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Preface

This thesis, written so that all physics master’s students with knowledge of basic solid state
physics can understand its contents, culminates my MSc in physics at the Niels Bohr Institute,
University of Copenhagen.

Written as a resource for continuing researchers in the field, as well as a report of the results
and conclusions from recent experiments, the thesis includes a complete and thorough introduc-
tion to previous investigations, relevant theory, the most ground-breaking previous experiments,
and ideas for future experiments. The organization of the report should facilitate location of in-
formation relevant to any and all aspects of the project. The lengthy bibliography is reasonably
comprehensive.

The result sections of the thesis are based on three experiments which were performed in 2012
and 2013 at the instruments EIGER and RITA II at Paul Scherrer Institut in Switzerland prior
to my involvement in the project and one experiment executed in 2014 at C5 at Chalk River
National Laboratories in Canada in which I have participated.

Enjoy yourself!
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Abstract

The frustrated and multiferroic system h-YMnO3 has been investigated with elastic
neutron scattering, revealing the antiferromagnetic ordering temperature TN = 72.0 K and
the associated critical exponent β = 0.196. The two critical exponents γ = 1.55 and ν =
0.614 associated with diffuse scattering around the (1 0 0) magnetic Bragg peak were also
determined.

Inelastic neutron scattering experiments revealed the magnon dispersions around the
(1 0 0) magnetic Bragg peak in agreement with previous experiments. Transverse energy
scans in the ab-plane, from the (0 3 0) zone center to the zone boundary, showed a clear
transverse phonon. Below the magnetic ordering temperature at T = 40 K at the zone
boundary, a crossing of a phonon and a magnon dispersion was observed, and polarized
neutron scattering experiments, separating the magnetic and structural signal, revealed
that the modes were mixed at the crossing point and changed nature beyond the zone
boundary. These mixed modes, i.e. excitations associated with multiferroic systems, is the
first example of mixed modes observed at the zone boundary in h-YMnO3.

A magnetic signal observed at T = 100 K, well above the magnetic ordering temperature,
that seems to be part of a dispersion, may be the reason for the spin fluctuations suppressing
the thermal conductivity in the system at high temperatures.
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Introduction

1 Introduction

The introduction section is a short motivation where the key concepts and the structure of the
thesis are explained. A justification for the selection of topics from the huge field of multiferroics
is included here.

1.1 Motivation

In recent years combing different physical properties in the same chemical compound in order to
create new exotic phenomena has become popular. These materials will, hopefully, become the
building block for future electronic devices, revolutionizing the data storage industry.

One group of materials that contains different physical properties in the same phase are
the so-called multiferroics. A multiferroic material orders in more than one way in the same
phase, which is rare because the different orderings, in general, compete as they originate from
completely different physical phenomena. A thorough introduction to multiferroic systems will
be presented in Sec. 2.5.

The multiferroic system on which this report is based, yttrium manganate (YMnO3), is
magnetically and electrically ordered in the same phase. YMnO3 is a model system for what
is known as a type I multiferroic, where the two phases are entered at different temperatures.
It is simple because it contains only one magnetic ion, Mn 3+. Unfortunately, YMnO3 does not
become multiferroic until cooled to below 70 K and it is therefore not a viable component of
hard disks or other room temperature electronic devices. The known properties of YMnO3 and
previous measurements are presented in Sec. 4.

Figure 1.1: The last decade the research field of multiferroics and magnetoelectrics has
dramatically increased. From [64]. The numbers for 2012 and 2013 are 1188 and 1176,
respectively [93].

The implications and potential applications of the magnetoelectric effect have led to the recent
explosion of scientific interest in the field of multiferroics, Fig. 1.1. The magnetoelectric effect is
the coupling between magnetic and electric order parameters. This effect makes it possible to
switch the electric polarization with a magnetic field and to switch the magnetization with an
electric field. In the context of hard disks this effect might be useful. In standard hard disks one
writes and reads with magnetic fields, which is difficult, and therefore expensive. With a hard
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1.2 Magnetoelectric effect

disk made of multiferroic materials using electric fields, as well as magnetic fields, in the process
would be possible, reducing the cost.

For this goal to be realized, understanding a multiferroic system like YMnO3 at an atomic
level is necessary; this thesis is one of many steps toward that goal.

1.2 Magnetoelectric effect

The magnetoelectric effect, the coupling between polarization and magnetization in a material,
is the driving force in the field of multiferroics due to the mentioned applications. In Fig. 1.2 the
coupling, where it is possible to drive the polarization with a magnetic field and the magnetization
with an electric field, is illustrated.

Figure 1.2: The ordering of charges results in a spontaneous polarization and the
ordering of spins gives the system a spontaneous magnetization. The polarization can be
switched by an electric field and the magnetization can be switched by a magnetic field.
When both orderings are present in the same material simultaneously, the dream is to
exploit the coupling in the function of hard disks. From [36].

The linear magnetoelectric effect can be revealed by examining the free energy F equation
[50]:

F (E,H) = F0−PSi Ei−MS
i Hi−

1

2
ε0εijEiEj−

1

2
µ0µijHiHj−

1

2
βijkEiHjHk−

1

2
γijkHiEjEk− ...

(1.1)
where P is the electric polarization, M is the magnetization, H is the magnetic field and E is
the electric field. By differentiating the free energy with the electric field E and the magnetic
field H, the following expressions for the polarization and magnetization are obtained:

Pi(E,H) = − ∂F
∂Ei

= PSi + ε0εijEj + αijHj +
1

2
βijkHjHk + γijkHiEj + ... (1.2)

Mi(E,H) = − ∂F

∂Hi
= MS

i + ε0εijHj + αijEj + βijkEiHj +
1

2
γijkEjEk + ... (1.3)
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where ε and µ are the electric and magnetic susceptibilities, respectively. α is the linear mag-
netoelectric coupling constant. The higher order couplings, β and γ are much smaller than the
first order coupling α.

The magnetoelectric effect is not the only possible coupling in multiferroic materials. Some-
times the coupling is very weak and driven by a mechanism other than the ones creating the
polarization or the magnetization. In YMnO3, the linear coupling is symmetry forbidden and
only higher order magnetoelectric couplings are present. Therefore the magnetoelectric effect is
weaker in YMnO3 than in compounds where the coupling is of first order.

1.3 Symmetry

Symmetry considerations are important when working with multiferroics and one of the reasons
why they are rare. In Fig. 1.3 the different types of ”ferroic” orderings and their space and time
symmetry properties are shown. Only ferroelectrics and (anti)ferromagnets are described in this
thesis in Sec. 2.4 and Sec. 2.2, respectively.

Figure 1.3: Ferroelastics are both time and space invariant. Ferroelectrics are time
invariant but break space inversion symmetry. Ferromagnetics are space invariant but
break time inversion symmetry and ferrotoroidics break both symmetries. From [89].

The ferrotoroidic order, combining both symmetry breakings in one property, is the newest
research field in the multiferroics community, but it will not be discussed further in this thesis,
and is merely shown here to give the entire picture of the field.

1.4 Neutron scattering

When determining where atoms are and what they do, neutron scattering is the ultimate exper-
imental method. Neutrons can interact with both the nucleus of an atom, determining crystal
structures and lattice vibrations, and with the unpaired electron spins revealing magnetic prop-
erties. Many different neutron scattering techniques were utilized for examining YMnO3; the
theory behind neutron scattering is given in Sec. 3.1.
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Theoretical background

2 Theoretical background

In this section the relevant theory for understanding the project will be presented, including
an introduction to magnetism, the relevant crystal structures, and exotic concepts such as mul-
tiferroism and frustration. The section concludes with a presentation about the macroscopic
properties of materials, how they are measured and what can be learned about microscopic
properties from bulk measurements.

2.1 Crystals and reciprocal space

A material is characterized as a crystal if it has a unit of atoms, called the unit cell, that, if
repeated by translation, creates the crystal structure. All crystals belong to a lattice system and
a space group.

There are seven lattice systems: triclinic, monoclinic, orthorombic, tetragonal, trigonal,
hexagonal and cubic [51]. There are 14 Bravais lattices (1 triclinic, 2 monoclinic, 4 orthorom-
bic, 2 tetragonal, 1 trigonal, 1 hexagonal and 3 cubic), and 230 space groups. The space group
determines the symmetry operations of a crystal. The space group notation is Xdef where
X = P (primitive), I (body-centered), F (face-centered), C (side-centered) or R (rhombohedral)
describes the lattice type and def are the three most important symmetry operations of the
system, with glide planes and screw axes included [51]. In appendix A-C, examples of three
primitive space groups and their symmetry operations are listed. When the space group is
known, all symmetry operations and therefore reflections in reciprocal space can be calculated.
The space group coupled with lattice dimensions predicts systematic absences and diffraction
patterns.

When examining the properties of crystals with X-ray, neutron or electron diffraction tech-
niques, the data received gives information about the Fourier transform of the crystal structure
and dynamics. This Fourier transform1 of real space is called the reciprocal space (or k-space
or momentum space). All crystal structures have a crystal lattice in real space defined by real
space lattice vectors [45]:

r = naa + nbb + ncc (2.1)

and the reciprocal lattice is spanned by reciprocal lattice vectors:

Ghkl = ha∗ + kb∗ + lc∗ (2.2)

defined by:

a∗ = 2π
b× c

a · b× c
b∗ = 2π

c× a

a · b× c
c∗ = 2π

a× b

a · b× c
(2.3)

Ghkl is normal to the family of (h k l) planes in the real lattice. The connection between the
reciprocal lattice vectors and real space lattice spacings is given by:

dhkl =
2π

|Ghkl|
(2.4)

where dhkl is the spacing between the (h k l) layers, see Fig. 2.1.

1The Fourier transform is given by F (k) =
∫∞
−∞ f(k) exp(−ik · r)d3r, where k is the momentum and r is the

real space lattice vector.
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2.1 Crystals and reciprocal space

Figure 2.1: The lattice spacing and the lattice planes in a cubic structure. d100 is the
distance between the (1 0 0) lattice planes, which are colored red.

For a simple cubic crystal the real and reciprocal lattices are identical except for the lattice
dimensions as can be seen in Fig. 2.2. The hexagonal structure, which is the relevant structure
in this thesis, has almost the same real and reciprocal lattice. The only difference is the side
lengths and a 30 ◦ rotation around the hexagonal axis (the z-axis), Fig. 2.3 .

Figure 2.2: The first Brillouin zone contains all information about the lattice vibrations
in the solid. Each k-vector outside the Brillouin Zone is mathematically equivalent to
one k-vector inside the zone. a) The relation between the crystal structure in real and
reciprocal space for a primitive cubic structure. The Brillouin zone is marked with pink.
b) The real and reciprocal lattice points for a primitive hexagonal lattice. The Brillouin
Zone is marked with pink. Adapted from [94].

For the hexagonal structure the translation vectors in real space are given by:

a = ax̂ b =
a

2

(
x̂ +
√

3ŷ
)

c = cẑ (2.5)

where the side lengths a = b 6= c. Inserting this into Eq. (2.3) the reciprocal lattice vectors for
the hexagonal system is obtained:

a∗ =
2π

a
√

3

(√
3x̂ + ŷ

)
b∗ =

4π

a
√

3
ŷ c∗ =

2π

c
ẑ (2.6)

and the unit cell volume Vc is given by:

Vc = a2c sin(60 ◦) =

√
3

2
a2c (2.7)
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Not all of reciprocal space needs to be mapped out when examining a crystal. For example,
when looking at crystal vibrations (see Sec. 2.6) it is only necessary to look at one Brillouin zone
(a volume surrounding one reciprocal lattice point) because the properties of lattice vibrations
are periodic in reciprocal space. The Brillouin zone is constructed by drawing lines from one
reciprocal lattice point to another and thereafter constructing lines that are perpendicular to the
first ones at their midpoints. The primitive cubic and hexagonal Brillouin zones in two dimensions
can be seen in Fig. 2.2 and the three dimensional hexagonal Brillouin zone is depicted in Fig. 2.4.

Figure 2.3: The hexagonal unit cell is spanned by the reciprocal lattice vectors a*, b*
and c*. The unit cell contour is marked with red. Adapted from [70].

Figure 2.4: The symmetry points spanning the Brillouin zone are conventionally named
with capital letters. The zone center, for example, is always called Γ. The notation is used
when plotting dispersion relations in different directions of reciprocal space, providing
a convention for plotting multiple high symmetry directions in a single two-dimensional
plot. Adapted from [70].

2.2 Magnetism

Refrigerator magnets and compass needles are the most well-known type of magnets because their
macroscopic magnetization is easily observed. But there are many other types of magnetism –
some of which do not arise until the material is cooled close to the absolute zero temperature.
But what is the origin of magnetism?

In short, magnetism arises due to unpaired electrons. Electrons have an electric charge and
when they orbit the atomic nucleus they form a closed circuit, and induce a magnetic moment
[4], see Fig. 2.5.
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2.2 Magnetism

Figure 2.5: The magnetic moment µ
points perpendicular to the plane S which is
encircled by a current loop I. The magnetic
moment could, for example, be induced by
the orbital motion of an electron.

When determining the magnetic properties of a material, the orbital angular momentum L of
the electron and the intrinsic angular momentum, called spin S, as well as the coupling between
the two, needs to be considered. The total angular momentum is given by J = L + S. In some
cases J is a good quantum number – in some cases it is not. The ground state for a particular
ion can be determined by Hund’s empirical rules:

1. Maximize S: This minimizes the Coulomb repulsion energy because the spins are placed
as far away from each other as possible, in different orbitals. The spacial part of the wave
function has to be antisymmetric.

2. Maximize L: This also minimizes the Coulomb repulsion because the spins move in phase.

3. J = |L − S| if the shell is less than half full or J = |L + S| if the shell is more than half
full, which is related to minimizing the spin-orbit coupling energy.

According to Hund’s rules the estimated ground state magnetic moment is given by µeffective/µB =
gJ
√
J(J + 1) where gj is the Landé g-factor [38]:

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(2.8)

Hund’s rules work well for rare earth metal ions because their unfilled 4f -orbitals are low-lying
and screened by the 5s and 5p-orbitals and the orbitals of the ligands will not change the energy
of the 4f -orbitals. It is a different matter with transition metal ions where Hund’s third rule is
partially overruled by both the crystal field2 and Jahn-Teller distortions3 because the d-orbitals
overlap with the p-orbitals from the ligands. The crystal field will lower the energy of some
orbitals and increase the energy of other orbitals, and the electrons will occupy the orbitals with
the lowest energy.

For the transition metal ion Mn 3+, applying Hund’s rules gives the ground state quantum
number S = 2, L = 2 and J = 0 and the magnetic moment µeffective/µB = 0. This is not true
and the reason is orbital quenching [45]. For transition metal ions the predicted moment is much
closer to the experimental value if L = 0 so that J = S and gJ = 2 and the ground state magnetic
moment given by:

µeffective/µB = 2
√
S(S + 1) (2.9)

For the Mn 3+ ions, Eq. (2.9) gives µeffective/µB = 4.9 whereas the experimental value is
µexperimental/µB = 4.82 [4]. The spin-orbit coupling can be included as a perturbation which
results in a ground state that is quenched, but with a g-value that differs slightly from the spin-
only g-value of 2. The deviation from 2 gives an idea of the size of the spin-orbit coupling. The

2When a transition metal ion is free, it has spherical symmetry and the d-orbitals are degenerate, but when
the ion is surrounded by ions in a crystal lattice, the spherical symmetry is broken and the atomic orbitals are
no longer degenerate. This is called the crystal field splitting.

3In some crystal environments an elongation of one of the crystal axes can lower the symmetry and also the
energy of the system. This is called a Jahn-Teller distortion.
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2.2 Magnetism

ordering of magnetic moments, and thereby the origin of magnetism, is mediated by the quantum
mechanical exchange interaction. The simplest mathematical expression for the exchange energy
is the Heisenberg Hamiltonian, which describes the interaction between spins Si and Sj .

H = −
∑
ij

JijSi · Sj (2.10)

where Jij is the exchange interaction. Jij > 0 favors a parallel spin arrangement to minimize
the energy and Jij < 0 favors an anti-parallel spin arrangement to minimize the energy.

When a magnetic material is cooled down below some critical temperature Tc, time-reversal
symmetry (and sometimes rotational and translational symmetry) breaks spontaneously and the
magnetic moments arrange themselves relative to each other. If all the spins are parallel, the
system is ferromagnetically ordered. If the spins are anti-parallel the order is antiferromagnetic.
These two types of magnetic orderings are depicted in Fig. 2.6. For a ferromagnet the critical
temperature is called the Curie temperature TC and the order parameter is the magnetization
M, defined as the sum over all the magnetic moments µ:

M =
∑
i

µi (2.11)

The order parameter is a parameter that is zero above the critical temperature and non-zero
below the critical temperature. The Néel temperature TN is the critical temperature for an
antiferromagnet. Because the magnetization is zero, the order parameter of the phase transition
is the staggered magnetization i.e. the sum of the magnetizations of the individual lattices with
spin up and spin down: MA −MB.

Figure 2.6: a) The black arrows indicate a ferromagnetically ordered spin configuration.
b) One can think of the antiferromagnetic spin configuration as two combined lattices
where half the spins point up (blue arrows) and the other half point down (brown arrows).

There are many exchange interactions which couple the spins to each other. Two of them
will be presented below: the superexchange interaction and the Dzyaloliskii-Moriya interaction
(or just DM-interaction).

The ”super” in superexchange interaction means that the coupling is not directly between the
magnetic ions, but mediated by a non-magnetic ion. The size of the interaction depends on the
size of the overlap between the orbitals so the angle between the magnetic ions and the ligand
is important. The superexchange interaction lowers the kinetic energy by delocalizing electrons
throughout the crystal structure. The superexchange interaction favors antiferromagnetic order-
ing as depicted in Fig. 2.7. A ferromagnetic coupling would prevent the delocalization because
of Pauli’s exclusion principle.

The DM-interaction is a relativistic correction to the superexchange interaction. It arises
due to spin-orbit coupling, and the strength of the interaction is proportional to the spin-orbit
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2.3 Geometrical frustration

Figure 2.7: The superexchange interaction is mediated by
the bridging ion (in this case oxygen). The spins creating
the magnetism in the magnetic ion (in this case Mn 3+)
can move, via the p-orbitals of oxygen and thereby become
delocalized. Adapted from [81].

coupling. In materials with transition metal ions, the DM-interaction is small because of orbital
quenching. The DM-interaction is a ferromagnetic interaction with the Hamiltonian:

HDM = D12 · (S1 × S2) (2.12)

where the coupling constant D12 depends on the vector between the two magnetic sites r12 and
the displacement vector of the ligand out of the plane x, Fig. 2.8:

D12 ∝ (x× r12) (2.13)

Figure 2.8: The Dzyaloshinskii-Moriya
interaction induces a small net magnetic
moment perpendicular to plane of which
the spins have ordered. From [13].

To determine the magnetic structure of a crystal, one needs to know the direction and magnitude
of all the magnetic moments on all of the magnetic ions. Those can be found with neutron
scattering (see Sec. 3.5.2).

2.3 Geometrical frustration

The antiferromagnetic exchange interaction can make things complicated if the system, for ge-
ometrical reasons, cannot fulfill the antiferromagnetic interactions [4]; this is the case for a
triangular lattice. An illustration of the problem with three spins can be seen in Fig. 2.9. In
this case only one spin is frustrated because it cannot be antiparallel to both its neighbors, but
if the structure is expanded to include more spins the system will contain many frustrated spins
that will fluctuate. It is not possible to satisfy all the interactions in the system to find a ground
state, which creates both a degeneration of the ground state energy and a larger entropy.

The entropy S is given by:

S = kB ln(# of states) (2.14)

For N spins that can either point up or down, resulting in 2N possible states, Eq. (2.15) gives
the maximal value of the entropy:
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Figure 2.9: In a antiferromagnetically coupled
triangular lattice, one of the spins is frustrated.
a) S = 1/2 case, the first two spins are anti-
parallel, but the third spin can not pick a satis-
factory direction. No matter what the third spin
chooses one of the neighbors in the triangle will
not have the energy minimized. b) In the classi-
cal magnet the spins tend to turn and point in a
120 ◦ angle with respect to each other minimizing
the frustration.

Smax = NkB ln(2) (2.15)

For the three spins in Fig. 2.9 the number of states is 23 i.e. S = 3kB ln(2).

2.4 Ferroelectricity

Ferroelectricity was first discovered in Rochelle salt (KNaC4H4O6 · 4 H2O) in 1921 [86], where
the first polarization hysteresis loop was measured. Since then many other compounds have been
discovered and ferroelectric materials are used in many electronic devices today.

A ferroelectric material attains a stable and switchable electric polarization at a critical
temperature Tc where it goes from a paraelectric phase to a ferroelectric phase. It is a structural
phase transition where atomic displacement changes break inversion symmetry and thereby create
a permanent polarization, inducing a surface charge.

