation time. We

observed that for a large time of damage induction, some initially

larger droplets quickly take up all material, leading to non-

optimal repair (Figure 3F, blue line). This does not affect the drop-

lets in the presence of p53 oscillations (Figure 3F, green line),

which ensure the distribution of material to different sites

over time.

This aspect highlights the overall advantageous effect of p53

oscillations compared to constant levels.

Enhancing the repair by parameter stimulation and
noise induction in the p53 network
Finally, we combined the theory of droplets with the p53-Mdm2

protein network, in order tomake predictions on how altering this

network, with stochastic noise, affects the DNA repair. The

network of p53 takes the form (Mengel et al., 2010):

dp

dt
= k1 � k2M

p

k3 +p

dm

dt
= k4p

2 � k5m

dM

dt
= k6m � k7M

(8)

where p, m, and M are the concentration of p53, of Mdm2-

mRNA, and Mdm2 itself, respectively. In this model, the material

forming droplets still follow p53 concentration linearly, and p53 is

produced at a fixed rate (k1) and degraded following binding to

Mdm2 by a saturated degradation process (k2; k3). The Mdm2-

mRNA is produced proportionally to the p53 level squared—

since p53 acts as a dimer—scaling with a production parameter

(k4) and degraded through a first-order decay process (k5).

Finally, the protein Mdm2 is produced proportionally to the

Mdm2-mRNA with constant k6 and again degraded through a

first-order decay process (k7). Inspired by previous analyses,

we used simulations to make the network agree with the biolog-

ical findings, where p53 levels are constant until stimulated

externally, at which point oscillations arise with a frequency of

�5.5 h (Figure 4A).

In order to include stochasticity, we simulated the model using

the Gillespie algorithm (see STAR Methods), which let us

combine the dynamics of p53 with the dynamics of droplet for-

mation and damage removal. We first analyzed the behavior of

the limit cycle by varying the parameters with particular interest

in the role of enhanced degradation (k2), since we have previ-

ously revealed that this is a main component in the induction of

p53 oscillations (Heltberg et al., 2019a). We found that high

values of k2 result in low, non-oscillatory, steady-state levels of

both p53 and Mdm2. On the other hand, decreasing k2 gives

rise to a Hopf-bifurcation and a stable limit cycle, but very low

levels of this parameter again lead to a non-oscillatory state,

regardless of the p53 and Mdm2 levels. We visualized this by

plotting the levels of p53 versus the level of Mdm2 after the tran-

sient phase, where the dynamics had reached the steady state.

In the phase spanned by their concentrations, we observed how

the limit cycle can emerge for intermediate values of k2 (Fig-

ure 4B, top). The same behavior can be obtained by increasing

the Mdm2 production rate k4, whereas increasing the p53 pro-

duction by enhancement of k1 mainly results in a continuous in-

crease in the amplitude of p53 (Figure 4B, bottom). See Figure S3

for the correspondent time series. Based on these consider-

ations, we investigated the repair rate by perturbing the three pa-

rameters, k1, k2, and k4 (Figure 4C). The regions of optimal repair

were those corresponding to high amplitudes and optimal

mean levels for the p53 signals, obtained for intermediate

values of k2 and k4 (red and purple curves) and high values of

k1 (yellow curve).

Finally, we investigated the role of noise in the p53 oscillations

on the droplet formation and repair rate (Figure 4D). Visualizing

the p53-Mdm2 trajectories in polar coordinates (see STAR

Methods) reveals that higher noise levels amplify the SD, pushing

the radial coordinate outward and therefore leading to effectively

enhanced amplitudes (Figure 4E).

Based on these observations, we hypothesized that stochas-

ticity in the oscillator could be a method to further enhance the

repair rate, and we found that this is particularly effective for sit-

uations with many damaged sites (Figure 4F). Thereby, we

concluded that the protein network could be tweaked to opti-

mize the repair rate both through adjusting the parameters and

enhancing the stochasticity.

This theoretical work overall reveals how the dynamics of os-

cillations can be used in saturated environments, to distribute

resources over nucleation points in time and space. This in

turn not only prevents the Ostwald ripening from introducing

a monopoly on resources for one large droplet but also enables

a few droplets of optimal size to exist instead, thereby opti-

mizing the use of material. In Figure 4G, we have schematically

summarized these conclusions into a working model that might

stimulate future research in the combination of dynamics and

phase transitions. Based on this, we wanted to experimentally

test the most striking feature of our conclusions: that the oscil-

latory dynamics in p53 would enhance the efficiency of DNA

repair.

Model’s predictions and their validation
Our theoretical model directly leads to predictions that can be

experimentally tested (Figure 5A). Since the mechanism pro-

posed is quite delicate, depending on the quantitative nature

of the biological oscillators (e.g., period, amplitude), we believe

it should be tested in multiple cell lines, possibly including non-

cancerous ones. Indeed, the fine balance of phase transitions

and the ability to form and dissolve repair foci could easily be

disturbed or suppressed in a cell-line- and context-dependent

manner.
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Figure 4. Tweaking p53 network parameters and enhancing the stochasticity may optimize the repair rate

(A) Simulated trace of p53 according to the model of Equation 8, following induction of damaged sites.

(B) Visualization of the steady-state phase space, spanned by p53 and Mdm2, for different parameter choices. Top: increased p53 degradation, thus higher k2.

Note that increased Mdm2 production (i.e., higher k4) leads to the same behavior (not shown). Bottom: increased p53 production, thus higher k1. See also

Figure S3.

(C) Fraction of repaired sites, as a function of parameter perturbations in the parameters k1, k2, and k4. Shaded areas correspond to the SD on these numbers.

(D) Nuclear concentration of p53 as a function of time, shown for three different levels of noise and the related deterministic simulation.

(E) The p53-Mdm2 phase space transformed into polar coordinates, shown for the three levels of noise. In both (D) and (E), noise was introduced by applying the

Gillespie algorithm.

(F) Fraction of fully repaired sites as a function of the applied noise level in the external concentration oscillations. Two curves shown for different numbers of

initially induced damaged sites. Shaded areas correspond to the SD on these numbers.

(G) Schematic figure, revealing the working model of how a single damaged site can be repaired fast and efficiently through the formation of a droplet and how

multiple damaged sites need external dynamics to prevent Ostwald ripening and maintain this functioning role.

See Table S4 for the specific parameters used in this figure.
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The first of our predictions is that the p53 oscillations should

be more efficient in repairing DNA damage compared to sus-

tained levels, leading to a higher number of fully repaired sites.

This can be experimentally tested by controlling the p53 dy-

namics—oscillatory vs. sustained—and by measuring in each

case the DNA damage level, as shown in an ‘‘example figure’’

in Figure 5A, left.

Second, we predict that the oscillations in p53 can prevent the

coarsening of DNA repair foci and thereby prevent some drop-

lets from growing to extreme sizes. This could be tested by

measuring the size distribution of DNA repair foci at different

time points, similar to Pessina et al. (2019)—the authors there

used U2OS cells, whose p53 dynamics is highly sensitive to

the level of genotoxic stress and is dose dependent (Stewart-

Ornstein and Lahav, 2017; Yang et al., 2018); therefore, it is likely

not oscillatory under their conditions (2 Gy). Due to Ostwald

ripening, the foci would grow to larger sizes in case of sustained

p53 levels (Figure 5A, bottom mid-left). To monitor the coars-

ening of the DNA damage foci, there are two candidate markers,

53BP1 (Pessina et al., 2019) and MRNIP (Wang et al., 2022b).

Distinct in their function, 53BP1 and MRNIP represent the DNA

damage repair foci via the mechanisms of non-homologous

end-joining (NHEJ) and homologous recombination (HR),

respectively. These markers can be introduced to a p53 reporter

cell line for simultaneous quantification of p53 and DNA damage

foci dynamics.

Third, our prediction is that the DNA repair foci, in the presence

of p53 oscillations, should show some kind of oscillatory dy-

namics too. This also means that those repair foci that would

disappear under sustained p53 levels, due to Ostwald ripening,

should instead be maintained under p53 oscillations. We sug-

gest that this hypothesis could be tested by measuring the dy-

namics of DNA repair foci in their number and intensity over

time (Figure 5A, bottom mid-right).

Finally, our model predicts that p53 may have some optimal

amplitude and frequency to perform DNA repair. We suggest

to test this aspect by altering the properties of p53 oscillations

while quantifying the DNA repair efficiency (Figure 5A, bottom

right). Since our predicted valley in Figure 2C is relatively broad,

we suspect that one would need to change the frequency of p53

oscillations by an order of magnitude in order to observe signif-

icantly altered results. In contrast, the amplification of the ampli-

tude should lead to an obvious improvement of the DNA repair

efficiency.

We therefore sought to experimentally test the most funda-

mental hypothesis: the oscillatory p53 dynamics promotes

DNA repair efficiency. Therefore, we introduced DNA damage

by adding neocarzinostatin (NCS), a g-irradiation mimetic drug

that causes DSBs and oscillatory p53 dynamics (Figure 5B,

top). In order to achieve sustained p53 dynamics, we added a

non-genotoxic small molecule, nutlin-3a, that stabilizes p53 by

suppressing itsMdm2-mediated ubiquitination and degradation.

Nutlin-3a was added 2.5 and 5.5 h after NCS treatment to obtain

sustained p53 dynamics in A549 andRPE-1 cells (Figure 5B, bot-

tom). We then quantified the DNA damage levels by immunoflu-

orescent staining of the g-H2AX foci before and 1 h after DNA

damage, as well as 24 h after DNA damage introduction under

the oscillatory or sustained p53 dynamics (Figure 5C). Note

that these DNA damage foci are different from the DNA repair

foci (e.g., ones measured in Pessina et al. [2019]) as they have

not been shown to exhibit liquid-droplet properties and are

merely representing the levels of DNA damage. Based on the

immunofluorescent images, we quantified the number of

g-H2AX DNA damage foci in individual cells. Figure 5D shows

that cells with oscillatory p53 dynamics have a lower number

of g-H2AX foci 24 h after NCS treatment, thus exhibiting higher

DNA damage repair efficiency, compared to those with sus-

tained p53.

To further strengthen these observations, we carried out the

same experiments in four more cell lines: A172, U2OS,

HCT116, and MCF7. Interestingly, in all of them, cells with

oscillatory p53 dynamics show less g-H2AX DNA damage

foci 24 h after DNA damage compared to those with sustained

p53 (Figure 5E), supporting the prediction of oscillatory p53 in

promoting DNA damage repair. To further validate that the dis-

tributions of damage differed between cells with oscillatory p53

and sustained levels, we performed a two-sided KS test and

obtained p values smaller than 10� 7. Finally, we also investi-

gated the fraction of cells that were completely repaired, which

is often the most significant value in biology. Here, we found

that all cell lines with oscillatory p53 had a larger fraction of fully

repaired cells, and calculating the probability that the oscilla-

tory cell lines would have more fully repaired cells, we obtained

p values smaller than 10� 6 for all cell lines (see Figures 5F

and 5G).

Taken together, our experimental results are in strong agree-

ment with the first theoretical prediction and reveal that the oscil-

lations in p53 can enhance the efficiency of DNA repair.

Figure 5. Model-inspired hypotheses and experimental validation

(A) Schematics showing four theoretical predictions and suggested example figures for validation through experimental measurements.

(B–E) Experimental results testing the leftmost (encircled) hypothesis.

(B) p53 oscillatory (top) and sustained (bottom) dynamics in three representative A549 (left) and RPE-1 cells (right).

(C) Immunofluorescent images of g-H2AX DNA damage foci under oscillatory and sustained p53 dynamics. DNA damage was introduced by treating cells with

NCS (400 ng/ml). Upper: A549 cells; lower: RPE-1 cells. First column: control before introducing DNA damage; second column: 1 h after DNA damage intro-

duction by addition of NCS; third column: 24 h after DNA damage introduction under oscillatory p53 dynamics (NCS treatment alone); fourth column: 24 h after

DNA damage introduction in the presence of sustained p53 levels (NCS + nutlin-3a, see STAR Methods for details).

(D) Quantification of g-H2AX DNA damage foci in A549 (left) and RPE-1 cells (right). g-H2AX foci under oscillatory and sustained p53 dynamics were labeled in red

(n > 1,000, Wilcoxon rank-sum tests, *p < 10� 19).

(E) Quantification of g-H2AX DNA damage foci in four additional cell lines. From left to right: A172, U2OS, HCT116, and MCF7 (n > 1,000, Wilcoxon rank-sum

tests, *p < 10�9).

(F) Distribution of the number of damaged sites in cells. Data shown for A172 cell line.

