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Abstract

Radiative transfers in the atmosphere are difficult to compute accurately in numerical
weather prediction (NWP) models, without the procedure becoming too computa-
tionally expensive.

In this thesis it has therefore been tested to substitute a part of the shortwave radi-
ation parameterization in the Weather Research and Forecasting (WRF') model with
neural networks, to investigate a possible increase in computational efficiency of such
a modified parameterization and its accuracy.

The data set used to train the neural networks was created with the RRTMG-fast
shortwave radiation parameterization scheme in the WRF model.

After several optimization processes, three configurations of neural networks were
implemented and tested in the WRF model, replacing an computationally expensive
part of the RRTMG-fast scheme.

To evaluate the three neural network modified shortwave schemes, four 96-hour sim-
ulations were carried out as case studies, to compare how the model performs in
different weather situations.

Additionally to the original RRTMG-fast scheme and the three variants modified
with neural networks, the four case studies were simulated with three other shortwave
parameterization schemes as well: the RRTMG, New Goddard and Dudhia schemes.
Comparison of the results showed that the modified neural network schemes were
able to make predictions similar to the original RRTMG-fast scheme, but were com-
putationally slower.

A quick test addressed one of the causes, the activation function, and suggested that
the computational time of the neural networks can be reduced significantly by using
a different activation, though the new performance has yet to be evaluated, while
possible further optimizations are addressed.
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1 Introduction

In recent years the applications of machine learning and neural networks have in-
creased and continue to do so, as computing power and huge data sets become more
easily available.

For computation heavy weather and climate models it is therefore interesting to inves-
tigate if it is possible to take advantage of neural networks to save computation time
while maintaining good quality forecasts. Supercomputers necessary for weather fore-
casting and advanced climate models consume a large amount of energy, e.g. the UK
Met Office’s supercomputer consumes ca. 2.7 Megawatt (MW) [MetOffice-website, |.
Meanwhile, the new data center of ECMWF is build upon a 10 MW supply, planned
to be upgraded to support 20 MW in the future [ECMWEF, 2017|. The high electri-
cal consumption rates, partly due to the cooling of the machines, has also lead to
a cooperation between the Danish Meteorological Institute, DMI, and the Icelandic
Meteorological Office, where a common supercomputer has been set up on Iceland,
taking advantage of the general colder climate, lowering the necessary energy to op-
erate [Ingenigren, 2016]. Since computation time and energy consumption is directly
correlated, this is another reason to focus on optimizing computation routines.

There is a strong interest in many projects working with the numerous ways

of using neural networks in numerical weather prediction (NWP) models, e.g. bias
correction of input data, learning about model error during data assimilation process,
or replacing computation-heavy components of the model, in hopes of improving
forecasts such as from ECMWF [Dueben, 2020]. Past studies have investigated the
application of neural networks to improve predictions of a single atmospheric variable
with different approaches, e.g. precipitation, using output data from a single model
[Coblenz, 2015]; and multiple models [Krasnopolsky and Lin, 2012].
In other surveys the 500hPa geopotential height has been used to analyze how well
neural networks are able to learn non-linear atmospheric dynamics, investigating
challenges and different configurations for neural network based predictions ([Dueben
and Bauer, 2018|; [Weyn et al., 2019]). The implementation of neural networks
in model’s parameterization schemes, such as in the longwave parameterization at
ECMWEF, has been tested as well ([Chevallier et al., 1998|; [Krasnopolsky et al.,
2005]).

The computation of radiation in NWP models takes up a large portion of the
computing time for the whole model, compared to other physical parameterizations
and calculations. Estimating radiative transfers involve multiple challenges both at
the surface and through the atmosphere, including clouds and clear sky absorption
conditions [Hogan et al., 2018|. Therefore, the efficiency of the radiation parame-
terization is important, to reduce the time consumption as much as possible, while
keeping the high quality.

Radiation, i.e. electromagnetic waves, come in a variety of different wavelengths.
Properties like reflection, absorption and emission of those waves vary depending
on the specific wavelength, e.g. emission of longer wavelengths by the earth is a
key mechanism for the greenhouse effect, but the earth does not emit shortwave
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radiation, because the earth is too cold. The Radiation spectrum is usually divided
into two wavelength sections, the shortwave and the longwave radiation, which will
be explained further in the following sections. In atmospheric models both types are
handled separately in the code, so there is a parameterization scheme for each of
them.

In this study it has been focused on the shortwave radiation parameterization
of the weather research and forecast (WRF) model. Case studies with an original
radiation scheme and a modified scheme using neural networks have been executed,
to test the application of neural networks in NWP models and possible improvement
of the parameterization scheme. Both the computational efficiency and performance
of the weather prediction will be analyzed.

The reader will be presented some theory behind radiative transfers in the atmo-
sphere and the common methods of implementation into atmospheric models (param-
eterizations), as well as a short introduction to artifical neural networks and machine
learning in section 2. Thereafter the focus will move towards the WRF model used in
this study and its radiation parameterization schemes in section 3. The development
and implementation of the used neural networks will be presented in section 4. Lastly
results of the model runs with the original scheme and modified schemes with neural
networks will be presented in section 5 and discussed in section 6, ending with an
overall conclusion on the results in section 7.
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2 Theory

Although there are methods to calculate radiative transfers with high precision, these
are not actually used in NWP models, for multiple reasons.

One would be that the computation is simply too expensive for operational weather
forecasting models to be of use. Another one is that the needed radiative variables,
e.g. optical depth, albedo, etc., which will be presented in the following sections, are
not part of or directly describable by the governing equations and thermodynamic
fields the model is build upon, such as e.g. temperature or pressure. Those quantities
must therefore be approximated with both the thermodynamic variables as well as
additional physical quantities from other parameterization schemes, e.g. cloud/gas
micro-physics.

While approximate solutions for radiative transports in parameterizations are
used, the resulting uncertainties of those methods need to be kept at a minimum.
Good parameterizations for radiative transfers are needed, as radiation plays an im-
portant role for not only heating and cooling in the atmosphere, but also for e.g.
the surface energy balance calculated in the separate Land Surface parameterization,
which depends on radiative surface fluxes. Since the different schemes of the model
use and provide inputs among one another, one parameterization failing will hinder
the model from advancing further.

Before examining the model code and the approximations made in the parame-

terizations, it is important to understand the physics that the WRF model tries to
simulate. The following section will therefore first focus on the real world physics of
radiation in the Earth’s atmosphere and then on possible methods of implementation
in NWP models.
The following theoretical section about radiative transfer takes inspiration of parts of
the books [Wallace and Hobbs., 2006] and [Randall, 2015], which give a good intro-
duction to atmospheric dynamics as well as [Liou, 2002] and [Thomas and Stamnes,
1999|, which offer a more extensive description of radiative transfers in the atmo-
sphere. Lastly a brief introduction to neural networks relevant to this study will be
given.

2.1 Radiation in the real world

The main mechanism by which the Earth can exchange energy to and from outer
space is radiation, i.e. electromagnetic waves. Alongside sensible and latent heat ex-
changes, radiative transfers also redistribute energy within the Earth’s own system.
The insolation, i.e. the incident solar radiation hitting the top of the atmosphere
(TOA), is the most important upper boundary condition of the Earth’s global cir-
culation of the atmosphere. The amount of sunlight reaching the TOA varies with
geography and time, as well as the Earth’s geometry and orbit. The resulting im-
balance of heat distribution is related to major atmospheric dynamics, redistributing
energy and mass in the atmosphere. Both the Earth’s outgoing radiative fluxes and
large scale atmospheric motions can be observed with satellites.
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As described in quantum physics, transitions between different (distinct) energy
states lead to emission of waves with different wavelengths. These electromagnetic
waves come in a wide spectrum of wavelengths and are able to travel through both
vacuum and media. Radiation is often categorized into a shortwave spectrum, i.e.
solar radiation, which is mostly visible light coming from the sun, and a longwave
spectrum, thermal radiation, which is emitted by the Earth. When such a wave passes
through the atmosphere, which contains different gases and aerosols, the wave might
be absorbed, emitted or scattered, depending on both the quantities of the wave-
length and the hit molecule. It is a complex process, since it depends on different
properties of the individual wavelength and the traversed medium.

For instance, shortwave radiation is mostly scattered and reflected in the atmo-
sphere, while only a very small amount is emitted. The reflection and scattering
of these electromagnetic waves can become visible as colours. The effect of scatter-
ing depends on the specific wavelength and size of the particle, which can also be

expressed as a size parameter x:

2rr
_ 2 2.1
T 3 (2.1)

The size parameter x is dimensionless and describes the ratio between the radius
r of the particle and the wavelength A\. For very small particles x << 1, e.g. air
molecules, which the atmosphere mostly consists of, the scattered intensity I is in-
versely proportional to the wavelength:

T o A4 (2.2)

It follows that the intensity and scattering efficiency are large for small wavelengths.
Thus, the small wavelengths at the shorter end of the solar radiation spectrum, visible
as blue, get scattered a lot more than the larger, red wavelengths in the atmosphere.
It is because of this process that the sky appears blue during the day, this phenomena
specifically is called Rayleigh-scattering.

Not all of the solar radiation from the Sun that hits the Earth’s TOA passes
through the atmosphere and reaches the surface. Parts of it get reflected at the TOA
by clouds, or gets absorbed on the way downwards. The surface does not absorb
all of the radiation that it’s hit with either, some gets reflected back up into the
atmosphere, where it again can get absorbed or scattered. The incident angle with
which the wave hits the medium is also important, as the absorption and reflection
changes with elevations. White, light surfaces such as snow and clouds reflect a lot
of the shortwave spectrum, though not of the longwave radiation, while dark surfaces
such as the ocean absorb a lot of the radiation, i.e. the ocean has a low value of
albedo. Albedo is a measure of how much solar radiation is reflected, an albedo of
one describes a perfect reflector, while an albedo of zero indicates the absorption of
all wavelengths.

Figure 2.1 depicts how much of the spectrum of the solar radiation of the Sun
reaching the TOA, yellow shading, actually reaches the Earth’s surface, red shading.
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Figure 2.1: Solar radiation spectrum at the top of the atmosphere (yellow), and
at surface (red). The ideal blackbody spectrum is shown as black curve. The part
marked as the beginning of the Infrared spectrum is often referred to as near-Infrared
radiation. Figure 4.1 from [Inness and Dorling., 2013|

It is noticeable, how the amount of absorption differs for the individual wavelengths,
some wavelengths have even been absorbed completely. Different gases in the at-
mosphere, absorb different wavelengths, giving rise to those absorption bands. The
most prominent ones for the shortwave radiation are those of ozone (Os) in the ul-
traviolet (UV) part and water vapour (H20) in the near-Infrared (IR) part of the
spectrum. The border between the small spectrum of visible light to ultra violet and
near-Infrared wavelengths is shown in the figure as well.

The black curve shows the idealized blackbody spectrum. A blackbody is a the-
oretical idealized body which absorbs radiation of all wavelengths, as well as being
able to emit radiation in the complete, continuous spectrum.

The intensity of emitted radiation of such a blackbody, is given by the Planck function:

C1 /\_5
m(ec2/AT — 1)
where B, is the blackbody monochromatic intensity, i.e. blackbody intensity of a
specific wavelength A, depending completely on the temperature of the body.

