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Abstract
Radiative transfers in the atmosphere are difficult to compute accurately in numerical
weather prediction (NWP) models, without the procedure becoming too computa-
tionally expensive.
In this thesis it has therefore been tested to substitute a part of the shortwave radi-
ation parameterization in the Weather Research and Forecasting (WRF) model with
neural networks, to investigate a possible increase in computational efficiency of such
a modified parameterization and its accuracy.
The data set used to train the neural networks was created with the RRTMG-fast
shortwave radiation parameterization scheme in the WRF model.
After several optimization processes, three configurations of neural networks were
implemented and tested in the WRF model, replacing an computationally expensive
part of the RRTMG-fast scheme.
To evaluate the three neural network modified shortwave schemes, four 96-hour sim-
ulations were carried out as case studies, to compare how the model performs in
different weather situations.
Additionally to the original RRTMG-fast scheme and the three variants modified
with neural networks, the four case studies were simulated with three other shortwave
parameterization schemes as well: the RRTMG, New Goddard and Dudhia schemes.
Comparison of the results showed that the modified neural network schemes were
able to make predictions similar to the original RRTMG-fast scheme, but were com-
putationally slower.
A quick test addressed one of the causes, the activation function, and suggested that
the computational time of the neural networks can be reduced significantly by using
a different activation, though the new performance has yet to be evaluated, while
possible further optimizations are addressed.
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1 Introduction
In recent years the applications of machine learning and neural networks have in-
creased and continue to do so, as computing power and huge data sets become more
easily available.
For computation heavy weather and climate models it is therefore interesting to inves-
tigate if it is possible to take advantage of neural networks to save computation time
while maintaining good quality forecasts. Supercomputers necessary for weather fore-
casting and advanced climate models consume a large amount of energy, e.g. the UK
Met Office’s supercomputer consumes ca. 2.7 Megawatt (MW) [MetOffice-website, ].
Meanwhile, the new data center of ECMWF is build upon a 10 MW supply, planned
to be upgraded to support 20 MW in the future [ECMWF, 2017]. The high electri-
cal consumption rates, partly due to the cooling of the machines, has also lead to
a cooperation between the Danish Meteorological Institute, DMI, and the Icelandic
Meteorological Office, where a common supercomputer has been set up on Iceland,
taking advantage of the general colder climate, lowering the necessary energy to op-
erate [Ingeniøren, 2016]. Since computation time and energy consumption is directly
correlated, this is another reason to focus on optimizing computation routines.

There is a strong interest in many projects working with the numerous ways
of using neural networks in numerical weather prediction (NWP) models, e.g. bias
correction of input data, learning about model error during data assimilation process,
or replacing computation-heavy components of the model, in hopes of improving
forecasts such as from ECMWF [Dueben, 2020]. Past studies have investigated the
application of neural networks to improve predictions of a single atmospheric variable
with different approaches, e.g. precipitation, using output data from a single model
[Coblenz, 2015]; and multiple models [Krasnopolsky and Lin, 2012].
In other surveys the 500hPa geopotential height has been used to analyze how well
neural networks are able to learn non-linear atmospheric dynamics, investigating
challenges and different configurations for neural network based predictions ([Dueben
and Bauer, 2018]; [Weyn et al., 2019]). The implementation of neural networks
in model’s parameterization schemes, such as in the longwave parameterization at
ECMWF, has been tested as well ([Chevallier et al., 1998]; [Krasnopolsky et al.,
2005]).

The computation of radiation in NWP models takes up a large portion of the
computing time for the whole model, compared to other physical parameterizations
and calculations. Estimating radiative transfers involve multiple challenges both at
the surface and through the atmosphere, including clouds and clear sky absorption
conditions [Hogan et al., 2018]. Therefore, the efficiency of the radiation parame-
terization is important, to reduce the time consumption as much as possible, while
keeping the high quality.

Radiation, i.e. electromagnetic waves, come in a variety of different wavelengths.
Properties like reflection, absorption and emission of those waves vary depending
on the specific wavelength, e.g. emission of longer wavelengths by the earth is a
key mechanism for the greenhouse effect, but the earth does not emit shortwave
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radiation, because the earth is too cold. The Radiation spectrum is usually divided
into two wavelength sections, the shortwave and the longwave radiation, which will
be explained further in the following sections. In atmospheric models both types are
handled separately in the code, so there is a parameterization scheme for each of
them.

In this study it has been focused on the shortwave radiation parameterization
of the weather research and forecast (WRF) model. Case studies with an original
radiation scheme and a modified scheme using neural networks have been executed,
to test the application of neural networks in NWP models and possible improvement
of the parameterization scheme. Both the computational efficiency and performance
of the weather prediction will be analyzed.

The reader will be presented some theory behind radiative transfers in the atmo-
sphere and the common methods of implementation into atmospheric models (param-
eterizations), as well as a short introduction to artifical neural networks and machine
learning in section 2. Thereafter the focus will move towards the WRF model used in
this study and its radiation parameterization schemes in section 3. The development
and implementation of the used neural networks will be presented in section 4. Lastly
results of the model runs with the original scheme and modified schemes with neural
networks will be presented in section 5 and discussed in section 6, ending with an
overall conclusion on the results in section 7.



17.8.2020 2 THEORY Page 3 of 122

2 Theory
Although there are methods to calculate radiative transfers with high precision, these
are not actually used in NWP models, for multiple reasons.
One would be that the computation is simply too expensive for operational weather
forecasting models to be of use. Another one is that the needed radiative variables,
e.g. optical depth, albedo, etc., which will be presented in the following sections, are
not part of or directly describable by the governing equations and thermodynamic
fields the model is build upon, such as e.g. temperature or pressure. Those quantities
must therefore be approximated with both the thermodynamic variables as well as
additional physical quantities from other parameterization schemes, e.g. cloud/gas
micro-physics.

While approximate solutions for radiative transports in parameterizations are
used, the resulting uncertainties of those methods need to be kept at a minimum.
Good parameterizations for radiative transfers are needed, as radiation plays an im-
portant role for not only heating and cooling in the atmosphere, but also for e.g.
the surface energy balance calculated in the separate Land Surface parameterization,
which depends on radiative surface fluxes. Since the different schemes of the model
use and provide inputs among one another, one parameterization failing will hinder
the model from advancing further.

Before examining the model code and the approximations made in the parame-
terizations, it is important to understand the physics that the WRF model tries to
simulate. The following section will therefore first focus on the real world physics of
radiation in the Earth’s atmosphere and then on possible methods of implementation
in NWP models.
The following theoretical section about radiative transfer takes inspiration of parts of
the books [Wallace and Hobbs., 2006] and [Randall, 2015], which give a good intro-
duction to atmospheric dynamics as well as [Liou, 2002] and [Thomas and Stamnes,
1999], which offer a more extensive description of radiative transfers in the atmo-
sphere. Lastly a brief introduction to neural networks relevant to this study will be
given.

2.1 Radiation in the real world

The main mechanism by which the Earth can exchange energy to and from outer
space is radiation, i.e. electromagnetic waves. Alongside sensible and latent heat ex-
changes, radiative transfers also redistribute energy within the Earth’s own system.
The insolation, i.e. the incident solar radiation hitting the top of the atmosphere
(TOA), is the most important upper boundary condition of the Earth’s global cir-
culation of the atmosphere. The amount of sunlight reaching the TOA varies with
geography and time, as well as the Earth’s geometry and orbit. The resulting im-
balance of heat distribution is related to major atmospheric dynamics, redistributing
energy and mass in the atmosphere. Both the Earth’s outgoing radiative fluxes and
large scale atmospheric motions can be observed with satellites.
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As described in quantum physics, transitions between different (distinct) energy
states lead to emission of waves with different wavelengths. These electromagnetic
waves come in a wide spectrum of wavelengths and are able to travel through both
vacuum and media. Radiation is often categorized into a shortwave spectrum, i.e.
solar radiation, which is mostly visible light coming from the sun, and a longwave
spectrum, thermal radiation, which is emitted by the Earth. When such a wave passes
through the atmosphere, which contains different gases and aerosols, the wave might
be absorbed, emitted or scattered, depending on both the quantities of the wave-
length and the hit molecule. It is a complex process, since it depends on different
properties of the individual wavelength and the traversed medium.

For instance, shortwave radiation is mostly scattered and reflected in the atmo-
sphere, while only a very small amount is emitted. The reflection and scattering
of these electromagnetic waves can become visible as colours. The effect of scatter-
ing depends on the specific wavelength and size of the particle, which can also be
expressed as a size parameter x:

x =
2πr

λ
(2.1)

The size parameter x is dimensionless and describes the ratio between the radius
r of the particle and the wavelength λ. For very small particles x << 1, e.g. air
molecules, which the atmosphere mostly consists of, the scattered intensity I is in-
versely proportional to the wavelength:

I ∝ λ−4 (2.2)

It follows that the intensity and scattering efficiency are large for small wavelengths.
Thus, the small wavelengths at the shorter end of the solar radiation spectrum, visible
as blue, get scattered a lot more than the larger, red wavelengths in the atmosphere.
It is because of this process that the sky appears blue during the day, this phenomena
specifically is called Rayleigh-scattering.

Not all of the solar radiation from the Sun that hits the Earth’s TOA passes
through the atmosphere and reaches the surface. Parts of it get reflected at the TOA
by clouds, or gets absorbed on the way downwards. The surface does not absorb
all of the radiation that it’s hit with either, some gets reflected back up into the
atmosphere, where it again can get absorbed or scattered. The incident angle with
which the wave hits the medium is also important, as the absorption and reflection
changes with elevations. White, light surfaces such as snow and clouds reflect a lot
of the shortwave spectrum, though not of the longwave radiation, while dark surfaces
such as the ocean absorb a lot of the radiation, i.e. the ocean has a low value of
albedo. Albedo is a measure of how much solar radiation is reflected, an albedo of
one describes a perfect reflector, while an albedo of zero indicates the absorption of
all wavelengths.

Figure 2.1 depicts how much of the spectrum of the solar radiation of the Sun
reaching the TOA, yellow shading, actually reaches the Earth’s surface, red shading.
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Figure 2.1: Solar radiation spectrum at the top of the atmosphere (yellow), and
at surface (red). The ideal blackbody spectrum is shown as black curve. The part
marked as the beginning of the Infrared spectrum is often referred to as near-Infrared
radiation. Figure 4.1 from [Inness and Dorling., 2013]

It is noticeable, how the amount of absorption differs for the individual wavelengths,
some wavelengths have even been absorbed completely. Different gases in the at-
mosphere, absorb different wavelengths, giving rise to those absorption bands. The
most prominent ones for the shortwave radiation are those of ozone (O3) in the ul-
traviolet (UV) part and water vapour (H2O) in the near-Infrared (IR) part of the
spectrum. The border between the small spectrum of visible light to ultra violet and
near-Infrared wavelengths is shown in the figure as well.

The black curve shows the idealized blackbody spectrum. A blackbody is a the-
oretical idealized body which absorbs radiation of all wavelengths, as well as being
able to emit radiation in the complete, continuous spectrum.
The intensity of emitted radiation of such a blackbody, is given by the Planck function:

Bλ(T ) =
c1λ
−5

π(ec2/λT − 1)
(2.3)

where Bλ is the blackbody monochromatic intensity, i.e. blackbody intensity of a
specific wavelength λ, depending completely on the temperature of the body.
T is temperature, c1 = 3.74× 10−10Wm2 and c2 = 1.45× 10−2Wm2.
By integrating πBλ over all wavelenghts, one arrives at the Stefan-Boltzmann law:

F = σT 4 (2.4)

where F is the (blackbody) flux density and σ = 5.67 × 10−8Wm2K−4 the Stefan-
Boltzmann constant.
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Figure 2.2: (a) Blackbody spectra for Sun (left) and Earth (right), normalized for
an easier comparison between the two, as the magnitude of the Sun’s curve is much
larger than that of the Earth. Absorption spectrum shown for (b) upper part of the
atmosphere above 11km height and (c) entire atmosphere. Figure 4.7 from [Wallace
and Hobbs., 2006]

If one measures the flux density of a nonblack body and uses the Stefan-Boltzmann
law from equation (2.4) to calculate the the temperature T, then T will not be the
blackbody temperature, but rather the equivalent blackbody temperature TE.
The flux density of the solar insolation, also called solar constant, is FS = 1368Wm−2.
Even if the Earth is assumed to be in a radiative equilibrium state, where there is no
energy change because of radiative transfers, the flux density of the emitted longwave
radiation of the Earth FE, is not equal to the flux FS of the incoming solar radiation.
There are two reasons for this:

First, there is a certain amount of solar radiation reflected by the Earth without
any absorption, ca.30%, so the planetary albedo for the whole Earth can be approx-
imated to A = 0.3. Therefore the amount of absorbed radiation becomes (1−A)FS.

Second, the incoming solar radiation from the sun hits only a cross-section of
the Earth, a disk area Adisk = πR2, where R is the Earth’s radius, while the Earth
emits longwave radiation around its whole surface, approximately the area of a sphere,
Ashpere = 4πR2, four times larger than the area of the cross-section. Thus the Earth’s
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emitted flux density becomes:

FE = (1− A)FS
Adisk
Asphere

=
(1− A)FS

4
= 239.4Wm−2 (2.5)

From this the equivalent blackbody temperature TE of the Earth becomes, using the
Stefan-Boltzmann law from equation (2.4):

TE =
4

√
FE
σ

= 255K (2.6)

So TE is calculated to be 255 K for the Earth, which is also noted in figure 2.2 (a).
The curve of a blackbody spectrum as those shown in figures 2.1 and 2.2 was calcu-
lated with the Planck function, equation (2.3), and is only temperature dependent.
Figure 2.2 (a) shows the ideal emission blackbody spectrum for both the Sun on the
left, as seen before, as well as for the Earth on the right. It becomes clear, that
because the Sun is much warmer than the Earth, the two spectra are almost not
overlapping. This is taken advantage of in NWP models, where two sets of param-
eterizations are made separately, one for the solar, shortwave radiation, and one for
the terrestrial, longwave radiation type [Inness and Dorling., 2013]. From figure 2.2
(b) and (c) it can be seen that the absorption bands and corresponding gases also dif-
fer for the two categories of wavelengths. For instance absorbs carbon dioxide (CO2)
radiation mostly in the longwave spectrum, e.g. with a very prominent peak at 16
µm. Additionally, since (b) and (c) depict absorption at different altitudes, it indi-
cates that the efficiency as absorber and amount of different gases in the atmosphere
varies.

The absorption bands of the longwave spectrum and their corresponding gases are
also referred to as green house effect. While the shortwave spectrum shows radiation
moving downwards through the atmosphere, the longwave spectrum is the radiation
emitted by the Earth. However, gases such as water vapor and carbon dioxide can
absorb much of this emitted radiation and re-emit it into all directions, causing a
fair amount to transfer back to the surface, heating it. Thus these processes are
important for the Earth’s energy budget.
Not shown here, but also important in terms of scattering and reflecting radiation are
aerosols in the atmosphere as well as clouds, which are also important due to their
high albedo.

2.1.1 The Radiative Transfer Equation (RTE)

Figure 2.3 depicts a single radiation beam, i.e. radiation travelling in a specific di-
rection such as a ray of light, moving through a medium, changing it’s intensity Iλ
due to scattering, absorption and emission.
In this case a beam of a single wavelength is considered, called monochromatic radia-
tion, however, to calculate the intensity of a spectrum of wavelengths, one does only
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Figure 2.3: Illustration of a radiation beam depleting while passing through an ex-
tinction medium. Figure 1.12 from [Liou, 2002]

need to integrate over the desired wavelength bands:

I =

ˆ λ2

λ1

Iλdλ =

ˆ ν2

ν1

Iνdν (2.7)

I is then the total intensity, i.e. the energy emitted by the electromagnetic waves
moving through a unit area per unit time. λ is the wavelength and ν = 1/λ is the
wave number, i.e. the inverse of the wavelength. All radiation equations can be
expressed both with λ and ν, note that the energy is inversely proportional to λ, i.e.
a longer wavelength transports less energy.

Considering the monochromatic intensity Iλ in figure 2.3 again, and defining
this as the initial intensity, while Iλ + dIλ describes the intensity of the beam after
travelling through the medium with thickness ds, makes it possible to define the
change of intensity dIλ with:

dIλ = −Iλkλρrds (2.8)

where ρ is the density of air, r is the mass of absorbing (and/or scattering) gas per
unit mass of air and kλ is called the mass absorption coefficient, which depending
on r describes extinction due to both absorption and scattering. The product kλρr
is the volume extinction coefficient, which includes both effects of absorption and
scattering, depending on the medium/gas.
Both scattering and absorption lead to the extinction of a passing solar radiation
beam. In the same way there can be a strengthening of the initial Iλ, if there is
emission in the medium, as well as multiple scattering in all directions. This effect
can then be combined into the source coefficient jλ, analogue to equation (2.8):

dIλ = jλρrds (2.9)

Note that there is no Iλ on the right hand side of this equation, as the emission and
multiple scattering is not dependent on the initial intensity of the beam.
Combining equation (2.8) and (2.9) gives an expression for the complete change of
Iλ:

dIλ = −Iλkλρrds+ jλρrds (2.10)



17.8.2020 2 THEORY Page 9 of 122

Defining the source function Jλ as ratio between the source coefficient jλ and the
mass absorption coefficient kλ makes it possible to simplify the equation into:

Jλ ≡ jλ/kλ (2.11)

dIλ
kλρrds

= −Iλ + Jλ (2.12)

Equation (2.12) is the general form of the radiative transfer equation (RTE), describ-
ing the interaction between radiation and a medium, taking into account scattering,
absorption and emission. The goal of the radiation parameterization in a NWP model
is to get close to the real solution of this equation.

2.1.2 The Beer-Bouguer-Lambert Law

Solving the radiative transfer equation depicted in equation (2.12) is not trival. Eval-
uating the source function Jλ for real world applications proves difficult and will be
described in the following sections. For a simple case, where emission and effects of
multiple scattering can be neglected, equation (2.12) reduces to the simple form:

dIλ
kλρrds

= −Iλ (2.13)

which is a differential equation that can be solved analytical if boundary conditions
are provided. Considering the example from before, depicted in figure 2.3, the initial
intensity is Iλ(0) at s = 0 and the intensity is Iλ(s1) at a distance s = s1. Then
integrating equation (2.13) with these boundary values yields:

Iλ(s1) = Iλ(0) exp

(
−
ˆ s1

0

kλρrds

)
(2.14)

For a homogeneous medium kλ is constant, i.e. it is independent of the distance s
that the radiative beam travels through the medium. Therefore one can simplify
equation (2.14) further for such cases, by defining the path length u:

u =

ˆ s1

0

ρrds (2.15)

with which equation (2.14) becomes:

Iλ(s1) = Iλ(0)e−kλu (2.16)

This equation is known as the Beer-Bouguer-Lambert Law, sometimes also referred
to under shorter names as Beer’s law or Lambert’s law. It follows from this formula,
that the intensity in a homogeneous medium decreases from its initial value as an
exponential function depending only on the path length and the absorption coefficient.
Note that since there is no dependency on the direction of the beam in equation (2.16),
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it is also applicable to flux and flux density calculations. Moreover, one can define
the (monochromatic) transmissivity Tλ from equation (2.16) :

Tλ =
Iλ(s1)

Iλ(0)
= e−kλu (2.17)

The layer’s (monochromatic) transmissivity Tλ describes the amount of undepleted
intensity, that managed to pass through the layer. From this definition it should
become evident, that the transmissivity is a quantity that ranges between 0 and 1.
For a value of 0 no intensity will pass through a medium, i.e. all intensity is either
absorbed and/or scattered away, while a value of 1 describes a medium where the
beam of a wavelength can pass through unhindered, i.e. the medium is transparent
for the wavelength.

The same principle can be applied to the layer’s (monochromatic) absorptivity Aλ,
which quantifies the amount of absorbed intensity, and (monochromatic) reflectivity
Rλ, i.e. the amount of radiation that is reflected by the medium through scattering
processes.

Additionally, in absence of scattering, one can relate the (monochromatic) ab-
sorptivity Aλ to the transmissivity Tλ:

Aλ = 1− Tλ = 1− e−kλu (2.18)

This is an expression of energy conservation, as all radiation in a non-scattering
medium either passes through or will be absorbed. Likewise, the energy conservation
can be formulated for cases with scattering as:

1 = Aλ + Tλ +Rλ (2.19)

2.1.3 RTE for Plane-Parallel Atmospheres

Figure 2.4: Illustration of the spherical coordinates used for a plane-parallel atmo-
sphere. θ is the zenith angle, φ is the azimuthal angle and s is the position vector.
Figure 1.15 from [Liou, 2002]



17.8.2020 2 THEORY Page 11 of 122

For most radiative transfers applications in the atmosphere it is useful to divide the
atmosphere into plane-parallel portions. In a plane-parallel framework the physical
variables, such as temperature, vary only in the vertical direction, i.e. they are
functions of height or pressure only. Such a framework is natural for NWP models,
where the atmosphere is divided into vertical columns, which will be further described
in section 3.

The advantage of using a plane-parallel structure is that one can easily measure
the distance between the normal of the plane of stratification and a radiative beam
and its travel path, for all possible incident angles. Figure 2.4 depicts a coordinate
system for the plane-parallel atmosphere, where s is the position vector, while θ and
φ are the zenith and azimuthal angles respectively.
It follows from this geometry that ds = dz

cos θ
, with which the general RTE in equation

(2.12) takes the following form for plane-parallel atmospheres:

cos θ
dIλ(z; θ, φ)

kλρrdz
= −Iλ(z; θ, φ) + Jλ(z; θ, φ) (2.20)

One can now introduce a parameter called the optical depth (thickness) τλ, which
describes the amount of depletion a radiative beam would experience during a direct
passage through a layer, when θ = 0. τλ will be important for the radiation parame-
terization in NWP models in the following sections. The dimensionless optical depth,
measured downward from the upper boundary, the TOA, can be defined as:

τλ ≡
ˆ ∞
z

kλρrdz
′ (2.21)

With this optical depth τλ and µ = cos θ, equation (2.20) can be written as:

µ
dIλ(τλ;µ, φ)

dτλ
= Iλ(τλ;µ, φ)− Jλ(τλ;µ, φ) (2.22)

This is the general radiative transfer equation for plane-parallel atmospheres, which
is the fundamental equation for all following discussions of radiative processes in the
atmosphere.

2.1.4 General solution of the RTE for the solar spectrum

In section 2.1.2 a solution to the RTE for the idealized case of a non-scattering
medium was derived. This section will focus on a solution to the general RTE in its
newly derived plane-parallel form in equation (2.22) for shortwave radiation, i.e. the
solar spectrum.

