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Abstract

Thin silicon nitride membranes with a photonic crystal and high-
contrast gratings are promising devices for cavity optomechanics, that
could potentially lead to new designs. In the thesis we present analysis on
a such highly reflective silicon nitride membrane featuring high mechanical
quality factor and discuss its applicability for cavity optomechanics. The
membrane, combining photonic and phononic crystal patterns, reaches
reflectivities up to 0.9989 and a mechanical quality factor of 2.4× 107 at
room temperature in vacuum.

With the membrane forming one mirror of an optical cavity, we ob-
serve the optomechanically induced optical bistability, birefriengence as
well as a clover-leaf-shaped transmitted beam shape. We support an un-
derstanding of its emergence by implementing a scalar Fox-Li algorithm
to solve for the fundamental mode of the cavity and feeding it with an
incident-angle-dependent reflectivity of the photonic crystal reflector ob-
tained from COMSOL multiphysics simulation.

The membranes are suitable for reaching high optomechanical cooper-
ativities desirable for optomechanical sensing or squeezing applications.
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1 Introduction

Cavity optomechanics has been studied based on the understanding that light,
or photons have momentum. It has been found that light can emit radiation
and gradient forces on particles[1], but normally this phenomenon is very weak.
However, within a cavity the power can be increased significantly and build up
to a level that can push macroscopic items. Membranes, for instance, are one
of the most commonly used macroscopic item that can interact with photons.
The phononic bandgap simulation and designs were done in Niels Bohr Institute
back in 2017. [2]

Reaching high optomechanical cooperativity is desirable for many optomechan-
ical schemes and applications. It quantifies the coherent interaction between
optical and mechanical degrees of freedom of a system of interest in relation to
their respective dissipation rates. In many cases cooperativity is a parameter
representing the limit of device performance in sensing or cooling performance
in optomechanical quantum state engineering schemes. Thus finding ways to
increase it is desirable both for practical applications as well as fundamental
studies in cavity optomechanics.

Reaching high optomechanical cooperativity in cavity optomechanics entails
confining light and mechanical vibration into a small region of space, while
managing the dissipation. Coupling can arise due to the radiation pressure ex-
erted by the light onto mechanically compliant material boundaries or due to
electrostriction in the bulk material, and both mechanisms have been exploited
to reach high optomechanical cooperativities [3].

In recent years, thin mechanically compliant membranes suspended inside an
optical cavity (membrane-in-the-middle MIM [4]) have attracted growing in-
terest. Here the mechanical and optical resonators can be designed relatively
independently compared with other optomechanical platforms and optimised
in order to mitigate losses. In particular, silicon nitride membranes have been
successfully used in a plethora of optomechanical experiments.

Building upon the advantages of the MIM-platform and minimising the me-
chanical dissipation of the silicon nitride membranes’ modes of oscillation to
reach Q-f-products of > 1017 [2] have recently enabled several demonstrations
of quantum-limited operation and exploitation of quantum effects in optome-
chanics [5, 6, 7].

As is well-known [4], the linear dispersive optomechanical coupling rate in the
MIM system increases with the reflectivity, as well as possesses a steepening and
shallowing slope of the dispersion when the membrane is moved away from the
middle of the cavity. Aside from reaching high mechanical quality in the MIM
system, it is thus also desirable to have a highly reflecting membrane in order
to maximize the optomechanical interaction.
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While small coupling rates per photon can in principle be compensated by in-
creasing the intracavity power in linearized optomechanics, undesired heating
still represents a significant challenge in quantum optomechanics [? ] and avoid-
ing high pump power levels to reach certain parameters might prove a crucial
ingredient to further the quantum prospects of optomechanical schemes. In pre-
vious work by Chen et al. [8] highly reflecting photonic crystal slabs of stressed
silicon nitride were demonstrated.

Here we present experiments with high mechanical quality silicon nitride mem-
branes which, additionally to their phononic patterning, feature a highly reflec-
tive photonic crystal structure on their central defect.

In section 2 we provided some knowledge and obtained some results on cavity
optics that will be heavily used in the thesis. In section 3 we gave an intro-
duction to early membrane overall inspections on their photonic and phononic
structures, as well as some early tests and comments on their optical and me-
chanical qualities. In section 4 we demonstrated the setups and measurement
techniques used in the experiment as well as the final results that we obtained.
In section 5, we discussed and investigated some of the side effects we observed
in our cavity experiment, and highlighted the “clover shape” beam that hasn’t
been observed before by other articles. In section 6, some of the methods that
we tried and developed for result analysis were discussed, and their advantages
and disadvantages were compared. Finally, in section 7, we combined COMSOL
and Python simulations to provide a promising explanation for the origin of the
newly found “clover shape” beam.
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2 Theoretical Background

2.1 Fabry-Perot cavity theory

Our approach to measure the cavity quality included the assembly of a Fabry-
Perot cavity with a mirror and a membrane shown in Figure 1.

Figure 1: Cavity used for membrane characterization. The front mirror used
on the left is a 500 ppm or 1000 ppm concave mirror, and the PhC membrane
on the right works as a highly reflective back mirror. γ is the round trip loss of
the cavity, t1 and r1 represent the transmission and reflection coefficient of the
input mirror, and t2 and r2 represent the transmission and reflection coefficient
of the output mirror(photonic crystal membrane). l is the cavity length whose
value will be acquired later in 4.3.2.

A simple theory includes the transmission and reflection relations with the round
trip loss γ, transmission and reflection coefficients.

Let us first consider the case shown in Figure 1 above, in which our light is
being reflected back and forth between the two low-transmission mirrors. Here,
we use the following approximations:

r1 ≈ r2 ≈ 1 (1)

2.1.1 Transmission

We can start with the simple case of cavity transmission calculation shown in
Figure 1.

The amplitude of light entering the cavity is:

E1 = E0t1 (2)
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Where E0 is the input electric field strength. When our cavity is on resonance,
we know that the light inside the cavity forms a standing wave, thus we should
add up to the intracavity electric field strength EM in order to include all
the amplitudes of light bouncing back and forth inside our cavity. Through
each round trip there is a power attenuation of 1 − γ, which corresponds to
amplitude loss of (1−γ)

1
2 .Thus, together with Equation 2 we can conclude that

the amplitude inside the cavity is:

EM = E1 × [1 + (1− γ)
1
2 + (1− γ)1 + (1− γ)

3
2 + ...]

≈ E1 ×
2

γ

=
2E0t1
γ

(3)

Since both sides can still transmit a small proportion of light, we know that
there will be a leakage of light from both mirrors, and the leakage to the right
hand side ET will be the transmission amplitude. After we compare that value
with E0 we can conclude:

T =
E2

T

E2
0

=
E2

M × t22
E2

0

=
4t21t

2
2

γ2

(4)

This is the theoretical transmission we should expect for our cavity, that we will
come in handy later in section 6 for result analysis.

2.1.2 Reflection

As for the reflection side of the cavity, we should first consider the model shown
in Figure 2.

We can see that in order to calculate the reflection amplitude ER, we should
consider two contributions to it: reflection amplitude E0R from the concave
mirror and the leakage from the cavity EMR. Please note that here EM2 is
slightly different from EM we calculated from Equation 3, due to a different
propagation direction of waves. But we can calculate them in the similar way
as we used in subsubsection 2.1.1 and Equation 1 to simplify the equations:

E0R = E0 × r1

≈ E0

(5)
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Figure 2: Reflection amplitude E0R from the concave mirror and the leakage
from the cavity EMR contribute together for the total reflection amplitude ER.

EMR = EM2 × t1 = E1 × r2 × [1 + (1− γ)
1
2 + (1− γ)1 + (1− γ)

3
2 + ...]× t1

≈ E0 × t21 × r2 ×
2

γ

≈ 2E0t
2
1

γ
(6)

Here, E0R with EMR has a phase difference of π due to the reflection phase
shift from the concave mirror. After we achieve these results, and due to the
phase difference between them, we can obtain the steady state reflection ampli-
tude from the resonant cavity by subtraction:

ER = E0R − EMR = E0 × (1− 2t21
γ

) (7)

The power reflectivity is then straightforwardly obtained by relating the re-
flected field to the incoming field E0:

R =
E2

R

E2
0

= (1− 2t21
γ

)2
(8)

This is the theoretical reflection we should expect from our cavity.
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2.2 Round trip loss and Finesse

The calculation from our last section requires a very important value: the round
trip loss γ. And our evaluation of round trip loss came from a very important
observable quantity: Finesse. Before I introduce Finesse, I need to briefly sum-
marize some other important quantities.

2.2.1 Free Spectral Range (FSR)

The free spectral range (FSR) of an optical cavity is the spacing of two nearby
resonator modes from the same “mode family” in terms of optical frequency. It
is also called axial mode spacing. For an empty(or in vacuum) standing-wave
resonator of length L, it can be calculated as:

∆νFSR =
c

2l
(9)

Here c is the speed of light. This can be intuitively understood as the frequency
interval after which the round trip phase has changed by 2π(so it can go back
to resonance again).

This quantity can be acquired when we tune our laser wavelength until the sec-
ond(or nth) fundamental resonance peak shows up on our oscilloscope again.
Or we can also use a piezo to tune the length of the cavity until we observe
the same peak, but this is less convenient than the previous approach, because
we need some extra calibrations on the piezo in order to acquire the equivalent
frequency changes.

Since we are measuring the difference of wavelength instead of frequency di-
rectly, Equation 9 in our case is only for cavity length calculation instead of
FSR calculation:

l =
c

2∆νFSR
(10)

When we use the laser tuning method to measure FSR as we are going to do in
4.3.2, we can acquire wavelength λ and the change of wavelength per FSR, we
mark it as δλ. We should remember that one FSR changes correspond to 1λ for
each round trip by definition. Thus, we have the frequency- wavelength relation:

f =
c

λ
δλ

λ
=

λ

2l

(11)

Finally, from Equation 11 we can get a new expression for FSR:

9



∆νFSR =
λ

2l
× f

=
δλ

λ
× f

=
c× δλ

λ2

(12)

2.2.2 Cavity linewidth

Full Width at Half Maximum(FWHM) is defined as the difference between the
two values of the independent variable at which the dependent variable is equal
to half of its maximum value. The value can be better comprehended as shown
in Figure 36.

During our experiment, I used Python to fit a Lorentzian shape to our exper-
imental data in order to get the estimated value of FWHM. An EOM in the
experiment is used to phase modulated our light with a sinusoidal tone. It is
used to obtain sidebands for frequency calibration (normally use 50MHz) to
acquire the FWHM in terms of frequencies. The expression of Lorentzian and
FWHM can be demonstrated in the following form:

y =
1

1 + ( x−x0

∆νFWHM/2 )
2

=
∆νFWHM

2

∆νFWHM
2 + 4(x− x0)2

(13)

Here x0 is the peak position of lorentzian. An example of this calibration method
for FWHM will be further introduced in 4.1.3.

2.2.3 Finesse

The finesse of an optical cavity F is a measure for how narrow the resonances
are in relation to their frequency separation: a higher finesse means sharper res-
onance peaks. It is defined as the FSR divided by the FWHM of the resonance
peaks:

F =
∆νFSR

∆νFWHM
(14)

This is also how we calculated finesse from experimental data.

People always find finesse very useful because there is a relationship found be-
tween finesse and round trip loss. With a lower round trip loss we can expect
to see some sharper peaks which corresponds to higher finesse. The relation-
ships between finesse and round trip loss γ can be expressed as in the following
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equation when round trip loss is very small:

F ≈ π

1− (1− γ)1/2
≈ 2π

γ
(15)

Thus, with our experimental we could use the measured linewidth and FWHM
to obtain the finesse using Equation 14. Then with Equation 15, we can obtain
the round trip loss of our cavity.

2.2.4 Intra-cavity power

The intra-cavity power is crucial for opto-mechanical experiments since we study
light field and membrane interactions that in linearized optomechanics the op-
tomechanical coupling rate can be tuned through a coherent drive field, which
can be enhanced compared to its free-space value by use of a cavity. Thus a
good understanding of intracavity field relations provide us with insights of the
optical field strength.

Using the results from Equation 4 we can conclude the intracavity- input power
relations as:

PM = E2
M

=
4E2

0t
2
1

γ2

(16)

Since finesse is what we usually use in our calculation later, we can get the
following formula using Equation 15:

PM =
4E2

0t
2
1 ×F4

π2(2×F − π)2

=
4t21 ×F4

π2(2×F − π)2
Pin

=
4×F4

π2(2×F − π)2
Poff

(17)

Where Pin is the input power of the cavity and Poff is the off-resonance in-cavity
optical power. For a high finesse cavity , we can get the approximate expression:

PM ≈ F2

π2
Poff (18)
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2.3 Losses and beam waist

2.3.1 Origins of optical losses

Optical losses like scattering loss, transmission and absorption are important
properties for the characterization of our membrane, since it can influence the
coupling rate significantly[4]. In this section, we will provide some basic expla-
nations for optical losses happened on the membrane.

After we discovered the round trip loss from our measurements, we can only
learn about the round trip loss itself, instead of the value of scattering loss
which is what we are looking for. This is because the round trip loss contains
3 parts(here we ignore the absorption for now since we will later find that it is
negligible):

γ = t21 + t22 + β (19)

Figure 3: Complete schematic drawing for experiment. The front mirror used
on the left is a 500 ppm or 1000 ppm concave mirror with a radius of 7.75mm,
and the PhC membrane on the left work as a high reflective back mirror. γ is the
round trip loss of the cavity, t1 and r1 represent the transmission and reflection
coefficient of the input mirror, and t2 and r2 represent the transmission and
reflection coefficient of the output mirror(photonic crystal membrane), β is the
scattering loss on the cavity. We are able to detect the cavity transmission and
reflection simultaneously.

Here β is the total scattering loss for each round trip. Even if what we wanted
to find out was the scattering loss on the membrane itself, for the method we
use it is impossible for us to separate all the scattering losses inside the cavity
from each other. This means The scattering losses here could come from the
membrane or the mirror, but we cannot tell from the data. However, since the
scattering loss from a good dielectric coated mirror is very low from the factory
data sheet[9], we are safe to conclude that the scattering loss can only happen
then the coating is contaminated. In this case can try different concave mirrors
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to check how that affects the total scattering loss. If we cannot observe any
difference, then it is very possible that almost all scattering losses are from the
membrane. In this case, we can establish an upper bound for scattering loss
from the membrane is β. A complete schematic drawing for experiment is shown
in Figure 37.