(G) Barplot showing the fraction of fully repaired sites and the uncertainty on this number.
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DISCUSSION

How oscillations in TFs can be used to optimize specific pro-

cesses and why evolution has created these complex responses

remain open and deep questions. The emerging evidence that

DNA repair foci might form as a result of liquid-liquid phase sep-

aration, inspired us to investigate the interplay between oscilla-

tions in TFs, such as p53, and the formation of multiple droplets.

We thus revealed that the properties of oscillations can stabilize

these structures in an ordered and efficient way, leading to an

optimal repair mechanism.

These two aspects had not been combined in areas of

biophysics before. Hereby, we do not only show an interesting

result based on coupled differential equations but apply a direct

biophysical mechanism that mediates the connection and cre-

ates the optimal repair strategy, offering clear experimentally

testable predictions. The vast majority of parameters applied in

this work are well defined from numerous experiments, and

even though some values can differ (the number of damaged

sites and the concentration inside droplets), our results are

robust to variations in these parameters and overall suggest

why oscillations can be of fundamental importance.

Droplet formation is a popular topic in science, and many ex-

periments have currently reported the observation of liquid sub-

compartments in the cell (Brangwynne et al., 2009; Larson et al.,

2017; Strom et al., 2017). Preventing the Ostwald ripening has

been the topic of many papers, who sought to create a stationary

state in the equation for droplet growth and thereby to chemically

stabilize droplet sizes. The mechanism that liquid droplets can

oscillate in size, thereby preventing Ostwald ripening, has been

shown to occur for nanoparticles (Xin and Zheng, 2012), but

other ways to stabilize the droplets have also been suggested.

One mechanism, for instance, consists in the inclusion of trap-

ped species in the dense phase (Webster and Cates, 2001),

where droplets will grow to a specific (relatively small) size, un-

less they cross a critical threshold where the large droplets will

again grow. Another possibility is to considerably slow down

Ostwald ripening—which for normal timescalesmight be enough

to stabilize the emulsions—by lowering the surface tension so

that it becomes effectively zero. Moreover, the chemical turnover

of droplet material inside the droplet has been recently indicated

as another way to obtain a stationary state (Söding et al., 2020;

Weber et al., 2019; Zwicker et al., 2015; Kirschbaum and

Zwicker, 2021). However, if the droplet material is finite and

many damaged sites emerge, preventing Ostwald ripening alto-

gether might not be optimal, since the remaining droplets will

then share the material and all be small. With oscillations, in

the presence of Ostwald ripening, material can be clustered at

some specific sites, only to be redistributed at later times at other

sites. We speculate that this might further optimize processes in

biology, where material needs to be shared among a variable

number of locations.

In this work we focused on how downstream repair is stimu-

lated by p53. We assume for simplicity that the proteins causing

the phase transition are stimulated as a linear function of the p53

concentration. Present literature has revealed that p53 not only

works as a TF for the proteins related to DNA repair but also

directly recruits important proteins such as 53BP1 and DDP1,

whose concentrations seem to scale linearly with the p53 level

(Wang et al., 2022a). Moreover, it has been shown that p53 is

one of the fastest proteins to relocate to the site of DNA damage,

which occurs on timescales of seconds (Wang et al., 2022a),

whereas studies in vitro have found that p53 itself can form a

liquid droplet state (Kamagata et al., 2020; Petronilho et al.,

2021). These results may suggest that p53 plays a crucial role

on shorter timescales and on a more direct level than what is

typically considered as a downstream effect, being a potential

main candidate to induce the droplet formation observed in

DNA repair. On the other hand, we have shown (Figure S1B)

that a non-linear relation between p53 and downstream droplet

proteins anyway results in the majority of cases in an oscillatory

signal for the droplet proteins concentration.

At the same time, the oscillations in p53 could very well be

stimulated themselves by the damaged sites and thereby

possibly by the intensity of foci. This could potentially be a

sensing mechanism that signals back to the p53 loop and stops

it from oscillating when all sites have been successfully repaired.

Furthermore, it is well known that cells showing oscillations in the

p53 concentration can become senescent after some time,

which could again be an interesting signal from the foci struc-

tures. We thus hypothesize that the present results are one link

in the network that couples p53 dynamics, DNA repair, and ulti-

mately cell-fate decisions.

In this regard, it is also interesting to consider that p53 has

been revealed to show circadian oscillations, through the inter-

action with circadian protein Per2 (Gotoh et al., 2015, 2016).

However, these oscillations occur in the absence of multiple

damaged sites, which is the main problem investigated in this

paper. Nevertheless, if the oscillations of p53 due to DNA dam-

age interfered with the circadian oscillations, there could be an

intriguing interplay. Indeed, this would theoretically constitute a

set of coupled oscillators, where one could imagine that the peri-

odicity of the damage-related oscillations could entrain to the

external, circadian oscillator.

The reparation of damaged sites is a complicated process

involving a large number of steps and specific proteins that we

mathematically modeled and approximated as a discrete Mar-

kov chain. It is important to note that the actual structure of

such a chain is not crucial to the results. Indeed, it merely repre-

sents the feature of the repair process of having a characteristic

time to finish and potentially also the situation where fractionally

repaired damaged sites might lose their state if not repaired fully

within a characteristic time.

In this workwe revealed how oscillations can play an important

role both through the amplitude and the periodicity, suggesting

that no other type of dynamics (random fluctuations, stability,

or chaos) would perform as well, and we validated these theoret-

ical predictions with an experimental verification of the positive

role of p53 oscillations on DNA repair. Of course, it is very plau-

sible that the proposed mechanism may work together with

other mechanisms in the stabilization of foci and optimization

of repair, meaning that the oscillations are only one part of the

entire puzzle. Furthermore, there are many other systems with

oscillations, for instance in the TF NF-kB. With the growing evi-

dence that liquid sub-compartments exist in many aspects of

cell regulation (Brangwynne et al., 2009; Larson et al., 2017;
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Strom et al., 2017), we speculate that these findings might also

be fundamental to other aspects of gene regulation in the pres-

ence of complex dynamics. If these results really revealed one

key role for the oscillations in p53, it would be a major step for-

ward in our understanding of damage repair. It is at least

tempting that two fundamental processes in physicsmight guard

one of life’s most fundamental regulatory processes.

Limitations of the study
This study presents a theoretical description of droplet formation

in an oscillatory field and relates it to the process of DNA repair.

Here, we describe the simplified scenario of a binary phase sep-

aration along with identical repair proteins. Future research

should investigate the properties of this in more complex phase

separations and in the presence of active emulsions that might

further stabilize the droplets. Furthermore, while the liquid nature

of the repair foci has been well established, it is of fundamental

importance to reveal which proteins are responsible for creating

this phase transition in vivo. While we have successfully obtained

one experimental validation of the hypotheses of the model, our

work is fundamentally of theoretical character, and it needs to be

thoroughly tested in vivo under many different conditions. The

main foundations of the work are (1) DNA repair happens in the

presence of droplet formation and (2) p53 stimulates numerous

DNA repair processes and shows sustained oscillations

following severe degree of DNA damage. These are both well es-

tablished from experiments, but future experimental work should

test whether p53 mediates the phase transitions (either directly

by causing the phase separation of indirectly by upregulating

proteins responsible for the phase separation) and whether the

repair foci can show signs of oscillatory dynamics. We also

acknowledge that the experimental results presented in this pa-

per might not produce complete evidence of the specific theo-

retical mechanisms proposed, and further validation is still

needed to reveal the important roles of p53 oscillations.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Mogens H. Jensen

(mhjensen@nbi.dk).

Materials availability
All materials are commercially available.

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-phospho-Histone H2A.X (Ser139) Antibody,

clone JBW301

Millipore Cat#05–636; RRID: AB_309864

Goat anti-Mouse IgG (H + L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor Plus 647

Invitrogen Cat#A32728; RRID: AB_2633277

Chemicals, peptides, and recombinant proteins

Neocarzinostatin from Streptomyces carzinostaticus Sigma-Aldrich Cat#N9162

Nutlin-3a Sigma-Aldrich Cat#SML0580

DAPI [4,6-Diamidino-2-phenylindole, dihydrochloride] AAT Bioquest Cat#17510

Paraformaldehyde 16% (w/v) in aqueous solution

methanol-free

Thermo Scientific

Chemicals

Cat#43368

DPBS (10X), no calcium, no magnesium Gibco Cat#14200075

RPMI 1640 Media Gibco Cat#11875093

Antibiotic-Antimycotic (100X) Gibco Cat#15240062

Characterized FBS, Canadian Origin HyClone Cat#SH30396.03

Albumin, Bovine Serum, Fraction V, low Heavy

Metals (BSA)

MerckMillipore Cat#12659

Triton X-100 Reagent Grade BioShop Cat#TRX506

SiR700-DNA Kit Spirochrome Cat#SC015

Experimental models: Cell lines

A172 ATCC Cat#CRL-1620; RRID: CVCL_0131

A549 ATCC Cat#CCL-185; RRID: CVCL_0023

HCT116 ATCC Cat#CCL-247; RRID: CVCL_0291

hTERT RPE-1 ATCC Cat#CRL-4000; RRID: CVCL-4388

U2OS ATCC Cat#HTB-96; RRID: CVCL_0042

MCF7+p53shRNA + p53-mCerulean Gaglia et al. (2013) N/A

A549+UbCp-p53-mVenus Stewart-Ornstein and

Lahav (2017)

N/A

RPE-1+UbCp-p53-mNeonGreen Reyes et al. (2018) N/A

Software and algorithms

MATLAB (2020b) The Mathworks https://MATLAB.mathworks.com/

Single cell tracking algorithm Reyes et al. (2018) https://github.com/balvahal/

p53CinemaManual

Fiji Schindelin et al. (2012) https://fiji.sc/

StarDist Schmidt et al. (2018) https://github.com/stardist/stardist

gH2AX foci quantification algorithm This paper N/A
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Data and code availability
d All data reported in this paper will be shared by the lead contact upon request.

d All software and code used in this study are available through a Github repository at https://github.com/Mathiasheltberg/

EnhancedDNARepairThroughDropletFormationAndp53Oscillations.

d Any additional information required to reproduce the simulations and reanalyze the data reported in this paper are available

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture
All cell lines were adopted and maintained in RPMI 1640 media supplemented with 5% FBS and antibiotics (Streptomycin, Ampho-

tericin B, Penicillin). Cells were grown in the humidified incubator at 37�C with 5% CO2.

METHOD DETAILS

Live cell imaging
A549 and RPE-1 p53 reporter cells were seeded at 2x103 cells/well in a m-Plate 96 Well Black plate (ibidi Cat#89626) 1 day before

imaging with Nikon Eclipse Ti invertedmicroscope. Cells were switched to transparent RPMI (RPMIwithout riboflavin and phenol red,

customized by US Biological) 1 h before imaging and SiR700 DNA probe (1:40,000) was added to label nuclei for single-cell tracking

purposes. During imaging, cells were maintained in a chamber controlling CO2 (5%), temperature (37�C), and humidity. Images were

acquired every 30 min with appropriate filter sets: SiR700 (ex:640/30; em:700/75) and p53 (ex:510/25; em:544/24). NCS was added

to induce oscillatory p53 dynamics. To achieve sustained p53 levels, 0.75 and 0.55 mMNutlin-3a were added 2.5 and 5.5h after NCS

treatment, respectively.

Single cell tracking and p53 level quantification
Individual cells were tracked using a semi-automated MATLAB program described previously (Reyes et al., 2018). p53 level was

quantified by averaging the p53 signals within the cell nucleus. Individual p53 traces were smoothed using a 1h sliding window.

Immunofluorescence
Cells were seeded at 2x103 cells/well in 96-Well Micro-Well Plates (Nunc Catt#167008) 2 days before NCS treatment. After treat-

ment, cells were fixed at indicated time in 4% paraformaldehyde for 10 min, washed three times with PBS, and then permeabilized

with PBS containing 1% Triton X-100 for 5 min at room temperature. After permeabilization, cells were blocked in antibody dilution

buffer (2% BSA and 0.1% Triton X-100 in PBS) for 1 h, followed by primary antibody (Anti-phospho-Histone H2A.X Ser139, 1:1000)

incubation overnight at 4�C. Cells were then washed three times in PBS, incubated in antibody dilution buffer containing secondary

antibodies (Goat anti-Mouse Alexa FluorPlus 647, 1:1000) for 1 h, followed by DAPI staining (5 mg/ml in PBS) for 5 min at room

temperature. Cells were washed three times with PBS and imaged with ImageXpress Micro XL High-Content Screening System

(Molecular Device). The filter settings: Cy5 (ex:628/40; em:692/40) and DAPI (ex:377/50; em:447/60).

g-H2AX foci quantification
Cell nuclei were segmented according to DAPI signals using StarDist (Schmidt et al., 2018), a plugin for Fiji (Schindelin et al., 2012).