Considering a scattering medium and the general RTE, one needs to take into
account both the effects that cause the extinction of the initial intensity, i.e. absorp-
tion and scattering, as well as the strengthening of the intensity due to emission and
multiple scattering, which defines the source function Jλ, for all wavelengths.
The extinction of a beam’s intensity in absence of scattering and emission has been
described earlier in section 2.1.2. The focus will now be shifted to the source function
Jλ.
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As it was seen in section 2.1 and in figure 2.2, the Earth’s emission lies mainly in
the IR spectrum and can be described with the Planck’s function of a black body, so
that, in the absence of multiple scattering, the source function for the Earth can be
expressed as:

Jλ = Bλ(T ) (2.23)

This would be true for an atmosphere where the emission of the earth would travel
through the atmosphere unhindered, but that is not true in reality. Due to gasses
absorbing and re-emitting this radiation, i.e. the greenhouse effect, one would need
to correct for these processes with an additional absorption coefficient.
However, there is no significant overlap between the shortwave and longwave spectra
as aforementioned, and thus the emissions can be neglected for applications in the
solar spectrum.
Therefore only scattering processes need to be considered for the RTE.

(a) scattering (b) multiple scattering

Figure 2.5: Illustrations for (a) scattering and (b) multiple scattering processes. Fig-
ure (a) shows different angular patterns of scattering, while Figure (b) shows an
example of multi order scattering up to the third order. Figure 1.4 and 1.5 from
[Liou, 2002]

There are two types of scattering that need to be examined. First the direct
scattering of a solar beam due to a medium, and second the multiple scattering of
diffuse radiation. Diffuse radiation describes radiative beams that have at least been
scattered once, while solar beams that have traveled directly from the Sun to the
Earth’s surface are called direct radiation.

The multiple scattering is a sequence of scattering processes and all of them are
affected by the scattering angle and properties of the scattering medium, i.e. the air
and cloud particles, as well as aerosols.

Different kinds of scattering are depicted in figure 2.5 (a), where the same beam is
scattered by different angular patterns, some scattering more evenly to all directions,
others scattering more towards a certain direction, e.g. forward as seen in (c).
Figure 2.5 (b) shows an example of multiple scattering, up to the third order, i.e. the
initial beam is scattered three times until it takes the direction of interest.
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While the scattering at the three points P, Q and R is depicted to be the same at
each of them, this is not necessary the case, depending on whether the scattering
medium is homogeneous or not.

To calculate the scattered intensities the angular distribution must be known for
the whole path the scattered light undertakes. For this a phase function Pλ(cos Θ) is
introduced.
The phase function holds information about the angular distributions through the
scattering angle Θ, which can be expressed in the same spherical coordinate system
as used for the plane-parallel RTE shown in figure 2.4, with µ = cos θ.

Considering an initial incoming beam with incident angles µ′ and φ′, which is
scattered (multiple times), until it has angles µ and φ as it leaves the scattering
medium, lets the phase function become a function of µ, φ, µ′ and φ′. Pλ(µ;φ;µ′;φ′)
describes then the angular distribution of the scattered beam.

cos Θ = µµ′ + (1− µ2)1/2(1− µ′2)1/2 cos (φ′ − φ) (2.24)

If the Sun’s position is described by the angles µ0 and φ0, the scattering of a Sun’s
direct solar beam can be constructed with the solar zenith angle, which is µ0, as well
as a scattering coefficient βs,λ, which describes how efficient the medium or particle
is at scattering the beam. This direct scattering can then be formulated as follows
for the source function:

Jλ = βs,λF�,λe
−τλ/µ0Pλ(µ, φ;−µ0, φ0)

1

4π
(2.25)

Here F�,λ is a part of the solar flux from the TOA at wavelength λ. The factor 1
4π

is the ratio of the 4π solid angle. Note that as downward angles are per definition
negative, a minus-sign was added to µ0 in equation (2.25).
While equation (2.25) describes the contribution of the direct scattering to the source
function, also multiple scattering processes, i.e. diffuse radiation, need to be ac-
counted for. This can be done with the following double integral:

Jλ = βs,λ

ˆ 2π

0

ˆ 1

−1

Iλ(τ ;µ′, φ′)Pλ(µ, φ;µ′, φ′)
dµ′dφ′

4π
(2.26)

Like the scattering coefficient βs,λ, a extinction coefficient βe,λ can be defined. This
is useful, as one can then define the ratio between scattering and extinction as single-
scattering albedo ω̃λ:

ω̃λ =
βs,λ
βe,λ

(2.27)

The term albedo was introduced earlier as a ratio of how much radiation is reflected
or absorbed, i.e. how opaque a medium appears for a radiative beam, which now can
be quantitatively described with the optical depth τλ. Likewise the single-scattering
albedo ω̃λ is now an expression quantifying the amount of scattering by a medium.
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ω̃λ = 0 describes a non-scattering medium as investigated before with the Beer-
Bouguer-Lambert law in section 2.1.2, while a medium with ω̃λ = 1 scatters all
incoming radiation with wavelength λ.
Taking the general RTE equation (2.22) and adding the direct scattering in equation
(2.25), diffuse scattering from equation (2.26) as well as the single-scattering albedo
in equation (2.27), the RTE takes the form1:

µ
dIλ(τλ;µ, φ)

dτλ
= Iλ(τλ;µ, φ)− ω̃λ

4π

ˆ 2π

0

ˆ 1

−1

Iλ(τ ;µ′, φ′)Pλ(µ, φ;µ′, φ′)dµ′dφ′

− ω̃λ
4π
F�,λe

−τλ/µ0Pλ(µ, φ;−µ0, φ0)

(2.28)

To solve radiative transfer problems the three parameters: the optical depth τλ, the
single-scattering albedo ω̃λ and the phase function Pλ(cos Θ) need to be determined.
The phase function Pλ(cos Θ) can be expressed as a series of Legendre polynomials
Pl of lth order, which are commonly used in physics due to their mathematical prop-
erties. This allows to choose the accuracy of representation needed with the number
of polynomials N :

P (cos Θ) =
N∑
l=0

ωlPl(cos Θ) (2.29)

Note that from now on the subscript λ for specific wavelengths will be neglected,
to avoid confusion in the following equations. ωl is the expansion coefficient for
l = 0, 1, ..., N :

ωl =
2l + 1

2

ˆ 1

−1

P (cos Θ)Pl(cos Θ)d cos Θ (2.30)

For l = 0, ω0 = 1, while the first order phase function (l = 1), for which P1(cos Θ) =
cos Θ, is used to define a commonly used parameter for radiative transfers in the
atmospheres, the asymmetry factor g:

g ≡ ω1

3
=

1

2

ˆ 1

−1

P (cos Θ) cos Θd cos Θ (2.31)

The asymmetry factor is the first moment of the phase function and describes the
propagation of scattered radiation, giving a relative indication of the ratio that is
scattered forward. For an isotropic medium, such as Rayleigh scattering, g = 0, but
g can also increase if the scattering has a more forward directed scattering, e.g. figure
2.5(a):(c), as well as become negative for cases where backward scattering dominates.
Combining equation (2.24) and equation (2.29), the phase function becomes:

1To be consistent with the formalism in equation (2.25) and equation (2.26), Iλ(τλ;µ;φ) included
a factor βe,λ, while the optical depth actually had become τλ ≡

´∞
z
βe,λdz

′, instead of the expression
in equation (2.21).
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P (µ, φ;µ′, φ′) =
N∑
l=0

ωlPl[µµ
′ + (1− µ2)1/2(1− µ′2)1/2 cos (φ′ − φ)] (2.32)

Legendre polynomials have many mathematical and geometrical properties. In this
case it becomes possible to decompose equation (2.32) into spherical harmonics with
the addition theorem2:

P (µ, φ;µ′, φ′) =
N∑
m=0

N∑
l=0

ωml P
m
l (µ)Pm

l (µ′) cosm(φ′ − φ) (2.33)

where
ωml = (2− δ0,m)ωl

(l −m)!

(l +m)!
(2.34)

for l = m, ..., N with 0 ≤ m ≤ N , as well as Pm
l as the associated Legendre poly-

nomials and δ0,m as the Dirac Delta function which is either 1 for m = 0 or zero
otherwise.
Likewise, the intensity I(τ ;µ, φ) can be expressed with spherical harmonics as:

I(τ ;µ, φ) =
N∑
m=0

Im(τ, µ) cosm(φ′ − φ) (2.35)

Inserting the spherical harmonic expressions for P (µ, φ;µ′, φ′) and I(τ ;µ, φ) from
equation (2.33) and equation (2.35) into the RTE in equation (2.28) and taking
advantage of the orthogonality of the associated Legendre polynomials, the RTE
splits into (N + 1) independent equations of the form:

µ
dIm(τ, µ)

dτ
= Im(τ, µ)− (1− δ0,m)

ω̃

4

N∑
l=m

ωml P
m
l (µ)

ˆ 1

−1

Pm
l (µ′)Im(τ, µ′)dµ′

− ω̃

4π

N∑
l=m

ωml P
m
l (µ)Pm

l (−µ0)F�e
−τ/µ0

(2.36)

Each of the independent equations can be solved to determine Im, which then can
be used to calculate the (monochromatic) intensity I with equation (2.35).
For the case m = 0, the intensity I in equation (2.35) becomes independent of the
azimuthal angle φ. This represents a medium that is homogeneous in the horizontal
plane, which is a good approximation for many atmospheric models. The phase
function for this case becomes:

P (µ, µ′) =
N∑
l=0

ωlPl(µ)Pl(µ
′) (2.37)

2For a detailed description of the addition theorem see e.g. Apendix E in [Liou, 2002].
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While the RTE takes the form:

µ
dI(τ, µ)

dτ
= I(τ, µ)− ω̃

2

ˆ 1

−1

I(τ, µ′)P (µ, µ′)dµ′

− ω̃

4π
F�P (µ,−µ0)e−τ/µ0

(2.38)

The upward F ↑dif and downward F ↓dif diffuse monochromatic flux densities can then
be defined with I(τ, µ) :

F ↑↓dif (τ) = 2π

ˆ ±1

0

I(τ, µ)µdµ (2.39)

where the positive integral limit corresponds to the upward flux, while the negative
is used for the downward flux. Equation (2.39) shows the diffuse part of the solar
flux, but does not take the direct, non-scattered solar radiation into account. The
direct flux density can be defined with the Beer-Bouguer-Lambert law as derived in
equation (2.16), so that:

F ↓dir(τ) = µ0F�e
−τ/µ0 (2.40)

Naturally there can not be a direct upward density flux from the solar radiation on
Earth, as all upward directed solar radiation has been at least been scattered once
by the atmosphere or surface.
Combining the diffusive and direct part of the solar flux densities the upward and
downward fluxes become:

F ↑(τ) = F ↑dif (τ) = 2π

ˆ 1

0

I(τ, µ)µdµ (2.41)

F ↓(τ) = F ↓dif (τ) + F ↓dir(τ) = 2π

ˆ −1

0

I(τ, µ)µdµ+ µ0F�e
−τ/µ0 (2.42)

The (monochromatic) net flux density, i.e. the difference between upward and down-
ward fluxes is then:

F (τ) = F ↓(τ)− F ↑(τ) (2.43)

To compute the total solar net flux density F for the whole shortwave spectrum, one
would need to integrate F (τ) over all wavelengths in the spectrum. The net flux can
only be either zero for an atmosphere in equilibrium, or take a positive value, which
indicates warming of the system. A warming due to the divergence of the solar flux
can be quantified as the solar heating rate:

∂T

∂t
= − 1

ρcp

∂F

∂z
(2.44)

where T is the temperature, t is the time, ρ is the density of air in the layer and cp
is the specific heat at constant pressure.
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2.2 Radiation in atmospheric models

From the expression of the heating rate in equation (2.44) it becomes apparent that
the solar radiation fluxes are not only important for the surface heating through the
day and night cycle but also for the vertical thermal structure of the atmosphere.
Even though the RTE can be simplified through general assumptions such as the
plane-parallel atmosphere and horizontal homogeneous approximation, as shown in
the previous section, the task of solving the general RTE (2.38) is still complex and
computationally heavy for weather and climate models.

The three previously introduced radiative variables: the optical thickness τ ,
the single scattering albedo ω̃ and the asymmetry factor g, are important for the
algorithms used to compute radiative processes in atmospheric models, which will be
focused on in this section.

Atmospheric dynamics can be described and calculated through the Navier-Stokes
equation, the thermodynamic equation, the continuity equation and equation of state.
However, the above mentioned radiative variables are not part of the Eulers equations
solved by the NWP model, which will be further discussed in section 2.2.3, when
spectral integration and bands are introduced.

There are a several processes in the atmosphere that are too complex, e.g. small
scale mechanisms, that need to be approximated in parameterization schemes in NWP
models, as shown in figure 2.6.

Figure 2.6: Illustration showing an example of the interaction between parameteri-
zation schemes in the WRF model

From figure 2.6 it is evident that the different parameterization schemes interact
with one another. While the calculated radiation fluxes are important for the heating
handled by the Land-Surface scheme, the radiation parameterization scheme depends
on information about the surface, e.g. the albedo for the solar spectrum, and clouds
from the other schemes as well.



17.8.2020 2 THEORY Page 18 of 122

A benefit of treating the radiative processes in a separate parameterization scheme
is that the radiation fluxes are not computed at every model time step, which normally
is only a few seconds to minutes long in a NWP model. The radiation scheme is
typically called once every hour in a forecasting model, as e.g. the ecRad code is
called hourly by the ECMWF model [Hogan and Bozzo, 2018].

Section 2.2.1 will focus on some of the commonly used approximate solutions for
the RTE used in NWP models, i.e. the two-stream method and its variations.
The issue of non-homogeneity in the vertical direction will be presented in section
2.2.2, when the vertical integration will be described.
While the treatment of gases, aerosols and clouds will be presented together with the
spectral bands and spectral integration in section 2.2.3, section 2.2.4 will describe the
effect and calculation of clouds in more detail.
Since the WRF model supports different radiation parameterization schemes, section
3.3 will focus on the selected ones used in this study and present those with the
methods that will be introduced in the following sections.

2.2.1 Two-stream-method

The computation of the radiative fluxes in NWP models requires that the RTE in
equation (2.38) can be solved analytically. This means that the integral in the second
term on the right hand side must be replaced by a finite sum. For this the Discrete-
ordinates method was developed [Chandrasekhar, 1950], which is the starting point
for the the two-stream method as well as four-stream method.
The concept of the Discrete-ordinates method is to use the Gauss’ formula to substi-
tute the integral with a sum over a finite number of quadrature points:

ˆ 1

−1

f(µ)dµ ≈
n∑

j=−n

ajf(µj) (2.45)

aj are weights defined as:

aj =
1

P ′2n(µj)

ˆ 1

−1

P2n(µ)

µ− µj
dµ (2.46)

where µj are the zeros of the polynomials P2n(µ) and the prime of P ′2n(µj) denotes
the derivative with respect to µj.
Using (2.45) we can write (2.38), similarly to equation (2.36), as:

µi
dI(τ, µi)

dτ
= I(τ, µi)−

ω̃

2

N∑
l=0

ωlPl(µi)
n∑

j=−n

ajPl(µj)I(τ, µj)

− ω̃

4π
F�

[ N∑
l=0

(−1)lωlPl(µi)Pl(µ0)

]
e−µ0/τ , for i = −n, ..., n

(2.47)

This is a general representation of multiple radiation streams, i.e. radiation beams
propagating into the µi(−n, n) directions. In principle any (even) number of streams
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can be considered, for radiative transfers usually two or four streams are chosen [Liou,
1974]. For this general multi-stream method the following relations apply:

a−j = aj, µ−j = −µj,
n∑

j=−n

aj = 2 (2.48)

In the case of two streams, i.e. n = 1, N = 1, j = −1 and 1, these imply:

µ1 =
1√
3
, a1 = a−1 = 1 (2.49)

Denoting the intensities I↑ = I(τ, µ1) and I↓ = I(τ,−µ1), one gets the following two
equations for the two-stream approximation from (2.47) :

µ1
dI↑

dτ
= I↑ − ω̃(1− b)I↑ − ω̃bI↓ − S−e−τ/µ0 (2.50)

− µ1
dI↓

dτ
= I↓ − ω̃(1− b)I↓ − ω̃bI↑ − S+e−τ/µ0 (2.51)

where g is the previously introduced asymmetry factor from equation (2.31), which
is zero for isotropic (Rayleigh) scattering:

g ≡ ω1

3
=

1

2

ˆ 1

−1

P (cos Θ) cos Θd cos Θ = 〈cos Θ〉 (2.52)

and
b =

1− g
2

, S± =
F�ω̃

4π
(1± 3gµ1µ0) (2.53)

From equation (2.50) and (2.51) it can be seen that the two intensities are inter-
dependent from the third term on the right hand side, which is a representation of
multiple scattering.
b and (1 − b) can be thought of as fractions of back- and forward-scattering, while
S± is the direct solar source term.
To finde the solution to those two first-order inhomogeneous differential equations,
two boundary conditions are required. For this the diffuse radiation at the surface
and the TOA are usually assumed to be zero, which yields the solutions3:

I↑ = I(τ, µ1) = Kvekτ +Hue−kτ + εe−τ/µ0 (2.54)

I↓ = I(τ,−µ1) = Kuekτ +Hve−kτ + γe−τ/µ0 (2.55)

where

v =
1 + a

2
, u =

1− a
2

, a2 =
1− ω̃
1− ω̃g

(2.56)

ε =
α + β

2
, , γ =

α− β
2

(2.57)

3A more detailed derivation of the following equations can be found in [Liou, 2002]
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α =
Z1µ

2
0

1− µ2
0k

2
, β =

Z2µ
2
0

1− µ2
0k

2
, k2 =

(1− ω̃)(1− ω̃g)

µ2
1

(2.58)

Z1 = −(1− ω̃g)(S− + S+)

µ2
1

+
S− − S+

µ1µ0

, Z2 = −(1− ω̃g)(S− − S+)

µ2
1

+
S− + S+

µ1µ0

(2.59)
K and H need to be determined from the diffuse intensity boundary conditions. In
the case of no diffuse radiation at the surface and the TOA these two constants
become:

K = −εve
τ1/µ0 − γue−kτ1

v2ekτ1 − u2e−kτ1
, H = −εue

τ1/µ0 − γve−kτ1
v2ekτ1 − u2e−kτ1

(2.60)

From the intensities the diffuse fluxes can be found with equation (2.39):

F ↑ = 2πµ1I
↑, F ↓ = 2πµ1I

↓ (2.61)

These solutions are only valid for non-conservative scattering atmospheres, i.e. ω̃ < 1.
While solutions for conservative scattering, ω̃ = 1, can be derived from the equations
(2.50) and (2.51), values for conservative scattering are in practice satisfied by setting
ω̃ = 0.99999 and using the equations for the non-conservative case.

Since the development of the two-stream method there have appeared many
similar methods for different applications, which all can be expressed in the same
framework as the two-stream approximation [Meador and Weaver, 1980], [Yang et al.,
2018], [Zhang et al., 2018].
By integrating the RTE (2.38), the diffuse fluxes can be expressed as:

1

2π

dF ↑(τ)

dτ
=

ˆ 1

0

I(τ, µ)dµ− ω̃

2

ˆ 1

0

ˆ 1

−1

I(τ, µ)P (µ, µ′)dµ′dµ

− ω̃

4π
F�e

−τ/µ0
ˆ 1

0

P (µ,−µ0)dµ

(2.62)

1

2π

dF ↓(τ)

dτ
=

ˆ 1

0

I(τ,−µ)dµ+
ω̃

2

ˆ 1

0

ˆ 1

−1

I(τ, µ′)P (−µ, µ′)dµ′dµ

+
ω̃

4π
F�e

−τ/µ0
ˆ 1

0

P (−µ,−µ0)dµ

(2.63)

The general two-stream approximation can then be written as:

dF ↑(τ)

dτ
= γ1F

↑(τ)− γ2F
↓(τ)− γ3ω̃F�e

−τ/µ0 (2.64)

dF ↓(τ)

dτ
= γ1F

↓(τ)− γ2F
↑(τ) + (1− γ3)ω̃F�e

−τ/µ0 (2.65)

From the equations above it can be seen that the differential changes of the diffuse
fluxes depend on both the diffuse upward and downward fluxes as well as the direct
downward flux. The coefficients γ1, γ2 and γ3 depend on the specific approximation
and its assumptions about the intensity and phase function.
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There are many different approximation methods, so only the ones relevant for
this study, i.e. the ones used by the WRF radiation parameterization schemes, will
be presented in the following paragraphs.
For the previously described two-stream approximation only two intensities are con-
sidered, traveling in the µ1 and µ−1 direction, while the phase function has been
expanded in two terms of Legendre polynomials P2n.
Another approach is the Eddington approximation, in which both the intensity and
the phase functions get expanded in two polynomial terms.
The corresponding values for the γ1, γ2 and γ3 coefficients for these two variants of
the general two-stream approximation can be seen in table 2.1.

Method γ1 γ2 γ3

Two-stream 1−ω̃(1+g)/2
µ1

ω̃(1−g)
2µ1

1−3gµ1µ0
2

Eddington 7−(4+3g)ω̃
4

−1−(4−3g)ω̃
4

2−3gµ0
4

Table 2.1: Coefficients for the two-stream approximation in equation (2.64) and (2.65)

The solution of the general two-stream method in equation (2.64) and (2.65) is:

F ↑ = vKekτ + uHe−kτ + εe−τ/µ0 (2.66)

F ↓ = uKekτ + vHe−kτ + γe−τ/µ0 (2.67)

where H and K need to be determined by the boundary conditions and:

v =
1

2

(
1 +

γ1 − γ2

k

)
, u =

1

2

(
1− γ1 − γ2

k

)
(2.68)

k2 = γ2
1 − γ2

2 , ε = [γ3(1/µ0 − γ1)− γ2(1− γ3)]µ2
0ω̃F� (2.69)

γ = −[(1− γ3)(1/µ0 + γ1) + γ2γ3]µ2
0ω̃F� (2.70)

2.2.1.1 δ-Function adjustment

While the two-stream and Eddington methods yield good approximations for radia-
tive transfers in optical thick layers, they are rather inaccurate when the scattering
by particles has a strong forward peaked direction, as e.g. it is the case for cloud
particles.