T is temperature, ¢; = 3.74 x 1071°Wm? and ¢, = 1.45 x 1072Wm?.
By integrating wB) over all wavelenghts, one arrives at the Stefan-Boltzmann law:

BA\(T) = (2.3)

F=oT* (2.4)

where F is the (blackbody) flux density and ¢ = 5.67 x 107*Wm?K~* the Stefan-
Boltzmann constant.



17.8.2020 2 THEORY Page 6 of 122

(a) Blackbody
curves
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Figure 2.2: (a) Blackbody spectra for Sun (left) and Earth (right), normalized for
an easier comparison between the two, as the magnitude of the Sun’s curve is much
larger than that of the Earth. Absorption spectrum shown for (b) upper part of the
atmosphere above 11km height and (c) entire atmosphere. Figure 4.7 from [Wallace
and Hobbs., 2006]

If one measures the flux density of a nonblack body and uses the Stefan-Boltzmann
law from equation (2.4) to calculate the the temperature T, then T will not be the
blackbody temperature, but rather the equivalent blackbody temperature Tg.

The flux density of the solar insolation, also called solar constant, is Fg = 1368Wm 2
Even if the Earth is assumed to be in a radiative equilibrium state, where there is no
energy change because of radiative transfers, the flux density of the emitted longwave
radiation of the Earth Fpg, is not equal to the flux Fs of the incoming solar radiation.
There are two reasons for this:

First, there is a certain amount of solar radiation reflected by the Earth without
any absorption, ca.30%, so the planetary albedo for the whole Earth can be approx-
imated to A = 0.3. Therefore the amount of absorbed radiation becomes (1 — A)Fg.

Second, the incoming solar radiation from the sun hits only a cross-section of
the Earth, a disk area Ay, = mR?, where R is the Earth’s radius, while the Earth
emits longwave radiation around its whole surface, approximately the area of a sphere,
Ashpere = 47 R?, four times larger than the area of the cross-section. Thus the Earth’s
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emitted flux density becomes:

Agise _ (1= A)Fs
Asphere 4

Fp=(1-A)Fs = 239.4Wm > (2.5)
From this the equivalent blackbody temperature Tg of the Earth becomes, using the
Stefan-Boltzmann law from equation (2.4):

F
Ty = {| =2 = 255K (2.6)
g

So T is calculated to be 255 K for the Earth, which is also noted in figure 2.2 (a).
The curve of a blackbody spectrum as those shown in figures 2.1 and 2.2 was calcu-
lated with the Planck function, equation (2.3), and is only temperature dependent.
Figure 2.2 (a) shows the ideal emission blackbody spectrum for both the Sun on the
left, as seen before, as well as for the Earth on the right. It becomes clear, that
because the Sun is much warmer than the Earth, the two spectra are almost not
overlapping. This is taken advantage of in NWP models, where two sets of param-
eterizations are made separately, one for the solar, shortwave radiation, and one for
the terrestrial, longwave radiation type [Inness and Dorling., 2013]. From figure 2.2
(b) and (c) it can be seen that the absorption bands and corresponding gases also dif-
fer for the two categories of wavelengths. For instance absorbs carbon dioxide (COs)
radiation mostly in the longwave spectrum, e.g. with a very prominent peak at 16
pm. Additionally, since (b) and (c) depict absorption at different altitudes, it indi-
cates that the efficiency as absorber and amount of different gases in the atmosphere
varies.

The absorption bands of the longwave spectrum and their corresponding gases are
also referred to as green house effect. While the shortwave spectrum shows radiation
moving downwards through the atmosphere, the longwave spectrum is the radiation
emitted by the Earth. However, gases such as water vapor and carbon dioxide can
absorb much of this emitted radiation and re-emit it into all directions, causing a
fair amount to transfer back to the surface, heating it. Thus these processes are
important for the Earth’s energy budget.

Not shown here, but also important in terms of scattering and reflecting radiation are

aerosols in the atmosphere as well as clouds, which are also important due to their
high albedo.

2.1.1 The Radiative Transfer Equation (RTE)

Figure 2.3 depicts a single radiation beam, i.e. radiation travelling in a specific di-
rection such as a ray of light, moving through a medium, changing it’s intensity I
due to scattering, absorption and emission.

In this case a beam of a single wavelength is considered, called monochromatic radia-
tion, however, to calculate the intensity of a spectrum of wavelengths, one does only
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Figure 2.3: Illustration of a radiation beam depleting while passing through an ex-
tinction medium. Figure 1.12 from [Liou, 2002]

need to integrate over the desired wavelength bands:

A2 V2
[= / Ld)\ = / Idv (2.7)
A1 v1

I is then the total intensity, i.e. the energy emitted by the electromagnetic waves
moving through a unit area per unit time. \ is the wavelength and v = 1/X is the
wave number, i.e. the inverse of the wavelength. All radiation equations can be
expressed both with A and v, note that the energy is inversely proportional to A, i.e.
a longer wavelength transports less energy.

Considering the monochromatic intensity I, in figure 2.3 again, and defining
this as the initial intensity, while Iy, 4+ dI, describes the intensity of the beam after
travelling through the medium with thickness ds, makes it possible to define the
change of intensity dl, with:

d[)\ = —[AkApTdS (28)

where p is the density of air, r is the mass of absorbing (and/or scattering) gas per
unit mass of air and k, is called the mass absorption coefficient, which depending
on 7 describes extinction due to both absorption and scattering. The product kypr
is the volume extinction coefficient, which includes both effects of absorption and
scattering, depending on the medium/gas.

Both scattering and absorption lead to the extinction of a passing solar radiation
beam. In the same way there can be a strengthening of the initial I, if there is
emission in the medium, as well as multiple scattering in all directions. This effect
can then be combined into the source coefficient jy, analogue to equation (2.8):

dly = jrprds (2.9)

Note that there is no I on the right hand side of this equation, as the emission and
multiple scattering is not dependent on the initial intensity of the beam.
Combining equation (2.8) and (2.9) gives an expression for the complete change of
[/\i

dly = — I kyprds + jyprds (2.10)
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Defining the source function J) as ratio between the source coefficient j, and the
mass absorption coefficient k) makes it possible to simplify the equation into:

J)\ = j/\/k)\ (211)
drly

=1 2.12

kyprds At ( )

Equation (2.12) is the general form of the radiative transfer equation (RTE), describ-
ing the interaction between radiation and a medium, taking into account scattering,
absorption and emission. The goal of the radiation parameterization in a NWP model
is to get close to the real solution of this equation.

2.1.2 The Beer-Bouguer-Lambert Law

Solving the radiative transfer equation depicted in equation (2.12) is not trival. Eval-
uating the source function J, for real world applications proves difficult and will be
described in the following sections. For a simple case, where emission and effects of
multiple scattering can be neglected, equation (2.12) reduces to the simple form:

dl)
kxprds

=1, (2.13)

which is a differential equation that can be solved analytical if boundary conditions
are provided. Considering the example from before, depicted in figure 2.3, the initial
intensity is ,(0) at s = 0 and the intensity is I (s1) at a distance s = s;. Then
integrating equation (2.13) with these boundary values yields:

L(s1) = I (0) exp < - /O ) kwds> (2.14)

For a homogeneous medium k), is constant, i.e. it is independent of the distance s
that the radiative beam travels through the medium. Therefore one can simplify
equation (2.14) further for such cases, by defining the path length wu:

u = / prds (2.15)
0
with which equation (2.14) becomes:
I(s1) = I,(0)e ™ (2.16)

This equation is known as the Beer-Bouguer-Lambert Law, sometimes also referred
to under shorter names as Beer’s law or Lambert’s law. It follows from this formula,
that the intensity in a homogeneous medium decreases from its initial value as an
exponential function depending only on the path length and the absorption coefficient.
Note that since there is no dependency on the direction of the beam in equation (2.16),
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it is also applicable to flux and flux density calculations. Moreover, one can define
the (monochromatic) transmissivity 7y from equation (2.16) :

T\ = [Ii\((%l)) — e kau (2'17>

The layer’s (monochromatic) transmissivity 75 describes the amount of undepleted
intensity, that managed to pass through the layer. From this definition it should
become evident, that the transmissivity is a quantity that ranges between 0 and 1.
For a value of 0 no intensity will pass through a medium, i.e. all intensity is either
absorbed and/or scattered away, while a value of 1 describes a medium where the
beam of a wavelength can pass through unhindered, i.e. the medium is transparent
for the wavelength.

The same principle can be applied to the layer’s (monochromatic) absorptivity Ay,
which quantifies the amount of absorbed intensity, and (monochromatic) reflectivity
Ry, i.e. the amount of radiation that is reflected by the medium through scattering
processes.

Additionally, in absence of scattering, one can relate the (monochromatic) ab-
sorptivity A, to the transmissivity T:

Ay =1-T\=1—e " (2.18)

This is an expression of energy conservation, as all radiation in a non-scattering
medium either passes through or will be absorbed. Likewise, the energy conservation
can be formulated for cases with scattering as:

1=A,+T\+ R, (2.19)

2.1.3 RTE for Plane-Parallel Atmospheres

Figure 2.4: Tlustration of the spherical coordinates used for a plane-parallel atmo-
sphere. 6 is the zenith angle, ¢ is the azimuthal angle and s is the position vector.
Figure 1.15 from [Liou, 2002]
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For most radiative transfers applications in the atmosphere it is useful to divide the
atmosphere into plane-parallel portions. In a plane-parallel framework the physical
variables, such as temperature, vary only in the vertical direction, i.e. they are
functions of height or pressure only. Such a framework is natural for NWP models,
where the atmosphere is divided into vertical columns, which will be further described
in section 3.

The advantage of using a plane-parallel structure is that one can easily measure
the distance between the normal of the plane of stratification and a radiative beam
and its travel path, for all possible incident angles. Figure 2.4 depicts a coordinate
system for the plane-parallel atmosphere, where s is the position vector, while 6 and
¢ are the zenith and azimuthal angles respectively.

It follows from this geometry that ds = -2 with which the general RTE in equation

cos @’
(2.12) takes the following form for plane-parallel atmospheres:

dly(z; 0,
08 8—2£2rd7;¢) = —1)(2;0,0) + J\(2;0, 0) (2.20)

One can now introduce a parameter called the optical depth (thickness) 7, which
describes the amount of depletion a radiative beam would experience during a direct
passage through a layer, when # = 0. 7, will be important for the radiation parame-
terization in NWP models in the following sections. The dimensionless optical depth,
measured downward from the upper boundary, the TOA, can be defined as:

T,\E/ kyprdz' (2.21)

With this optical depth 7y, and p = cos @, equation (2.20) can be written as:

dI\(Ta; b, @
M% = L7 1, 8) — In(Tas 1, ) (2.22)
This is the general radiative transfer equation for plane-parallel atmospheres, which
is the fundamental equation for all following discussions of radiative processes in the

atmosphere.

2.1.4 General solution of the RTE for the solar spectrum

In section 2.1.2 a solution to the RTE for the idealized case of a non-scattering
medium was derived. This section will focus on a solution to the general RTE in its
newly derived plane-parallel form in equation (2.22) for shortwave radiation, i.e. the
solar spectrum.