Images of the g-H2AX (Cy5 channel) were background subtracted (rolling ball radius: 50 pixels) prior to quantification. g-H2AX foci

were quantified using customMATLAB scripts. Generally, within each nucleus, Cy5 intensities below an absolute intensity threshold

were filtered out. For nuclei with strong Cy5 background, the intensities were normalized to range between 0 and 1 and pixels below a

normalized intensity threshold were filtered out. Peaks of Cy5 intensities with prominences above a threshold were detected using

the findpeaks function in MATLAB. The coefficient of variation (CV) in intensity between each detected peak and its adjacent pixels

were taken. Peaks with CV above a threshold stood out well from its surrounding and therefore were considered as g-H2AX foci cen-

troids. The number of such centroids in each nucleus represented the number of presenting g-H2AX foci. All thresholds were deter-

mined manually for each cell line to best match visual inspection of g-H2AX foci.

Parameter estimates
d D: The diffusion coefficient in the nucleus. This has been thoroughly investigated in the past, and even though it differs for

different types of proteins, it can be roughly approximated as Dz10mm2s� 1.

d D0: The diffusion coefficient inside the focus. This has been estimated in the work of Miné-Hattab et al. (2021), where it is shown

to be 1/100 D. Even though it might vary for different types of proteins, this should reflect the right order of magnitude.

d cin: The protein concentration inside droplets. Söding et al. (2020) estimate the internal concentration of biomolecular conden-

sates, assuming a 1:1 protein to water ratio, a protein density similar to water and a protein molecular weight of 30kDa, obtain-

ing cinz17mM. This corresponds to z107molecules mm� 3. In order to confine the search, we have fixed cinz106mm�3.
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d lg: The capillary length of the droplets. This is typically estimated to follow the relation: lgzð2g =cinkBTÞ, with g being the surface

tension of the droplets. From the work of Pessina et al. (2019) g is roughly 0:1mNm� 1, which together with the previous estimate

of cin, define a physiological value for lg.

d cout: The protein concentration outside droplets. We know that in a supersaturated environment proteins are enriched in the

condensates. Söding et al. (2020) estimate the ratio of cin=coutz100. In our paper, again to confine the search, we fixed this

ratio to 1000.

d N: The number of foci arising as a result of DNA damage has been measured by Pessina et al. (2019) to be approximately 30,

and anyway in the range 10–100, therefore we also considered values in this range.

d u: The p53 periodicity has extensively been measured in the past (Lahav et al., 2004).

d c: We have fixed the average concentration of repair proteins to be close to c, so that the oscillations of p53 of the right ampli-

tude would make the environment oscillate between being supersaturated and undersaturated.

d A: We have varied the amplitude of the oscillations in a range such that the ratio c0=Ac would be consistent with the ratio of p53

mean level and amplitude.

d M: The number of steps necessary to repair the DNA damages. Hahnfeldt et al. (1992) modeled the evolution of DNA damage in

irradiated cells as a Markov chain, in which several steps had to be accomplished to achieve full repair. In a recent biophysical

work (Mohseni-Salehi et al., 2020), the DNA repair process is modeled as a Markov chain and the number of possible steps is

estimated to be around 20.

d l: The rate of damage recreation. We assumed that, along with the correct repair mechanisms, ‘‘misrepair events’’ may also

occur, such as mistakes by the repair enzymes or a gradual loss of a lesion’s ability to undergo any reaction (Hahnfeldt

et al., 1992). This parameter is not strictly relevant for the conclusions of our work, therefore is assumed to be small for the ma-

jority of the simulations. It only serves the purpose to define a timescale for repair processes to be completed.

First passage time in the Smoluchowski limit
In the following we describe the rate of capture for a diffusing molecule, that can get absorbed by (i.e. react with) another molecule.

Wewrite up the Smoluchowski equation in spatial coordinates assuming angular symmetry. In the stationary state this takes the form

0 = V,DðrÞðV � bFðrÞÞpðrÞ;

with the two boundary conditions:

pðr1NÞ = c1c2

DðR0ÞðV � bFðR0ÞÞpðR0; tÞ = kpðR0Þ
The first guarantees a constant concentration of molecules away from the sphere of interest and the second is the radiation Bound-

ary Condition. The parameter k defines the absorbance of the binding site. Integrating with respect to the volume and applying Gauss

theorem yields Z
V

V,DðrÞðV � bFðrÞÞpðr; tÞdV = 4pr2DðrÞðV � bFðrÞÞpðr; tÞ

Next, inserting the Boundary Condition 2) and rewriting the first term gives

vr
�
ebUðrÞpðrÞ� =

R2
0k

r2DðrÞe
bUðrÞpðR0Þ:

Integrating on both sides, from R0 to N results in

c1c2�
e� bUðR0ÞR2

0k
RN

R0

1
r2DðrÞe

bUðrÞdr+ 1
�e� bUðR0Þ = pðR0Þ:

The total radial current into the partially absorbing sphere is equivalent to the rate of absorption:

Irad = k� = 4pR2
0kpðR0Þ = 4pR2

0k
c1c2�

e� bUðR0ÞR2
0k
RN

R0

1
r2DðrÞe

bUðrÞdr+ 1
�e� bUðR0Þ:

We define the actual on-rate as a constant multiplied by the concentrations of the two interacting molecules: k� = k + c1c2. There-

fore removing the dependencies on c1 and c2 yields

k+ =
4p� RN

R0

1
r2DðrÞe

bUðrÞdr+ ebUðR0Þ
R2
0k

�:
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If we assume that kz 0 we note that we recover the Arrhenius equation. Assuming diffusion limited reactions (i.e.UðrÞz 0) we get:

k+ =
4pRN

R0

1
r2D0

dr+ 1
R2
0k

=
4pD0R0

1+ D0

R0k

:

We see that we here arrive at the diffusion limited reaction rate (k + = 4pD0R0) if we also assume that k/N. We note here that the

classical result derived by Berg and Purcell, where one assumes a surface of small absorbing disks, leads to an on-rate of

k +
BP = 4pDR0

Na

pR0 +Na

where a is the radius of the small disks covering the absorbing spheres. These two expressions are therefore equivalent if k =

ðNaD =pR2
0Þ. We now assume that the absorbing center is in themiddle of a liquid droplet, whichwemodel by a spherically symmetric

potential U(r). The probability distribution of a molecule is denoted by p(r) = p(r). The probability density of being at distance r from the

absorbing site is given by qðrÞ = 4pr2pðrÞ. At steady state with a non-vanishing flux J = const, we have:�
2D

r
� D

kBT
vrU

�
q = Dvrq � J:

Introducing the variable 4 = � 2lnðrÞ+U=kBT , we simplify this as:

qvr4 + vrq =
J

D
:

By multiplication with e4, we obtain:

vrðe4qÞ =
J

D
e4:

The general solution to that equation is:

qðrÞ = Ce�4ðrÞ + Je�4ðrÞ
Zr
r0

e4ðr0 Þ

Dðr 0Þdr
0:

Here C = 0 due to the absorbing boundary condition qðr0Þ = 0. The constant J is determined by the normalization
R rn
r0
drqðrÞ = 1

yielding:

J� 1 = ta =

Zrn
r0

dre�4ðrÞ
Zr0
r0

dr0
e4ðr0 Þ

Dðr 0Þ;

By replacing 4ðrÞ by its definition and assuming a strong surface potential of the liquid droplet we directly retrieve Equation 3.

Derivation of droplet growth
We first describe an infinite system with two inhomogeneous phases, whose free energy F is therefore given by

F = V1fðc1Þ+V2fðc2Þ;

where f is the free energy density, V1;2 are the volumes of the two phases and c1;2 are the respective equilibrium concentrations.

Assuming that the total volume is constant and that the number of molecules is fixed leads to VT = V1 +V2 and cTVT = V1c1 +

V2c2, with VT being the total volume and cT the average concentration. Thus F can be written in terms of c1;V1; cT ;VT as

F = V1fðc1Þ+ ðVT � V1Þf
�
cTVT � V1c1

VT � V1

�
:

The stability of the inhomogeneous state corresponds to aminimumof the free energy in terms of the concentration and the volume

of the first phase. Therefore we differentiate the free energy with respect to c1 and V1 and equate these to zero, which yields

vc1F = 00f 0ðc1Þ � f 0ðc2Þ = 0; (S1)

vV1
F = 00fðc1Þ � fðc2Þ+ f 0ðc2Þ,½c2 � c1� = 0: (S2)
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Being in the thermodynamic limit, we have been entitled up to now to ignore surface effects. On the contrary, these play amajor role

in the regime of droplets, where the free energy portrays an additional term (+Ag, with A being the area of the interface and g the

surface tension). Therefore, in the case of a spherical droplet, the free energy takes the form:

F = VdfðcinÞ+ ðV � VdÞfðcoutÞ+ 4pR2g;

where Vd = ð4p =3ÞR3 is the volume of a spherical droplet of radius R, cin=out are the internal/external concentrations and V is the total

volume of the system. With similar reasoning as before, we differentiate with respect to cin and Vd, which results in

0 = f 0ðceq
in Þ � f 0ðceq

outÞ;

0 = fðceq
in Þ � fðceq

outÞ+ ðceq
out � ceq

in Þf 0ðceq
outÞ+

2g

R
;

where ceqin=out are the internal/external equilibrium concentrations. We see that the last term (known as the Laplace pressure) is negli-

gible in the thermodynamic limit, in which case we retrieve Equations S1 and S2. At this point we could write the equilibrium concen-

trations as a first order correction of the correspondent concentration in the thermodynamic limit (c
ð0Þ
in=out), such that ceqin=out = c

ð0Þ
in +

dcin=out. In this way we derive the following expressions:

ceq
out = c

ð0Þ
out,

�
1 +

lg
R

�
; (S3)

ceq
in zc

ð0Þ
in ; (S4)

with lg defined as the capillary length and the latter expression holding since we consider the case c
ð0Þ
in [ c

ð0Þ
out.

We now seek to find an expression for the concentration c of molecules at some distance r from a single droplet of radius R

embedded in an infinite medium, knowing that the concentration far away from the droplet is fixed to cN. Given the symmetry of

the system, c will only be a function of r. We further assume that the droplet radius varies slowly such that it can be considered con-

stant on the timescale of the diffusing molecules. The concentration gradient then causes a net diffusive flux density through a spher-

ical shell of radius r given by jðrÞ = � D v
vr cðrÞ with D being the diffusion coefficient. Given that the number of molecules is fixed, the

total flux across shell surfaces of radius r must be constant, and given by

J = � 4pDr2
v

vr
cðrÞ = const:

This equation has solution cðrÞ = k1 + k2=R, with constants k1;2 given by the boundary conditions at R and N ( cðRÞ = ceqout as

defined in Equation S3 and cðNÞ = cN. Therefore the solution reads

cðrÞ = cN + ðceq
out � cNÞR

r
r >R;

cðrÞ = ceq
in r <R:

The total flux of molecules leaving the droplet is

JR = 4pDR2 v

vr
cðrÞjr = R = � 4pDRðceq

out � cNÞ: (S5)

The variation of the droplet volume is given by ðdVd =dtÞ = JR=c
eq
in , that is

d

dt

�
4p

3
R3

�
= � 1

ceq
in

4pDRðceq
out � cNÞ;

which, rearranged in terms of dR=dt and written in terms of c
ð0Þ
in=out yields

dR

dt
=

Dc
ð0Þ
out

Rc
ð0Þ
in

 
cN

c
ð0Þ
out

� 1 � lg
R

!

This expression can be easily generalized in case of N droplets far apart from each other, so that direct interactions can be

neglected, while droplets only compete for material exchanging it through the common media. This directly yields Equation 1 and

Equation 2 in the main text, where, for simplicity of notation, we have defined c
ð0Þ
in=out as cin=out.
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Simulation of droplet growth and damage repair with the Gillespie algorithm
Let us first consider an initial distribution of proteins ni ci = 1; :::;N , and then, given the assumptions of a constant internal concen-

tration cin (such that Vi = ni=cin), and spherical droplets, each radius Ri is computed accordingly as

Ri =

�
3ni

4pcin

�1=3

:

The concentration far away from each droplet cN is adjusted in order to ensure the mass conservation as

cN =
cVn �

P
ini

Vn � 1
cin

P
ini

:

The flux of proteins in and out of the droplets is given by Equation S5, while at the same time damage can be repaired or re-created.