To take into account the effect which such large forward peaks have on multiple
scattering processes, an adjustment is made to the absorption and scattering.
In practice this is done through the removal of the fraction, f , of the scattered energy
inside the forward peak from the radiative variables τ , ω̃ and g.
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Let the apostrophe ’ denote the adjusted variables, and the optical thickness τ be
defined as the sum of its scattering τs and absorption τa component. Then the
components of the optical thickness can be adjusted as:

τ ′s = (1− f)τs (2.71)

τ ′a = τa (2.72)

Note that the absorption is not affected by the forward peak. The total adjusted
optical thickness becomes therefore:

τ ′ = τ ′s + τ ′a = (1− f)τs + τa = (1− ω̃f)τ (2.73)

Similarly, the adjusted single-scattering albedo ω̃′ and the adjusted asymmetry factor
g′ can be expressed as:

ω̃′ =
τ ′s
τ ′

=
(1− f)ω̃

1− ω̃f
(2.74)

τ ′sg
′ = τsg − τsf ⇐⇒ g′ =

g − f
1− f

(2.75)

Finally, f is the same as the second moment phase function as can be derived from
equation (2.30) :

f =
ω2

5
(2.76)

For cloud and aerosol particles the phase function can be expressed through the
asymmetry factor g, called the Henyey-Greenstein phase function, which leads to
the Henyey-Greenstein approximation f = g2, linking the asymmetry factor to the
fraction of the forward scattering.

The combination of this δ-adjustment with the Eddington approximation is called
the δ-Eddington approach [Joseph et al., 1976], which is one of the most used methods
in atmospheric models.

Another approach is the Practical Improved Flux method (PIFM) [Zdunkowski
et al., 1980], [Räisänen, 2002], of which the coefficients are shown alongside the ones
of the δ-Eddington method in table 2.2.

Method γ1 γ2 γ3

δ-Eddington 7−(4+3g′)ω̃′

4
−1−(4−3g′)ω̃′

4
2−3g′µ0

4

PIFM 8−ω̃′(5+3g′)
4

3
4
(ω̃′(1− g′)) 2−3g′µ0

4

Table 2.2: Coefficients for the two-stream approximation with δ-function adjustment
for two different methods, both for which f = g2.
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2.2.2 Vertical integration

For all approximations presented in the previous sections only a homogeneous layer
was considered. While this is a relatively good assumption for atmospheric layers in
the horizontal plane, it is not valid in the vertical direction.
Dividing the Earth’s atmosphere into N vertical layers, as done in NWP models,
shows that there are large variations in the vertical profile.

Theoretically it is possible to divide the atmosphere into so many thin vertical
layers that each of them can be treated as homogeneous, one such layer is depicted
in figure 2.7. The RTE can then be solved for each individual layer yielding the
corresponding up- and downward fluxes per layer. However, this becomes tedious
when the effects of multiple scattering need to be taken into account.

Imagine the radiative feedback mechanism between two layers, each with their
own optical properties, represented through their optical thicknesses τ1 and τ2, as
shown in figure 2.8. An incoming solar beam (µ0F·) will be partly reflected when
reaching the first layer (R1), while the other part is transmitted through the first
layer (T̃1) towards the second, where it then also will be partly reflected and partly
transmitted further. The reflected portion of the firstly transmitted radiation (R2T̃1)
travels then upwards back towards the first layer, where it again can either trans-
mit upwards (T̃ ∗1R2T̃1) or be again reflected downwards (R̃∗1R2T̃1). This feedback
mechanism can go on infinitely.
Thus, while these calculations are conceptually correct, NWPmodels require a method
which includes multiple scattering, but is easier to resolve.
A commonly used vertical integration method of radiative fluxes in radiation param-
eterizations is the adding method, often coupled with the (δ-)2-stream method.

We will get back to the process of multiple scattering shown in figure 2.8, first
let us consider a single homogeneous atmospheric layer as shown in figure 2.7.

Figure 2.7: Schematic of incident radiation from above (left) and below (right) at a
single atmospheric layer. Figure adapted from [Liou, 2002].

For this layer the incoming radiation from above is denoted Iin,top, while all radiation
incident on the layer from below is called Iin,bottom.
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From the intensity arriving from above Iin,top, the part that is transmitted throughout
the layer Iout,bottom is described by the transmissivity T̃ , while the portion that is
reflected Iout,top, can be described with the reflectivity R. Similarly, the intensity
coming from below Iin,bottom gets transmitted and reflected as Iout,top and Iout,bottom,
as described by the transmissivity T̃ ∗ and reflectivity R∗. The superscript ∗ is used
to denote values for radiation traveling upwards from below.
The reflectivities and transmissivities R, R∗, T̃ and T̃ ∗ can be calculated from the
RTE in equation (2.38) by using the incident beam intensity Iin,top and Iin,bottom,
respectively.

Figure 2.8: Illustration of two layers and terms used in the adding method. The
layers are depicted individually with their optical thickness τ1 and τ2, reflection and
transmission function R1, R2, T̃1 and T̃2, respectively. The superscript ∗ denotes
radiation traveling upwards from below. Figure adapted from [Liou, 2002].

Let us now again consider the case of two layers as depicted in figure 2.8. Here
T̃ represents the total transmission, i.e. both the direct and diffuse portion, and R
the reflection at one layer. The single-digit subscripts 1 and 2 denote which layer
the reflection and transmission belong to. Likewise, layer 1 and 2 have an optical
thickness defined as τ1 and τ2.
Additionally, all upward reflected radiation from the interface between the two layers
will be defined as U , while all transmission traveling downwards through the interface
will be denoted D̃.
Finally, R12 is defined as the total reflection at the top of layer 1, due to all multiple
scattering between the two layers, while T̃12 is the combined transmission at the
bottom of layer 2, due to the same scattering processes.

Following the multiple scattering shown in the figure and the discussed feedback
mechanisms from before, one can begin to write:

R12 = R1 + T̃ ∗1R2T̃1 + T̃ ∗1R2R
∗
1R2T̃1 + T̃ ∗1R2R

∗
1R2R

∗
1R2T̃1 + ... (2.77)

T̃12 = T̃2T̃1 + T̃2R
∗
1R2T̃1 + T̃2R

∗
1R2R

∗
1R2T̃1 + ... (2.78)
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U = R2T̃1 +R2R
∗
1R2T̃1 +R2R

∗
1R2R

∗
1R2T̃1 + ... (2.79)

D̃ = T̃1 +R∗1R2T̃1 +R∗1R2R
∗
1R2T̃1 + ... (2.80)

Note how the series’ converge, as e.g. for R12:

R12 = R1 + T̃ ∗1R2T̃1 + T̃ ∗1R2R
∗
1R2T̃1 + T̃ ∗1R2R

∗
1R2R

∗
1R2T̃1 + ...

= R1 + T̃ ∗1R2[1 +R∗1R2 + (R∗1R2)2 + ...]T̃1

= R1 + T̃ ∗1R2(1−R∗1R2)−1T̃1

(2.81)

Therefore the previous expressions can be written as:

R12 = R1 + T̃ ∗1R2(1−R∗1R2)−1T̃1 (2.82)

T̃12 = T̃2(1−R∗1R2)−1T̃1 (2.83)

U = R2(1−R∗1R2)−1T̃1 (2.84)

D̃ = (1−R∗1R2)−1T̃1 (2.85)

Afterwards the following relationships can be deduced from the equations above:

R12 = R1 + T̃ ∗1U (2.86)

T̃12 = T̃2D̃ (2.87)

U = R2D̃ (2.88)

From the expression for R12 in equation (2.86) it becomes apparent that the total
combined reflection due to multiple scattering between both layers is the sum of
the reflected radiation of the first layer (R1) and the upward transmitted radiation
from the multiple scattering throughout the interface at U . Meanwhile, the total
transmission of both layers T̃12 is a result of the downward transmitted radiation
through layer 2 at D̃.

T̃ denotes the total transmission, both direct and diffuse, as stated earlier. Using
the Beer-Bouguer-Lambert Law from equation (2.16) in the same manner as to define
the direct flux in equation (2.40), the total transmission can be divided into its direct
component e−τ/µ′ and diffuse portion T :

T̃ = T + e−τ/µ
′

(2.89)

where for direct solar radiation µ′ = µ0 and for a beam traveling in the µ direction
µ′ = µ. Additionally, it proves useful to define an operator S of the form:

S = R∗1R2(1−R∗1R2)−1 so that (1−R∗1R2)−1 = 1 + S (2.90)

D̃ and T̃12 can then be decomposed into their direct and diffuse parts, where T1, T2

and D are diffuse components only:

D̃ = D + e−τ1/µ0

= (1 + S)T1 + Se−τ1/µ0 + e−τ1/µ0
(2.91)
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T̃12 = (T2 + e−τ2/µ0)(D + e−τ1/µ0)

= e−τ2/µ0D + T2e
−τ1/µ0 + T2D + exp

[
−
(
τ1

µ0

+
τ2

µ0

)]
δ(µ− µ0)

(2.92)

The total diffuse transmission and reflection of both layers may be found with a set
of iterative equations, which for the radiation coming from above take the following
form for T12 and R12:

Q = R∗1R2 (2.93)

S = Q(1−Q)−1 (2.94)

D = T1 + ST1 + Se−τ1/µ0 (2.95)

U = R2D +R2e
−τ1/µ0 (2.96)

T12 = e−τ2/µD + T2e
−τ1/µ0 + T2D (2.97)

R12 = R1 + e−τ1/µU + T ∗1U (2.98)

For the radiation travelling upwards from below, T ∗12 and R∗12 can be computed with:

Q = R2R
∗
1 (2.99)

S = Q(1−Q)−1 (2.100)

U = T ∗2 + ST ∗2 + Se−τ2/µ
′

(2.101)

D = R∗1U +R∗1e
−τ2/µ′ (2.102)

T ∗12 = e−τ1/µU + T ∗1 e
−τ2/µ′ + T ∗1U (2.103)

R∗12 = R∗2 + e−τ2/µD + T2D (2.104)

From this example it can be seen that the adding method is an efficient approach to
determine the radiative fluxes between two layers, e.g. at the surface or the TOA.

As aforementioned, the atmosphere is divided into several vertical layers in NWP
models. A number N layers is chosen, for which each layer is assumed to be homo-
geneous and is characterized by its own set of radiative variables (τ , ω̃, g).
For homogeneous layers the transmission and reflection from above or below are
identical. Thus we have for each l’th layer Tl = T ∗l and Rl = R∗l for l = 1, 2, ..., N .
Moreover, the surface is defined as an additional layer N + 1 with no transmission,
TN+1 = 0, and the surface albedo as RN+1.
An Illustration of such a vertical structure of the atmosphere is shown in figure 2.9.
Note that l = 1 is the layer at the top of the atmosphere, while l = N + 1 is the
surface layer.
As depicted in the figure the layers are added downward one by one from the TOA to
the layer l to compute T1,l and R1,l for l = 2, ..., (N + 1) , as well as T ∗1,l and R∗1,l for
l = 2, ..., N . Similarly, the layers added upwards from the surface are used to obtain
Tl+1,N+1 and Rl+1,N+1 for l = (N − 1), ..., 1.
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Figure 2.9: Depiction of the vertical layer structure and notation for the internal
intensities in an atmosphere of the adding method. Figure adapted from [Liou, 2002].

Considering the layers (1, l) and (l + 1, N + 1), the adding method can be used
to determine D and U :

D = T1,l + ST1,l + S exp(−τ1,l/µ0) (2.105)

U = Rl+1,N+1D +Rl+1,N+1 exp(−τ1,l/µ0) (2.106)

where τ1,l is the optical thickness from the TOA to the bottom of the l’th layer and
S and Q are defined as:

S = Q(1−Q)−1 (2.107)

Q = R∗l,1Rl+1,N+1 (2.108)

The fluxes at the interface between layer l and l + 1, taking into account all the
scattering in the layers above and below, then become:

F ↑ = µ0F�

(
2

ˆ 1

0

U(µ, µ0)µ dµ

)
(2.109)

F ↓dif = µ0F�

(
2

ˆ 1

0

D(µ, µ0)µ dµ

)
(2.110)

F ↓dir = µ0F� exp(−τ1,l/µ0) (2.111)

F = (F ↓dif + F ↓dir)− F
↑ (2.112)

where F ↑ is the upward flux, F ↓dif is the diffuse downward flux, F ↓dir is the direct solar
downward flux and F is the net flux.
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2.2.3 Spectral bands

As previously mentioned the radiative variables (τ , ω̃, etc.) are not part of the
governing equations solved by NWP models. Thus they need to be specified either
with prognostic and diagnosed variables, e.g. temperature, pressure, mixing ratios,
etc.), in the NWP model, or through look-up tables, which are static data sets with
e.g. information about gases such as carbon dioxide or ozone.

In section 2.1 it was shown that different gases absorb and interact with different
wavelengths. Recall that the total solar flux F can be defined as an integral of all
the monochromatic fluxes Fλ for each wavelength in the solar spectrum as:

F =

ˆ λsolarmax

λsolarmin

Fλdλ (2.113)

Here the exact definition of the lower and upper wavelength boundaries of the solar
wave spectrum depends on the individual radiation scheme. In general, radiation
parameterization schemes define the start of the solar spectrum in the ultraviolet
(UV) region (∼200 nm), while the ending boundary is choosen from a wider range,
either closer to the near-infrared (NIR) range (∼4.000 nm) or even stretching into
the thermal-IR range (∼10.000 nm).

Many radiation schemes divide the whole wave spectrum into spectral subdivi-
sions, i.e. spectral bands. For each of these bands the physical contributions due to
e.g. different gases are handled separately. The resulting averaged fluxes for each
band Fλ can afterwards be summed up together for all bands to form the total flux:

F =
b∑
i=1

Fλ,i∆wi (2.114)

where b is the number of bands and ∆wi is the fractional solar flux for the i’th band.
For shortwave radiation schemes common numbers of spectral bands are 10 ∼ 15.
However there are also schemes with more, or less bands, as well as broadband inte-
gration schemes, i.e. schemes with only a single band.

Regardless of the number of spectral bands, the contribution of gases, as well
as clouds and aerosols, need to be considered for each atmospheric layer. As seen
before in figure 2.1, are there some gases that are more important for the absorption
and scattering in the atmosphere than others. The most important gases in con-
text of absorption in the atmosphere, such as water vapor and ozone, are therefore
parameterized with greater detail than minor gases.
The contributing gases for an atmospheric layer can be treated independently, with
each their own optical thickness τgas, which can be used to define the total absorption
optical thickness τab as a sum of all contributors:

τab ≡ τH2O + τO3 + τCO2 + τO2 +O(τ) (2.115)

where τH2O, τO3 , τCO2 and τO2 are the optical thicknesses of each gas, while O(τ)
describes the contribution of minor gases.
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Defining an atmospheric layer that stretches between heights z1 and z2, with z1 < z2,
the optical thickness for a contributor is defined as per equation (2.21):

τgas =

ˆ z2

z1

kρgasrdz =

ˆ z2

z1

kqgasρdrdz (2.116)

where for the last transformation the density ρgas is expressed in terms of the mixing
ratio qgas and the density of dry air ρd.
In the absence of clouds and aerosols, the total optical depth τ due to absorption
(τab) and scattering processes (τsc) is:

τ = τab + τsc (2.117)

Taking the contribution of clouds (τcld) and aerosols (τaer) into account, the total
optical thickness of an atmospheric layer can therefore be expressed as:

τ = τab + τsc + τcld + τaer (2.118)

For each optical thickness, the single scattering albedo and asymmetry factor can be
calculated for the gases as well as aerosols and clouds.

To do this the monochromatic absorption coefficient kλ must be evaluated at each
layer, for all wavelengths. It is reasonable to assume that the absorption coefficient
within each layer is constant, when the layer has a constant pressure and temperature.
However, a pure monochromatic absorption is not observed in the real atmosphere,
as there are e.g. collisions between molecules, which lead to broadening of spectral
lines. To take the pressure broadening, which turns out to follow the Lorentz profile4,
into account, the monochromatic absorption coefficient kλ can be defined as:

kλ = Sf(ν − ν0) =
S

π

α

(ν − ν0)2 + α2
(2.119)

where ν = 1
λ
is the wavenumber, f(ν − ν0) is the line shape factor following the

Lorentz profile and S is the line strength defined as:

S =

ˆ ∞
−∞

kdν (2.120)

α is the line half-width at the half-maximum and works as a scaling function depend-
ing on pressure and temperature:

α(p, T ) = α0

(
p

p0

)(
T0

T

)n
(2.121)

where the reference pressure p0 and temperature T0 are usually set to 1013 hPa and
273 K for which the width at standard pressure α0 is defined. n is an index in the
range 0.5 to 1, depending on the molecule.

4For a detailed description on line and pressure broadening see e.g. chapter 1.3.2 in [Liou, 2002]
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To evaluate the total optical thickness of an atmospheric layer with N gases, for one
wavenumber ν (one wavelength λ) along the path length u =

´
ρ(z)dz one needs to

calculate:

τν =
N∑
j=1

τν,j =

ˆ
u

N∑
j=1

kν,j(u)du (2.122)

where j = 1, 2, ..., N denotes the absorption line. The absorption coefficient can be
written as a sum of the line strength and shape factor of all absorption lines as well:

kν(p, T ) =
N∑
j=1

Sj(T )fν,j(p, T ) (2.123)

To calculate each individual absorption line j, it is necessary to compute the ab-
sorption coefficient kν at intervals which are smaller than the line half-width. Com-
puting each line like this is called the line-by-line integration, and while this is the
most precise method, it is also the computational heaviest. Since this method is
not applicable for NWP models used to make weather forecasts, some simplifications
need to be made in the radiation parameterization.
One idea is the division of the spectrum into a few spectral bands, for which the
absorption coefficient is held constant for an interval of wavelengths selected based
on statistics. However, for gases with many different absorption lines, such as seen
earlier for e.g. carbon dioxide and water vapor in figure 2.1, this band approach is a
poor representation of the real atmospheric absorption.

2.2.3.1 (Correlated) k-distribution

A common approach is the k-distribution method, which is a good compromise
between accuracy and faster computation than the line-by-line method. The k-
distribution arranges the spectral transmittances T together based on the absorption
coefficient kν , since the transmittances do not depend on the order of k values in a
given spectral interval. This means that the integration over the wavenumbers can
be replaced by an integration in the k-space so that:

Tν(u) =

ˆ
∆ν

e−kνu
dν

∆ν
=

ˆ ∞
0

e−kuf(k)dk (2.124)

where f(k) is the normalized probability distribution for kν in the interval ∆ν, where
its minimum and maximum values have been set to kmin → 0 and kmax → 1, respec-
tively, as well as

´∞
0
f(k)dk = 1.

Note that equation (2.124) shows that the function f(k) is just the inverse of the
Laplace transformation, L−1, of the spectral transmittance:

f(k) = L−1(Tν(u)) (2.125)

Defining a cumulative probability function g(k) with g(0) = 0,g(k →∞) and dg(k) =
f(k)dk as:
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g(k) =

ˆ k

0

f(k)dk (2.126)

Makes it possible to express the spectral transmittance as:

Tν(u) =

ˆ 1

0

e−k(g)udg ∼=
M∑
j=1

e−k(gj)u∆gj (2.127)

Note that while g(k) is a smooth function in the space of k, k(g) is a smooth function
in the space of g. Therefore the integral in the g-space can be rewritten as a finite
sum, replacing the integral over the wavenumbers from equation (2.124).
The theory behind the k-distribution method assumed that the absorption coefficient
kν is constant. For inhomogenous atmospheres, where the absorption coefficient varies
with pressure and temperature as described in (2.123), this is not true. A variant of
the k-distribution method applicable to inhomogeneous atmospheres is the correlated
k-distribution.
The concept of this method is, that the vertical variations are accounted for through
an assumption of correlation between absorption coefficients at different temperatures
and pressures. For the correlated k-distribution the spectral transmittance can be
expressed as:

Tν(u) ∼=
ˆ 1

0

exp

[
−
∑
i

ki(g)∆ui

]
dg (2.128)

2.2.4 Clouds

Clouds cover a large portion of the Earth’s atmosphere and are the contributor with
the largest influence on radiative transfers. There exist several different types of
clouds (cumulonimbus, stratus, cirrus, etc.) that vary in form, size and composition.
The effect of clouds on radiative transfers depends on the individual cloud’s optical,
geometrical and physical structure, resulting in a wide range of optical thicknesses
for different clouds.

Clouds are composed of many different kind of particles, but in most radiation
parameterizations the two cloud particle categories of water droplets and ice crystals
are considered.
Water droplets and ice crystals are treated separately due to their difference in struc-
ture and refraction indices. Ice crystals are usually bigger than water droplets and
their structure is more complicated than water droplets, which are treated as spherical
droplets.
Clouds can consist of different particles, which also differ in size, which effects how
opaque the cloud appears.

Consider a cloud only consisting of water droplets. One can define the mean
effective radius ae, which is a measure of the droplet size distribution inside the
cloud:
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ae =

ˆ
a · πa2n(a)da

/ ˆ
πa2n(a)da (2.129)

where a is the radius and n(a) is the actual droplet size distribution. The mean
effective radius is the mean radius weighted by the droplet cross section, which means
that ae includes the scattering properties of spherical droplets.
It turns out that solar radiative transfers are mainly depended on this mean effective
radius, rather than the actual droplet size distribution [Liou, 2002].
The amount of liquid water inside a cloud is called the liquid water content (LWC),
which for spherical droplets is defined as:

LWC =
4π

3
ρl

ˆ
a3n(a)da (2.130)

where ρl is the density of water. For a cloud of thickness ∆z, the amount of vertically
integrated liquid water is called the liquid water path (LWP), which then is: LWP =
LWC ·∆z. The optical thickness is defined as:

τ = ∆z ·
ˆ
Qeπa

2n(a)da (2.131)

where Qe is called the efficiency factor for extinction, which is a function of the wave-
length, droplet radius and refractive index. For cloud droplets and visible wavelengths
Qe
∼= 2. Combining equations (2.129), (2.130) and (2.131) yields the relation:

ae ∼=
3

2ρl
LWP/τ (2.132)

which is an important relationship between the droplet size, optical thickness and
LWP in the cloud. Consider two clouds with the same LWP, equation (2.132) shows
that the cloud with the smaller droplet (small ae) would then have a larger optical
thickness τ . The cloud with the larger optical thickness will appear more opaque and
reflect more solar radiation.
A similar derivation can be made for ice clouds and ice crystals, though the scattering
properties are more difficult to determine due to the difference in geometry and
refraction, as aforementioned.
So to predict radiative effects due to clouds, information is needed about the cloud’s
optical and geometrical composition, as well as water/ice content, which is difficult
due to the uncertainties of these quantities [Wolf et al., 2020].