Considering a scattering medium and the general RTE, one needs to take into
account both the effects that cause the extinction of the initial intensity, i.e. absorp-
tion and scattering, as well as the strengthening of the intensity due to emission and
multiple scattering, which defines the source function J,, for all wavelengths.

The extinction of a beam’s intensity in absence of scattering and emission has been
described earlier in section 2.1.2. The focus will now be shifted to the source function

.
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As it was seen in section 2.1 and in figure 2.2, the Earth’s emission lies mainly in
the IR spectrum and can be described with the Planck’s function of a black body, so
that, in the absence of multiple scattering, the source function for the Earth can be
expressed as:

Jx = BA(T) (2.23)

This would be true for an atmosphere where the emission of the earth would travel
through the atmosphere unhindered, but that is not true in reality. Due to gasses
absorbing and re-emitting this radiation, i.e. the greenhouse effect, one would need
to correct for these processes with an additional absorption coefficient.

However, there is no significant overlap between the shortwave and longwave spectra
as aforementioned, and thus the emissions can be neglected for applications in the
solar spectrum.

Therefore only scattering processes need to be considered for the RTE.

(a)
Incident Beam

(b)
- @ @ Scattered light
/d

1 3

Incident light l Va

—_— 0

(c) /1N P
- Forward - /‘T/T\E— —_—
- N£
/N
(a) scattering (b) multiple scattering

Figure 2.5: Illustrations for (a) scattering and (b) multiple scattering processes. Fig-
ure (a) shows different angular patterns of scattering, while Figure (b) shows an
example of multi order scattering up to the third order. Figure 1.4 and 1.5 from
[Liou, 2002]

There are two types of scattering that need to be examined. First the direct
scattering of a solar beam due to a medium, and second the multiple scattering of
diffuse radiation. Diffuse radiation describes radiative beams that have at least been
scattered once, while solar beams that have traveled directly from the Sun to the
Earth’s surface are called direct radiation.

The multiple scattering is a sequence of scattering processes and all of them are
affected by the scattering angle and properties of the scattering medium, i.e. the air
and cloud particles, as well as aerosols.

Different kinds of scattering are depicted in figure 2.5 (a), where the same beam is
scattered by different angular patterns, some scattering more evenly to all directions,
others scattering more towards a certain direction, e.g. forward as seen in (c).
Figure 2.5 (b) shows an example of multiple scattering, up to the third order, i.e. the
initial beam is scattered three times until it takes the direction of interest.
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While the scattering at the three points P, Q and R is depicted to be the same at
each of them, this is not necessary the case, depending on whether the scattering
medium is homogeneous or not.

To calculate the scattered intensities the angular distribution must be known for
the whole path the scattered light undertakes. For this a phase function Py(cos©) is
introduced.

The phase function holds information about the angular distributions through the
scattering angle ©, which can be expressed in the same spherical coordinate system
as used for the plane-parallel RTE shown in figure 2.4, with y = cos 6.

Considering an initial incoming beam with incident angles p/ and ¢’, which is
scattered (multiple times), until it has angles p and ¢ as it leaves the scattering
medium, lets the phase function become a function of u, ¢, ¢’ and ¢'. P\(u; ¢; 1t ¢')
describes then the angular distribution of the scattered beam.

cos© =y + (1= 1i®)2(1 — )2 cos (¢ — ¢) (2.24)

If the Sun’s position is described by the angles g and ¢g, the scattering of a Sun’s
direct solar beam can be constructed with the solar zenith angle, which is pg, as well
as a scattering coefficient f; ), which describes how efficient the medium or particle
is at scattering the beam. This direct scattering can then be formulated as follows
for the source function:

1
4mr
Here Fj ) is a part of the solar flux from the TOA at wavelength A. The factor ﬁ
is the ratio of the 47 solid angle. Note that as downward angles are per definition
negative, a minus-sign was added to pg in equation (2.25).

While equation (2.25) describes the contribution of the direct scattering to the source
function, also multiple scattering processes, i.e. diffuse radiation, need to be ac-
counted for. This can be done with the following double integral:

d/JJlqu/

47

Iy = BerFoxe ™M Py (1, ¢; — o, o) (2.25)

27 1
h=b [ [ BE P o) (2.26)
0o J-1
Like the scattering coefficient (s, a extinction coefficient . ) can be defined. This

is useful, as one can then define the ratio between scattering and extinction as single-
scattering albedo w):

~ Bs)\

Wy = —
ﬂe)\

The term albedo was introduced earlier as a ratio of how much radiation is reflected
or absorbed, i.e. how opaque a medium appears for a radiative beam, which now can
be quantitatively described with the optical depth 7. Likewise the single-scattering
albedo w, is now an expression quantifying the amount of scattering by a medium.

(2.27)
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wy = 0 describes a non-scattering medium as investigated before with the Beer-
Bouguer-Lambert law in section 2.1.2, while a medium with @, = 1 scatters all
incoming radiation with wavelength A.

Taking the general RTE equation (2.22) and adding the direct scattering in equation
(2.25), diffuse scattering from equation (2.26) as well as the single-scattering albedo
in equation (2.27), the RTE takes the form':

dIy(Tx; i, ) ol
pID O 0) g gy / / Ia(s s &) Pa(jts & 4 &)
d'r)\ 4'/T 0 1 (228)
w
—ﬁF@,/\e_”/“OPA(M, ®; —pto, Po)

To solve radiative transfer problems the three parameters: the optical depth 7, the
single-scattering albedo @, and the phase function Py(cos ©) need to be determined.
The phase function Py(cos ©) can be expressed as a series of Legendre polynomials
P, of Ith order, which are commonly used in physics due to their mathematical prop-
erties. This allows to choose the accuracy of representation needed with the number
of polynomials V:

N
P(cos©) = ZwlPl(cos 0) (2.29)
1=0
Note that from now on the subscript A for specific wavelengths will be neglected,

to avoid confusion in the following equations. w; is the expansion coefficient for
[=0,1,...,N:

204+ 1 [*
w = T+ P(cos ©)P,(cos ©)d cos O (2.30)

-1
For | = 0, wg = 1, while the first order phase function (I = 1), for which P;(cos©) =
cos ©, is used to define a commonly used parameter for radiative transfers in the

atmospheres, the asymmetry factor g:

1
g= % = %/ P(cos ©) cos ©d cos O (2.31)
-1

The asymmetry factor is the first moment of the phase function and describes the
propagation of scattered radiation, giving a relative indication of the ratio that is
scattered forward. For an isotropic medium, such as Rayleigh scattering, g = 0, but
g can also increase if the scattering has a more forward directed scattering, e.g. figure
2.5(a):(c), as well as become negative for cases where backward scattering dominates.
Combining equation (2.24) and equation (2.29), the phase function becomes:

1To be consistent with the formalism in equation (2.25) and equation (2.26), I (7x; u; ¢) included
a factor (. x, while the optical depth actually had become 7y = fzoo Be,ad?’, instead of the expression
in equation (2.21).



17.8.2020 2 THEORY Page 15 of 122

N
P, s/, ¢) =Y wiPilud’ + (1= p®)' (1 = p*)'/? cos (¢/ — ¢)] (2.32)
1=0
Legendre polynomials have many mathematical and geometrical properties. In this
case it becomes possible to decompose equation (2.32) into spherical harmonics with
the addition theorem?:

N N
P(u, ¢, @) = DY wi" PP () P (i) cos m(¢' — o) (2.33)
m=0 [=0
where l Y
" —m)!

for { = m,...,N with 0 < m < N, as well as P/ as the associated Legendre poly-
nomials and dy,, as the Dirac Delta function which is either 1 for m = 0 or zero
otherwise.

Likewise, the intensity I(7;u, ¢) can be expressed with spherical harmonics as:

N

I(t;p, ¢ Z (7, ) cosm (¢’ — @) (2.35)

m=0

Inserting the spherical harmonic expressions for P(u, ¢; ', ¢') and I(T;u, ¢) from
equation (2.33) and equation (2.35) into the RTE in equation (2.28) and taking
advantage of the orthogonality of the associated Legendre polynomials, the RTE
splits into (N + 1) independent equations of the form:

dI™ (7, 1)
H dr

S WP (s / P ()™ (7, i
t=m - (2.36)

——szmpl (—po) Foe™ /10

:]m<7_“u) 1_50m

FMEI

Each of the independent equations can be solved to determine I™, which then can
be used to calculate the (monochromatic) intensity I with equation (2.35).

For the case m = 0, the intensity I in equation (2.35) becomes independent of the
azimuthal angle ¢. This represents a medium that is homogeneous in the horizontal
plane, which is a good approximation for many atmospheric models. The phase
function for this case becomes:

)= WP P (2.37)

2For a detailed description of the addition theorem see e.g. Apendix E in [Liou, 2002].
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While the RTE takes the form:

dI(T, p o !
p ) 1) =5 [ 1) P
-1 2.38
_EF P(u _MO)B—T/HO | )
47T @ )

The upward F dt‘f and downward F jif diffuse monochromatic flux densities can then
be defined with (7, i) :

+1
Fli(r) =2 /O I(7, p)pdp (2.39)

where the positive integral limit corresponds to the upward flux, while the negative
is used for the downward flux. Equation (2.39) shows the diffuse part of the solar
flux, but does not take the direct, non-scattered solar radiation into account. The
direct flux density can be defined with the Beer-Bouguer-Lambert law as derived in
equation (2.16), so that:

Fh(7) = poFoe™m (2.40)

Naturally there can not be a direct upward density flux from the solar radiation on
Earth, as all upward directed solar radiation has been at least been scattered once
by the atmosphere or surface.

Combining the diffusive and direct part of the solar flux densities the upward and
downward fluxes become:

F'(r) = F;if(T) = 27r/0 I(7, p)pudp (2.41)

1
FH(r) = Fiy(r) + By (1) =2n | I ppd + poFoe ™ (242)
0

The (monochromatic) net flux density, i.e. the difference between upward and down-
ward fluxes is then:

F(r) = FX() = F'(1) (2.43)

To compute the total solar net flux density F for the whole shortwave spectrum, one
would need to integrate F'(7) over all wavelengths in the spectrum. The net flux can
only be either zero for an atmosphere in equilibrium, or take a positive value, which
indicates warming of the system. A warming due to the divergence of the solar flux
can be quantified as the solar heating rate:

or 1 OF
— = (2.44)
ot pc, 0z
where T is the temperature, ¢ is the time, p is the density of air in the layer and ¢,
is the specific heat at constant pressure.
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2.2 Radiation in atmospheric models

From the expression of the heating rate in equation (2.44) it becomes apparent that
the solar radiation fluxes are not only important for the surface heating through the
day and night cycle but also for the vertical thermal structure of the atmosphere.
Even though the RTE can be simplified through general assumptions such as the
plane-parallel atmosphere and horizontal homogeneous approximation, as shown in
the previous section, the task of solving the general RTE (2.38) is still complex and
computationally heavy for weather and climate models.

The three previously introduced radiative variables: the optical thickness T,
the single scattering albedo @ and the asymmetry factor g, are important for the
algorithms used to compute radiative processes in atmospheric models, which will be
focused on in this section.

Atmospheric dynamics can be described and calculated through the Navier-Stokes
equation, the thermodynamic equation, the continuity equation and equation of state.
However, the above mentioned radiative variables are not part of the Eulers equations
solved by the NWP model, which will be further discussed in section 2.2.3, when
spectral integration and bands are introduced.

