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Abstract: The detection of gravitational waves provides us a new way to explore the
universe since the gravitational waves travel in the universe uninfluenced by the objects
they encounter thus bring information far away to us. We are particularly interested in
the gravitational waves emitted from black hole merger events. Black holes are losing
energy since they are emitting gravitational waves which carry energy to infinity. We
would expect quasinormal modes for the oscillation of such a dissipate system which
reveal the intrinsic nature of this system. In a black hole merger event, the orbit of
black holes shrinks then two black holes merge into one. After the merger there left a
single black hole. The oscillation of this black hole sends ringdown gravitational waves,
providing us parameters of the black hole. In this thesis we first introduce the concept
of gravitational waves and quasinormal modes and introduce the quasinormal modes
for Schwarzschild black holes.
It is also suggested that general relativity breaks down near the event horizon of a black
hole since it is not a quantum theory. The boundary conditions at the event horizon
get changed. Waves don’t perfectly falling into the horizon. Instead, part of them
get reflected near the horizon, this leads to the generation of black hole echoes. We
will introduce the generation of black hole echoes and set a new boundary condition
near the horizon, the robin boundary condition, which is suggested to dominate at low
energies.
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1 Introduction

A hundred years ago, Albert Einstein came up with the theory of general relativity,
relating energy-momentum tensor to the curvature tensor of spacetime. It states that
the energy and momentum of matter or radiation are the sources of gravitational fields
and change the geometry of spacetime. The variations of energy momentum tensor
leads to variation of spacetime geometry. That predicts the existence of gravitational
waves. Imagine that there are two black holes merging into one. It would change
the geometry of spacetime, generating ripples in spacetime as known by gravitational
waves. Just like the situation when you toss a stone into a lake, the surface of water
gets perturbed and the ripples would spread around, the gravitational waves is spread-
ing through the universe. It would cause the distortion of spacetime where it travels
by. The gravitational waves would stretch the spacetime in one direction and squeeze
it in another direction. In 2015, scientists made the first detection of gravitational
waves by the LIGO detectors[28]. LIGO made the detection by setting two perpendic-
ular tunnels and compare how long it takes for a signal to travel in each tunnel. The
detection of gravitational waves provides us a new perspective to study the universe.
We know there are four fundamental forces of nature and gravity is the weakest one.
The gravitational waves can propagate through the universe, hardly interacting with
the objects they pass by and keep the information about its source. Therefore it is an
good object for observation, bringing information from deep universe to our view.
We will first introduce the definition of gravitational waves as perturbations around
background spacetime. We will show how gravitational waves arise from the linearized
Einstein equation. By solving the linearized perturbed Einstein equations and by fixing
the gauge properly we find a simple expression for gravitational waves, which have only
two degrees of freedom (two polarizations). We can check the effect of gravitational
waves by studying how do they interact with freely falling particles. We would find
the gravitational waves don’t change the coordinate of the test particle in TT gauge
but the proper distance of two freely falling particles varies in time periodically. That
shows how gravitational waves stretch and squeeze spacetime. We know from general
relativity that the spacetime is curved by the energy and momentum of matter and
radiation.
We have known the gravitational waves carry energy and momentum since the geom-
etry of spacetime is changed under the effect of gravitational waves. How could we
know how much energy and momentum do they carry? This is done by studying how
is the curvature of spacetime get changed. We redefine the gravitational field as pertur-
bations around a dynamical background spacetime. We split Einstein equations into
high-frequency part and low-frequency part. By studying the low-frequency part of
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Einstein equations we get a effective "coarse-grained" expression for energy-momentum
tensor instead of a local expression. There is no local expression for energy-momentum
tensor of gravitational field. The reason will be discussed in Chapter 3, where we intro-
duce gravitational field as a classical field living in the Minkowski spacetime. We then
study gravitational field using tools in classical field theory. We introduce Noether’s
theorem and find the energy-momentum tensor is the Noether current associated with
symmetry of spacetime translation. We will consider the application of Noether the-
orem to scalar field, electromagnetic field and to the gravitational field. We will find
that the Noether’s theorem also doesn’t give us a local expression for energy-momentum
tensor of gravitational field.
Then we may ask, where do these gravitational waves come from and how do they in-
fluence their source since they are taking energy away? In Chapter 4 we will show that
the primary contribution to gravitational waves comes from the quadrupole oscillation
of the mass distribution of the source. We know the primary term in electromagnetic
waves is electric dipole radiation. The monopole radiation don’t exist by the restriction
of charge conservation. We will make analogous analysis to gravitational waves. Per-
form the multipole expansion to the radiation and to the energy-momentum tensor of
the source, we find there is no monopole radiation or dipole radiation in gravitational
waves. The monopole radiation is forbidden by the conservation of total mass. The
dipole radiation is forbidden by the conservation of momentum.
As it is said above, gravity is the weakest fundamental force in the universe. The in-
teraction between gravitational waves and matters is very small. We will show that
the amplitude of gravitational waves (or more precisely, the quadrupole moment of the
radiation) decreases proportional to the distance the radiation travels. Therefore when
gravitational waves reach earth from the far away source, it is very hard to detect them.
Therefore to make the detection, we need the source of the gravitational waves to be
a strong field. They must be generated by violent events in the universe such that
we can detect them when they reach the earth. One example is the coalescence of a
binary system with two compact (massive and dense) bodies, for example, black holes
or neutron stars. Actually, LIGO’s first detection of gravitational waves was based on
a binary black hole merger event[28]. We will study such a binary system in Newtonian
approximation. We will derive the expression for quadrupole radiation emitted by such
a system and find out the energy and angular momentum it carried away from the
binary system. And due to the emission of gravitational waves, the orbit of the system
shrinks. During the inspiral phase, the radiations it emits are also changing. We would
derive the relation between the frequency of the radiation and the angular velocity of
the orbit and see how the waveform evolves.
After the two black holes in a binary system merge into one, the new black hole will
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oscillate and emit ringdown gravitational waves to reach a equilibrium state. We are
particularly interested in the ringdown signals. We know for a closed system, when it
is perturbed, the wave function is a superposition of normal modes, which is purely
determined by the intrinsic natures of the system. What would happen when a black
hole is perturbed? The situation is little different since black hole is an open system.
It is losing energy to spatial infinity due to emission of gravitational waves. Thus we
will obtain quasi-normal modes from perturbation of black holes. Quasinormal modes
also depend purely on the intrinsic natures of black holes, therefore can help us specify
the parameters of black holes (its mass and spin). In Chapter 5 we will introduce black
holes by solving vacuum Einstein equations for spacetime with certain matter distri-
butions. We will introduce Schwarzschild black holes and Kerr rotating black holes
since the black hole after merger is generically rotating. In Chapter 6 we introduce
quasinormal modes as poles of Green’s functions located on complex plane. We then
introduce quasinormal modes of Schwarzschild black holes.
The above discussion is based on the theory of general relativity. But there are hy-
potheses stating that general relativity is not a valid theory passing the event horizon.
It is suggested the curvature of spacetime behind the event horizon is so large that it
requires some new theories like quantum gravity rather than general relativity. What
would the possiblly existed new physics bring to us? We have introduced black holes
with event horizons that waves can only fall into the horizon with no reflection. With
new physics, we expect the boundary condition changes at the horizon. It is like there
is a reflecting mirror near the horizon then may be reflected back at the horizon. Such
waves may get reflected by the potential when propagating towards infinity and get
reflected again at the horizon. This procedure can be repeated again and again thus
black hole echoes arise. We will study the generation of black hole echoes in Chapter
7.
The behaviour of the black hole echoes is related to the boundary conditions and the
boundary conditions are determined by the new physics near the horizon. Then we
may ask, what the new physics exactly is? How is general relativity modified near the
horizon? We can investigate how would certain boundary conditions affect the wave
function of black hole echoes and therefore affect the observables. We can compare
the prediction with the observation data then adjust the theory to fit the data. We
will breifly introduce a theory possibly dominating at low energies and gives robin
boundary conditions at the horizon. The study of boundary conditions is based on
the construction of renormalization group. We put the reflecting mirror on a surface
near the horizon. The location where we put in has nothing to do with physics then
shouldn’t affect the observables. That means, the reflection coefficient is required to be
independent with the location of the mirror. This requirement determines how the cou-
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pling coefficient depend on the location of the mirror, giving a renormalization group
flow. We will see how the fixed points of the flow lead to black holes and white holes.
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2 Gravitational waves

In 1915, Albert Einstein published the theory of general relativity, with the famous
field equation

Rµν −
1

2
gµνR =

8πG

c4
Tµν (2.1)

It relates the geometry of spacetime (the curvature tensor) to the distribution of mat-
ter and radiation (the energy-momentum tensor). One of the predictions of general
relativity is the gravitational waves. The distribution of matter and radiation is not
static. For example, consider a black hole. The black hole curves the spacetime, work-
ing as source of gravitational fields. When the black hole is perturbed, the curvature
of spacetime would also change. There will a perturbation to the spacetime geometry
and the perturbation will travel across the universe and deform the spacetime where it
travels by. In this Chapter we will see how gravitational waves arise from perturbation
of Einstein equation and how it propagates.

2.1 Description of GWs

We now study the perturbation of Einstein equations. Consider the gravitational waves
generated by excitation of black holes, we as far away observer are interested in the
wave zone far from the source. The wave zone can be viewed as nearly flat and only
deformed slightly by the gravitational waves. Therefore the spacetime can be taken as
a background Minkowski space plus a perturbation. The metric would be

gµν = ηµν + hµν , |hµν | ≪ 1 (2.2)

The inversion of the metric is

gµν = ηµν − hµν +O(h2) (2.3)

where hµν is the perturbation we added on spacetime. We will see how it behaves in
the Einstein equations. Since hµν is already very small, we will keep only the first-order
terms.
We expand the Ricci tensor in our metric, its first order term in hµν is (The calculation
is shown in Appendix A)

R(1)
µν =

1

2
gαβ(∂α∂νhµα + ∂µ∂

αhαν − ∂µ∂νh− ∂α∂αhµν) (2.4)

Then we can find the linearization of Einstein equations. To make it written in a more
compact form, we first define

h = ηµνhµν (2.5)
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and
hµν = hµν −

1

2
ηµνh (2.6)

The linearization of Einstein equation becomes

□hµν + ηµν∂
ρ∂σhρσ − ∂ρ∂νhµρ − ∂ρ∂µhνρ = −16πG

c4
Tµν (2.7)

where □ is the d’Alembert operator. In flat spacetime, □ = ηµν∂µ∂ν .
So far we find the equation of motion for hµν . The solution of Eq.(2.7) would give us
the expression for the perturbation hµν (the gravitational waves). This equation seems
complicate and the solution is not clear. Notice that we haven’t fixed the gauge by
now. We can impose a proper gauge and will find the equation becomes more compact
and easier to solve.
We now introduce the Lorentz gauge. Consider a coordinate transformation

x′µ = xµ + ξµ(x) (2.8)

where ∂µξν are at most of the same order of smallness as |hµν |, then hµν would change
as

h′µν(x
′) = hµν(x)− (∂µξν + ∂νξµ) (2.9)

h
′
µν = hµν − (∂µξν + ∂νξµ − ηµν∂ρξ

ρ) (2.10)

Therefore,
(∂νhµν)

′ = ∂νhµν −□ξµ (2.11)

We have no restrictions for ∂νhµν so far. If it is not zero, we can choose appropriate
gauge factor ξµ to make ∂νhµν vanish after coordinate transformation. The gauge we
are choosing is the Lorentz gauge (also called the harmonic gauge)

∂νhµν = 0 (2.12)

By imposing the Lorentz gauge so that Eq.(2.7) looks more simple and easy to find its
solution

□hµν = −16πG

c4
Tµν (2.13)

Also it makes the conservation of energy momentum tensor more obvious

∂µTµν = 0 (2.14)

Eq.(2.13) shows the generation of GWs in linearized theory. When studying its prop-
agation, we can set Tµν = 0(the space outside the source), therefore the equation of
motion becomes

□hµν = 0 (outside the source) (2.15)
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We find this wave equation is similar to the wave equation of a scalar field

□ψ = 0 (2.16)

whose solution is simply the superposition of plane waves

ψ(t,x) =
∫

d3k

(2π)3
A(k)e−iωt+ik·x +B(k)e−iωt−ik·x (2.17)

where ω = |k|. Similarly we can write down the solution to Eq.(2.15).

hµν(t,x) =
∫

d3k

(2π)3
Aµν(k)e−iωt+ik·x (2.18)

(Here we only consider the wave propagating towards us.)
We notice that there still remain degrees of freedom. To get more information about
hµν We can fix the gauge completely by introducing the transverse-traceless gauge (the
TT gauge). Consider a coordinate transformation

xµ → xµ + ξµ (2.19)

with the gauge factor ξµ satisfies
□ξµ = 0 (2.20)

which means we can choose the functions ξµ so as to impose four functions on hµν . We
can choose ξ0 to make the trace h = 0. When h = 0, hµν = hµν . The Lorentz gauge
condition with µ = 0 becomes

∂0h00 + ∂ih0i = 0 (2.21)

Then we choose ξi to make h0i = 0.

∂0h00 = 0 (2.22)

Here we can see that h00 is time-independent while the gravitational wave is the time-
dependent part in the gravatational interaction. Therefore, as far as the GW is con-
cerned, ∂0h00 = 0 means that h00 = 0. In conclusion, we get

h0µ = 0, hii = 0, ∂jhij = 0 (2.23)

In momentum space, the gauge condition ∂jhij = 0 reads

ikjhij = 0 (2.24)
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stating that the wave is oscillating perpendicularly to the direction of propagation, i.e.,
the wave is transverse. That is why we call it by transverse-traceless gauge.
The general metric hµν is a symmetric matrix therefore has 10 degrees of freedom.
By setting the Lorentz gauge we reduce 4 degrees of freedom. The TT gauge reduce
another four degrees of freedom so we are left with two degrees of freedom now. We
now are going to see how it appears in hµν .
Consider the wave is propagating along z-direction, its wave vector k would be

k = (0, 0, ω) (2.25)

Recall hµν has the form Eq.(2.18)

hµν(t,x) =
∫

d3k

(2π)3
Aµν(k)e−iωt+ik·x (2.26)

h0µ =0 implies A0µ = 0. ikjhij = 0 implies ikjAij = 0. Also hii = 0 implies Ai
i = 0.

