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Abstract
This thesis aims to examine overlaps between Matrix Product States and Bethe states that are relevant
to defect versions of N = 4 Super Yang-Mills. The relation between conformal operators in the so(6)
and su(2) sectors with Bethe states of the corresponding spin chains in the planar limit and at one-loop
order is explained through Feynman diagram calculations and the relevance of spin chain overlaps to the
dCFT is established. The Heisenberg model is introduced and solved using the algebraic Bethe ansatz.
The Yangian of gl(N) is defined, its connection to the algebraic Bethe ansatz is noted and it is used
to derive the Bethe equations for a spin chain in an arbitrary gl(N) representation. The connection
between the boundary Yang-Baxter equation and integrable matrix product states is explained and
the relation between solutions to that relation and twisted Yangian representations is established.
For the (SU(3),SO(3)) and (SO(6),SO(5)) symmetric pairs, twisted Yangian representations are used
to reduce ratios of overlaps between the matrix product states and Bethe states to transfer matrix
eigenvalues. The transfer matrix eigenvalues are computed.
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Introduction and Outline
Holography is a property which is generally expected of theories of quantum gravity. The Holographic
principle states that the information theory of a gravitational theory defined in a volume (called the
bulk) can be encoded on the boundary of that volume. In string theory, holography is realized in the
form of gauge/gravity dualities, where the dynamics of a string theory in the bulk can be reduced to
those of a gauge theory on the boundary.
A concrete example of such a duality is the AdS5/CFT4 correspondence, first conjectured in [16]. The
string theory on one side of the duality is a type IIB superstring theory on an AdS5×S5 background.
Its holographic dual is a N = 4 Super Yang-Mills QFT, with an SU(N) gauge group, defined on
the boundary of the anti-de Sitter space. Though this conjecture is believed to hold in general, it is
usually studied in the planar limit of the CFT, where gYM → 0 and N → ∞, such that the parameter
λ = g2YMN is constant. The correspondence has the form of a strong/weak duality i.e. if λ is chosen
to be large (strong coupling), the dual theory exhibits weak string coupling and low curvature. This is
an example of the utility of the correspondence, as it allows for perturbative calculations to be carried
out on the AdS-side, that would not be possible on the strongly-coupled CFT.
One of the several remarkable properties of N = 4 SYM is its planar integrablity, namely that, in
the planar limit, the full spectrum of anomalous dimensions and the corresponding good conformal
operators can be determined. This was first found for the scalar sector of the theory at 1-loop order by
mapping the corrections to the dilatation operator to the Hamiltonian of integrable SO(6) spin chain
[18]. The extension of this result to the entire theory and at all loop orders similarly involves mapping
the dilatation operator to a (super)spin chain, the integrability of which implies the integrability of
N = 4 SYM [3],[4]. The most simple spin chain, namely the su(2) spin chain or Heisenberg model, has
been known to be exactly solvable since 1931, through the what is now called the coordinate Bethe
ansatz method [5] Other techniques that were later developed to solve the Heisenberg model, such as
the algebraic Bethe ansatz, have been successfully generalized to solve more complicated spin-chain
models.
Some interesting variations of the original AdS/CFT correspondence rise by introducing certain D-
brane setups on the string theory side. This breaks part of the symmetry of the original theory and
its holographic dual has the form of a defect conformal field theory (dCFT), where integrable struc-
tures can also appear. In particular, in some defect variants of N = 4 SYM, the tree-level vacuum
expectation value of some conformal operators, which can be non trivial due to the partial breaking of
the symmetry, has been mapped to the overlap between spin-chain eigenstates and certain integrable
matrix product states (MPS)[15] . In some cases these overlaps have been calculated by utilizing the
relation between the MPSs and boundary integrability. The aim of this thesis is to present and explain
these calculations.

To that end, the first chapter introduces N = 4 SYM with an emphasis on its conformal symme-
try and the constraints it imposes on two-point scalar functions at tree level. Then, some 1-loop
order calculations are performed in the planar limit, leading to the relation between the dilatation
operator of the SO(6) and SU(2) sectors with the respective spin chains. Furthermore, we will see an
example of how tree-level one-point functions in the dCFT can be calculated through overlaps between
MPSs and spin chains, which motivates their calculation. In the second chapter, we will introduce the
Heisenberg model and explain its original solution by Bethe. However, the main focus of that chapter
is the algebraic Bethe ansatz (ABA) approach of solving the system. In particular, we will see how
the fundamental commutation relations (FCR) of the Lax operators guarantee the commutativity of
the transfer matrix, which renders the system integrable. In chapter 3 we will introduce the Yangian
algebra and investigate the connection between its representations and the fundamental objects of the
ABA approach. Then, as an example of the utility of the Yangian in integrability, we use it to derive
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the Bethe equations and transfer matrix eigenvalues for a spin chain in an arbitrary gl(N) representa-
tion. In chapter 4 we will see how integrable MPSs can be generated from boundary integrability and,
in particular, from solutions of the boundary Yang-Baxter (BYB) relation. We will then see how the
BYB equation is related to representations of twisted Yangian algebras and how the latter can be used
to extract relations between MPSs. The last two chapters are devoted to calculating overlaps between
specific MPSs and Bethe states of their corresponding spin chains. This is achieved by initially using
twisted Yangian representation theory to extract the exact relation between the MPSs and some sim-
pler states. Then, the computation of the overlaps reduces to some transfer matrix eigenvalues, which
we will also see how to obtain.
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1 N = 4 SUPER YANG-MILLS

1 N = 4 Super Yang-Mills

1.1 The Lagrangian and the Gauge group

The theory consists of six scalar fields φi, four 4-dimensional Majorana fermions ψ and the 4-dimensional
gauge field Aµ, subject to the action

SSYM =
2

g2

∫
d4xTr

[
−1

4
FµνF

µν − 1

2
DµφiD

µφi +
i

2
ψ̄ΓµDµψ +

1

2
ψ̄Γi[φi, ψ] +

1

4
[φi, φj ][φi, φj ]

]
,

(1.1)

where Γi are ten-dimensional gamma matrices. The covariant derivative is defined as

Dµ = ∂µ − i[Aµ, ·] (1.2)

and the field strength is

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] (1.3)

The gauge group we consider is U(N). The scalar and fermion fields transform covariantly under gauge group
transformations, which means that they transform in the adjoint representation of U(N). For an infinitesimal
transformation parametrized by ε, this implies

χ→ χ+ [ε, χ] (1.4)

for χ being either a scalar or fermion. The gauge connection instead transforms as

Aµ → Aµ + ∂µε+ [ε,Aµ] (1.5)

Using this, it can be shown that Fµν and Dµχ transform covariantly. Gauge invariant operators are constructed
as traces of products of covariant fields. Taking, for example, two scalar fields φ1,φ2, it is straightforward to
show that Tr[φ1φ2] is invariant under the infinitesimal transformation. We have

Tr[φ1φ2] → Tr[φ1φ2] + Tr[φ1[ε, φ2] + φ2[ε, φ1]] +O(ε2) (1.6)

and using the cyclicity of the trace we can see that

Tr[φ1[ε, φ2]] = −Tr[φ2[ε, φ1]], (1.7)

and the O(ε) term vanishes. Additional operators can be constructed by taking products of such traces. How-
ever, this thesis focuses on the t’Hooft limit, where g → 0 and N → ∞ with λ = g2N constant and in that
case it suffices to look at single trace operators. Also, in that limit, N → ∞ suppresses the contribution of
non-planar Feynman diagrams to correlation functions, so that only the planar ones need to be considered.

1.2 Conformal Symmetry

Apart from the gauge symmetry, N = 4 SYM theory enjoys extended spacetime symmetry in the form of
the projective superconformal group PSU(2,2| 4). We will focus on its SO(4, 2) subgroup, which generates
conformal transformations.

The conformal algebra and CFTs
The conformal algebra is an extension of the Poincare algebra. In addition to the generators of Lorentz transfor-
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1 N = 4 SUPER YANG-MILLS

mations Jµν and translations Pµ, it includes the dilatation D and the special conformal transformation (SCT)
Kµ and reads

[Jµν , Pρ] = i (ηµρPν − ηνρPµ) (1.8)
[Jµν , Jρσ] = i (ηµρJνσ + ηνσJµρ − ηνρJµσ − ηµσJνρ) (1.9)
[Jµν ,Kρ] = i (ηµρKν − ηνρKµ) (1.10)
[Jµν , D] = 0 (1.11)
[D,Pµ] = iPµ (1.12)
[D,Kµ] = −iKµ (1.13)
[D,Kµ] = −2i (ηµνD − Jµν) (1.14)
[Kµ,Kν ] = 0 (1.15)

The general infinitesimal coordinate transformation generated by this algebra is

δxµ = x′µ − xµ = aµ + ωµ
νx

ν + λxµ + bν(g
µνx2 − 2xµxν), (1.16)

where aµ + ωµ
νxν is the familiar Poincare transformation, while λxµ and bν(gµνx2 − 2xµxν) are generated by

D and Kµ respectively. The finite transformation of the dilatation is a simple rescaling of the coordinates

xµ → λxµ (1.17)

while Kµ generates the rather complicated finite transformation

x→ xµ + bµx2

1 + 2b · x+ b2x2
(1.18)

where b · x = gµνb
µxν

The operators of a Conformal Field Theory are representations of this algebra. In d = 4 dimensions, the con-
formal algebra includes so(1, 1)⊕ so(3, 1) as a subalgebra. This allows us to characterise each representation
as (∆, jL, jR), where ∆ is the Conformal dimension and jL, jR are the su(2) weights in the su(2)L ⊕ su(2)R
decomposition of the Lorentz algebra. In particular, we postulate that for an operator with fixed conformal
dimension the algebra acts at the origin as

[Jµν ,O(0)] = −JµνO(0), (1.19)

where Jµν is now some representation of the Lorentz group and

[D,O(0)] = −i∆O(0). (1.20)

The action at an arbitrary point is determined using the differential operator representation of the algebra

Pµ = −i∂µ (1.21)
Jµν = i(xµ∂ν − xν∂µ) (1.22)
D = −ixµ∂µ (1.23)
Kµ = −i(x2∂µ − 2xµx

ν∂ν) (1.24)
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1 N = 4 SUPER YANG-MILLS

and using Pµ to translate from the origin to x. As an example, we can calculate the infinitesimal action of the
dilatation operator. We have

[D,O(x)] = [D, e−ixµPµO(0)eix
µPµ ] (1.25)

= e−ixµPµ [eix
µPµDe−ixµPµ ,O]eix

µPµ (1.26)
= e−ixµPµ [D − ixµPµ,O]eix

µPµ (1.27)
= −i(∆ + xµ∂µ)O(x). (1.28)

In the penultimate equality, we use the Baker-Hausdorff formula.

In what follows we will focus on scalar operators, i.e. representations of the form (∆, 0, 0), that are anihi-
lated by the SCT generator

[Kµ,O∆(0)] = 0 (1.29)

Such operators play a central role in conformal field theory, since all operators of a CFT can be generated from
them. To see that, note that the conformal dimension of O(0) is determined by the action of D on it. Using the
Jacobi identity, we have

[D, [Pµ,O(0)]] = −[O(0), [D,Pµ]]− [Pµ, [O(0), D]] (1.30)
= i[O(0), Pµ]− i∆[Pµ,O(0)] (1.31)
= −i(∆ + 1)[Pµ,O(0)] (1.32)

thus Pµ raises the conformal dimension by 1. Acting on conformal primaries with Pµ generates "towers" of
descendant operators, which include all the operators relevant to the theory. In that sense, a CFT is completely
determined by its primary operators.

Two-point correlations in a CFT
The extended symmetry of a CFT imposes heavy restrictions on its correlation functions. In particular, one-
point correlations are trivial and any other correlation can be calculated using the conformal data (∆, cijk),
where cijk are some structure constants that determine the three-point correlations.

Of particular importance to us are the two-point functions, which are completely determined by the confor-
mal dimension of the fields involved. One can show this for two scalar primary operators OI(x), OJ(x), using
the fact that under a finite conformal transformation x→ x′, their two point correlation transforms as

〈OI(xI)OJ(xJ)〉 −→
∣∣∣∂x′
∂x

∣∣∣−∆I/d

x=xI

∣∣∣∂x′
∂x

∣∣∣−∆J/d

x=xJ

〈OI(xI)OJ(xJ)〉, (1.33)

where d is the dimensionality of spacetime, in our case 4. The first constraint comes from spacetime homo-
geneity and isotropy, which restrict the two-point correlation to

〈OI(xI)OJ(xJ)〉 = fIJ(|xI − xJ |) (1.34)

Next, note that under a rescaling of the coordinates xµ → λxµ, an operator with fixed conformal dimension
transforms as

O(x) = λ−∆O(λx) (1.35)
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1 N = 4 SUPER YANG-MILLS

which means that our correlation transforms as

〈OI(xI)OJ(yJ)〉 −→ λ−∆I−∆J 〈OI(λxI)OJ(λxJ)〉. (1.36)

Then, dilatation invariance requires that

fIJ(|xI − xJ |) = λ−∆I−∆JfIJ(λ|xI − xJ |), (1.37)

which is satisfied by

〈OI(xI)OJ(xJ)〉 =
MIJ

|xI − xJ |∆I+∆J
(1.38)

The final constraint comes from invariance to special conformal transformations, for which we need to calculate
the Jacobian |∂x′

∂x |. A nice way to do that is to start by noting that we can decompose the SCT into a translation
and two inversion transformations. In particular, the SCT is equivalent to an inversion

xµ −→ xµ

x2
. (1.39)

followed by a translation

xµ

x2
−→ xµ

x2
+ bµ (1.40)

followed by another inversion

xµ

x2
+ bµ −→ x+ bµ + bµx2

x2
x2

1 + 2b · x+ b2x2
=

x+ bµ + bµX2

1 + 2b · x+ b2x2
(1.41)

The Jacobian of the SCT is thus

JSCT = Jinv(
xµ

x2
+ bµ)Jtr(

xµ

x2
)Jinv(x

µ) (1.42)

The Jacobian of the translation is trivial, and for the inversion we have

∂

∂xν
(
xµ

x2
) =

x2δµν − 2xµxν
x4

, (1.43)

from which it follows that

JSCT = γ−4, (1.44)

where we have introduced γ = 1 + 2b · x+ b2x2 to simplify notation. It can also be shown that under an SCT

(xI − xJ)
2 → (xI − xJ)

2

γIγJ
. (1.45)

Combining (1.33), (1.44) and (1.45) we get that, under a SCT, eq. (1.38) transforms as

γ∆I
x γ∆J

y 〈OI(xI)OJ(xJ)〉 = (γxγy)
(∆I+∆J )/2

MIJ

|xI − xJ |∆I+∆J
(1.46)
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1 N = 4 SUPER YANG-MILLS

or

〈OI(xI)OJ(xJ)〉 =
(γIγJ)

(∆I+∆J )/2

γ∆I
x γ∆J

y

MIJ

|x− y|∆I+∆J
(1.47)

Conformal invariace then requires

(γIγJ)
(∆I+∆J )/2

γ∆I
I γ∆J

J

= 1, (1.48)

which is identically true only for ∆I = ∆J .

Summing up, we have concluded that the two-point correlation between two scalar operators is restricted,
by conformal invariance, to be

〈OI(x)OJ(y)〉 =
MIJ

|x− y|∆I+∆J
(1.49)

with MIJ = 0 for I 6= J .

1.3 Scalar two-point functions in N = 4 SYM

In what follows we restrict ourselves to operators made up of the scalar fields of N = 4 SYM. These operators
make up the so-called SO(6) sector of the theory. This sector is closed at first loop order, which means that, at
1st order in perturbation theory, correlations between operators within and outside the sector vanish. We will
also consider its subsector which consists of the two complex fields

X = φ1 + iφ4 (1.50)
Y = φ2 + iφ5 (1.51)

and their conjugates. It is called the SU(2) sector and it is closed at all loop orders.

Tree level correlation
From the action (1.1), one see that the free scalar propagator is

〈[φi]ab(x)[φj ]b′a′(y)〉 = δijδaa′δbb′
g2

8π2
1

|x− y|2
, (1.52)

where we have made the U(N) indices, also called the colour indices, explicit. The conformal dimension of φi
is 1, so tracing over the colour indices results in an expression consistent with (1.49).

Now, consider an operator in the SO(6) sector,

OI(x) = Tr[φi1(x) . . . φiL(x)], (1.53)

5



1 N = 4 SUPER YANG-MILLS

where I = {i1, . . . , iL} is an ordered set of indices which defines the operator. This operator obviously has
conformal dimension L, at tree level. The tree level two-point function of two such operators

〈OI(x)ŌJ(y)〉 =
(
g2

8π2

)L

〈[φi1 ]ab(x)[φi2 ]bc(x) · · · [φiL ]fa(x)[φjL ]a′f ′(y) · · · [φj2 ]c′b′(y)[φj1 ]b′a′(y)〉

(1.54)

is the sum of all possible contractions of two fields, according to Wick’s theorem. Terms where all contractions
have the form

〈φik(x)φjk+m
(y)〉, (1.55)

for some integer 1 ≤ m ≤ L, correspond to planar Feynman diagrams. For example, m=0 gives the term

〈φi1(x)φj1(y)〉〈φi2(x)φj2(y)〉 · · · 〈φiL(x)φjL(y)〉 (1.56)

and m=2

〈φi1(x)φj3(y)〉〈φi2(x)φj5(y)〉 · · · 〈φiL(x)φj2(y)〉 (1.57)

In the t’Hoof limit only planar diagrams contribute to the correlation. To see that, we can compare (1.56) to the
non-planar contraction

〈φi1(x)φi2(y)〉〈φi2(x)φi1(y)〉〈φi3(x)φj3(y)〉 · · · 〈φjL(x)φjL(y)〉 (1.58)

Using the propagator (1.52) in the planar case, the sum over repeated colour indices gives

δaa′δaa′δbb′δbb′ · · · δff ′δff ′ = NL. (1.59)

and in the non planar case

δaa′(δab′δbc′δba′δcb′)δcc′δdd′δdd′ · · · δff ′ = NL−2, (1.60)

where the parenthesis is added to emphasize what has changed compared to the planar case. In general, a di-
agram of genus gn 1 comes with a factor of N2−2gn. Thus in the t’Hooft limit, where N → ∞, non planar
diagrams are suppressed.

The last step is to note that (1.55) includes a factor δik,jk+m
. Thus, a planar contraction is non zero only if

ik = jk+m for all k = 1, . . . , L which implies that the set I needs to be a cyclic permutation of J. We can now
conclude that the tree level two-point function is

〈OI(x)ŌJ(y)〉 = cIN
L

(
g2

8π2

)L
δIJ

|x− y|2L
, (1.61)

where cI is the number of cyclic permutations that leave I invariant. This result is consistent with (1.49).
1The genus of the diagram is the genus of the surface on which the diagram can be drawn with no propagators

intersecting. The cylinder, on which (1.56) can be drawn, has genus 0 and (1.58) requires a surface of genus 1.
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1 N = 4 SUPER YANG-MILLS

Renormalization and operator mixing
Do deal with divergences in loop diagrams we employ dimensional regularization

S =
2

g2

∫
L → Sε =

2

(gµε)2

∫
d4−2εxL, (1.62)

where µ has mass dimension [µ] = 1. The scalar propagator is then modified to

〈[φi]ab(x)[φj ]cd(y)〉 = δijδadδbcKε(x, y), (1.63)

where

Kε(x, y) =
Γ(1− ε)

8π2−ε(x− y)2(1−ε)
(1.64)

Calculating the two-point function at first order in perturbation theory yields

〈Obare
I (x)Ōbare

J (y)〉ε =
√
cIcJN

∆(Kε(x, y))
∆(δ̃IJ +

λ

16π2
MIJ(ε)[µ|x− y|]2ε) +O(g4) (1.65)

where δ̃IJ = 1 if J is a cyclic permutation of I and is zero otherwise. The MIJ(ε) matrix turns out to have a
pole at ε = 0, so we write it as

MIJ(ε) = −1

ε
DIJ +Mfin

IJ +O(ε) (1.66)

Usually, removing the divergence at ε → 0 involves adding counterterms to the Lagrangian, such that the
divergences of the original Lagrangian and the counterterms cancel each other. In N = 4 SYM this turns out
to not be necessary. Instead, the two-point correlations are finite after defining appropriate operators

Oren
I =

ZIJ√
cI
(g, ε)Obare

J . (1.67)

Here, Obare
J are single-trace operators and ZIJ is a matrix that rescales and mixes them. At first loop order, we

choose

ZIJ(g, ε) = δIJ +
λ2

2ε
DIJ − λ2

2
Mfin

IJ , (1.68)

in which case the renormalized correlation function is

〈Oren
I (x)Ōren

J (y)〉 = lim
ε→0

N∆Kε(x, y)
∆(δIJ − λ2DIJ log(µ

2|x− y|2) +O(g4) (1.69)

We see that, at the quantum level, not all operators have the property (1.49). Our next goal is to determine the
operators that do, which is achieved by diagonalizing DIJ .