Scattering loss It was straightforward to assume that the main contribution
of scattering loss came from the clipping diffraction, the contamination on the
PhC or the “twisted structures” as we will see later in our observation in sub-
subsection 3.1.3. However, from the result we obtained in subsection 4.5, this
might not be the case.

Absorption loss The absorption loss of our Si3N4 film can be determined
using its complex refractive coefficient[10]:

nc = n− ik (20)

Where the real part n is the refractive index and indicates the phase velocity,
while the imaginary part κ is called the extinction or absorption coefficient.
From the data we can see that, with the operation range of our laser(833nm)
and a thickness of about 90nm, the extinction coefficient of silicon nitride is
negligible.[11] [12]

2.3.2 Gaussian waist

For a certain Gaussian beam that we encountered, its beam waist can be easily
determined if we know its waist before entering the lens [13]. The relation is
expected to be :

2w0 =
4λf

2πw′
0

(21)

Where w0 is the waist at focal point, w′
0 is the waist before the lens, λ is wave-

length and f is the focal length of the lens used to focus the beam.

2.3.3 Cavity mode waist

For the scattering losses we mentioned above, the beam size inside the cavity
will badly influence our estimated scattering loss and transmission because of
the clipping of the PhC defect with the Gaussian beam. Apart from that, nor-
mally our membrane is not perfectly fabricated or clean, so an estimated beam
size on the membrane will provide us with a good expectation on the losses
from the membrane before we even start the measurement, and further benefit
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us with the membrane selections before experiment. For example, if we have
an PhC membrane with good fabricated area of only 80µm diameter range, we
should not expect small scattering loss for cavity mode that equivalent to a
waist 2w0 > 40µm.

From Figure 1 we know the length of our cavity is 6.30 mm and the radius of
curvature for the concave mirror is 10mm. Thus, we can use the equation 48
from Kogelnik and Li’s paper [14] to calculate the beam waist:

w2
0 =

λ

2π

√
d(2R− d) (22)

But this equation in their paper only works in a scenario that the cavity con-
sisted of two concave mirror with identical radius, where d in the equation stands
for the cavity length and R is the radius of each mirror. w0 in this equation is
the beam waist at the centre of the symmetric cavity.

But if we look at our cavity at Figure 1, it is actually half of a symmetric cavity
with the beam waist at the membrane. Here, we can assume a flat wavefront
at the membrane. Thus, we can convert the equation above to the one more
convenient for us to use:

w0 =

√
λ

2π

√
2l(2R− 2l) (23)

If we plot a waist-cavity length relation for two radius of curvature we used in
experiment(10mm and 25mm), we can have our Gaussian cavity mode waists
on photonic crystal side as shown in Figure 4.

Figure 4: Gaussian cavity mode waists on photonic crystal for two radii of
curvature we used in experiment, 10mm and 25mm from left to right.

Here, l is the cavity length we have, equal to 6.3mm. Put our parameters in,
we can acquire one of the beam waist of our cavity:
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radius : w0 = 36µm

diameter : 2w0 = 72µm
(24)

2.4 MAK cavity coupling discussion

Cavity optomechanics contain two main coupling branches: dispersive coupling
and dissipative coupling. [15][16] Both of them have been investigated in the
last decade for both optomechanical cavity or cavityless optomechanics. [17]
[18] The most common understanding of cavity optomechanics is the so-called
dispersive coupling originating from the dependence of the cavity resonance fre-
quency on the position of a mechanical oscillator. In order to fill out the missing
part of the coupling story, the so-called dissipative coupling, which can be in-
terpreted in terms of the dependence of the cavity damping rate on the mirror
position, is introduced. Since then, manifestations of this coupling have been
addressed both theoretically and experimentally[19].

The theory of ”Membrane-at-the-back” as an optomechanical system(MAK) de-
veloped [20] by Prof. Tagantsev theoretically proved an superior cavity assem-
bly method compared to the so-called ”membrane-at-the-edge” system(MATE)
and the popular “membrane-in-the-middle” cavity(MIM). In this section, we
will briefly introduce the theory and pacing towards the explanation of why the
photonic crystal phononic membrane is necessary in the MAK cavity story. All
the three methods are shown in the plot below. The content used to be the
goal of the whole thesis, but since we will later find out that the membrane
mirror quality did not meet the requirement, the contents here are shortened
and mainly served as a future outlook.

Here we define several important parameters for the concept of cavity optome-
chanical system. The single-photon coupling rate:

g0 =
dωcav

dx
xZPF (25)

Where ωcav is the cavity resonance frequency and xZPF is the mechanical zero-
point fluctuation amplitude, Here xZPF =

√
h̄/2meffΩm, where meff is the

effective mass of the membrane and Ωm is the mechanical frequency of the mem-
brane.

From the single-photon coupling rate, we can define the commonly used single-
photon opto-mechanical cooperativity rate of the system[21] [22] [23]:

C0 =
4g20
κγ

(26)
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Here κ is the optical decay rate of the opto-mechanical cavity system and γ is
the mechanical friction rate of the system. The cooperativity here describe how
strong the overall opto-mechanical coupling is.

Figure 5: Optical resonances for a membrane in a cavity. This resonance picture
is borrowed from the work of Dumont[24]. Optical resonances for a membrane
in a cavity. (b)-(c) Dependence of the cavity resonance’s detuning (normalized
by the free spectral range (FSR)) on membrane displacement δx from (b) the
cavity center (x = L · 2) and (c) the first mirror (x = 0), with rm values (from
light to dark) -0.4, -0.6, -0.8, -0.931, and -0.9977 (membrane reflectivity rm’s
phase chosen to highlight avoided crossings as in [2]). Horizontal dashed lines
represent empty cavity resonant frequencies (rm = 0), while other dashed lines
represent the left (negatively sloped) and right (positively sloped) sub-cavity
resonances when tm = 0. Insets qualitatively show the field distribution of
these modes. (d)-(e) Dependence of cavity’s energy decay rate κ on membrane
displacement δx from (d) the cavity center and (e) the first mirror, normalized
by the empty cavity value for a single-port cavity (t2 = 0, r2 = −1).

For the MIM and MAK system, as shown in Figure 5 we have the membrane
position-frequency relations. From the plot, we can see the reason we desire a
high reflectivity membrane is because we can reach a much higher g0 coupling
rate compared to a common silicon nitride membrane. This effect becomes more
obvious in the case of the MATE or MAK situation, where from Figure 5(c) we
can see a very high dωcav/dx when the main optical power is at the small sub-
cavity. However, from Figure 5(e) we can see a high dissipation when we are
at this regime. As for the MAK system, it is the reverse of MATE in that the
membrane is closer to the back mirror(low transmission mirror). Furthermore,
this system will result in a lower optical loss when the main optical power is at
the small sub-cavity.
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3 Early cavityless test and membrane inspec-
tions

In this section, the membrane inspection results will be demonstated and ex-
plained and the early experiments without a cavity will be briefly introduced.

3.1 Membrane inspections

3.1.1 Phononic structures and effective mass

The membrane we are using are designed and fabricated by student Yeghishe
Tsaturyan who used to be a PhD student at Niels Bohr Institute. His work on ul-
tracoherent soft-clamped mechanical resonators for quantum cavity optomechanics[25]
is now widely used in optomechanical experiment here in QUANTOP. For op-
tomechanical experiment, this phononic design is crucial for the reason that it
can relate optical and mechanical resonance. The silicon nitride phononic struc-
ture design we used in is shown below in Figure 6.

Figure 6: Phononic structure image. The center dark circle(defect) is where the
Photonic crystal located.

The phononic structures are used to create a mechanical bandgap to reduce the
damping effect of the soft-clamping oscillator. While the center dark cirle is
where the photonic crystal located and the place our light-matter interaction
will happen. The region always looks dark under a microscope with a back light
source, since the photonic structures prevent illumination from going through it.

The effective mass of this certain structure can be calculated using COMSOL
multiphysics. We can conclude the effective mass using the following definition:
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meff = ρ

∫
(

|Q|
|Qmax|

)2 × dV (27)

Where meff is the effective mass, Q is the out-of-plane displacement for a given
vibrational mode. From COMSOL simulation, we can only simulate the center
defect as a full silicon nitride plate for computing power reasons. Thus the full
mystery cannot be disclosed until we have a better understanding of our defect.

3.1.2 Mechanical Quality Factor

In physics and engineering, the mechanical quality factor (or Q-factor), is a
dimensionless parameter that can be used to describe how underdamped an
oscillator or resonator is. It can be approximately defined as the ratio of the
initial energy stored in the resonator to the energy lost in one radian of the
cycle of oscillation. Q factor is alternatively defined as the ratio of a resonator’s
center frequency to its bandwidth when subject to an oscillating driving force.
For example, a higher Q correspond to a lower energy loss rate and from the
oscillations we can see that it will last longer, and vice versa.

Thus, if we have a pendulum suspended from a high-quality bearing, oscillating
in air, has a high Q, while a pendulum immersed in oil has a low one.

There are two definitions for this quality factor:
One of these definitions is the frequency-to-bandwidth ratio of the resonator:

Q = ωm/∆ω (28)

The other definition is called the energy dissipate definition, which is what I am
going to use in this report:

Q = 2π × energy stored

energy loss per cycle
(29)

These two definitions are equivalent in conception, even though in reality, nor-
mally one of them will be easier to measure than the other one. In our case,
we are very hard to measure ∆ω during the experiment, but from what we are
going to show for ringdown measurements, we can measure and calculate the
energy dissipation.

Stimulation and Ringdown Measurements If we want to use the second
definition above to measure the decay of oscillation energy, we must first provide
the membrane we want to measure with enough energy. This is why we need a
stimulation to make the membrane start oscillating.

There are many ways to provide this stimulation, but the two major ways are:
using piezo next to the membrane to provide an vibration of certain frequency,
or using laser to stimulate the oscillation. Here we used the stimulating laser
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because it gives direct force to the center of membrane while the piezo cannot.

We know the momentum of light is very weak, even compare to the nano-
membrane. And from classical physics, we know that if we want to oscillate a
heavy object with a weak force, what we can use is by resonance. This is exactly
what we are trying to do here: we use the stimulation laser to provide a peri-
odic force on the membrane, with the same frequency as the inherent frequency
of the membrane, there will be resonances and the mechanical oscillations will
keep increasing.

Figure 7: Illustration figure of how stimulation laser works, borrowed from the
PhD thesis of William Nielsen, page 111[26]. As we can see from the red part of
the red part of the figure, we make the excitation laser go on and off periodically
at certain frequency to provide the resonance. After the signal reach the value
we want, we can shutdown the stimulation and do the measurements of how
fast the decay is (Q-value).

As shown in Figure 7, we can use an AOM with TTL control to make the laser
go on and off. In this case, there will be a square wave of momemtum acted on
the membrane. If this frequency matches with that of the membrane, we will
see the amplitude of the signal we received keep rising.

If we want to measure the Q-factor, we need to shutdown the stimulation, then
because it is a damping oscillation, we expect to see a exponential decay as
shown in Figure 7. The signals we are measuring here is actually the amplitude
of peaks from our stimulation light, which correspond to the oscillation energy
of the membrane. The expected form of the decay function should be:

A(t) = a× e−bt (30)

Where we know a is the initial amplitude and b can be defined as amplitude
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ringdown time. We can thus deduce the Q-factor has the expression of :

Q =
ωm

2b
(31)

Q-factor results The result we measured using ringdown measurements are
demonstrated in Table 1. This work is mainly contributed by Jonas Mathiassen
and Georg Enzian.

Membrane number Frequency(MHz) Quality factor(M)
2 1.310 0.8
7 1.304 15.00
8 1.303 24.05
10 1.316 23.81
11 1.321 24.23

Table 1: Some of the quality factor results using ringdown measurements. The
membrane we mainly use for our investigation is membrane No.11.

3.1.3 Photonic structures and imperfections

The fine photonic structures can be observed and measured under a electron
microscope as shown in Figure 8. The summarized measured data can be seen
in Table 2.

value type designed parameters real parameters
thickness 100nm 88.5nm
lattice constant 734nm 728nm
lattice hole diameter 511.2nm 511nm
Photonic crystal size 200µm 200µm
Peak wavelength 852nm 833nm

Table 2: Designed parameters and real parameters of photonic structures. We
can see a very clear difference here. The real parameters here were measured
by Anders Simonsen via electron microscopy.

When we put our membrane under a 50x optical microscope, we can notice two
types of imperfections on our photonic crystal, as we can see in Figure 9. These
two types of imperfections, let us call them twisted structures (Figure 9b) and
particles (Figure 9c) are observed in almost every single photonic crystal mem-
brane we examined far with very few exceptions.

The origins of the twisted structures remain unknown so far, but we have evalu-
ated their contributions to scattering loss in section 4. It turned out the twisted
structures are more destructive to the membrane because when the lattice struc-
tures are twisted, they are basically no longer functional at our target frequency.
We can see this effect very clear in Figure 9a when we shine a Gaussian beam
with a 2w0 = 100µm diameter onto the whole membrane, those ”leaking” holes
are the twisted structures. Ideally in experiment, we should try to avoid those
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Figure 8: Photonic structure image.

areas. The size of twisted structures are typically around 5-10 µm.

Another observation was done under the electron microscope about how the
”holes” shown in Figure 9(b) looks like with a higher resolution in Figure 10.
From the eletron microscope image, we can deduce that the ”twisted” struc-
tures were actually some blockage in the photonic holes in a certain area, that
lead to the malfunctioned photonic holes that caused higher transmission. The
explanations for this kind of imperfections in fabrication side remain unknown
so far.

The ”particles”, referring to all the small dots under the microscope that have
size around 1 µm. This kind of contamination is quite common when the mem-
branes are fabricated thus it is possible to be reduced in future wafers. It is
worth noticing that the closer a membrane is located to the center of the wafer,
the cleaner it is in terms of contamination. The imperfections observed on the
membranes for a wafer is shown in Figure 11. From the figure we can see that
the membranes at the edge are more likely to be contaminated, but this phe-
nomenon should be further investigated by new wafers before conclusions are
drawn.