Thus in TT gauge hµν can be written as

hTT
µν (t, z) =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 e−iω(t−z) (2.27)

where the plus and cross sign denote two polarizations. We can find the effect of
gravitational waves more clearly by taking a look at the line element

ds2 = −dt2+(1+h+e
−iω(t−z))dx2+(1−h+−e−iω(t−z))dy2+2h×e

−iω(t−z)dxdy+dz2 (2.28)

It clearly shows how the gravitational waves stretch the spacetime periodically in one
direction and squeeze it in another direction.

2.2 Interaction of GWs with test particles

We have seen in the former section how gravitational waves arise from linearization of
Einstein equation. But what effect does it have? In this section we are going to study
how gravitational waves interact with a detector (viewed as a test particle). We will
see how the test particle behaves under the effect of gravitational wave. We first need
to specify which reference frame we are in. We have introduced the TT gauge in the
last section. We denote the corresponding frame as TT frame. Then we consider the
motion of the test particle in this frame. We can set the test particle at rest initially. To
study its motion, recall that from general relativity we can derive the geodesic equation

d2xµ

dτ 2
+ Γµ

ρν

dxρ

dτ

dxν

dτ
= 0 (2.29)
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Consider the µ = i component of the equations. The initial condition we set on the
test particle ensures dxi/dτ = 0

d2xi

dτ 2
= −Γi

ρν

dxρ

dτ

dxν

dτ
= Γi

00

dx0

dτ

dx0

dτ
(2.30)

The Christoffel symbol is given by

Γµ
ρν =

1

2
gµσ(gρσ,ν + gνσ,ρ − gρν,σ) (2.31)

With the metric
gµν = ηµν + hµν (2.32)

we have Γi
00 = 0. That leads to

d2xi

dτ 2
=
d2xi

dt2
= 0 (2.33)

It states that the acceleration of the test particle is zero. The test particle remains at
rest under the effect of gravitational waves in TT frame.The gravitational waves will not
change the coordinates of the test particle. However, this doesn’t mean gravitational
waves have no effect. By observing the line elementEq.(2.28), we find the metric is
changed when gravitational waves are passing by. The coordinates of TT frame stretch
or squeeze themselves so that coordinates of test particles remain the same. We can
take a look at the proper distance between two test particles with coordinates (t,x1,0,0)
and (t,x2,0,0). The proper distance ds2 is given by

ds2 = gµνdx
µdxν (2.34)

Then we have the proper distance between the two particles

Dp =

∫ x2

x1

√
g11dx =

∫ x2

x1

√
1 + h+e−iω(t)dx = (x2 − x1)

√
1 + h+e−iωt (2.35)

We know the amplitude of gravitational wave is very small, thus we can make the
approximation

Dp ≈ (x2 − x1)(1 +
1

2
h+e

−iωt) (2.36)

The coordinates of rest particles don’t change under the effect of gravitational waves in
TT frame. But the distance between them changes with time periodically. That shows
how gravitational waves stretch or squeeze the spacetime. It gives a way for gravita-
tional waves detection. That is what LIGO (the Laser Interferometer Gravitational-
Wave Observatory) does in the past years. LIGO was designed based on a Michelson
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Figure 1. Redefinition of Gravitational waves as perturbations over dynamical background
metric

interferometer. It has two arms perpendicular to each other with mirrors at each end
of the arms. We have illustrated the proper distance between two rest particles varies
with time when gravitational waves passing by. Therefore the time it takes for a laser
signal to travel between the two fixed points changes. By measuring that we can detect
gravitation waves.

2.3 The Energy-Momentum Tensor of GWs

In this section we are going to study the energy and momentum carried by gravitational
waves. From general relativity we know that there is a direct relation between energy
and the curvature of spacetime. To get the energy and momentum of gravitational
waves, we can study how do they change the curvature of spacetime. In the previous
sections we expanded the Einstein equations to the first order in hµν . We treat GWs
as perturbations around a fixed flat background spacetime with metric ηµν . Since
we have set the background spacetime as flat, of course we can derive nothing about
how gravitational waves change the geometry of spacetime. It doesn’t change at all.
Therefore we need to define gravitational waves on a new background, a dynamical
spacetime whose geometry can be changed. Still gravitational waves are perturbations
to the background spacetime. We illustrate this with Figure 1. The total metric can
be written as

gµν = ḡµν + hµν , |hµν | ≪ 1 (2.37)

The problem now is to decide which part of the spacetime belongs to the background
and which part belongs to gravitational waves. When we consider the linearization
of Einstein equations, the background metric is fixed and clearly distinguished from
perturbations. Here the background spacetime is dynamical and not determined. The
perturbations may get mixed up with the background spacetime. The distinction would
be clear if there is a separation of scales. Imagine there is a coordinate system where
the background spacetime looks quite smooth. It is not flat but the scale of variation is
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much larger than the wavelength of gravitational waves. In other words, the frequency
of background metric is much smaller than that of the perturbation. Then we can
easily separate the perturbation from the background metric by considering their scale.
Now we have redefined the gravitational waves. To derive the energy-momentum tensor,
we first expand the Einstein equation around the background metric ḡµν to quadratic
order in hµν . The Einstein equation can be written as

Rµν =
8πG

c4
(
Tµν −

1

2
gµνT

)
(2.38)

where Tµν is the energy-momentum tensor and T is its trace.
We have illustrated how could we distinguish gravitational waves from the background
metric by considering their wavelengths or frequencies. Therefore, it would be useful
if we expand tensors with terms in different order of hµν , to specify if its frequency is
high or low. Here we expand the Ricci tensor

Rµν = R̄µν +R(1)
µν +R(2)

µν + · · · , (2.39)

where R̄µν , R
(1)
µν and R(2)

µν are zero-order, first-order and second-order in hµν respectively.
With our metric Eq.(2.37), we write down the terms of Ricci tensor and pick out the
first-order and second-order term in hµν .

R(1)
µν =

1

2

(
D̄αD̄µhνα + D̄αD̄νhµα − D̄αD̄αhµν − D̄µD̄νh

)
(2.40)

R(2)
µν =

1

2
ḡρσḡαβ

[1
2
D̄µhραD̄νhσβ + (D̄ρhνα)(D̄σhµβ − D̄βhµσ)

+ hρσ(D̄µD̄νhσβ + D̄βD̄σhµν − D̄βD̄νhµσ − D̄βD̄µhνσ)

+ (
1

2
D̄αhρσ − D̄ρhασ)(D̄νhµβ + D̄µhνβ − D̄βhµν)

] (2.41)

The detailed calculation is given in Appendix A.
Having expanded the Ricci tensor, we can check the frequency of each term. The
zero-order of Ricci tensor R̄µν contains low-frequency modes only. R(1)

µν is linear in hµν
therefore contains high-frequency modes only. R(2)

µν is quadratic in hµν , therefore con-
tains both low-frequency and high-frequency modes. The low-frequency modes appear
in R(2)µν since if there is a term ∼ h1h2, the wave vectors in h1 and h2 may be in
opposite direction and have same value therefor cancel each other k1 =k2. Having
separated the Ricci tensor into terms with different scales of frequencies, we can divide
the Einstein equations into low-frequency and high-frequency parts.

R̄µν +
[
R(2)

µν

]Low
=

8πG

c4
(
Tµν −

1

2
gµνT

)Low (2.42)
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R(1)
µν +

[
R(2)

µν

]High
=

8πG

c4
(
Tµν −

1

2
gµνT

)High (2.43)

For the spacetime outside the source (the region of spacetime we are interested in since
we observers on the earth are far away from the source), Tµν = 0. therefore the last
term in Eq.(2.42) vanishes. Eq.(2.42) becomes

R̄µν = −
[
R(2)

µν

]Low (2.44)

From the expression of R(2)
µν Eq.(2.41) we find it is made up of terms of order (∂h)2 and

h∂2h (they are of the same order). From Eq.(2.44) we know R̄ and R(2)
µν must be of the

same order.
R̄µν ∼ (∂h)2 (2.45)

Therefore we can analyze the scale of variation on each hand side of Eq.(2.44) and
can estimate the order of magnitude of gravitational waves. We denote the scale of
variation of background metric as LB

∂ḡµν ∼ 1/LB (2.46)

The length scale of h is λ, which is the reduced wavelength of gravitational waves.
We use the reduced wavelength rather than wavelength sicne if we consider a wave of
form eikx, which is the case for gravitational waves, the length scale can be obtained
by considering |deikx/dx| = keikx =1/λeikx. Together with Eq.(2.18) we find

∂h ∼ h

λ
(2.47)

R̄µν is of order ∂2g (Set O(ḡµν) = 1), then

R̄µν ∼ ∂2ḡµν ∼ 1

L2
B

(2.48)

Then we have
1

L2
B

∼
(h
λ

)2 (2.49)

We then find the relation between the amplitude of the gravitational waves and the
scale of variation of the gravitational waves and the metric.

h ∼ λ

LB

(2.50)

We find when we are outside the source, Tµν = 0, the amplitude of the gravitational
waves is proportional to the ratio of the length scale of the gravitational waves to the
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length scale of the background metric. The amplitude of the gravitational waves is
very small since we have made the assumption the length scale of the gravitational
waves is much smaller than that of the background metric (That is how we define the
gravitational waves, as perturbations to the background metric). The curvature of the
spacetime is mostly determined by the background metric. If there is a massive object
acting as an external source of energy, Tµν ̸= 0 , its contribution to the geometry
of spacetime will be much larger than that of the gravitational radiation, then the
curvature would be mainly determined by this massive object. Consider the scale of
variation on each hand side of Eq.(2.44) again

1

L2
B

∼
(h
λ

)2
+ (external source) ≪

(h
λ

)2 (2.51)

which gives
h≪ λ

LB

(2.52)

The magnitude of λ
LB

is restricted since we need it to be large enough to separate the
background spacetime and GWs. This indicates that the amplitude of GWs h satisfies
h ≪ 1. Now we consider the low-frequency part of Einstein equations Eq.(2.42). We
notice there are both high-frequency and low-frequency modes in R

(2)
µν and possibly in

the energy-momentum tensor of the source. To pick out the low-frequency modes, we
can introduce a scale l̄ such that λ≪ l̄ ≪ LB, and take average over a spatial volume
with side l̄, the low-frequency modes remain the same while the high-frequency modes
oscillate fast and average to 0. In this way we can get the low-frequency projection of
the Einstein equation

R̄µν = −⟨R(2)
µν ⟩+

8πG

c4
⟨Tµν −

1

2
gµνT ⟩ (2.53)

where ⟨· · · ⟩ denotes a spatial average over l̄. Instead of writing tensors in the form of
spatial average, we can define the effective quantity that contributes in low-frequency
modes. We define the effective energy-momentum tensor T̄µν such that

⟨Tµν −
1

2
gµνT ⟩ = T̄µν −

1

2
ḡµνT̄ (2.54)

where T̄ = ḡµνT̄
µν is its trace. And define the quantity tµν as

tµν = − c4

8πG
⟨R(2)

µν − 1

2
ḡµνR

(2)⟩, (2.55)

where R(2) = ḡµνR
(2)
µν . And we define its trace as

t = ḡµνtµν

=
c4

8πG
⟨R(2)⟩

(2.56)
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Notice here ḡµν (2)µν ⟩ = ⟨ḡµνR(2)
µν ⟩ since ḡµν is low-frequency and therefore can be view as

a constant when we take the average. So the spatial average of R(2)
µν can be written in

terms of tµν and its trace,

− ⟨R(2)
µν ⟩ =

8πG

c4
(
tµν −

1

2
ḡµνt

)
(2.57)

The effective tensors we defined are known as the "coarse-grained" quantities. It gives
the same effect as the real tensor considering the average over a spatial volume without
bothering with the structure inside the volume. Replacing the quantities in the low-
frequency part of Einstein equation Eq.(2.53) with the coarse-graianed ones, we obtain

R̄µν −
1

2
ḡµνR̄ =

8πG

c4
(
T̄µν + tµν

)
(2.58)

which is called the "coarse-grained" form of the Einstein equations. It describes how
the background metric changes under the effect of energy-momentum tensor, not on
scales as tiny as the length scale of the gravitational waves, but describes the averaged
behaviour over a spatial volume whose size is much larger than the scale of variation of
gravitational waves, but also much smaller than the scale of variation of gravitational
waves.
Here we notice that there are two terms on the right-hand side of Eq.(2.58). By defini-
tion, T̄µν is a smoothed form of the matter energy-momentum tensor Tµν therefore is a
low-frequency term. The one left, tµν , would naturally be the energy-momentum tensor
of gravitational waves, and is defined to be quadratic in hµν . The energy-momentum
tensor of the gravitational waves is a coarse-grained quantity, which is restricted by its
definition Eq.(2.55). Is there any local expression for the energy-momentum density
for gravitational waves? The answer is no. Only the total amount of energy and mo-
mentum is determined. We will disscuss the reason behind in Chapter 3.
We now are going to find the expression for energy-momentum tensor of the gravita-
tional waves tµν in terms of hµν . We have defined tµν in terms of R(2)µν and recall
we have find the expression for R(2)µν in Eq.(2.41). In Eq.(2.41) it is written in a
general case where we use the covariant derivatives since the background spacetime is
dynamical and not fixed to flat. Here we consider the situation where we we detect
the gravitational waves is far away from the source so that the background spacetime
can be taken as flat. Therefore we can replace the covariant derivatives with partial

– 16 –



derivatives D̄µ → ∂µ in Eq.(2.41),

R(2)
µν =

1

2

[1
2
∂µhαβ∂νh

αβ + hαβ∂µ∂νhαβ − hαβ∂ν∂βhαν − hαβ∂µ∂βhαν

+ hαβ∂α∂βhµν + ∂βhαν∂βhαµ − ∂βhαν∂αhβµ − ∂βh
αβ∂νhαµ

+ ∂βh
αβ∂αhµν − ∂βh

αβ∂µhαν −
1

2
∂αh∂αhµν ++

1

2
∂αh∂νhαµ

+
1

2
∂αh∂µhαν

]
(2.59)

We have discussed before that hµν is a symmetric 4 × 4 matrix therefore has 10 degrees
of freedom. After imposing the Lorentz gauge ∂µh̄µν = 0 we have 6 degrees of freedom
left. Then we impose TT gauge to reduce it to 2, which are physical degrees of freedom
contained in hTT

ij . We can also set h = 0 (without spoiling the gauge choices) so that
the Lorentz gauge becomes ∂µhµν = 0.
Since we are taking spatial average, the spacetime derivative ∂mu can be integrated by
parts. After choosing the gauge and using the method of integration by parts, we have

⟨R(2)
µν ⟩ = −1

4
⟨∂µhαβ∂νhαβ⟩ (2.60)

and ⟨R(2)⟩ vanishes. Then we get

tµν =
c4

32πG
⟨∂µhαβ∂νhαβ⟩ (2.61)

When we look at Eq.(2.58), we find that on the left-hand side there are physical con-
tributions and coordinate-dependent contributions. So will be the right-hand side. We
don’t want the energy-momentum tensor be gauged away so we are looking for the
physical contributions. We have made some gauge choices and get the expression for
tµν . To illustrate tµν has nothing to do with the gauge factor ξµ used to fix the gauge,
we can check how tµν changes under coordinate transformation x′µ = xµ + ξµ.