Determining the dilatation matrix
The non-vanishing Feynman diagrams at 1-loop order are shown in the figure below. Let us now briefly see
how the term that corresponds to diagram (c) is computed. The computation of the other two follows similar
steps, but is more complicated.
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1 N = 4 SUPER YANG-MILLS

The term that we need to calculate is

A =
ig2

2

∫
d4−2εz〈[φiφj ]ab(x)(Tr[(φkφlφkφl)](z)− Tr[(φkφkφlφl)](z)[φj′φi′ ]b′a′(y))〉 (1.70)

For each of the two terms in the correlation there are four ways to contract the incoming and outgoing fields
with the ones coming from the vertex. For the first term, all contractions create a δij′δji′ , so it reverses the
incoming and outgoing flavors. In the second term, there are two contractions that lead to δii′δjj′ and the other
two give δijδi′j′ . We thus get

〈[φiφj ]ab(x)Tr([φk, φl][φk, φl])(z)[φj′φi′ ]b′a′(y))〉 = (1.71)
N2δaa′δbb′(4δij′δji′ − 2δii′δjj′ − 2δijδi′j′)K

2
ε (x, z)K

2
ε (z, y) (1.72)

The integral over z is a common loop integral and yields

A =
gµεΓ(1− ε)4δaa′δbb′

211π6−3ε

G(2− 2ε, 2− 2ε)

|x− y|2(2−ε)
(2δij′δji′ − δii′δjj′ − δijδi′j′) (1.73)

where

G(x, y) =
Γ(x+ y − ε− 2)Γ(2− ε− x)Γ(2− ε− y)

Γ(x)Γ(y)Γ(4− x− y − 2ε)
(1.74)

Expanding everything in powers of ε leads to

A = λ2NK2
ε (x, y)δaa′δvv′

(
1

ε
+ 2 + γE + log(π|x− y|2)O(ε)

)
(1.75)

The remaining two diagrams give rise to similar terms. It is useful to note that the self energy diagram (a)
does not change the flavour of the incoming field, so the corresponding term contains a δii′ . Similarly, a gluon
exchange between two scalars cannot alter their flavour, so in diagram (b) the indices are paired as δii′δjj′ .

The 1-loop order contribution to the two-point function of two composite operators is obtained by performing
every possible contraction such that one contraction is made using one of these three diagrams and the rest are
tree-level. For a diagram to be planar, the gluon exchange and scalar vertex can only contract adjacent fields.
In order to keep track of the flavor indices, we introduce two operators acting on the Kronecker deltas. The
permutation operator

Pn,n+1 . . . δjn,jmδin+1,jm+1 = ...δin+1,jmδin,jm+1 . . . , (1.76)

8



1 N = 4 SUPER YANG-MILLS

which exchanges two adjacent fields on one of the operators, and the trace operator

Kn,n+1 . . . δjn,jmδin+1,jm+1 = ...δin,jn+1δim,jm+1 . . . (1.77)

which contracts two neighboring operators. For example, in the term that corresponds to contracting the n and
n+1 sites using the scalar vertex, the index structure can be written as

2δin,jn+1δjn,in+1 − δinin+1δin,jn+1 − δinjnδin+1jn+1e = (2Pn,n+1 −Kn,n+1 − 1)δinjn
δin+1jn+1 (1.78)

Including all the corrections, the dilatation matrix in (1.69) turns out to be

DIJ =

L∑
n=1

(2− 2Pn,n+1 +Kn,n+1)(δi1,j1 . . . δiL,jL + cyclic permutations), (1.79)

where we identify L+1 = 1. This result is interesting because this matrix has the same form as the Hamiltonian
of a quantum mechanical model, the SO(6) spin chain. We will now see some of the consequences of a similar
correspondence from in the SU(2) sector of the field theory to the SU(2) spin chain.

The SU(2) sector and the SU(2) spin chain
If we further restrict ourselves to the SU(2) sector, the process is similar. In this case, we only have the two
fields X and Y, which we choose to denote as

X = φ↑ (1.80)
Y = φ↓ (1.81)

Single-trace composite operators are then of the form

O(x) = Tr[φs1 . . . φsL ] (1.82)

with sk ∈ {↑, ↓}. The difference in the dilatation matrix is that the contractions that would require introducing
the Kn,n+1 operators vanish and we obtain the simpler matrix

D
su(2)
SS′ = 2

L∑
n=1

(1− Pn,n+1)(δs1,s′1 . . . δsL,s′L + cyclic permutations) (1.83)

This matrix has the same form as the Hamiltonian of a quantum mechanical spin chain called the Heisenberg
model. Thus, the problem of diagonalizing the dilatation matrix reduces to determining the eigenstates of the
Heisenberg hamiltonian. In particular, as we will see shortly, a basis of the Hilbert space of that model is
{|s1, s2, . . . , sL〉}, hence any eigenstate of the hamiltonian can be written in the form

|Ψ〉 =
∑
{τ}

C(τ) |sτ1 . . . sτL〉 , (1.84)

where the sum is over all L-fold combinations of ↑ and ↓. A good conformal operator can be constructed as

O =
A√
〈Ψ|Ψ〉

Tr

[
L∏
l=1

(〈↑l| ⊗X + 〈↓l| ⊗ Y ) |Ψ〉

]
, (1.85)

where the prefactor ensures proper normalization. The right hand side of this equation is simply a linear
combination of single trace operators, with the coefficients determined by the state |Ψ〉.

9
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1.4 The defect version

Another theory is created by positioning a defect of codimension one at x3 = 0. On either side of the defect,
one still has N = 4 SYM with gauge group U(N − k) for x3 < 0 and U(N) for x3 > 0, but the latter is
partially broken by some fields having a non-zero vacuum expectation value (vev). The presence of the defect
breaks part of the conformal symmetry of the original theory. In particular, spacetime homogeniety along the
x3 direction is broken and thus the theory is no longer invariant under translations generated by P3. Also,
the defect breaks part of the isotropy and the SO(3, 1) rotations generated by Mµ,3 are not symmetries. The
remaining Poincare symmetry is then generated by Mµ̂,ν̂ and P µ̂ for ˆµ, ν̂ = 0, 1, 2. Similarly, K3-symmetry is
broken and the remaining symmetry is with respect to the three-dimensional conformal group SO(3, 2).

This breaking of conformal symmetry partially eases the constraints on the correlation functions. In particular,
the one point correlation of a good conformal operator is no longer trivial, but still restricted by the remaining
symmetry to be

〈O(x)〉 ∝ 1

x∆3
(1.86)

At tree-level, this correlation is determined by the vev of the fields involved. We consider the case where φcli
for i = 1, 2, 3 are the only non-vanishing vevs. The classical solutions are subject to the equations of motion
which, in this case, are

∇2φcli = [φclj , [φ
cl
j , φ

cl
i ]]. (1.87)

and it is straightforward to check that

φcli =
1

x3

(
(ti)k×k 0k×(N−k)

0(N−k)×k 0(N−k)×(N−k)

)
, for i = 1, 2, 3

φcli = 0 , for i = 4, 5, 6

(1.88)

solve this equation if the matrices ti form a k-dimensional representation of su2, that is if

[ti, tj ] = iεijktk. (1.89)

Going to the t’Hooft limit, we can restrict ourselves to linear combinations of single-trace operators

O = Ψi1...iLTr(φi1 . . . φiL), (1.90)

for which at tree-level

〈O〉tree = (−1)LΨi1...iL
Tr(ti1 . . . tiL)

xL3
(1.91)

The results of the previous section can be used to rewrite the last expression by introducing the so-called matrix
product state (MPS)

|MPSk〉 = Tr

[
L∏

n=1

t1 ⊗ |1〉n + t2 ⊗ |2〉n + t3 ⊗ |3〉

]
=

3∑
i1,...,iL=1

Tr(ti1 . . . tiL) |i1 . . . iL〉 , (1.92)

10
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where |i〉 , i = 1, 2, 3 are states in an SO(6) representation. Then, we can use the correspondence between the
SO(6) sector and the SO(6) spin chain to write

〈O〉tree ∝ 〈MPS|Ψ〉
xL3

, (1.93)

where |Ψ〉 is an eigenstate of the SO(6) Hamiltonian. The prefactor we have omitted is related to normalization.
This form of the tree-level one-point function motivates the calculation of the 〈MPS|Ψ〉 overlaps, which is
investigated in the last chapters of this thesis for two different solutions of (1.89).
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2 THE HEISENBERG MODEL

2 The Heisenberg model

2.1 Description of the model and its original solution

The term spin chain refers to a family of quantum mechanical models, where the Hilbert space is of the form

H =

L⊗
n=1

hn (2.1)

and each local space hn carries a representation of some algebra. In one of the most simple cases, that algebra
is su2 and the local spaces carry its spin-12 representation. That is, hn = C2 and we have spin-12 operators Sn

i

that act trivially on every individual hn, except for the nth one:

Si
n = I ⊗ I ⊗· · · ⊗ σi

2
⊗· · · ⊗ I (2.2)

where σi are the pauli matrices. We can also define the ith component of the total spin as

Si =
L∑

n=1

Si
n (2.3)

The Hamiltonian of the system couples the sites in nearest-neighbor pairs

H =

L∑
n=1

~Sn ˙~Sn+1 −
1

4
(2.4)

with the periodic boundary condition Sn = Sn+L ⇔ SL+1 = SL. Let us now introduce the permutation matrix

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (2.5)

which acts in C2 ⊗ C2 as

P (a⊗ b) = b⊗ a. (2.6)

Using the permutation, the Hamiltonian can be written as

H =
1

2

∑
n

Pn,n+1 −
L

2
(2.7)

where Pn,n+1 acts in v ∈ H in the obvious way

Pn,n+1(v1 ⊗· · · ⊗ vn ⊗ vn+1 ⊗· · · ⊗ vL) = v1 ⊗· · · ⊗ vn+1 ⊗ vn ⊗· · · ⊗ vL (2.8)

It is easy to see that [H,Si] = 0, which means that this Hamiltonian exhibits su2 symmetry. This implies that
that the total number of ↑ or ↓ spins in a state is conserved. Thus, if we call the number of ↓’s M, and express
the Hamiltonian in the following eigenbasis of S3

{|↑↑· · · ↑〉 , |↓↑ · · · ↑〉 , |↑↓↑· · · ↑〉 ,· · · , |↓↓ · · · ↓〉} (2.9)

12



2 THE HEISENBERG MODEL

it will be block-diagonal with each
(
L
M

)
×
(
L
M

)
block corresponding to states of the same M and energy EM . It

turns out that to each block we can associate a set of M complex numbers {ui}, such that:

EM = 2

M∑
k=1

1

u2k +
1
4

(2.10)

iff {ui} is a set of finite and distinct solutions to the set of equations(
uk +

i
2

uk − i
2

)L

=
∏
j 6=k

uk − uj + i

uk − uj − i
(2.11)

We will now briefly see the original method for obtaining this system of equations, energies and the correspond-
ing eigenstates.

The coordinate Bethe ansatz
All eigenstates of the Hamiltonian can be constructed starting from the (pseudo)vacuum state

|0〉 = |↑↑ · · · ↑〉 (2.12)

by the action of lowering operators S−. An arbitrary in the Hilbert space H with M spin-down excitations can
be written as

|Ψ〉 =
∑

Ψ(l1, . . . , lM )S−
l1
· · ·S−

lM
|0〉 , (2.13)

where the sum is over 1 ≤ l1 < l2 ≤ · · · ≤ lm ≤ L. The assumption made by Bethe is that in an eigenstate,
the coefficients are of the form

Ψ(l1, . . . , lM ) =
∑
{τ}

A(τ)eipτ1 l1 + · · ·+ eipτM lM , (2.14)

where the sum is over permutations of {τi}. The {pi} are sometimes interpreted as the lattice momenta of the
spin ↓ pseudoparticles (called magnons) that propagate around the chain. The function A(τ) is determined by
requiring that (2.13) is an eigenstate of the Hamiltonian, which leads to the constraints

eipkL =
∏
j 6=k

S(pk, pj) , S(pk, pj) = −e
ipk+ipj − 2eipk + 1

eipk+ipj − 2eipj + 1
(2.15)

for the momenta and

A(τ) = sign(τ)
∏
j<k

(
eipk+ipj − 2eipk + 1

)
, (2.16)

where sign(τ) is the signature of the permutation. The eigenvalues are then

EM =

M∑
k=1

8sin2(
pk
2
). (2.17)

13



2 THE HEISENBERG MODEL

The equations (2.15) and the energy eigenvalues are equivalent to (2.8) and (2.9), after we identify

uk =
1

2
cot(

pk
2
) (2.18)

Note that due to the prescence of sign(τ) in A(τ), the wavefunctions Ψ({li}) are antisymmetric with respect
to the exchange of two momenta, therefore they vanish if two momenta are the same. This is why we only look
for distinct roots of the Bethe equations.2

2.2 The algebraic Bethe ansatz

2.2.1 Preliminary definitions and the Hamiltonian

Lax operators, the Monodromy and the Transfer Matrix
In this approach we need to first consider and auxiliary space, denoted as V , which is also isomorphic to
C2. Then, we can define Lax operators acting in hn ⊗ V , which for the sl(2) spin chain in the fundamental
representation are

Ln,a(u) = uIn ⊗ Ia + i
∑
α

Sα
n ⊗ σα, (2.19)

where In, Ia are the identity operators in the respective spaces, σα are the pauli matries acting in V ,and u is a
complex parameter called the rapidity. Noting that we can rewrite the permutation as,

P =
1

2
(I ⊗ I +

∑
α

σα ⊗ σα) (2.20)

it is not hard to rewrite this Lax operator as

Ln,a(u) = (u− i

2
)In,a + Pn,a (2.21)

It is useful to think of it as a matrix in the auxiliary space with element acting in hn:

Ln,a(u) =

(
u+ iS3

n iS−
n

iS+
n u+ iS3

n

)
(2.22)

The Lax operator defines a transport between two sites, in the sense that it acts on a vector ψn =

(
ψ1

n

ψ2
n

)
with

entries in H as

Lnψn = ψn+1 (2.23)

In words, acting on a vector in the hn space with the appropriate Lax operator generates a vector in the neigh-
boring subspace hn+1. It is then quite obvious that an ordered product of Lax operators of the form

Ln2,a(u)Ln2−1,a(u) . . . Ln1,a(u) (2.24)
2According to [12], there is no concrete proof that the roots must be distinct, although it is generally accepted that

they should be. The CBA wavefunction is proportional to the ABA state and the latter does not vanish for coinciding
rapidities. The CBA wavefunction can then be made non-zero after some sort of renormalisation.
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2 THE HEISENBERG MODEL

transports from site n1 to n2 + 1. The monodromy is defined as the transport from site 1 to L+ 1, i.e.

Ta(u) = LL,a(u) . . . L1,a(u). (2.25)

By definition, it is a polynomial in u of order L.

Ta(u) = uL + iuL−1
∑
α

Sα ⊗ σα + · · · (2.26)

As with the Lax operators, we can also treat it as a matrix in the auxiliary space V

Ta =

(
A(u) B(u)
C(u) D(u)

)
, (2.27)

with components acting in the entire Hilbert space H.
We can now define the Transfer Matrix as the trace of the monodromy over the auxiliary space i.e.

F (u) = trV (T (u)) = A(u) +D(u) (2.28)

When we expand it in powes of u, using (2.25 ), the O(uL−1) term vanishes (due to the Pauli matrices being
traceless) and the O(uL) term is trivial:

F (u) = 2uL +

L−2∑
l=0

Qlu
l, (2.29)

where Ql are some u-independent operators acting in H.

The Fundamental Commutation Relation (FCR)
At this point we need to introduce two auxiliary spaces V1, V2, so that the product of two Lax operators can
act in hn ⊗ V1 ⊗ V2. It turns out that Ln,a1(u)Ln,a2(v) and Ln,a2(v)Ln,a1(u) are similar operators with the
intertwiner acting trivially in hn. In particular, we have

Ra1,a2(u− v)Ln,a1(u)Ln,a2(v) = Ln,a2(v)Ln,a1(u)Ra1,a2(u− v), (2.30)

where

Ra1,a2(u) = uIa1,a2 + iPa1,a2 . (2.31)

It’s worth noticing that, in this model, this so-called R-Matrix (acting in V1⊗V2) is identical to the Lax operators
(acting in hn⊗V1,2), after a rapidity shift. We can show that the FCR also hold for any transport operator of the
form in (2.24). It suffices to show that it holds for the two-site transport Ln+1,a(u)Ln,a. Dropping the rapidity
arguments to compactify notation, we have

Ra1,a2Ln+1,a1Ln,a1Ln+1,a2Ln,a2 =

Ra1,a2Ln+1,a1Ln+1,a2Ln,a1Ln,a2 =

Ln+1,a2Ln+1,a1Ln,a2Ln,a1Ra1,a2 =

Ln+1,a2Ln,a2Ln+1,a1Ln,a1Ra1,a2 ,

(2.32)
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where we used the commutativity of Lax operators that act in different pairs of spaces and the original FCR.
This implies that the FCR holds, in particular, for the monodromy:

Ra1,a2(u− v)Ta1(u)Ta2(v) = Tn,a2(v)Ta1(u)Ra1,a2(u− v) (2.33)

By tracing over the auxiliary spaces in the last relation, which "removes" the R-matrices, we can obtain

[F (u), F (v)] = 0. (2.34)

Recovering the Hamiltonian
An immediate and important consequence of this commutation relation is that the Ql in (2.29) constitute a
family of L − 1 commuting operators. This set can be completed with a component of the total spin , say S3,
so that it consists of L commuting operators. We can now prove that the Hamiltonian (2.7) can be constructed
out of these operators.

We start by noting that at the special point u = i
2 , the monodromy reduces to a string of permutation oper-

ators

Ta(i/2) = iLPL,aPL−1,a . . . P1,a. (2.35)

Using the properties of the permutation

Pn,a1Pn,a2 = Pa1,a2Pn,a1 = Pn,a2Pa2,a1 (2.36)
Pa1,a2 = Pa2,a1 (2.37)

this can be written as

Ta(i/2) = iLP1,2P2,3 . . . PL,a = iLUPL,a, (2.38)

where the matrix U is defined in the obvious way. Now, using

d

du
Ln,a(u) = In,a (2.39)

we can see that

d

du
Ta(u)

∣∣∣
u= i

2

= iL−1
∑
n

PL,a . . . P̂n,a . . . P1,a (2.40)

where the hat denotes that the operator is missing from the sum. Using (2.37)-(2.38), this can be rewritten as

d

du
Ta(u)|u= i

2
= iL−1

∑
n

P1,2 . . . Pn−1,n+1 . . . PL−1,LPL,a (2.41)

Using the property of the permutation Tra(Pa,n) = In, we can obtain

d

du
F (u)|u= i

2
= iL−1

∑
n

P1,2 . . . Pn−1,n+1 . . . PL−1,L (2.42)

Finally, noting that

F (i/2) = iLU (2.43)
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we can multiply by U−1 to remove most permutation operators and obtain

d

du
F (u)F (u)−1|u= i

2
=

d

du
lnF (u)|u= i

2
= −i

∑
n

Pn,n+1. (2.44)

We can thus rewrite the Hamiltonian (2.7) as

H =
i

2

d

du
lnF (u)|u= i

2
− L

2
. (2.45)

This means that the problem of diagonalizing the Hamiltonian reduces to the simultaneous diagonalization of
the commuting operators in the expansion of the transfer matrix, which renders the system integrable.

2.2.2 Derivation of the Bethe Ansatz Equations and some comments

The derivation
From the FCR (2.33), we can extract relations between the components of the transfer matrix. The ones relevant
to the derivation are the following.