Clouds form vertically and horizontally into different shapes and vary in thick-
ness and opaqueness. In the previous sections horizontal homogeneous layers have
been considered with the plane-parallel approach. The different shapes, sizes and
compositions at which clouds form at different altitudes in the atmosphere pose a
problem to this assumed horizontal homogeneity.
It follows a short presentation of two methods on how cloud effects can be treated in
NWP models.
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2.2.4.1 Independent Column Approximation (ICA)

Consider a domain R that stretches out tens or hundreds of kilometers into the
horizontal and assume that the three-dimensional distribution of the cloud properties
is known exactly. The averaged, spectral integrated flux 〈F 〉 for this domain then is
[Pincus et al., 2003]:

〈F 〉 =

ˆ
S(λ)

( ˆ ˆ
R

F3D(x, y, λ)dxdy

)
dλ (2.133)

where S(λ) is a weight depending on the incoming flux for each spectral integral dλ
and F3D is the three-dimensional flux.
The horizontal variations of the flux are for large scales, such as the synoptic and
mesoscale, negligible, and the atmospheric columns can therefore be treated indepen-
dently. This is called the independent column approximation (ICA), for which 〈F 〉
then can be approximated to 〈F ICA〉:

〈F 〉 ≈ 〈F ICA〉 =

ˆ
S(λ)

(ˆ ˆ
R

F1D(x, y, λ)dxdy

)
dλ (2.134)

where F1D denotes the one-dimensional radiative fluxes.
Radiative fluxes are very different for clear sky and cloudy conditions, i.e. they are
more horizontally homogeneous in clear skies than in cloudy areas. Therefore it is
common to separate the flux into a clear sky part 〈F ICA

clr 〉 and cloudy portion 〈F ICA
cld 〉

with the cloud cover Ac:

〈F ICA〉 = (1− Ac)〈F ICA
clr 〉+ 〈F ICA

cld 〉 (2.135)

A typical approach to resolve partial cloud coverage is to divide each layer into
individual sections that either are cloud free or homogeneously cloud covered. The
total radiative flux becomes then a sum of the partial fluxes at each section weighted
by the cloud fraction. For this the distribution p(s) for all possible states s of the
cloudy atmosphere is introduced and taken the integral over:

〈F ICA〉 = (1− Ac)
ˆ
S(λ)F clr

1D(λ)dλ+ Ac

ˆ
S(λ)

( ˆ
p(s)F1D(s, λ)ds

)
dλ (2.136)

〈F ICA〉 =(1− Ac)
K∑
k

w(λk)S(λk)F
clr
1D

+ Ac

K∑
k

w(λk)S(λk)
J∑
j

p(sj)F1D(sj, λk)

(2.137)

where the spectral integration in equation (2.136) has been approximated as discrete
sums with weights w in equation (2.137).
In NWP models 〈F ICA〉 is typically evaluated in every grid cell. This can, however,
become computationally expensive, depending on the the number of layers filled with
clouds and how those overlap, as the calculations are done for the spectral integral,
i.e. for all spectral bands.
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2.2.4.2 Monte Carlo Independent Column Approximation (McICA)

One method to reduce the needed computations for overlapping cloud covers is the
Monte Carlo Independent Column Approximation (McICA).
The computation of the cloudy flux 〈F ICA

cld 〉 from equation (2.136) involves a two-
dimensional integral, one over the wavelength λ, and a second over the cloud states
s. The concept of the McICA method is, to choose random cloud states srandom for
each spectral interval:

〈F ICA
cld 〉 ≈

K∑
k

w(λk)S(λk)F1D(srandom, λk) (2.138)

This means that the flux 〈F ICA
cld 〉 is calculated for a randomly choosen cloud state

srandom from the probability distribution p(s), which is the Monte Carlo method
from statistics, thus the name McICA.
While this method will reduce the computational cost, it will also introduce a sam-
pling error for each calculated 〈F ICA

cld 〉. This error is random and for many calculations
the bias goes towards zero [Pincus et al., 2003].

2.2.4.3 Maximum-random cloud overlap

Another common approach to estimate cloud overlapping in solar radiation param-
eterizations is the maximum-random cloud overlap, which is a combination of the
maximum and random overlapping technique [Morcrette and Fouquart, 1986].
The choice of a minimum, maximum or random overlap method depends on the
spatial resolution of the model. For a very coarse horizontal resolution the minimum
method might be the best approach.

All techniques involve two steps. First the radiative fluxes are calculated for the
cloud configurations allowed by the chosen overlap method. Then all those fluxes are
linearly combined with their cloud fractions as weights, to yield the total flux in the
grid cell.

Imagine an atmosphere divided into three layers, potentially covered by clouds.
Denote the layers as low, mid and high atmospheric layers, each with their own cloud
cover Cl, Cm and Ch.
For the random overlap method each of the three layers is considered independent,
which means that there can be eight combined cloud covers defined.
The first one is the clear sky fraction Cclr:

Cclr =
3∏
i=1

(1− Ci) = (1− Cl)(1− Cm)(1− Ch) (2.139)

The next three are combined fractions, where always only one layer is covered by
clouds at the same time C1

j :

C1
j = Cj

i=1,2,3∏
i 6=j

(1− Ci) (2.140)
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Additionally, there can be defined three combined fractions, in which two layers
covered by clouds overlap C2

ij:

C2
ij = (1− Ck)CiCj (2.141)

Finally, there is one combined fraction, where all layers include clouds and overlap
C3:

C3 =
3∏
i=1

Ci = CiCjCk (2.142)

The indices i,j and k represent each one of the three layers respectively.
Similarly, for the maximum overlap approach one can define four combined cloud
fractions:

Cclr = 1−max(Cl, Cm, Ch) (2.143)

C1
j = max(0, Cj − (Ci, Ck)) (2.144)

C2
ij = max(0,min(Ci, Cj)− C3) (2.145)

C3 = min(Cl, Cm, Ch) (2.146)

This means that there are only half as many computations needed for the maximum
overlap method than for the random method.
However, the assumption of the maximum method, that all cloud layers overlap,
often leads to exaggerations for the cloud cover. Therefore a common approach is to
combine the random and maximum overlap method as depicted in figure 2.10, here
for ten layers. In this combined approach all layers are divided into three categories:
a low, mid and high atmosphere. Inside each group the layers are combined through
the maximum overlap method, while the three categories are treated independently
as randomly overlapped.

Figure 2.10: Illustration of the (left) maximum, (middel) maximum-random and
(right) random cloud overlap methods. The blue blocks represent clouds in atmo-
spheric layers. The high cloud top, low cloud top and clear areas are indicated by
the three different colored arrows. Figure modified by [Kawai et al., 2014], originally
adapted from [Hogan and Illingworth, 2000].
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2.3 Artificial Neural Networks

Machine learning takes up an increasingly larger part in new developments, as there
exist various neural network types for different purposes.
Not only can neural networks learn to recognize patterns, e.g. in pictures (classi-
fication challenges), but they can also be used for regression problems, such as the
prediction of variables as done by NWP models, which will be examined in this study.
As the name indicates, artificial neural networks seek to work with and learn from
data in a similar way as the human brain processes information.
While the feedforwad neural network used in this study is the simplest type of neural
networks, it is still suitable and optimizable for various applications, such as regression
problems.
This section’s general introduction to the architecture of feedforward neural networks
is mainly based on the books [Goodfellow et al., 2016] and [Aggarwal, 2018].
The fine-tuning and optimisation process of various hyperparameters will be gone
through in detail in section 4.

In practice, all neural networks in this study have been coded and trained in
Python [Van Rossum and Drake, 2009] using the application programming interface
(API) Keras [Chollet et al., 2015] with Tensorflow [Abadi et al., 2015] as backend.
For the implementation into the WRF model, a fortran based model, the Fortran-
Keras Bridge (FKB) [Ott et al., 2020] was used. The FKB is a neural Fortran library
that is specifically designed to simplify the process of incorporating neural networks
trained in Keras into fortran codes.

2.3.1 Feedforward neural network

A feedforward neural network consists of multiple layers, each containing a number of
nodes, also called neurons. In a simple feedforward neural network all layers are fully
connected, i.e. every node in one layer is connected to all nodes of its neighboring
layers. The number of layers determines the depth of the model, which is where the
term "deep learning" arose from.
Figure 2.11 depicts a simple feedforward model, with three input variables, two output
variables and two intermediate layers, each with four nodes. The intermediate layers
are called hidden layers, as their nodes’ values do not represent input or output types
of values, but rather just mathematical intermediate values.
The name "feedforward" refers to neural networks, where information only propagates
in one direction, that means that the node in a layer only depends on the values of
the previous layer.
A neural network tries to find the best approximation of some real, but usually
unknown function f ∗, which connects the input variables xi and output variables yi
as y = f ∗(x), where x and y are vectors containing all input and output variables
respectively.
To get the best appromixate solution with a function f , a neural network tunes
several parameters θ) while training with known input and output variables, which
mathematically can be described as: y = f(x, θ).



17.8.2020 2 THEORY Page 37 of 122

Figure 2.11: Illustration of a simple feedforward neural network. The network consists
of three input variables, two output variables and two hidden layers each with four
nodes/neurons. The (forward) information flow in the network is indicated by the
arrows all going in the same direction.

The final function f can be represented as a chain of a function per layer in the
model as e.g. f(x) = f (3)(f (2)(f (1)(x))), which is a representation for a model with
two hidden layers as shown in figure 2.11. Here f (1) and f (2) are the functions of the
first and second hidden layer respectively. The outermost function f (3) is the function
for the output layer.
The input layer consisting of the vector x, can be thought of as the 0’th layer, so that
the vector’s values also can be expressed as: xi = h

(0)
i .

As mentioned before, does a layer only get input from the previous layer, so that
e.g. the first layer’s parameters are calculated with: h(1) = f (1)(x,w,b), where w
is a matrix containing the weights between the input layer’s and first hidden layer’s
nodes and b is a vector containing the bias of the first hidden layer. Both weights
and biases are constants and exist for every layer in the neural network.
Considering the values in the vector h(1) individually, one can write:

h
(l)
i = f(a

(l)
i ) (2.147)

a
(l)
i =

(∑
j

w
(l)
ij h

(l−1)
j

)
+ b

(l)
i (2.148)

, where the subscript i describes the i’th node in a layer, while the superscript (l)

denotes the l’th layer for l = 1, 2, ..., L. Note that a are linear functions of the
previous layer’s nodes. f is the activation function, which is differentiable and adds
non-linearity to the calculations, which otherwise would reduce the neural network
to a linear regression model.
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For a neural network with L − 1 hidden layers, the L’th layer is the output layer.
The full feedforward model can then be described with:

h
(0)
i = xi (2.149)

h
(l)
i = f(a

(l)
i ) for l = 1, 2, ..., L− 1 (2.150)

a
(l)
i =

(∑
j

w
(l)
ij h

(l−1)
j

)
+ b

(l)
i (2.151)

ŷi = h
(L)
i =

(∑
j

w
(L)
ij h

(L−1)
j

)
+ b

(L)
i (2.152)

From equations (2.149) - (2.152) it becomes apparent, that while the number of
biases increases linearly with the number of layers of the neural network, the number
of weights grows even stronger as it is the product of the count of nodes between
layers. The simple neural network with two hidden layers shown in figure 2.11 has
e.g. 46 model parameters. Tripling the number of nodes only in the two hidden
layers from four to 12 changes the count of total model parameters to 230, which is
five times as many as before. It is common for hidden layers to be much larger than
the input and output layer in deep neural networks. The number of weights for deep
networks becomes therefore approximately proportional to the square of the count of
nodes per layer in these large hidden layers.

As aforementioned, the activation function f is the reason why feedforward neural
networks can learn non-linearities and a neural network without activation functions
would be the same as a linear regression model. There are many activations available
that are suitable for different applications. It is also possible to choose different
activations for each individual model layer, however, there are some functions which
will not work as activation functions.
If e.g. the activation function would be linear function, the neural network would not
be able to learn about non-linear data either. No matter how many linear functions
one chains together, the resulting composition function will still only be linear and
thus unable to learn non-linearities.
Another simple, yet well known function is the step function:

f(a) =

{
0 if a < 0
1 if a ≥ 0

(2.153)

The step function, which is either 0 or 1, can be interpreted as a node being activated
or not, as all nodes only can give one of those two values to the next layer. The
importance of the individual nodes is then expressed through the weights of the layer,
which represent the relative strength of the signal of the nodes from the previous layer.
The bias is a measure of the general probability that a node will be activated and
send a signal to the next layer. This is limiting the neural network to classifications
of only two categories. Additionally, the derivative of the step function is the Dirac-
delta function, which is zero everywhere apart from at a = 0, which can lead to
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inefficient optimizations for larger networks, thus the step function is unsuited for
deep neural networks.
The sigmoid function is similar to the step function, with a few properties that makes
it a favoured activation function. It is shown together with some of the most common
activation functions used in neural networks in figure 2.12.

Figure 2.12: Commonly used activation functions in neural networks, [Feng et al.,
2019]

Mathematically the sigmoid function is defined as:

f(a) =
1

1 + e−a
(2.154)

Like the step function, the sigmoid functions minimum and maximum values are 0
and 1, but it can also take on all values in the range between them. The sigmoid
function is a non-linear function, which is fully differentable with multiple derivatives
different from zero, which makes it possible to optimize the model parameters, i.e.
the weights and biases, with the gradient descent, which will be described in section
2.3.2. If the sigmoid function is used as activation for the output layer, the values of
the nodes, which range between 0 and 1, can represent the probabilities of different
classes. It is also a useful function if the output variables only are allowed to become
values in this range. One disadvantage of the sigmoid function is, that the function
converges to a constant value for large weights, as its derivative goes to zero. Such
a saturation of the function can lead to a slowing down of the training of the neural
network.
A function which does not saturate as easily is the rectified linear unit (ReLU) func-
tion:

f(a) =

{
0 if a < 0
a if a ≥ 0

(2.155)
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The ReLU activation is commonly used for regression problems, as this function does
not constrain the output values as much as e.g. the sigmoid function.
The leakyReLU function is a modified version of the ReLU function, that has a small
positive slope for negative values, to avoid the problem of the constant zero gradient
of ReLU for small values.
The fourth common activation function shown in figure 2.12 is the hyperbolic tangent
function, tanh, which in its form is similar to the sigmoid function, but lies halfway
in the negative range.

Figure 2.12 shows the unit activation functions. However, the actual activation
in a neural network is influenced by other parameters, e.g. the bias which shifts the
activation function to better fit the data, so that the predicted output values become
closer to the real output values.
There is no generally best activation function for all problems, as the activation
function in itself is dependent on the neural networks architecture, i.e. the number
of layers and nodes. All those hyperparameters need to be tested and tuned for a
specific problem.

2.3.2 Network training and the gradient descent

Consider training a neural network with information of a number N data points.
The dataset can then be separated into the input vectors {xn} and output (target)
vectors {yn}, for n = 1, 2, 3, ..., N . The n’th input and output vector consist of the
input and output variables used in the first and last layer of the neural network as
described earlier and are therefore unrelated to the number of data points N .
NWP models divide the atmosphere into horizontal and vertical columns, which can
yield a large amount of available data points, easily in the order of millions (106). In
the context of radiative transfers the input vector xn could contain e.g. the optical
thicknesses τ , the single scattering albedos ω̃ and the asymmetry factors g in the
data point, while the output vector yn includes the reflectivity R and transmissivity
T of the data point.

Similarly as done in equation (2.152), one can describe the predicted output
vector ŷn of a neural network as:

ŷn = f(xn,W) (2.156)

where the vector W contains multiple model parameters, similar to θ, namely both
the weights w(l)

ij and biases b(l)
i .

Note that ŷn is the predicted output value of the neural network, whereas yn is the
vector with the true target values that the neural network uses to train and learn
from.
The neural network seeks to minimize the difference between these two vectors and
one defines therefore the measurement of this difference as the loss function J(W):

J(W) =
1

N

∑
n

e(yn, ŷn) (2.157)



17.8.2020 2 THEORY Page 41 of 122

which is a function of the model parameters W, while e is a function that measures
the error of each prediction. This function e is chosen for the individual problem and
application. Common loss functions for regression problems are the absolute mean
error:

J(W) =
1

N

∑
n

||yn − ŷn|| (2.158)

or the mean squared error:

J(W) =
1

N

∑
n

||yn − ŷn||2 (2.159)

Since both of the above mentioned loss functions and the neural network consist of
differentiable functions, the derivative of the loss function with respect to the model
parameters ∂J

∂Wi
can be computed. This derivative, which is a measurement of how

sensitive the loss function is to each model parameter, can then be used to adjust
each of the model parameters using gradient descent, optimizing the model:

W new
i = Wi − α

∂J

∂Wi

(2.160)

where α is the rate at which the parameters will be updated, called the learning rate.
The learning rate is another hyperparameter that is always positive and depends on
the model configuration and individual problem.
In contrast to the forward information propagation in the feedforward model, the
errors algorithm that updates the model parameters with the gradient is called back-
propagation, as this is done after a set of predicted output values has been calculated
by the model and requires computing several partial derivatives.
The optimization using gradient descent is computationally demanding and slow for
large datasets, as the calculation of the gradient ∂J

∂Wi
depends on all data points.

An alternative approach which arises from the same principle, but with the
addition of stochastic elements is the stochastic gradient descent (SGD), which is less
computational-heavy and therefore more applicable for deep learning.
To reduce the error between the predicted and target outputs the model searches for
the minimum of the loss function J . However, since the loss function is generally
non-linear and non-convex, this is a complex task, as there is a risk of converging
towards a local minimum or saddle point. To prevent this stochastic elements can be
used to more easily escape these points.
In practice this means that instead of computing the gradients for the whole dataset,
only gradients for a smaller (random) subset, called a mini-batch, are calculated
and used to update the model parameters. This eases the computational expense
and adds a stochastic characteristic through the random choice of data points inside
the mini-batch. For the SGD algorithm the loss function is only calculated for a
mini-batch of size B:
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JB(W) =
1

B

B∑
n=1

e(yn, ŷn) (2.161)

which leads to the following expression for the updated model parameters:

W new
i = Wi − α

∂JB
∂Wi

(2.162)

The SGD algorithm does those calculations over as many mini-batches needed until
it has used all data points. The number of mini-batches depends on the batchsize B,
and the number of mini-batches needed for the model to encounter all data points
once is called an epoch.
The batchsize and number of epochs for which the model trains on the dataset are
another two hyperparameters, that need to be tuned for the specific problem.

The SGD algorithm is used as an optimizer by the neural network, which is yet
another hyperparameter that can be tuned for the specific application. Several differ-
ent optimization algorithms have been developed on the basis of the SGD algorithm,
such as adaptive learning rates and momentum algorithms.
The momentum algorithm includes two additional parameters: The velocity parame-
ter v and the momentum β ∈ [0, 1[, which regulate how quickly the effect of previous
gradients decreases, i.e. how easy it is for the new gradient to change direction.

W new
i = Wi + v (2.163)

v = βvold − α∂JB
∂Wi

(2.164)

For β = 0 the momentum algorithm’s equation (2.163) reduces to equation (2.162)
of the SGD algorithm. The purpose of incorporating previous gradients through the
momentum term is to smooth out fluctuations in the gradient descent.

Another approach to optimizations are adaptive learning rates. An optimizer
that both includes the benefits of the momentum algorithm and adaptive learning
rates is the adaptive moment estimation, also called the Adam optimizer.
Besides the learning rate, every optimizer has also its own set of hyperparameters
that need to be tuned manually for the individual problem to get the best results.
Adam is a popular choice as optimizer since it does require little tuning of its hyper-
parameters [Kingma and Ba, 2014] and includes many advantages of other algorithms
[Aggarwal, 2018].

Another method to enhance the training of the model is to use a learning rate
scheduler, i.e. to change the learning rate manually during training. One concept for
such a scheduler is to decrease the learning rate after a certain number of iterations,
as smaller learning rates are beneficial when the model is sufficient close to a good
minimum of the loss function.
There are also cyclic learning rates schedules, where the learning rate varies between
a specified range of values periodically, e.g. in a triangular pattern as proposed by
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[Smith, 2015]. The goal of a temporary increase of the learning rate is to reduce the
risk of the model to converge to a local minimum or saddle point.
The cyclic learning rate method in particular will be further described in section
4.2.1, where the tuning of the learning rate hyperparameter will be presented.

Figure 2.13: Example of training and validation learning curves for three different
models. The thick and thin curves are the loss of the training and validation data
respectively.

To determine when a model has found a good minimum of the loss function and
has learned long enough, the learning curve, i.e. the loss at each epoch, is examined.
A sketch of some learning curves is shown in figure 2.13.
Here, the loss of the training data is shown as thick lines, while the loss of the
validation data, i.e. an additional independent dataset, is shown as thin lines. For all
models the losses generally decrease with the number of epochs. Assuming that all
three models are trained with the same training and validation datasets, the different
rate at which the models learn is a result of different hyperparameter and neural
network configurations.
From the curves it looks like model 1 is still learning, while the trainings loss has
converged towards a mostly flat curve for model 2, which indicates that the model
does not learn much more from the trainings data.
A second, independent dataset is used as validation dataset to see how well the model
performs on data it has not encountered during training. Additionally the comparison
between the training loss and validation loss helps to identify cases of overfitting to the
trainings data. In the case of overfitting the model adjusts its model parameters too
much to the specific characteristics of the trainings data, which reduces the model’s
ability to predict outputs for unknown data.
When overfitting occurs the trainings loss will continue to decrease, while the valida-
tion loss will stabilize or even start to increase. An example of this are the learning
curves for model 3, where the validation loss has started to increase after epoch ∼ 60,
while the training loss seems to continue decreasing slightly.

It is therefore good practice to save the best model, instead of the model after
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the last epoch, where the best model usually is chosen as the model with the lowest
validation loss. Since the model has already seen the values in the training and
validation datasets these can not be used to evaluate the performance of the best
model on unknown data. To get an unbiased estimate of the performance of the best
model, one thus needs a third independent dataset, i.e. a test dataset.
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3 The WRF-model
All simulations in this study were conducted with the Weather Research and Fore-
casting model (WRF), which is a regional, non-hydrostatic NWP model able to run
idealized and real weather cases.
This section will serve as brief introduction to the structure and main elements of the
model build upon the official technical model’s description [Skamarock et al., 2019]
and the official WRF user’s guide [WRF-userguide, ].