δtµν =
c4

32πG

[
⟨∂µhαβ∂ν(δhαβ)⟩+ (µ↔ ν)

]
=

c4

32πG

[
⟨∂µhαβ∂ν(∂αξβ + ∂βξα)⟩+ (µ↔ ν)

]
=

c4

16πG

[
⟨∂µhαβ∂ν∂αξβ⟩+ (µ↔ ν)

] (2.62)

Perform integration by parts we will find δtµν vanishes. The energy-momentum tensor
we derived for gravitational waves is invariant under coordinate transformation x′µ =

xµ + ξµ. This proves that tµν depends only on physical modes hTT
ij . So we don’t need
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to worry if the effect of gravitational waves can be gauged away. From the Bianchi
identity we have

D̄µ(R̄µν −
1

2
ḡµνR̄) = 0 (2.63)

therefore, with Eq.(2.58),
D̄µ(T̄µν + tµν) = 0 (2.64)

This shows that the total energy-momentum tensor is conserved while there is in general
exchange of energy and momentum between the matter sources and gravitational waves.
When we are far away from the source, the background spacetime is approximately flat
and T̄µν = 0, then we have

∂µtµν = 0 (2.65)

which shows the conservation of energy-momentum tensor of the gravitational waves.
We have derived the expression for the energy-momentum tensor of the gravitational
waves. We can now compute the energy flux of GWs. From the conservation of the
energy-momentum tensor Eq.(2.65) we can write (the µ = 0 component of Eq.(2.65))∫

V

d3x(∂0t
00 + ∂it

i0) = 0 (2.66)

where V is a spatial region far away from the source (to ensure the background space-
time is flat so we can use partial derivatives), bounded by a surface S. The energy of
gravitational waves inside the volume V is

EV =

∫
V

d3xt00 (2.67)

Then we can rewrite Eq.(2.66)

1

c

dEV

dt
= −

∫
V

d3x∂it
0i

= −
∫
S

nit
0i

(2.68)

where ni is the outer normal to the surface and dA is the surface. Let S be a spherical
surface at a large distance r from the source. Its surface element is dA = r2dΩ, and its
normal n̂ = r̂ is the unit vector in the radial direction. Then Eq.(2.68) gives

dEV

dt
= −c

∫
dAt0r (2.69)

We already derived the expression for tµν in Eq.(2.61)

t0r =
c4

32πG
⟨∂0hTT

ij ∂
rhTT

ij ⟩ (2.70)
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We will show in Section 4.1 the amplitude of gravitational waves at large distance
should be inversely proportional to r, therefore hTT

ij can be written in this form,

hTT
ij =

1

r
fij(t− r/c) (2.71)

where fij(t− r/c) is some function of retarded time. We use retarded time here as the
same reason as we use retard time in electromagnetism. Since we are considering the
problem for radiations, they propagate at speed of light. The radiation we detect is
the radiation emitted by the source at time tret = t− r/c. Therefore

∂

∂r
hTT
ij = − 1

r2
fij(t− r/c) +

1

r

∂

∂r
fij(t− r/c)

= −1

r

1

c∂t
fij(t− r/c) +O(

1

r2
)

= ∂0hTT
ij +O(

1

r2
)

(2.72)

We would find
t0r =

c4

32πG
⟨∂0hTT

ij ∂
0hTT

ij ⟩ = t00 (2.73)

therefore we find the energy changed in a spatial volume V per unit time is

dEV

dt
= −c

∫
dAt00 (2.74)

It is negative since the gravitational waves are propagating outwards from the source
to us and taking away the energy. It is straightforward to get t00 with Eq.(2.61)

t00 =
c2

32πG
⟨ḣTT

ij ḣ
TT
ij ⟩ (2.75)

where the dot denotes ∂t = c∂0. It can also be written in terms of the amplitudes h+
and h×,

t00 =
c2

16πG
⟨ḣ2+ + ḣ2×⟩ (2.76)

Then we derive the energy changed in a spatial volume V per unit time in terms of the
wave functions of gravitational waves (in TT gauge)

dE

dt
=

c3r2

32πG

∫
dΩ⟨ḣTT

ij ḣ
TT
ij ⟩ (2.77)

Or in terms of the two polarizations of gravitational waves h+ and h×,

dE

dAdt
=

c3

16πG
⟨ḣ2+ + ḣ2×⟩ (2.78)
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The total energy passing through dA from t = −∞ to t = ∞ is

dE

dA
=

c3

16πG

∫ ∞

−∞
dt⟨ḣ2+ + ḣ2×⟩ (2.79)

The angular brackets here are to take temporal average. However, we are taking integral
from t = −∞ to t = ∞, then it doesn’t matter if we take the average or not.

dE

dA
=

c3

16πG

∫ ∞

−∞
dt(ḣ2+ + ḣ2×) (2.80)

The momentum that gravitational waves carries can be computed in the same way.
Inside a volume V at large distance from the source

P k
v =

1

c

∫
d3xt0k (2.81)

c∂0P
k
v =

∫
V

d3x∂0t
0k

= −
∫
S

dAt0k
(2.82)

dP k

dt
=

c3

32πG
r2

∫
dΩ⟨ḣTT

ij ∂
khTT

ij ⟩ (2.83)

In this section we found out the expression for energy-momentum tensor of the gravi-
tational waves and calculated the energy and momentum carried by the gravitational
waves. The way we make it is to split the high-frequency (varying fast in spacetime)
part and the low-frequency part (varying slowly) of tensors in Einstein equation. We
consider the low-frequency part of the Einstein equations and using the effective "coarse-
grained" quantity instead of using the original tensors. The effect of the high-frequency
part of the tensors would disappear when we take average over a spatial volume if we
set this spatial volume to be large enough compared to the length scale of gravitational
waves and small enough compared to the length scale of the background metric. In this
way we find how the background metric of spacetime get changed by the gravitational
wave (plus the effect of external sources, if there is any) in an average over a spatial
volume with proper size. Therefore we derived the expression for energy-momentum
tensor.

2.4 Propagation in flat and curved spacetime

In the last section we spilt the Einstein equations in to high-frequency part Eq.(2.43)
and low-frequency part Eq.(2.42). We analyzed the low-frequency equations by taking
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average over a spatial volume to cancel the high-frequency part in the tensors (both the
quadratic Ricci tensor and the energy-momentum tensor of possible external sources)
then derived the energy-momentum tensor of gravitational waves. Now we are going
to study the high-frequency Einstein equations. We will find it reveals how the gravi-
tational waves propagate in a curved spacetime.
When study the propagation of gravitational waves, obviously they are in the region
outside the source, where the energy-momentum tensor of the source vanishes and we
assume there are no external sources. The right-hand side of Eq.(2.43) vanishes, the
high-frequency equation becomes

R(1)
µν = −[R(2)

µν ]
High (2.84)

The equation can be complicated since there are so many terms in R
(1)
µν and R

(2)
µν , and

we need to pick out the high-frequency term in R(2)
µν . The work can be done in a much

simpler way if we expand each hand side in power series and compare terms of the
same order. We will find there is no need to get the expression for the high-frequency
part of R(2)

µν . We find there are two small parameters h and λ
LB

. We find there are
two small parameters h and λ

LB
. When we estimate the order of magnitude, which

parameter should we consider? It is not a problem here in the case without external
sources since they are of the same order. Remember that we are considering the case
without external sources. In last section we have analyzed the order of magnitude of
low-frequency part of Einstein equations and find h ∼ λ

LB
(Eq.(2.50)).

Now we estimate the order of magnitude of each hand side of Eq.(2.84). Remember
the expression for hµν we derived in Eq.(2.18) h ∼ eikx. The order of R(1)

µν is

R(1)
µν ∼ ∂2h ∼ h

λ2
∼ 1

λLB

(2.85)

while
R(2)

µν ∼ (∂h)2 ∼ h2

λ2
∼ 1

L2
B

(2.86)

The leading order term in R
(1)
µν is of order 1

λLB
there is no such term in R

(2)
µν having

the same order. Terms in R
(2)
µν are at most of order 1

L2
B

which is much small than 1
λLB

since we have restricted λ
LB

to be very small to distinguish gravitational waves from
the background metric. So the leading order of the left-hand side must be zero.

[R(1)
µν ]leading order = 0 (2.87)

Extract the leading order term from Eq.(2.40), we get

ηρσ(∂ρ∂νhµσ + ∂ρ∂µhνσ − ∂ν∂µhρσ − ∂ρ∂σhµν) = 0 (2.88)
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This gives how gravitational waves propagates in flat background spacetime since we
are considering the situation where there are no external sources. This coincides with
the linearized Einstein equations we derived in Eq.(2.7) since here we are considering
the equation for the leading order term of R(1)

µν . We haven’t fix the gauge yet. As what
we have done to the linearized Einstein equations, if we introduce h̄µν = hµν − 1

2
ηµνh

and impose the Lorentz gauge, we will find the propagation equation can be written in
a simple form

□h̄µν = 0 (2.89)

We have showed how the high-frequency part of Einstein equation determines the prop-
agation of gravitational waves in flat spacetime without external sources. Now we con-
sider the case where there are external sources, that is, we are in curved spacetime
now. We have analyzed this situation for low-frequency equations in the last section,
where we estimated the order of magnitude and find h≪ λ

LB
. Therefore the two small

parameters h and λ
LB

are of different orders. l is much smaller than λ
LB

, so When we
expand the equations into series, we keep only the leading order term in h (terms linear
in h). And we keep only the leading order and next-to-leading order in λ/LB. The
high-frequency equation becomes

R(1)
µν = 0 (2.90)

Remember here we are considering the case with external sources. The background
spacetime is curved, so we use covariant derivatives here

ḡρσ(D̄ρD̄νhµσ + D̄ρD̄µhνσ − D̄νD̄µhρσ − D̄ρD̄σhµν) = 0 (2.91)

This is the propagation equation for gravitational waves in curved background space-
time. Again we use some tricks to make the equation more compact. We introduce the
quantity

h = ḡµνhµν h̄µν = hµν −
1

2
ḡµνh (2.92)

and impose the Lorentz gauge
D̄µh̄µν = 0 (2.93)

The propagation equation in Lorentz gauge is therefore

D̄ρD̄ρh̄µν + 2R̄µρνσh̄
ρσ − R̄µρh̄

ρ
ν − R̄νρh̄

ρ
µ = 0 (2.94)

It describes how the gravitational waves propagates in general in curved spacetime with
the existence of external sources. If we are interested in the region outside the external
sources, we would the propagation equation more simpler. In the region outside the
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external sources, the energy-momentum tensor of external sources doesn’t contribute,
T̄µν = 0. Eq.(2.94) becomes

D̄ρD̄ρh̄µν = 0 (2.95)

It is the equation describes how do the gravitational waves propagates in curved back-
ground but in the particular region without the present of external sources.
In this section we analyzed the high-frequency part of the Einstein equations by expand-
ing it into series and compare the order of each term. The high-frequency part of the
Einstein equations determines the propagation of gravitational waves in flat spacetime
and in curved spacetime, depending on if there are external sources or not.
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3 Field-theoretical approach

In the last section we treated gravitational wave as a perturbation to the dynamical
background spacetime gµν = ḡµν + hµν . We decomposed the Einstein equations into
high frequency part and low frequency part. By studying the low-frequency part of Ein-
stein equations we checked how gravitational waves curve the background spacetimewe
defined the "coarse-grained" energy-momentum tensor of gravitational waves. We then
studied the high-frequency part of Einstein equations and derived their propagation
equation both in flat spacetime and in curved spacetime. To understand GWs better,
we introduce another perspective. We treat GWs as a field hµν in a flat spacetime with
metric ηµν similarly as other fields, for example, electromagnetic field.

3.1 Noether Theorem

We consider a field theory living in Minkowski spacetime, with fields ϕi. Its action S is
the integral of its Lagrangian density over spacetime

S =

∫
dtd3xL(ϕi, ∂ϕi) (3.1)

Since we are interested in physical problems, it is naturally to make the assumption that
the fields vanishes on infinities. For gravitational waves, ϕi would be the independent
components in hµν . But here we don’t restrict ourselves to a particular case so that
we can compare the gravitational field with other fields, for example, electromagnetic
field.
We consider an small coordinate transformation (small enough so that the transfor-
mation can be taken as continuous) which will also lead to a transformation of the
fields

x′µ = xµ + ϵaAµ
a(x) (3.2)

ϕ′
i(x

′) = ϕi(x) + ϵaFi,a(ϕ, ∂ϕ) (3.3)

The transformation is determined by Aµ
a(x) and Fi,a(ϕ, ∂ϕ), and parameterized by

infinitesimal parameters ϵa with a = 1, 2, , N .There may be cases where the action
of the field is invariant after transformation. We call the transformation a symmetry
transformation if it leaves the action invariant. Noether’s theorem tells us that if
there is a coordinate transformation parameterized by a small parameter and keeps
the action of the field invariant, that is, if there is a continous symmetry, the current
corresponding to this parameter, which is know as Noether current, will be conserved
when the equations of motion are satisfied.