[B(u), B(v)] = 0 (2.46)
A(u)B(v) = f(u− v)B(v)A(u) + g(u− v)B(u)A(v) (2.47)
D(u)B(v) = h(u− v)B(v)D(u) + k(u− v)B(u)D(v) (2.48)

where

f(u) =
u− i

u
, g(u) =

i

u
(2.49)

h(u) =
u+ i

u
, k(u) =

i

u
(2.50)

We now define the pseudovacuum Ω ∈ H by requiring that it is annihilated by C(u)

C(u)Ω = 0 (2.51)

To find such a state, we can notice that a Lax operator acts on the state ωn = e+ ⊗ v ∈ hn ⊗ V as

Ln(u)ωn =

(
u+ i

2 ∗
0 u− i

w

)
ωn (2.52)

Thus, for Ω = (⊗ne+)⊗ V , we have

Ta(u)Ω =

(
αL(u) ∗

0 δL(u)

)
Ω , (2.53)

where

α(u) = u+
i

2
(2.54)

δ(u) = u− i

2
. (2.55)

Clearly, we have

C(u) = 0 (2.56)
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and

A(u)Ω = αL(u)Ω (2.57)
D(u)Ω = δL(u)Ω (2.58)

Thus, Ω is an eigenvector of A(u), D(u) and, consequently, of the transfer matrix. Other eigenvectors of F (u),
called Bethe states, are of the form

Φ({ui}) = B(u1) · · ·B(ul)Ω (2.59)

By requiring that Φ({ui}) are indeed eigenstates, we now derive the Bethe equations for the sl2 model.

Using the commutation relation (2.47) to move A(u) to the right, so that it acts on Ω, we obtain

A(u)B(u1) . . . B(ul)Ω =
l∏

k+1

f(u− uk)α
N (u)B(u1) . . . B(ul)Ω+

+

l∑
k=1

Mk(u, {u})B(u1) . . . B(uk−1)B(uk=1) . . . B(ul)Ω

(2.60)

The first term here comes from only using the first term in (2.47), while the second term comes from using
combinations of both terms. One of the Mk, which corresponds to using the second term of (2.47) on the first
permutation and the other on the rest, is simple to calculate

M1(u, {u}) = g(u− u1)

l∏
k=2

f(u1 − uk)α
N (u1). (2.61)

We can avoid the complicated computation of the other factors by arguing that, due to the commutativity of the
B(ui), they are of the same form of the one we computed, i.e.

Mj(u, {u}) = g(u− ui)

l∏
k 6=j

f(uj − uk)α
N (uj) (2.62)

Similarly, using (2.48), one can obtain

D(u)B(u1) . . . B(ul)Ω =

l∏
k+1

f(u− uk)α
N (u)B(u1) . . . B(ul)Ω+

+
l∑

k=1

Nk(u, {u})B(u1) . . . B(uk−1)B(uk+1) . . . B(ul)Ω

(2.63)

with

Nj(u, {u}) = k(u− uj)

l∏
k 6=j

h(uj − uk)δ
N (uj) (2.64)

Now, we can see that

F (u)Φ({u}) = u(u, {u})Φ({u}) (2.65)
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requires that the "extra" terms cancel each other. This is possible due to

g(u− uj) = −k(u− uj) (2.66)

and leads to the condition

l∏
k 6=j

f(uj − uk)α
N (uj) =

l∏
k 6=j

h(uj − uk)δ
N (uj) (2.67)

Substituting the explicit forms of the functions involved, we obtain the Bethe equations.(
uk +

i
2

uk − i
2

)L

=

l∏
j 6=k

uk − uj + i

uk − uj − i
(2.68)

Bethe states are Highest Weight States
Taking the v → ∞ limit in the FCR and using the expansion of Ta(u) (2.26), we obtain:[

Ta(u),
1

2
σα + Sα

]
= 0, (2.69)

which implies the sl(2) invariance of Ta in H ⊗ V . Acting with this commutator on the pseudovacuum, we
obtain

S+Ω = 0 , S3Ω =
L

2
Ω. (2.70)

Using this and the commutators

[S3, B(u)] = B(u) (2.71)
[S+, B(u)] = A(u)−D(u) (2.72)

one can show that

S3Φ({ui}) =
(
L

2
−M

)
Φ({ui}) (2.73)

S+Φ({ui}) = 0. (2.74)

This implies that the Bethe ansatz only generates highest weight states of the total spin. The rest of the eigen-
states can be generated by acting on the Bethe states with the lowering operator S−. Since highest weight states
must, by definition, have a positive S3 eigenvalue, (2.74) implies that we must restrict the number of excitations
to M ≤ L

2 , or

Φ({ui}) =
M∏
i=1

B(ui)Ω = 0 , forM >
L

2
(2.75)

Singular Solutions and the completeness of the Bethe-state basis
It is quite obvious that the Bethe equations, as formulated in (2.68), are singular for i = ±i/2. However, such
roots can still rise from equivalent formulations, for example as roots of Baxter polynomials. This raises the
question of whether solutions that contain these singular roots are are valid sets of rapidities. Specifically, one
can examine whether (2.59) does indeed generate eigenstates of the Hamiltonian for singular solutions.
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2 THE HEISENBERG MODEL

One way to do that , presented in [21], is to regularize the singular roots as

i

2
→ i

2
+ ε+ cεL (2.76)

− i

2
→ − i

2
+ ε (2.77)

and determine the parameter c by requiring that the corresponding Bethe state is an eigenstate of the trans-
fer matrix. This leads to two solutions for the constant that must be simultaneously satisfied, leading to the
following consistency condition for the non-singular roots[

−
M∏
k=3

(
uk +

i
2

uk − i
2

)]L
= 1, (2.78)

where we have assumed that the set of roots is ordered as { i
2 ,−

i
2 , u3, . . . , uM}. Note that the restrictions im-

posed on Bethe roots in N=4 SYM applications, namely that they must be paired and that L is even, are enough
for this constraint to be always satisfied.

The above result is related to questions regarding the completeness of the Bethe equations, i.e. whether Bethe
states and their descendants constitute a full basis of the Hilbert space. In particular, it is believed that the
number of solutions to the B.A.E. is generally greater than what is required to form the basis. The number of
states needed can be calculated by recalling that the Hilbert space of the Heisenberg model is essentially the
vector space of a representation of su(2), which is in particular L-fold tensor product of spin-12 representations.
By the Clebsch-Gordan theorem, this representation can be decomposed into a direct sum of irreducible spin-s
representations,

1

2
⊗ · · · ⊗ 1

2
=

L
2⊕

s=0

nss, (2.79)

where

ns =

(
L

L
2 − s

)
−
(

L
L
2 − s− 1

)
, (2.80)

is the number of representations with spin-s. Each Bethe state corresponds to the highest weight of one of these
irreps, so the number of solutions to the Bethe equations for a given M = L

2 − s should be

N (L,M)
?
=

(
L
M

)
−
(

L
M − 1

)
(2.81)

Numerical calculations presented in [12] have verified that, for small values of L, the equality holds if out of
the singular solutions we only take into account those that satisfy the constraint (2.78).
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3 THE YANGIAN OF GL(N) AND THE GL(N) SPIN CHAIN

3 The Yangian of gl(N) and the gl(N) spin chain

3.1 The Yangian Y (N)

Definition and the RTT relation
The Yangian Y (N) is the complex, unital, associative algebra generated by {t(n)ij |1 ≤ i, j ≤ N , n = 0, 1, · · · }
subject to the relations

[t
(r+1)
ij , t

(s)
kl ]− [t

(r)
ij , t

(s+1)
kl ] = t

(r)
kj t

(s)
il − t

(s)
kj t

(r)
il , (3.1)

where [·, ·] denotes the commutator and t(0)ij = δij . This abstract definition can be brought to a more tangible
form by introducing a complex parameter λ and collecting the generators into

tij(λ) =
∞∑
r=0

(−i)r

λr
t
(r)
ij (3.2)

We can then introduce an auxiliary space Va = CN to gather them in a matrix in End(CN )⊗ Y (N)[[λ−1]]

Ta(λ) =

N∑
i,j=1

eij ⊗ tij(λ) =

∞∑
r=0

(−i)r

λr
T (r) (3.3)

We can now show that these matrices satisfy a familiar relation

Rab(λa − λb)Ta(λa)Tb(λb) = Tb(λb)Ta(λa)Rab(λa − λb) (3.4)

where Rab is the gl(N) R-matrix

Rab(λ) = IN ⊗ IN +
iPab

λ
. (3.5)

The permutation in Va ⊗ Vb ∼= CN ⊗ CN is defined as

Pab =
N∑

i,j=1

eij ⊗ eji, (3.6)

where eij is the matrix with entry 1 at the (i, j) position and 0 elsewhere i.e. [eij ]ab = δiaδjb.

In order to see that this so-called RTT relation is equivalent to the defining relations, we first need to notice that

[tij(λa), tkl(λb)] =
1

λa − λb
(tkj(λa)til(λb)− tkj(λb)til(λa)) (3.7)

is equivalent to (3.1). This can be seen by multiplying with λa − λb and comparing the terms of same order in
λa and λb. The RTT relation reads

(1− P

λa − λb
)
∑
i,j,k,l

tij(λa)tkl(λb)(eij ⊗ ekl) =
∑
i,j,k,l

tkl(λb)tij(λa)(eij ⊗ ekl)(1−
P

λa − λb
) (3.8)
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3 THE YANGIAN OF GL(N) AND THE GL(N) SPIN CHAIN

which we can rewrite as∑
i,j,k,l

[tij(λa), tkl(λb)](eij ⊗ ekl) =

1

λa − λb

∑
i,j,k,l

tij(λa)tkl(λb)P (eij ⊗ ekl)−
1

λa − λb

∑
i,j,k,l

tkl(λb)tij(λa)(eij ⊗ ekl)P
(3.9)

Using the definition of P and the property eabecd = eadδbc, it is easy to see that

P (eij ⊗ ekl) = ekj ⊗ eil

(eij ⊗ ekl)P = eil ⊗ ekj
(3.10)

and we thus have ∑
i,j,k,l

[tij(λa), tkl(λb)](eij ⊗ ekl) =

1

λa − λb

∑
i,j,k,l

tij(λa)tkl(λb)(ekj ⊗ eil)−
1

λa − λb

∑
i,j,k,l

tkl(λb)tij(λa)(eil ⊗ ekj)
(3.11)

By renaming the indices on the right hand side, we can obtain∑
i,j,k,l

[tij(λa), tkl(λb)](eij ⊗ ekl) =
1

λa − λb

∑
i,j,k,l

(tkj(λa)til(λb)− tkj(λb)til(λa))eij ⊗ ekl) (3.12)

which is equivalent to (3.7), thus proving the RTT relation.

The Yangian, in addition to the usual addition and multiplication of an algebra, is equipped with a coprod-
uct, which maps the Yangian onto two copies of itself

∆ : Y (N) 7→ Y (N)⊗ Y (N) (3.13)

and is defined by its action on the generators:

∆(tij(u)) =
∑
k

tik(u)⊗ tkj(u) (3.14)

One can show that the t̃(u)ij = ∆(tij(u)) ∈ Y (N) ⊗ Y (N) also satisfy the RTT relation. It can then be
inductively deduced that ∆(n)(tij(u)) also fulfil it, after properly defining ∆(n).

The Heisenberg model as a Y (2) representation
In order to find a connection between between the Yangian and integrable models, let us see how the Heisen-
berg model emerges from selecting the appropriate Y (2) representation. The su2 R-matrix itself provides a
representation of Y(2) i.e. we can choose

(tij(λ))
kl = Rkl

ij (λ− i

2
), (3.15)

where in the LHS i, j identify the generator and k, l the component of the matrix representing the generator.
We can verify that this is a valid representation by noting that Ta(λ) is represented by Rac(λ), where a denotes
the auxiliary space already introduced and c denotes the representation’s vector space. Then, the RTT relation
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3 THE YANGIAN OF GL(N) AND THE GL(N) SPIN CHAIN

becomes

Rab(λ̃a − λ̃b)Rac(λ̃a)Rbc(λ̃b) = Rbc(λ̃b)Rac(λ̃a)Rab(λ̃a − λ̃b) (3.16)

λ̃ = λ− i

2
(3.17)

This is the Yang-Baxter equation, which the R-matrix fulfils by definition.

Now recall that, in the gl2 case, Rac acts in C2 ⊗ C2, while Ta is a matrix in C2 ⊗ Y (2). It follows that
the Y (2) representation that we chose is carried by C2. This is the local Hilbert space of the Heisenberg model.
Furhtermore, the RTT relation can now be seen to be identical to the FCR (2.30) fulfiled by the Lax operators,
since in that model the Lax operators are identical to the R-matrix up to a rapidity shift (see 2.21).3Thus, we
could define the Lax operator of the Heisenberg model as this representation of the T-matrix and the local
Hilbert space as the corresponding vector space.

The global Hilbert space H would then need to carry a representation of ⊗LY (2). The monodromy, which
acts in H, can be defined using the co-product of the Yangian. First, because the co-product turns out not to be
co-associative, one needs to specify how it acts on multiple copies of the algebra. We recursively define

∆(n) = (∆⊗ idn−2)∆(n−1) , n > 2 (3.18)
∆(2) = ∆, (3.19)

so that it always acts on the left. Then

∆L(tij(u)) =
2∑

ai=1

tia1(u)⊗ ta1a2(u)⊗ · · · ⊗ taLj(u) (3.20)

Note that the index structure in this relation is reminiscent of that in matrix multiplication. One can then see
that, after picking the representation (3.15) and identifying tij(u) as the components of the Lax operator, (3.20)
yields the same result as the product of Lax operators which define the monodromy. Thus, we can identify the
monodromy as the matrix with components

Tij = ∆(L)(tij), (3.21)

The property of the coproduct discussed after its definition implies that the monodromy fulfils the FCR relation,
as expected. This implies that the transfer matrix defined as

F (u) = T11 + T22 (3.22)

has the commutation property (2.34) which in turn implies that the charges in the expansion (2.29) commute.

3.2 Properties and representations of Y(N)

Here we present, mostly without proof, the properties of Y(N) that will be needed at some later point. The
derivations can be found, for instance, in [19].

3In models where the Hilbert space carries a higher representation of Y (2), the Lax operator is distinct from the
fundamental R-matrix.
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3 THE YANGIAN OF GL(N) AND THE GL(N) SPIN CHAIN

The quantum determinant and the centre of Y(N)
The quantum determinant of T (λ) is defined as a powerseries in λ(−1) with coefficients in Y (N) as follows

qdet(T (λ)) =
∑

σ∈PN

sign(σ)T1,σ(1)
(λ+ iN + i) · · ·TN,σ(N)

(λ) (3.23)

, where PN is the N-object permutation group. An important feature of qdetT (λ) is that its coefficients gener-
ate the centre of Y (N). One of its properties, which we will later use, is the following:

Let Am be the antisymmetrizer in (CN )⊗m, defined by its action on the canonical basis as

Am(ei1 ⊗ · · · ⊗ eim) =
1

m!

∑
s=PN

sign(σ)ei1 ⊗ · · · ⊗ eim , (3.24)

The following identity holds

AmT1(λ) · · ·Tm(λ+ im− i)Am = Tm(λ+ im− i) · · ·T1(λ)Am = AmT1(λ) · · ·Tm(λ+ im− i), (3.25)

which, for m = N , can be used to show

qdetT (λ)AN = TN (λ+ iN − i) · · ·T1(λ)AN . (3.26)

The latter, which can also be treated as the definition of the quantum determinant, is the equation we will need.

Evaluation representations of Y(N)
The evaluation map is a Hopf algebra homomorphism from Y (N) to U(gln), the universal enveloping algebra
of glN :

ev : tij(λ) 7−→ δij +
iEij

λ
, (3.27)

where Eij are the generators of glN .4 This mapping allows one to create representations of Y (N) that are
directly related to glN representations.

More specifically, M(α) be a highest weight representation of glN with highest weight α = (α1, . . . , αN )
and highest weight vector v. Recall that the latter implies

Ekj · v = 0 , 1 ≤ k < j ≤ N (3.28)
Ekk · v = αkv , 1 ≤ k ≤ N, (3.29)

where αk+1 ≤ αk, which is the requirement for the representation to be finite dimensional. The evaluation
map allows one to define an action of the elements of the Yangian on a glN -module, thus defining a so-called
evaluation representation (Mλ(α)) of the Yangian. In particular, in accordance to (3.27), the generators of

4Throughout this thesis we will treat this mapping as a simple relation between Y (N) and glN generators. The
algebra U(gln) enters because, formally, a homomorphism needs to map between algebras of the same type. Both Y (N)
and U(gln) have a Hopf algebra sructure, while Lie algebras do not.

24



3 THE YANGIAN OF GL(N) AND THE GL(N) SPIN CHAIN

Y (N) act on the highest weight vector as

Tkj(λ) · v = 0 , 1 ≤ k < j ≤ N (3.30)

tkk(λ) · v =

(
1 +

iαk

λ

)
v , 1 ≤ k ≤ N. (3.31)

It is important to notice that the evaluation representation of each Yangian generator has a simple pole at λ = 0.
In the derivation that follows, we will use elements of Y(N) with the purpose of choosing a specific evaluation
representation at the very end. In that context we say that the above equations imply that the components
of λtij(λ) are analytical (in the sense that their representation is analytical), despite (3.2) perhaps suggesting
otherwise.

Two automorphisms

Inversion: T (λ) 7−→ T (−1)(−λ) (3.32)
Shift: T (λ) 7−→ T (λ+ α) , a ∈ C. (3.33)

Embedding of U(gln) into Y(N)
Using an equivalent form of the defining relations of Y(N) , one can easily see that

[t
(1)
ij , t

(1)
kl ] = δkjt

(1)
il − δilt

(1)
kj (3.34)

Thus, t(1)ij generate a glN algebra.

3.3 The glN spin chain

As an example of the usage of Yangians in integrability, we present the part of the derivation found in [1]
that regards closed spin chains. The starting point is to utilize the Yangian to define the transfer matrix as an
element in Y (N)⊗L. This abstract definition has the advantage of being representation independent, which
allows us to take steps that hold for any evaluation representation of Y (N). The final result is a general form of
the Bethe Equations and transfer matrix eigenvalues for any spin chain in a highest weight representation of glN .

Note that in this section we use a different notation for the generators of Y(N). The standard notation is the
one used in previous sections but we will denote them as l(s)ij instead, in order to to distinguish between Y (N)

and Y (N)⊗L. The notation in (3.2) and (3.3) is changed accordingly.

The Monodromy and the Transfer Matrix
Using the "extension" of the coproduct (3.18), we can define the monodromy as

Ta(λ) = ∆(L)(L(λ)) (3.35)

and the transfer matrix as usual

t(λ) = tra(T ). (3.36)

As mentioned earlier, the generators of the Yangian and their coproduct both satisfy the RTT relation. We can
thus iteratively deduce that the monodromy also satisfies the same relation, i.e.

Rab(u− v)Ta(u)Tb(v) = Tb(v)Ta(u)Rab(u− v) (3.37)
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Similarly to the algebraic Bethe ansatz, this implies the commutativity of the transfer matrix at different rapidi-
ties

[t(λ), t(µ)] = 0. (3.38)

The transfer matrix also exhibits glN symmetry, which can be seen by recalling that L(1)(λ) generates a local
glN transformation. Then, a global transformation is generated by

t
(1)
ij = l

(1)
ij ⊗L−1 1 + 1⊗ l

(1)
ij ⊗(L−2) 1 + · · ·+⊗(L−1)1 + l

(1)
ij ∈ ⊗LY (N) (3.39)

Now, taking the trace over Va in the RTT relation gives

(λa − λb)[t(λa), T (λb)] = −i[T (λa), T (λb)]. (3.40)

Keeping the λb-free term, we obtain

[t(λa), T
(1)] = 0, (3.41)

which proves the glN symmetry of the transfer matrix.

Representations of Y (N)⊗L are built out of evaluation representations of Y (N). First, note that the shift auto-
morphism (3.33) implies that if Mλ(α) is a representation, Mλ+θ(α) defines another representation. Then, for
highest weights αn = (αn

1 , . . . , α
n
N ) , 1 ≤ n ≤ L

Mλ+θ1(α
1)⊗ · · · ⊗Mλ+θL(α

L) (3.42)

provides a finite-dimensional representation of T (λ) with highest weight vector

v+ = v1 ⊗ · · · ⊗ vL, (3.43)

which means that

Tkj(λ)v
+ = 0 , 1 ≤ k < j ≤ N (3.44)

Tkk(λ)v
+ =

L∏
n=1

(
1 +

i αn
k

λ+ θn

)
v+ , 1 ≤ k ≤ N (3.45)

In principle, this discussion of representations allows every local space to carry a different Y (N) or, equiva-
lently, glN representation. However, in the context of spin chains, we are interested in all local representations
being identical, i.e. all αn being the same. A consequence of that is that the global representation is guaranteed
to be irreducible.