The Landau Theory is accurate for systems with long range order and thereby ferroelectrics.
All ferroelectrics are insulators. If they were not, an applied electric field would create a current
flow instead of a permanent polarization. There are two groups of ferroelectrics: proper ferro-
electrics and improper ferroelectrics [92]. The difference between the two types is the mechanism
that breaks the inversion symmetry and thereby induces a polarization in the system. Examples
of proper and improper ferroelectrics can be found in Table 2.1.

Some proper ferroelectrics and some improper ferroelectrics are type I multiferroics, while a
few of the improper ferroelectrics are type II multiferriocs, which will be discussed further in
Sec. 2.5.

Type Mechanism creating ferroelectricity Compound

Proper Covalent bonding between d0-orbital and ligand BaTiO3, PbTiO3, PbZrO3

Proper Polarization of lone pair BiMnO3*, BiFeO3*, PbVO3*
Improper Charge ordering LuFe2O4*, Ca3CoMnO6*, TbMn2O5**
Improper Magnetic (collinear) ordering o-RMnO3**, R = Y, Ho
Improper Magnetic (spiral) ordering Ni3V2O6**, MnWO4**, o-RMnO3**, R = Tb, Dy, Gd
Improper Structural transition h-RMnO3*, R = Y, Yb, Ho, In

Table 2.1: Examples of proper and improper ferroelectrics. The compounds marked
with * are type I multiferroics and the compounds marked with ** are type II multifer-
roics. From [13], [36] and [92].

2.4.1 Proper ferroelectrics

The primary order parameter in a proper ferroelectric is the ferroelectric distortion. The size
of the spontaneous polarization P for a proper ferroelectric is around 100µC/cm2 [92]. In a
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proper ferroelectric, an ionic displacement breaks inversion symmetry. There are two different
ways of inducing ferroelectricity in a proper ferroelectric: by creating a covalent bond between
a d0-orbital (an empty d-orbital) and a p-orbital and by the polarization of a s2 lone pair; both
are explained below.

The mechanism using a d0-orbital works by displacing a non-magnetic ion away from the
center of its surrounding anions and thereby creating an electric dipole moment in the material.
This off-center displacement stabilizes the system because the non-magnetic ion is positive and
the ligands are negative and the displacement creates a strong covalent bond with the surrounding
ions, see Fig. 2.10. Examples are BaTiO3 and PbZrO3; these compounds contain the d0-ions
Ti 4+ and Zr 4+, respectively, that form a covalent bond with oxygen ions. Ferroelectrics created
by the d0-orbital mechanism can never be magnetic.

Figure 2.10: a) Visualization of the angular part of the (green) d-orbitals being shifted
towards the angular part of the (blue) p-orbital of one of the surrounding oxygen atoms.
b) If the d-orbital is empty no electrons will occupy the anti-bonding molecular orbital
and the overall energy is lowered by the creation of a covalent bond. On the other hand
if the transition metal has a magnetic moment i.e has unpaired electrons in the d-orbital,
the anti-bonding molecular orbital will be occupied (illustrated with a dashed arrow) and
the shift is not favourable for the system. Ed is the energy of the d-orbital, Ep is the
energy of the p-orbital and ∆ indicates the energy difference between Ed and Ep. From
[35].

The other mechanism that can create a proper ferroelectric is the polarization of a lone
pair, which makes it possible for a compound with d-electrons to be ferroelectric, Fig. 2.11.
For example, the two compounds BiMnO3 and BiFeO3 contain magnetic Mn 3+ and Fe 4+ ions,
respectively. This makes it unfavorable to create a covalent bond with the ligands as shown
in Fig. 2.10 b) because the anti-bonding molecular orbital is occupied. Instead, the materials
create a polarization with the lone pair on the Bi 3+-ions. The polarization is created because the
lone pair shifts away from its centrosymmetric position compaired to the surrounding ligands,
creating hybridized sp2 or sp3 states with the low-lying p-orbitals [92]. The lone pair induced
ferroelectrics can be magnetic if they contain a magnetic ion in the B-site (ABO3) and are
therefore interesting in relation to multiferroics.
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Figure 2.11: Illustration of a
lone pair induced polarization.
If all the 6s2-lone pairs on Bi 3+

(marked with yellow) order, a
polarization is induced in the di-
rection of the green arrow. The
red spheres are the transition
metal ions (Mn 3+ or Fe 4+) and
the blue spheres represent oxy-
gen. From [36].

2.4.2 Improper ferroelectrics

An improper ferroelectric is a material where the ferroelectricity is a byproduct of some other
mechanism. For example, it could be the creation of magnetic ordering that induces a polarization
[36]. Ferroelectrics of this kind are called ”magnetic ferroelectrics”4. Another mechanism could
be a structural transition that creates a ”geometrical ferroelectric” or it could be induced by
charge ordering creating ”electronic ferroelectrics”. Illustrations of the different mechanisms
inducing ferroelectricity can be seen in Fig. 2.12. The polarization size for improper ferroelectrics
is typically two to three orders of magnitude smaller than for proper ferroelectrics [13].

2.5 Multiferroics

Multiferroic materials combine the different orderings (anti)ferromagnetism, ferroelectricity and
ferroelastisity in the same structural phase. A ferromagnet shows hysteresis in the magnetization
M, a ferroelectric shows hysteresis in the polarization P and a ferroelastic shows hysteresis in
strain σ. As illustrated in Fig. 2.13, multiferroic systems show hysteresis loops in all their
order parameters. Because the different order parameters are present in the same phase they
are coupled to each other. However, the amount of coupling differs greatly from compound to
compound.

The most desired effect, which has been studied extensively, is the magnetoelectric coupling,
where it is possible to control magnetization with an electric field and control polarization with a
magnetic field. To a first approximation, the magnetoelectric coupling is at first glance possible
in systems with any type of magnetic long range ordering and a spontaneous electric polarization,
hence many different compounds have been studied.

The multiferroic properties are attractive because they may have practical applications, but
multiferroic systems are rare. This is because ferroelectriciy and ferromagnetism in most cases
are incompatible [26]. The first problem is symmetry. Magnetism breaks time reversal and
ferroelectics break inversion symmetry, as illustrated in Fig. 2.14. In multiferroics time and
space inversion symmetry needs to be broken simultaneously, which restricts the abundance of
multiferroic materials.

Out of the 122 Shubnikov magnetic groups (crystallographic space groups combined with
time inversion symmetry) [26] only 31 allow a spontaneous polarization and 31 allow a spon-
taneous magnetization. The only 13 groups that are found in both groups and thereby allow
for simultaneous polarization and magnetization. These are: 1, 2, 2′, m, m′, 3, 3m′, 4, 4m′m′,
m′m2′, m′m′2′, 6 and 6m′m′ [92], where 1, 2, 3, 4 and 6 are pure 1-fold, 2-fold, 3-fold, 4-fold and

4Magnetic ferroelectrics are always multiferroics and have created at new class of multiferriocs called type II
multiferroics. This will be discussed further in Sec. 2.5
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Figure 2.12: a) Illustration of a geometrically induced polarization. The tilting of the
Mn-polyhedra indicated with the blue arrows moves the oxygen ions (blue spheres) closer
to the yttrium-ions (orange spheres) and thereby induce a polarization. The Mn-ions are
stationary in the process. This is the mechanism for h-YMnO3, which is the focus of this
thesis. From [36]. b) Illustration of three different types of charge ordering. The leftmost
picture illustrates site-centered charge order. The middle picture shows bond-centered
charge ordering and the picture to the right shows a combination of the charge orderings
which breaks inversion symmetry and thereby creates a polarization indicated with the
green arrows. From [19]. c) Illustration of a magnetic spiral induced polarization. From
[69]. d) Illustration of a magnetic collinear induced polarization in Ca3CoMnO6. The
red spheres are the Mn 4+-ions and turquoise spheres are Co 2+-ions, which order in a
↑↑↓↓ (two spins pointing up followed by two pointing down) inducing different directions
of the polarization shown with a red arrow. From [14].

6-fold rotation axis, respectively, m is a mirror plane and ′ represents time inversion. In the 1
group both the spins and the polarization can point in arbitrary directions. In the 2′ and m′m2′

groups the spins must point perpendicular to the 2-fold axis and in the m′ group the spins can
point in any direction in the plane. In the m group the spins must point perpendicular to the
plane. In the 2 and m′m′2 group the spins must point along the axis. For the rest of the groups,
3, 3m′, 4, 4m′m′, m′m′2′, 6 and 6m′m′, the spins must point along the axis of higher order.
Furthermore, very few of the materials belonging to these 13 groups are in fact multiferroics.

This is due to the competing origins of the different orderings. As shown in Table 2.1 most
systems that are ferroelectric contain a non-magnetic transition metal ion and for systems to order
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2.5 Multiferroics

Figure 2.13: A multiferroic material possesses two or all of the following properties:
(anti)ferromagnetism, ferroelectricity, and ferroelastisity. The magnetization (polariza-
tion or strain) can be switched by a magnetic (electric or stress) field. If a sample is
ferroelectric and ferromagnetic simultaneously the coupling between the two order pa-
rameters may make it possible to switch the magnetization with an electric field and vice
versa. From [64].

(anti)ferromagnetically they need to contain a ion with unpaired spins. In addition, materials
that contain magnetic ions tend to be metallic and not insulators which makes it impossible to
be ferroelectric [26].

2.5.1 Type I multiferroics

In type I multiferroics the ferroelectric phase transition often occurs at higher temperatures than
the magnetic ordering temperature, Tc > TN , since the two orderings originate from different
sources. The spontaneous polarization is quite large for these multiferroics, but the coupling is
weak due to the different origins.

Of the proper ferroelectrics only the lone pair induced can be multiferroics, see Table 2.1.
BiFeO3 attains a polarization of P = 75µC/cm2 below Tc = 1103 K and orders magnetically
below TN = 643 K [92]. It is the only known room temperature multiferroic. Another multiferroic
in this class is BiMnO3, which is special because both the magnetization and polarization are
quite large. It enters the ferroelectric phase below Tc = 800 K with a polarization of P =
20µC/cm2 and orders magnetically below TN = 100 K.

Of the improper ferroelectrics, the ones induced by charge ordering and geometric distortions
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2.5 Multiferroics

Figure 2.14: Multiferroics are rare because of symmetry restrictions. a) The magneti-
zation in a ferromagnet changes sign under time-inversion, but is unchanged under space
inversion. b) The ferroelectric polarization is invariant under time-inversion and changes
sign under space inversion. c) A multiferroic system needs to break both time and space
inversion simultaneously. Otherwise it is not possible for the two properties to coexist in
the same phase. From [18].

are contained in this group. Hexagonal HoMnO3 is one of the geometric ferroelectrics with a
polarization P = 5.6µC/cm2 attained below Tc = 950 K and with a magnetic ordering of the
Mn 3+-ions below TN = 76 K and ordering of the Ho 3+-ions at TC = 5 K. Hexagonal HoMnO3

is closely related to the compound examined in this thesis, hexagnoal YMnO3, except for the
presence of the magnetic rare earth ions.

The problem with the type I multiferriocs is that only a weak indirect coupling between
the two order parameters can occur because the phase transitions are far apart in temperature,
originating from the different mechanisms and for symmetry reasons.

2.5.2 Type II multiferroics

The magnetically induced ferroelectrics are called type II multiferroics. The ferroelectricity only
exists in the magnetically ordered phase i.e. Tc ≤ TN [36] and the ferroelectricity would not
exist without the magnetic order and the coupling between the two order parameters is large.

Examples of type II multiferroics are TbMnO3, TbMn2O5, Ni3V2O6 and MnWO3 [36]. They
all have a spiral magnetic ordering due to spin-frustration that breaks inversion symmetry and
thereby allows polarization. In the Tb-compounds, the influence of a magnetic field on the
polarization is large [37].

The other group of systems that are type II multiferroics are the ones with collinear magnetic
ordering. An example is Ca3CoMnO6 [14] where the different magnetic ions Mn 4+ and Co 2+

result in a one-dimensional frustration of the spins, called exchange striction, between ferromag-
netic and antiferromagnetic couplings due to magnetic order of the form ↑↑↓↓ (two spins pointing
up is followed by two pointing down). The two spins in the middle are frustrated because they
cannot fulfill being either ferromagnetically coupled or antiferromagnetically coupled to both
neighbors. In the family of orthorombic RMnO2, where R is a small rare earth ion like Y 3+
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and Ho 3+, the ferroelectricity is also induced by the magnetic ↑↑↓↓ ordering of the Mn 3+-ions.
The frustration pushes the oxygen ions in a direction perpendicular to the plane of the magnetic
ordering [46].

2.5.3 The RMnO3 multiferroics

Let us take a closer look at the multiferroics of the form RMnO3 where R is a rare earth ion or
the transition metal ions Sc, Y, In and Lu [58]. These transition metal ions all behave like the
rare earth ions because they are positioned in group 3 and 13 and therefore have the preferred
oxidation number 3+ like the rare earth metals. RMnO3 can crystallize in two different forms:
orthorhombic (perovskite) (o-RMnO3) and hexagonal (h-RMnO3). A periodic table where the
relevant elements are marked can be found in appendix D.

In the orthorhombic form the Mn 3+-ions are surrounded by six oxygen atoms in an octahe-
dral environment. All the mentioned R ions can form crystals of the orthorhombic form. Only
the smallest R-ions (Ho, Er, Tm, Yb, Sc, Y and Lu) can form the hexagonal crystal form natu-
rally5, whereas the Mn 3+-ions are surrounded by only five oxygen ions in a trigonal bipyramidal
environment. The trigonal and orthorhombic metal ion environments give rise to different orbital
splittings of the Mn-ion orbitals [4]. In both the orthorhombic and the hexagonal form the nature
of the R-ions, whether if the ion is magnetic or not, influences the multiferroic properties.

All the orthorhombic forms are type II multiferroics with spiral or collinear magnetic ordering
that induces the ferroelectricity.

The hexagonal forms are type I multiferroics with a magnetic transition temperature well
below the ferroelectric ordering temperature. If they contain magnetic rare earth ions, these
order below the Mn 3+ ordering temperature.

In Sec. 4 the type I multiferroic hexagonal YMnO3 where Mn 3+ is the only magnetic ion, is
investigated further.

2.6 Elementary excitations

In all ordered phases there are elementary excitations and studies of the excitations reveal dy-
namic properties, see Table 2.2.

Ordering Broken Symmetry High T Phase Low T Phase Order parameter Excitations
Crystal Translation & rotation Liguid Solid ρG Phonons
Ferromagnet Rotation & time Paramagnet Ferromagnet M Magnons
Antiferromagnet Rotation & time Paramagnet Antiferromagnet M = M↑ −M↓ Magnons
Ferroelectric Inversion Paraelectric Ferroelectric P Soft Modes
Ferroelastic Paraelastic Ferroelastic σ
Multiferroic Inversion & time Paraelectric & paramagnet Multiferroic P & M & σ Electromagnons

Table 2.2: When a system enters the low T phase from the high T phase the symmetry
is broken. The order is weakened by excitations in the order parameter.

There are two different types of phase transitions: first order phase transition where the
change in the order parameter across the critical temperature is discontinuous and second order
phase transitions with a continuous change in the order parameter across the critical tempera-
ture. An example of a first order phase transitions is the melting of ice. Most magnetic phase
transitions are second order phase transition and are characterized by a divergent susceptibilty,
an infinite correlation length, and an exponential decay of correlations near criticality. The

5For the small R-ion compounds the perovskite structure is only metastable and the synthesis needs to be
done under high-pressure conditions [46].
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exponent of the power law decay is called a critical exponent and the critical exponent helps
determine the nature of the system. The critical exponent for the decay of the magnetization M
is called β and determined by a fit to [4]:

M ∝ (TC − T )β (2.16)

for T < TC . Different magnetic models have their own β-value: the Mean-Field model (β = 1/2),
the two-dimensional Ising model (β = 0.125), the three-dimensional Ising model (β = 0.326) and
the 3-dimensional Heisenberg model (β = 0.367) [4]. The β-value for a given material contains
information about which of the simple models best describes the system.

The β-value is determined by measuring the intensity of a magnetic Bragg peak around the
transition temperature and then fitting the data to the power law in Eq. (2.16). The points used
for fitting should be chosen with care, since the law is only valid for temperatures close to TC .
If critical scattering6 is present close to TC those points should not be included either.

2.6.1 Lattice vibrations

In crystals the elementary excitations are vibrations in the lattice. The energy of the vibra-
tion depends on where in the Brillouin zone it is found. The energy of a lattice vibration is
quantized and called a phonon. Every atom has three degrees of freedom and therefore three
modes of vibration (along x, y and z): two transverse movements where the displacement of the
atoms is perpendicular to the propagation direction q and one longitudinal movement where the
displacement of the atoms is parallel to the propagation direction of the vibration, Fig. 2.15.

Figure 2.15: a) The displacement of the atoms is parallel to the propagation direction
q for longitudinal phonons. a is the lattice spacing between adjacent layers r and r + 1
and the dispacements away from equilibrium is given by u. b) For transverse phonons
the displacement of the atoms is perpendicular to the propagation direction q.

6When approaching a critical phase transition, for example going from a paramagnetic phase to a ferromagnetic
phase, small regions of the ferromagnetic phase appear in the paramagnetic phase (approaching TC from high
temperatures) and small regions of the paramagnetic phase appear in the ferromagnetic phase when approaching
TC from low temperatures. These small regions are short-lived and fluctuate and give rise to critical scattering.
When reaching the critical temperature, from both below and above, the regions increase in size and diverge at
the critical point [15].

17 of 137



2.6 Elementary excitations

For a crystal with p atoms in the unit cell and N unit cells, there are in total pN atoms. In this
crystal there are 3pN degrees of freedom. In the Brillouin zone the number of allowed q-values
is N , so the number of acoustic phonons is 3N . The dispersion relation for a one-dimensional
acoustic phonon branch can be seen in Fig. 2.16 b).

Figure 2.16: a) The movements of the atoms in both an acoustic phonon and an optical
phonon in a one-dimensional chain with two different atoms. In an acoustic phonon the
atoms are in phase and in the optical phonon the atoms are out of phase. b) The
dispersion of an acoustic and optical phonon in a di-atomic chain with lattice spacing a
in the first Brillouin zone. The amplitude at the zone boundary (q = π/a) is a measure
of the spring constant. From [95].

The remaining (3p− 3)N degrees of freedom belong to the optical phonons. The amplitudes
of the phonons are given by the dispacement of the atoms from equilibrium. For a chain with
one kind of atoms of mass m in the unit cell the energy of the lattice vibrations can be described
by the following Hamiltonian:

H =

N∑
i=1

p2
i

2m
+

1

2
mω2

∑
<ij>

(xi − xj)
2 (2.17)

where the first term is the kinetic energy and the second term is the potential energy of a harmonic
oscillator with spring constant K = mω2 summed over nearest neighbors. The frequency ω for
a chain with two different atoms m1 and m2 in the unit cell is given by [38]:

ω2
±(q) = K

(
1

m1
+

1

m2

)
±K

√(
1

m1
+

1

m2

)2

−
4 sin2

(
qa
2

)
m1m2

(2.18)

For each q value there are two branches of ω. The plus sign ω+(q) gives the frequency of the
optical phonon branch. The dispersion for a one-dimensional optical phonon can be seen in
Fig. 2.16 b). In the long wave length limit (for small qa) the frequency of the optical phonon is
given by:

ω2 ≈ 2K

(
1

m1
+

1

m2

)
(2.19)

Optical phonons are lattice vibrations where the atoms inside one unit cell move in anti-phase
– one atom moves to the left and the neighboring atom to the right, see Fig. 2.16 a). They do

18 of 137



2.6 Elementary excitations

not show a dispersion at the zone center as can be seen in Eq. (2.19). Optical phonons may be
excited by infrared radiation because an electric field will move all positive ions in one direction
and all the negative ions in the opposite direction. This is utilized in Raman spectroscopy.

The acoustic phonon frequency is obtained taking the minus sign in Eq. (2.18). In the long
wavelength limit where qa is small the following dispersion is obtained:

ω2 ≈ K/2

m1 +m2
q2a2 (2.20)

which shows that even at low temperatures the acoustic phonons are important. The atoms move
in the same direction (in phase) and they carry the speed of sound in the lattice, see Fig. 2.16
a). The slope of the dispersion is approximately linear at small q (long wavelength).

Knowledge of the phonons in a crystal gives a lot of information about the system. The high
velocity (large slope) phonons are responsible for the heat conductivity. If the phonon density of
states (all the combined phonon dispersion relations) is known, it determines the heat capacity
of a crystal. Phonons are bosons and the number of phonons is therefore given by the Bose factor
[95]:

nj(q) =
1

exp(~ωj(q)/kBT )− 1
(2.21)

where nj(q) is the number of phonons with wave vector q belonging to the jth branch of the
dispersion relation. If the temperature is zero there are no phonons present.