Figure 3.1: Illustration of the processes for a simulation with the WRF model

Figure 3.1 shows a simplified workflow of the WRF model and its processes. As
indicated by the figure, the model’s programs can be separated into two segments.
First the input data and horizontal grid are prepared by the WRF Preprocessing
System (WPS). Afterwards the data is vertically interpolated by real.exe and then
the simulation is carried out by the dynamical solver, the Advanced Research WRF
(ARW) in wrf.exe.

Section 3.1 will focus on the WPS and the domain configuration used for the
simulations, while section 3.2 will describe the ARW’s key features. Lastly, in section
3.3 an overview of the radiation parameterization schemes used in this study will be
given.

3.1 The WRF Preprocessing System (WPS)

To make a simulation with the ARW, an initial model state and boundary conditions
must be prepared. For this the WPS prepares a horizontal grid area, the model
domain, with terrestrial and meteorological data.
Both the terrestrial data used to create the model domain with the geogrid.exe
program and the meteorological data prepared by the ungrib.exe program must be
provided externally.
The configurations for the domain size and location, as well as the start and end time
for the simulation must be specified in the namelist.wps file.
Based on the provided simulation times, the ungrib.exe program prepares the in-
put data, i.e. it unpacks the GRIB files containing gridded information about the
atmospheric variables (temperature, pressure, etc.) into an intermediate file format.
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For all simulations in this study, final operational analysis data from the Global Fore-
cast System (GFS) by the National Centers for Environmental Prediction (NCEP)
with a spatial resolution of 0.25◦ x 0.25◦, which corresponds to ca. 28 x 28 km,
has been used as meteorological input data [NCEP, 2015]. These data files contain
meteorological data in 6-hour time-intervals.
The unpacked meteorological data is then interpolated horizontally onto the model
domain by the metgrid.exe program and saved as netCDF files.

3.1.1 The domain and model setup

The domain created by the geogrid.exe program for this study is depicted in figure
3.2. An example of the corresponding configurations in the namelist.wps file is
shown in Appendix A.

Figure 3.2: Domain used in the WRF model for this study

WPS supports different types of map projections. For the domain here, covering
most of Scandinavia, the Lambert conformal conic projection has been chosen, since
it is well suited for mid-latitudes.
The models horizontal grid resolution has been set to 10km x 10km. This is a higher
horizontal resolution than the 28km x 28km spacing of the provided meteorological
input data used for the lateral boundary conditions. The boundary conditions will
therefore be nested down onto the finer grid by the model to avoid noise at the
boundaries. The ratio of boundary and model domain resolutions should not much
larger, as this could lead to distortions.
To achieve even higher resolutions from coarse input data WRF offers additional
nesting options inside the main domain. For investigating radiative transfers a grid
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size of 10km seemed sufficient and additional nesting was therefore not necessary.
The spatial dimensions of the domain are 230 x 170 (staggered) grid points, with 70
vertical layers. The spatial distribution of the model and its staggered dimensions
are explained in the next section.

3.2 The Advanced Research WRF (ARW)

For simulating real weather cases with WRF, the output netCDF files from the
metgrid.exe program need to be interpolated into the vertical model layers to create
boundary conditions for the ARW, which is done by the real.exe program.
The vertical layers in the WRF model are described by a terrain following pressure
coordinate η:

η =
ph − phs
phs − pht

(3.1)

where ph is the hydrostatic component of pressure at a given level h, phs at the surface
and pht at the upper boundary. The η-coordinate varies between η = 1 at the surface
and η = 0 at the top pressure level, as depicted in figure 3.3.

Figure 3.3: WRF’s vertical levels (full and half levels, represented
in black and blue lines respectively) for a terrain following vertical
coordinate system.

The Euleran solver used by the ARW operates on an Arakawa C-staggered grid as
illustrated in figure 3.4.
In such a grid the thermodynamic variables θ (pressure, temperature, humidity, etc.)
are located in the center of the cell, called the mass points.
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Meanwhile, the velocities are defined at the boundaries between two cells, staggered
one half width away in their own direction, i.e. the zonal velocity u is staggered ∆x/2
in the zonal direction x.
These points are called u, v and w points, respectively.
While u and v are staggered with the constants ∆x/2 and ∆y/2 in the horizontal,
the vertical velocity w is staggered at half levels of η.
These half levels are defined at the middle between two full η levels and thus are not
constant in the vertical as depicted on the right in figure 3.4. Full and half levels of
η are also shown in figure 3.3 as black and blue lines, respectively.
Half levels correspond to the mass points, while the w points are located on full levels.
Physical parameterizations, such as the radiation schemes, calculate their variables
at mass points, i.e. at half levels.
Note that the uppermost half level in figure 3.3 is a fictitious level with no physical
properties. However, there are some solar radiation schemes where this fictitious level
is used to extrapolate properties between the top layer of the model and the TOA.

Figure 3.4: Illustration of Arakawa C grid cells and their spatial dis-
tribution horizontally (left) and vertically (right). Figure from [Ska-
marock et al., 2019]

The number and distribution of the full vertical layers η needs to be specified in the
namelist.input file, as well as the horizontal grid corresponding to the one set up
in namelist.wps.
Additionally, other configurations, such as the choice of physical parameterization
schemes, the time step and options such as the digital filter initialization (DFI) need
to be defined in the namelist.input file as well. An example of such a file can be
found in Appendix A.

As shown earlier in figure 2.6, there are a number of parameterization schemes for
unresolved physics in the WRF model, such as e.g. the microphysics, the radiation
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and the land-surface parameterizations. There exist a variety of different parameteri-
zation schemes to choose from for each one of them. While one can specify individual
parameterizations, WRF also offers the option of predefined physics suites, which are
tested sets of parameterization schemes for specific regions and weather phenomena.
In this study the "CONUS" suite was chosen as initial setup, after which different ra-
diation schemes were tested. An overview of the chosen radiation parameterizations
is presented in section 3.3.

The model time step can be freely set in the namelist.input file, however, there
exists a general limit on how long the time step can be in an Eulerian model, to keep
the simulation stable. In essence a simulation will be stable, as long as no wave can
travel further than the distance between two grid points, e.g. ∆x in the x direction,
in one time step ∆t.
There are two types of time steps in the ARW, the model (advective) time step ∆t
for low frequency modes that needs to be specified in the namelist.input file, and the
smaller acoustic time step for higher frequency modes, which is automatically set to
a fraction of the model time step.
The maximum model time step ∆tmax can be found with the Courant number:

∆tmax <
Cmax√

3
· ∆x

umax
(3.2)

where umax is the maximum advection speed and ∆x the distance between two grid
points, i.e. the horizontal grid size in the x direction, as shown in figure 3.4.
The maximum Courant number Cmax for the third-order Runge-Kutta time integra-
tion (RK3) used in the ARW, depends on the chosen spatial discretizations order of
the advection scheme. It is, however, not recommended to use the maximum time
step length, but rather to subtract a buffer of 25%.
As a rule of thumb, it is recommended to set the time step in seconds to ∆t = 6 ·∆x,
where ∆x is the grid point distance in kilometers, which for our domain with ∆x =
10km gives us a time step of ∆t = 60s [Skamarock et al., 2019].

3.2.1 Digital filter initialisation (DFI)

Another source of instabilities and noise in a simulation is the initial interpolation of
the meteorological data on the discrete domain grid, which can lead to imbalances in
the first hours of a simulation.
While one could discard the first few hours of a simulation as a spin-up time for the
model to even out those imbalances, ARW has an optional digital filter initialisation
(DFI).
The ARW provides different DFI options, which are depicted in figure 3.5.
For all simulations in this study, the recommended Twice DFI (TDFI) has been
applied, which basically works as a low-pass filter, removing the initial imbalances as
high frequencies, while keeping the lower modes, corresponding to the meteorological
dynamics, thus dampening the highest fluctuations around the initial model state.
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In practice the filter will first integrate adiabatically backwards from the initial state
of the model, before integrating forward to create a filtered initial state of the model,
as illustrated in the figure (last row).

Figure 3.5: Illustration of the three different digital filter initializations
available in the WRF model. Figure from [Skamarock et al., 2019]

Therefore no constant spin-up time was considered for the simulations in this study.
However, it should be noted, that since it was focused on the solar radiation, which
only is present during daytime, and all simulations have been started at 00 UTCmodel
time, there is a natural time where there is no sunlight reaching the domain covering
Scandinavia at the beginning of each model run. This natural spin-up time is not
constant, as it varies with seasons, i.e. it is shorter during the northern hemisphere’s
summer and longer during winter.

3.3 Radiation Parameterizations in WRF

The selected longwave and shortwave radiation parameterization from the
namelist.input file is called in the model by the radiation driver in a frequency
defined by the radiative time step radt.
The radiative time step is another parameter that needs to be specified in the
namelist.input file and has been set to 1 hour, to match other operational models
as mentioned before and making it possible to run the model for a longer duration
at a lower computational cost to test how the model diverges for longer simulations.
The radiation driver handles the preprocessing of the input variables from the
dynamical solver to the radiation parameterization, as well as the actual execution
of the parameterization code and the postprocessing, i.e. returning the output to the
main model code. The preprocessing includes, e.g. the evaluation of the information
about cloud fractions from the microphysics and cumulus parameterizations.
The typical workflow of a radiation parameterization starts with the evaluation of
the optical properties of the different contributors, i.e. gasses, aerosols and clouds,
before the solver calculates the solar fluxes.

None of the various radiation parameterization schemes in the WRF model per-
form best in all situations or lead to the best predictions of all variables, as seen by
other studies, e.g. [Stergiou et al., 2017].
The Rapid Radiative Transfer Model for general circulation models (RRTMG) seems
to be one of the most similar parameterization schemes to those used in modern
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operational forecasting models run by the larger weather and climate centers, as e.g.
the one used by the Integrated Forecasting System (IFS) by ECMWF [Hogan and
Bozzo, 2018].
The RRMTG is also the most complex radiation parameterization available in the
WRF model and was for those two reasons chosen as the main radiation scheme to
be investigated.

Some early simulations were carried out to test the computational times of the
different processes in both the longwave and shortwave RRTMG parameterization.
The early tests showed that the shortwave radiation scheme takes up ∼66% of the
computation time of the radiation driver, each time it is executed, i.e. when
there is sunlight. In practice the cosine of the solar zenith angle is evaluated for
this condition. The longwave radiation scheme on the other hand is executed for all
radiative time steps as its execution is independent of the solar zenith angle.
The percentage spend on the shortwave radiation parameterization of a whole model
run depends therefore on the the chosen time period of the day as well as season.
Computation times will be compared and discussed in more detail in section 5.3.
However, in general the shortwave radiation took up a larger portion of the overall
computation time than the longwave radiation for the RRTMG scheme. Therefore it
has been focused on the shortwave radiation parameterization in this study.

The inWRF available RRTMG-fast radiation parameterization scheme is a newer,
optimized version of the RRMTG parameterization and thus it has been chosen to
use this RRTMG-fast as the main longwave and shortwave radiation parameterization
scheme.
Section 4 will therefore present the development of neural networks that have learned
from and can be implemented into the shortwave RRTMG-fast parameterization.
For all simulations in this study the RRTMG-fast longwave radiation parameteriza-
tion has been used.

The case studies that will be presented later in section 5, have also been sim-
ulated with three other additional shortwave parameterizations: the RRTMG, the
New Goddard and the Dudhia parameterization schemes.
For all radiation parameterizations the default configurations were used. This also
means that there are no interactions with aerosols included in any of the used param-
eterizations, as this is not available for all parameterization schemes and the aerosol
properties would need to be provided externally by e.g. a climatological record or by
using the chemistry coupled WRF-Chem model.
In the following sections an overview of the different physical processes of the four used
shortwave parameterizations is given referring to the methods described in section
2.2, as well as a short introduction to the reftra_sw subroutine of the RRMTG-fast
parameterization.

3.3.1 RRTMG and RRTMG-fast

Both the RRTMG and the RRTMG-fast parameterization schemes are based on
[Iacono et al., 2008]. The physics of the two schemes are the same, however, the
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RRTMG-fast is optimized for the usage with GPUs, which allow for much faster
computations than CPUs.
In the RRTMG the solar spectrum (ranging between 200nm and 12.195nm) is divided
into 14 spectral bands, which each are subdivided into smaller spectral intervals,
called g-points. There are 112 g-points in total, which are unevenly distributed
between the 14 bands.
The spectral integration is done through the correlated k-distribution method.
Rayleigh scattering as well as effects of water vapor, ozone, trace gases such as oxygen,
carbon dioxide and methan are all included in this parameterization.
Multiple scattering is incorporated through the vertical integration with the adding
method.
Clouds are integrated through cloud fractions and overlaps estimated with the Monte
Carlo Independent Column Approximation (McICA) linked with the
maximum-random overlap method.
The RTE is solved with the two-stream approximation with the Practical Improved
Flux method (PIFM), of which the coefficients can be seen in table 2.2.
Additionally there is the option to use the δ-Eddington or the discrete ordinates
method instead.

3.3.1.1 Subroutine reftra_sw

The reftra_sw subroutine is of all processes in the RRTMG-fast shortwave parame-
terization one of those that is executed the most times, as well as one of the most com-
putational heaviest, which in combination makes it the subroutine of the RRTMG-fast
that takes up most of the computation time of the radiation driver.
The subroutine computes the direct and diffuse reflectivities Rdir & Rdif , as well as
transmissivities Tdir & Tdif for either clear or cloudy layers.
Both input and output variables are structured in chunks of a number ncol (indepen-
dent) columns each, since the code is adjusted for parallel computation.
The input variables of this subroutine are: The number of columns per chunk ncol,
the number of vertical model layers nlayers, a logical flag for the computation of re-
flectivities and transmissivities related to the cloud area fraction pcldfmc, the asym-
metry factor g, the optical thickness τ , the single scattering albedo ω̃, the cosine of
the solar zenith angle cosµ0 and a logical flag ac indicating whether the columns are
considered clear or cloudy.
The outputs, i.e. the reflectivities and transmissivities, are used to compute the
radiative fluxes in the following subroutines.
Most of the variables in this routine are 3-dimensional, since they are specified by
their number of column, the vertical layers as well as the g-points.

3.3.2 New Goddard

The New Goddard parameterization is an advanced radiation scheme based on [Chou
and Suarez, 1999].
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In this parameterization the solar spectrum (175nm - 10.000nm) is split into 11
spectral bands.
New Goddard includes Rayleigh scattering, ozone, minor gases such as oxygen and
carbon dioxide, as well as cloud effects through the maximum-random approach.
The two-stream approximation with the δ-Eddington method is used to solve the
RTE and compute the solar fluxes.

3.3.3 Dudhia

Dudhia is the simplest of all shortwave radiation parameterizations in WRF, based
on [Dudhia, 1989]. It is a broadband integrated scheme that only estimates the
downward flux (no upward stream).
Only Rayleigh scattering, water vapor and effects by clouds is included in the param-
eterization. No effects due to multiple scattering, trace gases or ozone are calculated,
however, there is a bulk scattering parameter that should compensate for such effects.
Instead of using one of the introduced methods to estimate cloud cover fraction
distributions, the Dudhia scheme only distinguished between cloudy and clear layers,
where the cloud cover is assumed to be evenly distributed through the whole layer.
A look up table by [Stephens, 1978] is used to determine the cloud state.
The RTE is not solved explicitly in this parameterization, instead it is estimated how
much the downward solar flux will be damped by the four effects mentioned above
to estimate the downward surface flux.
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4 Development of the Neural Network
Rather than substituting the whole shortwave parameterization with a neural net-
work, it has been choosen to only focus on the most computational heavy part of the
RRMTG-fast solar radiation scheme, the previously introduced reftra_sw subrou-
tine, while the other parts of the radiation scheme keep their structure.
Other candidates to focus on among the other parts of the shortwave parameterization
include the gas optics, i.e. the computation of the optical thicknesses in each spectral
band, or the radiative solver, where the fluxes are calculated.

In this section the development of neural networks that can be used as substitu-
tions for the reftra_sw subroutine will be described.
Since there is no definite method of optimizing neural networks for any given problem,
this procedure included a trial and error phase early on, where different approaches
and ideas were tested.
While the trying out of a variety of ideas and methods is helpful in the beginning
to get a sense of what works with the specific problem, and what does not, it is not
possible to give a well documented description of all of these trials.
Therefore this section will focus on some procedures more than others, while the main
ideas and choices will be presented in greater detail.

The creation of the initial data set for training the neural networks will be pre-
sented in section 4.1. In section 4.2 the optimization of the different hyperparameters
and structure of neural networks, as well as the benefit of data categorization will
be described. The chosen neural network configurations for implementation into the
WRF model based on these optimizations are shown and compared in section 4.3.

4.1 Dataset and preprocessing

The input and output of the reftra_sw subroutine are, as presented in section 3.3.1.1,
radiative variables defined on a subgrid of g-points and atmospheric columns and
layers. The variables are therefore not part of the normal WRF model output file
and needed to be written out to separate files directly from the subroutine to create
the training, validation and test data sets.
For this 12 24-hour simulations have been carried out with the WRF model and
the RRTMG-fast scheme, one for the 15th day of each month in 2018 (simulations
initialized at 00 UTC on the 15th), to cover a wide spectrum of different atmospheric
conditions due to weather, time of day and seasons.
The data that is fed to the neural network should be diverse so that the machine
learning model can learn the physics good enough to be able to predict unknown
weather situations, in practice the neural network learns to reproduce the physical
statistics from the training data. A large variability is therefore preferred for the data
set and for effective learning the data points should be independent of each other.

The domain used in this study, introduced in section 3.1.1, has in total 229×169
horizontal grid cells. That results in the same number of columns with each 70 vertical
layers, which means that per radiative time step, the reftra_sw subroutine calculates
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229×169×70 = 2.709.070 points for each of the 112 g-points, i.e. 229×169×70×112 =
303.415.840 points in total for one radiative time step, i.e. per hour.

However, while the atmospheric columns are treated independently by the model,
one can assume that neighbouring columns are correlated, as they will most likely have
similar physical properties, e.g. a large cloud can stretch out over several horizontal
and/or vertical neighbouring grid cells.
Therefore only every 100th input and output chunk of the reftra_sw subroutine is
saved, that is 1 % of all the generated data. Further, while every chunk contains 8
columns, only the first is selected, so that leaves 0.125 % of all generated data points
to be considered.

It should also be noted that the RRTMG-fast parameterization not only uses the
fictitious half-level above the top model layer, as described in section 3.2, but also
saves the surface properties in a 71th layer, which is however defined outside of the
reftra_sw subroutine and therefore not taken as part of the training data for the
neural network.

Since the shortwave radiation scheme only is executed for time steps where there
is sun light in the domain, there are more columns sampled from the summer season
than the winter season.
This resulted in 15029 columns, with 112×70 data points, still much more 100 million
data points and far too many to be used for training neural networks on a standard
computer as done in this study.

The columns are split randomly into three sets. Since the reftra_sw routine
calculates its outputs point-wise, it was choosen to train the model on individual
data points rather than vertical profiles as well, this means the architecture of the
routine can be kept the same and using data points instead of profiles means also
that there are is more data to train on, i.e. the number of individual data points is
higher than the number of columns.
Each of the three randomly sampled data sets contains 39.270.560 data points.

Now one can take advantage of the very first if-statement in the reftra_sw
routine. Before the actual computations, the routine checks the logical flags ac and
pcldfmc for the individual point. In essence, the routine sets the transmissivities to 1
and reflectivities to 0, if the point is declared as cloudy by ac, but pcldfmc indicates
that the layer is clear.

In early tests neural networks have been trained on data sets where those points
where included. While it seemed like the neural network models could learn about
this condition, there were some uncertainties and tests in the WRF model showed
that the if-statement is computational cheaper than the routine’s calculation or
the prediction done by a neural network.
Therefore it was chosen to keep this condition in the new subroutine with the neural
networks and since the neural network does not need to learn about this condition,
this data is filtered out from the data set.
This resulted in a reduction of ∼30% of all data points in all three data sets.

Afterwards the distribution of clear and cloudy data points in the remaining data
set was investigated.
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Since we have filtered out so many data points for layers classified as "cloudy", it is
not surprising that there are now many more clear sky layers left.
The remaining cloudy layers only make out ∼6% of each of the three data sets.
Different data distributions have been tried out, but choosing to create data sets
where cloudy and clear sky cases were evenly represented (50-50%), worked better
than splitting the data closer to the found data distribution (∼ 6%), as the cloud
cases are more complex than clear sky conditions.
In the presence of clouds, the input and output variables take on values of a wider
range, which are extreme data cases the neural networks need to learn about to
correctly emulate the original reftra_sw subroutine.

The ∼6% make up ∼1.6 million data points in each set. It is chosen to use
(1024× 1500 =) 1536000 randomly selected data points for each category, clear and
cloudy, for each data set. The data sets then contain each 3.072.000 data points in
total, for training, validation and testing respectively.
Training grows slow the more data is used, and while more data can lead to better
results, it needs to be introduced new, independent data, so that the neural network
can learn something new.

The mixed, initial data set used for training is shown in figure 4.2 and 4.3, divided
into the input and output variables, respectively.
Note that the optical thickness τ in figure 4.2 has been scaled to fit into the range of
-1 to 1. This was one additional step needed to be done before feeding the data to
the neural network: preprocessing the data.

Normalization is a common method used for better learning performance, since
the loss function has a tendency of being more sensitive to some variables than others
if the orders of magnitude of the variables in the data set vary strongly relative to
each other [Aggarwal, 2018].
It is therefore preferred to scale all variables to have the same order of magnitude.
With the exception of the optical thickness, all input and output variables of the
reftra_sw subroutine can only take on values between 0 and 1.
The optical thickness, however, can take on a wide range of magnitudes, from 6 ·10−7

to ∼ 125.000.
Different approaches for the scaling of the optical thicknesses have been tested

and it turned out that the scaling has a huge impact on the prediction skill of the
neural network, in the worst case leading to computations of nonphysically small or
large radiative fluxes in the following subroutines.

Typical approaches of normalizing include mean centering the data by subtracting
the mean value of the variable, standardization, where the mean centered values also
divided by the their standard deviation or min-max normalization, where the data is
scaled to the range of 0 to 1 [Aggarwal, 2018].

While these methods can theoretically be applied on the sampled training, vali-
dation and test data sets, there are additional constraints to the normalization pro-
cedure that need to be considered in this case, since the normalization must not only
be applied on the optical thickness in the three data sets, but inside the WRF model
as well, when the neural network will be used to make predictions in the modified
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subroutine.
The normalization needs to be consistent between the data sets and in the WRF

model, i.e. the optical thicknesses need to be scaled uniformly. Since the goal is to
modify the reftra_sw subroutine, while trying to keep the rest of the parameteri-
zation structure unchanged, the scaling with the mean value or standard deviation
would pose a challenge. Since the shortwave radiation scheme works in parallel on
the small chunks of columns, the mean or standard deviation value in those chunks
would vary a lot. The same optical thicknesses would therefore be scaled to different
values, which would lead to bad predictions by the neural network.