3.2 Early test results

3.2.1 Setups and methods

Since the membrane mirror reflects light due to the fact that it contains pho-
tonic structures at the center of its phononic structure as shown in Figure 6, a
reflectivity-wavelength relations should be expected. A peak reflectivity should
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Figure 9: Images about two types of imperfections on membrane. (a) The image
of imperfections when we shine a 833nm Gaussian beam on the membrane, and
”leaking light” holes are observed at the twisted structures. (b) one of the
twisted structure under 50x microscope. (c) particles observed on the membrane
under microscope. (d) We can see many other dark shades under microscope,
but they are dirts on he microscope instead of membrane. This can be easily
verified by simply moving the microscope.

in principle appear at the design frequency of the photonic structure, even
though this is rarely the case due to the imperfections of fabrication.

In order to get an overview about how the reflectivity changes in a wider wave-
length range, we summarize a typical setup as shown in Figure 12 The setup
has three photodetectors: the calibration detector worked as a calibration arm
is necessary because we observed some severe polarization fluctuations at the
fiber output that caused power fluctuation at the polarizer. And we can get the
calibrated power dividing by the calibration signal.
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Figure 10: A deeper look into the ”twisted structures”. It is shown that in
the image, the twisted structures are more likely to be air holes blocked by
contamination or scratches.

Figure 11: Membrane imperfection status for wafer 1 PhC.

Calibration tricks Here we encountered a interesting minor effect that we
could not change the height displacement d of light reflected from the membrane
using just the 45 degrees positioned mirror in Figure 13, under the condition
that the distance of mirror and lens is very similar to the focal length and the
input horizontal light is already well aligned horizontally. As shown in Figure 13,
green light indicate B-light (Before we moved the mirror), orange indicate A-
light(After we moved the mirror by a small angle). If l1 and l0 is similar then
no matter how much we move the mirror we can barely affect the height of the
reflected light. The reason this effect happened was because when l1 = l0 = f ,
the green and orange light path became parallel to each other after the lens
and reflected. This corresponds to equal horizontal displacement for green and
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Figure 12: Early setups for cavityless measurements.

Figure 13: The reflection alignment is impossible when the lens locate at the
midpoint.

orange light path after the light is reflected. Thus, we should expect they go
back to almost the same point on the mirror as shown in the figure. Thus the
vertical displacement d remains roughly the same no matter how we change the
angle of the mirror.

Beam waist on membrane The beam waist on membrane can be deter-
mined using Equation 21, and with the fact that the beam waist(2w′

0) before
entering the lens is 2.5 mm. The beam waist(2w0) on the photonic crystal is
then 21µm.
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3.2.2 Results and limitations

After we successfully coupled light to all photo-detectors, we can start measur-
ing the membrane reflectivity and transmission at different wavelengths. From
Figure 14 we can observe a peak reflectivity at around 833nm that reached 95%.

Figure 14: Early results for membrane reflection and transmission.

This measurement is in fact very limited with low result accuracy.

First, when we focus our Gaussian beam onto the 200µm size photonic crytal
using lens is not at all easy, even with a camera in use. This could result in
some weak clipping effect at the edge of the photonic crystal that can lead to
some extra scattering loss.

Second, the scanning range is 820nm-865nm that some wavelength dependent
optical effects may no longer be negligible. All the optical elements on the beam
path, for example lens, beam splitters, mirrors they all contain some change of
properties when we tune the laser in this relatively large range. Thus, some
systematic errors are totally expected.

Third, the beam size here is still small that might have some influence on our
outcomes. This effect will be further investigated in section 7.
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4 Cavity experiments and data analysis

After we have finished the first part of measurement, we realized that in order
to reach higher measurement precision, an optical cavity is needed. The cavity
measurement is superior to the measurements we did in the last chapter, since
the cavity linewidth can be a powerful and accurate tool to obtain the round
trip loss[27]. Apart from that, we can also create a better vision from the cam-
era image to help us determine the size of the beam on membrane. This is due
to the fact that the intracavity power for our high finesse cavity is orders of
magnitude higher than the input power, thus we can physically acquire image
from the camera with much higher contrast.

The cavity we used is shown in Figure 15. A complete sketch of the experimen-
tal setup of optical path is shown in Figure 17.

Figure 15: Cavity used for membrane characterization. The light comes in from
above and there is a hole in the middle of the stage below cavity, which let
through the transmission light of the cavity to the photo-diode detector. There
are several degrees of freedom for the alignment of the cavity: top mirror x-y
stage controled by two little screw drivers in the picture; stage x-y movement;
beam direction controlled by a mirror on the top of the cavity; lens height
controlled by moving the lens as well as a fine adjustment by changing the
height of stage.

In this section, I will try to provide a clear picture about what I did during the
measurements, the alignment techniques and how I acquired and calibrated my
data.
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Figure 16: Sketch of cavity setup. The cavity contains a piezo(black) on top
of a concave mirror(blue) which is movable in x-y plane. The black wafer at
the bottom is a holder of the membrane shown in plot c. The cavith length is
determined by the thickness of the green spacer. Red ring in the sketch is a
rubber ring which provides frictions for black spacer. In our experiment, the
light enters from above.

Figure 17: Sketch of the optical setup of experiment. The polarized beam comes
in from a PM fiber, with a fine tunable frequency, but the range we use is around
833.1nm. The polarizer we use is for adjusting the input power to the cavity.
There are three photo-diode detectors we use: the yellow one is for calibration of
the power fluctuation of the input beam; the blue one is for the cavity reflection
detection; the orange one is for the cavity transmission detection.
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4.1 Calibrations methods

There are three different methods I used in the experiment in terms of cal-
ibrations. They are aiming for the calibration of power fluctuation (yellow
photo-diode detector in Figure 17), 100% transmission for the cavity, and using
the Electro-Optic Modulator(EOM) to calibrate the FWHM mentioned in 2.2.2.

4.1.1 Calibrations of Power

Since the laser we used came from an external source, there are always some
thermal or mechanical fluctuations happening to the fiber[28], that could lead
to some polarization uncertainty at the output. By using the polarizer, we can
both control the input power to the system and translate the polarization fluc-
tuations to power fluctuations. And by using the 90:10 beam splitter and the
calibration detector, we can acquire the fluctuations of power proportional to
the power into the cavity. Thus, we can divide them to cancel out the power
fluctuation:

TransmissionSignal =
Powertransmission

Powercalibration

ReflectionSignal =
Powerreflection
Powercalibration

(32)

Note that the signal here is merely a number without any unit, but this is suf-
ficient for us to complete the experiment.

4.1.2 Calibrations of transmission

The second part of our calibration is to acquire the 100% transmission signal.
I achieved this by getting a calibration signal first when I removed the cavity.
And then by comparing the two signals we have the real transmittivity:

T = TransmissionSignal/NoCavitySignal (33)

The reflection, on the other hand, can be determined without any calibration
because it is possible to determine the 100% reflection by just looking at the off-
resonance value. The off-resonance reflectivity is approximately 100% because
the input mirror has a very high reflectivity of 99.9%. We know that when our
cavity is off resonance, the intracavity power phase relations for each round trip
is washed away as we discussed in subsubsection 2.2.4, thus we should expect a
power inside the cavity orders of magnitude lower than the input beam. Thus,
there is near zero destructive phase interference for the reflected beam. We can
observe this value in Figure 25

Note that one should always realign the coupling into the transmission photo-
diode detector after one removes that cavity or puts it back. Because the cavity,
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like other optical elements on the beam path, might shift the beam center a little
bit.

4.1.3 Electro-Optic Modulator

The Electro-Optic Modulator(EOM) is often used to calibrate the linewidth of
a spectrum. EOM is widely used in optical research, thus I will only briefly
introduce the EOM I used based on our experiment.

In our experiment, we use a fiber-coupled EOM to insert it between fibers, this
kind of EOM looks like Figure 18.

Figure 18: Electro-Optic Modulators, Fiber-Coupled from Thorlab.

As already shown in Figure 17, our EOM is inserted between the input fibers.
The EOM can modulate the input light to create side-bands at certain frequency
offsets from the carrier frequency. This enables us to control the calibration side-
band frequencies and calibrate the FWHM values. It is almost impossible to
tell the linewidth directly from the raw data without this kind of calibration.

As an example, when we apply some reference signal on the EOM, the electric
signal with a certain frequency f (normally we use 50MHz) will be translated
to the spectrum by frequency shifts from the fundamental peaks. Thus, we
know that we can calibrate the full width at half maximum by simply using
the neighbour side bands. As we can see in Figure 19, the two side-bands are
50MHz from the main peak each. In this case, as we can measure the distance
the two side bands from the main peak δx, and we can also use fitting method
in python to acquire the relative FWHM a of the main peak. It should follow
the equation below:

∆νFWHM =
f × a

δx
(34)

4.2 Alignment

After the setup is prepared in as shown in Figure 17, we are ready to prepare
the cavity to the correct position. The alignment is essential if we want our
beam to couple into the fundamental mode. It is not a trivial task to do, so I
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Figure 19: The EOM creates two side-bands next to the main peak, which
enable us to calibrate the frequency axis acquired from the oscilloscope in order
to obtain the true value for the full width at half-maximum.

am going to separate the alignment into three major steps.

4.2.1 Beam-defect alignment

The first step is to look at the displacement of the beam spot from the defect
on the membrane by shining a white light into the cavity, and looking at the
output side through the camera. By block and unblock the laser, together with
the freedom of moving the x-y stage, we can roughly overlap the beam with
the defect. We can therefore see the membrane under white light as shown in
Figure 20. But once the beam is successfully overlapped with the defect, we
will not be able to see it very clearly because of the low transmitivity of the
photonic crystal.

Since the flash light we use has board-band frequency range differ from the
833nm infrared light for the actual experiment, it is entirely possible that there
are a small misleading displacement between the flash light image and 833nm
image. This would result in misalignment if we do not put that into account.
Thus, after we roughly align the defect and the beam, we can use a unfocused
beam to ”image” the membrane, as demonstrated in Figure 21. This is quite
useful because we can see the less transmissive photonic crystal(black circle)
very clearly. If we use our marker(red cross) to mark down the position of the
defect, it is the most accurate result we can ever get.

After we finished those steps, we can turn on the piezo to scan the cavity length.
From optics we know that, we should be able to see some moving fringes when
we change the cavity length. When we are able to observe this phenomenon, we
are ready to move on to the next step.
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Figure 20: Membrane and defect under the flash light. The black center is where
our photonic crystal(defect) is located. A red cross is drawn on the camera to
gives a approximate location of the defect.

4.2.2 Beam walk

After we successfully overlaps the defect and the beam with each other, we need
to put the beam at the correct angle, which is perpendicular to the membrane.
And also adjust the distance between the lens to the cavity to get the highest
possible in-coupling rate.

I recommend doing it in the following order:

1. Adjust the lens height roughly until there is no visible light in the camera.

2. If the in-coupling angle is too far from right angle, we can observe multiple
beam spots on the camera. Beam walk by adjusting the x-y stage and the
mirror above the cavity to get it to the right angle, while still have the
beam center overlapping with the defect. Keep doing this until all the
spots are overlapping with each other.

3. Look at the transmission signal on oscilloscope to search for peaks, until
we get the highest possible fundamental mode peak. Fundamental mode
can be checked by looking at the transmission beam shape on the camera.

4. Change the fine adjustment of the height of the stage to achieve the best
possible fundamental peak.
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Figure 21: Membrane and defect under a broad waist 833nm laser light. The
black center is where our photonic crystal(defect) is located.

4.2.3 Concave Mirror Alignment

After a nice fundamental mode peak is observed, we might still want to move
our beam to a better location on the membrane to avoid some high scattering
areas, while still keeping the right angle. We can achieve this by only changing
the concave mirror x-y position and then stage x-y position.

4.3 Measurement methods and early analysis

In order to acquire the proper data for losses and transmission of the PhC
membrane we are using, we need to measure multiple quantities. During our
experiment, there are four major steps twowards the measurement of all the
quantities we need: FSR measurements; FWHM measurements lead to round
trip loss; reflection analysis; transmission calibrations and analysis. All these
quantities are important for us to further characterize the photonic properties
of the PhC membranes we have.

4.3.1 Data acquisition

The optical power data we collected from photo-detector is collected by an 8-
bits oscilloscope that is controlled by lab computer. During the experiment, the
spectrum is scanned by a small a ring-shaped stack of piezo-ceramic material,
forming a piezo-electric transducer that we commonly called “piezo”, as shown
in Figure 16. The piezo can tune the cavity length in a small range about 0.5
µm which is equivalent as a frequency tuning in about 30GHz range(about 1

32



∆νFSR in spectrum). This enable the oscilloscope to capture the certain range
we are willing to capture as shown in Figure 19.

After the data points are captured, it is then imported into a python script to
process the data. In the python script, we use triple Lorentian to fit the data,
as discussed in subsubsection 4.1.3.

4.3.2 FSR measurements

As we talked about in 2.2.1, FSR quantity is essential if we want to get the
finesse of our cavity and acquire a more accurate cavity length.

The FSR can be acquired when we tune our laser wavelength until the funda-
mental cavity resonance peak shows up on our oscilloscope again. Or equiva-
lently, we can also use a piezo to tune the length of the cavity until we observe
the same peak, but this is less accurate than the previous approach and also
requires a good calibration method.

Here we use the first method mentioned above. We can first use the oscilloscope
to draw a base line for initial position of the fundamental resonance mode peak.
Then, we tuned the laser frequency until the new peak corresponding to another
frequency reaches the base line again. In our experiment, since we are aiming
at reaching higher accuracy, we keep tuning until the tenth fundamental mode
peak reached the base line. And then we can use Equation 12 to calculate FSR.

The result for the 6.3mm cavity is shown in chart below:

Direction λ /10 FSR δλ /FSR FSR

Increase 833.000nm to 833.551nm 0.0551nm 23.82 GHz
Decrease 833.551nm to 833.000nm 0.0551nm 23.82 GHz

And by using Equation 9 we are able to calculate that the cavity length l is
6.30mm from ∆νFSR and speed of light. This value is used in advance for both
Figure 1 and Equation 24, this is how the cavity length is accurately measured.