2.6.2 Spin waves

In three-dimensional magnetically ordered systems the excitations are called spin waves. Since
the spins are coupled to each other via the exchange interaction the movement of one spin will
influence the neighboring spins and thereby initialize a wave of spins precessing around a given
axis, Fig. 2.17. The energies of spin waves are quantized, like those of lattice vibrations and are
called magnons.

Figure 2.17: Visualization of a ferromagnetic spin wave. a) The spins all precess around
the z-axis. b) Looking down the z-axis the component of the spins in the xy-plane show
a wave motion. From [76].

Measurements of the dispersion relations of magnons gives a measure of the coupling constant J
and the degree of long range order. For a ferromagnetically coupled linear chain the dispersion
relation is given by:
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~ω = 4JS (1− cos(qa)) (2.22)

where ~ω is the spin wave energy, J is the exchange coupling, S is the magnitude of the spin, a
is the distance between two adjacent atoms and q is the magnitude of the wave vector [9]. For
small q, ~ω ∝ q2. The spin wave dispersion relation for an antiferromagnetically coupled chain
is given by:

~ω = 4|JS| sin(qa) (2.23)

In this case for small q, ~ω ∝ q. The typical dispersion relations for both the ferromagnetic and
antiferromagnetic one-dimensional chain can be seen in Fig. 2.18.

Figure 2.18: The dispersion of a ferromagnetic and an antiferromagnetic magnon in a
one-dimensional lattice with lattice spacing a in the first Brillouin zone. The energy at
the zone boundary (q = π/a) is a direct measure of the coupling constant J . From [9].

For both the ferromagnetic and the antiferromagnetic dispersion relation the energy ~ω is zero
when q = 0. This is often not the case in real systems, where anisotropy in the crystal creates
an energy gap. In general the dispersion relation can be written as [9]:

~ω = 2S [J (0)− J (q)] (2.24)

where J (q) is the Fourier transformed exchange coupling given by:

J (q) =
∑
l′

Jll′ exp (iq(Rl −Rl′)) (2.25)

where Rl and Rl′ are the coordinates of the lth and l′th unit cell [9].
The line-width of the magnon dispersion reveals the lifetime of the excitation. This is also

the case for phonons. Heisenberg’s uncertainty principle states [24]:

∆E∆t ≥ ~
2

(2.26)

where ∆E is the uncertainty in energy and ∆t is the uncertainty in time. A broad dispersion
results in a short life time, whereas for a narrow dispersion i.e. a small uncertainty in energy,
the uncertainty in time must be large, giving the excitation a long lifetime. The width of phonon
and magnon dispersions can be measured with inelastic neutron scattering and is one of the
experiments performed in this thesis. The inelastic neutron scattering technique is described in
Sec. 3.6.
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2.7 Macroscopic properties of crystals

Measurements of the magnetic and electric susceptibilities, heat capacity and thermal conductiv-
ity helps to understand the macroscopic nature of a sample. It is especially interesting to measure
these properties around phase transitions because of anomalies occurring here. The first mea-
surements performed on samples are often macroscopic measurements because they can reveal
fundamental properties of the material, indicating whether the material is a good candidate for
further measurements at large facilities, like neutron scattering facilities, Sec. 3.

2.7.1 Magnetic susceptibility

Magnetic susceptibility measurements can reveal if the system is ferromagnetic or antiferromag-
netic. The magnetic susceptibility χ is a measure of how magnetizable the system is and for
small magnetic fields it is given as [4]:

χ =
M

H
' µ0M

B
(2.27)

The magnetic susceptibility is measured by applying a DC magnetic field and vibrating the
sample or by applying an AC magnetic field while keeping the sample stationary. The electric
response of the sample to the magnetic field7 is proportional to the magnetic susceptibility. The
susceptibility is proportional to the Curie-Weiss law [4]:

χ = lim
B−→0

µ0M

B
∝ 1

T −ΘCW
(2.28)

where ΘCW = TN for an antiferromagnet, ΘCW = TC for a ferromagnet and ΘCW = 0 for a
paramagnet. Plotting the inverse susceptibility as a function of temperature directly reveals the
ordering temperature as seen in Fig. 2.19.

Figure 2.19: A plot of the inverse susceptibility as a function
of temperature directly shows weather the system is ferromag-
netic, paramagnetic or antiferromagnetic. If the Curie-Weiss
temperature ΘCW > 0, the system orders ferromagnetically; if
ΘCW = 0, it is a paramagnetic system; and if ΘCW < 0, the
system is antiferromagnetally coupled. From [4].

2.7.2 Heat capacity

Heat capacity stems from lattice vibrations [45]. It is a measure of the amount of energy needed
to change the temperature of a material by one degree and is given by [38]:

Cp =

(
∂U

∂T

)
p

(2.29)

7Maxwell’s third law gives the connection between a varying magnetic field and the induced electric field:
∇×E = − ∂B

∂t
.
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The heat capacity usually decreases with decreasing temperature, which is in good agreement
with the Bose factor, the number of phonons.

If the heat capacity has a strange behavior it should also be seen in the phonon spectrum of
the material.

2.7.3 Thermal conductivity

The thermal conductivity κ is given by [38]:

jU = −κAdT
dx

(2.30)

where jU is the heat current, A is the cross sectional area of the material and dT/dx is the
temperature gradient. The minus sign shows that the heat always flows from high temperatures
to lower temperatures. If κ is large, the material is a good conductor. The unit of thermal
conductivity is W/(mK).

Like heat capacity, thermal conductivity stems from lattice vibrations [45]. Changes in the
thermal conductivity at a given temperature should also be seen in the phonon spectrum of the
material.

2.7.4 Electric susceptibility

The electric susceptibility χe is the proportionality constant between the electric field E in a
material and the polarization P induced by it [23]:

P = ε0χeE (2.31)

ε0
.
= 8.85 · 10−12 F/m is the vacuum permittivity. The connection between the electric sus-

ceptibility and the dielectric constant, which is the quantity measured in an experiment. The
relationship between the relative dielectric constant and the electric susceptibility of a material
is:

εr = 1 + χe (2.32)

The dielectric constant of a material is the ratio between the capacitance between two capacitor
plates, when the material fills the space between the two capacitors C and the capacitance when
the space between the plates is filled with vacuum C0:

εr =
C

C0
(2.33)
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3 Neutron scattering

Neutron scattering experiments can reveal the position and motion of atoms in a sample. Because
neutrons have a magnetic moment that interacts with the magnetic ions in a sample, neutron
scattering is an important tool in the understanding of all kinds of magnetic structures and
properties. It is a complex experimental method and in this section the underlying theory,
necessary to understand the experiments performed for this thesis, is presented. The practical
details about the individual experiments are described in Sec. 5.

3.1 Why neutrons?

The neutron is an electrically neutral particle consisting of three quarks - one up quark with
charge q = +2/3 and two down quarks with charge q = −1/3. It is a spin-1/2 particle with its
magnetic moment anti-parallel to the spin. The magnetic moment µn is created by the internal
motion of the quarks and is given by [9]:

µn = −γµNσ = −1.913µNσ = −γ e~
2mn

σ (3.1)

where µN is the nuclear magneton, mn is the mass of the neutron, σ is the spin state of the
neutron and γ is the gyromagnetic ratio. Neutrons interact with nuclei in a sample via the strong
nuclear force and with the magnetic field created by unpaired electron spins inside a sample via
the dipole-dipole interaction. Because of these two very different ways of interacting with matter,
neutrons can be used to determine a wide range of properties. In Fig. 3.1, a generic neutron
spectrum, showing intensity as a function of energy transfer is depicted. This spectrum shows
that neutrons can be used for determining crystal and magnetic structures (elastic scattering),
measuring phonon and magnon dispersions (coherent inelastic scattering), and, for larger energy
transfers, the molecular vibrations can be investigated (incoherent inelastic scattering).

Figure 3.1: The energy transfer during a neutron scattering experiment determines
which properties are measured. The intensity in this generic neutron spectrum is not to
scale. The elastic scattering is much more intense than the inelastic scattering. Adapted
from [95].
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The most important examples of why and when neutrons are good probing particles are listed
below.

• Isotopes and light atoms

Neutrons can often distinguish between different isotopes of the same element because the
neutron cross section varies throughout the table of isotopes and depends only on the
nucleus. Whereas X-rays are not able to distinguish between different isotopes because
the number of electrons is similar, or locate hydrogen atoms because the electron cloud
is too small, neutrons scatter differently from different isotopes and (too) efficiently from
hydrogen8. Therefore it is possible to determine the position of hydrogen atoms in a
sample with neutrons and to distinguish isotopes and elements placed near each other in
the periodic table. See Fig. 3.2.

• Crystal and magnetic structures

Like X-rays, the wavelength of neutrons correspond to the distance between atoms in
crystals (∼ 2 Å) and it is therefore possible to resolve crystal structures with neutrons.
Because the neutron has a magnetic moment it interacts with unpaired electron spins and
makes it possible to determine the magnetic structure of crystals and also the direction of
the magnetic moments.

• Excitations

The energy of (cold and thermal) neutrons correspond to the energy range (∼ 1 − 100
meV) of elementary excitations like phonons and magnons and it is possible to measure
their dispersion relations (the relation between energy and momentum). X-rays on the
other hand are not very suitable for studying these excitations because their energy is way
too large (∼ 100 keV).

• Large penetration and small interaction

Because neutrons are electrically neutral they do not significantly interact with matter.
It is thus possible to do experiments where the sample is placed inside large cryostats or
magnets. It is also possible to examine the bulk of a material rather than just the surface
as with normal X-rays. The samples will (often) survive a neutron scattering experiment
and can be used over and over again, whereas at large X-ray facilities the high energy of
the X-rays can burns or evaporate the sample after a few minutes in the beam.

3.2 The neutron scattering cross section

The scattering cross section σ is a measure of how well a probe beam scatters off a sample.
The cross section for X-rays scales with the number of electrons σ ∼ Z2 and hydrogen (H) and
Deuterium (D or 2

1H) are therefore indistinguishable. With neutrons, on the other hand, there
is a huge difference in the cross section as depicted in Fig. 3.2.
To establish an expression for the cross section a couple of terms need to be presented. First the
neutron flux Ψ is given by [45]:

Ψ =
# of neutrons hitting a surface per second

Area of the surface perpendicular to the neutron beam
(3.2)

8If you are not interested in the location of the hydrogen atoms you need to deuterate your sample – exchange
all the protons with deuterium 2

1H – so the signal from the interesting part of the sample is not drowned by the
incoherent scattering from hydrogen. Incoherent and coherent scattering will be explained further in Sec. 3.3.
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Figure 3.2: The neutron and X-ray cross section of selected elements. From [30].

The neutron flux is different at different neutron scattering facilities and when planning a neutron
scattering experiment it is important to include the flux in the calculation of measuring times.
A low flux will increase the required time for an experiment.

The total cross section σ is defined by:

σ =
1

Ψ
·# of neutrons scattered per second in all directions (3.3)

which is independent of the neutron flux and is therefore the same regardless of the experimental
conditions. The cross section is solely a material property and is measured in units of area. In
neutron scattering experiments it is not possible to measure the total scattering cross section,
but only the scattering through a solid angle dΩ (the detector area, Fig. 3.3) which leads to the
definition of the differential scattering cross section:

dσ

dΩf
=

1

Ψ

# of neutrons scattered into solid angle dΩf per second

dΩf
(3.4)

When doing inelastic neutron scattering experiments the final energy Ef is also measured
and the double differential scattering cross section is defined by:

d2σ

dΩfdEf
=

1

Ψ

# of neutrons scattered into dΩ with energies [Ef ;Ef + dEf ] per second

dΩfdEf
(3.5)

With the Van Hove [90] formalism the double differential cross section for a system of N atoms
can be written as [72]:

d2σ

dΩfdEf
= b2

kf
ki
NS(Q, ω) (3.6)

where b is the scattering length, ki and kf are the initial and final neutron wave vectors respec-
tively and S(Q, ω) is the scattering function as plotted on the y-axis in Fig. 3.1. In a neutron
scattering experiment it is ultimately the scattering function that is measured. The scattering
function is the time and spacial Fourier transform of the correlation function of the scatter-
ing system and it is a measure of the probability that the scattering changes the system by
~ω ≡ Ei − Ef and momentum ~Q ≡ ~ki − ~kf , Fig. 3.4.
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3.2 The neutron scattering cross section

Figure 3.3: The geometry of a neutron scattering experiment. An incident neutron
with wave vector ki hits the sample and scatters into a new state with wave vector kf
into the solid angle dΩ. |k| = k = 2π/λ and dS denotes the area of the detector and 2θ
is the scattering angle. The differential cross section is given by the number of neutrons
passing though a solid angle dΩf in the direction of 2θ and φ per second. θ and φ are
polar coordinates. Adapted from [76].

Figure 3.4: Illustration of the scattering vector defined as Q ≡ ki − kf . 2θ is the
scattering vector.

For elastic scattering the correlation function is time-independent and for inelastic scattering
the correlation function is time-dependent. The scattering function will be discussed further in
the following sections.

When a beam of neutrons is guided towards a sample in an experiment, it is far from all the
neutrons that scatter off the sample, hit the detector, and thereby contribute to the signal the
experimentalist is measuring. Most of the neutrons pass through the sample and are stopped by
a beam stop. Other neutrons are simply absorbed by the nuclei in the sample and the remainder
of the neutrons are scattered off the sample and contribute to the total cross section. A small
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3.3 Coherent and incoherent scattering

part of these neutrons contribute to what is actually measured: the differential scattering cross
section and the double differential cross section.

The definition of the absorption cross section for thermal neutrons is similar to Eq. (3.3)
and is inversely proportional to the neutron velocity. The absorption cross section for selected
elements can be seen in Table 3.1.

3.3 Coherent and incoherent scattering

The double differential cross section has both a coherent and an incoherent part [95]:

d2σ

dΩfdEf
=

(
d2σ

dΩfdEf

)
coherent

+

(
d2σ

dΩfdEf

)
incoherent

(3.7)

where both terms can be structural and magnetic and have both an elastic and an inelastic
contribution. It is important to know the difference between coherent and incoherent scattering
and the general rule is to minimize the incoherent scattering as much as possible. The coherent
scattering depends on the relative positions of the atoms and their average scattering length
< b > (also called the coherent scattering length bcoh) and is the one containing the desired
information.

The incoherent scattering creates a uniform background and can therefore make it impossible
to see the signal from the coherent scattering.

Incoherent scattering is the scattering of neutrons in all directions without interference and
is a measure of the individual motion of the particles. Different isotopes of the same element will
scatter neutrons differently i.e. the scattering lengths will vary from site to site. This is called
isotope incoherent scattering. For isotopes with a non-zero nuclear spin I, the scattering length
will take two different values because the neutron is a spin-1/2-particle; b+ corresponds to when
the spin of the nucleus and the incoming neutron are parallel (I + 1/2) and b− corresponds to
when the spins are anti-parallel (I − 1/2). Differences in the orientation of the nuclear spins will
contribute to the incoherent scattering. This is called spin incoherent scattering.

The only situation where incoherent scattering does not occur is when a sample is composed
of a single isotope that has nuclear spin I = 0. Some isotopes are far worse sources of incoherent
scattering than others. As previously mentioned, hydrogen creates a huge incoherent scattering
because of the strong spin dependent interaction between the neutron and the proton.

It is not always easy to separate the coherent and the incoherent signal, but with polarized
neutrons it is possible, as we will see in Sec. 3.8. Sometimes it is possible to take advantage
of strong incoherent scattering. When calibrating detectors at neutron scattering experiments
vanadium is often used because of its large and uniform incoherent scattering cross section.

3.4 Scattering theory

When describing the interaction between the neutron beam and the sample one needs to take
advantage of the fact that the neutron has both particle (moves with a speed v) and wave-like
properties (has a wavelength λ or wave number k) [95]:

λ =
2π~
mnv

and k =
2π

λ
(3.8)

where mn = 1.67495 · 10−27 kg is the mass of the neutron. Instead of the neutron velocity v the
wave vector k, which is a vector with the same direction as the velocity and magnitude as the
wave number k can be used to describe the neutron:
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3.4 Scattering theory

Element σcoh σinc σabs

Hydrogen 1.7568 80.27 0.33326
Deuterium 5.592 2.05 0.00052
Oxygen 4.232 0 0.00019
Manganese 1.75 0.40 13.3
Yttrium 7.55 0.15 1.28
Vanadium 0.133 5.08 5.08
Aluminum 1.495 0.0082 0.231
Carbon 5.550 0.001 0.00350
Boron 3.54 1.7 767.0
Nitrogen 11.01 0.49 1.9

Table 3.1: The coherent σcoh, incoherent σinc and absorption σabs cross sections for
selected elements. The incoherent cross section σinc is the sum of spin-incoherent scat-
tering and isotope incoherent scattering [72]. All numbers correspond to the natural
abundances of elements (except hydrogen and deuterium) and are in barns (= 10−28

m2). σabs is given as the value of neutrons with v = 2200 m/s.

k =
mnv

~
(3.9)

After interacting with a single nucleus the neutron beam can be described by a spherical
wave since the neutron wavelength is much larger than the size of the nucleus, thereby causing
S-wave scattering. When the solid angle dΩ is small the spherical wave can be approximated by
a plane wave .

It is practical to look at the quantum mechanical description of the interaction between the
neutron and the sample. The Born approximation9 can be applied because the interaction is
weak and both the incoming |ki〉 and outgoing |kf 〉 wave of neutrons can be approximated by
the following complex plane waves:

|ki〉 =
1√
Y

exp(iki · r) and |kf 〉 =
1√
Y

exp(ikf · r) (3.10)

where the normalization factor Y = L3 is a large (compared to the experimental setup) Cartesian
volume with side lengths L. The spin part of the neutron is ignored until Sec. 3.8 on polarized
neutron scattering.

The neutron causes a small perturbation of the scattering system and makes the system
transfer from one quantum state to another without changing the nature of the states in the
process. Therefore the scattering cross section can be obtained by applying Fermi’s Golden
Rule:

(
d2σ

dΩfdEf

)
λi→λf

=
kf
ki

( mn

2π~2

)2

|〈kfλf |V |kiλi〉|2δ(~ω + Ei − Ef ) (3.11)

where 〈kfλf |V |kiλi〉 is the interaction matrix element. V is the interaction Hamiltonian for a
given interaction.

9The Born approximation utilizes first order perturbation theory because the nuclear scattering is short range
only S-wave scattering is possible. Magnetic scattering is long range, but weak, so it still applies.
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3.5 Elastic neutron scattering

Elastic neutron scattering is used for measuring the nuclear and magnetic Bragg peaks. During
elastic neutron scattering experiments there is no energy ~ω = 0 (Ei = Ef ) or momentum
~Q = 0 (ki = kf = k) transfer between the neutron and the scattering system.

Like X-rays, the neutrons scatter off the (h k l) lattice planes in the crystal and the scattering
fulfills Bragg’s Law [51]:

nλ = 2dhkl sin θhkl (3.12)

where n is the order, θhkl is the angle between the neutron beam and the family of (h k l) lattice
planes with lattice spacing dhkl. The scattering angle is the double angle 2θhkl, Fig. 3.5.

Figure 3.5: Illustration of Bragg’s law. λ is the wavelength of the radiation incident on
the crystal with the angle θhkl to the (h k l) lattice planes and dhkl is the distance between
lattice planes. The green line is the extra distance traveled by the wave scattering off
the lower lattice plane. Constructive interference is obtained when the extra distance
traveled is a integer number n of wavelengths. The angle 2θhkl is called the scattering
angle.

3.5.1 Nuclear scattering

Van Hove expressed the scattering function by using the definition of the time dependent atomic
density operator [72]:

ρQ(t) =
∑
l

exp(iQ · rl(t)) (3.13)

which gives an expression for the scattering function:

S(Q, ω) =
1

2π~N

∫ ∞
−∞

dt 〈ρQ(0)ρQ(t))〉 exp(−iωt) (3.14)

For elastic nuclear scattering the time average of the density function that is considered, which
gives the scattering function the following form [72]:

S(Q, ω) = δ(~ω)
1

N

〈∑
ll′

exp(−iQ · (rl − rl′))

〉
(3.15)
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3.5 Elastic neutron scattering

The differential scattering cross section for coherent elastic scattering is then given by [72]:

dσ

dΩ
= N

(2π)3

V0

∑
G

δ(Q−Ghkl)|FN (Ghkl)|2 (3.16)

where V0 is the volume of the unit cell and FN (Ghkl) is the static nuclear structure factor which
describes the amplitude of the wave scattered into the (h k l) Bragg reflection by the atomic
nuclei in one unit cell. It is given by [95]:

FN (Ghkl) =
∑
j

bj exp(iGhkl · rj) exp(−W (Q)) (3.17)

where rj is the vector of the jth atom in the unit cell, and exp(−W (Q)) is the Debye-Waller
factor. It accounts for the reduction in scattering amplitude due to the motion of the atoms
away from their equilibrium position. Fhkl is a complex quantity, and can be expressed as a
product between its magnitude and its phase factor Fhkl = |Fhkl| exp(iφhkl). The (relative)
nuclear structure factor for different reflections can be determined by comparing the intensities
of multiple Bragg peaks. Ihkl ∝ |Fhkl|2, so the amplitude is directly measured while the phase is
not.