Derivation of the Bethe equations
In the following, we will use a different normalisation for the local and global matrices

L̂a,n(λ) = (λ+ θn)La,n(λ) (3.46)

T̂ (λ) =

L∏
n=1

(λ+ θn)T (λ), (3.47)
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which guarantees that the monodromy is analytical. We then need to rewrite the highest weights as

T̂kkv
+ = Pk(λ)v

+ , 1 ≤ k ≤ N, (3.48)

where

Pk(λ) =

L∏
n=1

(λ+ θn + iαn
k) (3.49)

are the so-called Drinfeld polynomials. It is quite obvious that the highest weight vector is an eigenvector of
the transfer matrix with eigenvalue

Λ0(λ) =
N∑
k=1

Pk(λ). (3.50)

Now, we make an ansatz by assuming that every other eigenvalue of the transfer matrix can be written as

Λ(λ) =

N∑
k=1

Pk(λ)Dk(λ), (3.51)

where Dk(λ) are some dressing functions. The form of these functions is determined by the asymptotic be-
haviour, as well as the analyticity of the eigenvalues. From (3.47) we can see that for λ → ∞, the transfer
matrix t̂(λ) is dominated by λL. We require that the eigenvalues have the same asymptotic behaviour which
implies Dk(λ) → 1, given that the Drinfeld polynomials have degree L. Then, the most simple ansatz that
ensures that the eigenvalues can be analytical is

Dk(λ) =

M(k−1)∏
n=1

λ+ u
(k−1)
n

λ− λ
(k−1)
n + i(k−1)

2

M(k)∏
n=1

λ+ v
(k)
n

λ− λ
(k−1)
n + ik

2

. (3.52)

Here, M (k), with M (0) = M (N) = 0 are related to the action of the Cartan generators of slN on the eigenvec-
tors.5 The next step is to determine the parameters u(k)n , v

(k)
n in terms of λ(k)n .

To constrain the dressing functions, consider the antisymmetrizer defined in (3.24), now acting on auxiliary
spaces a1, . . . , aN . Then, (3.26) can be rewritten as

T̂aN (λ+ iN − i) · · · T̂a1(λ) = qdetT̂ (λ)AN + T̂aN (λ+ iN − i) · · · T̂a1(λ)(1−AN ). (3.53)

By tracing over all auxiliary spaces, we get

t̂(λ+ iN − i) t̂(λ+ iN − 2i) · · · t̂(λ) = qdetT̂ + t̂f (λ), (3.54)

where we used that AN is a 1-dimensional projector and, as such, has trace 1. The

tf (λ) = Tra1⊗···⊗aN

[
T̂aN (λ+ iN − i) · · · T̂a1(λ)(1−AN )

]
5Recall that that in the Heisenberg model, M is related to the eigenvalue of S3.
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is the so-called fused transfer matrix, which is not relevant to what follows. By definition, the quantum deter-
minant acts on the pseudovacuum as

qdetT̂ (λ) · v+ =
∑

s∈PN

sgn(σ)T̂1,σ(1)
(λ+ iN − i) · · · T̂N,σ(N)(λ) · v+ (3.55)

Using the properties of the highest weight, it can be seen that the only non-vanishing term is the one that comes
from the permutation where σ(i) = i , i.e.

qdetT̂ (λ) · v+ =

N∏
k=1

Pk(λ+ iN − ik)v+ (3.56)

Since the quantum determinant is a central element, it is represented by a matrix proportional to the identity, in
any representation. We thus have

qdetT̂ (λ) =
N∏
k=1

Pk(λ+ iN − ik), (3.57)

where the identity matrix on the RHS is implied. Now, acting with (3.54) on an eigenstate would give

Λ(λ+ iN − i) · · ·Λ(λ) =
N∏
k=1

Pk(λ+ iN − ik) + Λf (λ). (3.58)

The terms proportional to
∏N

k=1 Pk(λ+ iN − ik) on both sides of the equation must have the same coefficient,
which implies

D1(λ+ iN − i) · · ·DN (λ) = 1 (3.59)

This is the constraint we have been looking for and it implies

Dk(λ) =

M(k−1)∏
n=1

λ− λ
(k−1)
n + i(k+1)

2

λ− λ
(k−1)
n + i(k−1)

2

M(k)∏
n=1

λ− λ
(k)
n + i(k−2)

2

λ− λ
(k)
n + ik

2

(3.60)

The final step is to invoke the analyticity of the monodromy. Recall that we chose our normalization in (3.47)
such that the entries of T̂ (λ) are analytical. Then, the eigenvalues of t̂(λ) =

∑N
i=1 T̂ii(λ) are also analytical.

This is a consequence of (3.38), which implies that the matrix which diagonalizes the transfer matrix must be
λ-independent. Thus, diagonalizing the matrix does not introduce any singularities.

The Bethe equations are derived from the requirement Λ(λ) is analytical, which is equivalent to imposing
that the residue at λ = λ

(k)
n − ik

2 vanishes for all n and k.6 We can focus on

Dk(λ)Pk(λ) +Dk+1(λ)Pk+1(λ), (3.61)
6Λ(λ) has a simple pole at each of these points. This means that the principal part of the Laurent series of Λ(λ)

around these points only contains the O(λ−1) term. The residue of each pole is the coefficient of that term and it
vanishing implies that the principal part of the series vanishes and Λ(λ) is analytical.
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as these are the only two terms where λ(k) appears. The vanishing of the residue requires

lim
λ→λ

(k)
n − ik

2

(
λ− λ(k)n +

ik

2

)
(Dk(λ)Pk(λ) +Dk+1(λ)Pk+1(λ)) = 0 (3.62)

which straightforwardly leads to

M(k−1)∏
m=1

e−1

(
λ(k)n − λ(k−1)

m

)M(k)∏
m6=n

λ
(k)
n − λ

(k)
m − i

λ
(k)
n − λ

(k)
m

Pk

(
λ(k)n − ik

2

)
=

M(k)∏
m=1

e+1

(
λ(k)n − λ(k+1)

m

)M(k)∏
m 6=n

λ
(k)
n − λ

(k)
m + i

λ
(k)
n − λ

(k)
m

Pk

(
λ(k)n − ik

2

)
,

where we have introduced

ex(λ) =
λ+ ix

2

λ− ix
2

(3.63)

to simplify notation. Noting that e−1(λ) =
1

e+1(λ)
, we can rewrite the last relation as

M(k−1)∏
m=1

e−1

(
λ(k)n − λ(k−1)

m

) M(k)∏
m=1,m 6=n

e2

(
λ(k)n − λ(k)m

)M(k+1)∏
m=1

e2

(
λ(k)n − λ(k+1)

m

)
=

Pk

(
λ
(k)
n − ik

2

)
Pk+1

(
λ
(k)
n − ik

2

)
(3.64)

The set of these equations for 1 ≤ k ≤ N − 1 and 1 ≤ n ≤M (k) are the Bethe equations the gl(N) spin chain
whose Hilbert space carries the representation defined by α. As a byproduct of the derivation, we also have an
expression for the eigenvalues of the glN transfer matrix in (3.51).
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4 Integrable Matrix Product States and Twisted Yangians

4.1 Integrable MPSs and boundary integrability

The R-Matrix
An R-matrix R12(u) ∈ End(V1 ⊗ V2), where V1 ∼= V2 ∼= CN is generally a solution of the Yang-Baxter
equation (3.16). A solution is symmetric with respect to some Lie group G if for any G1 and G2 acting in the
defining representation of G

(G1 ⊗G2)R12(u) = R12(u)(G1 ⊗G2) (4.1)

For G = SU(N), we have already encountered the R-matrix

RsuN
12 (u) = I1 ⊗ I2 −

1

u
P12, (4.2)

where

P =

N∑
i,j

eij ⊗ eji (4.3)

is the permutation operator in V1 ⊗ V2.

For G = SO(N), a solution that is often used is

Rso6
12 (u) = I1 ⊗ I2 −

1

u
P12 +

K12

u− κ
(4.4)

where κ = N
2 − 1 and K is the trace operator, with matrix elements Kcd

ab = δabδ
cd. Note that we can write

K =

N∑
i,j=1

eij ⊗ eij = PT (4.5)

Where ·T denotes partial transposition, that is, transposition acting either on V1 or V2. It is not hard to see that
PT1 = PPT2 , so one does not need to distinguish between the two cases. Similarly,

RT1
12(u) = RT2

12(u) = RT
12(u) (4.6)

for both R-matrices that we have introduced. Using (4.5) it is straightforward to see that in the SO(N) case

(RsoN
12 (u))T = RsoN

12 (κ− u) (4.7)

which is the so-called crossing relation of the SO(N) R-matrix. In some calculations we will make use of the
unitarity property

R12(u)R12(−u) ∝ I (4.8)

which holds for both the SU(N) and SO(N) R-matrix.

The spin chain
Similar to the algebraic ansatz, we can use an R-matrix to construct a spin chain by treating one of the vector
spaces a a local Hilbert space hn = CN and the other the auxiliary space V0. Then, the monodromy acting in
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V0 ⊗H, where H = h⊗
L

n , is defined as

T = R0L(u)R0L−1(u) · · ·R01(u) (4.9)

and the transfer matrix by tracing over the auxiliary space

t(u) = Tr0 [T (u)] . (4.10)

A family of commuting charges is generated from the transfer matrix as

Qj =

(
d

du

)(j−1)

log t(u) u=0 , j = 2, 3, . . . L (4.11)

TheQj operator can be seen to act on j neighboring sites [22], thus a two-site Hamiltonian can be defined using
Q2

7. Is is also known that for odd j, the Qj are odd under space reflections, while the even charges are even,
namely

ΠQjΠ = (−1)jQj , (4.12)

where Π is the spatial reflection operator, which acts on Bethe states as

Π |{ui}〉 = |{−ui}〉 . (4.13)

Integrable Matrix Product States
Consider a second aulxiliary space VA (distinct from the auxiliary space of the spin chain) and a set of N
d-dimensional matrices ωi ∈ End(VA). A Matrix Product State (MPS) is a state in H which is of the form

|Ψ〉 =
N∑

j1,...,jL=1

trA[ωjL · · ·ωj2ωj1 ] |jL, . . . , j2, j1〉 , (4.14)

where |jL, . . . , j2, j1〉 are the basis vectors of the Hilbert space. An MPS can be invariant under a subgroup of
the symmetry group of the spin chain G′ ⊂ G, forming a so-called symmetric pair (G,G′). This means that for
every G ∈ G′ [

⊗L
j−1Gj |Ψ〉

]
= |Ψ〉 . (4.15)

This can be achieved by the ωi matrices being group invariant., which is the case if the auxiliary space VA
carries a representation of G′, denoted Λ such that for every j

Λ(G−1)ωjΛ(G) =
∑
k

gjkωk, (4.16)

where gjk are the components of G in the fundamental representation.

A MPS is said to be integrable if it is annihilated by the odd charges associated with the spin chain:

Q2j+1 |Ψ〉 = 0 (4.17)
7Compare with (2.45)
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This is equivalent to

t(u) |Ψ〉 = t(u) |Ψ〉 , (4.18)

where t(u) = Πt(u)Π is the reflected transfer matrix, which also implies that the state has to be parity invariant

Π |Ψ〉 = ± |Ψ〉 . (4.19)

As a consequence of this and (4.13), an overlap

〈{ui}|Ψ〉 (4.20)

is non-vanishing only if the Bethe state is parity invariant. This requires the set of Bethe roots to be parity
invariant, i.e. {ui} = {−ui}. If the state contains an even number of excitations, this is the case if the roots
come in pairs of opposite signs, namely for every root ui there needs to exists some other root ui′ = −ui. For
an odd number of excitations, the roots again need to be paired and the "extra" root needs to be zero.

The twisted Boundary Yang-Baxter equation
We define the K−matrix acting in V0 ⊗ VA as

K(u) =
N∑

a,b=1

eab ⊗ φab(u), (4.21)

where eab are the usual elementary matrices acting in V0 with matrix elements (eab)ij = δaiδbj . We are
interested in K-matrices that are solutions to the twisted Boundary Yang-Baxter 8 (BYB) equation

K2(v)R
T
21(−u− v)K1(u)R12(u− v) = R21(u− v)K1(u)R

T
12(−u− v)K2(v), (4.22)

where each side of this relation is a matrix acting in V1 ⊗ V2 ⊗ VA and

K1(u) =

N∑
a,b=1

eab ⊗ I ⊗ φab(u) (4.23)

K2(u) =

N∑
a,b=1

I ⊗ eab ⊗ φab(u) (4.24)

It turns out that, given a solution of that relation such that the two site block factorizes at some special point
u = uf .

ψij(uf ) ∝ ωiωj (4.25)

the MPS defined as

|MPS〉 =
N∑

ai,bi=1

Tr[ψa1,b1(uf ) · · ·ψaL
2
,bL

2

(uf )] |a1, b1, . . . , aL
2
, bL

2
〉 (4.26)

is integrable [23]. Unless stated otherwise, we will assume that uf = 0.

8This relation also appears in the context of open spin chains where it is used to determine the behaviour of the
system at the boundaries.
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4.2 The Twisted Yangian

Definition
Consider the Yangian Y(N) generated by t

(k)
ij , with the indices shifted so that i, j ∈ {−N, . . . , N} for N

even and i, j ∈ {−N, . . . , 0, . . . , N}, for N odd. Using the T -matrix defined in (3.3), we can now define the
following matrix in terms of the generators of Y(3)

S(u) = T (u)G(u)T t(−u), (4.27)

where G(u) fulfils the equation

G2(v)R
t
21(−u− v)G1(u)R12(u− v) = R12(u− v)G1(u)R

t
21(−u− v)G2(v). (4.28)

In these relations, we use the transposition

At = CATC (4.29)

where C is the charge conjugation matrix with elements [C]i,j = δi,−j . This operation is essentially trans-
position with respect to the secondary diagonal of the matrix and is commonly used in the context of twisted
Yangians. The elements of the S-matrix are then

sij(u) =
∑
α,β

[G(u)]α,βtiα(u) t−j,−β(−u). (4.30)

The twisted Yangian Y tw(N) is the algebra generated by sij(u), which makes it a subalgebra of Y (N).

The quaternary relation
We will now show that, by definition, the S-matrix satisfies the so-called quaternary relation

S2(v)R
t
21(−u− v)S1(u)R12(u− v) = R12(u− v)S1(u)R

t
21(−u− v)S2(v). (4.31)

During this derivation, we drop the indices in the R-matrix to simplify notation.9 We will make use of the RTT
relation and some more relations that are equivalent to it. By acting with partial transposition on V1 or V2 in the
RTT relation we obtain the two relations

T t
1(u)R

t(u− v)T2(v) = T2(v)R
t(u− v)(v)T t

1(u) (4.32)
T t
2(v)R

t(u− v)T1(u) = T1(u)R
t(u− v)(v)T t

2(v) (4.33)

By transposing in both spaces and recalling that Rt1(u) = Rt2(u), which implies that Rt1t2(u) = R(u), we
obtain

T t1
1 (u)T t2

2 (v)R(u− v) = T t2
2 (v)T t1

1 (u)R(u− v). (4.34)

Finally, we can multiply the RTT relation from both sides with the R-matrix and apply the unitarity condition
(4.8), to obtain

T1(u)T2(v)R(v − u) = R(v − u)T2(v)T1(u) (4.35)

Before moving on with the derivation, let us spell out some points that, although trivial, might not be obvious
9The purpose of these indeces is to distinguish between the R-matrix acting in V1 ⊗V2 and the one acting in V2 ⊗V1.

In our case, where V1
∼= V2 it is obvious that R12(u) and R21(u) are the same matrix, so the distinction is redundant.
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• T1(u) and T2(v) do not commute. This has already been stated in the form of the RTT relation, but it
might be helpful to see why it is the case. We have

T1(u) =
N∑

i,j=1

tij(u)⊗ eij ⊗ I ∈ Y (N)⊗ End(V1)⊗ End(V2)

T2(u) =

N∑
i,j=1

tij(u)⊗ I ⊗ eij ∈ Y (N)⊗ End(V1)⊗ End(V2)

Then,

T1(u)T2(u) =
∑
i,j,k,l

tij(u)tkl(u)⊗ eij ⊗ ekl, (4.36)

so T1(u)T2(u) 6= T2(u)T1(u), because Y (N) is a non commutative algebra.

• T1(u) and G1(u) do not commute. To see that we also need to define G1(u) as an element in Y (N) ⊗
End(V1)⊗ End(V2):

G1(u) = E ⊗K(u)⊗ I, (4.37)

where E is the multiplicative identity in Y (N). Then,

T1(u)G1(u) =

N∑
i,j=1

tij(u)⊗ eijK(u)⊗ I (4.38)

which is not equal to G1(u)T1(u) because of the ordinary matrix multiplication in End(V1).

• T1(u) and G2(u) commute, since

T1(u)K2(u) =
N∑

i,j=1

tij(u)⊗ eij ⊗G(u) = G2(u)T1(u) (4.39)

Similarly, ‘T2(u)G1(u) = G1(u)T2(u) and G1(u)G2(u) = G1(u)G2(u).

Using all of these exchange properties on the two sides of (4.31), we obtain

LHS = T2(v)G2(v)T
t
2(−u)Rt(u− v)T1(u)G1(u)T

t
1(−u)R(u− v)

= T2(v)G2(v)T1(u)R
t(u− v)T t

2(−u)G1(u)T
t
1(−u)R(u− v)

= T2(v)T1(u)G2(v)R
t(u− v)G1(u)T

t
2(−u)T t

1(−u)R(u− v)

= T2(v)T1(u)G2(v)R
t(u− v)G1(u)R(u− v)T t

1(−u)T t
2(−v)

and

RHS = R(u− v)T1(u)G1(u)T
t
1(−u)Rt

21(−u− v)T2(v)G2(v)T
t
2(−v)

= R(u− v)T1(u)G1(u)T2(v)R
t
21(−u− v)T t

1(−u)G2(v)T
t
2(−v)

= T2(v)T1(u)R(u− v)G1(u)R
t
21(−u− v)G2(v)T

t
1(−u)T t

2(−v)

It then immediately follows from (4.28) that LHS = RHS, which concludes the derivation of the quaternary
relation.
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The reason for introducing the twisted Yangians is that the quaternary relation, which is equivalent to their
defining relations, is very similar to the twisted boundary Yang-Baxter relation introduced previously. The
difference between the two relations is the convention used for partial transposition. Fortunately, there exist
ways of transforming between solutions of (4.31) and (4.22). They are explained in appendix A. Given that,
one can see a clear connection between twisted Yangians and integrable MPSs: Solutions of the BYB relation
can constitute twisted Yangian representation, after the appropriate conversion. Conversely, one can use twisted
Yangian representation theory to generate solutions of the BYB relation.

We can construct representations of Y tw(N) based on evaluation representations of Y (N) in a somewhat
straightforward way. Recall that the evaluation homomorphism (3.27) allows us to define a Y (N) representa-
tion carried by a glN module. Restricting the evaluation representation to Y tw(N) ⊂ Y (N) defines a repre-
sentation of the twisted Yangian, also carried by the glN module. We will use representations of this type in the
subsequent sections. Before that, we discuss a result that will also be used later.

4.3 Dressing MPSs

Clearly, (4.28) and (4.31) are identical, thus the "twisting" matrix also forms a Y tw(N) representation. To
emphasize that, let us denote S0(u) = G(u). Then, (4.27) implies that dressing S0 with a representation of the
untwisted Y (N) also gives a Y tw(N) representation SD(u). The fact that these two S-matrices are related by
a dressing allows us to find a relation between the corresponding MPSs.

More specifically, in the next section we will make use of the integrable state that corresponds to the twist-
ing matrix of a specific twisted Yangian. According to (A.5), the K-matrix that corresponds to S0(u) and
generates this state is

K0(u) = S0(u)C. (4.40)

A dressed S-matrix is

SD(u) = T (u)S0(u)T
t(−u). (4.41)

In order to create a MPS out of it, we need to map it to a K-matrix

KD(u) = SD(u)C = T (u)S0(u)T
T (u)C. (4.42)

Substituting (4.40), we obtain

KD(u) = T (u)K0(u)T
T (−u) (4.43)

where we used that T t(−u) = CT T (−u)C. We will now use this relation between KD and K0 to show that
their corresponding MPSs are related via the action of a transfer matrix.