So instead another typical approach is chosen, which is dividing the variable by a
constant maximum value. Additionally, the method that turned out to work best is to
first take the logarithm of the optical thicknesses, a common approach for variables
that range between many orders of magnitudes, and then to divide by a constant
maximum value, which has been chosen based on the magnitudes of the logarithmic
scaled values of the training, validation and test data sets.
The unscaled and scaled optical thicknesses of the training data set for both the
cloudy and clear sky cases can be seen in figure 4.1.

The scaling by first taking the logarithm before dividing by a maximum value
might yield better results opposed to simply dividing the optical thicknesses by their
maximum value, due to the wide range of magnitudes they can take, as well as the
unevenly distribution of those orders of magnitudes. Not even 5% of all the optical
thicknesses in the training data set are larger than 100, most of them are actually
smaller than 1, as can be seen from the histogram on the left in figure 4.1. Dividing
by a large maximum value leads then to even smaller values for a large portion of the
optical thicknesses, which seems to be less effective for training than scaling by the
taking the logarithm first.

Figure 4.1: Histogram showing the distribution of τ (left) unscaled and (right) scaled
of the training data set. For the scaling of τ , first the logarithm was taken and then
the values were divided by a constant, chosen based on the maximum values of the
logarithmic values of τ from the training, validation and test data set.
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Figure 4.2: Distribution of the input variables of the initial, mixed training data set
with both clear and cloudy data cases. Note that τ has been scaled as described in
section 4.1.

Figure 4.3: Distribution of the output data of the initial, mixed training data set
with both clear and cloudy data cases.
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4.2 Training and optimizing neural networks

Optimizing a neural network, i.e. finding the optimal combination of hyperparame-
ters, is not a straightforward procedure, since the hyperparameters typically depend
on one another. Different hyperparameters have been introduced in section 2.3 and
will be further investigated in this section.
To compare different configurations of parameters, the neural networks are needed to
be trained until their loss functions converge towards a minimum, which makes the
optimization of neural network models a time-consuming procedure.
The hyperparameters of which different configurations will be presented and com-
pared in the following sections are:

Batch size

The batch size, as introduced as size of the mini-batches in section 2.3.2, affects the
computation of the gradient of the loss function. Depending on the batch size, a
smaller or larger amount of samples is used to estimate the gradient, adding more or
less noise its computation. The number of iterations per epoch also depends on the
batch size, which both affects the computation time as well as the time it takes for
the model to converge.

Activation function

Neural networks can learn nonlinearities through the usage of activation functions,
which makes them an important hyperparameter.
While the four most common activations, as introduced in section 2.3.1, will be tested
in section 4.2.4, it should be noted that the output layer always uses the sigmoid func-
tion. This choice has proven useful since all the values of the output variables range
between 0 to 1 and other activation functions appeared to struggle with this con-
strain, leading to predictions outside of this range.

Network sizes

The network size, i.e. the number of layers and nodes per layer of a model, determines
the number of model parameters and activation functions of the neural network.
While large networks generally have the ability to learn more, they are also more
likely to overfit, while a too small network might not have enough model parameters
to correctly emulate the trainings data, i.e. it underfits.
The architecture of the model is also linked to its computational cost and it is there-
fore interesting to investigate different network sizes.

For the loss function the mean squared error has been found to work very well, while
the widely used Adam optimizer has been chosen as optimization algorithm, since
it does not require too much tuning, apart from the learning rate, as discussed in
section 2.3.2.

The initial default training network used in the following sections, when noth-
ing else is specified, is depicted in table 4.1. Note that since hyperparameters are
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interdependent, it can not be excluded that this configuration might prefer some
choices of hyperparameters over others in the following tests, while a different initial
configuration might lead to other results and conclusions.

Optimizer
Loss

function
Batch
size

Activation
function(s)

Network
size

Adam
Mean

square error
1024

hidden layers: ReLu
output layer: sigmoid

2 Layers,
50 nodes in
each layer

Table 4.1: Baseline neural network model used for optimizations in the following
sections

During the optimization process described in the following sections all hyperpa-
rameters are kept constant, except the one for which different options are tested. The
sole exception to this rule is the learning rate, as this parameter depends strongly on
the combination of the other hyperparameters.

The method for choosing the optimal learning rate for different model configura-
tions is described in the following section 4.2.1.
In section 4.2.2 it is investigated how many and which input variables of the reftra_sw
subroutine should be used as input for the neural network, as well as data catego-
rization is introduced. Section 4.2.3 focuses on different batch sizes, while section
4.2.4 investigates the usage of different activation functions. Lastly, in section 4.2.5
different neural network sizes are tested and compared.

4.2.1 Learning rate

One of the most important hyperparameters is the learning rate, which determines
how quickly a neural network learns, i.e. how fast the model parameters are updated.
A model with a larger learning rate will learn faster, however, if the learning rate is
too large, the loss function will never converge towards its minimum, limiting what
can be learned, while a too small learning rate will make the model learn very slowly
and might get stuck in a local minima. Optimizers with an adaptive learning rate,
such as the Adam optimization algorithm, depend on a good choice of initial learning
rate too.

In section 2.3.2 the idea of a varying learning rate through a learning rate schedule
was discussed. One type of such learning rate schedules is the cyclic learning rate
(CLR) schedule as presented by [Smith, 2015], where in order to prevent the model
from getting stuck at local minima, occasionally larger learning rates are used.
This also implies that there is not just one specific optimal learning rate, but rather
a range of values suitable as learning rate.
In this study the triangular and exponential cyclic learning rate have been tested.
Both schedules are illustrated in figure 4.4.

In the case of triangular CLR the learning rate will change back and forth between
a base learning rate and a maximum learning rate. The time it takes, i.e. the number
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of iterations during the training, for changing the learning rate back and forth between
these two boundaries is referred to as one cycle, which is defined by the step size,
which is the number of iterations it takes from changing the learning rate from one
boundary to the other, i.e. half a cycle, as depicted in the figure. The base learning
rate lrbase, the maximum learning rate max_lr and the step size δ are constants that
need to be specified for the training.

Typically the step size δ is recommended to be 2 to 10 epochs long [Smith, 2015].
In this study a step size of 5 epochs, resulting in a cycle length of 10 epochs, worked
well.

The exponential CLR is a variation of this schedule, where the maximum learning
rate decays with an exponential factor γi, with γ ≤ 1 and where i is the number of
iteration i.e. the i’th mini-batch. For the exponential CLR γ is a constant that needs
to be defined alongside lrbase, max_lr and δ.

(a) triangular

(b) exponential

Figure 4.4: Illustration of two cyclic learning rate schedules, one (a) triangular with
constant minimum and maximum learning rates and one (b) where the maximum
learnig rate decays exponentially. Figures from [CLR-github, ]

Regardless whether it is chosen to use a constant learning rate, or such a learning
rate schedule, the challenge of finding a good learning rate (range) remains.
For this [Smith, 2015] introduced a method for finding a good range for optimal
learning rates for any neural network configuration, i.e. a learning rate range test.
The concept is to increase the learning rate after each iteration and save the loss for
each learning rate over the span of a few epochs.
Thus one gets the relation between loss and learning rate, as shown in figure 4.5,
where the optimal learning rate can be located where the function is steepest.

Since the model only needs to be trained for a few epochs, e.g. here it has been
trained for 3, this is a quick method to find an optimal learning rate, or a range of
learning rates for the CLR schedule.
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The model trained in the figure is the baseline model described by table 4.1, trained
on only cloudy data cases, which will be described in more detail in the next section
4.2.2.

While [Smith, 2015] suggested increasing the learning rate linearly, here the
learning rate has been increased exponentially, so that the learning rate range test
examines more of the smaller learning rates than of the larger ones. The learning
rate has been increased from 10 · 10−10 to 10.

Figure 4.5: Example of the results from using a learning rate scanner, loss as function
of learning rate.

In figure 4.5 the optimal learning rates found with different methods have been
marked with crosses on the function. To find the steepest slope of the function
(orange cross), the curve must first be smoothed, since small fluctuations of the loss
can occur, especially for large learning rates, where the loss starts to diverge, as seen
on the right end of the plot (blue curve). Note that this method depends on the way
the function is smoothed.

A simpler approach to estimate the optimal learning rate is to calculate the mean
value of the loss, and use the corresponding learning rate of this value (blue cross).
However, this approach is influenced by the full range of losses, also the ones for large
learning rates where the loss starts to diverge, as well as the small ones where the
model does not learn anything.
Therefore another mean value is calculated, this time only inside an interval that
ranges three magnitudes in each direction of the first mean value, as indicated by the
vertical red lines in the figure. The new mean value of this shorter range (red cross)
has been chosen as the optimal learning rate lropt for this model, which is ∼ 1.2 ·10−4.

There are also different methods to estimate a good learning rate range for the
CLR schedules from the figure.
One way is a visual inspection of the plot, setting the base and maximum learning
rate based on where the slope of the curve starts to increase and decrease again.
For the curve in figure 4.5 the boundaries can e.g. be estimated to ∼ 3 · 10−5 and
∼ 9 · 10−4.



17.8.2020 4 DEVELOPMENT OF THE NEURAL NETWORK Page 63 of 122

Another approach is to set the boundaries as multiples of the optimal learning
rate lropt. Typically something like lrbase = 1

2
lropt and max_lr= 2 · lropt is chosen,

which are the boundaries illustrated by the dashed grey lines in figure 4.5.
Lastly, the dashed purple line shows the value of 10 · lropt, which corresponds to the
purple loss shown in figure 4.6, where the initial maximum learning rate has been set
to the large value of max_lr= γi10 · lropt, while lrbase = 1

2
lropt as mentioned before.

Figure 4.6: Comparison between learning curves of models trained with an optimal
learning rate lropt (blue) and different learning rate schedules. Both the CLR trian-
gular (orange) and exponential (green) are shown with an initial maximum learning
rate max_lr= 2∗ lropt, as well as one exponential CLR with a start max_lr= 10∗ lropt
(purple). The training loss is depicted as solid lines, while the validation loss is shown
as dashed lines. For all models the Adam optimizer has been used.

In figure 4.6 the training and validation loss, as solid and dashed lines, of the
same model trained with different learning rate (schedules) is presented.
From this figure it can be seen that the models trained with the CLR schedules, both
triangular and exponential, with the maximum learning rate max_lr= 2 · lropt and
max_lr= γi2 · lropt respectively, are able to converge to a slightly lower loss value
than the model trained with Adam and the optimal learning rate lropt. However,
the larger initial maximum value of rate max_lr= γi10 · lropt leads to even better
results for the exponential CLR, both with respect to the final loss value, but also
with regards to the speed of convergence at the beginning of the training.

From the graph it can also be seen that the usage of the CLR results in larger
fluctuations of the loss between epochs, due to the large learning rates, which is why
those fluctuations are still strongly present in the model trained with the triangular
CLR later in the training, while the fluctuations diminish for the exponential CLR,
as the maximum learning rate decreases in those schedules.

Note that the γ constant has been set to the same value for all the CLR schedules,
so that the maximum learning rate max_lr=γi10 · lropt is only 10% of its initial value
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after training the model for half the number of total epochs, i.e. after 600 epochs,
which corresponds to 60 full cycles, since the step size δ is set to 5 epochs, as stated
before. For this case γ can be computed from:

γ2·60δ10 max_lr = max_lr

γ = 10
−1
120δ

(4.1)

where δ is the number of iterations in 5 epochs, which can be calculated with the
batch size and number of data points. In this case the batch size is 1024 and since
this model was only trained on cloudy data, the data set only included 1.536.000 data
points. The resulting δ = 5·1536000

1024
= 7500 leads to γ ≈ 0.999997.

The learning rate for all models in the following sections has been optimized
for every neural network individually as described here, using the Adam optimizer
together with the exponential CLR with an initial max_lr=γi10 · lropt, where lropt
has been estimated as explained earlier.

4.2.2 Input variables and categorization

For the actual computation of the output variables, the reflectivities and transmis-
sivities, only four of the six input variables are used in the reftra_sw subroutine.
Those are the radiative variables introduced in section 2: the asymmetry factor g,
the optical thicknesses τ , the single scattering albedo ω̃, as well as the cosine of the
sun zenith angle cosµ0.
Therefore those four input variables are a natural choice of inputs for the neural
network.

The logical flags pcldfmc and ac are only used to distinguish between cloudy and
clear sky conditions.
It is thus interesting to test whether the inclusion of one, or both, of those variables
as inputs into the neural network help the model to learn about the statistics in the
training data and make better predictions of the output variables.
In this section it will therefore be tested whether the inclusion of additional input
variables helps the model to recognize the different patterns of cloudy and clear sky
cases.

As stated in section 4.1, do the cloudy and clear-sky conditions differ physically,
with the variables in the cloudy cases taking on a wider range of possible values.
Another approach is to split the mixed data set into two, one for cloudy and one for
clear sky conditions and train one neural network for each of those two categories,
separately.
The advantage of this approach is, that if one category turns out to be less complex
and easier to be emulated by a neural network, a simpler neural network might suffice
to make the predictions for this category, reducing the computational expense.

The input variables of the training data set from figure 4.2 are shown divided
into cloudy cases in figure 4.7 and clear sky cases in figure 4.8.
Similarly the output variables of the training data set from figure 4.3 are divided into
cloudy conditions in figure 4.9 and clear sky conditions in figure 4.10.
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Figure 4.7: Input data of the training data set for cloudy cases (ac=0)

Figure 4.8: Input data of the training data set for clear sky cases (ac=1)

From the distribution of the input variables shown in the figures 4.7 and 4.8, some
differences between cloudy and clear sky conditions can be seen.
First, by construction, the ac parameter for which the data set has been divided, is
now a constant and therefore not of interest for the categorized data sets and their
neural networks.
Similarly, since the data for which both ac = 0 and pcldfmc = 0 has been filtered out
from the data set in section 4.1, since these cases are handled by an if-statement,
the remaining pcldfmc = 1 is now also just a constant for cloudy cases.
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The pcldfmc logical flag shows a strong favouritism towards 0 for clear sky conditions.
Meanwhile, the asymmetry factor g is 0 for all clear sky cases, while spreading over
a wider range for the cloudy cases.

Figure 4.9: Output data of the training data set for cloudy cases (ac=0)

Figure 4.10: Output data of the training data set for clear sky cases (ac=1)
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The distribution of the output variables depicted in the histograms in figures 4.9
and 4.10, show some differences between the magnitude of the output for cloudy and
clear sky conditions.
It can be seen that the reflectivities, both the direct and especially the diffuse, for clear
sky cases are very small compared to the ones in cloudy conditions. While this makes
sense physically, since clouds do contribute largely to the reflection and scattering of
solar radiation, this difference in magnitudes might make a data categorization into
cloudy and clear sky cases useful.

In figure 4.11(a) the same model has been trained on the whole, mixed data set.
The only difference is the number of input variables. The four "Base" inputs are the
input variables used for the computation of the reflectivities and transmissivities: g,
τ , ω̃ and cosµ0. Additionally each or both of ac and pcldfmc were given as input to
other neural networks, too. The learning curves show that the adding of an additional
variable can lead to a significant reduction of the loss. For the networks where only
one of the two logical flags was added as input variable, the model where ac was
added performed much better than the one where pcldfmc was added. Interestingly,
the model where only ac was added also seems to perform slightly better than the
model where both logical flags were added. Thus it appears that the logical flag ac
helps the neural network best at detecting cloudy and clear sky conditions.

(a) different input variables for the mixed data set (b) data categorization, mixed and divided data sets

Figure 4.11: Neural networks with different inputs. In (a) different input variables are
used while training on the mixed data set, while in (b) the best performing network
from (a) is compared to two networks trained on either only the cloudy or clear sky
data points. Training loss is depicted as solid lines, while validation loss is shown as
dashed lines.

Figure 4.11(b) shows the learning curve of this best performing model with the
ac variable as added input together with two models, each trained on only the cloudy
or clear sky data points of the training data set.
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While also those networks share the same configurations, it has been chosen to use
the same four base inputs for the network for cloudy conditions, while the network for
clear sky cases only has three inputs, all of the base inputs apart from the asymmetry
parameter g, since it was seen in figure 4.8, that this variable is always 0 for the clear
sky data.

It can be seen that the loss of the networks trained on the divided data sets is
lower than the one trained on the mixed data set, despite the inclusion of the ac
parameter.
However, since the loss is computed on different data set, i.e. only on one half of the
training data set for each of the data categorized cases, it is not possible to make
final conclusions about the performance of the neural networks based on the learning
curves alone.

To make a reasonable comparison between the models trained on different data
sets, the third independent data set, the test data is also divided into cloudy and
clear sky cases. Afterwards the neural networks are used to make predictions based
on these test data sets, i.e. values for the cloudy test cases are predicted by the model
trained on the mixed data set, as well as by the model trained only on cloudy data
cases. Similarly the clear sky test data is used to make predictions and evaluations
of the network trained on the mixed data set and the one trained only on the clear
data cases.
Instead of comparing the loss, two other statistical measures will be compared: the
Pearson correlation coefficient r and the root mean square error RMSE, defined as :

r =

∑n
i=1(ŷi − ŷ)(yi − y)√∑n

i=1

(
ŷi − ŷ

)2
√∑n

i=1

(
yi − y

)2
(4.2)

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (4.3)

where the overbar indicates the average of the variable, the hat denotes the predicted
values and yi denotes the true values as in section 2.3.2. Note however, that ŷi now
indicates the individual i’th output variable, rather than a whole vector, i.e. there
will be a measures calculated for each of the four output variables.
Those two measures will be used in the following sections to compare the neural
network predictions to the true values of the test data set.

The results for the prediction of the test data with the three models from figure
4.11(b) are shown in table 4.2.
From the table it can be seen that the neural networks trained separately on cloudy
or clear sky conditions are better at predicting all output variables in comparison to
the model trained on the mixed data set. Thus the data categorization has been used
on the training, validation and test data set and two types of neural networks have
been trained and optimized from here on: one for cloudy conditions with 4 input
variables and one for clear sky conditions with 3 input variables as described earlier.
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Neural Network Stat Rdir Rdif Tdir Tdif
Predictions for cloudy sky (ac = 0) test data:
4 Inputs +ac r 0.99764 0.99565 0.99977 0.99994
mixed data set RMSE 0.00718 0.00517 0.00637 0.00280
4 Inputs cloudy r 0.99894 0.99774 0.99991 0.99997
(ac = 0) RMSE 0.00482 0.00373 0.00395 0.00185
Predictions for clear sky (ac = 1) test data:
4 Inputs +ac r 0.99976 0.98703 0.99990 0.99999
mixed data set RMSE 0.00249 0.00097 0.00637 0.00203
3 Inputs clear sky r 0.99985 0.99896 0.99994 0.99999
(ac = 1) RMSE 0.00190 0.00028 0.00469 0.00126

Table 4.2: Pearson correlation coefficient (r) and root mean square error (RMSE) for
the three neural networks shown in figure 4.11(b) . The predictions have been carried
out separately for the clear sky and cloudy sky test data set.

Another interesting discovery that can be made by inspecting the learning curve
of the clear sky neural network in figure 4.11(b) is that for this model the validation
loss is actually lower than the training loss.
Since the validation loss is measured after each end epoch, in contrast to the training
loss which is measured during the epoch, it is possible for the validation loss to be
lower than the training loss, however, the validation loss in 4.11(b) is much lower
than the training loss which can not be accounted by this.

In section 4.1 the creation of the data sets were described, taking care to randomly
sample data points from a huge initial data set, to create independent data sets. One
explanation for a much lower validation loss could be that the randomly selected data
for the validation data set consists of easier to predict data cases.

Figure 4.12: Learning curves for neural networks trained on clear sky conditions only,
one trained on the original training and validation data set, while for the other the
training and validation data set have been swapped.
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This theory is supported by the learning curves shown in figure 4.12, which show the
same model from before, with 3 input variables trained on the clear sky data points
of the training data set, as well as a model with the same configuration, but this time
the training and validation data set have been swapped, i.e. the validation data has
been used for training, while the training data has been used to validate against. As
can be seen in the figure, the losses for this swapped test model are the opposite from
before, now the training loss is lower than the validation loss and actually also lower
than the validation loss from the model before.

While both scenarios are not desirable, it has been chosen to swap the training
and validation data for clear sky cases only from now on. Substituting the two data
sets for clear sky cases gives the opportunity to avoid uncontrolled overfitting, as the
loss on the more challenging data set is expected to rise if the neural network starts
to learn patterns which only are included in the easier data set.
The data distributions of the initial validation data set, similar to those presented
for the initial training data set earlier in this section, are included in Appendix B.

4.2.3 Batch size

To test whether the batch size affects the neural network’s performance, networks
with different batch sizes have been trained for cloudy and clear sky conditions.
Figure 4.13 shows the results of the models that have been trained with batch sizes
256, 512, 1024 and 2048.

Figure 4.13: Learning curves for neural networks trained with different batch sizes
for (left) cloudy cases and (right) clear sky cases. The training loss is depicted as
solid lines, while the validation loss is shown as dashed lines.

For both, cloudy and clear sky cases, the batch sizes result in the same ordering of
lowest loss on the training and validation data set. There is no systematic relation
between batch size and loss, the smallest and largest batch sizes, 256 and 2048, result
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in similar loss values, while a batch size of 1024 performs slightly better, while a batch
size of 512 performs worst for both categories. Since there is no significant difference
between the usage of the other three batch sizes, it is continued to use the batch size
1024 as before.

4.2.4 Activation functions

The four commonly used activation functions introduced in section 2.3.1 are tested for
clear and cloudy cases as well. It should be noted, however, that the four activation
functions only have been tested for the hidden layers of the neural network, while
the output layer always uses the sigmoid function, as described in the beginning of
section 4.2.

Figure 4.14: Learning curves for neural networks trained with different activation
functions for (left) cloudy cases and (right) clear sky cases. The training loss is
depicted as solid lines, while the validation loss is shown as dashed lines. For the
different activation functions, their default values have been used, e.g. α=0.3 for
LeakyReLU.

From the resulting learning curves shown in figure 4.14, some differences can be
seen for neural networks trained with cloudy and clear sky data, respectively. While
the ReLU activation performed best for cloudy cases, the tanh activation performed
better for clear sky conditions. In both cases the leakyReLU and sigmoid activations
performed worst. Based on those results, the ReLU function will be continued to
be used for the hidden layers for networks trained on cloudy data, while the tanh
function will be used for networks trained on clear sky samples.