There are a several processes in the atmosphere that are too complex, e.g. small
scale mechanisms, that need to be approximated in parameterization schemes in NWP
models, as shown in figure 2.6.

cloud
detrainment
| S

non-convective convective
rain rain

downward
SW, LW
surface
emission/albedo

surface
T, Qy, wind

Figure 2.6: Illustration showing an example of the interaction between parameteri-
zation schemes in the WRF model

From figure 2.6 it is evident that the different parameterization schemes interact
with one another. While the calculated radiation fluxes are important for the heating
handled by the Land-Surface scheme, the radiation parameterization scheme depends
on information about the surface, e.g. the albedo for the solar spectrum, and clouds
from the other schemes as well.
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A benefit of treating the radiative processes in a separate parameterization scheme
is that the radiation fluxes are not computed at every model time step, which normally
is only a few seconds to minutes long in a NWP model. The radiation scheme is
typically called once every hour in a forecasting model, as e.g. the ecRad code is
called hourly by the ECMWF model [Hogan and Bozzo, 2018].

Section 2.2.1 will focus on some of the commonly used approximate solutions for
the RTE used in NWP models, i.e. the two-stream method and its variations.

The issue of non-homogeneity in the vertical direction will be presented in section
2.2.2, when the vertical integration will be described.

While the treatment of gases, aerosols and clouds will be presented together with the
spectral bands and spectral integration in section 2.2.3, section 2.2.4 will describe the
effect and calculation of clouds in more detail.

Since the WRF model supports different radiation parameterization schemes, section
3.3 will focus on the selected ones used in this study and present those with the
methods that will be introduced in the following sections.

2.2.1 Two-stream-method

The computation of the radiative fluxes in NWP models requires that the RTE in
equation (2.38) can be solved analytically. This means that the integral in the second
term on the right hand side must be replaced by a finite sum. For this the Discrete-
ordinates method was developed |[Chandrasekhar, 1950|, which is the starting point
for the the two-stream method as well as four-stream method.

The concept of the Discrete-ordinates method is to use the Gauss’ formula to substi-
tute the integral with a sum over a finite number of quadrature points:

/¥ﬂmww322%ﬂw) (2.45)

j=—n

a; are weights defined as:

1 /1 P2n(:“)
a; = dp 2.46
TP () S =y (2:46)

where pi; are the zeros of the polynomials P, (x) and the prime of P, (;) denotes
the derivative with respect to p;.
Using (2.45) we can write (2.38), similarly to equation (2.36), as:

~ N n
al(r, p; w
Mi(d—T) = I(7, i) — b) Zwlpl(,ui) Z a; Py () (7, )
1=0

j=—n

(2.47)

~ N

w T ‘

—E%bewﬁwmwﬂww,mmzwwm
=0

This is a general representation of multiple radiation streams, i.e. radiation beams
propagating into the p;(—n,n) directions. In principle any (even) number of streams
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can be considered, for radiative transfers usually two or four streams are chosen [Liou,
1974]. For this general multi-stream method the following relations apply:

n
a—j = aj, H—j = —Hjs Z a; =2 (2.48)
j=—n
In the case of two streams, i.e. n =1, N =1, j = —1 and 1, these imply:
1
a=a_=1 (2.49)

Mlzﬁ,

Denoting the intensities IT = I (7, ;) and It = I(7, —p), one gets the following two
equations for the two-stream approximation from (2.47) :

- = I" =& = b)IT — ObIt — S ™/ko (2.50)
.
dre _ ., - L oIt — §teT/
—uld—:I —w(l =b)I* —@bl" — STe T/HO (2.51)
-

where g is the previously introduced asymmetry factor from equation (2.31), which
is zero for isotropic (Rayleigh) scattering:

1

1
g= % = 5/ P(cos ©) cos Od cos © = (cos O) (2.52)
-1
and ) P
—9 + oW
=< = —(1&4 2.
b=—=, 5=~ (1£3gmpu) (2.53)

From equation (2.50) and (2.51) it can be seen that the two intensities are inter-
dependent from the third term on the right hand side, which is a representation of
multiple scattering.

b and (1 — b) can be thought of as fractions of back- and forward-scattering, while
S* is the direct solar source term.

To finde the solution to those two first-order inhomogeneous differential equations,
two boundary conditions are required. For this the diffuse radiation at the surface
and the TOA are usually assumed to be zero, which yields the solutions?®:

I" = I(r, 1) = Kvek™ + Hue ™™ + ee™7/H0 (2.54)
IY = I(1, =) = Kue®™ + Hve ¥ 4 ~e=7/Ho (2.55)
where

1 1— 1—&
v = —i—a’ u= &, a’ = Ed (2.56)

2 2 1 —wg

a+p a— 0

— - 2.57
e=—— 1= (2.57)

3A more detailed derivation of the following equations can be found in [Liou, 2002]
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Zy i} Zoi} s (1-w)(1 —ag)
e 0TI e pi (2:5%)
1—@g)(S™+8+) S~ —5F 1—&g)(S™ —S*+) S~ + 8+
z, - L wg)(2 ) | oz = L wg)(2 )
uy H1to 251 H1fo
(2.59)

K and H need to be determined from the diffuse intensity boundary conditions. In
the case of no diffuse radiation at the surface and the TOA these two constants

become:
k1 kT

eve™/Ho — yue” euem /M — ype~

K=- 2okl _ 2e—km1 H=- D2k _ 26—k (2.60)
From the intensities the diffuse fluxes can be found with equation (2.39):
F'=2muI",  FY =2 It (2.61)

These solutions are only valid for non-conservative scattering atmospheres, i.e. © < 1.
While solutions for conservative scattering, @ = 1, can be derived from the equations
(2.50) and (2.51), values for conservative scattering are in practice satisfied by setting
@ = 0.99999 and using the equations for the non-conservative case.

Since the development of the two-stream method there have appeared many
similar methods for different applications, which all can be expressed in the same
framework as the two-stream approximation [Meador and Weaver, 1980], [Yang et al.,
2018], [Zhang et al., 2018|.

By integrating the RTE (2.38), the diffuse fluxes can be expressed as:

1 dFf(r ! o (P!
1 dF ):/ I(T,u)du——/ / I(7, ) P(p, 1) dpd' dp
2w dt 0 2 0 —1
- 1 (2.62)
w
— Z F. e /ko Plu. —un)d
A o€ /(; (:u7 ,UO) 12
1 dFY(r ! @ [t
L) =/ I(r, —u)du+—/ / I(7, 1) P(—p, 1) dp/ dpe
2 dr 0 2 )y J
- ) (2.63)
2 Foe /o Pl—u. —ua)d
+ 1 of /0 (=t —pio)dp
The general two-stream approximation can then be written as:
Ft
: dT(T) = N F(1) = 1 FH7) — 30 Fpe T/ (2.64)
dF(7) I t Ny
= NEFH (1) — % F (1) + (1 —y3)0Fse (2.65)

From the equations above it can be seen that the differential changes of the diffuse
fluxes depend on both the diffuse upward and downward fluxes as well as the direct
downward flux. The coefficients v;, 72 and =3 depend on the specific approximation
and its assumptions about the intensity and phase function.
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There are many different approximation methods, so only the ones relevant for
this study, i.e. the ones used by the WRF radiation parameterization schemes, will
be presented in the following paragraphs.

For the previously described two-stream approximation only two intensities are con-
sidered, traveling in the p; and p_1 direction, while the phase function has been
expanded in two terms of Legendre polynomials P,.

Another approach is the Eddington approximation, in which both the intensity and
the phase functions get expanded in two polynomial terms.

The corresponding values for the 1, 79 and 73 coefficients for these two variants of
the general two-stream approximation can be seen in table 2.1.

Method " Y 3
Two-stream =20+9)/2  &(-g) 1-3gyu1 10
©1 21 2
i 7—(443g)@ 1-(4-39)>  2-3
Eddington T e Saito

Table 2.1: Coefficients for the two-stream approximation in equation (2.64) and (2.65)

The solution of the general two-stream method in equation (2.64) and (2.65) is:

F' = vKef 4 uHe™ 4 ee7™/H0 (2.66)
FY = uKel™ 4+ vHe ™ ™ 4 ~e~7/Ho (2.67)

where H and K need to be determined by the boundary conditions and:

1 Y172 _1 e
Y CPEEE NPT )
k> = ’712 - 7227 €= [73(1/% - ’Yl) - ’72(1 - 73)]#3@1?@ (2-69)
v =—[(1 =) (/o + 1) + Vvsl o Fo (2.70)

2.2.1.1 ¢-Function adjustment

While the two-stream and Eddington methods yield good approximations for radia-
tive transfers in optical thick layers, they are rather inaccurate when the scattering
by particles has a strong forward peaked direction, as e.g. it is the case for cloud
particles.

To take into account the effect which such large forward peaks have on multiple
scattering processes, an adjustment is made to the absorption and scattering.
In practice this is done through the removal of the fraction, f, of the scattered energy
inside the forward peak from the radiative variables 7, @ and g.
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Let the apostrophe ’ denote the adjusted variables, and the optical thickness 7 be
defined as the sum of its scattering 7, and absorption 7, component. Then the
components of the optical thickness can be adjusted as:

To=1- 1) (2.71)

o= Ta (2.72)

Note that the absorption is not affected by the forward peak. The total adjusted
optical thickness becomes therefore:

=17 = (1= ) +7a= (1—0f)r (2.73)

Similarly, the adjusted single-scattering albedo &’ and the adjusted asymmetry factor
g’ can be expressed as:
/ 1 _ ~,
(Z), — S ( f)w

Tégl = Tsg — Tsf < g/ = ? — ? (275)
Finally, f is the same as the second moment phase function as can be derived from
equation (2.30) :

f:% (2.76)

For cloud and aerosol particles the phase function can be expressed through the
asymmetry factor g, called the Henyey-Greenstein phase function, which leads to
the Henyey-Greenstein approximation f = g2, linking the asymmetry factor to the
fraction of the forward scattering.

The combination of this -adjustment with the Eddington approximation is called
the §-Eddington approach [Joseph et al., 1976|, which is one of the most used methods
in atmospheric models.

Another approach is the Practical Improved Flux method (PIFM) [Zdunkowski
et al., 1980], [Réisdnen, 2002], of which the coefficients are shown alongside the ones
of the /-Eddington method in table 2.2.

Method " Yo 3
0-Eddington 7’(42 3900 _ 17(47439’)03’ 2*3f'uo
PIFM ERHL R@(1-g)) e

Table 2.2: Coefficients for the two-stream approximation with d-function adjustment
for two different methods, both for which f = ¢2.
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2.2.2 Vertical integration

For all approximations presented in the previous sections only a homogeneous layer
was considered. While this is a relatively good assumption for atmospheric layers in
the horizontal plane, it is not valid in the vertical direction.
Dividing the Earth’s atmosphere into N vertical layers, as done in NWP models,
shows that there are large variations in the vertical profile.

Theoretically it is possible to divide the atmosphere into so many thin vertical
layers that each of them can be treated as homogeneous, one such layer is depicted
in figure 2.7. The RTE can then be solved for each individual layer yielding the
corresponding up- and downward fluxes per layer. However, this becomes tedious
when the effects of multiple scattering need to be taken into account.