This gives rise to four possible processes for the i-th droplet, whose rates are

1. Growth of droplet by addition of one protein: r1;i = 4pDðcN � coutÞRi

2. Shrinkage of droplet by removal of one protein: r2;i = 4pDcoutlg
3. One step of damage repair: r3;i = 1=t

4. One step of damage recreation: r4;i = l

Therefore we can include the rates (here denoted mi ˛ ½r1;i;r2;i;r3;i;r4;i�) of all the possible events and calculate the time until the next

event as

Tevent =
�lnðRÞP

mi

; (S6)

whereR is a randomnumber, uniformly distributed between 0 and 1. Then, in order to findwhich of the possible events take place, we

assign a number to each reaction rate and choose the reaction, m, that satisfies:Pm�1
i = 1miPN
i = 1mi

%R%

Pm
i = 1miPN
i = 1mi

(S7)

After each event we update all the rates, and then repeat the steps. With this algorithm one can therefore simulate the system,

based on single proteins dynamics, in the presence of intrinsic noise. We note that since our equations have been derived in the

quasi-steady state approximation, the direct application of the Gillespie algorithm can lead to inaccurate estimation of the noise

level, in general to an underestimation of stochasticity compared to the full system (Kim et al., 2015). However, this potential

imprecision does not affect the main results, since the stochasticity is mainly responsible for generating a mixed initial state

and the very early growth of the droplets. As soon as the droplets get past this initial phase, the forces are so strong that the

stochasticity only plays a minor role. Having higher noise would result in an earlier dominance of Ostwald ripening, since the fluc-

tuations could in principle drive the system out of the metastable state in which some droplets temporarily co-exist. This would

further enhance the need for an oscillatory mechanism to prevent the effect of Ostwald ripening.

Transition from diffusion to Ostwald ripening
Material flux from far away toward the droplets surface ceases when the gradient of concentration is null, that is when cNz cout.

Considering the same initial radius Riz0 ci one can assume that all droplets roughly reach the same size at that point, so thatPN
i = 1

Vi = N,Vi. In this case Equation 2 takes the form

cV = cinN,Vi + coutV � coutN,Vi:

Isolating for Vi and considering that cin [ cout directly yields Equation 6.

Ostwald Ripening timescale of coarsening
By considering the definition of the critical radius

Rc =
cout

cN � cout

lg;
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it is possible to express Equation 1 as

ðdR =dtÞ = �Dlg �R2Rc

�ðcout = cinÞðR � RcÞ:
Moreover, considering that Rc changes much more slowly than R

dR

dt
z

dðR � RcÞ
dt

=
1

TOR

ðR � RcÞ;

with TOR being the timescale of coarsening as defined in Equation 7.

Visualizing p53 dynamics in polar coordinates
The p53 andMdm2 levels are first centered around their mean values such that x = p53� Cp53D and y = Mdm2� CMdm2D, which are

then transformed in polar coordinates ðr; qÞ as r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
and q = arctanðy =xÞ. The angular space is then divided in 50 sections,

within each of whom the mean and SD of the trajectories are calculated.

On non-linear p53 stimulation and the dependency of waveforms
In the paper we have investigated how the oscillations in p53 concentration affected the repair foci, generally assuming, for simplicity, a

sinusoidal p53 signal and a linear relationwith the dropletmaterial concentration. In the following,wewould first like to compare different

types of waveforms on the resulting repair of damage. Secondly, we investigate the effect of non-linear relations between p53 and

downstreamdroplet proteins, whichwould be a fair assumption if themain role of p53were in the transcriptional-dependent processes.

To test the dependency of other waveforms on the Ostwald ripening, we considered three very distinct waveforms: sinusoidal,

square and triangular waves. Keeping the frequency and amplitude fixed, we measured the repair efficiency for each of the wave-

forms (Figure S1A). Here we find that they all have a frequency dependency that enhances the repair efficiency and that this is

very similar for the triangular and sinusoidal waveform, but covers a larger range of frequencies for the square wave. This is explained

by the fact that the square wave will spend longer time at the maximal concentration level, that allows more droplets to co-exist and

thereby enhancing the overall efficiency of repair.

Secondly, from a mathematical point of view, the dynamics of downstream proteins (denoted by L) leading to the liquid-liquid

phase separation, would be given by

_L = fðpÞ � dL;

where we have assumed that L is spontaneously degraded at a rate d, and that it is produced as a function of p53 (denoted by p). In

the regime of biochemical functions, where we assume that p53 is not a repressor but an activator, we would demand that: 1) p is

positive (since it is a concentration) 2) f(p) is monotonically increasing (since it is an activator by definition). These two constraints

allow us to distinguish four different cases for f(p):

f 00ðpÞ = 00fðpÞ = cp

f 00ðpÞ > 00fðpÞ = cp2

f 00ðpÞ < 00fðpÞ = p

c+p

f 00ðpÞ


> 0 for p< c
< 0 for p> c

0fðpÞ =
ph

ch +ph

Here c is a positive parameter and h is the integer of a Hill function. For oscillatory levels of p53, we simulated the concentration of

the protein L, which turned out to be itself oscillatory in each case, even though the shape of the waveforms may vary (Figure S1B).

The only casewhere oscillations are completely absent is when f
�
pÞ = p

e+p, where ε� 1. However, this is a very special case, andwe

would argue that it is more likely that downstream targets generally possess an oscillatory output. This means that for the majority of

cases, oscillations in p53 would also lead to oscillations in the downstream targets.

QUANTIFICATION AND STATISTICAL ANALYSIS

To compare the experimentally found distributions we applied the Mann–Whitney–Wilcoxon two-sided test in Figures 5B–5E. To

compare the similarities of the distributions we applied the two sided KS test (Figure 5F). To compare the fully repaired cells, we

used the Student’s t test to compare the two numbers, assuming Poisson counting statistics in the single bin (Figure 5G).
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Supplemental figures

Figure S1. Effect of different p53 waveforms and non-linear relationship between p53 and droplet proteins concentration, related to STAR

Methods

(A) Amount of damage left as a function of p53 frequency for three different p53 waveforms (sinusoidal, squared, triangular). (B) Oscillatory dynamics of p53

(below) and resulting average concentration of proteins, following 4 different types of stimulation.
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Figure S2. Effect of varying the parameters lg, D, cin, and cout on the timescale of coarsening, related to Figure 3

(A) Foci radius traces for increasing values of lg. The main effect is a shortening of the timescale of coarsening. (B) Same as (A), but for increasing values of D. The

main effects are that the timescale of coarsening gets shorter and the optimal range gets wider. (C) Same as (A), but for increasing values of cin. The main effect is

that the resulting droplets are smaller, since the internal concentration is higher with the same average material. (D) Same as (A), but for increasing values of cout .

For cout < �c (left) the droplets are stabilized for long timescales, whereas for cout > �c (right) droplets cannot grow as the environment is undersaturated.

ll
OPEN ACCESS Theory



Figure S3. Different time series for p53 levels obtained by variation of the parameters k2 and k1, related to Figure 4

(A) p53 level traces for increasing values of the degradation rate k2 (with respect to a reference value k02 ); low k2 results in constant high levels for p53, while for

higher k2 a limit cycle with high amplitude oscillations emerges. (B) p53 level traces for increasing values of the production rate k1 (with respect to a reference value

k01 ) show an increase in the amplitude of the oscillations.
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4Entrainment as control mechanism for
the p53 oscillator

4.1 Introduction and Objectives
All of us who have travelled to a remote destination by plane, possibly crossing multiple time-zones,

will be familiar with the typical symptoms of jet-lag, such as fatigue, insomnia, and difficulties with

concentration. So what is the underlying reason? The problem is that the person’s internal body

clock, also known as the circadian rhythm, has not had enough time, during the travel, to adjust to

the new environmental cues it receives from the outside. As a result, it inevitably falls out of sync.

Indeed, the circadian clock is robustly locked (or entrained) to the light-dark cycle of the starting

place, and will need some time before it can adjust to the new rhythm (Czeisler et al., 1999).

The phenomenon of entrainment, characterized by the synchronization of an oscillator’s frequency

with an external pulsing rhythm (Pikovsky et al., 2001), extends beyond the organismic level.

Entrainment is crucial not only for the synchronization of internal processes, such as the alignment

of the circadian clock with the cell cycle (Gérard and Goldbeter, 2012; Pfeuty et al., 2011), or

with metabolic cycles (Woller et al., 2016), but also for enabling tissues to function cohesively. For

instance, cardiac cells synchronize their oscillations with the rhythm of the sinoatrial node, ensuring

coordinated heart contractions (Jalife, 1984).

As we thoroughly covered in the previous chapter, oscillations have been increasingly appreciated as

important mechanisms in transcriptional regulation, as they guide gene expression outputs (Heltberg,

Krishna, et al., 2021; Hoffmann et al., 2002; Lahav et al., 2004; Nelson et al., 2004; Gonze et al.,
2002; Zhang et al., 2017; Levine et al., 2013; Krishna et al., 2006). In this context, one natural

question to ask is whether these oscillations could also be artificially controlled and manipulated via

entrainment to an external rhythm. In some cases, researchers have already found that this is indeed

possible: Nuclear Factor kappa B (Nf-κB) has been shown to entrain its frequency to externally

applied periodic stimulations of Tumour Necrosis Factor (TNF) (Heltberg et al., 2016; Kellogg and

Tay, 2015), leading to a more robust transcriptional response. However, the possibility of modulating

Transcription Factors (TFs)’ natural frequency via entrainment remains unexplored for many systems,

even well-studied ones such as the p53 network (Jiménez, Lu, Jambhekar, et al., 2022).

In the previous chapter we have shown how p53 is activated by various cellular stresses (Purvis

et al., 2012; Hafner et al., 2017; Reyes et al., 2018; Kracikova et al., 2013), and oscillates specifically

in response to Double-Strand Breaks (DSBs) with a robust periodicity of approximately 5 h (Lahav

et al., 2004; Batchelor et al., 2011; Chen, 2016). We have seen that the oscillations arise from p53’s

transcription of MDM2, a protein that induces p53 degradation (Wu et al., 1993; Fuchs et al., 1998;

Haupt et al., 1997; Honda et al., 1997; Kubbutat et al., 1997) (see Section 3.2.1). We have also

briefly mentioned, describing the experiments in Section 3.3, that certain small molecule inhibitors of
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MDM2, such as nutlin-3a, can alter p53 dynamics. This, in turn, affects the resulting gene expression

programs, such as the transcription and protein levels of one of the most crucial target genes for

cell-cycle regulation, p21 (Purvis et al., 2012). The role of p21 is essential for maintaining proper

cell-cycle control during DNA damage, preventing cell division until DNA has been repaired, or,

in case of severe damage, stopping the cell from reproducing indefinitely (senescence) (Hsu et al.,
2019). Molecules such as nutlin-3a are therefore good candidates to be administered in pulses, in

order to test the possibility of controlling p53 frequency and the effect on the downstream targets

such as p21.

Our objective in this study is therefore to investigate whether p53 oscillations can be entrained

by an external pulsing signal, specifically small molecule nutlin-3a. To achieve this, we aim to:

• Develop a theoretical model to describe the impact of single pulses of nutlin on the negative

feedback loop between p53 and MDM2;

• Use the theory of Phase Transition Curves (PTCs) and Arnold Tongues, to predict the response

of the system to a periodic pulse and the presence of entrainment modes;

• Compare our theoretical predictions with the experimental data;

• Investigate the effect on the downstream target p21 to understand the potential evolutionary

advantage of p53’s intrinsic frequency in regulating cellular processes related to cell fate

determination (proliferation vs cell cycle arrest or senescence).

This project has been initially formulated by Alba Jimenez, Mathias S. Heltberg, Mogens H. Jensen,

and Galit Lahav. All the experiments have been performed by Alba Jimenez, with the supervision of

Ashwini Jambhekar and Galit Lahav at Harvard Medical School. The theoretical model and the data

analysis have been carried out by Mathias S. Heltberg and me.

In the next section, we will review the main mathematical concepts necessary for the derivation of

the model and the analysis of the results, focusing in particular on the Arnold Tongues theory and on

Poincaré maps.

4.2 Background theory

4.2.1 Arnold tongues theory
When two oscillators interact, we define them as coupled oscillators. The phenomenon of entrainment

usually manifests in case of unidirectional coupling (Stavans et al., 1985), meaning that there is

one oscillator, denoted the internal one (with period Tint) which is affected by another oscillator,

the external one (with period Text and amplitude Aext), that is not affected back (Figure 4.1A).

Depending on the period mismatch (∆T = Text − Tint) and on the strength of the interaction,

generally correlated to the amplitude of the forcing oscillator (Aext), the internal oscillator modulates

its intrinsic frequency in different possible ways.