(∂µj
µ
a ) = 0 (3.4)
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The corresponding charge Q to such a current is defined as

Qa ≡
∫
d3xj0a(x, t) (3.5)

Then we have
∂0Qa =

∫
d3x∂0j

0
a(x, t)

=

∫
d3x∇ · j(x, t)

(3.6)

Again since we are considering practical physical problem, we won’t expect there is any
current at the spatial infinity. That means there is no currents coming in or going out
at infinity. Therefore the total charge is conserved

∂0Qa = 0 (3.7)

We can express the Noether current in terms of the Lagrangian density and the func-
tions that parameterizing the transformation

jµa =
∂L

∂(∂µϕi)
[Aν

a(x)∂νϕi − Fi,a(ϕ, ∂ϕ)]− Aµ
a(x)L (3.8)

One example of Noether’s theorem is the conservation of energy-momentum tensors,
which is the quantity we want to find for gravitational fields. The energy-momentum
tensor is the Noether current corresponding to the constant spacetime translation x′µ =

xµ+ϵµ =→ xµ+ϵνδµν . The spacetime translation doesn’t change the value of the fields at
a ceterin point, therefore we have ϕ′(x′) = ϕ(x). Comparing with Eq.(3.2) and Eq.(3.3)
we fix the functions which determine the transformation. Aµ

ν (x) = δµν , Fi,a = 0. We have
expressed the Noether current in terms of these functions and Lagrangian. Then we can
determine the Noether current for space-time translation, i.e., the energy-momentum
tensor θµν ≡ −jµν in terms of Lagrangian. With Eq.(3.8), we have

θµν = − ∂L
∂(∂µϕi)

∂νϕi + ηµνL (3.9)

When the equations of motion are satisfied, the Noether current is conserved. That
means, the energy-momentum tensor is conserved. Eq.(3.4) becomes

∂µθ
µν = 0 (3.10)

The conserved charge associated to space-time translations is the four-momentum P v.
The symmetry of time translation t → t + ϵ0 gives the conservation of energy. The
symmetry of space translation xi → xi + ϵi gives the conservation of momentum.

cP 0 ≡
∫
d3xθ00 (3.11)
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cP i ≡
∫
d3xθ0i (3.12)

This is how we defined the four-momentum in classical field theory: they are Noether
currents associate to symmetry of spacetime translations. Before searching for the
energy-momentum tensor for gravitational waves, we can first check the application of
Noether’s theorem in electrodynamics. The Lagrangian in electrodynamics is

Lem = −1

4
FµνF

µν (3.13)

where Fµν = ∂µAν − ∂νAµ. This field theory also has a symmetry under constant
spacetime translations. This symmetry gives the energy-momentum tensor of the field.
The energy-momentum tensor is given by

θµνem = − ∂Lem

∂(∂µAρ)
∂νAρ + ηµνLem (3.14)

It is easy to compute
∂Lem

∂(∂µAρ)
=

∂

∂(∂µAρ)

(
− 1

4
FµνF

µν
)

= −1

2
Fαβ ∂Fαβ

∂(∂µAρ)

= −Fαβ ∂(∂αAβ)

∂(∂µAρ)

= −F µρ

(3.15)

Therefore we get energy-momentum tensor for electromagnetic field,

θµνem = F µρ∂νAρ −
1

4
ηµνF 2 (3.16)

We know that classical electrodynamics is invariant under gauge transformations

Aµ → Aµ − ∂µθ (3.17)

It is easily seen that Fµν is invariant, therefore Lagrangian is invariant. This means the
field theory should remain the same as before after transformation. We then would ex-
pect the energy-momentum tensor keeps invariant under this transformation. However,
the energy-momentum tensor transforms as

θµνem → θµνem − F µρ∂ν∂ρθ (3.18)
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It seems that the energy-momentum tensor is not invariant under this transformation.
This problem can be solved if we rewrite the the energy-momentum tensor

θµνem = F µρ(∂νAρ − ∂ρA
ν + ∂ρA

ν)− 1

4
ηµνF 2

= (F µρF ν
ρ − 1

4
ηµνF 2) + F µρ∂ρA

ν

= (F µρF ν
ρ − 1

4
ηµνF 2) + ∂ρ(F

µρAν)

(3.19)

In the last step we used the equations of motion ∂µF
µν = 0. We split the energy-

momentum tensor derived before into two parts. The first term is obviously variant
under gauge transformation Eq.(3.17) while the second part is not gauge-invariant.

θµνem = T µν
em + ∂ρC

ρµν (3.20)

where Cρµν = F µρAν and
T µν
em = F µρF ν

ρ − 1

4
ηµνF 2 (3.21)

which is the energy-momentum tensor we commonly use in electrodynamics. Its 00
component gives the energy density

T µν
00 =

1

2
(E2 + B2) (3.22)

Now we are going to explain why could we drop the gauge invariant term. For Cρµν ,
we find that it is antisymmetric under ρ↔ µ. Therefore when θµνem is conserved, T µν

em is
also conserved since

∂µ∂ρC
ρµν = 0 (3.23)

The difference between the charges given by T µν
em and θµνem is given by∫

d3x∂ρC
ρ0ν =

∫
d3x∂iC

i0ν (3.24)

where we use the fact that C00ν = 0 since it is antisymmetric under ρ ↔ µ. This
spatial integral vanishes since we expect no currents coming in or going out at spatial
infinity. The electromagnetic field vanishes at the boundaries of the integral. Therefore
the four-momenta given by T µν

em and θµνem would be the same. We could see that the
Noether theorem cannot give us a physical expression for the energy-momentum tensor
since it is not gauge-invariant. However, when integrated over space, it gives the total
energy and momentum as long as the boundary terms can be neglected.
From Eq.(3.20) we have

⟨θ00em⟩ = ⟨T 00
em⟩+ ⟨∂iCi00⟩ (3.25)
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where the bracket represents the average. When we take the average over a spatial
volume such that the boundary terms can be neglected, we have

⟨θ00em⟩ = ⟨T 00
em⟩ =

1

2
⟨E2 + B2⟩ (3.26)

We find Noether’s theorem can’t fix the definition for energy-momentum tensor of
electromagnetic field since it may give a term which is not gauge-invariant. We need
to find a gauge-invariant tensor that has physical meanings.

3.2 Energy-momentum tensor of gravitational field

In the last section we introduced the Noether theorem and introduced energy-momentum
tensor as the Noether current associated to the symmetry of spacetime translation. We
derive the energy-momentum tensor to scalar field and electromagnetic field. Now we
are going to derive the energy-momentum tensor for gravitational field.
Similarly to the derivation of energy-momentum tensor of scalar field and electromag-
netic field, we find the Noether current associated with symmetry of spacetime transla-
tion. With Eq.(3.9) we can write down the energy-momentum tensor for gravitational
field

tµν = ⟨− ∂L
∂(∂µhαβ)

∂νhαβ + ηµνL⟩ (3.27)

To get the Lagrangian L for gravitational fields we start from the full Einstein Action
and expand it to quadratic order in hµν .

SE =
c3

16πG

∫
d4x

√
−gR (3.28)

Here we are consider linearized theory. Remember We take the gravitational waves as
a field living in the flat spacetime. So the metric is written as

gµµ = ηµν + hµν (3.29)

We calculate the Ricci scalar and keep the terms quadratic in hµν ,

R = gµνRµν = (ηµν − hµν +O(h2))(R(1)
µν +R(2)

µν +O(h2)) (3.30)

where R(1)
µν and R

(2)
µν represent the first-order term and second-order term in Rµν , re-

spectively. Their expressions have been given in Eq.(2.40) and Eq.(2.41). Since we are
expanding around flat spacetime, the zero-order term vanishes. To compute

√
−g, we

rewirte it as
gµν = ηµνg

rho
ν (3.31)
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Therefore,
det(gµν) = det(ηµν)det(g

rho
ν )

− det(gρν)
(3.32)

gρν = δρν + hρν ≡ (I +H)ρν (3.33)

where I is the identity matrix and H a matrix whose elements are hρν . Use the identity
log(det A) = Tr(logA), we have

−g = det(I +H)

= exp[log det(I +H)]

= exp[Tr log(I +H)]

= exp[Tr(H +O(H2))]

= 1 + TrH +O(H2)

= 1 + h+O(h2µν)

(3.34)

where h is the trace of hµν . Then we can compute the action, using integration by
parts, and get

SE =
c3

64πG

∫
d4x[∂µhαβ∂

µhαβ − ∂µh∂
µh+ 2∂µh

µν∂νh− 2∂µh
µν∂ρh

ρ
ν ] (3.35)

We then obtain the Lagrangian density for gravitational field,

L =
c4

64πG
[∂µhαβ∂

µhαβ − ∂µh∂
µh+ 2∂µh

µν∂νh− 2∂µh
µν∂ρh

ρ
ν ] (3.36)

Then we can calculate the energy-momentum tensor tµν of the gravitational field. To
make our calculation simpler, we can fix the gauge

∂µh
µν = 0, h = 0 (3.37)

Then we have
∂L

∂(∂µhαβ)
= − c4

32πG
∂µhαβ (3.38)

To compute ⟨L⟩, we preform integration by parts and find this term vanishes

⟨L⟩ = 0 (3.39)

Therefore we obtain the expression for energy-momentum tensor of gravitational field.

tµν =
c4

32πG
⟨∂µhαβ∂νhαβ⟩ (3.40)
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We get the same result as before in Eq.(2.61), as expected.
We find that the expression for energy-momentum tensor of GWs is written in terms
of average. We didn’t get any expressions for local energy-momentum tensor. We get
the same result in Chpater 1. In Chapter 1, by analyzing the low-frequency part of
Einstein equations we obtained the "coarse-grained" energy-momentum tensor which
takes effect over a spatial volume with proper size.
The Noether’s theorem itself cannot fix the energy momentum tensor uniquely. We
have seen that when looking for the energy-momentum tensor of electromagnetic field.
Suppose for a field theory, we add a total divergence to the Lagrangian density,

L′ = L+ ∂µK
µ (3.41)

The equation of motion is derived from variation of the action. Since the total diver-
gence will only give a boundary term after integration, we will derive the same equation
of motion from this two action S ′ =

∫
d4xL′ and S ′ =

∫
d4xL. The two Lagrangian

density define the same field theory. However, they give different Noether current and
energy-momentum tensor. In electromagnetism, it is reasonable to define T em

µν as the lo-
cal energy-momentum tensor since it is gauge-invariant and when taking average over
a proper spatial volume, it gives the same behaviour as tµν , the energy-momentum
tensor we derived from Noether theorem. For GWs, we find that ∂µhαβ∂νhαβ is not
gauge-invariant therefore cannot be the local energy-momentum tensor. Actually there
is no such local expression. Consider the equivalence principle, at any given point, we
can always find a local inertial frame where the gravitational field vanishes. The energy
then becomes zero, and will be always zero if there exists a gauge-invariant term to
describe it.
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4 Generation of GWs

In the previous sections we have introduced gravitational waves as perturbations to
the background spacetime. We have seen how do they arise from linearized Einstein
equations. We have studied the the effect of gravitational waves, how do they interact
with test particles. Also we have derived the energy and momentum the gravitational
waves carries. We have known all these properties of gravitational waves, but how are
they generated in the universe? That would be the topic of this section.

4.1 Quadrupole formula

Here we still restrict ourselves to linearized theory. We assume the source of the grav-
itational waves is weak enough so that the background spacetime is approximately
Minkowski spacetime and the gravitational waves it generated can be taken as small
perturbations. In Chapter 2 we have derived the equation for perturbations from lin-
earization of Einstein equations, Eq.(2.13), which we write down here again

□hµν = −16πG

c4
Tµν (4.1)

Before thinking about the solution to this equation, we may recall what we have learned
in electromagnetism to help us understand gravitational waves better.
We know that the electromagnetic waves arise when the electromagnetic field varies,
which may caused by, for example, an accelerating charge. The monopole radiation,
if there were any, should give the most contribution to the radiation. But the electric
monopole moment is

∫
ρd3x, the total charge. From Maxwell equations we know the

charge is conserved. Therefore there is no monopole radiation. Then the most primary
contribution to the electromagnetic radiation comes from the electric dipole moment,
which is given by

pi =

∫
ρxid

3x (4.2)

where ρ denotes the density of charge.
We now turn back to gravitational waves. As same as how we solve the wave equations
for electromagnetic waves, we solve Eq.(??) by using the Green’s function techniques,

□G(x− x′) = δ4(x− x′) (4.3)

The radiation takes time to propagate towards us, therefore we use the retarded Green’s
function

G(x− x′) = − 1

4π|x − x′|
δ(x0ret − x′0) (4.4)
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where x′0 = ct′, x0ret = ctret and

tret = t− |x − x′|
c

(4.5)

With the retarded Green’s function, we can write down the solution to Eq.(??)

h̄µν(t,x) =
4G

c4

∫
d3x′

1

|x − x′|
Tµν

(
t− |x − x′|

c
,x′) (4.6)

Remember how we fix the gauge in Chapter 2. Here we haven’t apply any constraint
on gauge choice yet. h̄µν has 10 degrees of freedom now. For the purpose of simplicity
we would like to reduce the gauge freedom. We impose the TT gauge and this can be
done by introducing a projector, which can act on a tensor to project it into TT gauge

Λij,kl(n̂) = PikPjl −
1

2
PijPkl, Pij(n̂) = δij − ninj (4.7)

Act this projector on Eq.(4.6) we project the solution into TT gauge

hTT
ij (t,x) = 4G

c4
Λij,kl(n̂)

∫
d3x′

1

|x − x′|
Tkl

(
t− |x − x′|

c
,x′) (4.8)

where n̂ = x̂ denotes the direction from theh source to the detector. Here we take two
limits to simplify the expression of the perturbation and to see its nature more clear.
The first is the weak-field limit that we assume we the observers are at sitting at far
away enough from the source, which area is known as far zone such that the distance
between the source and us can be taken as

|x − x′| ≈ r (4.9)

Another one is the slow-motion limit that we assume the source is non-relativistic.
That is, the speed of motion inside the source is much smaller than the speed of light.
That ensures the wavelength of gravitational waves is much larger than the scale of the
source. Therefore we neglect the effect arising due to the inner structure of the source.
Taking the weak-field limit and the slow-motion limit, the wave function in TT gauge
Eq.(4.8) can be written as

hTT
ij (t,x) = 1

r

4G

c4
Λij,kl(n̂)

∫
d3x′Tkl

(
t− r

c
,x′) (4.10)

Perform Fourier transform of the energy-momentum tensor of the source Tkl, and ex-
pand the exponential into series, we are going to find the leading term is proportional
to the second time derivative of the quadrupole moment of the source

hTT
ij (t,x) = 2

r

G

c4
∂2

∂2t
ITT
ij (t− r

c
) (4.11)
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where Iij is the quadrupole moment of the source

Iij =

∫
ρxixjd

x (4.12)

This ρ here comes from the 00-component of the energy-momentum tensor ρ = T00/c
2.