3.5.2 Magnetic scattering

The interaction between the neutron and a magnetic ion is given by the dipole-dipole interaction
and the scattering potential has the form [9]:

V(r) = −γµN2µBσ ·

[
∇

(
S× R̂

R2

)
+

1

~

(
p× R̂

R2

)]
(3.18)

where the first term is the spin interaction with the electron and the second term is the orbital
interaction with the electron.

When evaluating the matrix element 〈kf |V |ki〉 in Eq. (3.11) the following expression for
double differential scattering cross section is obtained:

d2σ

dωfdEf
=
N

~
kf
ki
p2 exp(−2W (Q))

∑
α,β

(δα,β − Q̂αQ̂β)Sαβ(Q, ω) (3.19)

where the magnetic scattering length p (when the orbital component is quenched) is given by:

p =
(µ0

4π

)( e2

me

)
γSf(Q), (3.20)

where S is the atomic spin. f(Q) is the magnetic form factor which is unity when Q = 0 and is
given by:

f(Q) =

∫
ρs(r) exp(iQ · r)dr (3.21)

where ρs(r) is the spin density. The form factor is the Fourier transform of the electron spin
density around the atomic center. The size of the scattering depends on the form factor. The
form factor for nuclear scattering f(Q) is constant for all Q. The scattering function has the
form:
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3.5 Elastic neutron scattering

Sαβ(Q, ω) =
1

2π

∫ ∞
−∞

dt exp(−ωt)
∑
l

exp(iQ · rl) 〈Sα0 (0)Sβl (t)〉 (3.22)

The differential scattering cross section can be written as [72]:

dσ

dΩ
= N

(2π)3

V0

∑
G

δ(Q−Ghkl)|FM (Ghkl)|2 (3.23)

where the static magnetic structure factor FM (Ghkl) is given by [95]:

FM (Q) =
∑
j

fj(Q)pjS⊥ exp(iQ · rj) exp(−Wj(Q)) (3.24)

Notice that the magnetic form factor is contained in pj . The geometry of magnetic scattering
can be found in Fig. 3.6. The scattering is largest when Q is perpendicular to the magnetic
moments µ and no magnetic scattering when Q ‖ µ.

Figure 3.6: The geometry of elastic magnetic scattering. The intensity of the scattered
beam is proportional to sin2 α and the intensity is therefore zero if the magnetic moment
µ and the scattering vector Q are parallel. From [95].

The magnetic interaction vector S⊥ is given by:

S⊥ = Q̂× (S× Q̂) (3.25)

which leads to:

|S⊥|2 =
∑
α,β

(δα,β − Q̂αQ̂β)S∗αSβ (3.26)

This expression is the selection rule for magnetic neutron scattering and is therefore included in
the double differential scattering cross section in Eq. (3.19). It is clearly seen that the magnetic
scattering is zero if the magnetic moments are parallel to the scattering vector.
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3.6 Inelastic neutron scattering

Other methods for measuring the dynamics of crystals, like Raman scattering and infrared spec-
troscopy, have selection rules and limited Q-range. Inelastic neutron scattering is therefore, in
some cases, the only available tool for measuring phonon and magnon dispersions. Inelastic neu-
tron scattering is a direct measurement of the vibrational frequency and amplitude of the nuclei.
During an inelastic experiment the neutron either gives energy to the sample or receives energy
from the sample so ki 6= kf . When the neutron looses energy to the sample and thereby creates
an excitation, it is called down scattering and when the neutron annihilates an excitation, and
thereby gains energy, it is called up scattering. Down scattering Ei > Ef is most common and
the sign of the energy conservation is defined so the energy loss of the neutron gives a positive
energy ~ω. One quantum of vibrational energy (or spin wave energy) is exchanged between the
neutron and the crystal:

∆E = ~ω = Ei − Ef ≡
~2(k2

i − k2
f )

2mn
= ±~ωj(q) (3.27)

where ωj(q) is the angular frequency of the jth branch of the dispersion relation. Conservation
of momentum in the scattering process gives the following condition:

Q ≡ ki − kf = Ghkl ± q (3.28)

where Q is the scattering vector, Ghkl is the reciprocal lattice vector and q is the phonon
or magnon wave vector (the reduced momentum transfer from the lattice point (h k l)). A
visualization of the scattering conditions in real and reciprocal space can be seen in Fig. 3.7.

Figure 3.7: The connection between the incoming wave vector ki, the outgoing (final)
wave vector kf and the scattering vector Q in both real space and reciprocal space for
an inelastic scattering process. G is the reciprocal lattice vector and 2θ is the scattering
vector. Adapted from [95].

From the energy and momentum conservation equations it is possible to determine the phys-
ical limit of the (Q, ω) range that is accessible with a final fixed energy of Ef :

~2Q2

2mn
= 2Ei − ~ω − 2

√
Ei(Ei − ~ω) cos(2θ) (3.29)

This range has been calculated for all the instrumental setups used in this thesis and are depicted
in Sec. 5.
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3.6 Inelastic neutron scattering

3.6.1 Phonons

The integrated intensity for a constant-Q scan10 is proportional to the dynamical structure factor
squared |Fj(q,Q)|2 which is given by [95]:

Fj(q,Q) =
∑
l

(
1

2mlωj(q)

)1/2

bl[Q · êj(q)]× exp(iQ · rl) exp[−2W (Q)] (3.30)

where ml, bl and rl is the mass, the scattering length and the position vector of the lth atom,
respectively. ωj(Q) is the angular frequency and êj(q) is the polarization of the jth branch. The
double differential scattering cross section for coherent one-phonon-scattering is given by:

d2σ

dΩfdEf
=
kf
ki

(2π)3

V0

∑
jq,G

|Fj(q,Q)|2

× [nj(q)δ(ω + ωj(q))δ(Q + q−G) + (nj(q) + 1)δ(ω − ωj(q))δ(Q− q−G)]

(3.31)

where nj(q) is the Bose factor giving the number of phonons with wave vector q from Eq. (2.21).
The term nj(q)δ(ω + ωj(q))δ(Q + q −G) denotes phonon annihilation and (nj(q) + 1)δ(ω −
ωj(q))δ(Q−q−G) denotes phonon creation. When T → 0 the Bose factor (see Sec. 2.6) goes to
zero, nj(q) = 0, i.e there are no phonons in the system. It is therefore not possible to annihilate
a phonon when T = 0, but it is always possible to create a phonon because of the +1 term in
the pre-factor.

Inserting Eq. (3.30) into Eq. (3.31) a final expression for the double differential cross section
is found:

d2σ

dΩfdEf
=
kf
ki

b2(2π)3

2MV0
exp(−2W (Q))

∑
Q,p,G

(Q · ej(q))2

ωj(q)

× [(nj(q) + 1)δ(ω − ωj(q))δ(Q− q + G) + nj(q)δ(ω + ωj(q))δ(Q + q + G)]

(3.32)

The term Q · ej(q) shows an important result when measuring phonon dispersions: neutrons
only scatter from vibrations that are parallel to the scattering vector.

3.6.2 Magnons

Magnons are approximately bosons; like phonons they obey Bose-Einstein statistics. Measure-
ments on magnetic materials are often done at low temperatures, so magnon creation (down
scattering) is most common. The biggest difference between measuring phonons and magnons
is that the intensity of phonons increases with larger Q-values, whereas the magnetic scattering
decreases since the magnetic form factor in Eq. (3.21) decreases with large Q’s.

Another big difference between phonon and magnon scattering is the scattering condition.
The neutrons only scatter from the component of the magnetization that is perpendicular to the
scattering vector.

The double differential cross section is the sum of the cross sections for creating and annihi-
lating a magnon and is given by [9]:

10The conditions for a constant-Q scan is explained in detail in Sec. 3.7

33 of 137



3.7 The three-axis spectrometer

(
d2σ

dΩfdEf

)
creation

= (γr0)2 kf
ki

[g
2
f(q)

]2
exp(−2W (Q))

(2π)3

2NV0
(1 + Q̂2

z)

×
∑
G,q

(nj(q) + 1)δ(ω − ωj(q))δ(Q− q−G)
(3.33)

(
d2σ

dΩfdEf

)
annihilation

= (γr0)2 kf
ki

[g
2
f(q)

]2
exp(−2W (Q))

(2π)3

2NV0
(1 + Q̂2

z)

×
∑
G,q

nj(q)δ(ω − ωj(q))δ(Q− q−G)
(3.34)

3.7 The three-axis spectrometer

Before introducing polarized neutron scattering the conventional three-axis instrument which has
been used for all the experiments in this thesis will be presented. The three-axis spectrometer
was invented and developed by Bertram Brockhouse at the Chalk River National Laboratories
in Canada in the 1950s and he, together with Clifford Shull, received the Nobel Prize in 1994 for
their pioneering work [55]. He had created the only experimental technique that could show the
dynamics of crystals.

A sketch of a typical three-axis spectrometer can be seen in Fig. 3.8. The instrument is called
a ”three-axis” spectrometer because the neutrons are scattered around three axes on the way to
the detector. The first axis selects the initial wave vector ki, the second axis is the sample and
the third axis is the analyzing crystal which determines the final wave vector kf

11.

The components of a three-axis spectrometer are briefly described below:

Neutron Source: Neutrons can be produced by nuclear fission or by spallation. Fission sources
are (often) continuous while spallation sources are (often) pulsed12. Spallation works by bom-
barding a heavy target with protons and thereby release neutrons.

Moderator: When the neutrons are released from the heavy target or from the reactor their
energy is too high for doing experiments on the order of MeV. Their energy is reduces by sending
them through a moderating material, such as water (300 K), to slow them down. The neutrons
attain the temperature of the moderating material with the Maxwell-Boltzmann distribution of
velocities given by [95]:

n(v) =
4n0v

2

√
πv3

T

exp

(
− v

2

v2
T

)
(3.35)

where n(v)dv is the number of neutrons per unit volume with velocities between v and v + dv,
n0 is the total number of neutrons in a unit volume and vT is given by:

vT =

(
2kBTeffective

mn

)1/2

(3.36)

11It is often kf that is held fixed while ki is varied. This is an experimental trick because the intensities then
are directly comparable with the dynamical structure factor |Fj(q,Q)|2, see Eq. (3.30) [95].

12The spallation source SINQ at the Paul Scherrer Institute is a continuous spallation source.
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Figure 3.8: A sketch of a three-axis spectrometer. The source sends out neutrons with
all wavelengths. A monochromator crystal positioned at the first axis selects one wave
vector ki. The selected neutrons scatter off the sample which is positioned at the second
axis. The scattered neutrons then reach the third axis of the three-axis spectrometer with
an analyzer crystal (which is often the same type of crystal as the monochromator crystal)
and it selects the neutrons with one outgoing wave vector kf . Finally the neutrons are
detected in a detector. Filters are positioned on both sides of the sample and prevents
unwanted neutrons from passing. Collimators positioned between the axes also help the
selection of collinear neutrons. From [96].

where Teffective is the effective temperature of the moderator. If cold neutrons are needed one
uses liquid hydrogen (25 K). If hot neutrons are needed one uses molten graphite (2000 K).

Guide: When the neutrons have the right energy they need to be guided to the experiment with
minimal intensity loss. This is done by sending the neutrons through rectangular tubes with
layers of super mirrors [45] on the inside called guides. By total reflection the neutrons proceed
through the guide which can be up to 100 m long without much loss of intensity.

Monochromator (1st axis) and analyzer (3rd axis): The monochromator and analyzer
are crystals that select the initial wave vector ki and final wave vector kf , respectively, by Bragg
diffraction as explained in Sec. 3.5. It is important that the crystal has a small absorption cross
section. A too high mosaicity gives a bad resolution. Pyrolytic graphite crystals are often used
as monochromating crystals, referred to as PG-crystals.

Collimators: Collimation controls the divergence of the beam. The soller collimation consist
of parallel blades of a neutron absorbing material that reduce the divergence of the beam. The
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degree of collimation is given by:

α =
w

L
(3.37)

where w is the width between the blades and L is the length of the blades. In pinhole collimation
vertical and horizontal slits determine the size of the beam. The collimation plays a big role in
the Q-resolution of the instrument.

Filters: Filters are placed to remove higher order wavelengths, see Eq. (3.12), from the monochro-
mator. Filters also reduces the risk of spurious signals from the sample environment. Spurious
signals are signals in the data, that are not from the sample. A spurious signal can come from
higher order neutrons or from Bragg scattering from the sample environment. Normally spurious
signals are very intense and sharp - even sharper than the resolution. Pyrolytic graphite filters
work well because the transmission of 2nd and 3rd order scattering is low. Pyrolytic graphite
works most efficiently at 2.37Å and 1.55 Å, while other filters like Be-filters work for wavelengths
larger than 4 Å. Cooled Sapphire filters work for wavelength smaller than 0.8 Å.

Sample environment and sample (2nd axis): The sample environment can be changed
between each experiment, but often consists of a cryostat for cooling down the sample. Other
equipment could be magnets or pressure cells.

Detector: The detector determines the energy of the neutrons. A 3He gas detector measures
the ionizing energy that is released when neutrons are absorbed by the gas. The nuclear reaction
is given by: 3He + n → 3H + p + 0.8 MeV, where n is a neutron and p is a proton.

One of the problems with three-axis spectrometer experiments13 is that it is a point by point
measurement14, that is one (Q,ω)-point is measured at a time and it is necessary to change to
geometry of the instrument at every data point. During three-axis experiments it is common to
do energy scans (where Q is fixed) and Q-scans (where Ef is fixed). The geometry in reciprocal
space of a constant-Q energy scan, which is the one mainly utilized in this thesis, can be seen in
Fig. 3.9. In real space the sample and analyzer must rotate around the monochromator assembly
together.

A constant energy scan, where Q is varied is usually used when dispersions are very steep,
which is the case for magnon dispersions in transition metals [49].

3.8 Polarized Neutron Scattering

Until now the spin state of the neutron has been completely ignored and it is only the change from
one momentum state to another that has been considered. With polarized neutron scattering,
both the momentum state and the spin state of the neutron is taken into account. The change
(or not change) in the spin state of the neutron provides new information about the scattering
system. The polarization of neutrons is defined as the expectation value of the neutron spins
divided by the maximal length of the spins:

13At a time-of-flight experiment it is possible to measure a large area in (Q,ω) and thereby directly measure
the dispersion of phonons and magnons.

14At RITA II at SINQ at PSI there are nine analyzer blades and it is therefore possible to measure nine
(Q,ω)-points in a single measurement.
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Figure 3.9: The geometry in reciprocal space behind a constant Q-scan where the
neutron intensity is measured as a function of energy. The momentum transfer Q is kept
constant and the energy is changed by varying the initial wavevector ki. G201 is the
reciprocal lattice vector of the (2 0 1) Bragg peak. This type of scan is often used when
determining the dispersion relations of phonons and magnons and was used intensively
in this thesis. From [96].

P = 〈̂s〉/(1/2) = 2〈̂s〉 = 〈σ〉 (3.38)

where σ are the Pauli spin matrices:

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
(3.39)

The polarization P0 of the beam is defined by [72]:

P0 =
1

N

∑
j

Pj (3.40)

where N is the number of spins and Pj is the polarization of the jth spin. When neutrons are
polarized all the spins point in the same direction along an axis determined by a magnetic field.
The spin of the neutron can either be parallel or antiparallel to the magnetic field because it is
a spin-1/2 particle and the magnetic field divides the neutron into its two Zeeman states. The
polarization of the beam is then defined as a scalar by [77]:

P0 =
N+ −N−
N+ +N−

= n+ − n− (3.41)

where N+ is the number of neutrons parallel to the z-axis and N− is the number of neutrons
antiparallel to the z-axis. n+ = 1

2 (1 + P0) and n− = 1
2 (1− P0) are the probabilities of finding a

neutron with spin up and spin down, respectively. If all the spins of the neutrons point up P = 1
and if all the spins point down P = −1. For a completely non-polarized beam P = 0.

When polarization is taken into account, the double differential cross section, Eq. (3.19),
consists of four cross-sections:

d2σ

dΩfdEf
=

1

2
(sum of the four spin state cross sections) (3.42)
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The 1
2 indicates that the probability of the up and down state of the neutron is the same [76].

The four cross sections are the spin up to up, σ↑↑, down to down, σ↓↓, up to down, σ↑↓, and
down to up, σ↓↑, transitions.

For all experiments, it is important to measure the flipping ratio R, given by [72]:

R =

(
FN + FM
FN − FM

)2

(3.43)

which is the ratio between the cross sections σ↑↑ and σ↓↓, i.e. the polarization parallel to the
scattering vector and the polarization anti-parallel to the scattering vector15. R depends on the
neutron energy, the size of the beam and its collimation. A flipping ratio of R = 30 is difficult
to obtain when the beam is of the size 3 mm2.

The double differential scattering cross section, where the initial and final spin states, σi and
σf , are taken into account, becomes [72]:

(
d2σ

dΩfdEf

)
σi,σf

=
kf
ki

∑
i,f

P (i)|〈f |
∑
l

exp(iQ · rlU
σiσf

l ) |i〉|2δ(~ω + Ei − Ef ) (3.44)

where P (i) is the probability of being in the initial state |i〉. The scattering amplitude U
σiσf

l is
given by:

U
σiσf

l = 〈σf | bl − plS⊥l · σ +BlIl · σ |σi〉 (3.45)

When evaluating the matrix element in Eq. (3.11), it is clearer to look at the nuclear and the
magnetic contributions separately.

3.8.1 Nuclear scattering

First the nuclear part is considered. The scattering length operator is given by [76]:

b̂ = A+Bσ · I (3.46)

where A = (I+1)b++Ib−
2I+1 and B = b+−b−

2I+1 . Evaluating the matrix elements for nuclear scattering
produces the following results:

Unuclear
↑↑ = 〈↑|b |↑〉 = A+BIz

Unuclear
↓↓ = 〈↓|b |↓〉 = A−BIz

Unuclear
↑↓ = 〈↓|b |↑〉 = B(Ix + iIy)

Unuclear
↓↑ = 〈↑|b |↓〉 = B(Ix − iIy)

(3.47)

For coherent scattering, B = 0, and all coherent scattering appears in the non-spinflip channels.
For incoherent scattering, if I = 0, there is no spinflip scattering.

15In practice the flipping ratio is determined by measuring a Bragg Peak with the flipper off and then with the
flipper on, see Fig. 3.13.
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3.8 Polarized Neutron Scattering

3.8.2 Magnetic scattering

The magnetic scattering potential, when the orbital part is omitted, is given by [77]:

Vm(Q) = −(γr0/2)σ · S⊥(Q) (3.48)

where S⊥(Q) is the magnetic interaction vector presented in Sec. 3.5.2. A visualization of S⊥
can be found in Fig. 3.10. The matrix elements for magnetic scattering are:

Umagnetic
↑↑ = 〈↑|Vm(Q) |↑〉 = Sz⊥(Q)

Umagnetic
↓↓ = 〈↓|Vm(Q) |↓〉 = −Sz⊥(Q)

Umagnetic
↑↓ = 〈↓|Vm(Q) |↑〉 = Sx⊥(Q) + iSy⊥(Q)

Umagnetic
↓↑ = 〈↑|Vm(Q) |↓〉 = Sx⊥(Q)− iSy⊥(Q)

(3.49)

The only components of the magnetization that contribute to the non-spinflip scattering are the
ones that are parallel to the neutron spin i.e. the polarization and the spinflip scattering are
only sensitive to the spin components perpendicular to the beam polarization.

Figure 3.10: a) S⊥ is the component of the magnetic moment projected onto a plane
that is perpendicular to the scattering vector Q. The angle between Q and S is denoted
α. b) When Q ‖ P0 the S⊥y and S⊥x give rise to spinflip scattering. c) When Q ⊥ P0

and P ‖ S⊥ all the scattering is non-spinflip. Adapted from [72].