To analyse its behaviour, the two oscillators can be described in terms of their phases θINT,EXT
which, as we have seen in Chapter 2, grow linearly in the range [0, 2π] within each oscillation and

are reset to 0 every period T . Thus, at a given time t, the phase can be calculated from the trace

as θ(t) = (t − t0)/T · 2π, where t0 is the time of the last peak. This allows us to visualize the
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phase as an angle progressing with time on the unit circle (Figure 4.1B). Given that both phases

of the internal and external oscillator are defined in the circle S, the resulting state space is the

2-torus T2 = S1 × S1 (Figure 4.1C, left), where θEXT and θINT are the longitude and the latitude

respectively. The oscillators are frequency-locked, or entrained, when there is a periodic trajectory

on the 2-torus, i.e. a torus knot (Figure 4.1C, right). The simplest type of entrainment occurs when

∆T is small and is progressively reduced to zero during a transient phase (Figure 4.1D). This is

defined as 1:1 entrainment, since the internal oscillator goes through 1 cycle for each cycle of the

external one. In general, if θINT makes p rotations in the time it takes for θEXT to make q rotations,

the system is said to be p:q entrained. This state is therefore characterized by the rotation number
ω, which is simply defined as the ratio ω = p/q (Pikovsky et al., 2001). In Figure 4.1E we show

examples of entrainment modes such as 1:1, 1:2, 2:1.

The motion on the torus can be mapped into a 1D difference equation using a Poincaré section (Glass

and Mackey, 1988; Heltberg, Krishna, et al., 2021): the phase of the internal oscillator is recorded

every time the phase of the external one passes through the section, that is, every time the external

oscillator makes one full rotation (Figure 4.1F). Thus, we have a stroboscopic mapping of a circle

to itself θn+1 = P (θn), where we have dropped the subscript INT for simplicity of notation. The

sequence θn with n = 1, 2 . . . is called the orbit of the map. Historically, the first to analyse coupled

oscillators in these terms were Kolmogorov and Arnold (Arnold and Avez, 1968; Arnold, 1965) who

studied the so-called sine circle map

θn+1 = θn −Aext sin θn + 2π · Ω,

where the coupling is sinusoidal with amplitude Aext, which represents the coupling strength, while

Ω corresponds to the ratio of external over internal period (Ω = Text/Tint).

One can readily observe that if Aext = 0, the two oscillators are uncoupled, and their independent

motions proceed unperturbed. Only in the case Ω is a rational number, the two oscillators are

intrinsically frequency-locked, since their natural frequencies are a multiple of each other. However,

given that there are infinitely more irrational than rational numbers, the Aext = 0 line will be

dominated by quasi-periodic motion, where no stable entrainment is found for any initial condition

(Feigenbaum et al., 1982; Strogatz, 2018). When Aext > 0, the internal oscillator frequency will be

pulled by the external one, leading to a small region of entrainment around each rational number for

Ω. These regions expand for increasing values of Aext, leading to the characteristic Arnold Tongues,

depicted in Figure 4.1G for the specific case of sine circle maps. The figure shows the regions of

frequency-locking in gray, with highlighted in yellow, pink and blue the three tongues for 1:2, 1:1

and 2:1 entrainment respectively.

For Aext < 1, the Poincaré maps are invertible circle maps, i.e. with a 1-1 correspondence between

values of θn and θn+1 on the unit circle. It can be shown that in this case, the system has a unique

solution for each value of (Aext,Ω), meaning that the internal oscillator displays regular oscillations

which may entrain (inside the tongue) or not (outside the tongue) to the external oscillator. In other

words, the Arnold tongues in this region are distinct and do not overlap (Glass and Mackey, 1988).

For increasing values of Aext the tongues widen, the space left outside the tongues (for non-entrained

solution) gets smaller and smaller until at Aext = 1, the irrational numbers occupy a fractal set of

the whole line, with universal dimension 0.870 (Jensen et al., 1984): therefore, the rational numbers

fill up the critical line Aext = 1 (opposite to what happens at Aext = 0).
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Further increasing the strength of the external perturbation (Aext > 1), results in the map becoming

non-invertible: the tongues start to overlap, thus possibly giving rise to multiple stable solutions,

which depend on the initial conditions. In the presence of noise, the oscillator may then jump

between different stable states, a phenomenon called “mode-hopping” (Heltberg et al., 2016), as

shown in the first panel of Figure 4.1H.

This level of interaction strength may also lead to a type of bifurcation known as period-doubling
(Figure 4.1H, middle panel), which is generally found at the center of each Arnold tongue. This

phenomenon occurs when a new trajectory emerges from an existing periodic trajectory – with

the emerging one having double the period of the original, which is manifested in the data as a

pattern of alternating amplitudes in the oscillations. By definition, period-doubling means that

it takes double the time for a trajectory to repeat itself. Thus, a period-doubling cascade (i.e.

an infinite sequence of period-doubling bifurcations), in which the trajectory takes longer and

longer to repeat itself, is a common route by which dynamical systems develop chaotic dynamics
(Strogatz, 2018)(Figure 4.1H, right panel), indeed characterized by infinite-period trajectories. In

chaotic dynamics, two trajectories with initial conditions separated by an infinitesimal distance will

exponentially diverge as time progresses. Given that it is impossible to know initial conditions with

perfect precision, the long-term behaviour of the system is totally unpredictable.

In the next section, we show how to derive a Poincaré map for a system of coupled oscillators in

order to predict the Arnold tongues, and therefore uncover the ability of the external pulsing signal

to entrain the internal system.

4.2.2 Poincaré maps to predict entrainment from single
perturbations

In this section, we consider an internal oscillator of the form

ẋ = f(x) +Aδ(t− ts)

with an exponentially stable limit cycle, which receives a stimulation by an external pulsing signal at

times ts (Izhikevich, 2018) (δ here represents the Dirac delta function). This results in an immediate

update of the state variable x to a new value x + A. The goal of this section is to determine the

response of the system to a single perturbation and extrapolate it to the case of repeated pulses, in

order to compute the Poincaré map and predict the ability of the system to become entrained by

an external periodic signal. The initial assumption ensures that the effect of a pulse is over before

the next pulse is received, so that subsequent pulses can be regarded as independent. This may not

be valid for any external oscillatory rhythm, such as in case of strong external pulses, short time

between pulses or weak attraction to the limit cycle (Izhikevich, 2018).

When an external perturbation is introduced at time t, it can induce a phase shift ∆θ in the ongoing

oscillation. This shift causes the system to transition from an initial phase θi(t) to a new phase θf (t),
where ∆θ = θf −θi, as shown in Figure 4.2A. While θi(t) is computed based on the unperturbed trace

(blue curve), the final phase θf (t) is obtained from the perturbed trace (red curve) by extrapolating

back to the time of the last peak (black dotted curve). The system typically undergoes a short

transient phase (gray curve) before returning to the stable cycle at its new phase. Therefore, while

amplitude changes decay over time, phase changes persist.
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Figure 4.1: (A) Entrainment occurs when an external oscillator affects unidirectionally an internal oscillator.
(B) Definition of the phase. (C) The dynamics of an internal and external oscillator can be mapped
to a torus: frequency-locking (or entrainment) corresponds to a torus-knot, i.e. a periodic trajectory
on the torus. (D) Definition of the rotation number as ratio between no. of internal oscillations
over external ones, computed after an initial transient time. (E) Examples of 1:1, 1:2 and 2:1
entrainment modes. (F) Poincaré map and definition of sine circle map. (G) Arnold Tongues for the
sine circle map. (H) Examples of mode-hopping, period-doubling and chaos which can be found in
regions of overlapping tongues, where there is multi-stability.
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The phase can also be defined outside the limit cycle (Izhikevich, 2018) using the notion of isochrons:
intuitively, an isochron is a set of initial conditions that result in oscillations with the same phase

(Josic et al., 2006). To illustrate this concept, we make a 2D example in the (x1, x2) coordinates

(Figure 4.2B). We consider a trajectory x′(t) outside the limit cycle (thus non-periodic), that is

attracted to the limit cycle, and therefore approaches it as t → ∞. Thus, there must be a point x(t)
on the limit cycle such that

x′(t) → x(t) as t → ∞. (4.1)

The phase of x′ at time t0 is therefore defined as the phase of its periodic proxy x at time t0. The set

of all initial conditions in the phase space having the same phase as x(t0) is defined as the isochron

of x(t0). The phase space is filled with isochrons, that all converge in the unstable fixed point inside

the limit cycle.

So when an external pulse results in a phase shift for the ongoing oscillation, the system is, in other

words, transitioning from one isochron to another. This is illustrated in Figure 4.2C for the case of a

circular limit cycle with radial isochrons with an horizontal pulse (along the variable x1) (this model

is defined as Radial Isochron Clock (RIC), and is explained in more details in the Theory Box 4.2.1).

The system receives the horizontal pulse of length Aext at initial phase θi, and ends up in the vertical

isochron, in which all points have phase θf . If the relaxation time to the limit cycle was really short,

the trajectory would follow the black arrow and approach the limit cycle almost instantaneously.

Otherwise, the system may follow a longer transient trajectory (gray curve) outside the limit cycle,

before approaching it.

Theory Box 4.2.1: Poincaré maps: Radial Isochron Clock (RIC) vs sine circle map

The Radial Isochron Clock (RIC) is the normal form of any system near a Hopf bifurcation

and has been used to describe circadian rhythm and neural and cardiac oscillators (Guevara
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and Glass, 1982; Granada et al., 2009), as well as the embryonic segmentation clock (Sanchez

et al., 2022). The corresponding equations in polar coordinates are

dr

dt
= r(µ− r2), dθ

dt
= 1. (µ = const) (4.2)

Indeed, when µ < 0, the only fixed point is at r = 0, which is a stable spiral. When µ > 0
the fixed point at the origin becomes unstable and a stable limit cycle appears at r = √

µ

(Hopf-bifurcation). If we assume that an external pulse causes an horizontal shift to the right

of length Aext, the system transitions from an initial point A with coordinates (r cos θi, r sin θi)
to a point B with coordinates (r cos θf , r sin θf ). It is straightforward from the geometry of the

system to determine the coordinates of B in terms of θi, (r cos θi + Aext, r sin θi). It follows

that tan θf = sin θf

cos θf
= sin θi

cos θi+Aext
, which relates the phase of the system before and after the

pulse. Isolating θf yields

θf = PTC(θi) =


arccos

(
cos θi+Aext√

1+2Aext cos θi+A2
ext

)
if θi < π,

2π − arccos
(

cos θi+Aext√
1+2Aext cos θi+A2

ext

)
if θi > π.

(4.3)

The corresponding Poincaré map thus follows directly as PTC + 2πΩ, with Ω = Text/Tint

as defined in the main text. For small Aext, the map can be approximated as a sine circle

map. For increasing values of the external stimulus one can see that the behaviour of the two

maps is intrinsically different: while the sine circle map maps the whole circle, the RIC map

becomes an interval map, as it maps the circle to an interval in [0, 2π]. The corresponding

Arnold tongues are therefore similar for small Aext and become substantially different for

high pulses: while the Arnold tongues for sine circle maps show tongues that keep broadening

and therefore have multi-stability and chaotic dynamics, some of the tongues for the RIC

have a characteristic mushroom shapes, while others have vertical boundaries at high Aext,

thus none of them overlap.

In general, the observed phase shift can depend on the initial phase θi at which the perturbation is

received. This dependence can be visualized through the PTC, which plots the final phase θf as a

function of the initial phase θi, or through the Phase Response Curve (PRC), which plots the phase

shift in terms of the initial phase. Both are represented in Figure 4.2D. The two approaches are

equivalent: using PRCs is more convenient in case of small phase shifts, which can be magnified,

whereas PTCs are generally used for large phase shift of the order of the period of oscillation

(Izhikevich, 2018). In the case of weak external pulses (Figure 4.2D, top), the PTC slightly deviates

from the diagonal line (θi = θf ), which has mean slope 1, resulting in the so-called type 1 resetting.

In this case, the PRC slightly deviates from ∆θ = 0, indicating that the external perturbation has

minimal effect on the oscillator. Conversely, in the case of strong pulses (Figure 4.2D, bottom), the

final phases of the oscillators are reset within a narrow range with mean slope 0 (hence defined type
0 resetting), and the phase shifts are large.

Through the PTC we therefore know the response of the system to a single external pulse. How

can we find the response to a periodic pulse? If we give the system enough time to relax to the

limit cycle before the next stimulus arrives, we can assume that we can use the same PTC for

subsequent pulses, too. The first stimulus occurs at an initial phase θ1,i, causing a phase shift ∆θ1
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Figure 4.2: (A) An external pulse causes a phase shift ∆θ on the ongoing oscillation. (B) Definition of isochrons.
(C) A phase shift causes the system to hop to a new isochron. (D) Examples of Phase Transition
Curves (PTCs) and Phase Response Curves (PRCs) for weak and strong resetting stimuli. (E) From
the PTC it is possible to derive the Poincaré map, which gives information about the Arnold tongues.
(F) The fixed points of the Poincaré map correspond to p:1 locked states (such as 1:1 or 2:1), while
limit cycle correspond to p:q locked states (such as 1:2 shown). (G) Period-doubling cascade in the
Poincaré maps.
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such that the final phase at the end of the stimulus is θ1,f = θ1,i + ∆θ1. The phase will then proceed

unperturbed until the time of the second perturbation, and will reach a new "initial phase" θ2,i

equal to θ2,i = θ1,i + ∆θ1 + Text

Tint
2π. At this point, the second pulse causes a new phase shift etc.