Imagine the radiative feedback mechanism between two layers, each with their
own optical properties, represented through their optical thicknesses 71 and 7, as
shown in figure 2.8. An incoming solar beam (uoF) will be partly reflected when
reaching the first layer (R;), while the other part is transmitted through the first
layer (Tl) towards the second, where it then also will be partly reflected and partly
transmitted further. The reflected portion of the firstly transmitted radiation (R,7})
travels then upwards back towards the first layer, where it again can either trans-
mit upwards (T RyT}) or be again reflected downwards (RiRyT;). This feedback
mechanism can go on infinitely.

Thus, while these calculations are conceptually correct, NWP models require a method
which includes multiple scattering, but is easier to resolve.

A commonly used vertical integration method of radiative fluxes in radiation param-
eterizations is the adding method, often coupled with the (0-)2-stream method.

We will get back to the process of multiple scattering shown in figure 2.8, first
let us consider a single homogeneous atmospheric layer as shown in figure 2.7.

Radiation from the layer above

T op(H's 1) Tout rop(Hs ) Lout.roplts @)
R, s ', ) T, s ' )
T(p, s p', ¢ R*(u, b ', ")
Lo pottom(s ) Lot botiom(s ) Tout,boriom('s @)

Radiation from the layer below

Figure 2.7: Schematic of incident radiation from above (left) and below (right) at a
single atmospheric layer. Figure adapted from [Liou, 2002].

For this layer the incoming radiation from above is denoted I;;, ;,,, While all radiation
incident on the layer from below is called I, pottom.-
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From the intensity arriving from above I, 1op, the part that is transmitted throughout
the layer I,y pottom is described by the transmissivity T, while the portion that is
reflected Ioyuii0p, can be described with the reflectivity R. Similarly, the intensity
coming from below I, portom gets transmitted and reflected as Loy iop and Lout pottom
as described by the transmissivity 7* and reflectivity R*. The superscript * is used
to denote values for radiation traveling upwards from below.

The reflectivities and transmissivities R, R*, T and T* can be calculated from the
RTE in equation (2.38) by using the incident beam intensity I, t0p and i, pottom.
respectively.

HoF o
e
=0 I Rl2
7
l R, T, RyR*R,T,
T=Tl \ / \ / \ )
T=T7 D
I RAR,TY RER,RERTY
7 i foe
l ' ;
T=17+7 T
\TZTl \TZR]’*‘RZTI

Figure 2.8: Illustration of two layers and terms used in the adding method. The
layers are depicted individually with their optical thickness 7, and 75, reflection and
transmission function Ry, Rs, T and Tb, respectively. The superscript * denotes
radiation traveling upwards from below. Figure adapted from [Liou, 2002].

T*RZT] T*RZR*RZTI

Let us now again consider the case of two layers as depicted in figure 2.8. Here
T represents the total transmission, i.e. both the direct and diffuse portion, and R
the reflection at one layer. The single-digit subscripts 1 and 2 denote which layer
the reflection and transmission belong to. Likewise, layer 1 and 2 have an optical
thickness defined as 7 and 7.
Additionally, all upward reflected radiation from the interface between the two layers
will be defined as U, while all transmission traveling downwards through the interface
will be denoted D.
Finally, R is defined as the total reflection at the top of layer 1, due to all multiple
scattering between the two layers, while T}, is the combined transmission at the
bottom of layer 2, due to the same scattering processes.

Following the multiple scattering shown in the figure and the discussed feedback
mechanisms from before, one can begin to write:

R12 = Rl —|— TfRQTl —+ TfRQRIRQTl -+ TFRQRTRQRTRQTE —|— (277)
Ty = TyTy + ToR{RyTh + Ty Ry R Ry Ro Ty + ... (2.78)
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U = RyTy + RyR:Ry Ty + RyRIRyRI Ry T + .. (2.79)
D =T, + R;RoT) + R{RoR; Ry T + ... (2.80)
Note how the series’ converge, as e.g. for Ris:
Rio = Ry + T RyTy + T RyRE Ry Ty + TF RyRX Ry R Ry T + ..
= Ry + Ty Ry[1 4+ RiRy + (RiRy)* + ..|T) (2.81)
= Ry + Ty Ry(1 — RIRy) T

Therefore the previous expressions can be written as:

Ris = Ry + Ty Ry(1 — RIRy)'Th (2.82)
Ty = To(1 — RIRy)™'T} (2.83)
U= Ry(1— R;Ry)™'Ty (2.84)

D=(1-RR)™'T} (2.85)

Afterwards the following relationships can be deduced from the equations above:

Rio =Ry +T;U (2.86)
T12 == TQD (287)
U= Ry,D (2.88)

From the expression for Rj, in equation (2.86) it becomes apparent that the total
combined reflection due to multiple scattering between both layers is the sum of
the reflected radiation of the first layer (R;) and the upward transmitted radiation
from the multiple scattering throughout the interface at U. Meanwhile, the total
transmission of both layers Tlg is a result of the downward transmitted radiation
through layer 2 at D.

T denotes the total transmission, both direct and diffuse, as stated earlier. Using
the Beer-Bouguer-Lambert Law from equation (2.16) in the same manner as to define
the direct flux in equation (2.40), the total transmission can be divided into its direct
component e~/ and diffuse portion T

T=T+e ™" (2.89)

where for direct solar radiation i/ = g and for a beam traveling in the p direction
i = p. Additionally, it proves useful to define an operator S of the form:

S=RiRy(1—R{Ry) 'sothat (1 - RiRy) ' =1+S8 (2.90)
D and Ty can then be decomposed into their direct and diffuse parts, where T}, Ty
and D are diffuse components only:
D= D4 enim

2.91
=1+ 9T + Se~T/Ho 4 o=T1/ko ( )
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Tig = (Ty + e ™2/H0)(D + e~ T/H0)

— ¢ /M0 D 4 The /M0 4 Ty D + exp [ — (l + 2)] S — po) (2.92)
Mo Mo
The total diffuse transmission and reflection of both layers may be found with a set
of iterative equations, which for the radiation coming from above take the following
form for 715 and Rys:

Q = RIR, (2.93)
S=Q(1-Q)" (2.94)

D =T, + ST, 4 Se "™/ (2.95)

U = RyD + Rye™™/Ho (2.96)

Tig = e /"D + Tye ™/ 4 TyD (2.97)
Ry =Ry +e MU + T U (2.98)

Q = Ry Ry (2.99)
S=0Q(1-Q)! (2.100)

U =Ty + STy + Se /" (2.101)

D = R{U + Rie ™" (2.102)

Ty, = e U 4+ Tre ™M + TYU (2.103)
R, =R, +e ™"D+TyD (2.104)

From this example it can be seen that the adding method is an efficient approach to
determine the radiative fluxes between two layers, e.g. at the surface or the TOA.
As aforementioned, the atmosphere is divided into several vertical layers in NWP
models. A number N layers is chosen, for which each layer is assumed to be homo-
geneous and is characterized by its own set of radiative variables (7, @, g).
For homogeneous layers the transmission and reflection from above or below are
identical. Thus we have for each I’th layer 7; = T} and R} = R} for  =1,2,..., N.
Moreover, the surface is defined as an additional layer N + 1 with no transmission,
Tni1 = 0, and the surface albedo as Ry.;.
An TIllustration of such a vertical structure of the atmosphere is shown in figure 2.9.
Note that [ = 1 is the layer at the top of the atmosphere, while [ = N + 1 is the
surface layer.
As depicted in the figure the layers are added downward one by one from the TOA to
the layer [ to compute T1; and Ry, for [ =2,...,(N + 1) , as well as T}, and Rj, for
[ =2,...,N. Similarly, the layers added upwards from the surface are used to obtain
E+17N+1 and Rl+1,N+1 for | = (N — 1), ey 1.
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Ry, Ty,

I+1 Rip1 5 Ti +D

Ripiver > Tipne

N Ry, Ty

Figure 2.9: Depiction of the vertical layer structure and notation for the internal
intensities in an atmosphere of the adding method. Figure adapted from [Liou, 2002|.

Considering the layers (1, [) and (I + 1, N + 1), the adding method can be used
to determine D and U:

D = lel + Slel + SGXp(—lel//.Lo) (2105)
U= Rl+1,N+1D + Rl+1,N+1 exp(—TLl/ug) (2106)

where 7 is the optical thickness from the TOA to the bottom of the I’th layer and
S and @) are defined as:

S=Q(1-Q)! (2.107)
Q= Ry Riyins (2.108)

The fluxes at the interface between layer [ and [ 4 1, taking into account all the
scattering in the layers above and below, then become:

1
F' = poFy <2/ U (p, o) p du> (2.109)
0
1
Fyp = poFo (2/ D(p, po) d#) (2.110)
0
i, = 110 Fs exp(—71./ o) (2.111)
F=(Fj,+Fy)—F' (2.112)

where F' is the upward flux, F jl. s 1s the diffuse downward flux, F; jir is the direct solar
downward flux and F' is the net flux.
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2.2.3 Spectral bands

As previously mentioned the radiative variables (7, @, etc.) are not part of the
governing equations solved by NWP models. Thus they need to be specified either
with prognostic and diagnosed variables, e.g. temperature, pressure, mixing ratios,
etc.), in the NWP model, or through look-up tables, which are static data sets with
e.g. information about gases such as carbon dioxide or ozone.

In section 2.1 it was shown that different gases absorb and interact with different
wavelengths. Recall that the total solar flux F' can be defined as an integral of all
the monochromatic fluxes F) for each wavelength in the solar spectrum as:

Asolarmaz
F= / Fyd\ (2.113)
Asolarmin
Here the exact definition of the lower and upper wavelength boundaries of the solar
wave spectrum depends on the individual radiation scheme. In general, radiation
parameterization schemes define the start of the solar spectrum in the ultraviolet
(UV) region (~200 nm), while the ending boundary is choosen from a wider range,
either closer to the near-infrared (NIR) range (~4.000 nm) or even stretching into

the thermal-IR range (~10.000 nm).

Many radiation schemes divide the whole wave spectrum into spectral subdivi-
sions, i.e. spectral bands. For each of these bands the physical contributions due to
e.g. different gases are handled separately. The resulting averaged fluxes for each
band F can afterwards be summed up together for all bands to form the total flux:

b
F=> FAw (2.114)
i=1
where b is the number of bands and Aw, is the fractional solar flux for the 7’th band.
For shortwave radiation schemes common numbers of spectral bands are 10 ~ 15.
However there are also schemes with more, or less bands, as well as broadband inte-
gration schemes, i.e. schemes with only a single band.

Regardless of the number of spectral bands, the contribution of gases, as well
as clouds and aerosols, need to be considered for each atmospheric layer. As seen
before in figure 2.1, are there some gases that are more important for the absorption
and scattering in the atmosphere than others. The most important gases in con-
text of absorption in the atmosphere, such as water vapor and ozone, are therefore
parameterized with greater detail than minor gases.