3.8.3 Coherent and incoherent scattering

By evaluating Eq. (3.45), the four different matrix elements for both nuclear and magnetic
scattering Uσσ are given by [53]:

U total
↑↑ = b− pSz⊥ +BIz

U total
↓↓ = b+ pSz⊥ −BIz

U total
↑↓ = −p(Sx⊥ + iSy⊥) +B(Ix + iIy)

U total
↓↑ = −p(Sx⊥ − iSy⊥) +B(Ix − iIy)

(3.50)

where p = γr0/2. The sum of U↑↑ and U↓↓ is measured in the non-spinflip channel and the sum
of U↑↓ and U↓↑ is measured in the spinflip channel. All spin-components, both nuclear Iz and
magnetic S⊥z, that are parallel to the neutron polarization P0 give rise to non-spinflip scattering.
The other components: S⊥y, S⊥x, Iy and Iz give rise to spinflip scattering. One can therefore
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3.8 Polarized Neutron Scattering

conclude that when Q ‖ P0 all the magnetic scattering is found in the spinflip channel. This
statement is true for both elastic, inelastic, coherent and incoherent scattering.

When differentiating between incoherent and coherent scattering, the following expressions
for the matrix elements are found [77]:

U total
↑↑ = bcoherent − pSz⊥ + bisotope incoherent +

1

3
bspin incoherent

U total
↓↓ = bcoherent − pSz⊥ + bisotope incoherent +

1

3
bspin incoherent

U total
↑↓ = −p(Sx⊥ + iSy⊥) +

2

3
bspin incoherent

U total
↓↑ = −p(Sx⊥ − iSy⊥) +

2

3
bspin incoherent

(3.51)

Here bcoherent is the coherent scattering length, bisotope incoherent is the isotope incoherent scatter-
ing length, and bspin incoherent is the spin-incoherent scattering length. The contribution of the
coherent scattering in the spinflip and non-spinflip channels can be found in Table 3.2. Only para-
magnetic and nuclear spin scattering give rise to spinflip scattering and they can be distinguished
by measuring the spinflip and non-spinflip scattering with a horizontal setup where P0 ‖ Q and
a vertical setup where P0 ⊥ Q Fig. 3.11. The nuclear spin scattering is unchanged while the
paramagnetic scattering changes. Horizontal and vertical setup is illustrated in Fig. 3.11.

Figure 3.11: Right: When Q ‖ H0, the setup is horizontal because the magnetic field
determining the polarization direction is horizontal. Left: When Q ⊥ H0, the setup is
vertical because the magnetic field determining the polarization direction is vertical. The
figure was constructed by Zahra Yamani, instrument scientist at the polarizing three-axis
spectrometer C5 in Chalk River, Canada.

By measuring the spinflip and the non-spinflip cross sections with both a horizontal field and
a vertical field it is possible to the determine the direction of the spins and the directions of the
spin excitations Table 3.2.

3.8.4 Experimental setup

The following elements must be added to a standard three-axis spectrometer to make it a polar-
izing instrument.

Polarizers: For polarizing experiments the monochromator often works as a polarizer i.e. selects
all the neutrons with a given spin. Good polarizer crystals are ferromagnetic single crystals where
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3.8 Polarized Neutron Scattering

Type of scattering HF: P0 ‖ Q VF: P0 ⊥ Q
Spinflip Non-spinflip Spinflip Non-spinflip

Nuclear coherent 0 1 0 1
Nuclear isotope incoherent 0 1 0 1
Nuclear spin incoherent 2/3 1/3 2/3 1/3
Magnetic xx+yy 0 xx yy

Table 3.2: The spinflip and non-spinflip channel cross sections for a horizontal field
(HF) and vertical field (VF) at the sample position.

the magnetic structure factor FM (Q) is equivalent to the nuclear structure factor FN (Q). The
differential cross section for a polarizer is given by:

dσ

dΩ
= F 2

N (Q) + 2(P̂ · µ̂)|FN (Q)||FM (Q)|+ F 2
M (Q) (3.52)

where P̂ is the unit vector along the polarization direction with respect to a magnetic field, µ̂ is
the unit vector along the magnetic moments in the polarizing crystal. P̂ · µ̂ = 1 if the magnetic
moments are parallel to an applied magnetic field and P̂ · µ̂ = −1 when the magnetic moments
are antiparallel to an applied magnetic field. This is the case for the (1 1 1) reflection in the
Heusler Alloy Cu2MnAl, which is a popular polarizer. The analyzer is often made of the same
material as the monochromator and works in the same way.

Flippers: The flippers in a polarization experiment can change the direction of the spins. A
flipper can work either adiabatically or non-adiabatically. In both cases the precession of the
neutron spins around a magnetic field is utilized. The precession rate is given by the Larmor
angular frequency ωL, which is ωL[kHz] = 2.916 ·10−4B[T] [95]. If the magnetic field rotation ωB
is much smaller than the Larmor frequency, then the component of the polarization parallel to
the magnetic field maintains its direction parallel to the field, while the perpendicular component
precesses around B. This is the adiabatic case. If ωB is much larger than ωL a guide field switch
will leave the polarization unchanged, but it is anti-parallel with the magnetic field B. This is the
non-adiabatic flipping method. Mezei-flippers can both be adiabatic and non-adiabatic flippers.
A Mezei-flipper consists of a coil, where a guide field is applied both before, over and after the
coil. Before entering the coil the neutron spins are aligned along the guide-field, but entering the
coil the neutrons feel a magnetic field in a new direction: the guide field plus the field from the
coil. The neutrons start to precess around this new resultant magnetic field and when exiting
the coil the neutrons have a new polarization direction. The new polarization direction depends
on the resultant field, the thickness of the coil and the neutron velocity.

A sketch of the final three-axis setup, with polarizers (monochromator and analyzer) and
flippers, can be seen in Fig. 3.12.

The polarizer only selects one spin state, let us say up, and often the detector can only detect
one of the spin states, let us again say up. In order to measure all four spin cross sections, it
is necessary to place flippers on both sides of the sample that can change the spin state. These
flippers can be turned on and off depending on the desired measurement. If both flippers are
off, σ↑↑ is measured; if the first flipper is on and the second is off, σ↓↑ is measured, and so on. A
more thorough description of the experimental setup for measuring the four cross sections can
be found in Fig. 3.13.
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3.8 Polarized Neutron Scattering

Figure 3.12: A three-axis spectrometer in polarized mode. The 1st axis is the polarizer
which is a Co-Fe-crystal situated inside a permanent magnet. On the way to the 2nd
axis, where the sample is situated inside an electromagnet, there is a guide field, a flipper
and another guide field. On the way to the 3rd axis which is identical to the 1st axis, the
neutrons pass through one more guide field and a flipper. The guide fields are marked
with a 1 and 2, and the electromagnet containing the sample (at modern instruments
the electromagnet is exchanged by two perpendicular Helmholtz coils.), can be in both
vertical and horizontal mode. In this setup the arrows, in front of the sample, indicate
that the experiment is in horizontal mode i.e. the magnetic field and therefore the
polarization is parallel to Q. The vertical magnetic fields are indicated with circles and
are all pointing out of the paper. From [53].
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3.8 Polarized Neutron Scattering

Figure 3.13: The polarizer and the detector can only select neutrons with spin up |↑〉.
Flippers are needed to change the spin-direction, so all the four cross sections can be
measured. a) When measuring the non-spinflip |↑〉 → |↑〉 cross section both flippers
should be turned off. b) When measuring the spinflip |↓〉 → |↑〉 cross section the first
flipper should be on and the second turned off. c) When measuring the spinflip |↑〉 → |↓〉
cross section the first flipper should be off and the second on. d) When measuring the
non-spinflip |↓〉 → |↓〉 cross section both flippers should be turned on. Adapted from
[78].

3.8.5 Examples of polarization analysis

Polarization analysis can be used to do the following things:
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1. Separate isotopic incoherent scattering from coherent scattering (see item 5 a)).

2. Separate nuclear and magnetic Bragg peaks in antiferromagnets.

3. Separate magnon and phonon scattering in both ferromagnets and antiferromagnets (this
is what has been in this thesis).

4. Separate coherent and spin-incoherent nuclear signals in solids and liquids (see item 5 b)).

5. Separate paramagnetic scattering from other kinds of incoherent scattering (see item 5 c)).

Figure 3.14: The rocking curvesa for different samples around Bragg reflections. a)
Isotopic incoherent scattering from nickel. All the scattering is in the non-spinflip chan-
nel (flipper off). The isotope incoherent scattering is suppressed when the flipper in the
scattered beam is turned on. b) Nuclear-spin incoherent scattering from a single isotope
of vanadium. The spinflip scattering (flipper on) is twice the size of the non-spinflip
scattering (flipper off) and independent of the polarization direction. c) In manganese-
flouride MnF2 the paramagnetic scattering can be detected by changing the polarization
direction. When measuring in horizontal field all the scattering appears in the spinflip
channel (flipper on) and when the polarization is vertical the spinflip and non-spinflip
signal is equal. From [72].

aA rocking curve is the scan one makes of a Bragg peak where the sample is ”rocked” around a vertical axis
through the Bragg peak position [76].
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YMnO3

4 YMnO3

In this section hexagonal h-YMnO3 will be presented. h-YMnO3 has been studied intensively
in the last 50 years, but many of its properties are still not understood. YMnO3 crystallizes
naturally in the hexagonal form due to the small R-ion (here Y), but under high pressure it can
crystallize in the orthorhombic form o-YMnO3, which is the natural form of the RMnO3 with
a large R-ion radius. Both o-YMnO3 and h-YMnO3 are multiferroics, but due to very different
mechanisms, they have both been studied closely. One should be aware of the misleading nam-
ing of the compounds often found in literature. Systems of the form ABO3 are called perovskite
structures, where the B-ion is in an octahedral environment of O-ions. The orthorhombic form
of YMnO3 is therefore an example of a perovskite structure. Unfortunately many authors refer
to the hexagonal structure of YMnO3 as perovskite YMnO3, which has confused many groups
tricking them to refer to results of the wrong structure. h-YMnO3 is the only compound con-
sidered in this thesis and the h subscript is therefore not used from now on. Even though the
compound has been investigated for many years it is still not understood why it is ferroelectric
and the magnetic space group is still under great debate. In this section the current knowledge
will be presented and discussed, hopefully giving a full picture of what is known and what is
merely conjectures.

4.1 Crystal structure and magnetism of Mn3+

YMnO3 is one of the hexagonal compounds of the form RMnO3, where R = Ho, Er, Tm, Yb,
Lu, Sc and Y, presented in Sec. 2.5.3.

The lattice parameters are a = b = 6.14 Å and c = 11.4 Å with the angles α = β = 90 ◦

and γ = 120 ◦ and belongs to the crystallographic space group P63cm at room temperature [87].
The space group specifications can be seen in Fig. B.1 in appendix B.

Manganese is a transition metal in group 7 and occurs with oxidation number Mn 3+ in
hexagonal YMnO3 and therefore has 4 3d−electrons (3d4). Yttrium is also a transition metal
but a period higher in the periodic table with 4d−electrons. It is situated in group 3 in the
periodic table and has three available d−electrons. In YMnO3 yttrium occurs as Y 3+ which
shows yttrium’s similarity to the rare earth elements that almost always has oxidation number
3+. Because Y 3+ has no d−electrons (and no f−electrons) the manganese ions are the only
magnetic ions in YMnO3 with S = 2, due to Hund’s rules, and L = 0, due to orbital quenching,
as explained in Sec. 2.2.

In Fig. 4.1 the room temperature crystal structure can be seen. The Y 3+ ions are positioned
in a seven-fold oxygen environment and the Mn-ions are in a trigonal bipyramidal environment.
The Y 3+ ions form two-dimensional layers that are separated by the MnO5 trigonal bipyramids.
The bipyramids are corner shared and form an almost perfect triangular lattice of Mn-ions in
the basal plane (ab-plane). The unit cell contains six manganese ions and they are positioned at
(a, b, c) = (1/3, 0, 0), (0, 1/3, 0), (2/3, 2/3, 0), (2/3, 0, 1/2) (0, 2/3, 1/2) and (1/3, 1/3, 1/2).

The trigonal bipyramidal crystal field splits up the Mn 3+ d-orbitals and the electrons occupy
the low-lying doublets. The S = 2 spin configuration above and below the ferroelectric transition
is depicted in Fig. 4.2. The ferroelectric transition will be discussed further in Sec. 4.2.

The Mn 3+ ion is not Jahn-Teller active in this crystal environment [48], i.e. it is not favorable
for the c-axis to elongate or dis-elongate to lower the energy.

4.2 The structural and magnetic phase transitions

YMnO3 is an insulator at all temperatures. Above Tc = 1250 K the system is both paraelec-
tric and paramagnetic and belongs to the spacegroup P63/mmc [27]. Specifications about the
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Figure 4.1: a) The room temperature crystal structure of hexagonal YMnO3 (in the
ferroelectric phase). Purple is yttrium, blue is manganese and red is oxygen. The unit cell
is indicated with black lines. The unit cell contains two layers of Y 3+ ions and two layers
of MnO5 bipyramides. b) The MnO5 trigonal bipyramide. c) The 7-fold coordination of
yttrium. From [20].

Figure 4.2: a) Visualization of a MnO5 bibyramide. There is 120 ◦ between the oxygen
atoms in the ab-plane and 90 ◦ between the c-axis oxygen atoms and oxygen atoms in the
ab-plane. b) Above the ferroelectric transition temperature TC the 3d energy levels of
manganese are split in three due to the trigonal bipyramidal environment: two low-lying
doublets and one singlet at higher energy. Due to the change in structure from P63/mmc
to P63cm when entering the ferroelectric phase at TC = 1250 K the doublets split up.
Due to Hund’s rules the four d-electrons of manganese singly occupy the four low-lying
energy levels in both configurations.

P63/mmc space group are given in Fig. A.1 in appendix A.
Below Tc = 1250 K the MnO5 bipyramides create close packing by tilting with respect to the

c-axis and the crystal structure changes from P63/mmc to P63cm as it enters the ferroelectric
phase [1]. The tilting is not random, but is a trimerization of the trigonal bipyramids as seen in
Fig. 4.3 a).
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Figure 4.3: a) When entering the ferroelectric phase at Tc = 1250 K the trigonal
bipyramids tilt and form trimers around the shared oxygen ion in the center. From [1].
b) In the paraelectric phase YMnO3 is centrosymmetric with an ab mirrorplane. The
bond lengths are in Å c) When YMnO3 enters the ferroelectric phase the centrosymmetry
is broken and the bond lengths change. From [88].

The tilting of the trigonal bipyramids breaks the ab mirror plane and inversion symmetry
which triples the unit cell and pushes two Y 3+-ions up along the c-axis and one down by around
0.5 Å[88]. The movement of the ytrrium ions create a spontaneous polarization with the size

P = 5 µC/cm
2

[74].

The polarization is created by the hybridization between the empty d-orbitals in the Y 3+ with
the p-orbitals of oxygen along the c-direction [97]. No hybridization or change in chemical bonding
between the Mn 3+ and the surrounding ligands is observed which makes YMnO3 different from
other ferroelectrics16 and it is therefore referred to as a geometrically (and electrostatically)
driven ferroelectric [88] as presented in Sec. 2.4.2. The Y 3+ ions are too small to naturally
crystallize in the orthorombic form, which is more close packed than the hexagonal form, and
the distortion of the bipyramides lower the energy by filling out the extra space around the Y 3+

atoms [32]. The influence of the tilting on the bond-lengths is illustrated in Fig. 4.3 b) and c).

When cooled further down, YMnO3 orders antiferromagnetically at TN ∼ 70 K. The tran-
sition temperature has been determined by numerous groups and two examples can be seen in
Fig. 4.4. The intensity of the (1 0 0) magnetic Bragg peak has been measured from base to around
80 K. As the temperature is ramped up the intensity of the peak decreases and vanishes at TN .
The points close to, but not at the transition temperature, can be fitted to a power law, thereby
determining the transition temperature and the critical exponent β, Eq. (2.16). The transition
temperatures and critical exponents measured by Chatterji et al. [12] and Roessli et al. [65] gave
a TN = 69.89±0.05 K with β = 0.295±0.008 and TN = 72.1±0.05 K and β = 0.187±0.002, re-
spectively. The β-value for YMnO3 shows that the system cannot be described by a single model,
but needs a combination of different models Sec. 2.6. For a two-dimensional XY -antiferromagnet
the theoretical critical exponent is β = 0.23. For a three-dimensional triangular Ising antiferro-
magnet β = 0.19 [65].

Before discussing the multiferroic couplings and the magnetic structure bulk measurements
and other important experimental discoveries will be presented. With the knowledge of all the
different (sometimes inconsistent) measurements it is easier to understand the problems addressed
in this MSc thesis.

16It was presumed at first that movements of the Mn-ions with respect to the center of the bipyramide was the
origin of ferroelectricity in the compound, but it is the general opinion now that it is only the yttrium ions that
contribute to the polarization and that the Mn-ions are stationary in the process.
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Figure 4.4: a) The intensity of the magnetic Bragg peak (1 0 0) as a function of temper-
ature finding a transition temperature of TN = 69.9 K and critical exponent β = 0.295.
From Chatterji et al. [12]. b) The intensity of the magnetic Bragg peak (1 0 0) as a
function of temperature finding a transition temperature of TN = 72.1 K and critical
exponent β = 0.187. There is a great amount of critical scattering within 1-2 K around
TN . From Roessli et al. [65].

4.3 Bulk Measurements

Magnetic susceptibility measurements done in refs. [71] and [44] showed a strong anisotropy
between the c-direction and the ab-direction, below the antiferromagnetic transition temperature
TN , as seen in Fig. 4.5 a). From the susceptibility measurements the Curie-Weiss temperature
ΘCW was also determined, Fig. 4.5 b).

Figure 4.5: a) The susceptibility as a function of temperature. It is clear that YMnO3

orders antiferromagnetically because the susceptibility does not go to zero at zero tem-
perature. [71]. b)The Curie-Weiss temperature ΘCW is determined by extrapolating the
1/χ data as a function of temperature to zero. ΘCW = −500 for YMnO3 which is very
far from the Néel temperature TN ∼ 70K due to frustration. From [44].

The large frustration due to the triangular lattice with antiferromagnetic exchange couplings,
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makes it difficult for the magnetic moments of the manganese ions to order until the system is
cooled well below the Curie-Weiss temperature ΘCW = −500 K. This results in a high frustration
parameter for YMnO3 given by the ratio between the Curie-Weiss temperature and the Néel
temperature TN ∼ 70 K [59]:

| ΘCW |
TN

=
| −500K |

70K
≈ 7 (4.1)

Because the manganese ions are S = 2 ions the magnetic moment per site should be 4µB , but it
turns out that the effective moment per site is only 2.9µB at T = 1.7 K [54].

Measurements of the heat capacity Cp by refs. [83], [79], and [73] shows a clear anomaly at
the magnetic transition temperature.

Figure 4.6: The heat capacity at zero field (open black squares) and 9 T (open red
circles) and the entropy (black line) as a function of temperature in zero field of a powder
sample. At TN the heat capacity shows an anomaly. The inset shows the raw heat
capacity data (red dots) and the modeled phonon contribution (the dotted line). The
main graph is the heat capacity measurements with the phonon contribution subtracted.
From [83].

The magnetic entropy in Fig. 4.6 at T = 200 K is close to the maximal entropy for a S = 2
system:

∆S(200K) ≈ Smax = R ln(2S + 1) = 13.38 J mol−1K−1 (4.2)

The thermal conductivity κc was measured along the c-direction and the ab-direction in ref. [71]
and can be seen in Fig. 4.7. κc is constant in both directions from T = 200 K to TN where both
curves increase rapidly.

The suppression of the thermal conductivity in the range 20 K< T < TN cannot be explained
by phonon-only-interactions, as seen in Fig. 4.8. Above TN the thermal conductivity can be
fitted to a model where spin fluctuations are taken into account [71].

Measurements of the dielectric constant ε on a powder sample showed an anomaly around
the magnetic ordering temperature, Fig. 4.9, indicating a coupling between the polarizations and
magnetic degrees of freedom [73].
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Figure 4.7: The thermal conductivity κ measured along c and ab in a single crystal.
Both curves change appearance at TN . The filled circles represent the difference in the
c-direction between measurements done at zero field and at 90 kOe and the open squares
show the difference in the ab-direction. The H-field dependence is therefore negligible.
Adapted from [71].

Figure 4.8: Thermal conductivity κ (full black line) as a function of temperature. The
dashed lines correspond to two different fits to κ assuming phonon only interactions.
The open squares correspond to a model where the effect of spin fluctuations on κ is
taken into account. The model is scaled to match the size of the thermal conductivity
measurements at TN . TN is indicted with the vertical dotted line. Adapted from [71].
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Figure 4.9: The dielectric constant as a function of temperature at different magnetic
fields. The black curve was taken with µ0H = 0 T, the red curve was taken with µ0H = 3
T and the blue curve was measured with µ0H = 5 T on a powder sample. The inset
shows the dielectric constant in a larger temperature range. The change in the slope
around TN reflects antiferromagnetic ordering. The From [73].