4.2.5 Small and large Neural Networks in comparison

In total 9 different network sizes were tested, combinations of 1 to 3 layers with
either 25, 50 or 100 nodes in each layer, for both cloudy and clear sky cases. For the
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networks training on cloudy conditions, the ReLU function was used as activation
function of the hidden layers, while the tanh activation was used for the networks
training on clear sky samples.

Figure 4.15: Learning curves for neural networks trained with different network sizes
for (left) cloudy cases and (right) clear sky cases. The training loss is depicted as solid
lines, while the validation loss is shown as dashed lines. Note that for the activation
function of the hidden layers ReLU is used for cloudy cases, while tanh is used for
clear sky conditions.

From the learning curves in figure 4.15 it can be seen that larger neural networks
generally result in smaller loss values, i.e. they perform better on the training and
validation data. It does however seem like there is a risk of overfitting by the largest
networks. Based on those learning curves good choices seem to be neural networks
with 2-3 layers and 25-50 nodes per layer, though the largest combination of 3 layers
and 50 nodes might be overfitting.

To decrease the risk of overfitting, the best models for each network size, i.e. the
models with the lowest validation loss, are used to make predictions and evaluations
with the test data set.
The loss on the test data of these models is shown in figure 4.16, where it has been
chosen to plot the loss as function of number of model parameters.
The number of model parameters is not the only factor determining the time needed
to make predictions with a neural network, but work nevertheless as a good first
indicator.

From figure 4.16 it can be seen that the models with only one layer perform
worse than the multi layered networks, even if they have more model parameters, as
e.g. is the case for the model with 1 layer and 100 nodes compared to the 2 layer
model with 25 nodes in each layer. Interestingly, the two largest models, with many
more model parameters than the other models, also perform worse than some of the
smaller models.



17.8.2020 4 DEVELOPMENT OF THE NEURAL NETWORK Page 73 of 122

Figure 4.16: The test loss as a function of number of model parameters for neural
networks with different network sizes trained for (left) cloudy and (right) clear sky
conditions. The number of layers is indicated by color, while the number of nodes
per layer is denoted by the symbol. The abbreviation in the legend stands for the
number of layers and number of nodes per layer, e.g. 2L50n = 2 layers, 50 nodes per
layer.

Based on this figure, it seems like the model with 3 layers and 50 nodes is the best
performing for both cloudy an clear sky samples. For clear sky conditions the smaller
model with 2 layers and 25 nodes seems to be a good second choice, since it has
the second smallest loss, while having less model parameters than the other multi
layer models. The performance of the models for cloudy cases seems to be more
proportional to the number of model parameters than for the clear sky samples.

The performance of the models shown in figure 4.16 is further investigated in
table 4.3 and 4.4, where the predictions of the individual output variables for the test
data set are compared. For this the measures from equation 4.2 and 4.3 are used.
The diffuse reflectivity Rdif turns out to be the variable, which is predicted worst for
both clear sky and especially cloudy data cases.
As alternative choices for the cloudy samples, the second best performing model with
2 layers and 50 nodes as well as the model with 2 layers and 25 nodes is chosen, to
investigate the abilities of the smaller models in the WRF model.
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Model (ac=0) Stat Rdir Rdif Tdir Tdif
1 Layer, 25 nodes r 0.99123 0.98640 0.99902 0.99981

RMSE 0.01380 0.00911 0.01301 0.00498
1 Layer, 50 nodes r 0.99263 0.98879 0.99913 0.99990

RMSE 0.01268 0.00829 0.01225 0.00371
1 Layer, 100 nodes r 0.99595 0.99260 0.99962 0.99995

RMSE 0.00940 0.00673 0.00809 0.00264
2 Layers, 25 nodes r 0.99837 0.99695 0.99981 0.99995

RMSE 0.00596 0.00433 0.00577 0.00272
2 Layers, 50 nodes r 0.99894 0.99774 0.99991 0.99997

RMSE 0.00482 0.00373 0.00395 0.00185
2 Layers, 100 nodes r 0.99834 0.99619 0.99987 0.99997

RMSE 0.00605 0.00485 0.00474 0.00207
3 Layers, 25 nodes r 0.99839 0.99637 0.99985 0.99996

RMSE 0.00593 0.00475 0.00510 0.00225
3 Layers, 50 nodes r 0.99940 0.99836 0.99996 0.99999

RMSE 0.00362 0.00318 0.00254 0.00119
3 Layers, 100 nodes r 0.99899 0.99735 0.99994 0.99998

RMSE 0.00470 0.00403 0.00322 0.00147

Table 4.3: Pearson correlation coefficient (r) and root mean square error (RMSE) for
neural networks with different network sizes trained on cloudy conditions. The best
predictions are highlighted in red, while the worst performances are written in blue.

Model (ac=1) Stat Rdir Rdif Tdir Tdif
1 Layer, 25 nodes r 0.99945 0.99622 0.99972 0.9999896

RMSE 0.00369 0.00053 0.01048 0.0018
1 Layer, 50 nodes r 0.99957 0.99826 0.99976 0.9999953

RMSE 0.00327 0.00035 0.00967 0.00119
1 Layer, 100 nodes r 0.99957 0.99907 0.99970 0.9999973

RMSE 0.00326 0.00026 0.01087 0.00091
2 Layers, 25 nodes r 0.99984 0.99879 0.99992 0.999999

RMSE 0.00198 0.0003 0.00544 0.00054
2 Layers, 50 nodes r 0.99986 0.99977 0.99990 0.9999996

RMSE 0.00185 0.00013 0.00624 0.00037
2 Layers, 100 nodes r 0.99986 0.99978 0.99990 0.9999998

RMSE 0.00183 0.00013 0.00631 0.00025
3 Layers, 25 nodes r 0.99983 0.99890 0.99991 0.9999995

RMSE 0.00205 0.00028 0.00597 0.00037
3 Layers, 50 nodes r 0.99986 0.99978 0.99993 0.9999998

RMSE 0.00185 0.00013 0.00512 0.00021
3 Layers, 100 nodes r 0.99986 0.99984 0.99992 0.9999998

RMSE 0.00188 0.00011 0.00554 0.00022

Table 4.4: Pearson correlation coefficient (r) and root mean square error (RMSE)
for neural networks with different network sizes trained on clear sky conditions. The
best predictions are highlighted in red, while the worst performances are written in
blue.
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4.3 The implemented Neural Networks

Based on the previous described testing and optimization procedures, 3 combina-
tions of neural networks for cloudy and clear sky samples have been selected and are
presented in table 4.5.
In this section those three configurations are compared based on their performance
on the test data, for cloudy and clear sky cases combined.

Network size for
cloudy cases

Network size for
clear sky cases

Model 1 2 layers with
25 nodes each

2 layers with
25 nodes each

Model 2 2 layers with
50 nodes each

2 layers with
25 nodes each

Model 3 3 layers with
50 nodes each

3 layers with
50 nodes each

Table 4.5: Overview of the selected model combinations for to be implemented into
WRF. The models for the cloudy cases use the ReLU activation and 4 input variables
(g, τ , ω̃, cosµ0), while the models for the clear cases use the tanh activation function
and 3 input variables (τ , ω̃, cosµ0).

The statistical measures from equation 4.2 and 4.3 for the predictions of the
test data are shown in table 4.6. Since model 3 consists of the two largest and
best performing networks from the previous section, it is not surprising that it does
perform best on the test data set. Meanwhile model 1 has the smallest number of
model parameters, while model 2 serves as compromise between the two others.

Neural Network Stat Rdir Rdif Tdir Tdif
Model 1 r 0.99915 0.99701 0.99990 0.999983

RMSE 0.00444 0.00307 0.00560 0.00196
Model 2 r 0.99942 0.99778 0.99993 0.999992

RMSE 0.00368 0.00264 0.00475 0.00136
Model 3 r 0.99964 0.99839 0.99995 0.999997

RMSE 0.00288 0.00225 0.00405 0.00085

Table 4.6: Pearson correlation coefficient (r) and root mean square error (RMSE) for
the three neural network models shown in table 4.5 . Predictions were made for both
clear and cloudy cases.

Additionally, the predictions of the four output variables are presented as function
of the true values of the test data set as 2D histograms in figure 4.17. The colors
indicate the data point density, note the logarithmic colorbar. These plots make
a visual comparison between the predicted output variables possible. The general
tendency is that the spread of data points becomes less comparing the results from
model 1 to model 2 and model 2 to model 3. A good example of this is the spread for
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the direct transmissivities Tdir, or the underestimation of the diffuse transmissivities
Tdif by the model 1 and 2, while model 3 has a more even spread for small Tdif values.

Figure 4.17: 2D histograms showing the correlation between the predictions of the
four output variables and the true values of the test data set. The colors show the
density of the data points (note the logarithmic colorbars). The first row shows the
predictions made by model 1, the second row the predictions by model 2 and the
third row the ones made by model 3. The correlation values r are the same as in
table 4.6
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5 Results
Until now the performance of the neural networks has only been evaluated with the
sampled data sets. While the usage of a third independent test data set gives a
good first indication of how well the the model can predict the reflectivities and
transmissivities, this corresponds to the performance of prediction for a single time
step in the WRF model. It is therefore important to test the behaviour of the neural
networks in longer simulations, to investigate whether they have systematic errors
which can lead to feedback mechanisms and divergence of the model run.

Additionally, since the output of the WRF model does not contain the reflec-
tivities and transmissivities calculated in the shortwave parameterization, but rather
the shortwave fluxes computed from those parameters, the comparison of these fluxes
and other physical variables in the WRF output will show how strongly those are
influenced by the errors of the predicted reflectivities and transmissivities.

The methods used to compare the different shortwave radiation parameterization
schemes will be described in section 5.1. In section 5.2 the comparison of the schemes
is presented with those methods, while the computational efficiency of the different
shortwave schemes is discussed in section 5.3.

5.1 Comparison method and case studies

A total of four different weather scenarios, i.e. case studies for four seasons, have
been simulated with seven different shortwave schemes. The simulations done with
the original RRTMG-fast scheme will serve as reference for each scenario, where
those predictions will represent the true values. While this might not be accurate
in reality, it is reasonable for the comparison of performance of the neural networks,
since they have been trained with data sets created by the RRTMG-fast scheme and
will therefore try to emulate it.

The modified variants of the RRTMG-fast scheme, where the three neural net-
work models, described in section 4.3, replace the computations in the reftra_sw
subroutine, will be denoted as schemes NN 1, 2 and 3, respectively in this section.

The neural networks were implemented in reftra_sw with the Fortran-Keras
Bridge (FKB) [Ott et al., 2020], where the if-statement, described in section 4.1, has
been kept in the code to save computation time. A second condition has been added
in the routine with the neural networks, which will scale the computed reflectivities
and transmissivities to sum to 1, in case the sum of the two direct, or the two diffuse
parameters exceeds 1, which would be a nonphysical result.

In addition to the simulations with those schemes, the schemes RRTMG, New
Goddard and Dudhia, previously introduced in section 3.3, will also be used to make
predictions for the four case studies.
This is done to be able to identify how much of the observed divergences between the
predictions by the original RRTMG-fast and the NN schemes can be accounted to
as a result of simulating a chaotic system, and how much might be a result of some
systematic errors of the neural networks.
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The case studies consist of four 4-day (96 hour) simulations starting at 0 UTC
on the 1st of January, April, October and December 2019, one simulation for each
season, respectively. Note that time periods have been chosen, which have not been
part of the previous sampled data sets from the 12 days of 2018, to make sure that
the models are tested on the performance on unknown data.

The same domain as for the creation of the data sets described in section 3.1.1
is used for all simulations.

The most interesting variable from the output of the WRF model to compare is
the shortwave radiation flux at the surface, which is calculated from the reflectivities
and transmissivities computed by the reftra subroutine, i.e. by the neural networks
in the three new NN schemes.

Additionally the 2 meter temperature, as well as the sensible and latent heat fluxes
at the surface are compared, since the shortwave radiation influences the heating rates
of the atmosphere and surface.
The influence of clouds and the cloud fraction will also be discussed where adequate.

While comparing variables on geographically plots gives a good intuitive picture
of the difference in predictions, it is difficult to compare all study cases like this.
In section 5.2 it will therefore be first focused on such plots for the summer cases
(additional plots for the other simulations can be seen in Appendix C).

Afterwards the performance of the schemes on the four season cases will be
compared through the comparison of the root mean square error (RMSE) and the
Pearson correlation coefficient r as function of time for the different variables.

Note that in contrast to the definitions of the RMSE and correlation r given in
equation 4.3 and 4.2, those measures are now applied on geographical 2-dimensional
data, with latitude and longitude coordinates.
While the RMSE gives an indication of the magnitude of the mean difference between
the predicted values of the original RRTMG-fast and the other schemes, the correla-
tion coefficient r will compare the similarity of two fields, so it can be be thought of
as pattern correlation.

5.2 WRF predictions with different radiation schemes

As stated in the previous section, it is first focused on the summer case study, a 4-
day (96-hour) simulation with the intital start time 1.7.2019 0 UTC, for which spatial
differences between the predictions of various variables are investigated.

For all comparisons the predictions made with the RRTMG-fast scheme are shown
on the leftmost plot, while the anomaly fields, showing the differences to the predic-
tions of the other six schemes, calculated as predscheme−predRRTMG−fast, are located
on the right. Thus, positive anomalies will indicate that the scheme on the right
predicts larger values than the RRTMG-fast scheme.

The first variable to be compared is the downward shortwave flux at the surface.
In figure 5.1 the differences between RRTMG-fast and all other schemes is shown,
once valid for 12 hours into the simulation in the upper plots, and once valid for 84
hours after the initial time.
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This means the predictions are valid for 12 UTC on the first and fourth day of
the simulation, respectively. From the variable field on the left it can be seen that at
this time the whole domain is exposed to sun light in contrast to e.g. morning hours,
indicated by the high values of the flux in red colors.

The blue patterns, showing no or low amounts of incoming shortwave radiation
at the surface, indicate the cloud patterns in the atmosphere at the given time, since
it is due to those clouds that no or only small amounts of solar radiation reach the
surface.

Figure 5.1: Plots showing the predictions made for the downward shortwave radiation
at the surface (in W/m2) after 12 hours (upper figure) and 84 hours (lower graphs).
The timestamp and variable name are depicted above the figures on the left, showing
the predictions made by the RRTMG-fast scheme. The six plots per timestamp on
the right show the anomaly fields for the other radiation schemes in contrast to the
prediction made by RRTMG-fast, computed as predscheme − predRRTMG−fast, where
the selected scheme is indicated by the figure’s title.
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For all six compared schemes it can be seen that the difference between their
prediction and the prediction of RRTMG-fast scheme increased with the simulation
time. The anomalies for the New Goddard and Dudhia scheme are generally larger
than the ones for the NN schemes and the RRTMG.

The anomalies of the NN schemes show the same tendency as in their performance
evaluation on the test data in section 4.3: NN 3, with the largest neural networks,
performs best, while NN 1 with the the smallest neural networks performs worst,
but still better than the Dudhia and New Goddard scheme. Note that "better" here
means that the scheme’s predictions are more similar to the ones of the RRTMG-
fast, than it is the case for the other two, but does not necessarily imply that the
predictions are more true than the others.

It can also be seen that the spatial distribution of the anomalies is very similar
for the NN schemes and the RRTMG scheme, where NN 3 seems to also have the
same magnitudes of anomalies as the RRTMG. Since the RRTMG and the RRTMG-
fast use the same approximations, this implies that the neural network is good at
emulating the RRTMG-fast.

Comparing the locations of the larger anomalies with the plot of the shortwave
flux on the left indicates that the largest errors occur mainly in areas, where there
are sharp contrast in the magnitude of the flux, i.e. at the boarders of clouds.

Figures 5.2 - 5.4 show the same two times, but for the 2 meter temperature,
surface sensible heat flux and surface latent heat flux. For those variables the same
tendencies can be recognized, i.e. after 84 hours the anomalies are smaller, than
after 84 hours and the NN 3 and RRTMG schemes are the ones that perform best,
while the New Goddard and Dudhia scheme show larger differences. Even the spatial
location of the larger errors is very similar for all four variables.

Since the location of clouds has such a large impact on the anomalies of all
variables, the cloud area fraction has been investigated. This fraction is part of the
WRF output and is defined for the full 3-dimensional grid, i.e. for all vertical layers.
The (vertical) mean value of this variable is shown in figure 5.5.

It can be noticed, that the areas with large values of the mean cloud area corre-
spond mostly to the the blue areas of small shortwave flux values in figure 5.1, but
not all of them, as there are also areas where the mean cloud area fraction is low and
the shortwave flux is small as well. Meanwhile, the area with the largest anomalies
is located where there is a relatively low mean cloud fraction.

Still, the mean cloud area shows also the same tendencies as before, with the
similar spatial distribution of larger anomalies that are bigger for a time later in the
simulation.

The largest anomalies after 84 hours in the shortwave flux in figure 5.1 are
located in the south-east. It can be noted that the anomalies are not uniformly, but
scattered around in smaller packages, however, this is also true for the distribution
of the shortwave flux itself, as can be seen in the figure on the left.

The same feature can be seen for the shortwave flux after 36 and 60 hours of
simulation time, presented in figure 5.6, while the corresponding 2m temperature is
shown in figure 5.7, where the anomalies are not as sharply distributes as for the
fluxes, but in the same general area.
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Figure 5.2: Plots showing the predictions made for the 2 meter temperature (in
K) after 12 hours (upper figure) and 84 hours (lower graphs). The timestamp and
variable name are depicted above the figures on the left, showing the predictions
made by the RRTMG-fast scheme. The six plots per timestamp on the right show the
anomaly fields for the other radiation schemes in contrast to the prediction made by
RRTMG-fast, computed as predscheme − predRRTMG−fast, where the selected scheme
is indicated by the figure’s title.
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Figure 5.3: Plots showing the predictions made for the surface sensible heat flux (in
W/m2) after 12 hours (upper figure) and 84 hours (lower graphs). The timestamp
and variable name are depicted above the figures on the left, showing the predictions
made by the RRTMG-fast scheme. The six plots per timestamp on the right show the
anomaly fields for the other radiation schemes in contrast to the prediction made by
RRTMG-fast, computed as predscheme − predRRTMG−fast, where the selected scheme
is indicated by the figure’s title.
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Figure 5.4: Plots showing the predictions made for the surface latent heat flux (in
W/m2) after 12 hours (upper figure) and 84 hours (lower graphs). The timestamp
and variable name are depicted above the figures on the left, showing the predictions
made by the RRTMG-fast scheme. The six plots per timestamp on the right show the
anomaly fields for the other radiation schemes in contrast to the prediction made by
RRTMG-fast, computed as predscheme − predRRTMG−fast, where the selected scheme
is indicated by the figure’s title.
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Figure 5.5: Plots showing the predictions made for the cloud area fraction (mean
value for all vertical layers, as fraction e.g. 0.2 = 20%) after 12 hours (upper figure)
and 84 hours (lower graphs). The timestamp and variable name are depicted above
the figures on the left, showing the predictions made by the RRTMG-fast scheme.
The six plots per timestamp on the right show the anomaly fields for the other
radiation schemes in contrast to the prediction made by RRTMG-fast, computed as
predscheme − predRRTMG−fast, where the selected scheme is indicated by the figure’s
title.

Note how the largest anomalies occur where the fluxes have the least uniformly
distribution. A good example of this is the shortwave flux at 12 UTC of 3.7.2019,
i.e. 60 hours after the initial simulation time. The largest anomalies occur in the
south-east where the fluxes are not the lowest, but not very smoothly distributed,
while the blue areas with very small values do not result in such large anomalies.
This is the case for all six schemes.
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Clouds are generally predicted very similar in the different schemes, especially in
the RRTMG and NN schemes, which use the same approximations as the RRTMG-
fast. However, if a cloud’s exact position in another simulation is predicted to develop
in a slightly shifted location, the anomalies showing the difference between individual
grid points will yield large anomalies, as it is seen here.

Figure 5.6: Plots showing the predictions made for the downward shortwave radiation
at the surface (in W/m2) after 36 hours (upper figure) and 60 hours (lower graphs).
The timestamp and variable name are depicted above the figures on the left, while
the anomalies of the other schemes are indicated by the titles on the right. Similar
to figure 5.1.
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Figure 5.7: Plots showing the predictions made for the 2m temperature (in K) after
36 hours (upper figure) and 60 hours (lower graphs). The timestamp and variable
name are depicted above the figures on the left, while the anomalies of the other
schemes are indicated by the titles on the right. Similar to figure 5.2, but for the
same times as figure 5.6.

Therefore the RMSE and Correlation coefficient r are calculated for the whole
domain, for each variable, as described in section 5.1. The results are shown as
functions of time since simulation start in figure 5.8.

The graphs in figure 5.8 show the some of the same features as seen in the
geographical plots. The correlation is lowest and the RMSE is largest for the Dudhia
and New Goddard scheme, which is in accordance with what has been seen before,
i.e. their predictions differ most strongly from the RRTMG-fast predictions, while
the opposite can be said about the RRTMG and NN 3 schemes.

The dropping correlation and increasing RMSE of the 2m temperature indicates
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that the anomalies increase with simulation time. This can also be seen for the other
variables, but is harder to identify due to the strong diurnal cycle.

The diurnal cycle can also be seen from the plots in figure 5.9, which show the
shortwave radiation flux at the surface for the times 6, 12 and 18 UTC on the 4.7.2019,
i.e. after 78, 84 and 90 hours from the initial simulation time.

From both figure 5.8 and 5.9 it can be seen that the differences between the
prediction of the six schemes and RRTMG-fast first increases and later decreases
during the day, when the sunlight is starting to reach and later leave the domain,
respectively.

The same analysis of calculating the RMSE and the correlation coefficent r has
been carried out for the other three seasonal study cases, which are shown in the
figures 5.10 - 5.12.

For all four seasons the same tendencies can be seen, though there are some
smaller differences, as e.g. the diurnal cycle is not as strongly present in 5.10 for the
winter simulation, which is probably due to the relatively short period of time the
domain is exposed to sunlight.

It can also be seen that the magnitude of the errors is largest in the summer case,
which is related to the values of the variables, which are generally larger in summer,
and the daytime is longer.

It can be noted that the RRTMG and NN 3 scheme generally compete for being
the scheme with the smallest difference compared to the RRTMG-fast.