The contributing gases for an atmospheric layer can be treated independently, with
each their own optical thickness 74,s, which can be used to define the total absorption
optical thickness 7,, as a sum of all contributors:

TabETHgo—i-Tog—l-Tcog-I—TOQ-i-O(T) (2.115)

where 7,0, To,, Tco, and 7o, are the optical thicknesses of each gas, while O(7)
describes the contribution of minor gases.
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Defining an atmospheric layer that stretches between heights z; and z,, with z; < 25,
the optical thickness for a contributor is defined as per equation (2.21):

Tgasz/ kpgasrdz:/ kqgaspardz (2.116)

21 21

where for the last transformation the density pg,s is expressed in terms of the mixing
ratio g4qs and the density of dry air pq.

In the absence of clouds and aerosols, the total optical depth 7 due to absorption
(Tap) and scattering processes (7y.) is:

T = Tap + Tec (2.117)

Taking the contribution of clouds (7.4) and aerosols (7,.-) into account, the total
optical thickness of an atmospheric layer can therefore be expressed as:

T = Tab + Tsc + Teld —'l— Taer (2118)

For each optical thickness, the single scattering albedo and asymmetry factor can be
calculated for the gases as well as aerosols and clouds.

To do this the monochromatic absorption coefficient k£, must be evaluated at each
layer, for all wavelengths. It is reasonable to assume that the absorption coefficient
within each layer is constant, when the layer has a constant pressure and temperature.
However, a pure monochromatic absorption is not observed in the real atmosphere,
as there are e.g. collisions between molecules, which lead to broadening of spectral
lines. To take the pressure broadening, which turns out to follow the Lorentz profile?,
into account, the monochromatic absorption coefficient k, can be defined as:

k‘,\ZSf(V—Vo):§ -

T (v —1p)? + a?

(2.119)

where v = 1§ is the wavenumber, f(v — 1) is the line shape factor following the

Lorentz profile and S is the line strength defined as:

S = / kdy (2.120)

[e.e]

« is the line half-width at the half-maximum and works as a scaling function depend-
ing on pressure and temperature:

a(p,T) = ag (;%) (%)n (2.121)

where the reference pressure py and temperature Ty are usually set to 1013 hPa and
273 K for which the width at standard pressure «q is defined. n is an index in the
range 0.5 to 1, depending on the molecule.

“For a detailed description on line and pressure broadening see e.g. chapter 1.3.2 in [Liou, 2002]
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To evaluate the total optical thickness of an atmospheric layer with N gases, for one
wavenumber v (one wavelength ) along the path length v = [ p(2)dz one needs to
calculate:

N N
T, = ZTZ,J = /Z ky ;(u)du (2.122)
=1 U=

where 7 = 1,2, ..., N denotes the absorption line. The absorption coefficient can be
written as a sum of the line strength and shape factor of all absorption lines as well:

N
k(0. T) =Y S;(T) fo(p. T) (2.123)
j=1
To calculate each individual absorption line j, it is necessary to compute the ab-
sorption coefficient k, at intervals which are smaller than the line half-width. Com-
puting each line like this is called the line-by-line integration, and while this is the
most precise method, it is also the computational heaviest. Since this method is
not applicable for NWP models used to make weather forecasts, some simplifications
need to be made in the radiation parameterization.
One idea is the division of the spectrum into a few spectral bands, for which the
absorption coefficient is held constant for an interval of wavelengths selected based
on statistics. However, for gases with many different absorption lines, such as seen
earlier for e.g. carbon dioxide and water vapor in figure 2.1, this band approach is a
poor representation of the real atmospheric absorption.

2.2.3.1 (Correlated) k-distribution

A common approach is the k-distribution method, which is a good compromise
between accuracy and faster computation than the line-by-line method. The k-
distribution arranges the spectral transmittances 1" together based on the absorption
coefficient k,, since the transmittances do not depend on the order of k£ values in a
given spectral interval. This means that the integration over the wavenumbers can
be replaced by an integration in the k-space so that:

dv o
Ty(u) = /A e~ / e F () dk (2.124)

0
where f(k) is the normalized probability distribution for &, in the interval Av, where
its minimum and maximum values have been set to k,,;, — 0 and k,,,.. — 1, respec-
tively, as well as [;* f(k)dk = 1.
Note that equation (2.124) shows that the function f(k) is just the inverse of the
Laplace transformation, L=!, of the spectral transmittance:

(k) = L™ (T5(u)) (2.125)

Defining a cumulative probability function g(k) with g(0) = 0,9(k — o0) and dg(k) =
f(k)dk as:
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_ / C rhdh (2.126)

Makes it possible to express the spectral transmittance as:

1
To(u) = /O Mo gy = Ze k9t Ag; (2.127)

Note that while g(k) is a smooth function in the space of k, k(g) is a smooth function
in the space of g. Therefore the integral in the g-space can be rewritten as a finite
sum, replacing the integral over the wavenumbers from equation (2.124).

The theory behind the k-distribution method assumed that the absorption coefficient
k, is constant. For inhomogenous atmospheres, where the absorption coefficient varies
with pressure and temperature as described in (2.123), this is not true. A variant of
the k-distribution method applicable to inhomogeneous atmospheres is the correlated
k-distribution.

The concept of this method is, that the vertical variations are accounted for through
an assumption of correlation between absorption coefficients at different temperatures
and pressures. For the correlated k-distribution the spectral transmittance can be
expressed as:

T (u) /expl Zk Auz} (2.128)

2.2.4 Clouds

Clouds cover a large portion of the Earth’s atmosphere and are the contributor with
the largest influence on radiative transfers. There exist several different types of
clouds (cumulonimbus, stratus, cirrus, etc.) that vary in form, size and composition.
The effect of clouds on radiative transfers depends on the individual cloud’s optical,
geometrical and physical structure, resulting in a wide range of optical thicknesses
for different clouds.

Clouds are composed of many different kind of particles, but in most radiation
parameterizations the two cloud particle categories of water droplets and ice crystals
are considered.

Water droplets and ice crystals are treated separately due to their difference in struc-
ture and refraction indices. Ice crystals are usually bigger than water droplets and
their structure is more complicated than water droplets, which are treated as spherical
droplets.

Clouds can consist of different particles, which also differ in size, which effects how
opaque the cloud appears.

Consider a cloud only consisting of water droplets. One can define the mean
effective radius a., which is a measure of the droplet size distribution inside the
cloud:
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ae = /a : ﬂazn(a)da//ﬁazn(a)da (2.129)

where a is the radius and n(a) is the actual droplet size distribution. The mean
effective radius is the mean radius weighted by the droplet cross section, which means
that a. includes the scattering properties of spherical droplets.

It turns out that solar radiative transfers are mainly depended on this mean effective
radius, rather than the actual droplet size distribution [Liou, 2002].

The amount of liquid water inside a cloud is called the liquid water content (LWC),
which for spherical droplets is defined as:

4
LWC = ?Wpl/a?’n(a)da (2.130)

where p; is the density of water. For a cloud of thickness Az, the amount of vertically
integrated liquid water is called the liquid water path (LWP), which then is: LWP =
LWC - Az. The optical thickness is defined as:

T=Az- /Qemﬂn(a)da (2.131)

where @), is called the efficiency factor for extinction, which is a function of the wave-
length, droplet radius and refractive index. For cloud droplets and visible wavelengths
Q. = 2. Combining equations (2.129), (2.130) and (2.131) yields the relation:

ae = 3 WP /T (2.132)
2p1

which is an important relationship between the droplet size, optical thickness and
LWP in the cloud. Consider two clouds with the same LWP, equation (2.132) shows
that the cloud with the smaller droplet (small a.) would then have a larger optical
thickness 7. The cloud with the larger optical thickness will appear more opaque and
reflect more solar radiation.
A similar derivation can be made for ice clouds and ice crystals, though the scattering
properties are more difficult to determine due to the difference in geometry and
refraction, as aforementioned.
So to predict radiative effects due to clouds, information is needed about the cloud’s
optical and geometrical composition, as well as water/ice content, which is difficult
due to the uncertainties of these quantities [Wolf et al., 2020].

Clouds form vertically and horizontally into different shapes and vary in thick-
ness and opaqueness. In the previous sections horizontal homogeneous layers have
been considered with the plane-parallel approach. The different shapes, sizes and
compositions at which clouds form at different altitudes in the atmosphere pose a
problem to this assumed horizontal homogeneity.

It follows a short presentation of two methods on how cloud effects can be treated in
NWP models.



17.8.2020 2 THEORY Page 33 of 122

2.2.4.1 Independent Column Approximation (ICA)

Consider a domain R that stretches out tens or hundreds of kilometers into the
horizontal and assume that the three-dimensional distribution of the cloud properties
is known exactly. The averaged, spectral integrated flux (F) for this domain then is
[Pincus et al., 2003]:

(F) = / SM)( / /R FgD(x,y,)\)dxdy)d)\ (2.133)

where S()) is a weight depending on the incoming flux for each spectral integral dA
and F3p is the three-dimensional flux.
The horizontal variations of the flux are for large scales, such as the synoptic and
mesoscale, negligible, and the atmospheric columns can therefore be treated indepen-
dently. This is called the independent column approximation (ICA), for which (F)
then can be approximated to (F¢4):

(F) = (FI¢4 = / ( / / Fip(z,y,\ dxdy)d/\ (2.134)

where Fp denotes the one-dimensional radiative fluxes.
Radiative fluxes are very different for clear sky and cloudy conditions, i.e. they are
more horizontally homogeneous in clear skies than in cloudy areas. Therefore it is

common to separate the flux into a clear sky part (F4¢4) and cloudy portion (F154)
with the cloud cover A.:

(FIE%) = (1= A (Fe) + (Fag™) (2.135)

clr
A typical approach to resolve partial cloud coverage is to divide each layer into
individual sections that either are cloud free or homogeneously cloud covered. The
total radiative flux becomes then a sum of the partial fluxes at each section weighted
by the cloud fraction. For this the distribution p(s) for all possible states s of the
cloudy atmosphere is introduced and taken the integral over:

(F1ON = (1 — A,) / S(A)F(N)dA + A, / S(/\)( / p(s)FlD(s,/\)ds)d)\ (2.136)

K

(FIOM =(1— A0) Y w(h) SO Frh

k
K

J
+ A wA)S(A) ZP(SJ)FlD(Sj, )

k

(2.137)

where the spectral integration in equation (2.136) has been approximated as discrete
sums with weights w in equation (2.137).

In NWP models (F1¢4) is typically evaluated in every grid cell. This can, however,
become computationally expensive, depending on the the number of layers filled with
clouds and how those overlap, as the calculations are done for the spectral integral,
i.e. for all spectral bands.
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2.2.4.2 Monte Carlo Independent Column Approximation (McICA)

One method to reduce the needed computations for overlapping cloud covers is the
Monte Carlo Independent Column Approximation (McICA).

The computation of the cloudy flux (F154) from equation (2.136) involves a two-
dimensional integral, one over the wavelength A, and a second over the cloud states
s. The concept of the McICA method is, to choose random cloud states S,qndom for

each spectral interval:

K
<FcIlgA> ~ Z UJ()‘]C)S(/\k)FlD(STandoma >\k) (2138)
k

This means that the flux (F1§*) is calculated for a randomly choosen cloud state
Srandom from the probability distribution p(s), which is the Monte Carlo method
from statistics, thus the name McICA.

While this method will reduce the computational cost, it will also introduce a sam-
pling error for each calculated (F154). This error is random and for many calculations

the bias goes towards zero [Pincus et al., 2003].