By iterating this procedure for n pulses, as shown in Figure 4.2E, one can derive the Poincaré map

θn,i = θn−1,i + ∆θn−1 + Text

Tint
2π. Numerically iterating the map n times and registering the final

phase of the internal oscillator after n external pulses directly leads to compute the rotation number

ω, and therefore plot the Arnold tongues for the system.

However, even before turning to simulation, it is possible to predict the presence of phase-locked

solution, directly looking at the different possible orbits for the maps, in particular, the presence of

fixed points or limit cycles. In general, for a discrete map θn+1 = f(θn), a fixed point θ∗ is defined as

(Strogatz, 2018)

θ∗ = f(θ∗),

which is the analogue of an equilibrium point for a continuous dynamical system. Indeed, applying

the map to a fixed point returns the fixed point itself, indicating that it is an equilibrium point.

Geometrically, if we plot θn+1 as a function of θn, the fixed point lies at the intersection between the

map f and the diagonal line (where θn = θn+1).

The stability of the fixed point is determined by the slope

m = f ′(θ∗),

so that the fixed point is stable if |m| < 1, unstable otherwise. A fixed point therefore corresponds to

either a 1:1 or a p:1 locked state, since the phase is the same at every iteration (Figure 4.2F, first and

second row). Given that the map ignores everything that occurs between two subsequent pulses,

in order to determine which p:1 locked state it is, the map has to be numerically simulated. What

about a p:q solution? That would correspond to a stable periodic orbit of the Poincaré map with

period q (Figure 4.2F, third row), such that

θn = θn+q ∀n.

Stable fixed points and limit cycles can coexist in maps, resulting in multistability of the corresponding

phase-locked solutions for the oscillator.

Up to this point, we only considered boundaries in the Arnold tongues between different phase-

locking zones due to changes in rotation number. However, there is another possible type of boundary,

which is given by a period-doubling bifurcations of the associated Poincaré map. This occurs when

m = f ′(θ∗) = −1.

For instance, this bifurcation occurs at the boundary between the 1:1 and 2:2 or 2:2 and 4:4 zones,

where there is no change in rotation number, but the number of iterations it takes for the map to get

back to the same point is doubled (Figure 4.2G).
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4.3 Results

4.3.1 Derivation of the Phase Transition Curves (PTCs)
Our collaborators at Harvard Medical School, led by Galit Lahav, devised an experimental set-up in

which the natural oscillations of p53, which constitute the "internal oscillator", with an endogenous

period Tint = 5.5 h, can systematically be perturbed by an "external oscillator", given by pulses of the

small molecule nutlin-3a (Figure 4.3A). As mentioned in the Introduction, p53 oscillatory dynamics

mainly arises as a result of the negative feedback loop with inhibitor MDM2 (see Section 3.2.1

for more details), and nutlin-3a effect is to prevent the MDM2-mediated degradation of p53, thus

elevating p53 levels.

Experimentally, cells are subjected to γ−radiation, in order to start p53 oscillations (Figure 4.3B).

A macrofluidic device then quickly and efficiently flows media containing or lacking Nutlin-3a in

and out of the cell culture while cells are being imaged. Changes in p53 dynamics are monitored by

fluorescence time-lapse imaging of a p53-YFP reporter integrated in the MCF7 cell line.

First, the natural oscillations of p53 are perturbed with a single 40-minutes pulse of Nutlin-3a, at

concentrations of Aext = 0.125 µM and Aext = 1 µM, about 30 hours post-irradiation. As we have seen

in Section 4.2.2, the response to a single pulse can provide crucial information about the dynamical

properties of an oscillator and predict its entrainability to an external periodic input. Indeed, if

subsequent perturbations are regarded as independent, the knowledge acquired from single-pulse

experiments can be applied iteratively to make predictions on the effect of a series of perturbations.

In Figure 4.3C we show an example of two single cell traces (first row) and the population average

(second row, standard deviation in gray). Because of noise, by the time the perturbation is delivered,

single cells’ endogenous oscillations are desynchronized, as can be observed from the single cell

traces. This effect is evident at the population level through damped oscillations in the average p53

signal. While there seem to be very little effect after the 0.125 µM nutlin pulse, immediately after the

1 µM nutlin pulse, the cells re-synchronize, which is seen as a pulse in the average p53 signal. This

suggests that the phases of all the cells have been reset within a narrow range, and that repeated

pulses may lead to entrainment at sufficient nutlin concentration.

We therefore used the following set of ordinary differential equations (ODEs) as a model of the

p53-MDM2 loop (Mengel et al., 2010) to simulate the effect of nutlin concentration on p53 re-setting

(Figure 4.3D):

dp
dt = k1 − k2

Mfreep
k3+p

dm
dt = k4p

2 − k5m,

dMfree

dt = k6m− k7Mfree − k8nMfree,

dMbound

dt = k7Mbound + k8nMfree,

dn
dt = −k8nMfree, n(t = Ton) = Aext, n(t < Ton or t > Toff ) = 0,

where p, m, Mfree and Mbound are the concentration of p53, of MDM2-mRNA, MDM2 free from and

bound to nutlin, respectively; n is the concentration of available nutlin, administered with a pulse at

time Ton and washed at time Toff . p53 production is constant (k1) while its saturated degradation

occurs via binding to MDM2 (k2, k3). MDM2-mRNA production is directly proportional to the square
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Figure 4.3: (A) Theoretical system with an internal (p53) and an external (nutlin) oscillator. (B) Experimental
set-up with microfluidic device coupled with live cell imaging. (C) Single cell traces (first row) and
population average ± Standard Deviation (second row) of endogenous p53 oscillations with a 5.5 h
period after 10Gy radiation. At about 30 h post radiation, a 40 min pulse of nutlin of 0.125 µM(left)
and 1 µM(right) is administered. (D) Theoretical model for the negative feedback loop between
p53 and MDM2. The binding between MDM2 and nutlin prevents p53 inhibition by MDM2. (E)
Comparison between experimental data and the model prediction for three cells that received the
nutlin pulse at three different phases. (F) Top: Phase Transition Curves (PTCs) and Phase Response
Curves (PRCs) calculated from the experimental traces (gray crosses) and from the model (black
dots) for increasing values of the nutlin concentration (Aext). Bottom: Initial phases (red) and
final ones (green) portrayed in the unit circle. The length of the black arrows (R) represent the
order parameter, which shows increasing levels of synchrony for increasing nutlin concentrations.
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of the p53 level - as p53 forms a tetramer of pre-existing dimers – and is scaled by a production

parameter (k4). It is degraded through a first-order decay process (k5). MDM2 protein production is

directly proportional to MDM2-mRNA (k6) and exponentially decays (k7). Finally, nutlin binds to

MDM2 at a certain rate (k8), preventing it from inhibiting p53.

One can easily show that introducing the pulse of nutlin to the model affects the binding affinity

between p53 and MDM2, turning k2 into a time dependent constant. Indeed, if we define the total

MDM2 concentration at time t as M(t) = Mfree(t) +Mbound(t), it follows that

dM

dt
= dMfree

dt
+ dMbound

dt
= k6m− k7(Mfree +Mbound) = k6m− k7M,

whereas the equation for p53 reads

dp

dt
= k1 − k2(M −Mbound)p

k3 + p
= k1 − k2

(
1 − Mbound

M

)
Mp

k3 + p
= k1 − k2(t) Mp

k3 + p
,

with k2(t) = k2(1 −Mbound(t)/M(t)). The corresponding equations are therefore
dp
dt = k1 − k2(t) · Mp

k3+p
dm
dt = k4p

2 − k5m

dM
dt = k6m− k7M.

The model predicts that if the concentration of nutlin is saturating so that all MDM2 is bound,

the concentration of free MDM2 drops, leading to an increase in p53 concentration after the

pulse. Shortly afterwards, the system goes back to the unperturbed oscillatory state. A saturating

concentration of nutlin is the only prerequisite for causing an immediate p53 peak after perturbation.

This effect is confirmed by comparing our model predictions to experimental data from three single

cells. Regardless of the phase θi of their ongoing oscillation at the time of receiving the nutlin pulse,

all three cells show an immediate peak in p53 concentration (Figure 4.3E).

We then repeated the experiment for five increasing concentrations of nutlin to derive the PTCs, which

represent the resulting final phase θf as a function of initial phase θi (Figure 4.2). Experimental (grey

crosses, Figure 4.3F, top) and ODE-model derived (black dots, Figure 4.3F, top) PTCs correspond well.

The same can be visualized through the PRCs, which are shown on the second row of Figure 4.3F.

For increasing values of Aext, the system transitions from a regime of weak phase resetting (type

1), in which the final phase resembles the initial one, to a regime of strong resetting (type 0), in

which the final phases of all cells are reset in a narrow range, therefore the cells are synchronized.

Transition into synchrony is visualized using concentric unit circles (Figure 4.3F, bottom) that

show the distribution of initial (inner) and final (outer) phases. In order to quantify the level of

synchronization after the pulse, we use the Kuramoto order parameter, defined as the complex sum

of the phases of all the cells:

Reiψ = | 1
N

N∑
i=1

eiθf (i)|,

where N is the number of cells. The order parameter is therefore represented in Figure 4.3F as the

black vector that points in the direction of the average phase (ψ) and whose length (R) quantifies the

level of synchronization. As expected, R increases for increasing values of the nutlin concentration.
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This behaviour is typical of limit cycle models that show a transition from type 1 to type 0 PTCs

when going from low- to high-stimulus strengths (Glass and Mackey, 1988).

4.3.2 Prediction of the Arnold Tongues from the Poincaré maps

PTCs can be applied iteratively, to compute the phase shift caused by subsequent repeated pulses,

giving rise to Poincaré maps, which enables the computation of the rotation number. The main

assumption of this approach is that subsequent pulses are treated as independent, which means that

they give rise to the same PTC. To test this assumption, we computed the PTC after a first pulse and

after a second pulse, both of amplitude Aext, both of 40 min in duration, delivered at a distance

of Text. If the transient dynamics of the p53 limit cycle is fast enough, we should see that the two

curves overlap. We plot the results in Figure 4.4A in a range of Aext and Text. We observe that the

curves do overlap in the majority of the parameter region investigated, but, as expected, they do not

if the strength of the perturbation is too strong or the period between subsequent pulses too little

(top-left region). Therefore, one has to be careful and avoid drawing strong conclusions from the

Arnold tongues predicted in that region, where this method is unreliable.

We could already make some predictions even before turning to numerical simulations, by looking

at the PTCs of Figure 4.3F: at low nutlin concentration (< 0.5 µM), the maps are invertible circle

maps, indicating that Arnold tongues do exist, and thus p53 has the capacity to display regular

oscillations which may entrain (inside the tongue) or not (outside the tongue) to nutlin (Jensen

et al., 1984). Above a critical value of nutlin concentrations (> 0.5 µM), Poincaré maps become

non-invertible, indicating that complex dynamics might occur (Guevara and Glass, 1982; Glass and

Mackey, 1988).

We next performed numerical simulations to draw the Arnold tongues of the system. To do so, we

first needed an analytical function to iterate. Given that the shape of the PTCs computed from the

theoretical model highly resembled the RIC model (Glass and Winfree, 1984; Glass and Mackey,

1988), we used an analytical function inspired by it, to which we added 2 extra parameters (B,C)

PTC(ϕ) =

ϕ− ψ −B if 0 ≤ ϕ− C ≤ π,

ϕ+ ψ −B if π ≤ ϕ− C ≤ 2π,

ψ = arccos
(

1 +A cos(ϕ− C)√
1 + 2A cos(ϕ− C) +A2

)
.

The original parameter A quantifies the strength of the pulse. The addition of the two extra

parameters make the PTCs shift horizontally and vertically by a constant amount, and can be justified

by the fact that the p53 model has more dimensions than the RIC model (which is only 2D), and

therefore cannot fully capture the complexity of the p53 dynamics. However, as shown in Figure 4.4B,

adding these parameters leads to a good correspondence between theoretical model (black dots) and

analytical fits (red squares), where we report three example PTCs and PRCs for increasing nutlin

concentrations. Repeating the fit over a range of nutlin strengths [0 − 1]µM showed that A grows

approximately linearly in the range investigated, (as expected, since in the original RIC model it

represents the strength of the perturbation), while B and C could be approximated with piecewise
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Figure 4.4: (A) Test of transient dynamics by computing two Phase Transition Curves (PTCs) after a first pulse
and a second pulse. If the transient dynamics is fast enough, the two curves should overlap. (B)
Analytical fit of the PTCs obtained from the ODE-model with curves inspired from the Radial
Isochron Clock (RIC) model at weak and strong resetting regimes shows good accordance. (C) The
parameters A,B,C of the analytical curves vary as a function of nutlin concentration and are fit with
peacewise linear functions. (D) Cobwebs show the presence of stable limit cycles, quasiperiodic
motion and stable fixed points, indicating the presence of p:q entrainment, non-entrained solutions
and p:1 entrainment. (E) Arnold tongues predicted from the Poincaré maps. The three crosses (x)
are the parameters used in (D).
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linear functions (black lines), constant in the “weak resetting” regime (yellow shadow) and linearly

growing in the “strong resetting” regime (blue shadow) (Figure 4.4C).