Let VΛ be the vector space carrying a glN representation and denote by L(Λ)
i,j (u) the evaluation representa-

tion of the generators of Y(N), carried by VΛ. The L(Λ)
i,j (u) are the components of the T-matrix with which we

dress K0(u). We can then define a Lax operator acting in VΛ ⊗ hk, where hk denotes a local Hilbert space

L(k,Λ)(u) = L(Λ)
i,j (u)⊗ ei,j (4.44)
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where ei,j are the unit matrices acting in Vk and summation is implied. The corresponding transfer matrix
acting in a product of L physical spaces is

t(Λ)(u) = TrΛ

[
L(L,Λ)(u)L(L−1,Λ)(u) · · ·L(1,Λ)(u)

]
(4.45)

The difference between this transfer matrix and the one in (4.10) is that the auxiliary space carries a higher
representation of suN . Let us denote as φij the two-site block of K0(u), acting in some auxiliary space VΩ.
Then, (4.43) implies

φDab(u) = L(Λ)
ac (−u)L(Λ)

bd (u)φcd(u), (4.46)

where φDab(u) acts in VΩ ⊗ VΛ. The MPSs corresponding to the two solutions are related by

|ΦD〉 = t(Λ)(0) |Φ0〉 . (4.47)

Proof: We can focus on the two-site state. The generalisation to an L-site state is simple, using that each two-site
block acts in a different pair of physical spaces. The two-site MPSs are

|Φ0〉 =
∑
a,b

TrΩ

[
φ
(0)
ab (0)

]
|a, b〉 (4.48)

|ΦD〉 =
∑
a,b

∑
c,d

TrΛ⊗Ω

[
L(Λ)
ac (0)L(Λ)

bd (0)φcd(0)
]
|a, b〉 (4.49)

Using that TrΛ⊗Ω[·] = TrΩ[·]TrΛ[·], the latter can be written as

|ΦD〉 =
∑
a,b

∑
c,d

TrΛ

[
L(Λ)
ac (0)L(Λ)

bd (0)
]
TrΩ [φcd(0)] |a, b〉 (4.50)

It is now straightforward to show that (4.50) is the same as (4.47):

t(Λ)(0) |Φ〉 = TrΛ

[
L(2,Λ)(0)L(1,Λ)(0)

]∑
c,d

TrΩ [φcd(0)] |c, d〉 (4.51)

=
∑
c,d

∑
a,b

∑
e,f

TrΛ [Lae(0)Lbf ⊗ eae ⊗ ebf (0)]TrΩ [φcd(0)] |c, d〉 (4.52)

=
∑
c,d

∑
a,b

∑
e,f

TrΛ [Lae(0)Lbf (0)]TrΩ [φcd(0)] (eae |c〉 ⊗ ebf |d〉) (4.53)

=
∑
c,d

∑
a,b

∑
e,f

TrΛ [Lae(0)Lbf (0)]TrΩ [φcd(0)] δceδfd |a, b〉 (4.54)

=
∑
a,b

∑
c,d

TrΛ [Lac(0)Lbd(0)]TrΩ [φcd(0)] |a, b〉 (4.55)

In the fourth equality, we used eab |c〉 = δbc |a〉.
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5 The (SU(3),SO(3)) symmetric pair

In this chapter we will work with the integrable state

|MPSk〉 =
3∑

ai,bi=1

Tr[Sa1Sb1 . . . SaL
2

SbL
2

] |a1, b1 . . . , aL
2
bL

2
〉 , (5.1)

where Sa , a = 1, 2, 3 form the k = 2s + 1 dimensional spin-s representation of su2 and the Hilbert space is
that of an su3 spin chain. To argue for the so3 symmetry of this MPS, we can show that (4.16) is fulfilled for
some representation of so3. Since so3 ∼= su2, we can use the adjoint representation of su2 to transform the
building block Si. Under the action of the su2 generator Sk, the building block Si transforms as

Si → [Sk, Si] = iεk,i,lSl. (5.2)

Noting that in the fundamental representation of so3 the components of the kth generator are [gk]il = εkil, (5.2)
is equivalent to (4.16).

The two-site block from which this state is obtained is

χ̃
(s)
ab (u) = −u2χ(s)

ab (u) (5.3)

where

χ
(s)
ab = δab + u−1[Sa, Sb]− u−2SaSb, (5.4)

The K-matrix that corresponds to χ(s)
ab (u), denoted Kχ(u) solves the twisted BYB relation [23] and χ̃(s)

ab (u)
factorizes at u = 0 and produces |MPSk〉 through (4.26).

Our first goal is to relate this MPS with the so-called δ-state

|Ψδ〉 =

L
2⊗

j=1

(|11〉+ |22〉+ |33〉). (5.5)

As we will later see, this state can be constructed from the twisting matrix of the twisted Yangian Y +(3).

5.1 Representations of Y +(3)

The algebra Y +(3) [20] is a subalgebra of Y (3) generated by

S(u) = T (u)T t(u), (5.6)

which corresponds to

sij(u) =
1∑

a=−1

ti,a(u)t−j,−a(−u). (5.7)
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Following the discussion of section (4.3), these sij generate a twisted Yangian with G(u) = I . In addition to
the quaternary relation (4.31), the S-matrix of this algebra also satisfies the symmetry relation

St(−u) = S(u) +
1

2u
(S(u) + S(−u)), (5.8)

as a consequence of G(u) = Gt(u). As explained previously, Y +(3) representations are based on gl3 repre-
sentations.

gl3 Highest weight representations
The algebra is generated by Eij , with i, j ∈ {−1, 0, 1}, subject to the commutation relations

[Eij , Ekl] = δjkEil − δilEkj (5.9)

Given a highest weight representation of gl(3) with highest weights λ1, λ2, λ3, we denote the corresponding
module as L(λ1, λ2, λ3). The highest weight vector is an element of that vector space, such that

Eij |λ1, λ2, λ3〉 =0, for i < j (5.10)
Eii |λ1, λ2, λ3〉 =λi+2 |λ1, λ2, λ3〉 (5.11)

The module is finite dimensional iff λ1 − λ2 ∈ N and λ2 − λ3 ∈ N

Y (3) Evaluation representations
Recall that the evaluation homomorphism maps the generators of Y (3) to the generators of gl3:

tij(u) −→ δij + u−1Eij (5.12)

Thanks to this mapping, the elements of Y(3) can act on the gl3-module L(λ1, λ2, λ3). The gl3 module carries
a Y (3) highest weight representation and the two representations share the highest weight vector. That is,

tij(u) |λ1, λ2, λ3〉 =0, for i < j (5.13)
tii(u) |λ1, λ2, λ3〉 =λi(u) |λ1, λ2, λ3〉 (5.14)

From the evaluation map, it is obvious that the Y (3) highest weights are

λi(u) = 1 + u−1λi. (5.15)

The matrix representing tij(u) will be denoted as L(λ1,λ2λ3)
ij (u).

Y +(3) Representations
A highest weight module of Y +(3), denoted as V, is generated by a vector v ∈ V , such that

sij(u) · v = 0, for i < j (5.16)
sij(u) · v = µi(u)v, for i = 0, 1 (5.17)

Since Y +(3) is a subalgebra of Y (3), L(λ1, λ2, λ3) can also be treated as a Y +(3) module. In particular, it is a
highest weight module of Y +(3) [20], the highest weights of can be calculated using (5.7) and (5.15). They are

µ1(u) = (1 + λ2u
−1)(1− λ1u

−1) (5.18)
µ0(u) = (1 + λ1u

−1)(1− λ1u
−1). (5.19)
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It is interesting to note another way of constructing Y +(3) representations. Using the definition of the Y (3)
co-product, it is straightforward to show that

∆(si,j) =
∑
a,b

ti,a(u)t−j,−b(−u)⊗ sa,b(u) ∈ Y (3)⊗ Y +(3), (5.20)

which means that Y +(3) is a left co-ideal subalgebra of Y (3). Given a Y (3) module L and a Y +(3) module
V , this property allows us to define an action of Y +(3) on L⊗ V as

s · (w ⊗ v) = ∆(s)(w ⊗ v) (5.21)

where s ∈ Y +(3), w ∈ L and v ∈ V . Thus, L⊗ V can carry a Y +(3) representation with highest weights

µL⊗V
i (u) = µLi (u)µ

V
i (u) (5.22)

so3 Highest weight representations
Let us also introduce so3 representations, which are relevant to our discussion due to the two-site block being
expressed in terms of su2 ∼= so3 generators. We denote the generators as Fi,j with i, j ∈ {−1, 0, 1} and
defining relations

[Fij , Fkl] = δjkFil − δilFkj + δj,−lFk,−i − δi,−kFj,−l (5.23)
F−i,−j = −Fi,j (5.24)

For the highest weight w of an so3 representation, we have

Fij · w = 0, i < j (5.25)
F11 · w = λw (5.26)

It is straightforward to use (5.9) to check that if we define

Fi,j = Ei,j − E−j,−i, (5.27)

the defining relations (5.23-24) are fulfilled. This relation constitutes an embedding of so3 into gl3 and defines
an action of so3 in a gl3 module. Note that an embedding is generally not unique. That is, there might be
other ways to define Fij in terms of the Eij , such that (5.23-24) is fulfilled. With our choice of embedding, for
|α1, α2, α3〉 ∈ L(λ1, λ2, λ3) (which is not necessarily the highest weight vector), such that

Eii |α1, α2, α3〉 = αi |α1, α2, α3〉 , (5.28)

we have

−F11 |α1, α2, α3〉 = (α1 − α3) |α1, α2, α3〉 . (5.29)

The Cartan subalgebra of so3 is generated by F11 and the F01, F10 act as ladder operators, which motivates the
identification

Sz = −F11 (5.30)
S+ = F01 (5.31)
S− = F10 (5.32)
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5.2 Relating |MPSk〉 to |Ψδ〉

The strategy
The starting point is to transform Kχ and the matrix that produces the δ-state, denoted Kδ, into S-matrices that
form Y +(3) representations. The K-matrices are solutions of (4.22) and the S-matrices need to fulfil (4.31),
thus the transformation can be achieved as described in appendix A. Then, we aim to find a relation between the
S-matrix that corresponds to Kχ and a dressing of the S-matrix that corresponds to Kδ, denoted Sδ. To create
dressed representations, Sδ needs to be the twist matrix that defines Y +(3). This can be achieved by rewriting
the δ-state a different basis of the Hilbert space,

|+〉 = 1√
2
(i |1〉+ |2〉) (5.33)

|−〉 = 1√
2
(−i |1〉+ |2〉) (5.34)

|0〉 = |3〉 , (5.35)

obtained from the standard one by the transformation matrix

P =
1√
2

 i 1 0

0 0
√
2

−i 1 0

 . (5.36)

In this basis the δ-state is

|Ψδ〉 = (

L
2⊗

j=1

(|+−〉+ |−+〉+ |00〉) =
∑

i,j∈{+,−,0}

δi1,−j1 . . . δiL
2
,−jL

2

|i1, j1, . . . iL
2
, jL

2
〉 (5.37)

and it is clear that the two-site block should satisfy the initial condition χ(δ)
i,j (0) = δi,−j . The most simple

choice of K-matrix is the charge conjugation matrix

Kδ = C (5.38)

A corresponding Y +(3) representation is obtained as Sδ = KδC, or

Sδ = I, (5.39)

which is the matrix we aimed to create.

From Kχ to an S-matrix
The basis transformation defined above provides with a natural way of producing a Y +(3) representation from
Kχ, by defining

S(u) = PKχ(u)P
†, (5.40)

This P- matrix fulfils the constraints (A.9-A.10) and it is straightforward to check that S(u) fulfils the symmetry
relation (5.8).10 Therefore, the components of this S(u), denoted ψ(s)

ij (u), form a Y +(3) representation We
could, however, have created a representation by using any other matrix that fulfils the constraints. An argument

10This is not a result of the choice of P. Any choice of matrix would lead to an S(u) that fulfils the symmetry relation,
due to the two-sit e block fulfilling the relation φab(−u) = φab(u) +

1
2u

(φab(u)− φab(−u))
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for this specific choice can be made after calculating the new two-site block, which turns out to be

ψ
(s)
1,1(u) = 1− u−1Sz −

1

2
u−2(s(s+ 1)− Sz(Sz + 1)) (5.41)

ψ
(s)
1,0(u) = iu−1S− − u−2iS−Sz (5.42)

ψ
(s)
1,−1(u) = u−2S2

− (5.43)

ψ
(s)
0,1(u) = −iu−1S+ + iu−2SzS+ (5.44)

ψ
(s)
0,0(u) = 1− u−2S2

z (5.45)

ψ
(s)
0,−1(u) = −iu−1S− − u−2iSzS− (5.46)

ψ
(s)
−1,1(u) = u−2S2

+ (5.47)

ψ
(s)
−1,0(u) = iu−1S+ + u−2iS+Sz (5.48)

ψ
(s)
−1,−1(u) = 1 + u−1Sz −

1

2
u−2(s(s+ 1)− Sz(Sz + 1)) (5.49)

These ψ(s)
i,j (u) act on the highest weight state of a spin-s so3 module as would be expected of the Y +(3)

generators to act on the highest weight of a Y +(3) module. Namely, ψ(s)
i,i (u) give the highest weights (they are

the equivalent of the Cartan generators of a Lie algebra) while ψi,j with i < j annihilate the highest weight
state. This observation should justify the choice of P in (5.40): Out of the various Y +(3) representations that
are created by all possible transformation matrices, this is the one which is consistent with the definition of a
highest weight representation on a gl3 module. In other words, a different transformation might lead to ψij(u)
that do not fulfil (5.16-17).

Embedding V(s) in a gl3 module
The Y +(3) highest weights on the so3 module can be calculated from (5.45) and (5.41):

µ1(u) = (1− u−1s) (5.50)
µ0(u) = (1− u−1s)(1 + u−1s) (5.51)

Comparing them with (5.18) and (5.19), they can be immediately identified with the highest weights of Y +(3)
on the gl3 module L(s, s, 0). Since V (s) and L(s, s, 0) carry representations with the same Y +(3) highest
weight, we could assume that they are they are isomorphic vector spaces. However, the dimension of V is
generally lower than that of L. This implies that V can instead be embedded within L, i.e. V (s) ⊆ L(s, s, 0).
Note that L(s, s, 0) is finite dimensional only if s is integer or, equivalently, if k = 2s + 1 is odd. In what
follows, we restrict ourselves to this case.11 We then have

L(s, s, 0) = V (s)⊕W, (5.52)

where W consists of the vectors in L(s, s, 0) that are not in V (s). The action of the twisted Yangian on
y ∈ L(s, s, 0) can now be decomposed as

sij(u) · y =

(
ψ
(s)
i,j (u) X

0 Y

)(
v
w

)
, (5.53)

11For even k, V (s) can be embedded in a Y +(3) module of the form V (1/2)⊗ L(a, b, c).
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where v ∈ V (s) and w ∈W . The reason for the (2,1) block being zero is that V (s) is a Y +(3)-module and, as
such, must be closed under the action of si,j(u), which means

y ∈ V (s) ⇒ si,j(u) · y ∈ V (s). (5.54)

Assuming that there is something non vanishing in that position, we get(
ψ
(s)
i,j (u) X

Z Y

)(
v
0

)
=

(
ψ
(s)
i,j (u) · v
Z · v

)
, (5.55)

which is in V (s) only if

Z = 0. (5.56)

It can also be argued that we are not interested in the form of the X block: Recall that, in the end, the MPSs are
obtained by tracing over the auxiliary space. Thus, X does not enter the relations between the states, and can
be ignored.

Calculations for odd k = 2s+ 1
For s = 1, both V (1) and L(1, 1, 0) have dimension 3 and have the same highest weight, so we can immediately
identify V (1) = L(1, 1, 0)

The first non-trivial case is for s = 2. The dimension of L(2, 2, 0) is 6, while the dimension of V (2) is 5.
We thus need to identify V (s) with a subspace of L(2, 2, 0). In other words, we need to find a 2-dimensional
subspace of L(2, 2, 0) which has a 1-dimensional intersection with V (2). The L(2, 2, 0) module is spanned by
the following vectors.

|2, 0, 0〉 (5.57)
|2, 2, 1〉 = E3,2 |2, 2, 0〉 (5.58)
|2, 0, 0〉 = E2

3,2 |2, 2, 0〉 (5.59)
|1, 2, 1〉 = E2,3E3,2 |2, 2, 0〉 (5.60)
|1, 1, 2〉 = E2,1E

2
3,2 |2, 2, 0〉 (5.61)

|2, 0, 0〉 = E2
2,1E

2
3,2 |2, 2, 0〉 (5.62)

Since V (s) is a Y +(3) module, its basis vectors should be distinguished by their Y +(3) highest weights. From
the explicit form of ψi,i it is obvious that states with the same so3 weight also have the same Y +(3) weight.
Using the embedding of so3 into gl3 (5.27) and (5.30), we can calculate the Sz eigenvalue for each of the basis
vectors, shown in the table.

Sz
2 |2, 2, 0〉
1 |2, 1, 1〉
0 |2, 0, 2〉 |1, 2, 3〉
-1 |1, 1, 2〉
-2 |0, 2, 2〉
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One can now see that V (s) = span{|2, 2, 0〉 , |2, 1, 1〉 , |1, 2, 1〉 + a |2, 0, 2〉 , |1, 1, 2〉 , |0, 2, 2〉}. In order
to determine a, we require that acting on the highest weight with the Y +(3) lowering generator s1,−1 gives a
vector in V (s).

s1,−1(u) |2, 2, 0〉 (5.63)
= [t1,−1(u)t1,1(−u) + t1,0(u)t1,0(−u) + t1,1(u)t1,−1(−u)] |2, 2, 0〉 (5.64)
= [u−1E1,−1(1− u−1E11)− u−1E2

10 + (1 + u−1E11)(−u−1)E1,−1] |2, 2, 0〉 (5.65)
= u−1 |1, 2, 1〉 − u−2 |2, 0, 2〉+ u−1 |1, 2, 1〉+ u−2 |1, 2, 1〉 (5.66)
= u−2(|1, 2, 1〉 − |2, 0, 2〉) (5.67)

Here, we used the evaluation map, the properties of the highest weight states and E1,−1 |2, 2, 0〉 = − |1, 2, 1〉.
The latter can be seen from [E0,−1, E1,0] = −E1,−1. We can now conclude that

V (s) = span{|2, 2, 0〉 , |2, 1, 1〉 , u−2(|1, 2, 1〉 − |2, 0, 2〉), |1, 1, 2〉 , |0, 2, 2〉} (5.68)

and

L(2, 2, 0) = V (s)⊕W, (5.69)

where W = span{|1, 2, 1〉 + |2, 0, 2〉}. In order to calculate the Y block in (5.35), we need to calculate the
action of the diagonal generators on W , that is s00(u)(|1, 2, 1〉+ |2, 0, 2〉) and s11(u)(|1, 2, 1〉+ |2, 0, 2〉). We
have

s00(u) = t0,−1(u)t0,1(−u) + t0,0(u)t0,0(u) + t0,1(u)t0,−1(u) (5.70)

and using the evaluation representation

s0,0(u)(|1, 2, 1〉+ |2, 0, 2〉) = (5.71)
(−u−2E0,−1E0,1 + (1− u−2E2

0,0)− u−2E0,1E0,−1)(|1, 2, 1〉+ |2, 0, 2〉) (5.72)

Noticing that both E0,1 and E0,−1 annihilate |1, 2, 1〉, it is easy to see that

s0,0(u) |1, 2, 1〉 = (1− 4u−2) |1, 2, 1〉 . (5.73)

To calculate s00 |2, 0, 2〉, first note that [E0,−1, E0,1] = 0, which implies

s00(u) |2, 0, 2〉 = (−2u−2E0,−1E0,1 + (1− u−2E2
0,0)) |2, 0, 2〉 (5.74)

The second term can be immediately seen to be

(1− u−2E2
0,0) |2, 0, 2〉 = |2, 0, 2〉 (5.75)

One can then use the commutation relations of gl3 to show that

E0,−1E0,1 |2, 0, 2〉 = E0,−1E0,1E1,0E1,0 |2, 2, 0〉 = 2 |1, 2, 1〉 . (5.76)
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Putting everything together, we obtain

s0,0(u)(|2, 0, 2〉+ |1, 2, 1〉) = |2, 0, 2〉 − 4u−2 |1, 2, 1〉+ (1− 4u−2) |1, 2, 1〉 (5.77)
= (1− 4u−2)(|2, 0, 2〉+ |1, 2, 1〉) + 4u−2(|2, 0, 2〉 − |1, 2, 1〉) (5.78)

Similarly, one can show that

s1,1(u)(|2, 0, 2〉+ |1, 2, 1〉) = (5.79)
(1− 4u−2)(|2, 0, 2〉+ |1, 2, 1〉)− u−2(|2, 0, 2〉 − |1, 2, 1〉) (5.80)

We see that the action of the Y +(3) on W leads to a component in W and a component in V (2) (not in W ).
These components correspond to the action of Y andX respectively. As discussed earlier,X will eventually get
traced out. Focusing on the action of Y , we see that it is identical to the action of Y +(3) on the 1-dimensional
gl3 module L(2, 2, 2). We thus have

L(2, 2, 0) ∼ V (2)⊕ L(2, 2, 2) (5.81)

It should be stressed that this relation is not an equation (or isomorphism), since W and L(2, 2, 2) are clearly
not the same vector space. However, the MPSs generated from L(2, 2, 0) and V (2) ⊕ L(2, 2, 2) is the same.
In other words, we can replace W with L(2, 2, 2) without altering the trace of the block matrix in (5.35). The
advantage of using the gl3 module is that it carries a Y +(3) highest weight representation, while W does not
(it is not closed under the action of the algebra). This Y +(3) representation generates an integrable MPS and
the equivalence (5.81) allows us to relate the states generated from the three representations involved. Similar
calculations presented in [15] lead to the conjecture

L(s, s, 0) ∼ V (s)⊕ L(s, s, 2) (5.82)

From twisted Yangian representations MPSs
In what follows, we change the normalisation of the R-matrix to

R̃(u) = uI12 + iP12 (5.83)

which rescales the Yangian generators as

tij(u) → utij(iu) (5.84)
sij(u) → u2sij(iu) (5.85)

We do that so that the two-site block is non-singular at u = 0, where it factorizes.