2.2.4.3 Maximum-random cloud overlap

Another common approach to estimate cloud overlapping in solar radiation param-
eterizations is the maximum-random cloud overlap, which is a combination of the
maximum and random overlapping technique [Morcrette and Fouquart, 1986].

The choice of a minimum, maximum or random overlap method depends on the
spatial resolution of the model. For a very coarse horizontal resolution the minimum
method might be the best approach.

All techniques involve two steps. First the radiative fluxes are calculated for the
cloud configurations allowed by the chosen overlap method. Then all those fluxes are
linearly combined with their cloud fractions as weights, to yield the total flux in the
grid cell.

Imagine an atmosphere divided into three layers, potentially covered by clouds.
Denote the layers as low, mid and high atmospheric layers, each with their own cloud
cover C, C,, and C},.

For the random overlap method each of the three layers is considered independent,
which means that there can be eight combined cloud covers defined.
The first one is the clear sky fraction C,,:

3
Car=[J(1-C) =1 =C)(1 = Cp)(1—Ch) (2.139)
i=1
The next three are combined fractions, where always only one layer is covered by
clouds at the same time C}:
i=1,2,3
ci=c; [] -0y (2.140)
i#]
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Additionally, there can be defined three combined fractions, in which two layers
covered by clouds overlap C’fj:

C} = (1-CyCiC; (2.141)

Finally, there is one combined fraction, where all layers include clouds and overlap
C3:

3
¢t =] ¢ =cicic (2.142)
i=1
The indices 7,7 and k represent each one of the three layers respectively.
Similarly, for the maximum overlap approach one can define four combined cloud
fractions:

Cur = 1 — max(Cy, Cp, C) (2.143)
C; = max(0,C; — (Cy, Cr)) (2.144)
C?; = max(0, min(C;, C;) — C°) (2.145)
C* = min(Cy, Cy,, C) (2.146)

This means that there are only half as many computations needed for the maximum
overlap method than for the random method.

However, the assumption of the maximum method, that all cloud layers overlap,
often leads to exaggerations for the cloud cover. Therefore a common approach is to
combine the random and maximum overlap method as depicted in figure 2.10, here
for ten layers. In this combined approach all layers are divided into three categories:
a low, mid and high atmosphere. Inside each group the layers are combined through
the maximum overlap method, while the three categories are treated independently
as randomly overlapped.

Maximum Maximum-Random Random
Low cloud top area

High cloud top area ‘ Clear area
10 o 10— ——< 10
8 8 8
£ : 6 6
\4-_’# |
o
‘o 4 4 4
T —
2 : 2 2
0 | 0 0
0 02 040608 1 0 02040608 1 0 02040608 1
Cloud cover Cloud cover Cloud cover

Figure 2.10: Illustration of the (left) maximum, (middel) maximum-random and
(right) random cloud overlap methods. The blue blocks represent clouds in atmo-
spheric layers. The high cloud top, low cloud top and clear areas are indicated by
the three different colored arrows. Figure modified by [Kawai et al., 2014], originally
adapted from [Hogan and Illingworth, 2000].
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2.3 Artificial Neural Networks

Machine learning takes up an increasingly larger part in new developments, as there
exist various neural network types for different purposes.

Not only can neural networks learn to recognize patterns, e.g. in pictures (classi-
fication challenges), but they can also be used for regression problems, such as the
prediction of variables as done by NWP models, which will be examined in this study.
As the name indicates, artificial neural networks seek to work with and learn from
data in a similar way as the human brain processes information.

While the feedforwad neural network used in this study is the simplest type of neural
networks, it is still suitable and optimizable for various applications, such as regression
problems.

This section’s general introduction to the architecture of feedforward neural networks
is mainly based on the books [Goodfellow et al., 2016] and [Aggarwal, 2018].

The fine-tuning and optimisation process of various hyperparameters will be gone
through in detail in section 4.

In practice, all neural networks in this study have been coded and trained in
Python [Van Rossum and Drake, 2009| using the application programming interface
(API) Keras [Chollet et al., 2015] with Tensorflow [Abadi et al., 2015] as backend.
For the implementation into the WRF model, a fortran based model, the Fortran-
Keras Bridge (FKB) [Ott et al., 2020] was used. The FKB is a neural Fortran library
that is specifically designed to simplify the process of incorporating neural networks
trained in Keras into fortran codes.

2.3.1 Feedforward neural network

A feedforward neural network consists of multiple layers, each containing a number of
nodes, also called neurons. In a simple feedforward neural network all layers are fully
connected, i.e. every node in one layer is connected to all nodes of its neighboring
layers. The number of layers determines the depth of the model, which is where the
term "deep learning" arose from.

Figure 2.11 depicts a simple feedforward model, with three input variables, two output
variables and two intermediate layers, each with four nodes. The intermediate layers
are called hidden layers, as their nodes’ values do not represent input or output types
of values, but rather just mathematical intermediate values.

The name "feedforward" refers to neural networks, where information only propagates
in one direction, that means that the node in a layer only depends on the values of
the previous layer.

A neural network tries to find the best approximation of some real, but usually
unknown function f*, which connects the input variables x; and output variables y;
as'y = f*(x), where x and y are vectors containing all input and output variables
respectively.

To get the best appromixate solution with a function f, a neural network tunes
several parameters 5) while training with known input and output variables, which
mathematically can be described as: y = f(x,6).
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Input Hidden Hidden Output
layer layer 1 layer 2 layer

Figure 2.11: Tllustration of a simple feedforward neural network. The network consists
of three input variables, two output variables and two hidden layers each with four
nodes/neurons. The (forward) information flow in the network is indicated by the
arrows all going in the same direction.

The final function f can be represented as a chain of a function per layer in the
model as e.g. f(x) = fO(f@(fM(x))), which is a representation for a model with
two hidden layers as shown in figure 2.11. Here f® and f® are the functions of the
first and second hidden layer respectively. The outermost function f® is the function
for the output layer.

The input layer consisting of the vector x, can be thought of as the 0’th layer, so that
the vector’s values also can be expressed as: z; = hEO).

As mentioned before, does a layer only get input from the previous layer, so that
e.g. the first layer’s parameters are calculated with: h®) = f()(x, w,b), where w
is a matrix containing the weights between the input layer’s and first hidden layer’s
nodes and b is a vector containing the bias of the first hidden layer. Both weights
and biases are constants and exist for every layer in the neural network.
Considering the values in the vector h™") individually, one can write:

Y = o) (2.147)

o = (Z w) hy—n) 0 (2.148)
J

. where the subscript i describes the i’th node in a layer, while the superscript ¢
denotes the ['th layer for [ = 1,2,..., L. Note that a are linear functions of the
previous layer’s nodes. f is the activation function, which is differentiable and adds
non-linearity to the calculations, which otherwise would reduce the neural network
to a linear regression model.
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For a neural network with L — 1 hidden layers, the L’th layer is the output layer.
The full feedforward model can then be described with:

n = g, (2.149)
hf“ = f@") foril=1,2,..,L—1 (2.150)

(Zw“)h >+b§” (2.151)
g =hiP) = (Zw Ppits 1>+b (2.152)

From equations (2.149) - (2.152) it becomes apparent, that while the number of
biases increases linearly with the number of layers of the neural network, the number
of weights grows even stronger as it is the product of the count of nodes between
layers. The simple neural network with two hidden layers shown in figure 2.11 has
e.g. 46 model parameters. Tripling the number of nodes only in the two hidden
layers from four to 12 changes the count of total model parameters to 230, which is
five times as many as before. It is common for hidden layers to be much larger than
the input and output layer in deep neural networks. The number of weights for deep
networks becomes therefore approximately proportional to the square of the count of
nodes per layer in these large hidden layers.

As aforementioned, the activation function f is the reason why feedforward neural
networks can learn non-linearities and a neural network without activation functions
would be the same as a linear regression model. There are many activations available
that are suitable for different applications. It is also possible to choose different
activations for each individual model layer, however, there are some functions which
will not work as activation functions.

If e.g. the activation function would be linear function, the neural network would not
be able to learn about non-linear data either. No matter how many linear functions
one chains together, the resulting composition function will still only be linear and
thus unable to learn non-linearities.

Another simple, yet well known function is the step function:

if
f(a) = { o N 8 (2.153)

The step function, which is either 0 or 1, can be interpreted as a node being activated
or not, as all nodes only can give one of those two values to the next layer. The
importance of the individual nodes is then expressed through the weights of the layer,
which represent the relative strength of the signal of the nodes from the previous layer.
The bias is a measure of the general probability that a node will be activated and
send a signal to the next layer. This is limiting the neural network to classifications
of only two categories. Additionally, the derivative of the step function is the Dirac-
delta function, which is zero everywhere apart from at a = 0, which can lead to
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inefficient optimizations for larger networks, thus the step function is unsuited for
deep neural networks.

The sigmoid function is similar to the step function, with a few properties that makes
it a favoured activation function. It is shown together with some of the most common
activation functions used in neural networks in figure 2.12.

Sigmoid Tanh
1.0

1.0
1
o(z)= — f 0.5

-10 -5 0 5 10 0
(a) (b)
RelLU LeakyReLU(a=0.2)
10

z,z>0
LeakyReLU (z) ={

az, otherwise
BT 5 0

z,z>0

ReLU(z]:{

0, otherwise s |

Figure 2.12: Commonly used activation functions in neural networks, [Feng et al.,
2019]

Mathematically the sigmoid function is defined as:

1

Ha) =1
Like the step function, the sigmoid functions minimum and maximum values are 0
and 1, but it can also take on all values in the range between them. The sigmoid
function is a non-linear function, which is fully differentable with multiple derivatives
different from zero, which makes it possible to optimize the model parameters, i.e.
the weights and biases, with the gradient descent, which will be described in section
2.3.2. If the sigmoid function is used as activation for the output layer, the values of
the nodes, which range between 0 and 1, can represent the probabilities of different
classes. It is also a useful function if the output variables only are allowed to become
values in this range. One disadvantage of the sigmoid function is, that the function
converges to a constant value for large weights, as its derivative goes to zero. Such
a saturation of the function can lead to a slowing down of the training of the neural
network.
A function which does not saturate as easily is the rectified linear unit (ReLU) func-
tion:

(2.154)

if
fla) = { 2 o ; 8 (2.155)
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The ReLU activation is commonly used for regression problems, as this function does
not constrain the output values as much as e.g. the sigmoid function.

The leakyReLLU function is a modified version of the ReLLU function, that has a small
positive slope for negative values, to avoid the problem of the constant zero gradient
of ReLU for small values.

The fourth common activation function shown in figure 2.12 is the hyperbolic tangent
function, tanh, which in its form is similar to the sigmoid function, but lies halfway
in the negative range.

Figure 2.12 shows the unit activation functions. However, the actual activation

in a neural network is influenced by other parameters, e.g. the bias which shifts the
activation function to better fit the data, so that the predicted output values become
closer to the real output values.
There is no generally best activation function for all problems, as the activation
function in itself is dependent on the neural networks architecture, i.e. the number
of layers and nodes. All those hyperparameters need to be tested and tuned for a
specific problem.