4.4 The magnetic structure and space group

The crystallographic unit cell and the magnetic unit cell are identical and the propagation vector
of the magnetic cell is k = 0 which means that the magnetic and nuclear peaks occur at the same
positions. This makes the determination of the magnetic structure difficult. Twelve different
magnetic structures are allowed in the space group with propagation vector k = 0 [57].

The most resent articles about YMnO3 states that the magnetic space group is P6′3 [91],
P6′3cm

′ [27] and P63cm [84], respectively. Singh et al. [74] has compared neutron scattering data,
magnetization data, polarization data, dielectric constant data and second harmonic generation
concluding that only one magnetic group can explain everything: the P6′3 group. This group
was already proposed by ref. [7], but with a magnetic structure that is not compatible with
experiments.

Singh et al. argue that the polarization and the antiferromagnetic order parameter cannot
be in the same irreducible representation because the magneto-elastic coupling is non-linear. In
Fig. 4.10 the evolution of the (1 0 0) antiferromagnetic Bragg peak and the ab-component of the
dielectric constant is shown. There is a clear anomaly at the magnetic ordering temperature
indicating a magnetoelectric coupling, but if the coupling were to be linear the anomaly at TN
for the dielectric constant should be divergent [74]. The c-component of the dielectric constant
shows no anomaly.

Since the polarization belongs to the totally symmetric Γ1 representation the antiferromag-
netic order cannot belong to the Γ1 representation of the magnetic space group. The structure
proposed by Brown and Chatterji [7] is the Γ1 of the P6′3 group, Fig. 4.11 b). However, Brown
and Chatterji only considered the Γ1 representation of the magnetic space groups. Instead Singh
et al. assume that the structure by Muñoz et al. [54] is correct (they did a full symmetry
analysis) and this structure is the Γ4 representation of the P6′3 magnetic group, Fig. 4.11 a).
This space group allows for a ferromagnetic signal induced by the DM-interaction, seen by [56]
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Figure 4.10: Dependence of the (1 0 0) magnetic Bragg reflection representing the an-
tiferromagnetic order parameter (filled squares, left scale). The ab-component of the
dielectric constant, representing the ferroelectric order parameter, as a function of tem-
perature (open circles, right scale). From [74].

and discussed in Sec. 4.5. With the Γ4 representation of the P6′3 magnetic group the exchange
interaction between the Mn-layers is antiferromagnetic, while the Γ1 representation results in a
ferromagnetic interaction between the manganese layers.

If the small ferromagnetic signal is an artifact there are three other possible magnetic groups
that can explain all data: P6′3c

′m, P6′3cm
′ and P63c

′m′ [74].

4.5 Ferromagnetic signal

Based on the theory on orthorhombic RMnO3 Pailhès et al. [56] propose that the system can
benefit energetically from the DM-interaction presented in Sec. 2.2. The DM-interaction induces
a small ferromagnetic signal due to the movement of the interlayer oxygen atom along the c-
direction, see Fig. 4.12 b). The (2 1 1) Bragg reflection was examined, because it is a forbidden
antiferromagnetic reflections in the P63cm group and a weak nuclear reflection. The intensity
as af function of temperature is depicted in Fig. 4.12 a). The (2 1 1) Bragg peak intensity is zero
at TN .

The DM-interaction can be the explanation for the hybridization of the spin and the lattice,
but the interaction is three orders of magnitude weaker than the electrostrictive interaction [91].

The magnetic space group of YMnO3 is under debate, and whether the measured signal
implies a ferromagnetic moment in YMnO3 or not, is important for determining the magnetic
space group. Fiebig et al. [21] claims that the ferromagnetic signal appears because of Mn3O4

impurities in the crystals despite the similarities in critical temperature.
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Figure 4.11: Two magnetic structures belonging to the space group P6′3. Black rep-
resents the manganese ions in the z = 0 layer and red represents the manganese ions
in the z = 1/2 layer. Right: The Γ4 representation proposed by [74]. Left: The Γ1

representation. This structure was proposed by [12].

Figure 4.12: a) The intensity of the (1 0 0) antiferromagnetic Bragg peak and the (2 1 0)
ferromagnetic Bragg peak intensity as a function of temperature. b) The effect of the
DM-interaction on the Mn-spins. In the top picture the spins point along the ab-plane
and in the lower picture the spins tilt upwards with respect to the ab-plane creating a
small magnetic moment along the c-axis. From [56].

4.6 The magnetoelastic coupling

In 2008 Lee et al. [43] observed a giant magneto-elastic coupling in YMnO3. This effect is a
contraction of the manganese ion lattice sites in the ab-plane when entering the magnetic phase.
These measurements were done on a powder sample with neutron diffraction. The direction of
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the displacements can be seen in Fig. 4.13 b). The ligands and the yttrium ions also move as
indicated in Fig. 4.13 a), but as they are not magnetic ions, the focus is on the movement of the
Mn 3+ ions which is up to 0.1 Å, see Fig. 4.14. The displacements of the atoms do not change
the space group of the crystal.

Figure 4.13: a) The unit cell of YMnO3 indicating the displacements of the atoms
during the magnetic phase transition. Red is yttrium, cyan is manganese, green and
orange are the ab-plane oxygen atoms and blue is the out of plane c-axis oxygen atoms
b) The simplified structure looking along the c-axis. Only atoms in the a-b-plane are
shown. The blue arrows indicate the displacement of the manganese ions in YMnO3 when
entering the magnetic phase. The pink arrows show the displacement of the manganese
ions in the sister compound LuMnO3, which is not relevant here. The displacements are
largest in YMnO3. From [43].

These results, however, are under debate. Thomson et al. [82] question the validity of the
measurements. The displacements of around 0.1 Å are within the spread of reported positions
at room temperature.
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4.6 The magnetoelastic coupling

Figure 4.14: The Mn-ion position in Å as a function of temperature determined with
high-resolution neutron (filled green circles) and X-ray synchrotron (open green circles)
powder diffraction experiments. The errorbars are the standard deviation obtained from
Rietveld refinement and Fullprof. a) The Mn-ion positions distorted away from the ideal
x = 1/3 position. b) The distance between the Mn-ions and the O3 atom as a function
of temperature. c) The distance between the Mn and the O4 atom as a function of
temperature. From [43].
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4.7 Diffuse magnetic scattering

Above the magnetic transition temperature, TN , scattering is diffuse, representing short-range
magnetic order. The correlation length ξ can be derived from the width of diffuse scattering
peaks, while the normalized intensity can be determined by the area of the diffuse scattering
peaks [59]. The correlation length gives an idea about the nature of spin fluctuations above TN .
The correlation length as a function of temperature can be seen in Fig. 4.15, where a typical
scan of the diffuse scattering around the magnetic Bragg peak above the transition temperature
is also shown.

Figure 4.15: The correlation length (circles) and the normalized intensity (black
squares) around the magnetic transition temperature TN derived from diffuse scatter-
ing measurements. The inset shows a typical 2θ scan with the sharp nuclear Bragg peak
and the broad diffuse magnetic scattering. From [71].

4.8 Excitations in YMnO3

The phonon dispersions from Γ → M → L → A → Γ → K → H → A have been calculated [67]
for YMnO3 and can be seen in Fig. 4.16. To be reminded of the directions see the Brillouin zone
in Fig. 2.4. The only direction in the ab-plane that has not been calculated is M→ K.

The spin wave dispersions of the three modes around (0 0 0) have been calculated and mea-
sured by Sato et al. [68] and Petit et al. [63] and can be seen for different directions in reciprocal
space in Fig. 4.17 and in the (h 0 0) direction in Fig. 4.18. The mode that goes to zero was
not detectable at (1 0 0) and was therefore measured at (1 0 1) in both refs. [68] and [63]. Sato
et al. explains this with a better resolution along l at their particular experiment and Petit et
al. concludes that, it the same mode, but that the gap closes at the (1 0 1) position due to the
exchange between the Mn-layers.

The spin wave dispersions in Fig. 4.18 can be described by the spin Hamiltonian [62]:
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Figure 4.16: The phonon dispersions along different directions in reciprocal space calcu-
lated with ab-initio calculations. A wavenumber of 100 cm−1 corresponds to and energy
of 12.5 meV. From [67].

Figure 4.17: Spin wave dispersions derived from data taken at T = 50 K (black circles)
and a few points measured at T = 75 K around the (h 0 0) magnetic Bragg peak. The
solid lines are calculated from a nearest neighbor Heisenberg model with two anisotropies.
The inset shows the directions in reciprocal space. From [68].

H =
∑

R,R′,i,j,

(
JR,i,R,′j

−→
S R,i

−→
S R′,j +H

−→
S R,i · −→n i +DSzR,iSRi′

)
(4.3)

where
−→
S Ri is the spin at site i in the cell R, −→n i =

〈−→
S Ri

〉
|
〈−→
S Ri

〉
|

where
〈−→
S Ri

〉
is the mean spin,

H and D are the easy axis and easy plane anisotropies, respectively, and JR,i,R,′j describes the
exchange interactions (both in-plane and out-of-plane). The fitting gives a nearest neighbor
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4.8 Excitations in YMnO3

antiferromagnetic exhange interaction of J = 2.3 meV, an easy-plane anisotropy of D = 0.33
meV and a very small easy-axis anisotropy of H = 0.0008 meV.

Figure 4.18: Magnon dispersions
along (h 0 0). Mode 1 was measured
around (1 0 0) and corresponds to out-
of-plane fluctuations. The open cir-
cles is Mode 1, but measured around
(1 0 1) i.e. also measuring the inter-
plane interactions and thereby closing
the gap. Modes 2 and 3 were mea-
sured around (0 0 6) and correspond to
in-plane-fluctuations. From [62].

The dispersions in Fig. 4.18 are derived from the neutron scattering measurements in Fig. 4.19.

Figure 4.19: Inelastic neutron scattering measurements of the spin wave gap at the
zone center. The gap closes when going out along l due to the exchange between the
Mn-layers. From [63].

Only a few phonon dispersions have been measured in YMnO3 and can be seen in Fig. 4.20.
In Fig. 4.20 a) the data was taken around (h 0 6). A spin wave is clearly seen and the phonon
signals are weak. The phonon position is marked with a dotted line, while the magnon data
is marked with a solid line. The lines are not calculated, but merely guides to the eye. When
moving out in Q the phonon signal intensifies and the magnon signal disappears, as seen in
the data taken around (h 0 1 2), Fig. 4.20 b). The solid lines now correspond to the phonon
dispersions. At around h = 0.18 there is a gap in the phonon dispersion at T = 18 K.

When plotting the phonon and the magnon dispersions together, Fig. 4.21, one sees that the
magnon and phonon dispersions cross each other at around h = 0.28.

Pailhès et al. [56] performed experiments with polarized neutrons in 2009. Their measure-
ments revealed a hybrid mode (HM) in the (h 0 6) direction appearing at low temperatures (below
T = 25 K). The data for four different h-values can be seen in Fig. 4.22. The hybrid mode is
largest at small Q’s. At h = −0.325 the signal from the hybrid mode is comparable with the
leak from the spinflip channel and is therefore not significant.
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Figure 4.20: Dispersions measured at
T = 18 K with inelastic neutron scattering.
The lines are guides to the eye. a) Dis-
persions around (0 + q 0 6). b) Dispersions
measured further out in Q at (0 + q 0 1 2).
From [62].

Figure 4.21: Phonon and magnon dispersions in the (q 0 0) direction in YMnO3. The
green boxes correspond the measurements of the optical phonon at T = 18 K. The red
triangles correspond the measurements at T = 200 K of the acoustic phonon, while the
filled blue circles is the same dispersion measured at T = 18 K. The open blue circles
correspond to small intensity measurements of the acoustic phonon, also at T = 18 K.
The red dotted lines are the calculated magnon dispersions. The gap in the T = 18
K data is marked with q0 and the crossing between the T = 200 K acoustic phonon
dispersion is marked with qcross. From [62].
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Figure 4.22: Polarized inelastic neutron measurements of excitations in YMnO3 at
Q=(h 0 6) for four different h-values at T = 1.5. Red denotes the spinflip channel and
blue denotes the non-spinflip channel. The phonon (P) and the hybrid mode (HM) both
occur in the non-spinflip channel. The leak from the spinflip channel is indicated on all
the figures with red dots. a) h = −0.05. a) h = −0.1. a) h = −0.15. a) h = −0.325.
Adapted from [56].

The dispersion relation of the hybrid mode can be seen together with the other low energy
modes in Fig. 4.23. When measuring at (h 0 6) in Q the longitudinal part of the lattice vibrations
are seen while it is the transverse component of the spin waves that contribute to the inelastic
neutron scattering intensity.

When comparing Fig. 4.21 with Fig. 4.23 it is clear that what Petit et al. [62] thought was
the acoustic phonon at T = 18 K (the blue open circles in Fig. 4.21) is actually the hybrid mode
measured by Pailhès et al. [56].

4.9 Coupling of the order parameters

Assuming that the symmetry analysis performed by Singh et al. [74] is correct, and the magnetic
structure is the Γ4 representation of the P6′3 magnetic space group, the exchange couplings
between the layers are antiferromagnetic i.e. J < 0 with the definition in Eq. (2.10). There is a
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Figure 4.23: Dispersion relations for the low energy modes. Red open circles denote the
measured magnon points and the red dotted lines indicate calculations. The open blue
squares denote the phonon measurements and the blue dotted line are calculations bor-
rowed from [63]. The filled blue circles denote the data from the hybrid mode. Adapted
from [56].

strong Mn-O-Mn nearest neighbor intra layer antiferromagnetic superexchange interaction and
weak Mn-O-O-Mn next nearest neighbor interlayer antiferromagnetic superexchange interactions.
The average nearest neighbor coupling has the size J1 = 2.45 meV and the couplings between two
manganese layers (Mn-ions at z = 0 and z = 1/2) Jz1 and Jz2 has the difference Jz1−Jz2 = 0.018
meV [84]. The superexchange interaction between the layers are two orders of magnitude smaller
than the superexchange interaction between nearest neighbor Mn-ions.

The magnetoelectric effect is symmetry forbidden because the polarization is along the c-axis
and the magnetic moments are in the ab-plane i.e. P ·M = 0. But there is a non-linear coupling
between the dielectric constant in the ab-plane and the magnetization as explained in Sec. 4.4.

YMnO3 has three order parameters. The primary one is the antiferromagnetic ordering
parameter. The second most important one is the polarization along the c-direction and finally
there is the ferromagnetic ordering parameter along c created by the DM-interaction [74]. The
magnetic orderings belonging to the Γ4 representation are shown in Fig. 4.24 and should all be
included in a Landau theory analysis.

Following Singh et al. a Landau theory containing all the order parameters to the fourth
order can be expressed:

F = α2(T − TN )(A2 +B2) + α4(A2 +B2)2 − β2(P − P 2
0 ) + β4(P 4 − P 4

0 )

+ γ2M
2 + γ4M

4 + c4(A2 +B2)(P 2 − P 2
0 ) + d4M

2(P 2 − P 2
0 )

+ e4(A2 +B2)M2 + z4(P 2 − P 2
0 )
−→
A ·
−→
M

(4.4)

where δP = P − P0 is the change in polarization.
−→
A , B and

−→
M are the order parameters of the

V1, V2 and V3 magnetic orders, respectively, given by (for one unit cell with i = 6 Mn-ions):
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Figure 4.24: The magnetic
structures belonging to the Γ4

representation of the magnetic
space group P6′3. The V1 struc-
ture can be described by the
toroidal component of the in-
plane spin component and V2 by
the divergence of the in-plane
spin components. V3 is the out-
of-plane component. From [74].

−→
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1
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−→
M =

1

6

∑
i

−→
S i =

1

6

∑
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−→
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where
−→
S i =

−→
S ab,i +

−→
S c,i is the spin of the ith manganese ion.

−→
A and

−→
M are vectors in

the c-direction and B is a scalar. In Eq. (4.4) the first two terms, α2 and α4, correspond
to the antiferromagnetic energies, the third and fourth term, β2 and β4, are the changes in the
ferroelectric energies and the fifth and sixth term, γ2 and γ4, are the ferromagnetic energies. The
four last terms are the coupling terms: the ferroelectric and antiferromagnetic coupling c4, the
ferromagnetic and ferroelectric coupling d4, the antiferromagnetic and the ferromagnetic coupling
e4, and finally the DM-interaction z4. If A = Sab cosφ and B = Sab sinφ then the intensity of
the (1 0 0) Bragg peak is proportional to S2

ab for all values of φ. Differentiating Eq. (4.4) with
respect to antiferromagnetic order parameter Sab, the polarization P , the magnetization M and
the angle φ the following results are obtained:

1. V1 spin arrangement is obtained, i.e. φ = 0.

2. Below the antiferromagnetic ordering temperature TN the polarization decreases.

3. The ferromagnetic order parameter is much weaker than both the antiferromagnetic order
parameter and the change in polarization δP .

62 of 137



4.9 Coupling of the order parameters

4. The ferromagnetic and antiferromagnetic ordering parameters M and Sab, respectively, are
not linearly related at TN .

5. The behavior of the dielectric constant corresponds to the measured one in Fig. 4.10.

6. It is not possible to switch the direction of any of the magnetic orders by switching the

polarization because P = P0

(
1− c4

4β4
A2
)

and M = − z4
γ2
AP0δP . A change in P will leave

M and A unchanged, but if M is switched A will follow.

Point no. 6. is important when thinking about applications for data storage. The general goal
of multiferroics is to be able to switch the magnetization with an electric field as mentioned in
Sec. 1.2, but with the analysis above, this does not seem possible. However, the antiferromag-
netic order can be switched with a strong magnetic field, thereby making YMnO3 a material
useful for data storage that is not sensitive to small magnetic fields [74].

The coupling between the lattice and spin degrees of freedom, which make the magnetoelec-
tric coupling possible, is not yet fully understood. Other research groups have concentrated on
Q’s close to the zone center and only looked at zones far out in the l-direction, where it is possible
to measure phonons and magnons at the same time, hoping to recieve information about the
microscopic interactions. No one has examined reciprocal space further out in the ab-plane. That
is, however, one of the measurements that were performed in this thesis. Before the results are
presented a short introduction to the instruments and the settings at the different experiments
is reviewed.
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5 Instruments

In this section the three-axis instruments used for collecting data for this thesis are described.
All instruments are different and they all have their forces and weaknesses. It should be possible
to reproduce all the experiments presented in this thesis with the technical details that are given.
Hopefully this section can also help with planning future experiments regarding the instrument
selection. A conversion table relating important relationships between wavelength, frequency
and velocity of neutrons can be found in appendix E.

5.1 RITA II - cold instrument

RITA II is a three-axis instrument situated at SINQ at the Paul Scherrer Institute (PSI) in
Switzerland [61]. SINQ is a continuous spallation neutron source. The flux is 1014 neutrons/cm2/s.
There is a cold moderator of liquid deuterium which provides the neutrons for RITA II which
is positioned 42 m away from the moderator at the end of a curved neutron guide. The en-
ergy range available at RITA II is from 2.5 meV-20 meV selected by a vertically focusing PG
monochromator. The flux at the sample position is of the order 106 neutrons/cm2/s and varies
with the wavelength of the neutrons. At RITA II the flux is largest at the neutron wavelength
λ = 3.5Å (6.7 meV). The resolution also changes with wavelength. The resolution is best for
large wavelengths. At RITA II there is an optional Be or BeO-filter removing 2nd order neutrons.
The Be-filter works for wavelengths larger than 4 Å.

RITA II is a special three-axis spectrometer because there are nine PG analyzer blades. It
is therefore possible to measure nine (Q, ~ω) points simultaneously. The detector is a position
sensitive 3He detector. A sketch of the RITA II instrument can be seen in Fig. 5.1.

Figure 5.1: Sketch of RITA II. From [61].

RITA II was used for two experiments: one experiment in November 2012 and one experiment
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in August 2013. In November 2012 the ordering temperature of YMnO3 was determined. In
addition to that the magnon-dispersion around (0 1 0) was measured. In August 2013 the tem-
perature dependence of the magnon dispersion around (1 0 0) was measured. Both experiments
concentrated on measuring magnon dispersions and both experiments were executed with a fixed
final energy Ef = 5meV. The settings for the two experiments can be found in Table 5.1.

Component November 2012 August 2013
Ef 5 meV 5 meV
Cryostat Orange Orange
Analyzer Multiple PG Analyzer Multiple PG Analyzer
Collimation mono-sample 80’ 80’
Filters Be Be
Distance monochromator to sample 1.54 m
Distance sample to analyzer 1.2 m
Distance analyzer to detector 0.38 m

Table 5.1: Settings at the RITA II experiments executed in November 2012 and August
2013.

The YMnO3 sample was cylindrical (21 mm long and 10 mm in diameter) and had a mass of
m = 5250 mg. The crystal mounted on the crystal holder for both RITA II experiments can be
seen in Fig. 5.2. The scattering plane was the ab-plane for all the experiments.