For v ∈ L(s, s, 0), w1 ∈ V (s) and w2 ∈ L(s, s, 2), the result of the previous section means that we can
decompose the action of Y +(3) as

L(s,s,0)
i,a (u)L(s,s,0)

−j,−a(−u) · v ∼

(
ψ
(s)
i,j (u) X

0 L(s,s,2)
i,a (u)L(s,s,2)

−j,−a(−u)

)(
w1

w2,

)
(5.86)

where summation over a is implied.

In order to build the MPSs, we need to transform the Y +(3) representations into elements some K-matrix.
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Using (A.5) this leads to the following two-site blocks

L(s,s,m)
i,a (u)L(s,s,m)

−j,−a (−u) → φ
(s,s,m)
i,j (u) = L(s,s,m)

i,a (u)L(s,s,m)
j,−a (−u) (5.87)

ψ
(s)
i,j (u) → φ

(s)
i,j (u) = ψ

(s)
i,−j(u), (5.88)

where m=1 or 2. We can also rewrite

φ
(s,s,m)
i,j (u) = L(s,s,m)

i,a (u)L(s,s,m)
j,b (−u)δa,−b (5.89)

to emphasize that this two-site block is a dressing of the two-site block of Kδ = C. Then, according to the
result of section 4.3, the state generated from φ

(s,s,m)
i,j (u) is∑

ik,jk

Tr[φ
(s,s,m)
i1,j1

(0), . . . , φ
(s,s,m)
iL
2
,jL

2

(0)] |i1, j1, . . . , iL
2
, jL

2
〉 = t̂(s,s,m)(0) |Ψδ〉 (5.90)

where t̂(u) denotes a transfer matrix acting on the sate.

Let us now verify that φ(s)ij (u) generates the same MPS as χ(s)
ij (u). We have

Kφ(u) = S(u)C = PKχ(u)P
−1C. (5.91)

For the two-site blocks involved, this corresponds to

φ
(s)
ij (u) = ψ

(s)
i,−j(u) =

∑
a,b∈{1,2,3}

Piaχ
(s)
ab (u)P

−1
b,−j (5.92)

We can now show that φ(s)ij (u) generates the original MPS, expressed in the new basis (5.33)-(5.35). We start
from ∑

a,b∈{1,2,3}

χ
(s)
ab (0) |a, b〉 , (5.93)

which would give us the two-site version of (5.1) after taking the trace. We now simultaneously transform the
basis and express the χ block in terms of ψ

3∑
a,b=1

χ
(s)
ab (0) |a, b〉 =

3∑
a,b=1

1∑
i,j=−1

1∑
k,l=−1

P−1
ai ψ

(s)
ij (0)PjbP

−1
ak |k〉P−1

bl |l〉 (5.94)

=
3∑

a=1

1∑
i,j=−1

1∑
k,l=−1

P−1
ai P

−1
ak ψ

(s)
ij (0)δjl |k, l〉 (5.95)

Making use of PP † = I ⇒ P−1 = (P ∗)T , we can rewrite∑
a

P−1
ai P

−1
ak =

∑
a

P ∗
iaP

−1
ak = δi,−k. (5.96)
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The last equality holds due to PP T = C ⇒ P ∗P−1 = C. We thus obtain

3∑
a,b=1

χ
(s)
ab (0) =

1∑
i,j=−1

1∑
k,l=−1

ψ
(s)
i,j (0)δjlδi,−k |k, l〉 (5.97)

=
1∑

i,j=−1

ψ
(s)
−i,j(0) |i, j〉 (5.98)

Therefore, we can rewrite the MPS as

|MPSk〉 =
∑

ik,jk∈{−1,0,1}

Tr

[
ψ
(s)
−i1,j1

(0) . . . ψ
(s)
−iL

2
,jL

2

(0)

]
|i1, j1, . . . iL

2
, jL

2
〉 (5.99)

Next, from (5.41)-(5.49) and after the rescaling (5.85) we can see that

ψ
(s)
i,j (0) = −S̃−iS̃j , (5.100)

where

S̃+1 = −iS+ (5.101)
S̃0 = Sz (5.102)
S̃−1 = iS− (5.103)

The S̃i are a simple redefinition of the Cartan generators of su2. Then, under the su2 automorphism

S̃i → V S̃iV
−1 = −S̃−i (5.104)

the two-site block transforms as

ψ
(s)
ij (0) → V ψ

(s)
i,j (0)V

−1 = ψ
(s)
−i,−j(0) (5.105)

and we can rewrite

ψ
(s)
−i,j(0) = V −1ψ

(s)
i,−j(0)V. (5.106)

Due to the cyclicity of the trace, this allows us to rewrite (5.99) as

|MPSk〉 =
∑
ik,jk

Tr

[
ψ
(s)
i1,−j1

(0) . . . ψ
(s)
iL
2
,−jL

2

(0)

]
|i1, j1, . . . iL

2
, jL

2
〉 (5.107)

=
∑
ik,jk

Tr

[
φ
(s)
i1,j1

(0) . . . φ
(s)
iL
2
,jL

2

(0)

]
|i1, j1, . . . iL

2
, jL

2
〉 (5.108)

The relation between the states
The equivalent of (5.86) for the φ is

φ
(s,s,0)
i,j (u) ∼

(
φ
(s)
i,j (u) X̃

0 φ
(s,s,2)
i,j (u)

)
(5.109)
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from which it follows that

φ
(s,s,0)
i1,j1

(u) · · ·φ(s,s,0)iL
2
,jL

2

(u) ∼

φ(s)i1,j1
(u) · · ·φ(s)iL

2
,jL

2

(u) X̃ ′

0 φ
(s,s,2)
i1,j1

(u) · · ·φ(s,s,2)iL
2
,jL

2

(u)

 (5.110)

Using the property TrV (s)⊕L(s,s,2)[·] = TrV (s)[·]+TrL(s,s,2)[·] of the trace over the auxiliary space and (5.108),
(5.90), we obtain

t̂(s,s,0)(0) |Ψδ〉 = |MPSk〉+ t̂(s,s,2)(0) |Ψδ〉 (5.111)

or

|MPSk〉 = (t̂(s,s,0)(0)− t̂(s,s,2)(0)) |Ψδ〉 (5.112)

This is result we wanted, but we can take a few extra steps to replace the gl3 representations with equivalent
ones that simplify the calculations in the next part. The mapping

Ei,j → −Ej,i (5.113)

is an automorphism of gl3. After using this mapping to redefine the generators, the vector space L(s, s,m) still
carries a representation of the algebra. To determine which representation it is note that, since Eii → −Eii,
the weights of each vector will change sign. Also, swapping the order of the indices means that we exchange
the raising and lowering generators. This has the effect of reversing the role of the highest and lowest weight
vectors. The lowest weight vector of our (s, s,m) representations is |m, s, s〉 and overall, our original (s, s,m)
module is the (−m,−s,−s) module of the transformed algebra. Under this automorphism, the Lax operators
defined in (4.44) transform as

L(s,s,m)(u) = L(s,s,m)(u)⊗ eij = (uI − iE
(s,s,m)
i,j )⊗ ei,j = (uI + iE

(−m,−s,−s)
i,j )⊗ ej,i, (5.114)

where E(s,s,m)
i,j is the matrix representing Ei,j in the specified representation. Another trick we can use is that

we can rewrite these matrices as

E
(−m,−s,−s)
i,j = −sI + E

(s−m,0,0)
i,j . (5.115)

After defining

L(s)(u) = (u− i
s− 1

2
)I + iE

(s,0,0)
i,j ⊗ ej,i (5.116)

we can then rewrite the Lax operators as

L(s,s,0)(u) = L(s)(u− i
s+ 1

2
) (5.117)

L(s,s,2)(u) = L(s−2)(u− i
s+ 3

2
) (5.118)

Finally, (5.112) becomes

|MPSs〉 =
(
t̂(s)
(
−is+ 1

2

)
− t̂(s)

(
−is+ 1

2

))
|Ψδ〉 (5.119)
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5.3 Calculation of overlap ratios

The tableaux sum formula
Having related the matrix product states |MPSk〉 to the more simple state |Ψδ〉 the computation of the overlap
〈{ui}|MPSs〉 reduces to computing the eigenvalues of the transfer matrices. In particular, since the Bethe
states are by construction eigenstates of the transfer matrix, we have

〈{ui}|MPSs〉
〈{ui}|Ψδ〉

= t(s)
(
−is+ 1

2

)
− t(s)

(
−is+ 1

2

)
(5.120)

The transfer matrix eigenvalues can be calculated using the tableaux sum formula, which can be found in
[7], and gives the eigenvalues of transfer matrices whose auxiliary space is in an SU(N) representation that
corresponds to a rectangular Young diagram. Given rectangular a Young diagram with a rows and s columns,
the formula reads

t(a)m (u) =
∑
τ

 ∏
k=1...,a

∏
l=1,...,m

z(τkl)
(
u+ i

a− 2k + 1

2
− i

m− 2l + 1

2

) (5.121)

The summation is over semistandard Young tableaux and τij is the number inserted in the (i,j) position in a
given tableau. The z-functions are such that the eigenvalue of the fundamental transfer matrix t11(u) is

t
(1)
1 (u) =

N∑
l=1

z(l)(u) (5.122)

We will shortly determine these z-functions.

The tableaux sum formula might seem incompatible with our results, since deals with slN representations,
while in the context of Yangians we use representations of the glN generators. We can get around that using
the fact that any glN representation can be restricted to an slN one. From now on, we will be putting the glN
highest weights in square brackets and slN weights in ordinary brackets, to avoid confusion. Let us choose an
embedding of slN into gN such that the Cartan generators are

EslN
ii = EglN

ii − EglN
i+1,i+1. (5.123)

It can be immediately seen that, using this convention for the embedding, the [λ1, . . . , λN ] representation of
glN contains the (λ1 − λ2, . . . , λN−1 − λN ) representation of slN 12.

The form of the z-functions can now be recovered from eq. (3.51). Recall that this equation gives the eigen-
values of a transfer matrix with the auxiliary space in the fundamental representation and the physical space
in some other representation. In the present section we have been dealing with the opposite case, namely the
physical space is in the fundamental representation but the auxiliary might not. In the special case of the funda-
mental transfer matrix, where both spaces are in the fundamental representation, these two cases are identical.
Thus, plugging the highest weights of the fundamental representation of glN in (3.51) is equivalent to (5122).
In that case, we can identify each term in (3.51) as one of the z-functions. In order to be consistent with [7] we
need to change the normalization of the transfer matrix by defining

z(l)(u) =
1

Q0(u+ i)
Dl(u)Pl(u), (5.124)

12To be concrete, we should also define the off-diagonal generators EslN
i,j in terms of the EglN

i,j such that they behave
as raising and lowering generators. However, we are not going to use them, so that is not necessary here.
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where Q0(u) is one of the Baxter polynomials, here defined as

Q0(u) = uL (5.125)

Ql(u) =

M(l)∏
n=1

(u− u(l)n ) , for 1 ≤ l ≤ N − 1 (5.126)

QN (u) = 1 (5.127)

We can use these Q0(u) to rewrite the Drinfeld polynomials as

P1(u) =

L∏
n=1

(u+ i) = Q0(u+ i) (5.128)

Pk(u) = uN = Q0(u) , k ≥ 2, (5.129)

where we have set all impurities θn = 0 and have substituted the highest weight vector α = (1, 0, . . . , 0). The
dressing functions can also be written as

D1(u) =
Q1(u− i

2)

Q1(u+ i
2)

(5.130)

Dl(u) =
Ql−1(λ+ i(l+1)

2 )Ql(λ+ i(l−2)
2 )

Ql−1(λ+ i(l−1)
2 )Ql(λ+ i(l−2)

2 )
, for 0 ≤ l ≤ N (5.131)

and the z-functions as

z(l)(u) =
Q0(u)

Q0(u+ i)

Ql−1(u+ i l+1
2 )Ql(u+ i l−2

2 )

Ql−1(u+ i l−1
2 )Ql(u+ i l2)

(5.132)

These z-functions are identical to the ones presented in [7].

Calculation of the overlap ratios
In our particular case, the [s, 0, 0] module contains (s, 0). The latter corresponds to a Young diagram with a
single row of s boxes, thus the eigenvalue t(s)(u) is t(1)s . For such Young diagrams, the tableaux sum formula
for gl3 is simplified and can be found in [7]. In order to be consistent with [15], we change, yet again, the
normalization of the eigenvalues and redefine the Baxter polynomials as

Q0(u) =

N0∏
i=1

(iu− ui) (5.133)

Q+(u) =

N+∏
j=1

(iu− vi) (5.134)

that respectively correspond to the first and second simple roots of sl3. Note that as a consequence of the
integrability conditions discussed in section 4, N0 is restricted to being even and N+ = N0/2. In what follows
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we assume that N+ is also even. The tableau sum formula reads

t(s)(u) = Q0(−iu− s

2
)Q+(−iu+

s+ 3

2
)

s∑
k=0

(u+ i s+1
2 − ik)LQ+(−iu+ s+1

2 − k)

Q0(−iu+ s
2 − k)Q0(−iu+ s+2

2 − k)

×
k∑

l=0

Q0(−iu+ s+2
2 − l)

Q+(−iu+ s+1
2 − l)Q+(−iu+ s+3

2 − l)

(5.135)

and the two eigenvalues that appear in (5.120) are

t(s)(−is+ 1

2
) = Q0(s+

1

2
)Q+(1)

(s)∑
k=0

(ik)L
Q+(k)

Q0(k +
1
2)Q0(k − 1

2)

k∑
l=0

Q0(l +
1
2)

Q+(l)Q+(l − 1)

and

t(s−2)(−is+ 3

2
) = Q0(s+

1

2
)Q+(1)

(s−2)∑
k=1

(ik + 2i)L
Q+(k + 2)

Q0(k +
5
2)Q0(k +

3
2)

k∑
l=0

Q0(l +
3
2)

Q+(l + 2)Q+(l + 1)

= Q0(s+
1

2
)Q+(1)

s∑
k=2

(ik)L
Q+(k)

Q0(k +
1
2)Q0(k − 1

2)

k∑
l=2

Q0(l − 1
2)

Q+(u)Q+(u− 1)
,

where in the second equality we shift the parameters and the bounds of the summation. To simplify notation,
let us set

A(k) = (ik)L
Q+(k)

Q0(k +
1
2Q0(k − 1

2)

B(l) =
Q0(l − 1

2)

Q+(u)Q+(u− 1)

We then have

s∑
k=0

A(k)

k∑
l=0

B(l)−
s∑

k=2

A(k)

k∑
l=2

B(l) =

1∑
k=0

A(k)
k∑

l=0

B(l) +
s∑

k=2

A(k)

(
1∑

l=0

B(l) +
k∑

l=2

B(l)

)
−

s∑
k=2

A(k)
k∑

l=2

B(l)

1∑
k=0

A(k)
k∑

l=0

B(l) +
s∑

k=2

A(k)
1∑

l=0

B(l) =

A(0)B(0) +

s∑
k=1

A(k)

1∑
l=0

B(l) =

s∑
k=1

A(k)
1∑

l=0

B(l),
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where in the last equality we used that A(0) = 0. The two sums are now decoupled, so we can independently
investigate

1∑
l=0

B(l) =

(
Q0(−1

2)

Q+(0)Q+(−1)
+

Q0(
1
2)

Q+(1)Q+(0)

)
=

Q0(
1
2)

Q+(1)Q+(0)

(
Q+(1)Q0(−1

2)

Q+(−1)Q0(
1
2)

+ 1

)
(5.136)

To simplify this expression, note that due to the pairing of the Bethe roots and N0 being even, the polynomial
Q0(u) is even:

Q0(u) =

N0∏
i=1

(iu− ui) =

N0/2∏
i=1

(iu− ui)(iu+ ui) = Q0(−u). (5.137)

Since we have assumed that N+ is also even, the same holds for Q+(u) and it immediately follows that

Q+(1)Q0(−1
2)

Q+(−1)Q0(
1
2)

= 1 (5.138)

and

1∑
l=0

B(l) = 2
Q0(

1
2)

Q+(1)Q+(0)
. (5.139)

Putting everything together, we obtain

t(s)(−is+ 1

2
)− t(s−2)(−is+ 3

2
) = 2

Q0(s+
1
2)Q0(

1
2)

Q+(0)

s∑
k=1

(ik)L
Q+(k)

Q0(k +
1
2Q0(k − 1

2)
(5.140)
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6 The (SO(6),SO(5)) symmetric pair

The MPSs that we are interested here are related to the matrices Gi introduced in Appendix B. An SO(5)-
invariant MPS in the Hilbert space of an SO(6) spin-chain can be built out of the two-site block [23]

φab(u) = 2(u+ 1)GaGb − 2u(u− 1)[Ga, Gb]− u(4u2 + C)δab , a, b = 1, . . . , 5 (6.1)
φ66(u) = u(4u(u+ 2)− C), (6.2)

where C =
∑5

i=1G
2
i = n(n+ 4). Our goal is now to express these MPSs in terms of the 0-state

|Ψ0〉 = ⊗L
i=1 |6〉 = ⊗

L
2
i=1 |66〉 (6.3)

6.1 The extended Yangian and the twisted extended Yangian

Convention for the R-matrix
The two-site block (6.1-2) has been derived as a solution to the BYB relation (4.22) using the R-matrix (4.4).
In the context of extended Yangians, it is standard to use (A.13) instead. The form of the R-matrix is the same,
but the trace operator is now defined as

K =

N/2∑
i,j=−N/2

eij ⊗ e−i,−j . (6.4)

Using our modified transposition ·t, we can relate this matrix to the permutation as K12 = Pt1
12 = Pt2

12 = Pt
12.