2.3.2 Network training and the gradient descent

Consider training a neural network with information of a number N data points.
The dataset can then be separated into the input vectors {x,} and output (target)
vectors {y,}, for n = 1,2,3,..., N. The n’th input and output vector consist of the
input and output variables used in the first and last layer of the neural network as
described earlier and are therefore unrelated to the number of data points V.
NWP models divide the atmosphere into horizontal and vertical columns, which can
yield a large amount of available data points, easily in the order of millions (10°). In
the context of radiative transfers the input vector x, could contain e.g. the optical
thicknesses 7, the single scattering albedos @ and the asymmetry factors g in the
data point, while the output vector y,, includes the reflectivity R and transmissivity
T of the data point.

Similarly as done in equation (2.152), one can describe the predicted output
vector y,, of a neural network as:

where the vector W contains multiple model parameters, similar to 6, namely both
the weights wg) and biases bgl).

Note that y, is the predicted output value of the neural network, whereas y, is the
vector with the true target values that the neural network uses to train and learn
from.

The neural network seeks to minimize the difference between these two vectors and

one defines therefore the measurement of this difference as the loss function J(W):

1

J(W) = 5> e(yn ¥a) (2.157)

n
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which is a function of the model parameters W, while e is a function that measures
the error of each prediction. This function e is chosen for the individual problem and
application. Common loss functions for regression problems are the absolute mean
error:

TW) = % S llye — ol (2.158)

or the mean squared error:

1 .
W) = 5 3 Iy = 30l (2159)

Since both of the above mentioned loss functions and the neural network consist of
differentiable functions, the derivative of the loss function with respect to the model
parameters aa_v([]/i can be computed. This derivative, which is a measurement of how
sensitive the loss function is to each model parameter, can then be used to adjust

each of the model parameters using gradient descent, optimizing the model:

aJ
ow;
where « is the rate at which the parameters will be updated, called the learning rate.
The learning rate is another hyperparameter that is always positive and depends on
the model configuration and individual problem.

In contrast to the forward information propagation in the feedforward model, the
errors algorithm that updates the model parameters with the gradient is called back-
propagation, as this is done after a set of predicted output values has been calculated
by the model and requires computing several partial derivatives.

The optimization using gradient descent is computationally demanding and slow for
large datasets, as the calculation of the gradient aa_vii depends on all data points.

An alternative approach which arises from the same principle, but with the
addition of stochastic elements is the stochastic gradient descent (SGD), which is less
computational-heavy and therefore more applicable for deep learning.

To reduce the error between the predicted and target outputs the model searches for
the minimum of the loss function J. However, since the loss function is generally
non-linear and non-convex, this is a complex task, as there is a risk of converging
towards a local minimum or saddle point. To prevent this stochastic elements can be
used to more easily escape these points.

In practice this means that instead of computing the gradients for the whole dataset,
only gradients for a smaller (random) subset, called a mini-batch, are calculated
and used to update the model parameters. This eases the computational expense
and adds a stochastic characteristic through the random choice of data points inside
the mini-batch. For the SGD algorithm the loss function is only calculated for a
mini-batch of size B:

W =W, - a

(2.160)
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Js(W) == e(¥n, ¥n) (2.161)

which leads to the following expression for the updated model parameters:

0Jp
oW
The SGD algorithm does those calculations over as many mini-batches needed until
it has used all data points. The number of mini-batches depends on the batchsize B,
and the number of mini-batches needed for the model to encounter all data points
once is called an epoch.

The batchsize and number of epochs for which the model trains on the dataset are
another two hyperparameters, that need to be tuned for the specific problem.

The SGD algorithm is used as an optimizer by the neural network, which is yet
another hyperparameter that can be tuned for the specific application. Several differ-
ent optimization algorithms have been developed on the basis of the SGD algorithm,
such as adaptive learning rates and momentum algorithms.

The momentum algorithm includes two additional parameters: The velocity parame-
ter v and the momentum £ € [0, 1[, which regulate how quickly the effect of previous
gradients decreases, i.e. how easy it is for the new gradient to change direction.

Wrew = Wi — a (2.162)

W = W + v (2.163)

0.Jp
oW;

For f = 0 the momentum algorithm’s equation (2.163) reduces to equation (2.162)
of the SGD algorithm. The purpose of incorporating previous gradients through the
momentum term is to smooth out fluctuations in the gradient descent.

Another approach to optimizations are adaptive learning rates. An optimizer
that both includes the benefits of the momentum algorithm and adaptive learning
rates is the adaptive moment estimation, also called the Adam optimizer.

Besides the learning rate, every optimizer has also its own set of hyperparameters
that need to be tuned manually for the individual problem to get the best results.
Adam is a popular choice as optimizer since it does require little tuning of its hyper-
parameters [Kingma and Ba, 2014 and includes many advantages of other algorithms
[Aggarwal, 2018].

Another method to enhance the training of the model is to use a learning rate
scheduler, i.e. to change the learning rate manually during training. One concept for
such a scheduler is to decrease the learning rate after a certain number of iterations,
as smaller learning rates are beneficial when the model is sufficient close to a good
minimum of the loss function.

There are also cyclic learning rates schedules, where the learning rate varies between
a specified range of values periodically, e.g. in a triangular pattern as proposed by

v = vl —

(2.164)
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[Smith, 2015]. The goal of a temporary increase of the learning rate is to reduce the
risk of the model to converge to a local minimum or saddle point.

The cyclic learning rate method in particular will be further described in section
4.2.1, where the tuning of the learning rate hyperparameter will be presented.

Loss

AN
v

v

A J

25 50 75 100

Epoch

Figure 2.13: Example of training and validation learning curves for three different
models. The thick and thin curves are the loss of the training and validation data
respectively.

To determine when a model has found a good minimum of the loss function and
has learned long enough, the learning curve, i.e. the loss at each epoch, is examined.
A sketch of some learning curves is shown in figure 2.13.

Here, the loss of the training data is shown as thick lines, while the loss of the
validation data, i.e. an additional independent dataset, is shown as thin lines. For all
models the losses generally decrease with the number of epochs. Assuming that all
three models are trained with the same training and validation datasets, the different
rate at which the models learn is a result of different hyperparameter and neural
network configurations.

From the curves it looks like model 1 is still learning, while the trainings loss has
converged towards a mostly flat curve for model 2, which indicates that the model
does not learn much more from the trainings data.

A second, independent dataset is used as validation dataset to see how well the model
performs on data it has not encountered during training. Additionally the comparison
between the training loss and validation loss helps to identify cases of overfitting to the
trainings data. In the case of overfitting the model adjusts its model parameters too
much to the specific characteristics of the trainings data, which reduces the model’s
ability to predict outputs for unknown data.

When overfitting occurs the trainings loss will continue to decrease, while the valida-
tion loss will stabilize or even start to increase. An example of this are the learning
curves for model 3, where the validation loss has started to increase after epoch ~ 60,
while the training loss seems to continue decreasing slightly.

It is therefore good practice to save the best model, instead of the model after
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the last epoch, where the best model usually is chosen as the model with the lowest
validation loss. Since the model has already seen the values in the training and
validation datasets these can not be used to evaluate the performance of the best
model on unknown data. To get an unbiased estimate of the performance of the best
model, one thus needs a third independent dataset, i.e. a test dataset.
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3 The WRF-model

All simulations in this study were conducted with the Weather Research and Fore-
casting model (WRF'), which is a regional, non-hydrostatic NWP model able to run
idealized and real weather cases.

This section will serve as brief introduction to the structure and main elements of the
model build upon the official technical model’s description [Skamarock et al., 2019]
and the official WRF user’s guide [WRF-userguide, |.

- WPS = WRF )

e —
geogrid.exe ¢

! metgrid.exe }— real.exe -H wrf.exe ]
e —
ungrib.exe 1

\. / J

Figure 3.1: Illustration of the processes for a simulation with the WRF model

Figure 3.1 shows a simplified workflow of the WRF model and its processes. As
indicated by the figure, the model’s programs can be separated into two segments.
First the input data and horizontal grid are prepared by the WRF Preprocessing
System (WPS). Afterwards the data is vertically interpolated by real.exe and then
the simulation is carried out by the dynamical solver, the Advanced Research WRF
(ARW) in wrf .exe.

Section 3.1 will focus on the WPS and the domain configuration used for the
simulations, while section 3.2 will describe the ARW’s key features. Lastly, in section
3.3 an overview of the radiation parameterization schemes used in this study will be
given.

3.1 The WRF Preprocessing System (WPS)

To make a simulation with the ARW, an initial model state and boundary conditions
must be prepared. For this the WPS prepares a horizontal grid area, the model
domain, with terrestrial and meteorological data.

Both the terrestrial data used to create the model domain with the geogrid.exe
program and the meteorological data prepared by the ungrib.exe program must be
provided externally.

The configurations for the domain size and location, as well as the start and end time
for the simulation must be specified in the namelist.wps file.

Based on the provided simulation times, the ungrib.exe program prepares the in-
put data, i.e. it unpacks the GRIB files containing gridded information about the
atmospheric variables (temperature, pressure, etc.) into an intermediate file format.



17.8.2020 3 THE WRF-MODEL Page 46 of 122

For all simulations in this study, final operational analysis data from the Global Fore-
cast System (GFS) by the National Centers for Environmental Prediction (NCEP)
with a spatial resolution of 0.25° x 0.25°, which corresponds to ca. 28 x 28 km,
has been used as meteorological input data [NCEP, 2015|. These data files contain
meteorological data in 6-hour time-intervals.

The unpacked meteorological data is then interpolated horizontally onto the model
domain by the metgrid.exe program and saved as netCDF files.

3.1.1 The domain and model setup

The domain created by the geogrid.exe program for this study is depicted in figure
3.2. An example of the corresponding configurations in the namelist.wps file is
shown in Appendix A.

WPS Domain Configuration

64°N

62°N

60°N

58°N

56°N

54°N
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5°W 0° 5°E 10°E 15°E 20°E
Figure 3.2: Domain used in the WRF model for this study

WPS supports different types of map projections. For the domain here, covering
most of Scandinavia, the Lambert conformal conic projection has been chosen, since
it is well suited for mid-latitudes.

The models horizontal grid resolution has been set to 10km x 10km. This is a higher
horizontal resolution than the 28km x 28km spacing of the provided meteorological
input data used for the lateral boundary conditions. The boundary conditions will
therefore be nested down onto the finer grid by the model to avoid noise at the
boundaries. The ratio of boundary and model domain resolutions should not much
larger, as this could lead to distortions.

To achieve even higher resolutions from coarse input data WREF offers additional
nesting options inside the main domain. For investigating radiative transfers a grid
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size of 10km seemed sufficient and additional nesting was therefore not necessary.
The spatial dimensions of the domain are 230 x 170 (staggered) grid points, with 70
vertical layers. The spatial distribution of the model and its staggered dimensions
are explained in the next section.

3.2 The Advanced Research WRF (ARW)

For simulating real weather cases with WRF, the output netCDF files from the
metgrid.exe program need to be interpolated into the vertical model layers to create
boundary conditions for the ARW, which is done by the real.exe program.

The vertical layers in the WRF model are described by a terrain following pressure
coordinate 7:

_ Pn — Dhs

B DPhs — Dht
where py, is the hydrostatic component of pressure at a given level h, py, at the surface
and pp; at the upper boundary. The n-coordinate varies between 1 = 1 at the surface
and 1 = 0 at the top pressure level, as depicted in figure 3.3.

(3.1)

Figure 3.3: WREF'’s vertical levels (ful