Eq.(4.11) tells us a lot of information about gravitational waves. We find hij is propor-
tional to 1

r
, which implies the amplitude of gravitational waves decreases as 1

r
, which is

the same as electromagnetic waves.
Also from Eq.(4.11) we can estimate the order of magnitude of gravitational waves

hij ∼ 10−21

(
ML2ω2

M⊙c2

)(
100Mpc

r

)
(4.13)

where M denotes the mass of the source, L denotes the scale of the source and ω

the frequency of quadrupole oscillation of the source. Actually ML2ω2 is just the no
spherical part of kinetic energy of the source.
We find that the leading term in gravitational waves is quadrupole radiation, coming
from the quadrupole oscillation of mass of the source. Where is the monopole radiation
and the dipole radiation? How is it different from the electromagnetic waves? The
monopole moment is

∫
ρd3x. In the case of gravitational waves it is the total mass

of the source. The mass of the source is conserved, restricted by the conservation
law ∂µT

µν = 0. Therefore there is no monopole radiation. The dipole moment is
given by

∫
ρxid3x. Its first derivative

∫
ρvid3x is the total momentum of the source

which is constant since there is no external force to make it accelerate. The source
is static. Therefore the second derivative of the dipole moment is zero. There is
no dipole radiation in gravitational waves. The primary contribution in gravitational
waves comes from quadrupole radiation, generated by quadrupole oscillations of mass.
Of course there are other higher order terms for example, the mass octupole radiation
and current quadrupole radiation, whose magnitude are negligible.
In section 2.1 we have introduced the TT gauge and reduced the degree of freedom in
hµν from 10 to 2. We find the two left degrees of freedom represent 2 polarizations. Now
we will show how do the polarizations depend on the quadrupole moment. Recall we
have introduced the projector Λij,kl in Eq.(4.7). We act it on the quadrupole moments
and find

Λij,klÏkl =

 (Ïxx − Ïyy)/2 Ïxy 0

Ïyx −(Ïxx − Ïyy)/2 0

0 0 0


ij

(4.14)
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Compared to Eq.(2.27) we find expression for the quadrupole part of the two polariza-
tions

h+ =
1

r

G

c4
(Ïxx − Ïyy)

h× =
2

r

G

c4
Ïxy

(4.15)

In Section 2.3, we have calculated the energy and momentum carried by gravitational
waves. The power of quadrupole radiation is given by

P =
32

5
µ2M4/3Ω10/3 (4.16)

4.2 Effect of GWs on their source

We have illustrate in Chapter 2 that the gravitational waves are taking energy and an-
gular momentum away from the source to spatial infinity. The source must get affected
by the emission of gravitational waves. Imagine there is a binary system with two mas-
sive and dense objects, for example, black holes or neutron stars. As the gravitational
waves taking energy and angular momentum away, the orbit of this binary system must
decay. In this section we are going to study how does the loss of energy affect such a
binary system.
We take the binaries as two point particles with masses m1 and m2 and spatial co-
ordinates x1 and x2, respectively. And we assume the orbits of the binary system
are circular. When considering a two body problem, it is natural to use the center
of mass coordinate system. The total mass is M = m1 + m2. The reduced mass is
µ = (m1 +m2)/M . When analyzing this binary system, we apply Newtonian approxi-
mation, that is, we neglect the relativistic effects, assuming the velocity of the binaries
are much smaller than the speed of light. The Kepler’s law gives

Ω2 =
GM

a3
(4.17)

where Ω denotes the orbital angular velocity and a denotes the distance between the
two binaries. It is easy to get the quadrupole moment of the mass distribution

Ixx = µa2cos2Ωt
Iyy = µa2sin2Ωt

Ixy = Iyx = −µa2cosΩtsinΩt
(4.18)

We have derived how the quadrupole radiation of gravitational waves depends on
the second derivative of quadrupole moment of the mass distribution of the source
Eq.(4.11).

Ïxx = −Ïyy = 2µa2Ω2cos2Ωt
Ïxy = 2µa2Ω2sin2Ωt

(4.19)
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Notice here the quadrupole moments are given without fixing the gauge while Eq.(4.11)
is written in TT gauge. Therefore we need to project the quadrupole moment into TT
gauge. Now we are in Cartesian coordinate system, it will be easier for us to project
the quadrupole moment into TT gauge if we transform the coordinate system to a
spherical coordinate system. Substitute this in Eq.(4.15) we find the two polarizations
of the quadrupole radiation emitted by this binary system

h+ =
2

r

GµΩ2a2

c4
(1 + cos2θ)cos[2(Ωt+ ϕ)]

h× =
4

r

GµΩ2a2

c4
cosθsin[2(Ωt+ ϕ)]

(4.20)

Observing the expression we find that the frequency of quadrupole moment of gravita-
tional waves is twice the orbital angular velocity of the binary system.

ω = 2πf =
Ω

2
(4.21)

We find the amplitude of the quadrupole radiation depend on the angular velocity of
the system Ω and the separation between the two stars a. The angular velocity Ω is the
parameter we can observe directly while a is not. We can use the Kepler’s law Eq.(4.17)
to represent a in terms of Ω, and introduce the chirp mass to make the expression more
compact. The chirp mass is defined as

M = µ3/5M2/5 (4.22)

Then Eq.(4.20) becomes

h+ =
2

r

(GM)5/3

c4
Ω2/3(1 + cos2θ)cos[2(Ωt+ Φ)]

h× =
4

r

(GM)5/3

c4
Ω2/3cosθsin[2(Ωt+ Φ)]

(4.23)

So far we have calculated the quadrupole radiation emitted by a binary system in
Newtonian approximation. We would like to know how this emission of radiation
reacts on the binary system. We write down the orbit energy of the binary system in
terms of period T = 2π/Ω

Eorbit =
µ

2
(ṙ2 + r2ϕ̇2)

= −µ
2
(2π)2/3M2/3T−2/3

(4.24)

The change of orbit energy per unit time would be the power of the emitted radiation,
dEorbit

dt
= −P (4.25)
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Together with Eq.(4.16) and Eq.(4.24), we obtain how the period of the binary system
change with time

dT

dt
= −96

5
(2π)8/3M2/3µT−5/3 (4.26)

We find the period is decreasing faster and faster and finally when T goes to 0, the
two particles coalescence. We introduce the two-body system as a simple model for
binary black holes. A binary black hole will shrink its orbit (we call this phase inspiral)
and merge into one single black hole. Then it enters the ringdown phase: the new
perturbed black hole oscillates and emits gravitational waves to reach equilibrium state.
The ringdown signals are superposition of quasinormal modes of this black hole. Here
we use a theoretical model for a black hole merger GW150914 (Figure.2) to show the
evolution of waveform in the merger event.

Figure 2. Theoretical model Source: http://ccrg.rit.edu/GW150914

We have shown in Eq.(4.21) the frequency of gravitational waves is twice as the
orbital angular velocity, therefore increases in the inspiral phase. In the ringdown
phase, the system becomes a perturbed single black hole. The gravitational waves
are the superposition of quasinormal modes of the black hole. We will study that in
Chapter 6.
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5 Black Holes

In the former chapters we introduced gravitational waves as perturbations around back-
ground spacetime. The perturbations are generated due to the change of gravitational
field. Black holes are one of the sources of gravitational field. The existence of black
holes is also one of the predictions of Einstein’s general relativity. It is a region of
spacetime where the spacetime is curved so much that even light can’t escape. The
hypersurface separating this region from the rest of spacetime is called event horizon.
There is no way for a signal to escape once entering into the event horizon, therefore
there is no direct way for us to observe black holes. However, some events of black
holes (for example, black hole merger or black hole excitation) lead to change in grav-
itational fields and thus generate gravitational waves. As we said before, gravitational
waves travel in universe at speed of light and interact very weakly with objects they
encounter, retaining the information of their sources. Therefore we can study black
holes by observing gravitational waves. In this chapter we introduce the concept of
black holes and solve Einstein’s equation to find two types of black holes.

5.1 Schwarzschild metric

Before illustrating how does Einstein’s equation predicts the existence of black holes,
we first consider the spacetime with a static and spherically symmetric distribution of
matter, with total mass M. We are going to find the metric for such a spacetime.
First we would like to find the line-element for such a distribution. The matter distri-
bution is spherically symmetric, we then expect the geometry of gravitational field it
generates also to be spherically symmetric. So the line-element should be spherically
symmetric. One example for a spherically symmetric line-element is the line-element
for Minkowski space

ds2 = −dt2 + dx2 + dy2 + dz2 (5.1)

Or if we express it in spherical coordinates

ds2 = −dt2 + dr2 + r2dΩ2 (5.2)

where dΩ2 = dθ2+sin2θdϕ2. However, it is for the flat spacetime with no source to the
gravitational field. We would like to find a general expression for spherically symmetric
line-element. It should have the form

ds2 = −A(t, r)dt2 +B(t, r)dr2 + r2dΩ2 (5.3)

Terms of the form dtdr can also exist but can be disappeared by coordinate transfor-
mation. We are interested in the spacetime outside the distribution of matter, there
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the energy-momentum tensor of the source Tµν = 0. Therefore the metric of spacetime
outside the matter distribution obeys the vacuum Einstein equations.

Rµν −
1

2
gµνR = 0 (5.4)

where Rµν is the Ricci tensor

Rµν = Γα
µν,α − Γα

µα,ν + Γα
µνΓ

β
αβ − Γα

µβΓ
β
να (5.5)

and R the Ricci scalar
R = gµνRµν (5.6)

The Christoffel symbol is given by

Γρ
µν =

1

2
gρσ(gµσ,ν + gνσ,µ − gµν.σ) (5.7)

We can now compute the Christoffel symbols with our metric components

gtt = −A, grr = B, gθθ = r2, gϕϕ = r2sin2θ (5.8)

and their inversions

gtt = − 1

A
, grr =

1

B
, gθθ =

1

r2
, gϕϕ =

1

r2sin2θ
(5.9)

Here we write down the non-vanishing terms of Christoffle symbols

Γt
tr = Γt

rt =
A′

2A
,

Γr
tt =

A′

2B
,Γr

rr =
B′

2B
,Γr

θθ =
r

B
,Γr

ϕϕ =
rsin2θ

B

Γθ
rθ = Γθ

θr =
1

r
,Γθ

ϕϕ = −cosθsinθ

Γϕ
rϕ = Γϕ

ϕr =
1

r
,Γϕ

θϕ = Γϕ
ϕθ =

cosθ

sinθ

(5.10)

Then we can compute the Ricci tensor

Rtt = −A”
2B

+
A′B′

4B2
+

(A”)2

4AB
− A′

rB

Rrr =
A”

2A
− (B′)2

4B2
− A′B′

4AB
− B′

Br

Rθθ =
rA′

2AB
+

1

B
− rB′

2B2
− 1

Rϕϕ = (
rA′

2AB
+

1

B
− rB′

2B2
− 1)sin2θ

(5.11)
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The Ricci scalar is

R = gµνRµν

= − A”

AB
+

A′B′

2AB2
+

(A′)2

2A2B
− 2A′

rAB
+

2B′

rB2
+

2

r2
(1− 1

B
)

(5.12)

Then we can solve the vacuum Einstein Equation Eq.(5.4). It gives us three independent
equations

B′

rB2
+

1

r2
(1− 1

B
) = 0 (5.13)

− A′

rAB
+

1

r2
(1− 1

B
) = 0 (5.14)

− A′

A
+
B′

B
− rA”

A
+
rA′B′

2AB
+
r(A′)2

2B2
= 0 (5.15)

Eq.(5.13) gives
dB

B2 −B
= −dr

r
(5.16)

Integrating both sides we find
B =

1

1− c
r

(5.17)

where c is a constant of integration. With Eq.(5.14) we can solve A

A = 1− c

r
(5.18)

Then the metric is determined

ds2 = −(1− c

r
)dt2 +

1

1− c
r

dr2 + r2dΩ2 (5.19)

We then find the expression for a spherically symmetric metric. Since we are considering
a physical problem, we would expect the constant c to have some physical meanings
instead of an arbitrary number. To find the value of c we can consider the Newton
limit of this metric and compare it to what we have known in Newtonian Physics. We
can take the Newton limit when the gravitational field is very weak, that is where we
are far away from the source. We find that when r ≫ c, i.e., at large distance from the
matter distribution, the metric is close to Minkowski metric. So we write the metric as
the Minkowski metric plus a perturbation,

gµν = ηµν + hµν (5.20)
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where |hµν | ≪ 1. Consider the motion of a freely falling particle in such a metric, we
have the Geodesics equation

d2xµ

dτ 2
+ Γµ

νρ

dxν

dτ

dxρ

dτ
= 0 (5.21)

In Newton limit, it is natural to assume the speed of the freely falling particle is much
smaller that light, otherwise we need to consider relativistic effect.

∣∣dxi
dτ

∣∣ ≪ 1 (5.22)

With this assumption, Eq.(5.21) becomes

d2xµ

dτ 2
+ Γµ

tt

( dt
dτ

)2
= 0 (5.23)

To first order in hµν , we have

Γµ
tt = −1

2
ηµσ

∂htt
∂xσ

(5.24)

Assume the metric is static, then
Γt
tt = 0 (5.25)

Therefore
d2t

dτ 2
= 0 (5.26)

which meansdt/dτ is costant. Therefore

d2xi

dt2
= −Γi

00 =
1

2

∂htt
∂xi

(5.27)

So far we have find how do a freely falling particle moves in the perturbed Minkowski
metric using geodesic equations. We now consider the motion of the freely falling
particles from another perspective, that is, the Newtonian mechanism, then compare
the results we derived. Newtonian mechanism tells us the acceleration of a freely falling
particle in a gravitational field is determined by the gravitational potential,

d2x
dt2

= −∇ϕ (5.28)

where ϕ is the gravitational potential. In Newtonian physics, the gravitational potential
is given by the Poisson’s equation ∇̂2ϕ = 4πGρ, where ρ is the mass density.

ϕ = −GM
r

(5.29)
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We have considered the motion of a freely particle both with geodesic equations and
with Newtonian mechanism. They should give the same result. Compare Eq.(5.27)
and Eq.(5.28) we will find

htt = −2ϕ =
2GM

r
(5.30)

We then find the tt-component of the metric for gravitational fields far away from the
source. With this we can fix the expression of c in Eq.(5.19)

c = 2GM (5.31)

which is known as the Schwarzschild radius. The metric Eq.(5.19) becomes

ds2 = −(1− 2GM

r
)dt2 +

1

1− 2GM
r

dr2 + r2dΩ2 (5.32)

This is the metric we derived for the spacetime outside a spherically symmetric distribu-
tion of matter. It is known as Schwarzschild metric. According to Brikhoff’s theorem,
this is the only solution of Einstein equations for a spherically symmetric spacetime.