Thus, the crossing relation for the R-matrix now becomes

Rt
12(u) = R12(κ− u) (6.5)

The extended Yangian X(so6)
The extended Yangian X(so6) is another unital, associative algebra generated by tso6ij (u) with 1 ≤ i, j ≤ N .
The relations that these generators are subject to have the form of the RTT relation, with the SO(N) R-matrix
in the place of the SU(N) one [2]. The one that is relevant to us is clearly X(so6), which can be mapped to
the Yangian of gl4 via the homomorphism

T so6(u) → (I − P )T gl4
1 (u)T gl4

2 (u− 1), (6.6)

where P is the permutation in C4 ⊗ C4. This mapping should be understood as follows. The (I-P) projects
T gl4
1 (u)T gl4

2 (u − 1) on the anti-symmetric subspace of C4 ⊗ C4. The latter is isomorphic to C6, after we
construct a basis for C6 out of the canonical basis of C4 ⊗ C4 as

v−3 = e1 ⊗ e2 − e2 ⊗ e1

v−2 = e3 ⊗ e1 − e1 ⊗ e3

v−1 = e1 ⊗ e4 − e4 ⊗ e1

v1 = e2 ⊗ e3 − e3 ⊗ e2

v2 = e2 ⊗ e4 − e4 ⊗ e1

v3 = e2 ⊗ e3 − e3 ⊗ e2

(6.7)
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We then need to restrict the action of T gl4
1 (u)T gl4

2 (u − 1) to C6, which is achieved by calculating its matrix
elements in the above basis. We thus have

[T so6(u)]ij = v†i

(
T gl4
1 (u)T gl4

2 (u− 1)
)
vj . (6.8)

The resulting expressions can then be simplified using the RTT relation for Y (4), which leads to the expressions
of X(so6) generators

tso6ij (u) = tgl4f1(i),f1(j)
(u)tgl4f2(i),f2(j)

(u− 1)− tgl4f2(i),f1(j)
(u)tgl4f1(i),f2(j)

(u− 1)

f1(−3) = −2, f1(−2) = 1, f1(−1) = −2, f1(1) = −1, f1(2) = −1, f1(3) = 1,

f2(−3) = −1, f2(−2) = −2, f2(−1) = 2, f2(1) = 1, f2(2) = 2, f2(3) = 2,

(6.9)

These relations allow us to use the evaluation homomorphism for Y (4) to treat a gl4-module as a X(so6)-
module.

The extended twisted Yangian X(so6, so5)
Similar to the twisted Yangian, we can define a twisted extended Yangian Xtw(so6) as the subalgebra of
X(so6), generated by

S(u) = T so6(u)S0(u)(T
so6)t(−u), (6.10)

where S0(u) satisfies the relation (4.28), with the SO(N) R-matrix. We choose

S0(u) =



u
u+1 0 0 0 0 0

0 u
u+1 0 0 0 0

0 0 − 1
u+1 1 0 0

0 0 1 − 1
u+1 0 0

0 0 0 0 u
u+1 0

0 0 0 0 0 u
u+1


(6.11)

In addition to the reflection equation, this matrix fulfils the symmetry equation

St
0 = S0(−u)−

2u

(u+ 1)(u− 1)
I (6.12)

and the corresponding twisted extended Yangian is denoted X(so6, so5) [10][11]. The process of deriving
the quaternary relation from the RTT relation, presented in the previous section, is unaffected by the different
choice of R-matrix, thus it holds for this S(u). In addition to that, it fulfils the symmetry relation

St(u) = S(−u) + 1

2u
(S(u)− S(−u))− 1

2u− 2
Tr[S(u)]I, (6.13)

as a consequence of the symmetry relation for S0(u).

The connection between this algebra and our goal becomes clear after we find the K-matrix that corresponds to
S0(u). As explained in Appendix A, we can transform between a K-matrix and an X(so6, so5) representation
as

S0(u) = P−1K0(u)P (6.14)
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with P fulfilling (A.18-19). Using the matrix

P =
1√
2



1 i 0 0 0 0
0 0 1 i 0 0
0 0 0 0 1 i
0 0 0 0 1 −i
0 0 1 −i 0 0
1 −i 0 0 0 0

 (6.15)

we obtain

K0(u) =



u
u+1 0 0 0 0 0

0 u
u+1 0 0 0 0

0 0 u
u+1 0 0 0

0 0 0 u
u+1 0 0

0 0 0 0 u
u+1 0

0 0 0 0 0 1
u+1 − 2


. (6.16)

Noticing that

[K0(0)]ab = 0 , (a, b) 6= (6, 6) (6.17)
[K0(0)]66 = −1 (6.18)

we can see that this matrix generates |Ψ0〉, up to a phase.

The definition of a X(so6, so5) highest weight representation is slightly different from the one for Y +(N).
We call a vector space V an X(so6, so5) highest weight module if it is generated from v ∈ V , such that13

sij (u) · v = 0, for i < j and (i, j) 6= (1,−1) (6.19)
sii(u) · v = µi(u)v (6.20)

s1,−1(u) · v = µ(+)(u)v (6.21)
s−1,1(u) · v = µ(−)(u)v (6.22)

The main difference between this definition and the definition of Y +(N) highest weight representations is that
s1,−1(u) and s−1,1(u) behave like Cartan generators, in that they do not alter the weights of the state. This can
be attributed to the fact that they are fixed points of the ·t transposition, since

si,−i(u)
t−→

1∑
a,b=−1

δa,−isb,a(u)δb,i = si,−i(u) (6.23)

Then, through the symmetry relation (6.13), they are expressed in terms of the sii(u). As consequence of this,
the µ(±)(u) are not indepenent, as they can be expressed in terms of the µi(u).

6.2 Identification of V with a dressing of S0(u)

The strategy for relating the |MPSn〉 generated from (6.1) and |Ψ0〉 is similar to the one employed in the pre-
vious chapter. Namely, look for a relation between the X(so6, so5) representation that corresponds to |MPSn〉
and a dressing of the representation that corresponds to |Ψ0〉. This is achieved by comparing the highest weights

13This is not a standard definition, but was conjectured in [15].
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of the corresponding X(so6, so5)-modules.

Calculation of the X(so6, so5) highest weights
Using the matrix P, we create an S-matrix out of the K-matrix which generates |MPSn〉

S(u) =
1

4
u−3(1− u−1)PK(u)P−1 (6.24)

The components of the S-matrix are better expressed in terms the matrices G̃i defined in (B.17)-(B.19). Since
we are interested in computing the highest weights, we only need some of the components of the S-matrix, in
particular

ψ3,3(u) = g1(u)G̃1G̃−1 + g2(u)[G̃1, G̃−1] + f(u) (6.25)
ψ2,2(u) = g1(u)G̃2G̃−2 + g2(u)[G̃2, G̃−2] + f(u) (6.26)

ψ1,1(u) =
1

2
(g1(u)G̃

2
0 + f(u) + h(u)) (6.27)

ψ1,−1(u) =
1

2
(g1(u)G̃

2
0 + f(u)− h(u)) (6.28)

ψ−1,1(u) =
1

2
(g1(u)G̃

2
0 + f(u)− h(u)), (6.29)

where

g1(u) = −1

2
u−2(1− u−2) (6.30)

g2(u) =
1

2
u−1(1− u−2) (6.31)

f(u) = (1− u−1)(1 +
C

4
u−2) (6.32)

h(u) = −(1− u−1)(1 + 2u−1 − C

4
u−2). (6.33)

As discussed in appendix B, the

Fi,j =
1

4
[G̃i, G̃−j ] (6.34)

furnish an so5 representation with lowest weights (−n
2 ,−

n
2 ). Using (B.21) one can see that G−1 and G−2

lower the so5 weights. For our lowest weight vector ṽ, we thus have

G̃−1 · ṽ = G̃−2 · ṽ = 0. (6.35)

It is then easy to see that

s3,3(u) · ṽ = (f(u) + 4g2(u)F1,1) · ṽ = (f(u)− 2ng2(u))ṽ (6.36)
s2,2(u) · ṽ = (f(u) + 4g2(u)F2,2) · ṽ = (f(u)− 2ng2(u))ṽ. (6.37)

To compute the remaining weights we use C =
∑5

i=1G
2
i = n(n+ 1) to write

G̃2
0 · ṽ = Cṽ − (G̃1G̃−1 + G̃−1G̃1 + G̃2G̃−2 + G̃−2G̃2) (6.38)
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Then, noticing that

G̃iG̃−i + G̃−iG̃i = [G̃−i, G̃i] + 2G̃iG̃−i = −4Fii + 2G̃iG̃−i (6.39)

we obtain

s1,1(u) · ṽ =
1

2
(n2g1(u) + f(u) + h(u))ṽ (6.40)

s1,−1(u) · ṽ = s−1,1(u) · ṽ =
1

2
(n2g1(u) + f(u)− h(u))ṽ (6.41)

We have therefore calculated the highest weights of our X(so6, so5) module, which we can factorize and write
as

µ3(u) = µ2(u) = (1− u−1)(1− n

2
u−1)2 (6.42)

µ1(u) = −u−1(1− u−1)(1− n

2
u−1)2 (6.43)

µ(+)(u) = µ(−)(u) = (1− u−2)(1− n2

4
u−2) (6.44)

Determining the corect dressing
We now look for a gl4 module L(λ1, λ2, λ3, λ4), such that the highest weights of the dressed representation

SD(u) = T so6(u)S0(u)(T
so6)t(−u) (6.45)

match the ones we just obtained. Unlike the (SU(3), SO(3)) case, where the twisted Yangian module was a
subspace of L, we can now find a single gl4 module such that V (n) ∼= L(λ1, λ2, λ3, λ4).

Since the X(so6, so5) weights of V are related to the so5 weights, we can start by fixing the so5 highest
weights of the gl4 module. Similar to (5.27), an embedding of so5 in gl4 is given by

Fi,j = Ei,j − E−j,−i (6.46)

If we then choose the Cartan subalgebra to be generated by

H1 =
1

2
(F11 + F22) (6.47)

H2 =
1

2
(F11 − F22), (6.48)

we obtain that the so5 highest weights on L(λ1, λ2, λ3, λ4) are
(
−λ1+λ2−λ3−λ4

2 ,−λ1−λ2+λ3−λ4
2

)
. By requir-

ing that these weights are equal to (−n
2 ,−

n
2 ), we get two equations that lead to the constraints

λ2 = λ3

λ4 − λ1 = n.
(6.49)

We therefore restrict our search to representations of the form [n + c1, c2, c2, c1]. We can further restrict our
options by comparing the dimension of the gl4 module to that of the X(so6, so5) module. The general formula
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for the dimension of a glN representation is

dim[λ1 . . . , λN ] =

N∏
i<j

λi − λj − i+ j

j − i
, (6.50)

which in our case reads

dim[n+ c1, c2, c2, c1] =

1

12
(n+ 3)(c2 − c1 + 1)(c2 − c1 + 2)(−c2 + c1 + n+ 1)(−c2 + c1 + n+ 2)

(6.51)

Equating this to the dimension of the G-matrices (B.13), gives four solutions for the c1 and c2. Two of them
contain square roots, which we ignore as they do not correspond to finite-dimensional representations. The
remaining solutions give the representations [n+ c, n+ c, n+ c, c] and [n+ c, c, c, c]. We will now show that
the correct choice is the first of the two, by explicitly calculating its X(so6, so5) highest weights.

In what follows, v = |n+ c, n+ c, n+ c, c〉 denotes the highest weight of the gl4 module. The definition
of the twisted extended Yangian (6.10) reads

sD3,3(u) · v =
∑
a,b

tso63,a (u)[S0(u)]abt
so6
−3,−b(−u) · v (6.52)

Since tso6ij with i < j annihilate the highest weight, the only term that survives is

u

u+ 1
tso63,3 (u)t

so6
3,3 (−u) · v =

u

u+ 1

(
tgl41,1(u)t

gl4
22 (u− 1)− tgl42,1(u)t

gl4
12 (u− 1)

)
× (6.53)(

tgl4−2,−2(−u)t
gl4
−1,−1(−u− 1)− tgl4−2,−1(−u)t

gl4
−1,−2)(−u− 1)

)
· v (6.54)

Similarly, due to tgl6ij · v = 0 for i < j and tgl6ii · v = λiv, only one term remains

sD3,3(u) · v =
u

u+ 1
tgl411 (u)t

gl4
22 (u− 1)tgl4−2,−2(−u)t

gl4
−1,−1(−u− 1) · v (6.55)

Using (5.12), and simplifying the expression, one can eventually obtain

µD3 (u) =
(1− (n2 + 1)2u−2)(1− n

2u
−1)2

(1 + u−1)2(1− u−1)
(6.56)

The same process yields the remaining highest weights

µD2 (u) = µD3 (u) (6.57)

µD1 (u) = −(u2 − (n+ c)2)(u+ c− 1)(u− n− c+ 1)

u2(u+ 1)2(u− 1)
(6.58)

µ
(+)
D (u) =

(u2 − (n+ c)2)(u2 − (n+ c− 1)2)

u2(u2 − 1)
(6.59)

µ
(−)
D (u) =

(u2 − (n+ c)2)(u2 − (c− 1)2)

u2(u2 − 1)
(6.60)

We can now fix the constant c by requiring that µ(+)
D (u) = µ

(−)
D (u), according to (6.44). We find c = 1 − n

2 .
Finally, we can notice that the highest weights of the dressed representation are proportional to those of the
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X(so6, so5)-module:

µDi (u) =
(1− (n2 + 1)2u−2)

(1− u−2)2
µi(u) (6.61)

We can thus conclude that

S(u) =
(1− u−2)2

(1− (n2 + 1)2u−2)
T so6(u)S0(u)(T

so6(−u))t (6.62)

6.3 The transfer matrix eigenvalues

The result of the previous section is that we can treat V(n) as

V ∼= L(1 +
n

2
, 1 +

n

2
, 1 +

n

2
, 1− n

2
) (6.63)

This implies that the MPS is related to |Ψ0〉 via the action of a transfer matrix at some special point, which
we leave unspecified. The overlaps of the form 〈{ui}|MPSn〉 are therefore related to the eigenvalues of the
transfer matrix at that special point. In order to simplify the calculation of the transfer matrix eigenvalues, we
now employ the same tricks we used in the previous chapter to replace this gl4 module with an equivalent one,
which corresponds to a single-row Young tableaux. By rewriting all matrices in the representation as

Ẽrep
ij = Erep

ij + (1 +
n

2
)I (6.64)

we replace our original highest weights with

L(0, 0, 0,−n). (6.65)

Then, under the gl4 automorphism Eij → −Ej,i, this module is mapped to

L(n, 0, 0, 0). (6.66)

Using the embedding (5.123), [n, 0, 0, 0] contains the sl4 representation (n, 0, 0). We can therefore use the
tableaux sum formula to calculate the eigenvalues of this transfer matrix. Before doing that we need to re-
call that the formula treats suN spin chains, while we are working with the Hilbert space which carries the
fundamental representation of so6. This is not a problem, since so6 is isomorphic to su4. The fundamental rep-
resentation of so6, which we have been using, corresponds to the antisymmetric representation of su4. We thus
need to fix the z-functions such that (5.122) gives the eigenvalues of a transfer matrix with the auxiliary space
in the fundamental of suN and the Hilbert space in the antisymmetric. Then, the tableaux sum will give us the
eigenvalues for auxiliary spaces in higher representations of su4 while keeping the physical representation the
same. We can, again, obtain the appropriate z-functions from (5.31) by plugging in a gl4 representation in which
the antisymmetric of su4, with Dynkin labels (0, 1, 0), can be embedded. Choosing (5.123) as the embedding
of the algebras, we see that this sl4 module can be embedded in any gl4 module of the form [a, a, a+1, a+1].
This introduces an ambiguity that was swept under the rug in the previous section, in that there are several
gl4 modules where a given sl4 module can be embedded. We now argue that the different choices of module
correspond to simply changing the point at which we need to evaluate the transfer matrix eigenvalue.

Let us compare the glN representation [λ1, . . . , λN ] with one where all the weights are shifted by the same
constant [λ1+ θ, . . . , λN + θ]. The objects related to the shifted representation will be denoted with tildes. The
highest weights enter the description of the glN spin chain through the Drinfeld polynomials. By investigating
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(3.49) it can be immediately seen that the two cases are related by

P̃k(u) = Pk(u+ iθ). (6.67)

These polynomials enter the RHS of the Bethe equations (3.64), while the LHS is independent of the choice
of representation. Now, consider the Bethe equations in the shifted representation. It is easy to check that by
redefining ũ(k)n → ũ

(k)
n + θ, for all n and k, the Bethe equations take the form of those of the non-shifted case.

Thus, the roots in the two cases are related by the shift

u(k)n = ũ(k)n + iθ (6.68)

Since the roots enter the dressing functions (3.60), we have

D̃k(u) = Dk(u+ iθ) (6.69)

Due to z(k)(u) ∝ Dk(u)Pk(u), the z-functions are also related by a shift in the argument

z̃(k)(u) = z(k)(u+ iθ). (6.70)

Therefore, shifting all weights in a representation has the effect of shifting the rapidity in the transfer matrix
eigenvalues.

To be consistent with [15], we choose the gl4 representation [32 ,
3
2 ,

1
2 ,

1
2 ] and define the z-functions as

z(l)(u) =
1

(u+ i
2)

L
Dl(u− i)Pl(u− i). (6.71)

For that representation, the Drinfeld polynomials are

P1(u) = P2(u) =

L∏
n=1

(u+ i
3

2
) = (u+ i

3

2
)L (6.72)

P3(u) = P4(u) = (u+
1

2
i)L (6.73)

Introducing the Baxter polynomials

Q−(u) =

N−∏
i=1

(iu− u
(1)
i ) (6.74)

Q0(u) =

N0∏
i=1

(iu− u
(2)
i ) (6.75)

Q+(u) =

N+∏
i=1

(iu− u
(3)
i ) (6.76)
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we can write the dressing functions as

D1(u) =
Q−(−iu− 1

2)

Q−(−iu+ 1
2)

(6.77)

D2(u) =
Q−(−iu+ 3

2)

Q−(−iu+ 1
2)

Q0(−iu)
Q0(−iu+ 1)

(6.78)

D3(u) =
Q0(−iu+ 2)

Q0(−iu+ 1)

Q+(−iu+ 1
2)

Q+(−iu+ 3
2)

(6.79)

D4(u) =
Q+(−iu+ 5

2)

Q+(−iu+ 3
2)
, (6.80)

and the z-functions as

z(1)(u) =
(u+ i

2)
L

(u− i
2)

L

Q−(−iu− 3
2)

Q−(−iu− 1
2)

(6.81)

z(2)(u) =
(u+ i

2)
L

(u− i
2)

L

Q0(−iu− 1)Q−(−iu+ 1
2)

Q0(−iu)Q−(−iu− 1
2)

(6.82)

z(3)(u) =
Q0(−iu+ 1)Q+(−iu− 1

2)

Q0(−iu)Q+(−iu+ 1
2)

(6.83)

z(4)(u) =
Q+(−iu+ 3

2)

Q+(−iu+ 1
2)

(6.84)

To calculate the required eigenvalue, we start from the tableaux sum formula (5.121) which in the case of a
single-row tableaux reads

t(1)n (u) =
∑
τ

∏
l=1,...,n

z(τl) (ũ+ il)) , (6.85)

where we have introduced ũ = u− in+1
2 . For su4, such a tableau is of the form

1 · · · 1 2 · · · 2 3 · · · 3 4 · · · 4 (6.86)

Denoting by ki the number of boxes that contain 1 ≤ i ≤ 4, we have k1 + k2 + k3 + k4 = n. We can then
rewrite the sum over all possible tableaux as

∑
τi

=
∑

k1,k2,k3

=

n∑
k1

n−k1∑
k2=0

n−k1−k2∑
k3=0

. (6.87)

and the formula as

t(1)n =
∑

k1,k2,k3

k1∏
l1=1

z(1)(ũ+ il1)

k1+k2∏
l2=k1+1

z(2)(ũ+ il2)×

k1+k2+k3∏
l3=k1+k2+1

z(3)(ũ+ il3)

n∏
l4=k1+k2+k3+1

z(4)(ũ+ il4)

(6.88)
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For the first product, we have

k1∏
l1=1

z(1)(ũ+ il1) =

∏k1
l1=1(ũ+ i

2 + il1)
∏k1

l1=1Q−(−iũ− l1 − 3
2)∏k1

l′1=1(ũ− i
2 + il′1)

∏k1
l′1=1Q−(−iũ− l′1 − 1

2)
(6.89)

The factors in the numerator and denominator for which l′1 − l1 = 1 cancel each other and the remaining ones
correspond to the maximum and minimum values of l1. Reinstating the original parameter u, we get

k1∏
l1=1

z(1)
(
u− i

n− 2l1 + 1

2

)
=

(u− in−2k1
2 )L

(u− in2 )
L

Q−(−iu− n+2
2 )

Q−(−iu− n−2k1+2
2 )

The remaining products can be similarly seen to be

k1+k2∏
l2=1+k1

z(2)
(
u− i

n− 2l2 + 1

2

)
=

(u− in−2k1−2k2
2 )L

(u− in−2k1
2 )L

Q0(−iu− n−2k1+1
2 )