4.3.3 FWHM measurements and Finesse

After we have the FSR value from 4.3.2, next step we should find a way to
acquire the FWHM value as the second step towards round trip loss. After
writing a python program to calibrate the power mentioned in 4.1.1 and fin-
ish the alignment mentioned in 4.2, we can acquire some really nice Lorentzian
peaks corresponding to the fundamental mode. When we zoom in to look at one
of them, we will be able to see a good Lorentzian peak as shown in Figure 22.
Here, we can easily use a single Lorentzian fit to acquire the height of the peak.
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Figure 22: Peak of fundamental mode at wavelength of 833.155nm(left) and
832.75nm(right). The transmission at resonance is 1.59 and 0.87 reading from
the plot.

After we applied a 50MHz signal to the EOM as shown in 4.1.3, we can get two
other plots Figure 23 and Figure 24 for the FWHM calibration.

Figure 23: FWHM measurements at 833.155nm. The blue curve in the back-
ground stand for the starting value we set for the triple Lorentzian fitting to
start.

From these plot we can apply a triple Lorentzian fitting using Equation 13 for
three times:

y =
a×∆νFWHM

2

∆νFWHM
2 + 4(x− x0)2

+
b×∆νFWHM

2

∆νFWHM
2 + 4(x− x0 − δx)2

+

+
b×∆νFWHM

2

∆νFWHM
2 + 4(x− x0 + δx)2

(35)

In the fitting equation, δx stands for the distance between main peak and side
peaks, while a and b are two vaiables for fitting purpose. After fitting we can
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Figure 24: FWHM measurements at 832.75nm.

get the relations between FWHM and δx. Together with Equation 34, we can
get the FWHM value in term of frequencies. Combined with the FSR value we
acquired in 4.3.2 and Equation 14, we can get the finesses we always wanted to
have, as shown in Figure 23 and Figure 24. Here since from Equation 35 we
know that we have 5 different variables to be determined, we need a starting
value to do the fitting. In the figures, starting values are shown in blue. We
need a proper staring value to make the fitting process nice and quick, normally
we plot it as we shown to know how far the starting value is from the actual
data (red).

Finally with the finesses we can acquire the round trip loss using the inverted
version of Equation 15(we used the first expression for finesse here to acquire
better numerical accuracy):

γ = 1− (1− π

Finesse
)2 (36)

Thus, we can get the round trip loss γ for each color of input laser:

Wavelength Finesse γ

833.155nm 2276 0.00276
832.75nm 2582 0.00243

4.3.4 Reflection measurements

After we finished the measurement of round trip loss, from what we learned in
2.1, we know that if we can achieve the measurement of cavity transmission and
cavity reflection, we will be able to get the data we need.
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Figure 25: Peak of fundamental mode reflection at wavelength of 833.155nm(up)
and 832.75nm(bottom). The transmission at resonance is 0.44 and 0.34 reading
from the plot.

In order to receive the real data about reflection, we should always remember to
turn off the EOM calibrations first before getting the reflection data. Otherwise,
EOM will provide us with a lower resonance peak. Then, we can acquire what
is shown in Figure 25.

It is quite obvious for us to tell the 100% reflection value from the plain area
in the plot. This is because when the cavity is off resonance, with a 1000ppm
mirror it should reflect 99.9% of the input power. Thus, from the two plots, we
will be able to get the following values:

Wavelength 100% reflection Resonance reflection Cavity reflectivity

833.155nm 0.91 0.44 0.48
832.75nm 0.87 0.34 0.39

4.3.5 Transmission measurements

As we talked about in 4.1.2, in order to measure the transmission, we first need
to remove the whole cavity to get the value for 100% transmission. The value
we had for transmission is 5.6. Here we should always keep in mind that we
probably need to readjust the transmission coupling into the photo-diode de-
tector whenever we move the cavity.

36



Here are the transmission values we acquired from the peak values read from
Figure 22:

Wavelength Resonance transmission Cavity transmittivity

833.155nm 1.59 0.285
832.75nm 0.87 0.155

4.4 Early result analysis

Combining all the results above and remember in 2.1 we had the relations in
Equation 4 and Equation 8, we had four groups of data used to solve the value
for t21 and t22. The reason we need two groups of measurements is that there
are always two group of solutions for the transmissions and scattering. Thus,
we need to either tune the frequency or walk the beam to some other losses to
exclude one solution. I will have a brief example about my assumptions and
expectations when using two or more groups of data at different frequencies.

4.4.1 Determination of best operational frequency of membrane

One of the crucial parameters we need to determine before we start our mea-
surement is to determine the best operational frequency for our membrane. This
frequency is also called central frequency for the reason we will see later in this
section. Even though we haven’t introduced exactly how we should process the
data we acquired above yet, please bear with me for a moment so that we will
not have to go through all the back and forth tedious testing in our experiment
but use this central frequency later directly to demonstrate how the data is
processed.

When we use the method that will be later introduced in subsubsection 6.1.2,
we can acquire some membrane transmission data points and then we can find
out that they can be roughly fitted into a parabola, as shown in Figure 26.
Thus, we can conclude that we have a center wavelength at 833.15nm that gives
the lowest photonic crystal transmission we can ever get in all frequency range.

4.4.2 Summary of early measurement methods

I obtain the results above using a very early version of group measurement which
will be introduced in section 6. The results was obtained with huge error bars
as we can see in Figure 26. However, the result is already enough for us to guess
the best operation wavelength for our membrane.

After I finished the early measurements discussed above, I then moved to mea-
sure the results from some of my better membrane at hand. During the measure-
ment process, we discovered that a proper way to analyse our result is urgent to
be developed in order to obtain a good enough scattering loss results resolution.
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Figure 26: The fitting of different frequencies in order to determine the lowest
transmission wavelength.

Thus, we will open a whole chapter to discuss the advantages and disadvantages
of all the method that we used.

4.5 Results summary

With the improved data analysis method I got some much more accurate re-
sults. From there on, more and more new effects are observed and analysed,
especially when high finesse is reached with better membranes. These effects
will be discussed in section 5.

Membrane number Minimum γ/ppm Minimum T/ppm
2 4900±100 2500±150
7 1300±200 500±170
8 2200±200 600±160
10 900±40 350±40
11 780±10 310±10

Table 3: The minimum scattering loss(γ) and minimum transmission(T ) we
obtained from our measurements. The membrane we mainly use for our investi-
gation is membrane No.11. Here we used group measurement and its variations
to obtain results for 7 and 8. We used earlier pairing method to obtain results
for membrane 10, and we used our best approach to obtain results for membrane
2 and 11.

Here is a summary of results acquired with different membranes in Table 3. It
is worth noticing that the result we demonstrated here are not obtained using
the same analysing method. We will continue our discussion on the topic in
section 6.
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Figure 27: The results acquired by pairing method at different cavity mode
waists(2w0 at membrane side). We can see that the results at both higher and
lower waists contain more scattering loss. The higher transmittivity at 102µm
here was due to the power that tails of the mode field lying outside the photonic-
crystal region of the membrane received as transmission light at photo-detector.

And in Figure 27, we demonstrate how the transmittivity, scattering loss and
total membrane loss are at different beam waists(2w0 at membrane side). From
the plot we can determine that the best operational waist for our cavity is about
2w0 = 70µm.

Another interesting fact that we learnt from Figure 27 is that minimum scatter-
ing loss did not decrease when we have a smaller beam waist. This fact implies
that our earlier intuition about the origin of scattering loss in section 2.3.1 was
incorrect. The minimum scattering loss we obtained from membrane 11, inde-
pendent of its cavity mode interaction area on the membrane and interaction
waist, the minimum is always larger than 750ppm. Thus, this scattering loss
should be originated from some more universal fabrication issue.
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5 Investigations of other effects

After we put membrane No.11 in our optical resonator, many new phenomena
emerged and were gradually investigated and understood. In this section, I
will introduce some of the key effects of the new membrane, and provide some
promising explanations and solutions for them.

5.1 Birefringence

5.1.1 Birefringence phenomenon

The birefringence effect on a 2-dimensional silicon photonic crystal was observed
and studied decades ago on either slab [29] or square lattice fiber[30]. Thus it is
not a surprise for us to observe this phenomenon when we use a silicon nitride
photonic when our finesse becomes as high as 3000. This phenomenon appeared
when we shined a non-linearly polarized light or a linear polarized light with an
angle to the lattice direction.

Figure 28: The birefringence effects from the spectrum. We can see that the
single peak we observed before splitted into two peaks when we shine a non-
linear lattice oriented light into the cavity.

Here, instead of using triple Lorentzian to do the fitting, we need to add other
two variables which are: split separation variable d and peak ratio vaiable c that
describe a duplication of the triple Lorentzian but can change the frequency dif-
ferences and heights. Thus, we can fit all six Lorentzian peak using the following
equation:
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(37)

Despite the fact that the two peak looks quite identical in terms of line width,
we realized there is a small finesse differences between them. This difference is
implying that the two eigen-polarizations have slightly different losses and we
could in principle always use the one eigen-polarization with higher finesse.

5.1.2 Birefringence splitting difference

Here I will show the difference of eigen-polarization splittings for different input
polarizations. The separation of peaks can vary when we changes the orientation
of our input polarized light. This is verified by a polarizer above the cavity, and
shown two 45 linear polarized light provide two different separations of peaks.
As shown below in Figure 29, the peak separations in two plots have a separa-
tion ratio of 9:11. This is way beyond our measurement error. Apart from the
separation ratio, the depth of the dip between the two peaks also indicate that
this phenomenon is not measurement errors.

Sadly, the origin of this difference remains unknown so far.

5.1.3 The eliminations of birefringence effects and results

Due to all the reasons above, we should send in a linear polarized light, aligned
with one of the lattice axis. Thus, as shown in Figure 30we add a halfwave plate
and a polarizer before the light get into the cavity. Here, since the mirror and
lens can potentially disturb the linear polarized light, the polarizer 2 is added
between the lens and the cavity to prevent any elliptical light.

The improvement after the adjustment is made is demonstrated in Figure 31, we
can see an improvement of finesse after we eliminated one of the polarizations.

5.2 Opto-mechanical bistability

5.2.1 Bistability effects and the ”jumps”

The optical bistability induced by light pressure has been long observed and
studied since decades ago by researchers. In this domain, the first cavity op-
tomechanical experiment demonstrated bistability of the radiation pressure force
acting on a macroscopic end-mirror hanged by a string back in 1983. [31] [32]
Thus, this phenomenon is expected to be observed by our ultralight photonic
mirror hanged by a phononic bandgap structure. However, in the original Dorsel
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Figure 29: The birefringence effects shows different splittings at plus or minus
45 degrees linear polarization inputs into the cavity. The peak separations in
two plots have a separation ratio of 9:11. This is way beyond our measurement
error.

Figure 30: Changes of setup for birefirngence eliminations. HWP and Polarizer
2 are added to provide linear polarization inputs at arbitrary angles.
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Figure 31: Results comparison after birefriengence elimination. The two peaks
have small differences for their finesse, so we always test both polarization inputs
and choose the one with slightly higher finesse.

paper they had a hard time to achieve the separation of bistability signals and
optical noise. Taking advantage of our advanced membrane mirror, we can see
this bistability with a better physical resolution.

This result can be observed in bistable behaviour and hysteresis when recording
the circulating photon number ncav or the transmission as a function of laser
detuning, as shown in Figure 32 [22]. The bistability occurs when the optical
power with position dependence of the mirror create a second minimum po-
tential. Thus, there could be two stable position corrsponded to two different
intracavity powers for the mirror for a given mirror position. In our experiment,
since we have a cavity with a piezo behind the concave mirror that can tune
the cavity length as shown in Figure 16, the expected bistability with a tuning
laser should looks like Figure 32(b). However, this plot imply an interesting
fact which is there should be a color dependence of the bistability effect when
the in-cavity power is high enough. When we are scanning from blue to red and
red to blue, two different ”jumps” should occur since the actual curve cannot
follow the imaginary line in (b), but ”jump” straight up and down when it can-
not follow the real curves anymore. Thus, the bistability ”jumps” are expected
to occur at two different frequencies 1 and 2 marked in Figure 32(b). We are
also confident to make the prediction that the gaps of the ”jumps” vary by our
scanning direction. All these phenomenons from theoretical predictions are ver-
ified in Figure 32(d), as we can see the asymmetric effect for both frequencies
and ”jumps”. However, a more quantitative calculation should cast light on our
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Figure 32: The bistability effect. Here figure (a) and (b) are from cavity op-
tomechanics page 21 by Markus Aspelmeyer [22]. (a) Opto-mechanical bista-
bility effect happens when the optical power with position dependence of the
mirror create a second minimum potential. Thus, there could two stable posi-
tion for the mirror for a given mirror position. (b) Theoretical expectation of
the bistability effect when we have a laser detuning or a piezo that can tune
the cavity length. (c) The corresponded piezo scan is equivalent to a scan from
red(low frequency) to blue(high frequency) and back to red. (d)Spectrum data
recorded when we make a full peizo scan period from blue to red(left) and from
red to blue(right). The experimental result that we collected which indicate
a bistability here, since the two ”jumps” happened asymmetrically at different
laser tuning frequency and appeared with different heights.

final doubts for the qualitative explanations.

5.2.2 Quantitative calculations of bistability effects

In order to calculate our theoretical bistability effect, the optical force is needed
for our calculation[22]. After measurement we can get the total input power
into the cavity 2.5mW and finesse 2800. Using Equation 17 we acquired, we can
conclude that the intracavity optical power is about 2.2 W.

In our case we should consider the optical power as an ”optical spring” that fol-
lows the overall potential for the mechanical motion also includes the intrinsic
harmonic restoring potential:

Vx =
meffΩ

2
mx2

2
+ Vrad (38)

Where Ωm is the mechanical frequency, meff is the effective mass obtained in
subsubsection 3.1.1 and Vrad is the ”optical spring” optential defined by op-
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tomechanics textbook[22]:

Vrad = −1

2
h̄κnMAX

cav arctan[2(Gx+∆)/κ] (39)

Here for simplicity, we can take advantage of our high finesse cavity to simplify
Equation 38. For a 3000 finesse cavity, using Equation 18, we can determine
that its on-resonance power and off-resonance power can have a difference of
roughly 1 million times. Thus,it is safe for us to ignore the off-resonance optical
pushing force and treat the two bistable position as two equilibrium positions
of light and no light instead of on and off resonance.