5.2 Schwarzschild Black Hole

In the last section we have derived to solution of Einstein equations for a spherically
symmetric distribution of matter. Remember the equations we employed are the vac-
uum Einstein equations. This means the solution we derived is only valid for region of
spacetime outside the matter distribution. In this section we are going to study what
would happen if the mass distribution is very compact and introduce the concept of
black holes.
Starting with the Schwarzschild metric we derived before, we find that when r goes to
2GM or 0, some of the metric components blow up, indicating there might be singu-
larities at r = 0 and r = 2GM . But we don’t know if the singularities are real physical
singularities or just arise because of our bad choice of coordinate system. To check the
existence of singularity we may consider the value of a scalar to see if it blows up at
those singularities Since a scalar is invariant under coordinate transformation, it won’t
become singular because of choice of coordinate system. Here we consider the Ricci
scalar and find

R =
48G2M2

r6
(5.33)

It is easily seen that r = 0 is a real singularity while the singularity at r = 2GM is not.
It indicates the singularity at r = 2GM can be removed by coordinate transformation,
which we will introduce later.
The Schwarzschild metric is the solution for vacuum Einstein equation, valid in the
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region outside the matter distribution. For a star, it would be valid only for the
spacetime outside the sphere of the star. Take our Sun for example, its radius is

R = 106GM (5.34)

which is much larger than its Schwarzschild radius r0 = 2GM . For such a case, the
Schwarzschild metric only applies to the exterior spacetime outside the sphere of the
sun while for the spacetime inside the star we need another metric.
There is nothing special if the size of matter distribution is large than its Schwarzschild
radius. But what if the matter is distributed very compactly such that its radius is
smaller than its Schwarzschild radius? We will study the motion of a freely falling
particle moving towards the matter distribution and will find it has an interesting
behaviour. We then introduce the concept of black holes and event horizons.
Consider a freely falling massive particle moving towards the center of the Schwarzschild
metric. We denote its proper time by τ . We the observers far away use the coordinate
time t since the metric for r ≫ r0 is approximately Minkowski metric. For the purpose
of simplicity we assume that the particle is moving along a time-like radial geodesic,
with fixed angles θ and ϕ.

dθ

dτ
=
dϕ

dτ
= 0 (5.35)

For a timelike curve, we have
gµν

dxµ

dτ

dxν

dτ
= −1 (5.36)

We know that each of the symmetry of the metric is associated with a conserved
quantity. The time translation symmetry gives a timelike Killing vector

Kµ = (∂t)
µ = (1, 0, 0, 0) (5.37)

Lower the index we have

Kµ =
(
−
(
1− 2GM

r
), 0, 0, 0) (5.38)

The associated conserved quantity is the energy (per unit mass)

E = −Kµ
dxµ

dτ
= (1− 2GM

r
)
dt

dτ
(5.39)

When r goes to infinity, the proper time τ that the test particle measures should be
the same with coordinate time since it is approximately in the Minkowski metric. And
since the energy E is a conserved quantity, we have

E = 1 (5.40)
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Therefore
dt

dτ
=

1

1− 2GM
r

(5.41)

From Eq.(5.36) we have

− (1− 2GM

r
)
( dt
dτ

)2
+ (1− 2GM

r
)−1(

dr

dτ

)2
+ r2(

dθ

dτ

)2
+ r2sin2θ(

dϕ

dτ

)2
= −1 (5.42)

We have already fixed θ and ϕ, therefore

dr

dτ
= −

√
2GM

r
(5.43)

This gives the velocity of a test particle with respect to the proper time that the test
particle itself measures. We choose minus sign here since the particle is moving towards
the center of the metric. We then obtain the velocity of test particles at the perspective
of far away observers who measure coordinate time t

dr

dt
= −

√
2GM

r

(
1− 2GM

r

)
(5.44)

In the point of view of the far away observer, the test particle is moving more and more
slowly when it is approaching r = 2GM . The series expansion at r = 2GM gives

−
√

2GM

r

(
1− 2GM

r

)
= −r − 2GM

2GM
+O((r − 2GM)2) (5.45)

Therefore, near r = 2GM we have

r = 2GM + ce−t/2GM (5.46)

where c is a constant. The second term will always be posiitive. This implies that as
the far away observer can see, the test particle will get closer and closer to r = 2GM

but never get through it. However the test particle itself don’t use the coordinate
time. There is nothing special about its velocity with respect to its proper time. From
Eq.(5.43) we derive

2

3
(r

3
2 − 2GM

3
2 ) =

√
2GM(τ0 − τ) (5.47)

where r(τ0) = 2GM . It shows that although in the point of view of far away observers
a test particle can never reach r = 2GM , the particle is able to get through r = 2GM

in finite time. r = 2GM determines a sphere which we call it by event horizon.
Analogously to a horizon on Earth, we can’t see further beyond the horizon but if we
move towards it we can get through it in finite time. As we have said before, the
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existence of event horizon prevents us from observing inside the black hole directly. We
will show that a light signal once entered the event horizon can never escape. Consider
a radial null curve inside black hole (behind event horizon), we have

gµνdx
µdxν = 0 (5.48)

which gives
− (1− 2GM

r
)dt2 + (1− 2GM

r
)−1dr2 = 0 (5.49)

Suppose the light is moving outwards, we find
dr

dt
= 1− 2GM

r
(5.50)

The light ray at r = 2GM would have zero velocity thus sit still at the event horizon
forever. Outside the event horizon dr > 0, the light ray is moving away from the center.
Inside the horizon, dr < 0, which means the outgoing null curve is actually pointing
towards the center. The light ray inside the event horizon would never escape. This
means we can never know what happens behind the event horizon. We call the region
of spacetime behind the event horizon a black hole. In the Schwarzschild metric, we
call it Schwarzschild black hole.
We have introduced the interesting properties of event horizon by considering the mo-
tion of a test particle moving towards it and the motion of a light ray trying to escape
from behind the event horizon. However, this hypersurface is not special in spacetime.
There is no singularity at the event horizon. We can illustrate this by makeing a coordi-
nate transformation and will find no metric components blow up in the new coordinate
system at r = 2GM . Here we define the tortoise radial coordinate

r∗ = r + 2GM log( r

2GM
− 1) (5.51)

for r > 2GM . Then
dr∗ =

dr

1− 2GM
r

(5.52)

We can define new quantities

u = t− r∗, v = t+ r∗ (5.53)

and make the coordinate transformation for the spherical coordinate system (t, r, θ, ϕ)
to the Eddington-Finkelstein coordinates (v, r, θ, ϕ), we find in the Eddington-Finkelstein
coordinates, the Schwarzschild metric becomes

ds2 = −(1− 2GM

r
)dv2 + 2dvdr + r2dΩ2 (5.54)

It is obviously seen that nothing blows up at r = 2GM , indicating that there is no
singularity at r = 2GM .
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5.3 Kerr Black Hole

We have find the solution to vacuum Einstein equations for a spherically symmetric
distribution of matter. And we find a special case where the matter is distributed only
inside the Schwarzschild radius, which leads to a black hole. But Schwarzschild black
holes is not the only solution of the vacuum Einstein equations. There are also other
structures of spacetime and therefore leads to other type of black holes. One example
is the Kerr black hole, a solution to vacuum Einstein equations but is not spherically
symmetric. The absence of spherical symmetry means that the Kerr metric describes
a rotating black hole, therefore a Kerr black hole possesses angular momentum J. The
Kerr metric is

ds2 = −
(
1− 2GMr

ρ2
)
dt2 − 4GMarsin2θ

ρ2
sin2θdtdϕ

+
ρ2

∆
dr2 + ρ2dθ2 +

sin2θ

ρ2
[(r2 + a2)2 − a2∆sin2θ]dϕ2

(5.55)

where
ρ2(r, θ) = r2 + a2cos2θ, ∆(r) = r2 − 2GMr + a2 (5.56)

while a is the angular momentum per unit mass

a =
J

M
(5.57)

The event horizon for Kerr black hole is at where grr = 0, that is

∆

ρ2
= 0 (5.58)

Since ρ2 > 0, this leads to

∆(r) = r2 − 2GMr + a2 = 0 (5.59)

When GM < a, ∆ will always be positive. We find that there is no event horizon in
such a case. When GM = a, the spacatime will be unstable. We are only interested in
the case GM > a,

r± = GM ±
√
G2M2 − a2 (5.60)

Therefore we get two event horizons. A rotating black hole can be stationary but not
static. Consider the Killing vector ∂t,

KµKµ = − 1

ρ2
(∆− a2sin2θ) (5.61)
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We find that at event horizons, where ∆ = 0,

KµKµ =
1

ρ2
a2sin2θ (5.62)

The surface where the Killing vector ∂t becomes null is the stationary limit surface. It
is given by

(r −GM)2 = G2M2 − a2cos2θ (5.63)

The region between stationary limit surface and the outer event horizon is called the
ergoregion. An observer entering the ergoregion may leave it again but can’t stay
stationary.
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6 Quasinormal modes of BHs

We know a classical object would have "characteristic sound". No matter what pertur-
bation we impose on such an objectthe response of the object will always be a super-
position of normal modes. The normal modes are not determined by the perturbations
we impose but purely depend on the intrinsic properties of the object. We expect there
are also such characteristic modes for black holes that reveal the parameters of black
holes. But since gravitational waves are taking energy away, there is no normal modes.
Instead, we have quasinormal modes for such a dissipate system. In this Chapter we
introduce the concept of quasinormal modes as poles on Green’s functions and find the
quasinormal modes for Schwarzschild black holes.

6.1 Quasinormal modes

We know that if there is no lose of energy, when an object is perturbed, its oscillation
can be described by a superposition of normal modes. For example, if we vibrate a
guitar string, with both ends fixed, we could always hear the same note (frequency).
This is the fundamental frequency of the string. It doesn’t depend on how and where
we vibrate the string, but only depend on the intrinsic properties of the string (the
length of the string, for example). For such a system, the wave equation would be

∂2t ψ − ∂2xψ = 0 (6.1)

Its solutions depend only on its boundary conditions. The general solution will be a
superposition of normal modes,

ψ(t, x) =
∞∑
n=1

ane
iωntψn(x) (6.2)

where ψn are the normal modes of this object. The normal modes of a system depend
on its intrinsic nature. They are determined only by the properties of the system rather
than the external excitation we put on to it.
However, things change when the system is dissipate. If we add a potential in the
system, the wave equation becomes

∂2t ψ − ∂2xψ + V (x)ψ = 0 (6.3)

with initial value ψ(0, x) and ∂tψ(0, x) fixed. Suppose the system is unbounded, that
is, the potential vanishes at infinity, which is the physical situation we are interested in

V → 0, x→ ±∞ (6.4)

– 47 –



then the frequencies will be continuous. At infinity the potential vanishes, the situation
would be the same as the normal system without energy loss, the waves will behave as
plane waves at infinity.

ψ ∼ e±iωx, x→ ±∞ (6.5)

What about the region where the potential is present? To solve the wave equation
with potential, we first perform the Laplace transform to make the wave equation an
ordinary differential equation.

ψ̂(s, x) =

∫ ∞

0

ψ(t, x)e−stdt (6.6)

where s is complex, s = α + iβ.
The wave equation Eq.(6.3) becomes an ODE,

s2ψ̂ − ∂2xψ̂ + V ψ̂ = sψ(0, x) + ∂tψ(0, x) ≡ j(x) (6.7)

which is an inhomogeneous equation and j(x) denotes its inhomogeneity. The homoge-
neous equation is

s2ψ̂ − ∂2xψ̂ + V ψ̂ = 0 (6.8)

We can use Green’s function to solve this equation. The Green’s function can be
constructed by two independent solutions of the homogeneous equation ψ1 and ψ2

G(s, x, x′) =

{ 1

W
ψ1(s, x

′)ψ2(s, x) (x′ < x)

1

W
ψ1(s, x)ψ2(s, x

′) (x′ > x)
(6.9)

where W(s) is the Wronskian

W (s) = ψ1ψ
′
2 − ψ′

1ψ2 (6.10)

The solution to the wave equation Eq.(6.7) will be given by

ψ̂(s, x) =

∫ +∞

−∞
G(s, x, x′)j(s, x′)dx′ (6.11)

Now to derive the Green’s function for this wave equation, we need to find two inde-
pendent solutions of the wave equation. One simple choice is

ψ1 = e−sx, x→ +∞
ψ2 = e+sx, x→ −∞

(6.12)
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Then the Wronskian is
W = −2s (6.13)

The Green’s function is therefore

G(s, x, x′) =

{− 1

2s
e−s(x′−x) (x′ < x)

− 1

2s
e−s(x−x′) (x′ > x)

(6.14)

G(t, x, x′) =
1

2πi

∫
estG(s, x, x′)ds (6.15)

Then we obtain the wave function

ψ̂(s, x) =

∫ x′

−∞
G(s, x, x′)j(s, x′)dx′ +

∫ +∞

x′
G(s, x, x′)j(s, x′)dx′

= − 1

2s

∫ x′

−∞
e−s(x−x′)j(s, x′)dx′ − 1

2s

∫ +∞

x′
es(x−x′)j(s, x′)dx′

(6.16)

The wave function ψ can be obtained by taking the inverse Laplace transformation

ψ(t, x) =
1

2πi

∫
estψ̂(s, x)ds (6.17)

The integral can be evaluated by contour integration. The function becomes singular
when the Wronskian W (sn) = 0. In such case, ψ1 and ψ2 are no longer independent

ψ̂1(sn, x) = cnψ̂2(sn, x) ≡ cnψ̂n(x) (6.18)

With the residue theorem ∮
f(z)dz = 2πi

∑
n

Res(f, an) (6.19)

We have

G(t, x, x′) =
∑
n

esnt
cnψ̂n(x)ψ̂n(x

′)

W ′(sn)
(6.20)

ψ(t, x) =
∑
n

esntcnψ̂n(x)

∫
j(x′)ψ̂n(x

′)dx′

=
∑
n

esn(t−x)cn

∫
j(x′)esnx

′
dx′

(6.21)

sn that make the Green’s function singular are defined as the quasinormal frequencies.
The corresponding ψn are called the quasi eigenfunctions.
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Mathematically we have illustrated that Quasinormal modes are poles of Green’s func-
tions. And it is shown in [? ] for positive potentials with compact support there are
infinite number of quasinormal modes. What is the physcial meaning of quasinormal
modes? Let’s consider a Green’s function

G̃(ω) =
1

ω − (α− iβ)
(6.22)

Apparently there is a pole at ω = α − iβ. Preform the inverse Fourier transformation
we find

G(t) =

∫
dω

2π

e−iωt

ω − (α− iβ)
(6.23)

The integral gives
G(t) = ie−iαt−βtΘ(t) (6.24)

where Θ is an Heaviside step-function. We could see that the real part in quasinormal
frequencies gives an oscillating behavior while the imaginary part determines how fast
the quasinormal modes decay.