In this way, having an analytic expression for the PTC, and knowing how the parameters change

as a function of the external perturbation, we could first draw the cobwebs for different values of

Text/Tint, showing the presence of limit cycles for 1/2 (or equivalently, 3/2 or 5/2, meaning p:q

entrainment (Figure 4.4D, left), quasiperiodic motion for irrational values of Text/Tint(Figure 4.4D,

middle) and fixed point for Text/Tint = 1 (or equivalently, 2 or 3)(Figure 4.4D, right).

Iterating the simulations in a variety of nutlin periods and concentrations, we could obtain the

Arnold Tongues depicted in Figure 4.4E. As expected, the predicted Arnold tongues of p53 closely

resemble those of the RIC model: some tongues (e.g., 1:2, 3:2, 5:2) have a convex shape, thus

certain entrainment modes are absent at high coupling strengths, whereas others (e.g. 1:1, 2:1, 3:1)

have vertical boundaries, thus do not overlap at high nutlin concentrations.

4.3.3 The pace of the p53 oscillator can be locked to a wide range
of entrainment periods

At this point, we wanted to experimentally test the theoretical predictions, by perturbing the natural

radiation-induced oscillations of p53 with periodic pulses of Nutlin-3a. In the experiment, periodic

pulses consist of a square wave signal of amplitude Aext (nutlin3 concentration) that alternates

between nutlin “on” and “off” states at a period (Text), with the on/off states within a single cycle

being equal in duration. In the absence of γ-radiation, periodic pulses alone can drive synthetic

p53 oscillations whose frequency could thus be controlled by tuning the interval between media

changes (T = Text). For example, synthetic pulses can match the endogenous period (Tint = 5.5 h)

(Figure 4.5A, bottom left) or double it (Tint = 11 h) (Figure 4.5A, bottom right). A single other study

(Harton et al., 2019) has attempted to control p53 period using a similar microfluidic design.

Having established both an internal oscillator and an external oscillator with a tunable periodic input,

we next analysed whether p53 oscillations could entrain to an external nutlin input (Figure 4.5B, top),

as predicted by single pulse experiments. To address this question, p53 oscillations are first triggered

by irradiation (IR) (zone1), subjected to oscillating nutlin concentrations (zone2), then released

from nutlin treatment (zone 3) (Figure 4.5B, bottom). First, we tested the effect of varying nutlin

concentration (Aext) at a fixed external input (Text = 11 h) on entrainment dynamics (Figure 4.5C).

Our results show that the p53 oscillator can be entrained to double its endogenous period (11 h) at

all nutlin concentrations tested (Aext tested: 0.25 µM, 0.5 µM, 1 µM and 2 µM of nutlin). As expected,

higher Aext resulted in more robust entrainment, indicated by the progressive decrease in cell-to-cell

variability (the gray shadow in Figure 4.5C represents the interquartile range). To observe the

most diverse set of single cell responses, we fixed Aext to 0.5 µM. Next, we tested entrainment at

periods from half (2.5 h) to double (11 h) the endogenous period, while keeping nutlin concentration

constant (Aext = 0.5 µM) (Figure 4.5C). Our results show that p53 oscillations closely entrained to

the external period over the full tested range. Hence, we were able to speed up and slow down the

pace of p53 oscillations using entrainment, as shown by the single cell responses in Figure 4.5D.

While entrainment is observed across all external periods tested, certain periods lead to higher

cell-to-cell variability (Figure 4.5E-F), as shown for example by the wider interquartile range of

single cell traces at 9 h compared to 4 h. Indeed, examples of single traces show homogeneity at 4 h
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Figure 4.5: (A) Single-cell traces of unirradiated cells subjected to oscillating nutlin concentrations with
Text = 5.5h or 11 h. (B) Entrainment set up: the endogenous p53 oscillator is triggered by
irradiation (IR) (zone 1), subjected to an external period input of nutlin (zone 2) and released
(zone 3). (C) Average p53 dynamics across a range of nutlin concentrations at Text = 11 h, where
bold and shaded areas correspond to median and interquartile range, respectively. (D) Examples of
locking (1:1 entrainment) across a range of external periods Text. Each trace represents a single
cell. (E-F) Zone 2 dynamics at Text = 4 h and Text = 9 h. Average p53 dynamics, where bold and
shaded areas correspond to median and interquartile range, respectively. Single cell trace examples.
Heatmaps showing p53 levels over time in single cells.
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and heterogeneity at 9 h (Figure 4.5E-F). Interestingly, at 9 h cells entrain on average less robustly,

with single cells displaying frequencies faster than the entraining frequencies. We next investigated

whether the existence of multiple entrainment modes within a population (multistability) could

explain the cell-to-cell variability at periods far from the endogenous value.

4.3.4 Higher-order entrainment of the p53 oscillator

The higher variance between single cell traces at a particular external input could be due to the

co-existence of several modes of entrainment (multi-stability). Strikingly, we observed multiple

forms of higher-order entrainment under a fixed external signal (Figure 4.6). While the distributions

of intervals between peaks in zone 2 at Text equal to 4 h, 7 h or 8 h is unimodal, suggesting a single

1:1 mode, distributions at external periods further from endogenous are bimodal (Text = 2.5 h and

9h) and trimodal (Text = 11 h) (Figure 4.6A). The average Fourier spectrum across external forces

also indicates the dominant periods within each cell population (Figure 4.6B). Indeed, we found

cases of cells showing either 1:1 or 2:1 entrainment under the same nutlin regimen, suggesting the

existence of multi-stability, as exemplified by single cells A and B oscillating either once or twice

per each nutlin pulse (Figure 4.6C). Figure 4.6D further shows how the number of peaks in the

autocorrelation function corresponds to a cell’s entrainment mode.

We further developed an algorithm that considers peak-to-peak distance to extract a cell’s entrainment

mode and plotted the distribution of entrainment modes across Text values (Figure 4.6E). For each

cell, we first detrended the data by subtracting a polynomial fit and then applied a Gaussian filter

to smooth the traces. We thus found the peaks in the traces which had a certain prominence

and computed the peak-to-peak distance to find how the period (and thus the rotation number)

evolved in time. The algorithm checks for possible "complex dynamics" (such as mode-hopping and

period-doubling, that are investigated in details in the next section). In the absence of those, if the

mean rotation number is close to one of the rational numbers within a certain threshold (1:2, 1:1,

3:2, 2:1, 3:1), it classifies it as entrained to it. If it is not, the trace is considered "Unclassified".

Our results show that external periods closest to the natural 5.5 h p53 period (Text 4 h and 7h) lead to

predominantly single entrainment modes, in which the cell population behaves homogeneously. Thus,

a particular range of external periods leads to homogenous behaviour in a cell population, whereas

other periods generate greater heterogeneity, as summarized in the schematic of Figure 4.6F.

Although the observation of multistability seems in contrast to single pulse experiments predictions,

it should be noted that the Poincaré maps give an approximation of the Arnold Tongues, for which

the main assumption is that the system has recovered from one stimulus before the next one is

delivered, so that subsequent pulses give rise to the same PTC. This may be true for repeated short

pulses (like 40-min single pulse delivered in Figure 4.3) but not for longer pulses, which may explain

the discrepancies between predictions and experiments.

Taken together, our observations reveal that entrainment through an external oscillator allows control

of p53 oscillations in time and under a range of periods close to the natural period. Control over the

period of p53 oscillations was diminished at periods further from the natural period (2.5 h, 9 h and

11 h), when individual cells became phase-locked to different periods, leading to heterogeneity in

single cell responses.
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Figure 4.6: (A) Distributions of interpeak distance and (B) corresponding power spectrum in zone 2 shows
unimodal, bimodal and trimodal distributions for different values of Text. Each interpeak measure-
ment corresponds to a single peak-to-peak distance in a single cell trajectory. (C) Two examples
of cells showing 1:1 or 2:1 entrainment (cell A and B, respectively) under the same 9 h nutlin
stimulus suggest the existence of multi-stability. (D) Single cell traces for cell A and B in (C) and
their autocorrelation function. (E) Distribution of entrainment modes across Text values. (F) Quali-
tative Arnold Tongues picture with regions of multi-stability at 0.5 µM suggested by experimental
measurements.
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4.3.5 Complex dynamics: mode-hopping, period doubling and hunt
for chaos

As shown in Figure 4.6, in regions of overlapping Arnold Tongues, entrained oscillators can adopt (and

maintain in time) various entrainment modes depending on their initial condition, for example single

cell A adopting 1:1 and neighbouring single cell B adopting 1:2 (Figure 4.6C). This phenomenon

(multi-stability) leads to the co-existence of cells oscillating at different fixed entraining modes in a

population. Besides multi-stability, other types of complex dynamics might occur in regions in which

the coupling strength is above critical level, such as mode-hopping and chaos (see Section 4.2.1).

Mode-hopping occurs when oscillators dynamically hop between modes due to noise. Chaos, on

the other hand, is characterized by a very high sensitivity to initial conditions, which leads to

unpredictable and non-repeating behaviours over time, seemingly random despite being governed

by deterministic rules, which make long-term predictions impossible. One of the features which

suggests the emergence of chaotic dynamics is a cascade of period-doubling bifurcations in which

peaks show patterns of alternating amplitudes.

The algorithm that we described in the previous section is able to distinguish between the afore-

mentioned dynamics, namely, whether cells maintain different modes (entrainment), fluctuate

between them (mode-hopping) or show patterns of oscillating amplitudes (period-2 traces), with

the aim of exploring the possibility of chaotic dynamics. If the inter-peak distance and therefore

the period between p53 pulses jumped between two stable states, the algorithm would classify it as

mode-hopping. If the difference in amplitude of alternating peaks is higher than some threshold, the

algorithm would classify the trace as period-2.

We observed mode-hopping and period-2 trajectories across conditions (Figure 4.7A). Single cell

examples show cells can hop between two states, as shown by the period actively changing over time

(Figure 4.7B-C). We also observe single cell trajectories with a clear tendency for amplitude of peaks

to alternate between two amplitudes (Figure 4.7D).

As mentioned above, period-2 traces may be an indication of an imminent cascade of period-doubling

bifurcations, which is a route to chaos (Figure 4.7E). At every bifurcation the period (meaning the

time after which the trajectory repeats itself) doubles, and these bifurcations occur faster and faster,

meaning that at a finite concentration of nutlin it would take infinite time for the trajectory to repeat

itself, which corresponds to chaotic dynamics. One of the characteristics of chaotic dynamics is also

a very high dependency on initial conditions, such that two trajectories that start very closely would

exponentially diverge. Moreover, within regions of chaos, the presence of period-3 windows has

been observed, such that the trajectory repeats periodically after three external pulses (Li and Yorke,

2004). If we further increase the nutlin concentration we finally expect an overall transition to a 1:1

entrainment regime, as the 1:1 tongue dominates among all the others.

To test these theoretical predictions, we considered one external frequency (Text = 11 h) and

gradually increased the nutlin concentration from 0.5 µM to 1 µM and 2 µM. As mentioned before, at

0.5 µM we observed period-2 traces (Figure 4.7F, first panel), but also traces that, despite starting

from very similar initial conditions, gradually diverged in their frequency, without being entrained

to the external one, which might be an indication of chaos (Figure 4.7F, second panel). At 1 µM,

period-3 traces could also be observed (Figure 4.7F, third panel). Finally, as predicted, further

increasing the nutlin concentration led to a strong synchronization to the external signal (Figure 4.7F,
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Figure 4.7: (A) Barplot showing the percentage of complex dynamics (Mode-hopping, Period-2). (B-C) Single-
cell example of mode-hopping traces at 2.5 h and 9h. (D) Single-cell example of a period-2 trace
at 2.5 h. (E) Schematic showing the period-doubling route to chaos, the emergence of period-3
windows within the chaotic regime (red double-headed arrow) and the dominance of the 1:1
entrainment regime for high nutlin. (F) Increasing the nutlin concentration (from 0.5 µM to 2 µM at
Text = 11 h) shows period-2 traces and possibly chaotic dynamics at 0.5 µM, period-3 windows at
1 µM, and the transition to 1:1 entrainment at 2 µM. (G) Schematic showing the effect of memory
in Zone 3 (H) Top: The 4 h nutlin stimulation shows no memory, as the power spectrum in Zone
3 is similar to that in Zone 1. Bottom: Corresponding single cell trace (I) Top: The 7 h nutlin
stimulation shows a memory effect, as the power spectrum in Zone 3 is similar to that in Zone 2.
Bottom: Corresponding single cell trace.
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fourth panel). Although these observations may not be sufficient per se to establish the presence of

chaotic dynamics, they might indicate that the p53 network is constructed so that, if present, the

chaotic window would be anyway quite narrow, since the complex dynamics is quickly replaced

by robust entrainment, which might play the role of stabilising the p53 oscillations in externally

stressful conditions.