For the on-resonance case, we have 2.2W of power in the cavity. If we see it
as a group of photons(n indicates photons per second), we know from textbook
that:

P =
E

t
= nh̄ω

= n
hc

λ
= 2.2W

(40)

Thus, the force exerted onto the photonic mirror can be calculated (here we see
the photon collisions on membrane are purely elastic):

F = 2× p

t
= 2× n

h

λ

= 2× P

c
≈ 15nN

(41)

With the results from subsubsection 3.1.1 we can now try to relate everything
together using Equation 38 by modelling it as a force pushing a oscillator to
reach the second equilibrium:

F = keff × d = V ′′
eff × d

= meffΩ
2
md

(42)

Where Veff is the oscillator potential. Recall that we know from our test in
section 3.1.2 that for membrane No.11 the drum mode frequency is 1.321MHz
from Table 1. Here we can acquire the membrane displacement by optical force:

d =
F

4π2mefff2
m

≈ 0.1nm (43)
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Figure 33: An exaggerated sketch for z displacement of the fundamental
phononic mode.

But this calculation method has a fatal error in its calculation! The reason of
the incapability of this calculation to provide a reasonable result is because, this
calculation can only apply to a certain mode that can be regarded as a simple
optical spring. A sketch of the mechanical fundamental mode for the membrane
can be found in Figure 33. We can see from the sketch that we cannot get the
same displacement distribution when applying a constant force at the center.
For our case, the bistability originated from two constant force inside the optical
cavity, thus we should do the calculation based on a new COMSOL simulation.
Eventually, from a mechanical simulation based on a constant optical force, we
obtained a displacemnt of 0.33nm.

From the optical force driven displacement, now we are able to infer the opti-
cal frequency displacement that this 0.33nm mirror movement corresponds to.
Using the fact that this cavity has a length of 6.3mm and λ= 833nm. Thus
we know from subsubsection 2.2.2 that this displacement above correspond to
a frequency change of:

∆ν =
νdc

l

=
dc

lλ
≈ 19MHz

(44)

Where ν is the laser frequency and c is the speed of light. This is about 2.5
times the linewidth and it is comparable to what we observed in Figure 32(c).

5.3 clover beam shape

During my experiments of the new membrane, one of the key finding is this curi-
ous mode shape of the output laser beam. Among many other groups that have
used similar high reflectivity photonic crystal structures, no such phenomenon
was observed. [8][33] Thus we invested some time to seek our explanations for
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the phenomenon. In this chapter, I will provide a detailed experimental obser-
vation of the phenomenon.

5.3.1 Earlier Observations with broad waist

Amuch weaker version of this phenomenon is first noticed on membrane 11 when
I used a much wider beam waist at about 72µm. Even though the better quality
of this membrane contributes to the effect, similar mode shape are observed on
earlier membranes also Figure 34. This indicate that the phenomenon might be
universal for this kind of membrane instead of from bad nano-fabrications.

Figure 34: Old mode shape at 833.15nm. This mode has a diameter of about
70µm. The red cross in the middle represent the normal direction of the mem-
brane shown in Figure 35. We can see a clover shape which hold an certain
angle to the red cross.

Figure 35: The red cross serves as a location and size mark of the photonic
crystal(dark circle in the captured image). And the orientation of the cross is
roughly aligned with the axis of symmetry of membrane phononic structures.

This shape here doesn’t look very Gaussian-like. However, if we tune the wave-
length away from our ”center frequency”, the foundamental mode shape will
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become more and more Gaussian as the transmission of membrane increases.
See Figure 36.

Figure 36: The mode shape looks more and more Gaussian as we tune the laser
wavelength away from 833.15nm the ”center frequency”. They are acquired at
wavelength: Top left: 833.15nm; Top right: 832.65nm; Bottom left: 832.15nm;
Bottom right: 831.65nm.

This of course, was my verification of the peak is in fact the fundamental mode,
instead of some higher order modes. However, when we narrowed down the
beam waist to about 37µm, this clover phenomenon became more and more
obvious. As shown in Figure 37. Here, no clover shape was observed for the
reflection side, this implies that this clover shape is probably photonic lattice re-
lated and it only happens when light is transmitted through the photonic crystal.

Figure 37: The fundamental mode(left) looks like a clover when we have 37µm
beam waist. The plot on the right is the reflection mode shape for the same
waist, but no clover shape observed.
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It is also worth noticing that the orientation of this clover shape seems to be
independent of beam size. In another word, the four ’petals’ are always pointing
at the same direction regardless of the beam size.
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5.3.2 Investigation and Arguments

This finding leads to my curiosities of its origin.

My assumptions were:

1. It was from concave mirror defects, bad coatings or asymmetry.

2. It was from some membrane defects.

3. It was from PhC holes orientations.

Following these assumptions, I was expecting for some clues after related exper-
iments. But sadly none of them provided me with much useful information.

Frequency Tuning As a verification of it being the fundamental mode, I ran
some test on different frequencies and observed similar gaussian-approaching
effects as shown in ??. Despite the fact it approached gaussian when far from
center frequency as expected, the mode shape also changed when I tuned the
wavelengths.

Figure 38: Clover shapes of transmission through the cavity at different
wavelengths between 827.65nm and 838.65nm around the peak reflectivity at
833.15nm. The mode shape was captured by the camera 50cm behind the cav-
ity as shown in plot We can observe a smooth transformation from a gaussian
to clover shape and back to a gaussian. Another interesting fact is that this
transition is asymmetric: for exmaple 832.15nm shape is very different from
834.15nm shape.

Assumption 1: Rotating the mirror The concave mirror was rotated mul-
tiple times when I was adjusting the cavity length, but the orientations of petals
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remains the same. If it were a mirror related issue, we could have seen a rota-
tion( or even change) of mode shape. Thus, this assumption can be excluded.

Assumption 2: Cruising on the membrane If this was a result of certain
defects on the membrane, a change of mode position on membrane should lead
to a significant change of mode shape. However, as we can see in Figure 39 this
is not the case.

Figure 39: The mode shape remained roughly the same on different positions
on the membrane. As before, the red cross here indicate the position of our
photonic crystal, and the center of the cross is roughly the center of the PhC.

This is a good evidence against assumption 2, and indicates that the mode shape
is not very dependent of its position on the membrane.

Assumption 3: Flipping the membrane Let us first assume the clover
shape is related with the membrane fabrication direction(or the arrays of ”pho-
tonic holes”). Then after we flip the membrane and using the other side for
reflection, we should expect an mirrored image of this clover shape as shown in
??.

The other issue is the clamping orientation. Luckily, our clamping orientation
of membrane can only be changed by 90 degrees, same as the axis of the clover
shape and the axis of photonic hole arrays. So even if the shape is related to
photonic structures, it is independent of our clamping. More precisely, even if I
rotate the membrane by 90 degrees during my flipping, I won’t make a difference
to the clover shape. Thus, under the condition that assumption 3 is real, the
top petal should point at top right direction after my flipping. However, as we
see in ??, the flipping of the membrane did nothing to the mode shape.

But we should remember that, this statement is only true if the flipping axis
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Figure 40: If the assumption were true, then we should expect a mirrored beam
shape.

Figure 41: The mode shape remained the same after I flipped the membrane.
From left to right are images before and after the flipping.

is not one of the axis of clover symmetry. It turned out to be not as trivial as
it sounded to verify because it is not easy to relate the flipping axis and the
clover orientation on the camera, due to the symmetric shape of the phononic
patterns. Thus, we need to draw the following deductions and experiment.

5.3.3 Verification of flipping axis

A neat verification of the flipping axis is needed in order to determine the rela-
tions between the flipping axis and the clover beam shape. In our microscopic
regime, we can only determine the flipping axis directly from the axis of symme-
try for the square membrane. We can deduce the photonic structure orientation
is aligned with the flipping axis of the membrane from the design diagram of
the membrane. But since the phononic structures we observed on the camera
has 12 axis of symmetry, we still need to struggle our way to pick the real ones.
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The first method we tried was to use a string that aligned with flipping axis.
However, due to the extremely blurry image on the camera(the focus of the
camera is at the membrane plane), this method is no longer an option.

We eventually come up with the knife edge clipping method to complete the
job. We do this by slowly moving a knife edge that parallel to the symmetric
axis to clip the beam just beneath the cavity. Since in principle, the clipping
of a knife-edge with the beam can create a very clear diffraction pattern that
is perpendicular to the knife edge as shown in Figure 42. We are now able to
determine both flipping axis of the membrane(green lines in the plot), which
are also the two square lattice orientations. Now we are able to tell from the
plot that the green axis is also the axis of symmetry for our clover shape at the
corner. The green axis has an angle of 32 degrees to the red

Figure 42: The knife-edge diffraction pattern(main figure) and the clover shape
before clipping(bottom right). The red cross in the image serves as a indicator
for the normal orientation of the camera, the green lines are guidelines drawn
from the diffraction pattern that is parallel to the square lattice orientations.
We can see from the clover figure that the green line is also its axis of symmetry.

However, even now we verified this phenomenon is possibly related to the pho-
tonic structures, it is still not quite clear about the physics behind it.

Apart from our verification of clover shape on the camera which could be merely
an image on the camera but doesn’t reflect anything on the membrane, I verified
the clover shape beam can remain stable for a relatively long distance, as shown
in Figure 43. I can still see a quite clean shape at roughly a meter after the
light leaving the cavity. This serves as a side information of this phenomenon
to exclude the possibility this shape was because of some camera issues. And
by using the membrane we successfully created a physical clover shape beam.
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Figure 43: The mode shape can remain as the beam shape after leaving the
cavity for about 200mm. Here the beam waist on the membrane is 2w0 = 37µm.

5.3.4 Higher order modes

I observed some higher order modes on the spectrum when the alignment wasn’t
perfect at the wavelength 833.15nm (centre). The shape is shown in Figure 44.
Even though some of them seems quite similar comparing to the common Gaus-
sian higher order modes [14] but others are not.

Figure 44: Higher order modes of clover shape mode.

5.3.5 Mode-waist relationship

From our discussions above, we are able to see that there is a waist-clover re-
lation here, and the clover shape becomes sharper at small waist. The mode
shape-waist relationship is demonstrated in Figure 45.
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Figure 45: The shape-waist relationship. When our beam waist varies from 36
µm to 72 µm, the clover beam shape become more and more blurry.

Thus, we are now able to tell from our former discussion that we have this
curious phenomenon that haven’t been observed before. We will see a whole
new chapter for simulation investigation on this problem in section 7.
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6 Methods for result analysis

During my months of photonic crystal membrane characterizations, I tried and
developed many different methods to calculate the transmission and scattering
loss of my concave mirror photonic crystal cavity. Due to the high scatter-
ing loss nature and potential light path coupling issue of the photonic crystal
membrane, many of the common method cannot determine the scattering loss
accurately.

Thus, in this chapter we compare three main methods we tried to acquire the
scattering loss result and compare their final errors and accuracy of results. All
these methods can be useful for certain membrane parameters, but not all. In
this chapter I will provide an overall comparison for all the methods.

6.1 R-T measurements

The most straight forward way of processing the data is the common R-T
method. This method has been used to characterize the scattering loss of cavity
mirrors in multiple cases 20 years ago at Caltech and JILA[34]. In the method
they proposed, there are two limitations: first their method requires knowledge
of the transmittivity of two mirrors in advance; and second their measurements
require high finesse (480,000 as they mentioned in the article) to produce a pre-
cise result. Thus, we made some modifications of their approach on the effort
of providing a more universal approach that can separate different loss elements
from each other.

Different from what JILA group did before that they measured the mirror trans-
mission independently from direct measurements using powermeter, we were
trying to develop a method that can determine all unknown variables at the
same time using a single cavity and three photo-diode detectors. The reason we
started another approach is because we want to always keep the concave mirror
as a crosscheck to make sure that there will not be some systematic errors on
the optical path that can keep me from getting the real measurements.

6.1.1 results and uncertainty

The result using the standard method was never truly used because of the

6.1.2 Introductions to group analysis

When using this method, we are actually using it under some basic assumptions
that I made. But before we talk about the assumptions in details, please allow
me to first use an example to provide a clear picture about why we need two
groups of data at two neighbour frequencies.

As a example, if we want to solve the value for t21 using reflectivity test results
and Equation 8, we could never get only one value because of the symmetric
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feature of cavity. This is demonstrated in Equation 45. Even under the same
γ and R, T conditions, we will still get two solutions from the . This is why
we always need another group of data to exclude one solution. It is even more
obvious if we try to solve Equation 8, and reorganize it like this:

t21 =
(1±

√
R)γ

2
(45)

Thus, we always need at least two group of data to determine the sign in this
equation. And then, we can insert what we got from Equation 45 to the follow-
ing equation reorganized from Equation 4 to get the value of t22:

t22 =
Tγ2

4t21
(46)

But here we actually made two important assumptions:

1, the scattering loss γ is independent of laser frequencies in 1nm range.
2, the transmission coefficient t1 is also independent of laser frequencies in 1nm
range.

These assumptions seems to be valid from our test result if we keep our laser
wavelength within a limited range around 833nm.

6.1.3 Analysis

After we finish all our measurements, we can summarize what we have in our
hands right now, and use a new group of data at 833.65nm acquired by the same
method:

Wavelength R T γ

833.155nm 0.48 0.285 0.00276
832.75nm 0.39 0.155 0.00243
833.65nm 0.65 0.260 0.00477

After we apply Equation 4 and Equation 8 to first group of data, we can solve
and get the result from wavelength 833.155nm:

Result 833.155nm t21 t22 Scattering Loss

1 0.00234 0.00023 0.00019
2 0.00042 0.00129 0.00105

The two groups of result above can to narrowed down to one if we introduced
our second group of data:
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Result 832.75nm t21 t22 Scattering Loss

1 0.00197 0.00028 0.00018
2 0.00046 0.00050 0.00147

But here we noticed that it is not easy for us to determine now. This is because
these two groups of data are quite close to each other. This is why we introduce
the third group of data at 833.65nm at the beginning of this section:

Result 833.65nm t21 t22 Scattering Loss

1 0.00439 0.00034 0.00004
2 0.00046 0.00313 0.00117

From our assumptions at 6.1.2, we should expect a similar scattering loss and
t21 for all groups of data. Thus we know that only the second data in each group
is possible.