Q0(−iu− n−2k1−2k2+1
2

Q−(−iu− n−2k1−2k2
2 )

Q−(−iu− n−2k1
2 )

k1+k2+k3∏
l3=1+k1+k2

z(3)
(
u− i

n− 2l3 + 1

2

)
=
Q0(−iu− n−2k2−2k2−2k3−1

2 )

Q0(−iu− n−2k2−2k2−1
2 )

Q+(−iu− n−2k1−2k2
2 )

Q+(−iu− n−2k1−2k2−2k3
2 )

n∏
l4=1+k1+k2+k3

z(4)
(
u− i

n− 2l4 + 1

2

)
=

Q+(−iu+ n+2
2 )

Q+(−iu− n−2k1−2k2−2k3−2
2 )

Finally, introducing the variables

p = k1

q = k1 + k2 −
n

2

r = k1 + k2 + k3 −
n

2

we can write the transfer matrix eigenvalue as

t(1)n =
Q−(−iu− n

2 − 1)Q+(−iu+ n
2 + 1)

(u− in2 )
L

n/2∑
q=−n/2

(u++iq)L
Q−(−iu+ q)Q+(−iu+ q)

Q0(−iu+ q − 1
2)Q0(−iu+ q + 1

2)

q∑
p=−n/2

Q0(−iu+ p− 1
2)

Q−(−iu+ p− 1)Q−(−iu+ p)

n/2∑
r=q

Q0(−iu+ r + 1
2)

Q+(−iu+ r)Q+(−iu+ r + 1)

(6.90)
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7 Conclusion and Outlook

Summary
In the first section of this thesis we briefly introduced N = 4 SYM and derived the constraints imposed on
scalar two-point functions of the theory by its conformal symmetry. Then, through some 1-loop order calcula-
tions in the planar limit, we established the correspondence between the corrections to the dilatation operator
of the SO(6) and SU(2) sectors and the corresponding spin chain models. This was then used to explain the
relevance of MPS overlaps to certain defect versions of the theory.
In section 2 we solved the Heisenberg model through the Algebraic Bethe Ansatz. Interestingly the main fo-
cus in that approach is not the Hamiltonian but the transfer matrix, the eigenstates of which we determined
and called Bethe states. We also saw that the transfer matrix generates a family of commuting operators, one
of which is the Hamiltonian. Therefore, by diagonalizing the transfer matrix, we also determine the energy
eigenstates and eigenvalues. A crucial part of the process was the RTT relation, which is fulfilled by the Lax
operators and the monodromy. The latter implies the commutativity of the transfer matrix for different rapidi-
ties, which renders the system integrable. This illustrates the importance of the RTT relation as a requirement
for the integrability of the model.
In section 3 we introduced the Yangian of glN and noticed its intrinsic connection with integrability, as a result
of its generators satisfying the RTT relation. In particular, this implies that if one defines the Lax operator as
a representation of that algebra, the corresponding transfer matrix will generate commuting charges and the
model will be solvable. After introducing the evaluation representations of Y (N), this allowed us to construct
an integrable glN spin chain as a representation of ⊗LY (N). We then derived the Bethe equations of this model
through the Analytical Bethe Ansatz approach. As a byproduct, we also obtained a formula for the eigenvalues
of the corresponding transfer matrices, which were used at a later point.
The introduction of Y (N) turned out to be useful towards achieving or goal of calculating overlaps relevant
to the dCFT. After introducing matrix product states and their integrability conditions, we saw that integrable
MPSs can be generated from solutions of the twisted BYB relation. This equation was then shown to be fulfilled
by representations of a family of subalgebras of Y (N), the twisted Yangians. We then noticed that a family
of representations of Y tw(N) can be obtained by dressing the twisting matrix with Y (N) representations and
derived that the MPSs that correspond to the undressed and dressed matrices are related by the action of a trans-
fer matrix. This relation provided us with a strategy for calculating overlaps between MPSs and Bethe states:
Identifying the Y tw(N) representation that corresponds to a given MPS with a dressed representation enables
the calculation of the overlaps in question.
In what followed, we applied this strategy to two MPSs that appear in the study of defect versions of N = 4
SYM. First, we worked with a MPS generated by spin representations of su2 and belongs in a (SU(3),SO(3))
symmetric pair. For odd-dimensional representations, we were able to derive relations between this MPS and
the δ-state, which is generated from the twisting matrix of Y +(3). This was achieved by calculating the highest
weights of the MPS-module V and identifying them as the Y +(3) weights on a gl3 module L. This indicated
that V can be embedded within L. Then, the orthogonal complement on V with respect to L was investigated
and seen to be equivalent to another gl3 module, which allowed us to express the MPS as the action of two
transfer matrices on the δ-state. As a result, the calculation of the overlaps was reduced to the calculation of
some transfer matrix eigenvalues, which we performed using the tableaux sum formula. The input to this for-
mula is related to the eigenvalues of the fundamental transfer matrix and we were able to extract from elements
of section 3.
In the final section we followed similar steps for the MPS of the (SO(6),SO(5)) symmetric pair. The main
difference was the replacement of the Yangian with an extended Yangian, which was required due to the SO(6)
symmetry of the underlying spin chain. Fortunately, an algebra homomorphism allowed us to reduce X(so6)
representations to evaluation representations Y (4), which we had already used. Another difference compared
to the previous case, was that the X(so6, so5) module corresponding to our MPS could be identified with a
single gl4 module, instead of being embedded in one. This simplified the process, as there was no complement
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to be examined and each overlap was related to a single transfer matrix eigenvalue, which we again calculated
through the tableaux sum formula.

Outlook: The (SO(6), SO(3)⊗ SO(3)) case
One more family of MPSs which is relevant to a defect version of N = 4 SYM belongs in the Hilbert space of
an SO(6) spin chain and is generated from the two-site block

ψ
(s)
ab (u) = (1 + u)SaSb − u(u+ 1)[Sa, Sb]−

1

2
u(u2 + u+ s(s+ 1))δab

ψ
(s)
Aa(u) = ψ

(s)
aA(u) = 0

ψ
(s)
AB(u) =

1

2
u(u2 + u− s(s+ 1))δAB,

where a, b ∈ {1, 2, 3} and A,B ∈ {4, 5, 6}. Similar to the cases discussed in the main text, it would be useful
to the calculation of overlaps ratios to relate these states to the δ-state

|Ψδ〉 = ⊗
L
2 (|11〉+ |22〉+ |33〉 − |66〉 − |66〉 − |66〉).

The K-matrix that generates this δ-state is related to the extended twisted Yangian X(so6, so3 ⊕ so3). The
transformation matrix which creates an X(so6, so3 ⊕ so3) highest weight representation from the K-matrix of
the MPS through () has been identified. It then should be possible, through a process similar to section 6.2, to
achieve the relation in question through twisted extended Yangian representations. The difficulty in this case
lies in the embedding of the X(so6, so3⊕ so3) module in a gl4 module, which appears to be significantly more
complicated than the previous two cases. Some progress has been made by studying the branching rules of su4
highest weight representations, which will hopefully help to overcome this obstacle. If that is achieved, the
calculation of the overlaps will once again reduce to the computation of some transfer matrix eigenvalues. This
would constitute a formal derivation of some overlap formulas that have already been discovered numerically.
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A DIFFERENT VERSIONS OF THE BYB RELATION

A Different versions of the BYB relation

A.1 The SU(N) case

The suN R-matrix is

R12(u) = I12 −
P12

u
. (A.1)

We have encountered the following two versions of the BYB relation:

K2(v)R
T
21(u+ v)K1(u)R12(u− v) = R21(u− v)K1(u)R

T
12(−u− v)K2(v) (A.2)

and what we called the quaternary relation

K ′
2(v)R

t
21(u+ v)K ′

1(u)R12(u− v) = R21(u− v)K ′
1(u)R

t
12(−u− v)K ′

2(v) (A.3)

There exist two ways to transform a solution of the first into a solution of the second. The first is to multiply by
the charge conjugation matrix either from the left or right, i.e.

K ′(u) = CK(u) (A.4)
orK ′(u) = K(u)C (A.5)

In general, these two multiplications lead to different matrices, both of which are solutions of (a.3). The second
is to find a matrix P such that

P1P2R(u)P
−1
1 P−1

2 = R(u) (A.6)
P1P2R

T
12(u)P

−1
1 P−1

2 = Rt(u) (A.7)

and define

K ′(u) = PK(u)P−1 (A.8)

The conditions on the P-matrix (A.5)-(A.6) are fulfilled if

P ∈ SU(N) (A.9)
PP T = C. (A.10)

In particular, (A.9) guarantees (A.6) due to the SU(N) symmetry of the R-matrix and (A.10) implies (A.7).
Since (A.3) is identical to the defining relations of Y tw(N), any solution of that relation could form a repre-
sentation of that algebra. Therefore, (A.4-5) and (A.8) can be used to create Y tw(N) representations out of
solutions of the ordinary twisted BYB relation (4.22). It should be noted that, in addition to this, one should
verify that the symmetry relation of the specific twisted Yangian is fulfilled. Conversely, inverting these trans-
formations generates solutions of (4.22) out of Y (N)+ representations. Verifying these relations is identical to
the proofs for the SO(N) case shown below.

A.2 The SO(N) case

This case is a little more complicated, as it turns out that the two transformations above lead to solutions of
different equations. These two equations include to two different versions for the SO(N) R-matrix.
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Conventions for the R-matrix

R12(u) = I12 −
P12

u
+

K12

u− κ
, (A.11)

whereK12 = PT
12 =

∑
i,j

ei,j ⊗ ei,j (A.12)

R̃12(u) = I12 −
P12

u
+

K̃
u− κ

, (A.13)

where K̃12 = Pt
12 =

∑
i,j

ei,j ⊗ e−i,−j (A.14)

Versions for the BYB relation

• Version 1: The ordinary twisted BYB relation

K2(v)R
T
21(u+ v)K1(u)R12(u− v) = R21(u− v)K1(u)R

T
12(−u− v)K2(v) (A.15)

• Version 2: We have not encountered this equation, but we define it here in order to clarify some points

K ′
2(v)R

t
21(u+ v)K ′

1(u)R12(u− v) = R21(u− v)K ′
1(u)R

t
12(−u− v)K ′

2(v),

Rt(u) = C1R
T1(u)C1 = C2R

T2(u)C2

(A.16)

• Version 3: The quaternary relation

K̃2(v)R̃
t
21(−u− v)K̃1(u)R̃12(u− v) = R̃21(u− v)K̃1(u)R̃

t
12(−u− v)K̃2(v),

R̃t(u) = C1R̃
T1(u)C1 = C2R̃

T2(u)C2

(A.17)

Note that going from 1 to 2 requires the replacement of ·T with ·t while keeping the same convention for the
R-matrix. Going from 1 to 3 requires us to simultaneously replace ·T with ·t and switch between the two
conventions. In the SU(N) case there is no distinction between the R-matrix conventions, due to the absence of
the trace operator, thus 2 and 3 are identical and the two transformations lead to solutions of the same equation.

Relations between the solutions of the different relations

• Relation between 1 and 2: K ′(u) = CK(u) or K ′(u) = K(u)C.

Proof: We can start by showing the relations C1C2R
T (u)C1C2 = RT (u) and C1C2R(u)C1C2 = R(u).

It is enough to show that C1C2 is a symmetry of I,P and K:

C1C2PC1C2 =
∑
i,j

CeijC ⊗ CejiC =
∑
i,j

e−i,−j ⊗ e−j,−i = P

C1C2KC1C2 =
∑
i,j

CeijC ⊗ CeijC =
∑
i,j

e−i,−j ⊗ e−i,−j = K

(C1C2)
2 = I ⇒ C1C2IC1C2 = I

The rest of the derivation consists of multiplying the BYB relation by C1C2 and inserting C2 = I where
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needed to use these two relations.

K ′
2(v)R

t
21(u+ v)K ′

1(u)R12(u− v) = R21(u− v)K ′
1(u)R

t
12(−u− v)K ′

2(v)

C2K2(v)C1R
T
21(u+ v)C1C1K1(u)R12(u− v) = R21(u− v)C1K1(u)C1R

T
12(−u− v)C1C2K2(v)

C2C1K2(v)R
T
21(u+ v)K1(u)R12(u− v) = R21(u− v)C1K1(u)C1R

T
12(−u− v)C1C2K2(v)

K2(v)R
T
21(u+ v)K1(u)R12(u− v) = C2C1R21(u− v)C1K1(u)C1R

T
12(−u− v)C1C2K2(v)

K2(v)R
T
21(u+ v)K1(u)R12(u− v) = C2C1R21(u− v)C1C2K1(u)C2C1R

T
12(−u− v)C1C2K2(v)

K2(v)R
T
21(u+ v)K1(u)R12(u− v) = R21(u− v)K1(u)R

T
12(−u− v)K2(v)

• Relation between 1 and 3:
Given a matrix P such that

P1P2R(u)P
−1
1 P−1

2 = R̃(u) (A.18)
and PP T = C (A.19)

then

K̃(u) = PK(u)P−1 (A.20)

Proof: The first step is to show that PP T = C ⇒ R̃t(u) = P1P2R
T (u)P−1

1 P−1
2 :

R̃t(u) = C1R̃
T1C1

= C1(P
−1
1 )TP2R

T (u)P T
1 P

−1
2

= P1P2R
T (u)P−1

1 P−1
2

where we used that PP T = C ⇒ P T = P−1C and P = C(P−1)T . Now, the process of showing that
the solution transformation is correct is similar to that of the previous part. Start from

K2(v)R
T
21(u+ v)K1(u)R12(u− v) = R21(u− v)K1(u)R

T
12(−u− v)K2(v)

and multiply by P1P2 from the left and P−1
1 , P−1

2 from the right to obtain

P2K2(v)P1R
T
21(u+ v)K1(u)R12(u− v)P−1

1 P−1
2 = P2P1R21(u− v)K1(u)R

T
12(−u− v)P−1

1 K2(v)P
−1
2 .

Now insert some PP−1 = I to obtain

P2K2(v)P
−1
2 P1P2R

T
21(u+ v)P−1

2 P−1
1 P1K1(u)P

−1
1 P1P2R12(u− v)P−1

1 P−1
2 =

P2P1R21(u− v)P−1
2 P−1

1 P1K1(u)P
−1
1 P1P2R

T
12(−u− v)P−1

1 P−1
2 P2K2(v)P

−1
2

and use the relations between K(u), R(u), RT (u) and K̃(u), R̃(u), R̃t(u) to see that this is equivalent to

K̃2(v)R̃
t
21(u+ v)K̃1(u)R̃12(u− v) = R̃21(u− v)K̃1(u)R̃

t
12(−u− v)K̃2(v),

which is what we wanted to show.

Note that due to the crossing symmetry of the SO(N) R-matrix, versions 1 and 3 are equivalent to the
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untwisted BYB relations

K2(v)R21(u+ v − κ)K1(u)R12(u− v) = R21(u− v)K1(u)R12(−u− v − κ)K2(v) (A.21)
K2(v)R̃21(u+ v − κ)K1(u)R̃12(u− v) = R̃21(u− v)K1(u)R̃12(−u− v − κ)K2(v) (A.22)

It might then seem like the constraint PP T = C on the basis transformation is redundant, since the
transposed R-matrices do not show up. However, one should remember that these relations follow from
the original ones (A.15),(A.17) only if the crossing relations RT (u) = R(u − κ) and R̃t = R̃(u − κ)
hold. The condition RT (u) = R(u− κ) ⇔ R̃t = R̃(u− κ) leads to the same constraint for P .
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B The G-matrix representations of so5

The γ-matrix representation
The gamma matrices

γ1 =

(
0 −iσ2
iσ2 0

)
, γ2 =

(
0 −iσ1
iσ1 0

)
, γ3 =

(
0 I2×2

I2×2 0

)
(B.1)

γ4 =

(
I2×2 0
0 −I2×2

)
, γ5 =

(
0 −iσ3
iσ3 0

)
, (B.2)

where σi are the Pauli matrices, form a representation of the SO(5) Clifford algebra, i.e.

{γi, γj} = 2δijI4×4. (B.3)

Now, consider the matrices

γij =
1

4i
[γi, γj ]. (B.4)

Using the identity [
[A,B], C

]
= 2A{B,C} − 2{C,A}B + C{A,B} − {A,B}C (B.5)

one can obtain

[γij , γk] =
1

i
(δjkγi − δkiγj), (B.6)

from which it follows that the γij generate a representation of the so5 Lie algebra

[Lij , Lkl] = i(δjkLil + δilLjk − δikLjl − δjlLik)

Lij = −Lji
(B.7)

The highest weights of this representation are determined by diagonalizing the Cartan subalgebra. Since

[L12, L34] = 0 (B.8)

and so5 is rank 2, we can choose the Cartan subalgebra to be spanned by

h = {L12, L34}. (B.9)

One can then find a common eigenvector of γ12, γ34, such that

γ12 · v =
1

2
v (B.10)

γ34 · v =
1

2
v, (B.11)

which implies that the γij form the representation with highest weights (12 ,
1
2).
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Higher dimensional representations
A higher-dimensional representation of the Lie algebra can be constructed from the γi as

Gi = (γi ⊗ I · · · ⊗ I + I ⊗ γi ⊗ · · · ⊗ I)sym ⊕ 0N−dG , (B.12)

where the tensor product needs to be symmetrised for the representation to be irreducible. The dimension of
these matrices is

dG =
1

6
(n+ 1)(n+ 2)(n+ 3) (B.13)

From (B.6) it follows that the matrices

Gij =
1

4i
[Gi, Gj ] (B.14)

also fulfil the same relation, namely

[Gij , Gk] = δjkGi − δkiGj . (B.15)

and therefore form a representation of (B.7). To determine the highest weights, note that the n-th tensor power
of the vector v introduced previously is an eigenvector of G12 and G34. In particular

G12 · (v ⊗ · · · ⊗ v) = (
1

2
+ · · ·+ 1

2
)v =

n

2
v

G34 · (v ⊗ · · · ⊗ v) = (
1

2
+ · · ·+ 1

2
)v =

n

2
v,

(B.16)

thus the Gij generate the so5 representation with highest weights (n2 ,
n
2 ).

The complex matrices G̃i

Let us introduce the matrices

G̃±1 =
1√
2
(G1 ± iG2) (B.17)

G̃±2 =
1√
2
(G3 ± iG4) (B.18)

G̃0 = G5. (B.19)

and define

Fij =
1

4
[G̃i, G̃−j ]. (B.20)

The equivalent of (B.15) is now

[Fij , G̃k] = δjkG̃i − δ−i,kG̃−j , (B.21)

which one can use to show that

[Fij , Fkl] = δjkFil−δilFkj + δj,−lFk,−i − δi,−kF−j,l

Fi,j = −F−j,−i.
(B.22)
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Therefore, the Fij defined here form a representation of the so5 algebra using the convention in the main text
(5.23). By substituting (B.17)-(B.19) in (B.20) one can see that

F11 = −G12 (B.23)
F22 = −G34. (B.24)

It then follows from (B.16) that

F11 · v = −n
2
v (B.25)

F22 · v = −n
2
v, (B.26)

thus the Fij form the (−n
2 ,−

n
2 ) representation of this so5 algebra. The interpretation of the negative highest

weights is that v needs to be treated as a lowest weight state, namely a state that is annihilated by all lowering
generators.

72


	N=4 Super Yang-Mills
	The Lagrangian and the Gauge group
	Conformal Symmetry
	Scalar two-point functions in N=4 SYM
	The defect version

	The Heisenberg model
	Description of the model and its original solution
	The algebraic Bethe ansatz
	Preliminary definitions and the Hamiltonian
	Derivation of the Bethe Ansatz Equations and some comments


	The Yangian of gl(N) and the gl(N) spin chain
	The Yangian Y(N)
	Properties and representations of Y(N)
	The glN spin chain

	Integrable Matrix Product States and Twisted Yangians
	Integrable MPSs and boundary integrability
	The Twisted Yangian
	Dressing MPSs

	The (SU(3),SO(3)) symmetric pair 
	Representations of Y+(3)
	Relating |MPSk to |
	Calculation of overlap ratios

	The (SO(6),SO(5)) symmetric pair
	The extended Yangian and the twisted extended Yangian
	Identification of V with a dressing of S0(u)
	The transfer matrix eigenvalues

	Conclusion and Outlook
	Different versions of the BYB relation
	The SU(N) case
	The SO(N) case

	The G-matrix representations of so5