We next extended our analysis to the dynamical behaviour following nutlin removal in Zone 3 to

determine whether the system returns to its natural oscillatory state (zone 1), or whether entrainment

affects its behaviour (Figure 4.7G). We tested the condition with the highest, most robust single

mode entrainment (4 h). By comparing the Fourier spectrum in all three zones, we observed a

clear overlap between the curves in zone 3 and zone 1, indicating that the system returned to its

natural oscillatory period (Tint = 5.5 h) when released (Figure 4.7H, above). This is clear by looking

at single cell traces (Figure 4.7H, below), where the p53 peaks, which are entrained to nutlin in

zone 2, gradually drift away from the nutlin pulses timings in zone 3 (where there is no external

stimulation)(gray dashed lines). This reveals that the p53 oscillation is memoryless when stimulated

with a 4 h external stimulation and the oscillation can return to the original state. However, at 7

hours, Fourier spectrum of zone 3 mostly overlaps with that of zone 2, and is markedly different

from that of zone 1 (Figure 4.7I, above), meaning that zone 3 retains the entrainment period of zone

2, which can again be visualized in single cell traces (Figure 4.7I below). Our findings show that the

period of the external stimulus determines whether p53 will resume oscillating at its natural period

or retain the entrained period after removal of the stimulus.

4.3.6 P21 accumulation rate is lowest at the natural frequency of
p53

We next investigated how entrainment of p53 to a signal with a period close to the natural period

affects the accumulation rate of one of its major downstream targets, p21 (Figure 4.8A). As mentioned

in the Introduction, p21 is key to cell fate decision, and is necessary to establish cell-cycle arrest after

damage (Brugarolas et al., 1995; El-Deiry et al., 1993; Hsu et al., 2019). The p21 concentration was

monitored across zones 1, 2, and 3 for 4 h and 7 h external signals (applied in zone 2) (Figure 4.8B-C).

Because single cell traces showed a great deal of heterogeneity in p21 responses, we used k-means

clustering to group cells according to their p21 dynamics. We found that a cluster comprising 75%

and 48% of cells for the 4 h and 7 h case respectively, showed a graded response in Zone 2, for which

the accumulation rate could be computed by a linear fit (Figure 4.8D). We restricted the analysis to

these clusters and computed the slope of the linear fits in each zone, namely ∆1,2,3 (Figure 4.8E-F).

We observe that for both 4 h and 7 h nutlin stimulation, the slope in Zone 2 was greater than the

slope in Zone 1, meaning that the p21 accumulation rate was at a minimum for the natural p53

periodicity of 5.5 h (Figure 4.8G, left). This may suggest that the 5.5 h natural frequency of p53 has

evolved to dampen the rise in p21, presumably to protect cells from committing to senescence too

quickly.

We further confirmed this finding using a different method, namely computing the weighted average

of all the traces, using as weights the error of the linear fits (Figure 4.8G, right). This gives a higher

weight to those traces that can be better approximated by a linear fit, i.e., where there is some graded

response. In this case too, the growth in Zone 2 is greater than that in Zone 1 for both 4 h and 7 h of

nutlin stimulation. Subsequently, we investigated how the system responds to the nutlin stimulation
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Figure 4.8: (A) Schematic figure showing the downstream response of p21 when p53 is entrained to an
external frequency given by an oscillatory nutlin concentration. (B) Single cell traces (top panel)
and population averages (bottom panel) for the p21 concentration dynamics, shown in pink, for
nutlin stimulation period of 4 h. The correspondent p53 signal is shown in green. (C) Same as (B),
but for nutlin stimulation period of 7h. (D) Performing k-means clustering on the p21 z-scores
shows the existence of different clusters of p21 response, with one cluster having a graded response
in Zone 2 for both 4 h and 7 h of nutlin stimulation. For this cluster, the growth is computed in
Zone 1,2 and 3 as ∆1,2,3. (E) Average p21 concentration in the two clusters for 4 h nutlin pulses.
(F) Same as (E), for 7 h nutlin pulses. (G) The growth rate in Zone2/Zone1>1 for both 4 h and 7 h
nutlin pulses, both with the k-means clustering method (left panel) and the weighted average of
traces (right panel). (H) The growth rate in Zone3/Zone1 shows that the system has memory for
the 7 h nutlin pulses, while it has no memory for the 4 h case.
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in Zone 3, when the stimulus has ceased (Figure 4.8H). What we observed is that for entrainment at

4 h, where cells do not display memory (Figure 4.7G), thus return to their natural p53 frequency

in zone 3, the p21 concentration relaxes to the value of Zone 1 (∆3/∆2 < 0). On the other hand,

for 7 h entrainment, where cells do display memory (Figure 4.7H), the p21 concentration increases

despite the ceasing of nutlin pulses (∆3/∆2 > 0).

4.4 Discussion and Perspectives
Oscillations and complex dynamics control many processes in living organisms: for instance, the

oscillations observed in the nuclear concentration of transcription factors such as p53 or Nf-κB

in response to stress. However, the downstream effects on gene expression resulting from these

dynamics are still debated (Zambrano et al., 2016; Nelson et al., 2004; Jiménez, Lu, Kalocsay, et al.,
2022). A challenge in this research lays in precisely manipulating aspects of these oscillations, like

their intrinsic frequency, especially in vivo (Heltberg, Krishna, et al., 2021). A way to address this

issue is by entraining the signal with an external oscillator controlled by the experimenter. This has

been achieved with Nf-κB, entrained to external pulses of TNFa (Kellogg and Tay, 2015; Heltberg

et al., 2016), but, as of today, not with p53. This approach enables us to systematically explore how

downstream effects change as the oscillations are perturbed and their frequency varied, as well as

to quantify the robustness and tunability of the oscillations in response to perturbations. Indeed, a

deeper understanding of the mechanisms and principles behind how these oscillations are naturally

regulated and controlled within the complexity of their environment, would be a major step forward

in the field.

In this work, we show how to control the dynamics in the nuclear concentration of the tumor-

suppressive transcription factor p53 by perturbing it with an external, oscillatory signal. We present

the first evidence of entrainment of the p53 clock to an external pulsing signal, to provide insights

into p53’s essential dynamical properties. By combining experimental measurements, using a novel

macrofluidic device and live-cell microscopy, with theoretical tools from nonlinear dynamics, we

produce for the first time a compelling coarse-grained model of entrainment in the p53 network. Here,

we highlight the potential of mathematical modelling as a means to simplify the great biological

complexity of the p53 network: by defining simple ODEs which capture the dynamics of p53

oscillations, we study the response to single external perturbations and predict the possibility of

achieving entrainment with repeated pulses. We then experimentally demonstrate the existence

of period locking of the p53 network across a wide range of entrainment parameters, including

higher-order coupling, multi-stability, and memory effects. Entrainment to external signals and the

emerging of complex dynamics has been observed in other biological systems, such as the embryonic

segmentation clock (Sanchez et al., 2022), and cardiac rhythm (Glass et al., 1987). Finally, we show

how the p53 natural frequency minimizes the accumulation rate of the downstream target p21,

and we suggest that this may be a mechanism to prevent cells from committing to senescence too

quickly.

It should be noted, that some of the experimental findings were rather unexpected, and seemingly in

contrast with the theoretical predictions: in particular, the presence of multi-stability of different

entrained states. As we mention in the main text, this may be due to the fact that the assumptions of

the model are not completely satisfied in the experiments with periodic-pulses, as these may be too
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strong and too close in time for the system to have time to return to its natural oscillations before

the next pulse arrives.

One of the main limitations of this work, which is common to many biological systems, is the presence

of high levels of stochasticity and noise in the data, and the limited length of recorded traces, which

make the computation of the entrainment mode challenging. This also highly complicates the

detection of chaos: in general, the canonical way to determine the presence of chaotic dynamics

would be to compute the Lyapunov exponent, to determine whether two points that are initially

very close in phase space diverge exponentially with time. However, the presence of high levels of

noise generally make traces diverge even in the absence of chaos, only due to phase drift (Heltberg,

Krishna, et al., 2021). Finally, the results regarding p21 accumulation rate would highly benefit from

further experimental verifications with 5.5 h stimulation of nutlin in zone 2, to make sure that the

accumulation of p21 in the system is really an effect of p53 frequency and not of the addition of

nutlin per sé.

To conclude, in this work, we show that it is possible to control p53 frequency by entraining it

to an external pulsing signal, elucidating a possible role for its intrinsic natural frequency in the

downstream effects on target p21. It should be noted that this is an artificial setting where an external

drug (nutlin) is delivered in periodic pulses: p53 is not naturally entrained to it in vivo. In general,

this approach could also be exploited to build synthetic oscillators that are heavily intertwined in

nature in order to elucidate the mechanisms behind their coupling (Jiménez, Lu, Jambhekar, et al.,
2022).

In the future, it would be interesting to test, as a possible therapeutic application, whether synchro-

nizing p53 levels in a population of cancer cells to a specific phase, prior to delivering radiothera-

py/chemotherapy, could make the population more prone to death depending on the phase at which

the drug is received. Indeed, if cells were more "protected" at some specific phase of the ongoing

p53 oscillations (for instance, when p53 is high), one could imagine that having a heterogeneous

population could maximize the chances of cells to survive, while having all cells in the same state

could result in either survival or death for all of them depending on the timing of the therapy.
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5Conclusion

In this thesis, we have delved into the world of biological oscillators, learning how oscillations are

ubiquitous in nature and serve a myriad of different purposes, from neuronal signalling to gene

regulation, from the circadian clock to the rhythmic beating of the heart. We have observed the

phenomenon of collective synchronization, a fascinating outcome of coupled oscillators working

in harmony, and we have witnessed how this harmony can spontaneously break and create exotic

patterns of coherence and incoherence. We have discovered how oscillating concentration fields of

transcription factors in the cellular nucleus can save cells in danger by distributing vital resources to

specific locations. In this case, the ingenious mechanism cells employ for survival makes wise use of

the physics of phase separation. Finally, we have shown how we can manipulate the transcription

factors’ oscillating dynamics by locking them to external rhythms controlled from the outside. By

artificially perturbing the oscillators from their preferred natural frequency, we have also gained

insights into the evolutionary benefits of portraying that specific dynamics.

Understanding the diverse dynamics that arise as a result of a system’s surrounding network, along

with their respective roles, functionalities, and the emergent properties resulting from collective

behaviour, holds tremendous potential for advancing our comprehension of life’s fundamental

mechanisms. It also has the power to revolutionize applications in medicine and biotechnology. For

instance, a longstanding aspiration among researchers is to pinpoint the precise external stimulus

that, when administered to the brains of Parkinson’s patients, could decisively disrupt their neuronal

pathological synchronization. Moreover, the ability to control and influence the dynamics of specific

systems in a predictable manner lies at the heart of synthetic biology. Here, researchers strive to

design and program engineered biological circuits that exhibit desired dynamics.

Still so many open questions remain to be addressed, which demand an interdisciplinary approach,

weaving together physics, applied mathematics, systems biology and neuroscience. The past half-

century has witnessed an extraordinary surge in these fields, driven by groundbreaking advances in

experimental techniques such as time-lapse microscopy and live-cell imaging. These innovations

empower researchers with an unprecedented level of precision in monitoring the dynamic behaviours

of individual cells, or in recording the activity of single neurons. Simultaneously, we now have

increasingly sophisticated computers available for data analysis and simulations. However, the

anticipated exponential growth in data volume in the years ahead raises concerns about a potential

data overload. Navigating through this abundance and extracting relevant information to understand

the complexities of biological systems may prove to be a significant challenge.

This is where mathematical theories and models will become absolutely indispensable, as a means

to identify the critical components of the systems, provide intuition, guide further experiments and

make predictions. Indeed, the beauty of mathematics is that it uncovers unifying principles and

coherence, revealing similarities between seemingly disparate systems. The ultimate dream is that
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one day we will be able to understand life itself as a prodigious collective phenomenon, stemming

from the interplay of the intricate dynamics of all elements in the natural world.
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