We can also introduce any other group of results as verifications:

For example at 832.55nm, we have R = 0.42, T = 0.225, γ = 0.00275. The result
for the group of measurement is:

Result 832.55nm t21 t22 Scattering Loss

1 0.00227 0.00019 0.00029
2 0.00048 0.0089 0.00138

From all these data we can tell that even though it seems that we can exclude
one of the result in each group, the variation for the final scattering loss is still
pretty big. Thus, we should do a error analysis to see if these results are inside
the error bar or not. Further investigation of errors will be introduced in 6.1.5.

6.1.4 Result explanations

As a side explanations for where the about 1300ppm errors could have come
from, we can take a look at this strange beam shape in Figure 46:

This finding actually consist with what we found when looking at the photonic
crystal under the microscope using 50x lens in Figure 9.

6.1.5 Error analysis and the limitation of group analysis

For the error of finesse, we can use repeated measurements to learn about the
standard deviation of measurement, and then we will have some idea about the
accuracy of finesse measurement. Accuracy of finesse: ±1%.
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Figure 46: Beam shape of the cavity transmission close to resonance. At the
left top part of the defect, there is a bright spot, which indicates that there is
some leakage of light over there.

As for reflectivity and transmittivity, since they might have some systematic
errors(due to imperfect coupling into the fundamental mode), repeat measure-
ments won’t give us answer to these sort of errors. Since the spectrum was quite
clean for the data we use here, and calibration for R is hard to be far from its
true value, we will assign R and T with ±5% and ±8% of error respectively.
The two measurement uncertainty here came from the data noise we acquired
on the photodiode detector as we demonstrated in Figure 25 and Figure 22.

Thus, we can use error propagation method to get the error for each of our
measurements:

γ t21 t22 Scattering Loss

Result 0.00243 0.00046 0.00050 0.00147
Error 0.00002 0.00003 0.00006 0.00007

We can see that even though the value of t21 are all within the error bar(we used
an input mirror with the labelled transmission t21 = 500pm), scattering loss is
hardly acceptable. The lowest scattering loss is 0.00105 at 833.155nm, which is
more than 3σ away from the scattering loss at 832.75nm

We should either accept that the scattering loss is quite dependent on color, the
errors we made in experiment is way bigger than we expected, or there is some
other systematic error not included.

Here I think the third one is more possible at this stage.
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6.2 Mode matching modelling

It is hard to quantify how bad we matched the mode, so it is reasonable to in-
vestigate the situation that we had a bad mode matching. If we succeed, we can
spend less time finding perfect mode matching and simply use our method to
do a compensation to get the theoretical T and R value from our imperfect data.

6.2.1 Mode coupling theory

To calibrate the mode matching, we simply add an input coupling coefficient to
our old theory:

In our situation, we can assume that our target mode only gets a certain pro-
portion of the total power, which is the mode coupling coefficient A. In this
case, the peaks we saw from experiment is A times its value if we had 100%
coupling into the fundamental mode. For convenience, we say that the inverse
of A is α. The value of α is the inverse of input fundamental mode coupling
coefficient, which means how many times we could ”enlarge” the dips or peaks
(perfect coupling) by ignoring the other modes. I find this a better way to use
in calculation because it provides a more intuitive and cleaner way of our ex-
pression.

Thus, we can say that the actual transmission and reflection of the fundamental
mode is(if we had 100% coupling into it):

Rfm = 1− α(1−R)

= 1− α+ αR
(47)

Tfm = αT (48)

If we assume the mode matching quality (when we do not move the concave
mirror) is very similar at the target frequency range (±1nm), we can use dif-
ferent groups of measurements at different frequencies to determine the mode
matching percentage.

If we insert Equation 4 and Equation 9 into Equation 74 and Equation 48, we
will have the full expression for transmission and reflection when we have two
groups of data at different frequencies:

Rf1 = 1− α+ α(1− 2t21
γf1

)2 (49)
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Rf2 = 1− α+ α(1− 2t21
γf2

)2 (50)

Tf1 = α
4t21t

2
2f1

γ2
f1

(51)

Tf2 = α
4t21t

2
2f2

γ2
f2

(52)

Here f1 and f2 correspond to the first frequency and second frequency we ac-
quired from measurements respectively. There are four unknown variables in
these equations: α, t21, t

2
2f1, t

2
2f2. Thus, the equation set should be solvable here.

The total assumptions we implied here are:
1, the scattering loss γ is independent of laser frequencies in 1nm range.
2, the transmission coefficient t1 is also independent of laser frequencies in 1nm
range.
3, the mode matching coefficient α is independent of laser color.

6.2.2 New analysis

Now we can apply the mode matching theory into our calculations. This is
getting more and more complicated so we simply put our two groups of data
below (see 6.1.3) into the calculator to solve the equation. I usedWolfram Alpha.

Wavelength R T γ

833.155nm 0.48 0.285 0.00276
832.75nm 0.39 0.155 0.00243
832.55nm 0.42 0.225 0.00275
833.65nm 0.65 0.260 0.00477

After we put these data into the calculator by using Equation 49 and Equa-
tion 50, the result is not very pleasant. The result we had for all combinations
are in Figure 47.

We can clearly see from the results that this method is unreliable, because first
our results are very divergent from each other, and second most of them are not
even possible. This is because if we remember in 6.2.1, by definition, the value
of mode matching coefficient ’A’ is the inverse value of α. Since the coefficient
must have a value between 0 and 1, the value of α must be bigger than one and
positive. Thus, from the result our modelling or calculation is unsuccessful for
some reason.

Here I guessed what happened here is that the value of alpha is way to sensitive
to the value of R and γ. But we should be able to verify this by doing the

61



error propagation. If the result is sensitive to some certain variables, we should
expect a huge uncertainty for the value of α or t21.

6.2.3 Mode matching error analysis

Since the complexity here increased a lot, we need to find some smarter way
to analyze the errors. I tried the most common (but also most tedious) way
to get the error, but also invested a bit more time into some other method for
sensitivity analysis. But the other methods didn’t seem to be awarding yet.

Equation solving and error propagation Here I first use a “brutal” way
to get the result. I used a method similar as Equation 45 to acquire an expres-
sion for t21 using α as a variable. Here is the result I finally got:

t21 =
γα±

√
γ2α(R+ α− 1)

2α
(53)

But sadly this is still not able to do any error propagation yet. But if we make
two sets of data at different frequencies and use Equation 49 and Equation 50
get a common expression for t21. We can surprisingly simplify the equation by
a lot. We will get a equation as below:(for simplicity of expression, only in this
section we use R1, γ1, R2, γ2 to replace Rf1, γf1, Rf2, γf2, and T for t21)

R1 − 1 =
4αT (T − γ1)

γ2
1

(54)

R2 − 1 =
4αT (T − γ2)

γ2
2

(55)

Thus, we can see that if we divide Equation 54 by Equation 55, we can remove
the α from it. Then we will have:

R1 − 1

R2 − 1
=

γ2
2(T − γ1)

γ2
1(T − γ2)

(56)

After we reorganized the equation, we can get a expression for T as:

T =
γ1γ2[γ1 (R1 − 1)− γ2 (R2 − 1)]

γ2
1 (R1 − 1)− γ2

2 (R2 − 1)
(57)

Thus, we can use the error propagation method to get the propagation expres-
sion of it(with four variables):
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Figure 47: Results calculated by Wolfram Alpha, website at
https://www.wolframalpha.com. Here x and y stand for α and t21 in this
article. We can clearly see that our results are very divergent from each other
and most of them are not even possible.
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σT =

√√√√√√√√√√√

γ4
1γ

2
2σ

2
R1

(
−γ2

1 (R1 − 1) + γ1 (γ1 (R1 − 1)− γ2 (R2 − 1)) + γ2
2 (R2 − 1)

)2
+ γ2

1γ
4
2σ

2
R2

(
−γ2

1 (R1 − 1) + γ2
2 (R2 − 1) + γ2 (γ1 (R1 − 1)− γ2 (R2 − 1))

)2
+γ2

1σ
2
γ2

(
2γ2

2 (R2 − 1) (γ1 (R1 − 1)− γ2 (R2 − 1)) + (γ1 (R1 − 1)− 2γ2 (R2 − 1)) ...
)2

+ γ2
2σ

2
γ1

(
−2γ2

1 (R1 − 1) (γ1 (R1 − 1)− γ2 (R2 − 1)) + ...
)2

(γ2
1 (R1 − 1)− γ2

2 (R2 − 1))
4

(58)

From the equation above we can get our result from each pair of measurements
shown in Figure 47. All the results are collected in this table:

1 2 3 4 5 6

t21 Result 0.00096 0.00050 -0.00087 0.00077 0.00285 0.00027
Error 0.00040 0.00033 0.00199 0.00041 0.00045 0.00052

From the results above, we can conclude that it is not wise for us to consider
this mode as a trustworthy one. The errors here can hardly provide us with any
useful information. But the fifth data still doesn’t consist with the others or
the 500ppm value from the mirror measurements. This could indicate that our
method to calculate the sensitivity of variables still has some flaws.

Limitation of method From 6.2.3 we can see that as soon as we include the
mode matching coefficient into the model, the uncertainty of the t21 measure-
ment suddenly explodes. We might be able to find a better way to introduce this
coefficient, so that it will not flood the existed variable with extra uncertainties.
But the question is if it is worth the effort.

The reason I wanted to include this coefficient in the first place is to safe the time
and effort on mode matching, but now it turned out to be more time consuming.

But if I am going to spend more time on this topic, I will use another group of
data from the 1000ppm mirror to convince myself on the topic. And I think if I
can get a accurate measurement on the t21 directly, that will also open a window
for us to reuse this method. Because in this case, we can measure the value of
α directly. After that, the final uncertainty of α can possibly be limited within
±3%.

6.3 Pairing method

After we realize that we could not achieve enough sensitivity of scattering loss
measurements at our center frequencies, and the coupling rate of our mea-
surements could lead to much more tricky situation, we developed the pairing
method which eventually finalize our seeking of different measurement methods.
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6.3.1 Method and calculations

The basic idea of pairing method is to use a tune-able laser to measure different
round trip losses at different wavelengths within a short range(1nm). However,
this method is also based on two approximations:
1, Scattering loss is independent of wavelength in a small range.
2, The mirror(concave one on the top in our case) transmittivity remains un-
changed when we tune the laser in a certain range.

After these two conditions full-filled, we are able to use multiple pairs of round-
trip loss and transmission measurements made at different wavelength to acquire
the following equations:

γf1 − γf2 = t2f1 − t2f2 (59)

Where γ stands for the round-trip loss, t2 is membrane transmission and f1 f2
indicate two different frequencies. Remember our former deduction about the
cavity transmission expression Equation 4, we have:

Tf1 =
4t21t

2
2f1

γ2
f1

(60)

Tf2 =
4t21t

2
2f2

γ2
f2

(61)

From Equation 60 and Equation 61 and insert the relation shown in Equation 59,
we can get the transmission expression as:

t22f2 =
Tf2γf1γ

2
f2 − Tf2γ

3
f2

Tf1γ2
f2 − Tf2γ2

f2

(62)

Using textbook error propagation method, the uncertainty of this transmission
measurement has the expression of:

σ(t22f2) =

√
(
∂(t22f2)

∂γf1
∆γf1)2 + (

∂(t22f2)

∂γf2
∆γf2)2 + (

∂(t22f2)

∂Tf1
∆Tf1)2 + (

∂(t22f2)

∂Tf2
∆Tf2)2

(63)

After we acquire one of the membrane transmission, we can now obtain the
scattering loss β by using Equation 62 and Equation 19:
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β = γf2 − t21 − t22f2

= γf2 − t21 −
Tf2γf1γ

2
f2 − Tf2γ

3
f2

Tf1γ2
f2 − Tf2γ2

f2

(64)

Here we can use the error propagation again to obtain the error of the scattering
loss we just obtained in Equation 64:

σβ =

√√√√ ( ∂β
∂γf1

∆γf1)
2 + ( ∂β

∂γf2
∆γf2)

2 + ( ∂β
∂Tf1

∆Tf1)
2

+ ( ∂β
∂Tf2

∆Tf2)
2 + ( ∂β

∂(t21)
∆(t21))

2
(65)

6.3.2 Results and advantages

A demonstration of results gained using pairing method is shown below, the
following data is taken at the waist on membrane of 2w0 = 65µm. First we can
acquire the round trip loss by finesse as we discussed in subsection 2.2 with 6
repeats. We do this at different frequencies(at least 4 to acquire 5-6 groups of
usable pairs). We turn off the EOM and measure the relative transmission peak
height after calibrations for each of the frequencies. We are now able to acquire
the results similar as what we are showing below. Here we should keep in mind
that we should keep the frequency range tight but also be able to distinguish
from each other. This is an interesting trade-off we should take, because if we
”mate” two frequencies that scattering losses or peaks are too similar to each
other, we will have huge propagation errors when we are trying to subtract
them. However, if they are too far from each other, we will be risking our neck
that the frequency differences leading to too much systematic errors such as
different mirror reflectivities or even different scattering loss at different wave-
lengths. Thus, from our experience, the suitable range should be within 1 nm.

Wave-
length/nm

Round
trip loss
/ppm

RTL er-
rors /ppm

Peak
height (no
units)

Peak
height
errors

833.15 2244 21 412 10
833.00 2270 15 417 10
832.75 2776 15 679 15
832.55 3561 28 806 20

The next step is to get pairs, and make the calculation using Equation 62. Here
a important knowlegde is how to pick pairs. We selected 5 pairs from this group
of data, and they are shown in the table below. Here we pick pairs based on the
sole principle to avoid round trip losses that are too close to each other(such as
833.15nm and 830.00nm pairs).

From the table, we are now able to determine our estimated scattering loss
error is 780±20 ppm, and the minimum transmission at peak reflectivity is:
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Wave- length
1/nm

Wave- length
2/nm

Scattering
loss /ppm

Errors /ppm

833.15 832.75 750 40
833.15 832.55 770 40
833.00 832.75 790 40
833.00 832.55 780 40
832.75 832.55 810 60

320±20ppm. This scattering loss of this result is at around 2% level.