6.2 Quasinormal Modes of Schwarzschild Black Holes

In the previous sections we have introduced the concept of gravitational waves. We
know that a black hole is a special region of spacetime.When there is a perturbation
to the black hole, it lose energy at both ends: the event horizon and spatial infinity,
in terms of gravitational waves. Therefore we are suppose to get quasinormal modes
rather than normal modes from the perturbation of the black hole. Such gravitational
waves are determined only by the parameters of the black hole: mass, charge and
angular momentum, if there is any.
We now start from the simplest case, Schwarzschild black hole. In sperical coordinate
system, the wave function will be ψ(t, r, θ, ϕ). We can decompose it into spherical
tensor harmonics

ψ(t, r, θ, ϕ) =
∑
lm

ψlm(r, t)

r
Ylm(θ, ϕ) (6.25)

Since the spacetime is spherically symmetric, we can get rid of indice m. The wave
function for the radial components is

∂2t ψl − ∂2r∗ψl + V (r)ψl = 0 (6.26)

r∗ is the tortoise coordinate

r∗ = r + 2GM log( r

2GM
− 1) (6.27)
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Figure 3. ReggeWheeler and Zerilli potentials for l = 2 and 3.[17]

When we are close to the event horizon, r → 0, r∗ → −∞. When r → ∞, r∗ → ∞. For
axial perturbations, the potential is given by (The calculation is shown in Appendix
B.)

Vl(r) =
(
1− 2GM

r

)[ l(l + 1)

r2
+

2σGM

r3
]

(6.28)

which is called the Regge-Wheele potential[12]. The parameter σ = 1 − s2 where s
denotes the spin of the perturbation field. When we consider scalar perturbations,
s=0, σ = 1. When we consider electromagnetic perturbations, s=1, σ = 0. For
gravitational perturbations, s = 2, σ = −3. For polar perturbations the potential is
given by Zerilli[13]

Vl(r) =
(
1− 2GM

r

)2n2(n+ 1)r3 + 6n2GMr2 + 18nG2M2r + 18G3M3

r3(nr + 3GM)2
(6.29)

where
2n = (l − 1)(l + 2) (6.30)

Although the expressions for these two potential look very different, we can plot the
potentials (Figure.3) and would find their values quite close. Actually Chandrasekhar
[18] has shown that the two potentials can transform to each other, which means the
quasinormal frequencies of polar and axial perturbations have to be identical. We may
would like to derive the exact value of quasinormal frequency to get the parameter of
black holes. However, so far it is not possible to solve the wave equations analytically.
Calculations of quasinormal frequencies can be done numerically. Table 1 shows some
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n l=2 l=3 l=4
0 0.37367-0.08896i 0.59944-0.09270i 0.80918-0.09416i
1 0.34671-0.27391i 0.58264-0.28130i 0.79669-0.28449i
2 0.30105-0.47828i 0.55168-0.47909i 0.77271-0.47991i
3 0.25150-0.70514i 0.51196-0.69034i 0.73984-0.68392i

Table 1. Quasinormal modes of a Schwarzschild Black hole for l = 2,3 and 4, measured in
units of the black hole mass M

quasinormal modes of Schwarzschild black hole for l = 2, 3 and 4.[16]
Here we list only the modes whose real part is positive. Actually the poles of Green’s
function lie symmetrically on the half complex plane Re(s) < 0. The quasinormal
modes comes up in pairs, with both positive and negative real part. We find that
as the order of the modes increase, the real part varies slowly and finally remains
constant, while the imaginary part grows very fast. From Eq.(6.24) we could see that
the mode with larger imaginary part (larger β) decays faster, indicating that the higher
order modes don’t contribute a lot to the gravitational waves. The fundamental mode
(n = 0) would be our interest. The list of quasinormal modes begins with l = 2 terms
indicating there is no monopole or dipole radiation in gravitational waves, which we
have illustrated in Chapter 4.
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7 Black Hole Echoes

Suppose general relativity is a valid theory everywhere, the solution of Einstein Equa-
tion can give us a standard black hole. For such a black hole, the wave propagating
towards the event horizon will totally fall in the horizon without any reflection. How-
ever, there are hypotheses suggesting that GR may break down inside the black hole
since the curvature becomes very large (to Planck scale), quantum effects should not
be ignored. Therefore the structure of black hole need to be modified.
We don’t know much about things inside a black hole. But we can consider the event
horizon. For a standard black hole we have a perfect in-fall boundary condition. Once
there are some modifications to the black hole, we may expect the boundary condition
near the event horizon get changed and there will be outgoing wave near the horizon
that we can observe far away from the center of the black hole to check the hypothesis.
Imagine that when a wave falls into the event horizon, there exists reflection at the
event horizon. The reflected wave may propagate to infinity or it can be reflected back
to the event horizon. The reflected wave could be reflected again at the horizon. This
process would be repeated again and again and we are expected to detect a series of
decaying echoes.
How would a scalar wavepacket propagate in such a case compared to a standard black
hole case? We study the sourced wave equation

□Ψ = −ρ (7.1)

We separate the variables to get the radial wave equation. We decompose Ψ into
spherical harmonics

ψ(t, r, θ, ϕ) =

∫ ∞

−∞

dω

2π

∑
l,m

ψ̃lm(ω, r)Ylm(θ, ϕ)e
−iωt (7.2)

We also expand the source

ρ(t, r, θ, ϕ) =

∫ ∞

−∞

dω

2π

∑
l,m

ρ̃lm(ω, r)Ylm(θ, ϕ)e
−iωt (7.3)

We don’t know the t-dependence g(t) but for any functions it can be written in

g(t) =

∫
dω

2π
g̃(ω)e−iωt (7.4)

So we can write ψ(t, r, θ, ϕ) as Eq.(7.2) without losing any generality.
The radial wave function is given by (The calculations are shown in Appendix B)

d2ψ̃lm

dr∗2
+ (ω2 − fV )ψ̃lm = S̃(ω, r∗) (7.5)
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where S̃ is defined as
S̃(ω, r∗) = −r(r∗)fρlm(ω, r∗) (7.6)

and r∗ the tortoise coordinate
dr∗

dr
=

1

f(r)
(7.7)

Both f(r) and V (r) depend on background geometry. We will give some examples in
Appendix C. Here we write down the case for Schwarzschild spacetime,

f(r) = 1− 2GM

r
, V (r) =

l(l + 1)

r2
+

2GM

r3
(7.8)

For a standard black hole, there are only in-falling waves e−iωr∗ at event horizon and
outgoing waves e+iωr∗ at spatial infinity. When there is a reflecting mirror, there are
both infalling waves and outgoing waves near the horizon,

ψ̃ ∝ e−iω(r∗−rs) + R̃(ω)eiω(r
∗−rs) (7.9)

where rs denotes the radius of event horizon and R̃ is the reflection coefficient. We now
consider how is the waveform with the reflecting boundary condition different from the
one propagating outside a standard black hole. The radial wave function Eq.(7.5) can
be solved by using the green’s function techniques

d2g̃ref (x, x
′)

dr∗2
+ (ω2 − fV )g̃ref (x, x

′) = δ(x− x′) (7.10)

Then ψ̃lm is given by

ψ̃lm(r
∗) =

∫ ∞

−∞
dr∗′g̃ref (r

∗, r∗′)S̃(r∗′) (7.11)

Recall how we calculate the QNMs for Schwarzschild black holes. Since the potential
is vanishing at the event horizon and at spatial infinity, we have

ψ̃BH ∝ e−iωr∗ (7.12)

as r → rs and r → ∞. We can write down a pair of solutions satisfying the boundary
conditions, which Chrzanowski and Misner denote as the IN- and OUT-modes

ψ̃in
BH(ω, r

∗) ∼

{
e−iωr∗ (r∗ → −∞)

Aout(ω)e
iωr∗ + Ain(ω)e

−iωr∗ (r∗ → +∞)
(7.13)

where ω is positive and real. The OUT-mode is just the complex conjugate of IN-mode,

ψ̃out
BH(ω, r

∗) ∼

{
e+iωr∗ (r∗ → −∞)

A∗
out(ω)e

−iωr∗ + A∗
in(ω)e

+iωr∗ (r∗ → +∞)
(7.14)
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The IN- and OUT-modes are two independent solutions to the homogeneous wave equa-
tion. We know that the Wronskian of two independent solutions must be a constant.
This gives

|Aout|2 + |Ain|2 = 1 (7.15)

The reflection and transmission amplitude are then given by

RBH =
Aout

Ain

, TBH =
1

Ain

(7.16)

We also have
|TBH |2 + |RBH |2 = 1 (7.17)

where |TBH |2 is the transmission coefficient and |RBH |2 the reflection coefficient. It’s
easy to find another pair of solution to the homogeneous wave equation: the UP- and
DOWN-modes

ψ̃up
BH(ω, r

∗) ∼

{
Bout(ω)e

iωr∗ +Bin(ω)e
−iωr∗ (r∗ → −∞)

e+iωr∗ (r∗ → +∞)
(7.18)

and its complex conjugate

ψ̃down
BH (ω, r∗) ∼

{
B∗

out(ω)e
−iωr∗ +B∗

in(ω)e
+iωr∗ (r∗ → −∞)

e−iωr∗ (r∗ → +∞)
(7.19)

With the fact that the Wronskian should be a constant, we have[20]

Bout = Ain, Bin = −A∗
out (7.20)

With any two of the modes we can construct the Green’s function. Here we choose the
IN- and UP-modes.

W (IN, UP ) = ψ̃in d

dr∗
ψ̃up − ψ̃up d

dr∗
ψ̃in = 2iωAin (7.21)

The Green’s function is given by

g̃BH(r∗, r
′
∗) =

{ 1

WBH

ψ̃in(r′∗)ψ̃
up(r∗) (r′∗ < r∗)

1

WBH

ψ̃in(r∗)ψ̃
up(r′∗) (r′∗ > r∗)

(7.22)

The Green’s function for the reflecting case is given by[21]

g̃ref (r∗, r
′
∗) = g̃BH(r∗, r

′
∗) + K̃

ψ̃up(r∗)ψ̃
up(r′∗)

WBH

(7.23)
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where
K̃(ω) =

R̃BHR̃e
−2iωrs

1− R̃BHR̃e−2iωrs
(7.24)

We now compare the amplitude of waves propagating in the reflecting situation with
the one in the standard black hole case. We already obtained the Green’s function
Eq.(7.22), the wave function is then given by

ψ̃BH(ω, r∗) =

∫ +∞

−∞
dr′∗g̃BH(r∗, r

′
∗)S̃(r

′
∗)

=

∫ r∗

−∞
dr′∗

S̃(r′∗)

WBH

ψ̃in(r′∗)ψ̃
up(r∗) +

∫ +∞

r∗

dr′∗
S̃(r′∗)

WBH

ψ̃in(r∗)ψ̃
up(r′∗)

(7.25)

Consider its behavior at boundaries

ψBH(r
∗) ∼

{∫ ∞

−∞
dr′∗

ψ̃in(r
′
∗)S̃(r

′
∗)

WBH

eiωr∗ r∗ → ∞∫ ∞

−∞
dr′∗

ψ̃up(r
′
∗)S̃(r

′
∗)

WBH

e−iωr∗ r∗ → −∞
(7.26)

We use Z∞
BH and ZH

BH to denote the amplitude of wave at infinity and at event horizon
respectively

Z∞
BH =

∫ ∞

−∞
dr′∗

ψ̃in(r
′
∗)S̃(r

′
∗)

WBH

(7.27)

ZH
BH =

∫ ∞

−∞
dr′∗

ψ̃up(r
′
∗)S̃(r

′
∗)

WBH

(7.28)

Similarly we find the amplitude of waves with the reflecting boundary condition. With
Green’s function given in Eq.(7.23) we have

ψ̃(ω, r∗) =

∫ +∞

−∞
dr′∗g̃BH(r∗, r

′
∗)S̃(r

′
∗)

=

∫ +∞

−∞
dr′∗g̃ref (r∗, r

′
∗)S̃(r

′
∗) +

∫ +∞

−∞
dr′∗K̃

ψ̃up(r∗)ψ̃
up(r′∗)

WBH

(r∗, r
′
∗)S̃(r

′
∗)

(7.29)

Consider its behaviour at spatial infinity

ψ̃ ∼
∫ +∞

−∞
dr′∗

ψ̃in(r
′
∗)S̃(r

′
∗)

WBH

eiωr∗ +

∫ ∞

−∞
dr′∗

K̃ψ̃up(r
′
∗)S̃(r

′
∗)

WBH

eiωr∗

∼ (Z∞
BH + K̃ZH

BH)e
iωr∗

(7.30)

Denote its amplitude as Z∞, this gives

Z∞ = Z∞
BH + K̃ZH

BH (7.31)

– 56 –



This implies that in the reflecting case, the waves at infinity can be viewed as a com-
bination of two parts: the normal one in the standard black holes case and the one
appeared due to the reflecting mirror. Expanding K̃(ω) in series we find

K̃(ω) = T̃BHR̃e
−2iωrs

∞∑
n=1

(R̃BHR̃)
n−1e−2i(n−1)ωrs (7.32)

when n=1, we get a term T̃BHR̃e
−2iωrs , that is the wave reflected back at the mirror

towards infinity (R̃), and is partly transmitted over the potential (T̃BH). The phase
of the wave is changed by e−2iωrs . When reflected back to infinity, the wave can get
reflected by the potential. It may be reflected again at the mirror or fall into event
horizon. The part that being reflected again and finally escape to infinity is the case
n = 2. The phase is now changed by e−4iωrs . The change of phase arises since the wave
travels between the potential and the event horizon. It denotes the time delay between
echoes. It is one of the two observables we can detect to get information about the
boundary conditions. The other one is the amount of damping between each echo.

We see that the reflecting process can be repeated again and again. As there are
infinity terms in K̃(ω), there are infinity number of echoes, just as we expected.
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8 Robin Boundary Condition

In the last section we discussed how the modification of boundary conditions at the
event horizon gives rise to black hole echoes, without specifying what the modification
is. Since we don’t know the new physics near the horizon, there is no way for us to
determine directly what boundary condition we should impose at the horizon. How-
ever, we can set models with certain boundary conditions at the horizon and predict
the behaviour of black hole echoes. There are two observables for black hole echoes:
the time delay between each echo and the amount of damping. We will find how the
boundary conditions affect the observables and compare the predicted behaviour to
observational data. Observational data helps us determine the boundary conditions at
the horizon therefore helps us investigate the new physics near the horizon.
In this thesis we discuss the black hole echoes for Kerr black holes since observations
are focus on black hole merger events whose products are rotating black holes. We have
introduced Kerr metric in Section 5.3.