The anomalies of the NN schemes, is rather small and much smaller than those
of the New Goddard and Dudhia schemes. Additionally the anomalies increase in
a smiliar manner as those of the RRTMG scheme, which uses the same physical
approximations as the RRTMG-fast scheme. Thus it can be concluded that the neural
networks have been able to learn to emulate the computations of the reftra_sw to
a high degree.

It should however be noted that the predictions by the NN schemes do have a
strange feature of computing occasionally small, negative downward fluxes, which is a
non-physical result, as the downward flux is by definition positive. This only happens
at a few, apparently random points, usually in the morning in the areas where the
sunlight begins to reach the grid points.

For the NN 1 and NN 3 scheme the most negative downward fluxes at the surface
were of the magnitude ∼ −0.1 W/m2, for NN 2, however, the minimum was ∼
−50 W/m2.

Since the neural networks do not predict the flux directly, but the reflectivities
and transmissivities used for the flux computation, it was not possible to find out
what triggered these negative fluxes, since the known constraints of the reflectivities
and transmissivities were met, i.e. each of the parameters can only take on a value
between 0 and 1 and for their sums it applies: Rdir + Tdir ≤ 1 and Rdif + Tdif ≤ 1.
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Figure 5.8: Plots showing the correlation r and the root mean square error (RMSE)
as function of the number of simulated hours since the initial time. The depicted
variable is indicated by the title, as well as for which 4-day (96h) simulation the
figure was constructed, here the data shown is based on the simulation with the
initial time 1.7.2019 00 UTC. The different radiation parameterization schemes are
listed in the legends on the right side.
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Figure 5.9: Plots showing the predictions made for the downward shortwave radiation
at the surface (inW/m2) after 78 hours (upper figure), 84 hours (middle) and 90 hours
(lower graphs). The timestamp and variable name are depicted above the figures on
the left, while the anomalies of the other schemes are indicated by the titles on the
right. Similar to figure 5.1.
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Figure 5.10: Plots showing the correlation r and the root mean square error (RMSE)
as function of the number of simulated hours since the initial time. The depicted
variable is indicated by the title, as well as for which 4-day (96h) simulation the
figure was constructed, here the data shown is based on the simulation with the
initial time 1.1.2019 00 UTC. The different radiation parameterization schemes are
listed in the legends on the right side.
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Figure 5.11: Plots showing the correlation r and the root mean square error (RMSE)
as function of the number of simulated hours since the initial time. The depicted
variable is indicated by the title, as well as for which 4-day (96h) simulation the
figure was constructed, here the data shown is based on the simulation with the
initial time 1.4.2019 00 UTC. The different radiation parameterization schemes are
listed in the legends on the right side.
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Figure 5.12: Plots showing the correlation r and the root mean square error (RMSE)
as function of the number of simulated hours since the initial time. The depicted
variable is indicated by the title, as well as for which 4-day (96h) simulation the
figure was constructed, here the data shown is based on the simulation with the
initial time 1.10.2019 00 UTC. The different radiation parameterization schemes are
listed in the legends on the right side.
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5.3 Computational efficiency

Since the only difference between all simulations made by the WRF model is the
choice of the used shortwave parameterization, the total computation time needed
to simulate the same time period for the same domain gives an indication of the
computation time of the different shortwave parameterization schemes.
The percentage of the total model run used on the shortwave parameterization de-
pends heavily on the specific time period and domain, since the parameterization is
only executed if there is sunlight present, as mentioned earlier in section 3.3.

For a more direct comparison between the computational times of the shortwave
schemes and the modified schemes, where the neural networks have been included, it
can be chosen to let WRF write out the time spend on calculations in the radiation
driver at each radiative time step.
A 12-hour simulation was carried out with each of the shortwave parameterizaton
schemes used for the test cases in the previous section, where the computation times
have been reported by the WRF model.

While the individual computation times of some calculations inside a parameter-
ization can vary by some magnitudes, as e.g. for cloudy and clear sky cases where
different neural networks are used for, the total time spend on the parameterization
turns out to be very similar for all radiative time steps.

In table 5.1 the typical time spend on the radiation driver is shown for the
different schemes, for the cases when the shortwave radiation is executed. Note
that the computation time of the longwave radiation has been subtracted from those
values, as the same longwave parameterization scheme was used in all simulations
and showed very similar execution times in all models, as well as for all radiative
time steps.

Shortwave
parameterization scheme

Time spent on radiation driver
per radiative time step,
when SW is executed

RRTMG-fast with NN model 3 111.60 s
RRTMG-fast with NN model 2 43.15 s
RRTMG-fast with NN model 1 42.02 s
RRTMG-fast with NN model 1* (ReLu) 22.88 s
RRTMG-fast 6.45 s
RRTMG 4.95 s
New Goddard 1.66 s
Dudhia 0.18 s

Table 5.1: Table showing an example of the typical time spent on the radiation
driver for the different shortwave parameterization schemes for one radiative time
step, when the shortwave parameterization is executed. Note that the fraction spend
on the longwave parameterization by the radiation driver has been subtracted from
these times.
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From the values in table 5.1 it becomes apparent that all parameterization schemes
including neural networks are much slower than the original RRTMG-fast scheme.
The best performing, but most complex neural network scheme is more than 17 times
slower than the scheme it tries to emulate, while the other two neural network models
are around 6 ∼ 7 times slower than the original RRTMG-fast.
There are a few possible reasons for the slow performance of the neural networks.
One unclear factor is the implementation using the FKB library, which has not been
evaluated on its computational efficiency. For the implementation into WRF, a dif-
ferent approach might be more efficient, e.g. hard coding the weights of the neural
networks into a WRF subroutine. But it seems unlikely to be the main cause for the
slow performance.

There is, however, another factor that was easy to be tested through the usage of
a fourth parameterization with another neural network, which in the table is denoted
as model 1∗.
The neural networks in this model are identical to the ones in model 1, however, the
neural network trained on clear sky conditions uses the ReLu function instead of the
tanh function as activation in its hidden layers.
It is well known that the tanh function is computational more expensive than the
ReLu function and the quick test showed a large improvement in computational speed,
where the computational time of model 1∗ is only ∼ 55% of the time needed by model
1. Note though, that the performance of this model 1∗ has yet to be evaluated.

The simpler schemes, Dudhia and New Goddard, are faster than the RRTMG
schemes, as one would expect. It is surprising that the optimized version of the
RRTMG scheme, RRTMG-fast is slightly slower than the original RRTMG parame-
terization.
It should be noted though, that all simulations in this study have been performed on
CPUs, so it is to expect that both the original RRTMG-fast and its modified variants
with neural networks would perform faster when used with GPUs.
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6 Discussion
In this section a very brief summary of the main points from the first few sections
will be given, before discussing the central findings of the development of the neural
networks described in section 4 and the results from the simulations carried out by the
WRF model with the parameterization schemes containing neural network, presented
in section 5.

The goal of this thesis was to test the usage of neural networks in the radiation
parameterization of the WRF model.
Since early tests suggested that the shortwave radiation parameterization was more
computationally heavy than the longwave parameterization, it was chosen to focus
on the shortwave parameterization schemes.

Of all the available shortwave parameterizations schemes in the WRF model, the
RRTMG and its for GPUs optimized version RRTMG-fast are the most complex pa-
rameterizations, which also are the ones most similar to the schemes used by modern
NWP models.
Despite not having GPUs available in this study, it was chosen to work with the newer
RRTMG-fast scheme. If GPUs would be used, it is expected that the RRTMG-fast
would perform much faster.

There are different approaches on how to utilize neural networks for parameteri-
zations schemes, in this case it was chosen to substitute the part of the scheme that
was computational most expensive: the reftra_sw subroutine, where the reflectivi-
ties and transmissivities are computed.

After this choice was made, a data set for training, validating and testing the
neural networks was created with the original RRTMG-fast parameterization, for
which data points were randomly sampled from 12 24-hour simulations, distributed
over the year 2018.
With this data set several tests for optimizing the neural networks were carried out.

When the influence of different input variables for the neural networks were
investigated, it became apparent that it was beneficial to divide the data set into two
categorize and train two separate neural networks for the two cases: cloudy and clear
sky conditions.

However, it was also then discovered that the initial training and validation data
set for the clear sky conditions was not divided into two completely independent, well
distributed data sets, as the initial validation set appeared to contain less challenging
data than the training data, leading to a much lower validation error.

Since this would make detecting overfitting and evaluating the training’s process
very difficult, it was chosen to interchange the training and validation data for clear
sky samples.
While this was not an optimal premise, it appears to at least have prevented uncon-
trolled overfitting, as the later implemented models also performed well in the study
cases in the WRF model, which posed as an additional independent test.

During the many procedures to find the optimal hyper parameters it had also
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been discovered during the early phases of trial and error, that the scaling of the
optical thicknesses τ had a big impact on the predictions of the neural networks.
All input and output variables of the neural network, which are taken from reftra_sw,
only take on values between 0 and 1, apart from the optical thicknesses values, that
have a wide range of values.

Since such large differences in orders of magnitudes of the different input variables
have a bad influence on the learning rate and updating of the model weights of the
neural network, a normalization was needed.
A logarithmic scaling coupled with the division through a maximum value gave the
best results.
Still, all of the implemented neural network models tested in section 5, continued to
predict small negative fluxes, which are non-physical.
Despite using constraints in the modified reftra_sw routine with the neural networks,
where the predicted transmissivities and reflectivites only can range between 0 an 1
and their diffuse and direct sum only can become as large as 1, the negative fluxes
still occurred.

The minimum value is very small for two of the three models (∼ −0.1 W/m2)
while larger for the last one (∼ −50 W/m2), which still is lower than the minimum
values of models with different scaling, which could predict values much lower and
larger.

The three implemented radiation parameterizations containing neural networks
performed well in the four simulations carried out with the WRF model. The NN
3 scheme performed best of all three, with an root mean square error (RMSE) and
correlation coefficient r, that was consistently lower than the ones of the other two
neural network schemes. The NN 1 scheme performed worst of the three, which is in
accordance to the results of the previous evaluation on the test data set of the three
neural network models, which implies that the test data set seems to have been well
sampled and independent.

The plots showing the RMSE and correlation r as a function of time showed that
the predictions by the neural network NN schemes were more similar to the RRTMG-
fast than the predictions made by two different radiation parameterizations, the New
Goddard and Dudhia scheme.

The only other parameterization that showed similar RMSE and r values was the
RRTMG scheme, which is not surprising, since the physical approximations in this
scheme are the same as in its optimized version, RRTMG-fast.
It could also be seen that the rate at which the NN schemes and the RRTMG scheme
start to diverge further from the RRTMG-fast with increasing simulation time is of
the same magnitude.

The largest anomalies were found for the the shortwave fluxes, which also seemed
to be less uniformly, than the anomalies of the 2m temperature, the sensible heat flux
at the surface and the latent heat flux at the surface.

The large anomalies of the shortwave fluxes are probably due to slight differences
in the simulated cloud cover. Small scattered clouds that are located at slightly shifted
positions in the different simulations made with the parameterization schemes result
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by a grid point vs grid point comparison to large fluctuations.
When the computational times were investigated in section 5.3, it was seen that all

neural network containing schemes performed much slower than the original RRTMG-
fast scheme. The best scheme, NN 3, was ∼ 17times slower, while the other two
schemes were faster, but still ∼ 6− 7 times slower than the RRTMG-fast.

There are many factors that have yet to be evaluated that can have an influence
on the computational efficiency.
One would be the method used to implement the neural networks into the WRF
fortran code, for which in this study the Fortran-Keras Bridge (FKB) was used.
This fortran library is very useful, since it makes loading different neural networks,
trained with keras, into fortran very easy, which was good to test many different
models, however, it was not evaluated how computational efficient it is.

However, one major cause for the long computational times was found to be the
activation function of the clear-sky cases. The tanh function is much more computa-
tional expensive than the ReLU function used for the cloudy cases and a quick test,
were a neural network scheme similar to NN 1, but with ReLu instead of tanh as
activation, performed much faster only needing ∼ 55% of the time compared to NN
1 with tanh.

The performance of this model has yet to be evaluated, however, since the ReLu
function performed as the second best activation during the testing of activation
functions for clear sky cases, it seems reasonable to expect, that a good neural network
can be optimized with this function, for this problem.
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7 Conclusion and outlook
In this study it has been shown that neural networks can be trained well enough
to be used as part of the RRTMG-fast shortwave radiation parameterization scheme
in the WRF model. The results illustrated how predictions made by parameteriza-
tion schemes using neural networks gave similar results to the original RRTMG-fast
scheme, which they were trained on, as well as to the original RRTMG scheme, which
uses the same approximations.

Unfortunately, the parameterization schemes using neural networks turned out
to be computationally slower than the original parameterization scheme.
So to build an efficient shortwave radiation parameterization scheme, additional op-
timization methods need to be considered.

The choice of activation function proved to be computationally expensive and
was one of the main contributors to the slow performance. A simple test suggested
that the computation time can be strongly reduced by using a cheaper function, e.g.
the ReLu instead of the tanh as activation function, though the performance of such
a neural network still needs to be evaluated.

All simulations of the WRF model were carried out on CPUs in this study. The
RRTMG-fast parameterization scheme is, however, designed for the use with GPUs.
Therefore it would be interesting to see how much faster the scheme becomes when
utilizing GPUs and how much of an improvement this would lead to for the parame-
terization schemes containing neural networks.

During the optimization process of the neural networks it was discovered that
the random data sampling used for creating the training, validation and test data set
had not resulted in completely independent, well divided subsets. Therefore one way
of improving the neural network should include a reconsideration of the method to
sample data, e.g. to expand the data set by manually selecting extreme values.

Another approach could be to investigate the usage of neural networks for other
parts of the radiation parameterization, e.g. the optical gas or aerosol computations,
or to try replacing a larger part of the parameterization instead of one individual
subroutine.

If available, it could also be interesting to train neural networks on more realistic
data, such as outputs from line-by-line models, to test whether this could lead to
more accurate predictions of the radiative fluxes.
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A Appendix: WRF Namelist example
Below are examples for the namelist.wps and namelist.input files shown.
The examples show the configuration for a 4-day (96-hour) simulation, starting at
1.1.2019 00 UTC.

Example of namelist.wps :

&share
wrf_core = ’ARW’,
max_dom = 1, !specifying number of domains
start_date = ’2019-01-01_00:00:00’ !specifying the start time of the model run
end_date = ’2019-01-05_00:00:00’ !specifying the end time
interval_seconds = 21600 !specifying the interval between the boundary condition files
io_form_geogrid = 2,

/
&geogrid
parent_id = 1,
parent_grid_ratio = 1,
i_parent_start = 1, !specifying the first index for the staggered dimension in x
j_parent_start = 1, !specifying the first index for the staggered dimension in y
e_we = 230, !specifying the last index for the staggered dimension in x
e_sn = 170, !specifying the last index for the staggered dimension in y
geog_data_res = ’maxsnowalb_ncep+albedo_ncep+default’
dx = 10000, !specifying the grid cell size in x
dy = 10000, !specifying the grid cell size in y
map_proj = ’lambert’, !specifying the type of map projection
ref_lat = 59, !specifying the reference latitude
ref_lon = 8, !specifying the reference longitude
truelat1 = 54.0, !specifying true latitude 1
truelat2 = 54.0, !specifying true latitude 2
stand_lon = 8.0, !specifying the standard longitude
geog_data_path = ’/Path/to/files’

/
&ungrib
out_format = ’WPS’,
prefix = ’FILE’,

/
&metgrid
fg_name = ’FILE’
io_form_metgrid = 2,

/

Example of namelist.input :

! First the initial start time, model run duration and end time must be specified corresponding to namelist.wps
&time_control
run_days = 4,
run_hours = 0,
run_minutes = 0,
run_seconds = 0,
start_year = 2019,
start_month = 01,
start_day = 01,
start_hour = 00,
end_year = 2019,
end_month = 01,
end_day = 05,
end_hour = 00,
interval_seconds = 21600
input_from_file = .true.,
history_interval = 60,
frames_per_outfile = 1000,
restart = .false.,
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restart_interval = 360,
io_form_history = 2
io_form_restart = 2
io_form_input = 2
io_form_boundary = 2
force_use_old_data = T
/
&domains
time_step = 60, !specifying the length of the time step (in seconds)
time_step_fract_num = 0,
time_step_fract_den = 1,
max_dom = 1,
e_we = 230, !number of grid points in x (corresponding to namelist.wps)
e_sn = 170, !number of grid points in y (corresponding to namelist.wps)
e_vert = 70, !specifying the number of vertical layers
p_top_requested = 5000,
num_metgrid_levels = 32,
num_metgrid_soil_levels = 4,
dx = 10000, !specifying horizontal spacial resolution in direction x
dy = 10000, !specifying horizontal spacial resolution in direction y
grid_id = 1,
parent_id = 0,
i_parent_start = 1,
j_parent_start = 1,
parent_grid_ratio = 1,
parent_time_step_ratio = 1,
feedback = 1,
smooth_option = 0

! numtiles = 6
/
&physics
physics_suite = ’CONUS’ !selecting the CONUS physics suite, referred to below as ’-1’
mp_physics = -1,
cu_physics = -1,
ra_lw_physics = 24, !overwriting the physics suite’s longwave radiation scheme

!with option 24, which corresponds to the RRTMG-fast scheme
ra_sw_physics = 24, !overwriting the physics suite’s shortwave radiation scheme
bl_pbl_physics = -1,
sf_sfclay_physics = -1,
sf_surface_physics = -1,
radt = 60, !specifying the radiative time step (in minutes)
bldt = 0,
cudt = 5,
icloud = 1,
num_land_cat = 21,
sf_urban_physics = 0,
/
&fdda
/
&dynamics
hybrid_opt = 2,
w_damping = 0,
diff_opt = 1,
km_opt = 4,
diff_6th_opt = 0,
diff_6th_factor = 0.12,
base_temp = 290.
damp_opt = 3,
zdamp = 5000.,
dampcoef = 0.2,
khdif = 0,
kvdif = 0,
non_hydrostatic = .true.,
moist_adv_opt = 1,
scalar_adv_opt = 1,
gwd_opt = 1,
/
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&bdy_control
spec_bdy_width = 5,
specified = .true.
/
&grib2
/
&namelist_quilt
nio_tasks_per_group = 0,
nio_groups = 1,
/
! Configuration of the DFI, which must be adjusted to the specified initial start time from above
! For the TDFI (dfi_opt=3), this means 1 hour before as backstop and 1/2 hour after as forward stop
&dfi_control
dfi_opt = 3
dfi_nfilter = 7
dfi_write_filtered_input = .true.
dfi_write_dfi_history = .false.
dfi_cutoff_seconds = 3600
dfi_time_dim = 1000
dfi_bckstop_year = 2018
dfi_bckstop_month = 12
dfi_bckstop_day = 31
dfi_bckstop_hour = 23
dfi_bckstop_minute = 00
dfi_bckstop_second = 00
dfi_fwdstop_year = 2019
dfi_fwdstop_month = 01
dfi_fwdstop_day = 01
dfi_fwdstop_hour = 00
dfi_fwdstop_minute = 30
dfi_fwdstop_second = 00
/
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B Appendix: Validation data set
Distributions of the initial validation data set (used as training data set for ac=1,
clear sky condition from section 4.2.2 onward).
Cloudy:

Figure B.1: Input data of the validation data set for cloudy cases (ac=0)

Figure B.2: Output data of the validation data set for cloudy cases (ac=0)
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Clear sky:

Figure B.3: Input data of the initial validation data set for clear sky cases (ac=1)

Figure B.4: Output data of the initial validation data set for clear sky cases (ac=1)
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C Appendix: Additional plots
Winter simulations (1.1.2019 00 UTC - 5.1.2019 00 UTC):

Figure C.1: Plots showing the predictions made for the downward shortwave radiation
at the surface (in W/m2) after 12 hours (upper figure) and 84 hours (lower graphs).
The timestamp and variable name is depicted above the figures on the left, showing
the predictions made by the RRTMG-fast scheme. The six plots per timestamp on
the right show the anomaly fields for the other radiation schemes in contrast to the
prediction made by RRTMG-fast, computed as predscheme − predRRTMG−fast, where
the selected scheme is indicated by the figure’s title.
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Figure C.2: Plots showing the predictions made for the 2 meter temperature (in
K) after 12 hours (upper figure) and 84 hours (lower graphs). The timestamp and
variable name is depicted above the figures on the left, showing the predictions made
by the RRTMG-fast scheme. The six plots per timestamp on the right show the
anomaly fields for the other radiation schemes in contrast to the prediction made by
RRTMG-fast, computed as predscheme − predRRTMG−fast, where the selected scheme
is indicated by the figure’s title.
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Spring simulations (1.4.2019 00 UTC - 5.4.2019 00 UTC):

Figure C.3: Plots showing the predictions made for the downward shortwave radiation
at the surface (in W/m2) after 12 hours (upper figure) and 84 hours (lower graphs).
The timestamp and variable name is depicted above the figures on the left, showing
the predictions made by the RRTMG-fast scheme. The six plots per timestamp on
the right show the anomaly fields for the other radiation schemes in contrast to the
prediction made by RRTMG-fast, computed as predscheme − predRRTMG−fast, where
the selected scheme is indicated by the figure’s title.
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Figure C.4: Plots showing the predictions made for the 2 meter temperature (in
K) after 12 hours (upper figure) and 84 hours (lower graphs). The timestamp and
variable name is depicted above the figures on the left, showing the predictions made
by the RRTMG-fast scheme. The six plots per timestamp on the right show the
anomaly fields for the other radiation schemes in contrast to the prediction made by
RRTMG-fast, computed as predscheme − predRRTMG−fast, where the selected scheme
is indicated by the figure’s title.
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Autumn simulations (1.10.2019 00 UTC - 5.10.2019 00 UTC):

Figure C.5: Plots showing the predictions made for the downward shortwave radiation
at the surface (in W/m2) after 12 hours (upper figure) and 84 hours (lower graphs).
The timestamp and variable name is depicted above the figures on the left, showing
the predictions made by the RRTMG-fast scheme. The six plots per timestamp on
the right show the anomaly fields for the other radiation schemes in contrast to the
prediction made by RRTMG-fast, computed as predscheme − predRRTMG−fast, where
the selected scheme is indicated by the figure’s title.
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Figure C.6: Plots showing the predictions made for the 2 meter temperature (in
K) after 12 hours (upper figure) and 84 hours (lower graphs). The timestamp and
variable name is depicted above the figures on the left, showing the predictions made
by the RRTMG-fast scheme. The six plots per timestamp on the right show the
anomaly fields for the other radiation schemes in contrast to the prediction made by
RRTMG-fast, computed as predscheme − predRRTMG−fast, where the selected scheme
is indicated by the figure’s title.
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