The results acquired using pairing method is demonstrated in Figure 27.

Advantages of pairing method The advantages for the pairing method is
significant comparing to the other two methods.

First, the pairing method is insensitive to the in-coupling rate into the cavity.
We acquired very similar result with relatively low coupling rate and high cou-
pling rate. This advantages can save people a lot of time doing calibrations and
alignment which could be very tedious and time consuming.

Second, the pairing method is in principle indifferent to the other form of losses
on the optical path, since it will cancel out all the loss that is proportional to its
power. Thus, with pairing method, we do not need the optical path calibration
required by other methods.

Third advantage is that the pairing method requires no reflection arm detection.
The reflection detection is not only tedious to align, but can also cause many
systematic errors in many of the setups. One of the most common systematic
error was from the reflection of the calibration arms in our setup as shown in
Figure 30. The reflected power from the calibration photo-diode detector(PD)
can sometimes enter the reflection arm that cause some quite significant errors.
This of course can be avoided by turning the calibration PD to an angle. How-
ever, since the calibration PD is near the focal point of the lens, tuning is still
not easy to aviod this phenomenon. Thus, the pairing method saved us from
the efforts of changing too much in the optical path.

The final advantage is of course its accuracy when the loss/transmission ratio
is high enough. In pinciple, we can do many different pairs of measurement
and acquire very high precision (2-3% error for 6 repeats of measurements at
relatively big waist).

Limitations of pairing method Even though the pairing method provide
us with nice results at large beam waists. Its limitations are still quite obvious.
If we use narrow beam waists for our results where scattering loss/ transmis-
sion ratio is very high, we could end up with some huge errors due to the fact
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that the peak heights on resonance can be very similar within 1nm range. But
this is a limitation for most methods since none of them are able to separate a
small scattering loss from huge membrane transmission loss. The second limi-
tation is due to the change of clover shape at different frequencies. For most of
our experiment, we will focus our light on photo-diode detectors but also not
too much for a common gaussian beam as for the detector has a area of about
1mm×1mm size. It would be fine for the general cases but when the mode shape
can magically grow to a much bigger clover beam, this would lead to calibration
errors that are really harmful to the results. But this limitation can be avoided
by moving the photodiode detector closer to the focal point and by using a lens
with smaller focal length.

6.4 Comparison of methods

After we demonstrated how we obtain results with three(or four) different meth-
ods, now we should put them together to make our comparison, here ϕ = scat-
tering loss/transmission loss:
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Method Standard
R-T

Group
measure-
ments

Mode
matching

Pairing
method

Requirement for
measurement of
mirror

Yes No No Yes

Scattering loss
accuracy for high
ϕ (experimental
case)

Moderate Moderate Low Very high

Scattering loss
accuracy for low
ϕ (desired case)

Moderate Moderate Moderate Moderate

Is cavity coupling
rate accounted

No No Yes Yes

Is other optical
loss on light path
compensated

No No No Yes

Difficulty for
alignments

High High Low Low

Difficulty to ob-
tain results

Moderate High High High

Is reflection sig-
nal needed

Yes Yes Yes No

Is transmis-
sion calibration
needed

Yes Yes Yes No

Table 4: Table for the comparison of different measurement methods that we
used and their sensitivity/benefits comparison.

From Table 4, we can see that pairing method is superior in terms of accuracy
for the high scattering loss/transmission loss ratio for the membrane we have at
hand, and it is the least alignment time-consuming method. For our case, since
we wanted to test different membranes with different cavity length and different
concave mirrors, heavy alignments could be way too inefficient. But if we have
a low scattering loss PhC membrane in the future, the standard R-T method
can still be useful and worth the time invested for the alignment.
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7 Simulations of clover shape

Following our discussion in subsection 5.3, we realized that this new phenomenon
is possibly related to the photonic structures. Photonic structures had been
found influencial on mode shapes about intensity distribution and observed in-
terference of the beam generated by the metasurface [35].

Keeping this suspicion in mind, in this section we want to study the origin of the
clover shape by simulations, since the clover shape could turn out to be deadly
for our multi-cavity coupling rate since we are not yet sure if the intracavity
mode is Gaussian or not with the clover as an far field output.

In this section, I worked with helping hands from simulation experts Anders
Simonsen and Georg Enzian. We eventually found a way to combine COMSOL
simulation and Fox-Li simulation approach[36][37] to provide a satisfying expla-
nation for the clover shape mode and cavity transmission.

7.1 COMSOL simulation

COMSOL multiphysics is a powerful tool for the simulation of electromagnetic
waves using finite element method(FEM). It has been used intensively for pho-
tonic structure numerical simulations in the last ten years [38] [39]. Even though
the COMSOL multiphysics has been proved powerful for maxwell equation wave
optics, it has a limitation for our simulation, which is it is very hard to simulate
a limited region photonic slab(200µm×200µm for the photonic defect we used).
This was due to the limited RAM we have for a common laptop or accessible
computer.

Thus, in this section we will simulate the photonic structures as an infinite PhC
crystal, and we will decompose our cavity mode into different plane waves in
k-space[40]. By doing this, we can easily finish the COMSOL simulation in a
reasonable time as plane wave incidence on infinite periods photonic crystal,
while still being able to gain enough information for future Fox-Li method.

7.1.1 COMSOL setups

In this section we will describe simulations done for a Photonic Crystal (PhC).
The simulations are for infinite-size membranes and are done with pure plane
wave illumination while scanning both incident angle and azimuth angle. The
COMSOL simulation method here has been developed and used before in other
research center[41][42] as well as in Niels Bohr Institute[43], and I was also fol-
lowing the basic guidelines from COMSOL website[44] (Wave Optics Module
User’s Guide) to create a basic cell simulation.

The simulations are done in COMSOL Multiphysics 5.6 with use of the Wave
Optics Module. S unit cell is designed as shown in Figure 48. The photonic
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crystal simulation is a three dimensional design, where periodic boundary con-
ditions have been used in x-y plane directions to create an infinite square lattice
of holes. The lattice constant for the PhC is called a and the diameter of the
holes are called d. The Port boundary conditions (in Electromagnetic Waves,
Frequency Domain interface) is placed on the top and the bottom of the unit
cells and are used to release the incident wave and to absorb the reflected and
transmitted waves of order 0. The Diffraction Order are added to absorb outgo-
ing waves of non-zero diffraction order. Here the index of refraction for Si3N4

is Re(n) = 1.9861 and Im(n) = 5× 106 [45].

Figure 48: Geometry of one unit cell photonic crystal(left) and COMSOl plane
wave simulation(right).

For our simulation above, we have various of data we can possibly use in simula-
tion, those data are demonstrated in Table 5. Where the COMSOL parameters
are real parameters measured under electron microscope by Dr.Anders Simon-
sen, while the 830.4nm peak reflectivity wavelength is determined in COM-
SOL using the measured results and scan over a range between 820nm till
850nm, with the result shown in Figure 49. The result indicate a small dif-
ference between the measured wavelength(833.15nm) and the simulated wave-
length(830.4nm). This implies that either our measurement is not precise enough,
or the fabrication imperfections are actually leading to some other effects. Even
though the simulation result is not yet agreeing with experimental data, it still
tells us a lot about what we discussed in Figure 6 about why our peak reflec-
tivity is 20nm away from the designed parameters.

Now, we should move forward with the new 830.4nm simulation result instead
of 833.15nm which is the experimental result. This is because in subsection 5.3
we conclude that the clover shape happened at peak reflectivity where the fi-
nesse is highest. Thus, we should use the simulated peak reflectivity 830.4nm
to continue in order to get the results with the most obvious ”clover shape”,
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value type designed pa-
rameters

real parame-
ters

COMSOL pa-
rameters

thickness 100nm 88.5nm 88.5nm
lattice constant 734nm 728nm 728.3nm
lattice hole di-
ameter

511.2nm 511nm 511.2nm

Photonic crys-
tal size

200µm 200µm Unable to simu-
late

Peak wave-
length

852nm 833nm 830.4nm

Table 5: Designed parameters and real parameters of photonic structures. We
can see a very clear difference here. The real parameters here is measured by Dr.
Anders Simonsen under electron microscope. The COMSOL parameter in the
third column is a even more precise measurement under electron microscope,
and the peak reflectivity wavelength is determined using the measured results.

Figure 49: COMSOL simulation of scanning wavelength in order to find the
peak reflectivity of the photonic crystal. We acquired the peak reflectivity at
830.4nm from the simulation result.

which is the priority of our simulation.

With all the parameters set, we should now acquire the plane wave parame-
ters we need as decomposition of Gaussian cavity mode. Taking advantage of
the result we acquired from subsubsection 5.1.3, we concluded we need to have
a single polarization input in order to eliminate the birefringence. Thus, we
can start our COMSOL simulation by defining a linear polarized light always
pointing at x direction to simulate our experimental input. Here, it is very im-
portant to emphasis the definition of different rotating angles and norms. The
COMSOL definition of rotation is shown in Figure 50. The bottom right image
shown how elevation angle α1 and azimuth angle α2 are defined in COMSOL,
a⃗1 and a⃗2 represent two square lattice periodic orientations in our simulation.
The definitions can be represented by following equations:

72



Figure 50: Schematic of the directions for the wave vector k, the electric field
E0, and the roll, pitch and yaw rotations from COMSOL software[44]. The
top left image represents an initial wave propagating in the x direction with a
polarization along the z direction. The top right image shows how parameters
are defined.

k = kparallel + kperpendicular (66)

kparallel = kF = |k|sinα1(⃗a1cosα2 + n× a⃗1sinα2) (67)

Where n is the outward unit normal vector to the boundary, k is the wave
vector, kparallel is the projection of k onto the port, kperpendicular is the pro-
jection of k to the norm of the port and kF is the k-vector for Floquet periodicity.

Thus, here we realized an important fact that would cause us a lot of headaches
in the future: when neither the azimuth angle nor the elevation angle is 0 or
π/2, the electromagnetic field (or two polarizations) are going to leave the xz
and yx plane. We can see this by imagine a rotation shown in Figure 50. The
vector nature of the two electric fields here will potentially being unsolvable
when we want to use linear Fourier transformations. This issue will be furthur
discussed in subsection 7.2.

After the definitions are clear, now we are ready to process the plane wave data
we intented to collect by a parametric sweep for both elevation and azimuth
angles.
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7.1.2 COMSOL results

In the COMSOL simulation, the data we used was a scan of 102 × 102 data
points for kx and ky, where k, kx and ky are defined as:

k =
2π

λ

kx =
2πsinα1cosα2

λ

ky =
2πsinα1sinα2

λ

(68)

We scanned the kx and ky using exponential scan to scan a quarter of the upper
semi-sphere of the coordinate system, as presented in Figure 51(a). As shown in
the plot, we simulated a region about 30 degrees incident angle, this should be
sufficient for our future Gaussian simulation where most of its power remained
in 2 degrees. The plot (b) (c) (d) in Figure 51 are all about the bottom right
quadrant in plot(a), but all other quadrants are the mirrored images of the one
that is plotted. Here from (b) and (c) we are able to determine a very low
transmission but high reflection region near 0 incident angle. While for (d) we
can see some low ”total power” region that might indicate some numerically
inaccurate simulation issue, but luckily the region is still far from our center
area.

With all the results verified and interpolation method determined, now we are
ready to proceed to our next stage of simulation.

7.2 Fox and Li simulations

In reality laser resonators are extremely complex multiphysical systems where
in practice not all physical quantities are accessible or can be implemented in
a efficient and fast resonator model. The scalar Fox and Li algorithm[36][37] to
a fully-vectorial light representation has been used in cavity simulations[46][47]
that based on the generalization of the scalar Fox-Li algorithm to a fully vec-
torial field tracing concept. The model discussed in this work gives detailed
insight into the shape, polarization state and beam power of the transversal
mode of cw, solid-state laser resonators. It should help optical engineers further
improve their high quality lasers. For the accurate modeling of these lasers the
model includes the following most dominant physical effects:

• Light diffraction, refraction and reflection
• Thermal lensing
• Birefringence
• Light amplification and gain saturation
• Polarization cross-talk and rotation.
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Figure 51: All the axis value here are kx/k and ky/k. (a)The collections of
kx and ky data points we collected by COMSOL simulation. (b) The linearly
interpolated transmission result for plane waves at different incident angles. (c)
The linearly interpolated reflection result for plane waves at different incident
angles. (d) The linearly interpolated total power for plane waves at different
incident angles. This imply small losses at our operation range.

The limitation of Fox and Li scalar method includes that it can only approx-
imate paraxial optical components and modes only. This limitation could in
principle lead to further inaccuracy when the energy distribution in k space
components spread to higher angles. We will later find out in our numerical
results that this actually happened when our cavity mode has a narrow waist at
the photonic crystal membrane side, which corresponds to higher energy com-
ponent at higher k space angles.

Despite the limitations we discussed about the Fox and Li method, it is still su-
perior compared to other developed method[48][49][50] in its limited numerical
burden for the computer when we want to simulate micro-optical components,
as we do in our simulation. A full comparison of different known simulation
methods can be found at table 2.1 in the phd thesis of Dr.Daniel Christian
Asoubar [47].

7.2.1 Brief introduction of Fox-Li approach

A scalar Fox-Li algorithm is base on a concept that in the 1960’s Fox and Li
showed.[37][36] For a laser resonator one or more possible scalar field distribu-
tions exist which reproduce themselves after propagating a single time through
the complete cavity.
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Let us first consider a simple flat mirror Fabry-Perot cavity case with two per-
fect 100% reflectivity mirrors, where the scalar Fox-Li method is designed for,
as shown in Figure 52. Here the Fox-Li method describe that the stable cavity
mode can be comprehended as a A scalar, arbitrary paraxial field E0(x0, y0, z0)
given anywhere inside the cavity can be propagated through the resonator, which
contains thin optical elements (e.g. a thin aperture that provides some optical
losses), by the integral kernel K+

(x,y,x′,y′), ending up in a full round trip inside

the cavity including the two mirrors transformation matrix M1 M2. The inverse
propagation can be described similarly by the integral kernel K−

(x,y,x′,y′). And

from the Fox-Li concept, this full round trip inside the cavity should in principle
produce an identical field with the only difference which is the attenuation from
aperture γ.