Figure 5.2: Pic-
ture of the crystal
mounted on the
sample holder for
both the RITA II
experiments and the
EIGER experiment.
The a/b axis is
marked with a black
dot on the aluminum
holder.

With the formulas in Sec. 3.6 the (Q, ~ω) range for the final energy Ef = 5 meV and maximal
scattering angle 2θ = 120 ◦ can be calculated. The range is plotted in Fig. 5.3.

5.2 EIGER - thermal instrument

EIGER is a three-axis spectrometer also situated at SINQ at PSI [60]. A sketch of EIGER can
be seen in Sec. 5.2. It is a thermal instrument with a PG monochromator and a range of energy
transfers of -10 meV to 45 meV at a fixed final energy of Ef = 14.7 meV. The detector is a single
3He-tube detector. A PG-filter removes higher order neutrons.

The experiment on EIGER was executed in December 2012 where the transverse phonon around
(0 3 0) was measured both below and above the magnetic transition temperature and the settings
can be seen in Table 5.2. The sample holder and sample was the same is in the RITA II
experiments and a picture of the setup can be seen in Fig. 5.2.

With the formulas in Sec. 3.6 the (Q, ~ω) range for the fixed final energy Ef = 14.7 meV and
maximal scattering angle 2θ = 90 ◦ can be calculated. The range is plotted in Fig. 5.3.
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Figure 5.3: (Q, ~ω)-range at RITA II (red) with Ef = 5 meV and 2θ = 120 ◦ and
maximal energy transfer of ~ω = 12 meV, EIGER (blue) with Ef = 14.7 meV and
2θ = 90 ◦ and maximal energy transfer of ~ω = 60 meV, and C5 (green) with Ef = 113.7
meV and 2θ = 115 ◦ and maximal energy transfer of ~ω = 50 meV. The black lines
indicate the maximal energy transfers.

Component

Ef 14.7 meV 2.66Å−1

Cryostat Orange
Monochromater Double focusing PG
Analyzer Horizontally focusing PG
Filters Saphire filter ingoing 37 mm PG outgoing
Distance monochromator to opening 60 mm
Distance monochromator to sample 2150 mm
Distance sample to analyzer 1150 mm
Distance analyzer to detector 1150 mm

Table 5.2: Settings at the EIGER experiment.

5.3 C5 - thermal polarized instrument

The last experiment, in connection with this work, was executed in Canada at Chalk River
National Laboratory in February 2014. The three-axis spectrometer C5 is a polarized thermal
instrument with a light water moderator with T = 300 K and a flux of 109 neutrons/cm2/s at
the sample position. Both the monochromator and analyzer is of the polarizing Heusler type,
see Sec. 3.8.4. The detector is a cylindrical 3He with a 1.5 inch diameter and 5 inches high.
The conversion between inches and centimeters can be found in Table E.2 in appendix E. The
settings for the experiment on YMnO3 can be found in Table 5.3. The sample on the sample
holder can be seen in Fig. 5.5.
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Figure 5.4: Sketch of EIGER. From [60].

Component

Ef 113.7 meV 7.41Å−1

Monochromater Single crystals of Cu2MnAl Heusler alloy
Analyzer Single crystals of Cu2MnAl Heusler alloy
Cryostat Lemon
collimators soller none (0.6 ◦), 0.799 ◦ 0.855 ◦ 2.4 ◦

Filters 2 PG outgoing
Flippers Mezei-type ingoing Mezei-type outgoing
Guide fields HF 10 gauss VF 30 gauss
Distance Source to monochromator 6604 mm
Distance Monochromator to sample 1784-2159 mm
Distance Sample to analyzer 1016-1422 mm
Distance Analyzer to detector 267 mm

Table 5.3: Settings at the C5 experiment. For a neutron wave vector of 2.37Å−1 the
flipping ratio is 24:1, see Eq. (3.43) in Sec. 3.8, the Heusler polarization efficiency is 96.5
% and the flipper efficiency is 99.5%.

With the formulas in Sec. 3.6 the (Q, ~ω) range for the final energy Ef = 14.7 meV and maximal
scattering angle 2θ = 115 ◦ can be calculated. The range is plotted in Fig. 5.3.

At the C5 instrument the scattering plane is defined by the perpendicular coordinates ζ (zeta)
and η (eta). The connection between (ζ, η) and the Miller indices (h k l) are in our setup:
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Figure 5.5: Picture of the crystal mounted on the sample stick for the C5 experiment.
The boronitride shielding was there to minimize the background. Before the sample
was inserted into the cryostat a thin aluminum can was put around the sample and
boronitride shielding so prevent the sample from ending up in the bottom of the cryostat
if it fell off. A picture of the setup with the aluminum can can be seen in Fig. 5.6.

Figure 5.6: An aluminum can encapsulated the crystal on the sample stick preventing
it from ending up in the bottom of the cryostat in case the crystal fell off during the
experiment.

Figure 5.7: Sketch of the polarized setup at C5 with the position of a monitor (MON),
three flippers (Flip 1, Flip 2 and Flip 3), two slits, two guide boxes for keeping the
polarization, the 5-coil assembly that determines the polarization at the sample position,
two PG filters, a collimation box and the analyzer. The sketch is provided by Zahra
Yamani, the instrument scientist at C5.
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ζ =
h+ k

2

η =
h− k

2

(5.1)

The scattering plane was spanned by the perpendicular lattice vectors passing through (1 1 0)
and (1 1 0) (a larger region of reciprocal space can be seen in Fig. 6.1):

Figure 5.8: The scattering plane at the C5 experiment spanned by the perpendicular
axes ζ and η. ζ passes through (1 1 0) and η passes through (1 1 0).

In addition to the (ζ, η) coordinate system, the instrument software works with energies in
THz.
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6 Non-polarized data

In this section, results from the non-polarized neutron scattering experiments will be presented.
The RITA II experiments were performed by S. Holm, K. Lefmann, A. Poole and students of the
neutron scattering course at University of Copenhagen. The EIGER experiment was performed
by S. Holm, K. Lefmann and A. Bakke in connection with the bachelor’s thesis of A. Bakke. I
present an accumulated and complete data analysis of all the above mentioned experiments. The
data from the polarized neutron scattering experiment, that I have performed in collaboration
with S. Holm, K. Lefmann and A. Poole, will be presented in the next section, Sec. 7, and
compared to the non-polarized data.

This section begins with a map of reciprocal space where the different data was taken. A
discussion of the models used for fitting and general thoughts about how to treat data are included
at the beginning of the section before actual results are shown. These considerations, as well as,
the map of reciprocal space, should be consulted when reading the subsequent polarized data
section.

6.1 Orientation in reciprocal space

Before the results are presented, an overview of the locations in reciprocal space where the
measurements were made appears in Fig. 6.1. The symmetry points in the first Brillouin zone
annotated as (0 0 0) are marked with Γ, K and M as is also shown in Fig. 2.4. All measurements
were done in the ab-plane, but in different the Brillouin zones (1 0 0), (2 0 0) and (3 0 0). The
green circles indicate the Bragg peaks that have been examined and the red lines indicate the
inelastic neutron constant-Q scans, Fig. 3.9. The (1 0 0), (0 1 0), (1 1 0), (1 0 0), (0 1 0) and (1 1 0)
(which are all equivalent due to the hexagonal symmetry) are strong magnetic peaks, while the
(3 0 0), (0 3 0), (3 3 0), (3 0 0), (0 3 0) and (3 3 0) peaks are strong nuclear peaks that were used
for alignment of the crystal prior to all experiments.

6.2 Experimental practice and data analysis

Bragg peaks are delta functions in Q at ~ω = 0, but because of the finite resolution of the
instrument and the mosaicity of the sample the peak is broadened and often has the form of a
Gaussian function given by:

f(x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
+ b (6.1)

where 1
σ
√

2π
is the amplitude, σ is the standard deviation, µ is the position of the center of the

peak called the mean value and b is the background. The curve looks like a bell that quickly
falls off to the value d; the background. The standard deviation is connected to the Full Width
Half Maximum (FWHM) Γ in the following way:

FWHM = Γ = 2
√

2 ln 2σ = 2.354σ (6.2)

Both the Bragg peaks and the inelastic peaks were fitted with Gaussian functions and the errors
on the fitting parameters are calculated by the least squares method. A sloping background is
sometimes required to account for experimental variations in temperature, scattering angle, and
other parameters.

Prior to all experiments, alignment scans were performed to ensure that the orientation of the
sample in reciprocal space was correct. The alignment scans are elastic scans, where the Bragg
peak is scanned and fitted to a Gaussian function, thereby revealing the exact position of the
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6.2 Experimental practice and data analysis

Figure 6.1: An overview of measurements on YMnO3 in reciprocal space within the
(a∗, b∗)-plane. The blue lines are scans made by other groups. Additionally, they have
measured along the l-direction i.e. out of the plane. Red lines indicate scans performed
by our group which are only in the (h, k)-plane. The green circles indicate which Bragg
peaks have been used for alignment, determination of transition temperature, and so
forth. The scans around (0 1 0) and (1 0 0) were performed at RITA II. The scans around
(0 3 0) were performed at EIGER (no phonons were detectable around (0 2 0)). The scans
at C5 were done around (3 3 0). The scattering plane spanned by the orthogonal vectors
ζ and η is marked with green arrows.
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6.2 Experimental practice and data analysis

Figure 6.2: The Gaussian distribution with the mean µ and the position of the standard
deviation σ. The Lorentzian distribution is also shown with the FWHM Γ. From [8].

peak. The coarse alignment of the sample was performed with a Laue camera, the fine tuning
with a four-circle instrument and the remaining fractional degrees were done at the three-axis
instrument.

The diffuse scattering around a Bragg Peak is fitted with a Lorentzian because the correlations
fall off exponentially in real space. A scattering cross section is the Fourier transform of an
exponential function, a Lorentzian function. The Lorentzian function is given by:

f(x) =
1

π

Γ
2

(x− µ)2 +
(

Γ
2

)2 + b (6.3)

where µ is the position of the peak, Γ is the FWHM and b is the background. The Lorentzian
and the Gaussian distributions are plotted together in Fig. 6.2, where the differences in shape
are clear.

The error bars of the counts are given by 1/
√
N [25]. All zero-counts were fixed at 1, to make

the fitting routines possible. Changing counts is a problem, but it is a way of making a zero
count weigh as little as possible in the statistics. All spurious signals were removed.

The program Spec1d [29] for MatLab was used for fitting the data. Spec1d is written by
Henrik Rønnow and Des McMorrow. The data were fitted with different fitting-routines written
for the fits.m function for Spec1d; when the data are presented the exact fitting-routine will be
elaborated.

The intensity of the polarized data is much smaller than the intensity of the non-polarized
data. When the polarized data and the non-polarized data are plotted together, the intensities
of the non-polarized data is divided by a factor 540. It is normal to loose a factor of 20-40
in intensity when going from a non-polarized to a polarized experiment. One looses a factor
2 because only one spin state out of two is chosen, another factor of 2 is lost because Heusler
monochromators are used instead of PG crystals, and finally, a factor of at least 5 is lost due to
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6.3 The magnetic phase transition

the difficulties of focusing the beam from a Heusler polarizer [72].
The last factor accounting for the difference between the non-polarized data and the polarized

data is the difference in monitors. The data being compared was normalized to the monitor and
not to counts per time. The non-polarized data points were measured for 1-2 minutes per point,
whereas the polarized data were measured for around 50 minutes per point.

6.3 The magnetic phase transition

At RITA II the intensity of the (0 1 0) magnetic Bragg Peak was measured from base to just
above the critical temperature. To see specifications on the experimental setup see Sec. 5.1. The
intensity of the magnetic Bragg peak is proportional to the square of the staggered magnetization
I = (M↑ −M↓)2 = M2, i.e. the squared order parameter for the antiferromagnetic system. The
amplitude of each peak was determined by curve-fitting the data using a Gaussian function with
a sloping background17 the amplitude of the peak was determined. By plotting intensity as a
function of temperature, Fig. 6.3, and fitting the points closest to the transition temperature to
Eq. (6.4), the transition temperature and the critical exponent were found to be TN = 71.96 K
and β = 0.1959, respectively.

I ∝
(
TN − T
TN

)2β

(6.4)
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Figure 6.3: Left: The intensity of the (0 1 0) magnetic Bragg peak was followed from
base to around 80 K (green and purple). The Néel temperature was determined to be
TN = 71.96 K and the critical exponent was determined to be β = 0.1959 in good
agreement with previous experiments [65]. The points included in the fit of Eq. (6.4) are
purple. Left: By plotting the data on a logarithmic scale as a function of TN/(TN − T )
it is easier to see, which points should be included in the fit.

17The fitting function sgauss.m for fits.m was utilized.
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6.4 Diffuse scattering around (0 1 0)

There is a small amount of critical scattering around TN in agreement with Roessli et al.
[65] but not in agreement with Chatterji et al. [12]. This was anticipated because both our
measurements and the measurements by Roessli et al. were performed in three-axis mode, while
Chatterji et al. worked in two-axis mode; see Fig. 4.4 for comparison. Our values of TN and β
best resembles the data by Roessli et al.. Their critical exponent was determined to be β = 0.187.

6.4 Diffuse scattering around (0 1 0)

The (0 1 0) Bragg peak was mapped at several temperatures. Selected color maps are seen in
Fig. 6.4.

Scans of the (0 1 0) Bragg peak at selected temperatures, fitted with a Gaussian plus a
Lorentzian function18, can be seen in Fig. 6.5. All of the scans including the fitting parame-
ters to the Lorentzian function are in Fig. G.1, Fig. G.2 and Fig. G.3 in appendix G. The center
and background fitting parameters were zero within error bars. The width and the intensity
contain information about the system and can be extracted from the fitting procedure. The in-
tensity of the peak is proportional to the magnetic susceptibility χ(T ) and related to the critical
exponent γ by the reduced temperature. The width of the diffuse scattering peak is proportional
to the inverse correlation length ξ(T ) with the critical exponent ν.

If the width and intensity is plotted against the reduced temperature, TR, a simple power
law reveals the critical exponents. TR is given by:

TR =
T − TN
TN

(6.5)

where TN is the ordering temperature. The relations connecting the intensity I and the width
Γ with the critical exponents, for T > TN , are given by [12]:

I ∝ χ(TR) ∝ T−γR (6.6)

Γ =
1

ξ
∝ T νR (6.7)

The width and the intensity of the diffuse peak as a function of temperature is shown in
Fig. 6.6. The width increases with increasing temperature, whereas the intensity decreases.

The width and the intensity of the Lorentzian peak as a function of the reduced temperature
on a logarithmic scale19, used to obtain the critical exponents, can be seen in Fig. 6.7. The data
clearly follows a linear trend. Only the data from T = 72.5 K to T = 100 K was used for the
fitting. At T = 200 K the diffuse scattering was not visible in the data.

The critical exponents were determined to be γ = 1.55 and ν = 0.614 from the fits in Fig. 6.7.
If the T = 100 K data is discarded the critical exponents become γ = 1.510 and ν = 0.569.

18The gausslor.m function was utilized
19The logfit.m routine was used. Uncertainties of the data are not taken into account when using this routine.
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6.4 Diffuse scattering around (0 1 0)

Figure 6.4: Diffuse scattering around (0 1 0) at high and low temperature and at four
temperatures close to TN . The color indicates the logarithm to the number of counts per
monitor. Notice that the color scale varies from plot to plot.
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Figure 6.5: Scans of the (0 1 0) Bragg Peak revealing diffuse scattering at high temper-
atures. Red corresponds to data points and blue is the fit of a Gaussian plus a Lorentzian
function. The y-axis is logarithmic.
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Figure 6.6: Left: The Lorentzian peak width as a function of temperature. Right:
The Lorentzian peak amplitude as a function of temperature.
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6.5 Magnon dispersions around (0 1 0)
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Figure 6.7: Left: The Lorentzian peak width as a function of reduced temperature
TR = (T − TN )/TN . Right: The Lorentzian peak amplitude as a function of reduced
temperature TR = (T − TN )/TN . Both axis are logarithmic.

6.5 Magnon dispersions around (0 1 0)

The next step was to measure the magnon dispersion branches around the magnetic Bragg peak.
Our data will serve as a supplement to and as a comparison to the data reported by other groups
[62], [63], [10], [17], [59], [68]. The magnon map around (0 1 0), Fig. 6.8, was measured with two
scans in imaging mode, where all nine analyzer blades were used. The dispersions are in good
agreement with the magnon dispersion calculated and measured by the other groups [68] and
[63]; see Fig. 4.18 and Fig. 4.19 for comparison.

Figure 6.8: The magnon dispersions measured at T = 40 K around (0 1 0). The color
plot is composed from 18 scans, corresponding to two scans in imaging mode, where the
nine analyzer blades on RITA II are positioned to measure at 9 different (Q), ~ω-points.
The color indicates the logarithm to the number of counts per monitor.

The temperature dependence of the magnon branch was measured from k = −1.26 [r.l.u.] to
k = 1.1 [r.l.u.] in Q and 3-10 meV in energy, corresponding to one imaging mode scan. The
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6.6 Spin wave gaps around (1 0 0)

energy scans at k = −1.18 [r.l.u.] at different temperatures are fitted with Gaussian functions20

and can be seen in Fig. 6.9. The energy width, σ, of the magnon increases with increasing
temperature from around σ = 1 meV at 18 K to around σ = 1.5 meV at 60 K.
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Figure 6.9: Left: Energy scans at (0 1.18 0) with Gaussian fits. Blue corresponds to 18
K measurements, green corresponds to 40 K measurements and red corresponds to 60 K
measurements. Right: The width as a function of k for the three temperatures: 18 K
(blue), 40 K (green) and 60 K (red).

6.6 Spin wave gaps around (1 0 0)

At the second RITA II experiment the temperature dependence of the two magnon branches
at (1 0 0) was measured. The data were fitted with two Gaussian functions and a Lorentzian
function21 function; and in Fig. 6.10 energy scans at T = 1.5 K, T = 40 K, T = 60 K and
T = 70 are shown. As temperature increases, both branches move down in energy and the
energy gap between them becomes smaller. At low temperatures the two branches are similar
in intensity. The intensity of the lower branch increases while the intensity of the high energy
branch decreases with increasing temperature.

The four scans in Fig. 6.10 are plotted together in Fig. 6.11. The energy scans for all Q-values
can be found in Fig. G.4 in appendix G.

The gap of the low and high energy branches closes as the temperature increases; the size of the
gap (the energy of the spin wave) is directly proportional to the order parameter M = M↑−M↓
[45]. A plot of the position of the lower energy peak as a function of temperature can be seen
in Fig. 6.12 Top Left. The ordering temperature TN and the critical exponent β can be found
by the method described in Sec. 6.3. The values obtained are TN = 72.32 K and β = 0.268, in
good agreement with the previous measurements. More points around the ordering temperature
are needed to determine the critical temperature and the critical exponent more precisely. The
intensity and the width of both branches are plotted as a function of temperature in Fig. 6.12
(Top Right) and Fig. 6.12 (Bottom Left), respectively. In Fig. 6.12 (Bottom Right) the imaginary

20The function gauss.m was utilized in the fitting procedure.
21The gaussSkewx2lorz.m function for fits.m was utilized.
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Figure 6.10: Energy scans around (1 0 0) at different temperatures.
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Figure 6.11: Energy scans at (1 0 0) at 1.5 K (red), 40 K (blue), 60 K (green) and 70
K (pink).

susceptibility χ” is plotted as a function of temperature. The connection between the intensity
I of the peaks and χ” is given by:

I ∝ S(Q, ω) = (nB + 1)χ′′ (6.8)

where nB is the Bose factor given in Eq. (2.21).

Now that the magnons at the zone center has been well examined, the next step is to search
for phonons. The intensities of phonons scale with Q [45] so higher Q-values are needed in order
detect any phonons. We speculate that the reason why no phonons were observed at the RITA
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6.7 Magnon and transverse phonon around (0 3 0)

0 20 40 60 80
0

0.5

1

1.5

2

2.5
E

[m
eV

]

T [K]

T
N

 =     72.32 ± 0.06 K

β =     0.268 ± 0.004

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

W
id
th

[m
eV

]

T [K]

 

 

High mode
Low mode

0 20 40 60 80
0

2

4

6

8

10

12

A
m
p
li
tu
d
e
[c
o
u
n
ts
]

T [K]

 

 

High mode
Low mode

0 20 40 60 80
0

1

2

3

4

5

χ
”

T [K]

 

 

High mode
Low mode

Figure 6.12: Values extracted from the energy scans in Fig. G.4 in appendix G mea-
sured at (1 0 0). The temperatures closest to TN are not included, due to large fitting
uncertainties. Top Left: Peak position of the low energy branch as a function of tem-

perature. Blue points were included in the fit to a power law
(
T−TN
TN

)β
. Top Right:

The width of the high energy branch (red) and the low energy branch (blue). Bottom
Left: The intensity of the high energy branch (red) and the low energy branch (blue).
Bottom Right: The imaginary susceptibility χ” of the high energy branch (red) and
the low energy branch (blue).