We know the equation of motion for a field is derived from the principle of least
action. To determine the behaviour of black hole echoes, we first consider what the
Lagrangian would be with the new physics employed near the horizon. The Lagrangian
will be the Lagrangian for free field theory plus an interacting term. We put the
interacting term at a surface near the horizon with r = r+ϵ, 0 < ϵ ≪ rs, where r+
is the outer event horizon and rs = 2GM . We don’t impose this interacting term
exactly at the horizon since we notice that with our new boundary condition, many
quantities become divergent at the event horizon. To avoid this, we set the boundary
condition not at the event horizon but at a hypothetical reflecting mirror very close to
the horizon. The total action therefore can be wrriten as

S =

∫
d4x

√
−gL+

∮
r=r++ϵ

d3x
√
−γLϵ (8.1)

where L is the Lagrangian density for free field theory and Lϵ the interacting term.
Here ϵ is a fake parameter. The exact location of the mirror doesn’t really matter. We
just know it is very close to the event horizon and there is nothing physical about its
location. That is, nothing observable should depend on the exact value of ϵ.
Now we consider theory for massless scalar fields. For the interacting term, the leading
order contribution of Lagrangian is from the term with fewest fields and derivatives,
which should be given by

Lϵ = −h(θ)
2
ψ2 (8.2)
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where h(θ) is the coupling constant. Then the total action is given by

S = −1

2

∫
d4x

√
−g∂µψ∂µψ +

∮
r=r+− 1

2
ϵ

d3x
√
−γhψ2 (8.3)

We impose this action on the surface of the reflecting mirror which is located at the
hypersurface of r = r+ + ϵ, thus d3x = dtdθdϕ,

√
−γ denotes the surface metric. We

obtain the boundary condition from the principle of least action. We ask the variation
of the total action to be zero then find the boundary condition we derived is the robin
boundary condition

Nµ∂
µψ − h(θ)ψ = 0 (8.4)

whereNµ is the normal to surface r = r++ϵ. We find the boundary condition we derived
is the robin boundary condition. In Kerr spacetime, we apply the Kerr metricEq.(5.55),
then the boundary condition near the horizon becomes

∂rlnψ =
ρ(θ)√
∆
h(θ) (8.5)

For simplicity, we set h(θ) as a particular function of θ so that the right-hand side of
Eq.(8.5) is independent on θ.

h(θ) =
h0
ρ(θ)

(8.6)

where f(θ) cancels the θ-dependence in ρ. therefore the wave function for the field can
be decomposed it ψ(t, r, θ, ϕ) = φ(r)S(θ)e−iωt+imϕ. Then the boundary condition can
be written in terms of radial wave function φ(r)

dlnφ
dr

=
h0√
∆

≡ λ (8.7)

We then want to find the expression for the radial wave function φ(r). The equation for
perturbations of a Kerr black hole is given by the Teukolsky equation. Decomposing the
wave function we obtain the radial wave equation. The solution of this radial equation
can be found in a simple way if we write φ(r) = F (r)χ(r) and set F(r) in a particular
way to make χ(r) satisfy a equation of Schrodinger-like form

−∇2χ+ V (r)χ = 0 (8.8)

The potential V(r) can be derived from the radial Teukolsky equation. Since we are
interested in the boundary conditions, we analyze the solution of radial wave functions
in the limit r → r+ and find two solutions

χ± ∼ (r − r+)
±iξ−(d−2)/2 (8.9)
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ψ± ∼ φ±e−iωt = (r − r+)
−s/2e−i(ωt∓ξln(r−r+)) (r − r+ → 0) (8.10)

where ξ is defined as
ξ =

ωrsr+ − am√
r2s − 4a2

(8.11)

We have already derived the two solutions of the radial wave equation. A general
solution can be written as a superposition of the two solutions. We also noticed that
the two solutions represents purely infalling waves and outgoing waves, respectively.
Therefore the ratio of amplitudes of the outgoing wave to infalling wave is the reflection
coefficient R.

ψ = ψ+ +Rψ− (8.12)

From Eq.(8.7) we determine the relation between φ and h0 (or λ). ϵ is a fake parameter
so that nothing physical should depends on. That requires the reflection coefficient R
should not depend on ϵ. This requirement gives restriction on the ϵ-dependence of
h0 (or λ), which is a renormalization group flow. Substitute the expression we have
found for radial wave functions φ in Eq.(8.7), we find the evolution equation for λ with
respect to ϵ.

ϵ
dλ

dϵ
= −1

2
(4ξ2 + λ2) (8.13)

There are two fixed points in the evolution equation λ(ϵ) = ±2iξ. To understand their
physcial meanings, we may first derive the relation between the near-horizon reflection
coefficient and λ, which parameterizes the boundary condition,

R =
2iξ + λ(ϵ)

2iξ − λ(ϵ)
ϵ−2iξ (8.14)

We notice when λ = −2iξ, the reflection coefficient is zero There is no reflection at
the horizon at all. It represents a standard black hole. When λ = +2iξ, the reflection
coefficient goes to infinity. There is only outgoing waves, which leads to a white hole.
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9 Conclusion and Outlook

In this thesis we first introduce the definition and properties of gravitational waves. We
showed how gravitational waves arises as perturbations around background spacetime
by analyzing linearized Einstein equations. We study the energy-momentum tensor of
gravitational waves with the low-frequency projection of Einstein equations and find
there is no local expression for gravitational waves. And the high-frequency projection
of Einstein equations gives us the propagation equations for gravitational waves in
curved spacetime. We also introduced gravitational waves from another perspective:
we treat gravitational waves as a field living in Minkowski spacetime as same as other
fields. We use classical field theory to analyze the gravitational field. The Noether’s
theorem gives us the definition of energy-momentum tensor related to the symmetry
of the field under spacetime translations. With classical field theory we derived the
energy-momentum tensor for gravitational field again.
Gravitational waves from black hole merger events have been detected and analyzed. A
binary black hole system would lose energy and angular momentum due to the emission
of gravitational waves. There will be three phase of the merger event: inspiral, merger
and ring down. The orbit of the binary system becomes smaller and smaller then the
two black holes into one single black hole. The oscillation of the single black hole
gives the post-merger ring down signals. The ring down gravitational waves will be
a superposition of quasinormal modes of the black hole, which reveal the intrinsic
properties of the black hole (its mass and spin). By solving quasinormal modes of
black hole and compare it to the observation of ring down signals, black hole merger
events provides us the way to test general relativity. In this thesis we analyze the
coalescence of a binary system with two point particles, as the simplified model for
black hole merger. We study how the emission of gravitational waves react back to
this system and show how does the waveform of gravitational waves evolves. Then we
study the concept of quasinormal modes as poles on Green’s functions and introduced
the solution to Schwarzschild black hole perturbations.
There are hypothesis that general relativity is not valid near the event horizon of a
black hole since the black hole curved spacetime so much, we need to consider quantum
effects. Therefore there are new physics to consider near the horizon, it is natural to
think the boundary conditions at the event horizon is modified. In general relativity
waves fall into the event horizon completely. When new physics appears, we would
assume there are waves reflected near the horizon. That is, the reflection coefficient
at event horizon is not 0 anymore. The reflected wave may get reflected back when
propagating towards infinity and get reflected again near the horizon. The procedure
can be repeated again and again therefore generate black hole echoes.
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There is no restriction for the new boundary conditions near the horizon we discuss
the robin boundary condition as a possible candidate dominating at low energies. We
derive the evolution equation of λ and find the two fixed points related to black holes
and white holes, respectively. We also derive the expression of reflection coefficient.
Also there are other models giving different boundary conditions to study.
The study of gravitational waves emitted from black holes gives us a new opportunity
to study the black holes and test general relativity. The observation of black merger
events may reveal the existence of new physics for gravity.
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A Expansion of Ricci tensor in curved background space

We expand the Ricci tensor around a curved background spacetime to linear order in
hµν . The metric is

gµν = ḡµν + hµν (A.1)

Its inversion is
gµν = ḡµν − hµν +O(h2) (A.2)

The Christoffel symbol is

Γµ
ρν =

1

2
gµσ(Dνgσρ +Dρgσν −Dσgρν)

=
1

2
(ḡµν − hµν)(Dν ḡσρ +Dρḡσν −Dσḡρν +Dνhσρ +Dρhσν −Dσhρν)

= Γ̄µ
νρ +

1

2
ḡµσ(D̄νhσρ + D̄ρhσν − D̄σhρν)−O(h2)

(A.3)

To simplify our computation, We can choose a coordinate system where Γ̄µ
ρν = 0. The

Ricci tensor is
Rµν = Γα

µν,α − Γα
µα,ν − Γα

µβΓ
β
να + Γα

µνΓ
β
αβ (A.4)

Since we have taken Γ̄µ
ρν = 0, the last two terms will not contribute to linear order

terms. Therefore, the linear order term in Rµν is

R(1)
µν = D̄νΓ̄

α
µα − D̄αΓ̄

α
µν −

1

2
ḡαβD̄ν(D̄αhβν + D̄µhβα − D̄βhµα)

+
1

2
ḡαβD̄α(D̄νhβµ + D̄µhβν − D̄βhµν)

=
1

2
ḡαβ(D̄αD̄νhµα + D̄µD̄

αhαν − D̄µD̄νh− D̄αD̄αhµν)

(A.5)

Although we use a coordinate system such that Γ̄µ
ρν = 0, Rµν is a tensor and made up

of covariant derivatives, the result would be same under coordinate transformation.
If the background metric is flat, ḡµν = ηµν , and the covariant derivatives would be
partial derivatives. If we impose Lorentz gauge

∂µh̄µν = 0 (A.6)

Eq.(A.5) becomes
R(1)

µν = −1

2
□hµν (A.7)
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B Radial wave equation in spherically symmetric spacetime

Consider a scalar wave packet Φ propagating freely in a spherically symmetric spacetime
with metric gµν , the wave equation is known as the Klein-Gordon equation

□Φ = 0 (B.1)

The d’Alembert operator □ is given by

□ =
√
−g∂µ(

√
−ggµν∂ν) (B.2)

where is g is the determinant of gµν . The wave equation Eq.(B.1) becomes

□Φ = (−g)gµν∂µ∂νΦ +
√
−ggµν∂µ

√
−g∂νΦ (B.3)

Since the background spacetime is spherically symmetric, the linear element can be
written as

ds2 = −F (r)dt2 + 1

B(r)
dr2 + r2dΩ2 (B.4)

Actually according to Birkhoffs theorem, the only spherically symmetic solution to the
Einstein equation is the Schwarzchild metric, where

F = B = 1− 2GM

r
(B.5)

But we may have other models where the metric is not continous, we use the more
general form Eq.(B.4). Having the metric, we can calculate

g = −F
B
r4sin2θ (B.6)

We first calculate the second term in Eq.(B.3) We know that

∂µ
√
−g = 1

2

√
−ggαβ∂µgαβ (B.7)

Then
I ≡

√
−ggµν∂µ

√
−g∂νΦ

= −1

2
ggµνgαβ∂µgαβ∂νΦ

= −1

2
gB

(
F ′

F
+
B′

B
+

4

r

)
∂rΦ− 1

2
g
2cosθ

r2sinθ
∂θΦ

(B.8)

We decompose the wave function Φ into spherical harmonics

Φ =
∑
lm

Ylm(θ, ϕ)
ψlm(t, r)

r
(B.9)
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Substituting it into Eq.(B.8) we have

I = −1

2
gBYlm

(
F ′

f
+
B′

B
+

4

r

)
∂r

(
ψlm

r

)
− 1

2
g

(
ψlm

r

)
2cosθ

r2sinθ
∂θYlm (B.10)

The first term in Eq.(B.3) is

U ≡ (−g)gµν∂µ∂νΦ

= (−g)

[
− 1

F
∂2tΦ +B∂2rΦ +

1

r2
∂2θΦ +

1

r2sin2θ
∂2ϕΦ

]

= (−g)

[
− 1

F

Ylm
r
∂2t ψlm +BY ∂2r

(
ψlm

r

)
+

1

r2
ψlm

r
∂2θY +

1

r2sin2θ

ψlm

r
∂ϕY

] (B.11)

For spherical harmonics we have

1

sinθ

∂

∂θ

(
sinθ

∂Y

∂θ

)
+

1

sin2θ

∂2Y

∂ϕ2
= −l(l + 1)Y (B.12)

Therefore

U = (−g)

[
− 1

F

Ylm
r
∂2t ψlm+BY ∂

2
r

(
ψlm

r

)
+

1

r2
ψlm

r

(
−l(l+1)Ylm−

cosθ

sinθ
∂θYlm

)]
(B.13)

We now change the coordinate r to tortoise coordinate r∗
dr∗
dr

=
1√
FB

(B.14)

d2r∗
dr2

= −F
′B + FB′

2(FB)3/2
(B.15)

then we have
∂rψ =

dr∗
dr
∂r∗ψ =

1√
FB

∂r∗ψ (B.16)

∂2rψ =

(
dr∗
dr

)2

∂2r∗ψ +
d2r∗
dr

∂r∗ψ

=
1

FB
∂2r∗ψ − F ′B +B′F

2(FB)3/2
∂r∗ψ

(B.17)

With Eq.(B.13), Eq.(B.16) and Eq.(B.17), we have

U = (−g)

[
− 1

F

Y

r
∂2t ψ + Y B

[
1

r

(
1

FB
∂2r∗ψ − F ′B +B′F

2(FB)3/2
∂r∗ψ

)

− 2

r2
1√
FB

∂r∗ψ +
2

r3
ψ

]
+
ψ

r

1

r2

(
− l(l + 1)Y − cosθ

sinθ
∂θY

)] (B.18)

– 65 –



With Eq.(B.10), Eq.(B.16) and Eq.(B.17) we have

I =− 1

2
gY B

[
1

r

1√
FB

(
F ′

F
+
B′

B
+

4

r

)
∂r∗ψ −

(
F ′B −B′F

BF
+

4

r

)
ψ

r2

]
− 1

2
g
ψ

r

2cosθ

r2sinθ
∂θY

(B.19)

The wave equation gives
I + U = 0 (B.20)

Therefore we have [
− ∂2t + ∂2r∗ − V (r)

]
ψ(r, t) = 0 (B.21)

where
V (r) =

Fl(l + 1)

r2
+
F ′B + FB′

2r
(B.22)

We can further decompose ψ(r, t) into

ψ(r, t) =

∫
dω

2π
ψ̃(ω, r)e−iωt (B.23)

This allows us write Eq.(B.21) into an ordinary differential equation

d2ψ̃(ω, r)

dr2∗
+ (ω2 − V (r))ψ̃(ω, r) = 0 (B.24)

This is the radial wave equation. The potential V depends on the background spacetime
where the wave propagates. In Schwarzschild spacetime, it is

V (r) =

(
1− 2M

r

)(
l(l + 1)

r2
+

2GM

r3

)
(B.25)
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