Figure 52: Round trip operator concept for scalar Fox-Li algorithm: A scalar, ar-
bitrary paraxial field E0(x0, y0, z0) given anywhere inside the cavity can be prop-
agated through the resonator, which contains thin optical elements (e.g. a thin
aperture that provides some optical losses), by the integral kernel K+

(x,y,x′,y′),

ending up in a full round trip inside the cavity including the two mirrors trans-
formation matrix M1 M2. The inverse propagation can be described by the
integral kernel K−

(x,y,x′,y′). And from the Fox-Li concept, this full round trip

inside the cavity should in principle produce an identical field with the only
difference which is the attenuation from aperture γ.

This algorithm can be expressed as the following equation:

√
γE1(x1, y1, z0) =

∫∫
K+(x0, y0, x1, y1)M2K

−(x0, y0, x1, y1)M1E0(x0, y0, z0)dx0dy0

(69)

This is a general expression for our round trip Fox-Li simulation, where E0(x0, y0, z0)
is the field at an arbitrary starting position z0, and E1(x1, y1, z0) is the field
at the same position after it propagate for a full round trip. The γ in front of
E1(x1, y1, z0) is the attenuation of the certain round trip originated from the
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aperture we assigned to the cavity. The simulated round trip loss can be de-
scribed in the following equation:

Round Trip Loss = 1− γ (70)

However, for a certain stable cavity mode, we should expect the field E1(x1, y1, z0)
to be identical to E0(x0, y0, z0) with only a round trip loss constant in front of
it. Thus, the expression should becomes Equation 71 for the cavity mode we
are searching for.

√
γE0(x0, y0, z0) =

∫∫
K+(x0, y0, x1, y1)M2K

−(x0, y0, x1, y1)M1E0(x0, y0, z0)dx0dy0

(71)

Noted that for our PhC simulation approach, the
√
γ here should also contain

a loss originated from our COMSOL simulation and it contained transmission,
absorption and higher order losses from PhC membrane simulation.

7.2.2 Simulation concepts

After we learned how the Fox-Li algorithm works, the next task is to simulate
each optical elements on our optical path to form the algorithm. Here for our
simulation method we take M1 as the concave mirror we used with radius of
curvature R and M2 as our simulated photonic crystal flat mirror. The light
propagated back and forth within our cavity with length L.

For the intracavity propagation of light, we can simulate it by doing a decom-
position of real space field into a collection of k space plane-wave components,
and the propagation matrix in k space Mk can be discribed as:

Mk = e−iπλ(kx2+ky2)L (72)

Where λ is the wavelength and L is the cavity length.

As for the photonic crystal M2, we have already acquired its k-space trans-
formation matrix from our COMSOL simulation. The last element we should
concern about is the concave mirror M1 inside the cavity, the concave mirror
can be comprehended as a lens on optical path with focal length equals to R/2.
Then we are able to simulate the concave mirror in real space, with each points
in real space have a gain of phase:

M1 = e−i4π
R−

√
R2−x2−y2

λ (73)
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Armed with the round trip simulation procedures, we are now able to logically
connect our simulation procedures as shown in Figure 53. Our starting field
is demonstrated in real space, and we assume it starts at M1, similar as what
we had in experiment(But the sequence here should not matter at all). Then
we use the fast Fourier transformation(FFT) module in Python to translate
the real space information to k space. After that we will be able to do three
k-space transformation in sequence: Propagation L to PhC mirror, PhC mirror
transformation M2 and Propagation L back to concave mirror M1. Then the
inverse FFT is needed to get our k-field back to real space to be able to use the
M1 transformation to simulate the concave mirror. Then we are back to where
we starte and set the round trips to n+1, with new starting field En+1 acquired.

Figure 53: Round trip simulation logic sketch.

We can start our simulation at an arbitrary staring field. Thus, for simplicity
reasons, we used a evenly distributed square field to start our simulation. After
many round trips(600-1000 round trips in our simulation), we will find the at-
tenuation for each round trips gradually converge to a stable value near 1. This
indicate that our simulated cavity mode remains stable for each round trip and
this is the simulated optical cavity mode what we wanted to get.

7.2.3 Simulation results and analysis

After we finished the Fox and Li simulation in python, now we acquired a stable
cavity fundamental mode. With the fundamental mode, we are now able to
demonstrate the acquired intracavity mode shape, the transmission data and
propagation mode shape in searching of ”clover shape” mode.
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Figure 54: The convergence of attenuation for a evenly distributed square field
as starting field of Fox-Li algorithm. We will know the simulation is finished
when we see the attenuation eventually converge to a stable value.

Figure 55: The simulated result for the mode shape inside the cavity. The image
on the left is the mode shape near concave mirror and the one on the right is
the mode shape image near PhC membrane.

From the intracavity mode, we collected nothing but a gaussian shape mode,
as shown in . This simulation results agrees with our earlier observation in
Figure 37. In our observation, we acquired the reflection image through the top
concave mirror. With the fact that the concave mirror is a coating mirror, the
Gaussian reflected light should indicate a Gaussian intracavity mode.

Even though at the near field output as shown in Figure 56 , we observed no
clover-shape related phenomenon, the clover shape start to emerge when we
include our setup in the simulation. Thus at the 75mm lens beneath the cavity,
we can already observe some very clear clover shape beam. This verified what
we observed in Figure 43 that around the first mirror we saw a clover shape
with huge petals which is quite similar as we what just simulated for the clover
shape at 75mm distance to the cavity.

The second part of our verification is about the orientation of our clover beam
shape. From our observation in Figure 42 we concluded that the clover shape
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Figure 56: The simulated clover shape image after propagation for different
distances. Please note that the images here are scaled differently, since the near
field mode shape would be too small otherwise.

Figure 57: The simulated clover shape image after propagation(right) and the
camera captured clover shape after being rotated for 32 degrees(left).

or the lattice orientation was rotated for 32 degrees on our camera, judging
from the angles between the green cross and the red cross. Thus, if we align
the actual orientation and our simulated directions by rotating the image for
32 degrees, we can get the image in Figure 57. It is quite clear from the image
that the orientation from simulation is aligned with what we simulated.

The above simulations and observations was done only under the condition of
a 2w0 = 36µm, we are also curious if the simulation can successfully determine
the change of mode shapes at different waists as shown in Figure 45. Thus, we
simulated the clover shape at same distance for multiple different beam waists
corresponds to the observed beam waists at different cavity lengths as shown
in Figure 58. We can see a very interesting blurry effect similar to our former
observations, as our simulated beam waist at PhC increased from 36 µm to 72
µm. This is another verification of our theoretical assumptions about the origin
of the clover shape.
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Figure 58: The simulated clover shape image after 75mm propagation for differ-
ent beam waists. Here the simulated the beam waist was picked based on our
former measured waist Figure 45.

The most crucial and final attempt we wanted to challenge our simulation model
is to see if it can successfully reproduce any transmission or reflection results
from our measurements. We never really raised our expectation to predict any
scattering loss we measured, because from subsection 4.5 we realized that it
is very possible most of the scattering loss was from imperfections during the
fabrication process.

We acquired the total transmission and reflection by determining the sum of all
powers of the field before the last penetration of membrane, after being reflected
and after being transmitted. The summarized result can be found in Table 6.
We can clearly see that something is wrong here, because transmitted power
and reflected power add up to bigger than the original power.

From Table 6, even though all the simulation results except the last one are
violating the energy conservation law, we can still see that the bigger the waist
is, the smaller this violation is. We should notice that the bigger the waist is
at the flat mirror(PhC membrane) side, the less energy will be distributed at
higher k-space angles. This actually agree with our earlier discussion at sub-
subsection 7.2.1, that with this scalar approach we used in the simulation, we
assumed a paraxial field input. Thus it is not a surprise that we had bad nu-
merical results when we are away from paraxial range.

A more precise description of the flaw of our current situation is that the Fourier
transformation we are using regarding all k values as a vector in xy plane, but
in reality they cannot be simply processed by linear transformation. Thus the
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Waist(2w0) transmission
loss/ppm

total loss/ppm

36 3211 2526
42 1927 1308
48 1926 1310
56 1467 1112
65 1176 999
72 1130 950
102 983 954
300(imaginary) 961 1027

Table 6: The transmission and total loss at different beam waists at membrane.
Here the transmission loss is determined by transmittivity, and total loss is
determined by reflectivity. Here all the simulation is done neglecting the actual
PhC boundary effect(the PhC slab we use has a diameter of 200µm. Thus the
final waist 300µm is purely imaginary.

solution is that a mapping method is needed to translate all off-plane vectors
to the x-y plane, in order for the linear transformation to happen. This can
be seen in the earlier explanations of incident angles at subsubsection 7.1.1 and
Figure 50. However, since the off-plane vectors cannot be simply mapped to x-y
plane while still remaining right angles, this method might have worse errors
because we would make two eigen-polarizations cancelling each other.

Figure 59: The experimental total loss and the simulated total loss of the mem-
brane. They are both deduced by 1− reflectivity.

Even though we are not happy with the transmission simulation results that can
barely explain anything for scattering loss, we can still try to provide a compar-
ison of the experimental total loss and simulated total loss for the membrane,
as shown in Figure 59.
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Here, unsurprisingly, we find that at small waist, the disagreement between sim-
ulated results and measured result grows bigger. We can explain the difference
by our scalar interpretations of electromagnetic fields. We should also note here
that at the beam waist of 102µm, the limited size of PhC defect started to play
bigger and bigger role in our experimental results. We can deduce from common
Gaussian beam optics [51] that the power distributed outside r = 100µm for
our w0 = 51µm waist at membrane can be calculated using:

P

P0
= e−2r2/w2

0

= 458ppm

(74)

This value is used in Figure 59 to compensate the loss at 2w0 = 102µm. How-
ever, we should realized that there are two other origins of losses that are not
included here. First, the ”twisted structures” at the center of the beam that
could lead to a significant loss. Second, the boundry effect of photonic crystal.
Near the edge of the PhC defect, the period lattice cell number is very limited to
the edge, this could lead to a much higher transmission rate. In another word,
the effective PhC size reff should be smaller than the fabricated size r = 100µm
. This can be the explanation for the differences of simulated and experimental
difference at 102µm.

From the results, we are very happy to see a good agreement for the waist near
2w0 = 70µm. Near this range, we have a waist that is big enough to have
limited power in higher angles at k-space, but also small enough to prevent the
boundary effect for our photonic crystal. And this is also the waist that we
observed the lowest transmission and losses. A beam waist of 2w0 = 70µm can
be where our membrane should operate at, for any future applications.

In the PhD thesis of Asoubar[47], there is a vertorial simulation method ex-
plained about non-resonance cavity simulation. This vertorial method can in
principle be used to provide higher numerical accuracy to our simulation. How-
ever, due to the limitation of time and the scattering loss of our cavity can never
be fully simulated as long as we are still using the current COMSOL simulation
results, we decide not to go too far at this direction, especially with the clover
beam shape explained.
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8 Discussions and outlooks

We devote this final chapter to a few remarks on the results of our efforts.
We then, retrospectively, discuss how further improvements could have been
achieved and discuss suggestions on future explorations.

8.1 Result discussions

In this thesis, the main efforts were devoted into the characterizations of the
photonic qualities and phenomenons of the PhC membrane fabricated by Dr.
Yeghishe Tsaturyan [25]. With the hope of having ultra low scattering loss
and highly reflective membranes in the palm of our hand, reality is proved
to be against our wish. During the research, we measured how the membrane
transmittivity and reflectivity influenced by the wavelength of the laser. The de-
termined a best operational wavelength for the membrane to be about 833nm.
We developed and compared 3 different methods to measure the reflectivity
and scattering loss of the membrane. Eventually we decided that the ”pairing
method” prevailed, since it provided us with the most accurate measurement
on both scattering loss and transmittivity of the PhC membrane at the target
wavelength as well as a insensitivity of coupling rate and losses on optical path
that can finish the measurements in a shortest time scale.

During our efforts on finding the best possible cavity parameters to acquire the
lowest possible scattering losses, we observed birefriengence, bistability and the
clover beam shape out of the cavity. The birefriengence and bistability effects
are investigated and eliminated in order for our experiment to continue. The
clover beam shape, however, can in principle lead to a bad coupling rate if we
were using a multicavity system. After that, some simulation approaches using
COMSOL multiphysics and Fox and Li algorithm in Python was done to pro-
vide an explanation for the phenomenon.

Eventually, we acquired a PhC membrane results with minimum scattering loss
of 780 ± 10ppm, and a minimum transmission of 320 ± 10ppm. Results on
several other membranes with much higher scattering loss are also presented
to complete the tests. For the completeness of the measurements, we did the
measurements for different cavity lengths, different wavelengths and different
x/y axis position on the membrane. These results can of use to determine the
best operation range for all the similar photonic crystal membranes.

8.2 Outlooks

Sadly, the result so far is insufficient for the membrane-at-the-back or the
membrane-outside-cavity approaches to work effectively. However, the process
of how those results were achieved and the explanations for the clover-beam
shape phenomenon can be an essential step for future research involving pho-
tonic crystal membranes.
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A new generation of PhC membranes has been made by Anders Simonsen and
his colleagues, with up-to-date fabrication methods. Thus, in the next step of
our experiment, we can first characterize the photonic qualities of these new
wafers and hope for some better results.

Apart from testing the new membranes, an investigation of the origins of the
800ppm scattering loss should be accomplished for the next research step. We
made some early assumptions about the holes not being cylinder as we assumed
but instead having a bigger radius for the top circle. This was the result of the
imperfect fabrication and could be the origin of this quite universal scattering
loss. The aftermath of this effect can be verified by doing a COMSOL simula-
tion with a smaller bottom radius cylinder.

Another important test we did not have enough time to accomplish is the mea-
surement of how the low-temperature influences the photonic reflectivities and
other photonic characteristics. As we learn from solid physics, the size of pho-
tonic holes will change at different temperatures. This could result in a decrease
in peak reflectivity frequency at a lower temperature(4K for helium). This phe-
nomenon is quite important and needs to be investigated sooner or later.
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