II experiment was the limitations in Q-range. Measurements were done at T = 100 K around
the (0 2 0) Bragg Peak, but no phonons were detectable. Instead phonons were searched for at a
thermal instrument, in this case EIGER.

6.7 Magnon and transverse phonon around (0 3 0)

At the thermal instrument EIGER, it is possible to measure higher energy transfers. Details
about the experimental setup can be found in Sec. 5.2. All other groups have measured disper-
sions in the l-direction, close to the zone center. Our measurements were higher in Q in the
h, k-plane around (0 3 0). There, a clear transverse phonon was detected.

A color plot of the dispersion, from the (0 3 0) zone center almost half-way to the next zone
center, (2 2 0), can be seen on the left of Fig. 6.13. In a hexagonal lattice, it can be a bit tricky
to figure out where to perform the scan in order to observe the transverse phonon. With a bit of
geometrical insight and a look at Fig. 6.1 it is clear that the transverse component of the phonon
is measured along (h (3− h/2) 0).
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6.7 Magnon and transverse phonon around (0 3 0)

Figure 6.13: Left: Transverse acoustic phonon dispersion measured at T = 100 K
(above TN ). Right: Transverse acoustic phonon, optical phonon, and magnon dispersion
measured at T = 40 K (below TN ). To measure the transverse phonon the scan needed to
be of the form (h 3−h

2
0). The dotted black line is a plot of the function y = 14.8 sin(xπ/2)

as a guide to the eye. The color indicates the logarithm to the number of counts per
monitor.

Below the magnetic ordering temperature TN , the same scan geometry was used, but a wider
range of energies was recorded, in order to measure the optical phonon dispersion. The color
plot can be seen on the right of Fig. 6.13. A magnon appears and either crosses or anti-crosses
with the phonon close to h = 0.75. The background is much larger at T = 100 K than at T = 40
K, especially for larger h’s, which could be due to a higher Debye-Waller factor. But because
the scan is transverse and Q is essentially constant, it seems strange that the background is
not more regular. Polarized neutrons made it possible to more closely examine the background
for T = 100 K; see Sec. 7.3. The raw energy scans can be found in Fig. G.5 and Fig. G.6 in
appendix G.

6.7.1 Temperature dependence of the transverse phonon

The temperature dependence of the phonon width at h = 0.35 was measured for a wide range of
temperatures. The energy scans fitted to Gaussian functions22 are shown in Fig. 6.14. Q-scans at
~ω = 7.9 meV were also performed and the raw Q-scans can be seen in Fig. G.7 in appendix G.

A plot of phonon width, in terms of energy, σE , and in terms of Q, σQ, as a function of
temperature, is shown in Fig. 6.15. From both plots, it is clear, that the width reaches a
minimum close to the transition temperature.

At EIGER, two energy scans at the longitudinal position were performed, at k = 3.25 and
k = 3.35 for both 40 K and 100 K. These measurements, however, were not investigated further.
The position in reciprocal space can be seen in Fig. 6.1 and the four scans can be found in
Fig. G.8 in appendix G but will not be discussed further in this thesis.

Whether the dispersions in Fig. 6.13, are structural or magnetic, is unknown, and one can
only guess what happens at the crossing/anti-crossing at h = 0.75. The only way to determine
this is with polarized neutrons and the next section describes the data taken on the polarized
three-axis spectrometer C5 in Canada to that end.

22The ngauss.m function for fits.m was utilized.
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Figure 6.14: Energy scans of the transverse phonon at different temperatures at h =
0.35.
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marked with a black line.
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Polarized data

7 Polarized data

In this chapter the results from the polarized neutron scattering experiments at C5 will be
presented and compared to the non-polarized data taken at EIGER.

7.1 Strategy

When doing polarized neutron experiments the flux is much lower than when doing non-polarized
neutron experiments. Therefore it would take a very long time to measure energy scans for all the
Q-values that were measured on EIGER. Four Q-values were thus selected: two scans overlapping
with the EIGER constant-Q scans and two new Q-values, see Fig. 7.1.
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Figure 7.1: Based on the non-polarized EIGER data, the following four scans were
selected as the best cuts for the polarized experiment. The first cut, h = 0.4, is between
the zone center and the zone boundary. The next cut, h = 0.65, is very close to the zone
boundary at h = 0.667. The third cut is at the phonon-magnon crossing at h = 0.75 and
the last cut, h = 0.95, is almost half-way (h = 1.00) in between two zone centers.

The position of the C5 scans with respect to the EIGER data can be seen in Fig. 7.2.
All energy scans, unless anything else is specified, were measured with a horizontal field at

the sample position. This was chosen so that all the magnetic scattering was measured in the
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7.2 Flipping ratio

Figure 7.2: Left: Color plot at 100 K with the scans done at C5 marked with black
dotted lines. Right: Color plot at 40 K with the scans done at C5 marked with dotted
black lines. Two of the scans are overlapping with the EIGER data (h = 0.4 and
h = 0.75) and the two other do not (the one at the zone boundary at h = 0.67 and the
one at h = 1). The zone boundary is marked with a red line. Notice that the scan range
is different for each Q-value and temperature. The dotted black line is a plot of the
function y = 14.8 sin(xπ/2). The color indicates the logarithm to the number of counts
per monitor.

spinflip channel, as explained in Sec. 3.8. One measuring point in the inelastic data corresponds
to a measuring time of approximately one hour and all of the data corresponds to around 20
days of beam time.

7.2 Flipping ratio

While aligning the crystal before the actual experiment begins the flipping ratio R should be
calculated. As stated in Sec. 3.8 the polarization of the beam is given by:

P =
N+ −N−
N+ +N−

=
R− 1

R+ 1
(7.1)

where R is the flipping ratio that can be measured during an experiment. The flipping ratio is
the ratio between the neutron intensity when the flipper is turned off, I↑↑, and turned on, I↑↓,
after the background has been subtracted:

R =
I↑↑

I↑↓
(7.2)

The (1 1 0) and the (3 3 0) peaks, spanning the (ζ, η) scattering plane were used as alignment
peaks; see Fig. 6.1. Based on the scans of these peaks the flipping ratio and polarization was
calculated. The scans of the (1 1 0) peak (ζ = 1 and η = 0) and the (3 3 0) peak (ζ = 0 and
η = 3) at T = 100 K fitted to a Gaussian23 function is shown in Fig. 7.3.
The flipping ratio was calculated as the average of the ζ and η-scan in Fig. 7.3:

R =
I↑↑

I↑↓
= 13.8 (7.3)

23The gauss.m routine for fits.m was utilized.
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Figure 7.3: Left: The scan of the (1 1 0) ((ζ, η) = (1, 0)) Bragg peak with a vertical
field (VF) setting. Right: The scan of the (3 3 0) ((ζ, η) = (0, 3)) Bragg peak with a
vertical field (VF) setting. Both scans are longitudinal scans. Blue points correspond to
the spinflip channel and red points to the non-spinflip channel.

giving a polarization of:

P =
N+ −N−
N+ +N−

=
R− 1

R+ 1
= 0.86 (7.4)

The normal flipping ratio at C5 is around 1:24 for a wave vector of 2.37Å−1; see Sec. 5.3. The
flipping ratio obtained for our experiment is quite large and the data are therefore not corrected.

While cooling down to T = 40 K (or heating up to T = 100 K) the (1 1 0) and the (3 3 0)
Bragg peaks were measured to make sure that the sample was intact (and no intensity was lost).

7.3 Measurements above TN

The energy scans at T = 100 K for the four different Q-values can be seen in Fig. 7.4. All the
scans are fitted with multiple Gaussian functions24. Notice that the intensity scale is different
on all graphs. The four plots are given with identical intensity scaling in Fig. G.9 in appendix G.

For h = −0.4 (Fig. 7.4 upper left) the acoustic phonon is clearly observed in the non-spinflip
channel peaking at ~ω = 8.8 meV. At higher energies the optical phonon emerges with a peak
energy of ~ω = 22 meV. At the zone boundary, at h = −0.67 (Fig. 7.4 upper right), only the
energy range for the acoustic phonon is scanned. The peak is at ~ω = 13 meV.

Crossing the zone boundary the intensity of the phonon signal decreases, but the phonon
peak is still clear in the non-spinflip channel at h = −0.75 (Fig. 7.4 bottom left) with a peak at
~ω = 14 meV. The optical phonon at ~ω = 23 meV is purely structural.

At h = −1 (Fig. 7.4 bottom right) the acoustic phonon signal at ~ω = 15 meV appears in
both the spinflip and the non-spinflip channel and is therefore a mix between a magnon and
a phonon. It is not clear weather the optical phonon signal is structural or magnetic, there
seems to be intensity in both channels, so the optical phonon is also a mixed state. What is
very interesting in the h = −1 scan is the peak in the spinflip-channel at ~ω = 11 meV, which
must be a magnetic signal. However, the measurements are taken at T = 100 K which is ∼ 30

24The ngauss.m function was utilized.
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K above the magnetic transition temperature. A peak is a token of coherent excitations from
long-range order, and long-range magnetic order should not be present so far away from the
ordering temperature.
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Figure 7.4: The T = 100 K data taken at C5. Red is the horizontal field spinflip channel
(magnetic) and black is the horizontal field non-spinflip channel (nuclear). Upper left:
Energy scan at h = −0.4, between the zone center and the zone boundary. Upper
right: Energy scan at h = −0.67, at the zone boundary. Bottom left: Energy scan at
h = −0.75 at the crossing. Bottom right: Energy scan at h = −1, between the (0 3 0)
and the (2 2 0) zone.

In Fig. 7.5, the energy scans are plotted together with the non-polarized EIGER data. For
h = −0.4 (Fig. 7.5 upper left) the data correspond very well to each other and the acoustic
phonon peak is positioned at the same energy (the EIGER peak is positioned at ~ω = 8.9 meV
and the polarized peak is at ~ω = 8.8 meV). The EIGER energy scan was terminated before
reaching the optical phonon, but it is possible to see the beginning of a shoulder in the data that
fits well with the polarized data. At the zone boundary, at h = −0.67 (Fig. 7.5 upper right),
the EIGER data was taken at h = 0.65. The acoustic phonon peak in the EIGER data should
be positioned very close to the polarized data peak, because the difference in Q is very small.
Both peaks are positioned at ~ω = 13 meV. The EIGER peak is much broader, with a width of
∆E = 0.77 meV whereas the polarized peak has a width of ∆E = 0.29 meV.

At h = −0.75 (Fig. 7.5 bottom left) the phonon data corresponds very well with the acoustic
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7.3 Measurements above TN

phonon peak positioned at ~ω = 14 meV for the polarized data and at ~ω = 14 meV for the
non-polarized data. However, at ~ω = 8 meV there is a clear peak in the EIGER data, which
is not observed in the polarized data. On the other hand the ~ω = 11 meV peak in the spinflip
data is not seen in the EIGER data.

The polarized data measured at h = −1 is compared with the EIGER data measured at
h = −0.95 in (Fig. 7.5 bottom right). The data is quite different, which is probably due to the
difference in q. The acoustic phonon peak in the EIGER data at ~ω = 15 meV has gone down
in intensity and has moved about 2 meV, with a peak in ~ω = 16 in the polarized data. The
peak is also much wider in the polarized data. The width of the phonon peak in the EIGER
data is ∆E = 0.57 and the analogues peak width in the polarized data is ∆E = 2.1 meV. This
is the only scan where the EIGER peak has been sharper than the polarized data peaks. The
broadening may be due to the mixed nature of the phonon at h = −1, and an energy scan at
EIGER at that position could reveal a broad peak as well.
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Figure 7.5: The T = 100 K data taken at C5 plotted together with the non-polarized
EIGER-data. Red is the horizontal field spinflip channel (magnetic), black is the hori-
zontal field non-spinflip channel (nuclear) and green is the scaled non-polarized EIGER
data. Upper left: Energy scan at h = −0.4, between the zone center and the zone
boundary. Upper right: Polarized energy scan at h = −0.67, at the zone boundary and
non-polarized data taken at h = 0.65. Bottom left: Energy scan at h = −0.75 at the
mode crossing. Bottom right: Polarized energy scan at h = −1, between the (0 3 0)
and the (2 2 0) zone and non-polarized data at h = 0.95.
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7.4 Measurements below TN

The energy scans at T = 40 K for the four different Q-values can be seen in Fig. 7.6. The
intensity scales are different for the different Q-values. The four T = 40 K plots with identical
intensity scaling can be found in Fig. G.11 in appendix G.

For h = −0.4 (Fig. 7.6 upper left) the acoustic phonon peak is clearly observed in the non-
spinflip channel peaking at ~ω = 8.6 meV. The magnon signal is weak with a peak at ~ω = 15
meV. At this energy the non-spinflip points are generally lower than the spinflip points. At higher
energies the optical phonon emerges with a peak energy of ~ω = 23 meV. Both the magnon peak
and the optical phonon peak are broad.

At the zone boundary, at h = −0.67 (Fig. 7.6 upper right), the acoustic phonon peak is not
very intense with a peak position at ~ω = 12 meV. At this h-value it is observed that the peak
at higher energies (~ω = 16 meV) than the phonon is in fact magnetic. The optical phonon on
the other hand is mixed i.e. there is a peak in both the spinflip and non-spinflip channels.

Crossing the zone boundary, hitting the point of crossing of the two modes at h = −0.75
(Fig. 7.6 bottom left) both the acoustic phonon, the magnon and the optical phonon is mixed.
It is generally not possible to distinguish between the spinflip and the non-spinflip channel over
the whole scan.

At h = −1 (Fig. 7.6 bottom right) the spinflip and the non-spinflip channel signals are
separated and an intense magnetic peak is observed at ~ω = 11 meV. This peak corresponds
to the lower branch in Fig. 7.2. At ~ω = 16 meV and ~ω = 23 meV both the spinflip and
non-spinflip channels show broad peaks corresponding to the upper branches in Fig. 7.2.

The polarized data plotted together with the non-polarized EIGER data at T = 40 K can
be seen in Fig. 7.7. The plots given with identical intensity scaling can be found in Fig. G.12 in
appendix G.

For h = −0.4 (Fig. 7.7 upper left) the acoustic phonon peak is positioned at ~ω = 8.6 meV in
the polarized data and at ~ω = 8.8 meV in the EIGER data. The width is larger in the EIGER
data. The magnon signal is much clearer in the EIGER data and the peaks are positioned at the
same energy, near ~ω = 15 meV. The optical phonon peak is also much sharper in the EIGER
data, with a peak position at ~ω = 22 meV and a width of ∆E = 0.86 meV. The intensities of
the scattering resemble each other from ~ω = 17 meV to around ~ω = 24 meV. The background
at high energies is largest for the EIGER data.

At the zone boundary, at h = −0.67 (Fig. 7.7 upper right), the EIGER data which was taken
at h = −0.65 is quite different than the polarized data. The peaks in the polarized data are
shifted towards higher energies, e.g. the optical phonon peak position is at ~ω = 24 meV in the
polarized data and at ~ω = 23 meV in the EIGER data. The background in the EIGER data is
lower for both small and large energies and the intensity is larger around the peaks. The EIGER
data seems to show an extra peak at around ~ω = 20 meV which is not observed in the polarized
data (It is only two points so it might be a spurious signal).

Crossing the zone boundary, hitting the point of crossing of the two modes at h = −0.75
(Fig. 7.7 bottom left) the EIGER data has three distinct peaks, while the polarized data only
reveal two broad features.

At h = −1 (Fig. 7.7 bottom right) (and h = 0.95 for the EIGER data) both data sets have
three peaks. The positions of the peaks in the polarized data are moved toward higher energies
compared to the EIGER data, probably due to the difference in Q. The background at low and
high energies is lower in the EIGER data.
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Figure 7.6: The T = 40 K data taken at C5. Red is the horizontal field spinflip channel
(magnetic) and black is the horizontal field non-spinflip channel (nuclear). Upper left:
Energy scan at h = −0.4, between the zone center and the zone boundary. Upper
right: Energy scan at h = −0.67, at the zone boundary. Bottom left: Energy scan at
h = −0.75 at the crossing. Bottom right: Energy scan at h = −1, between the (0 3 0)
and the (2 2 0) zone centers.

7.4.1 Horizontal vs vertical field measurements

The energy scan at h = −1 was measured both with the field horizontal (P0 ‖ Q) at the sample
position and with the field vertical (P0 ⊥ Q) at the sample position. These scans can be seen in
Fig. 7.8. With Q along x the horizontal field measurements keeps all the magnetic scattering in
the spinflip-channel, while a vertical field measurement can reveal if the scattering is an in-plane
y or out-of-plane z movement as explained in Sec. 3.8 and shown in Fig. 3.11.

The horizontal and vertical spinflip data, Fig. 7.8 (Left) reveals that nearly all the intensity
is found in the horizontal field channel. The y-component of the spin is therefore zero, according
to Table 3.2. In Fig. 7.8 (Right) the horizontal and vertical non-spinflip data are plotted and
most of the scattering appears in the vertical field channel. All the magnetic scattering is in the
z-direction, out of the scattering plane. The two plots with identical intensity scaling can be see
in Fig. G.13 in appendix G.
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Figure 7.7: The T = 40 K data taken at C5 plotted together with the non-polarized
EIGER-data. Red is the horizontal field spinflip channel (magnetic), black is the hor-
izontal field non-spinflip channel (nuclear) and green is the non-polrized EIGER data.
Upper left: Energy scan at h = −0.4, between the zone center and the zone bound-
ary. Upper right: Polarized energy scan at h = −0.67, at the zone boundary and
non-polarized data taken at h = 0.65. Bottom left: Energy scan at h = −0.75 at the
crossing. Bottom right: Polarized energy scan at h = −1, between the (0 3 0) and the
(2 2 0) zone and non-polarized data at h = 0.95.
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Figure 7.8: Polarized scattering data for two different directions of the incoming polar-
ization. Left: Constant-Q scan at h = −1 at 40 K spinflip channel. Right: Constant-Q
scan at h = −1 at 40 K non-spinflip channel.
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8 Discussion

In this section the results will be discussed and compared to similar data collected by others or to
measurements on other low-dimensional systems. The discussion of the data is given in the same
order as it was presented in Sec. 6 and Sec. 7 and is divided into three parts: critical phenomena
(most of the non-polarized data), the phonon-magnon coupling (the non-polarized color plots
from EIGER and the polarized data), and a section discussing the magnetic dispersion-like
signal observed above the magnetic ordering temperature.

8.1 Critical phenomena

The critical exponent β was determined in two separate ways. The intensity of the magnetic
Bragg peak was followed from base to just above the ordering temperature giving β = 0.19. The
size of the spin wave gap of the magnon dispersion from base to TN gave the critical exponent
β = 0.27, quite different from the Bragg peak determination. The measurements of the magnetic
Bragg peak are the most reliable, with many data points close to the transition temperature,
while the spin gap data lacked data points close to the critical temperature due to difficulties
with fitting the peaks close to the elastic peak when reaching TN .

The critical exponents γ = 1.55 and ν = 0.614 were determined by the diffuse scattering
around the magnetic Bragg peak for T > TN . If the T = 100 K data point was not used in
the fitting routine, the exponents had the values γ = 1.51 and ν = 0.569. This data point had
a large impact on ν, which is connected to the width of the Lorentzian peak and the magnetic
correlation length.

The critical exponents, except for µ, are quite different from the measurements by Chatterji
et al. (β = 0.295 γ = 0.97 and ν = 0.45) and Roessli et al. (β = 0.187 and ν = 0.57). When
measuring critical exponents, one has to integrate over all the fluctuation energies to be able to
fit the data in the critical region as well. When using an analyzer, as when doing experiments
on a three-axis spectrometer, only the energies inside the resolution function are measured (≈ 2
meV). Chatterji et al. worked in two-axis mode i.e. integrated over all energies, unlike both
Roessli et al. and the experiments presented in this thesis. Therefore the Chatterji et al. data
and the critical exponents β = 0.295, γ = 0.97 and ν = 0.45 determined from it should be the
most reliable. It should be noted that the critical exponent extracted from the spin wave gap
data, β = 0.27, is close to the beta value determined by Chatterji et al. β = 0.295. Even though
the data set lacked points close to the ordering temperature, the experiment was performed in
the correct way to obtain the real critical exponent.

The prediction by Kawamura [33] that the critical exponents of the two-dimensional triangular
antiferromagnets form a new universality class might be true. With Monte-Carlo simulations
Kawamura predicts the critical exponents of the new universality class to be β = 0.25, γ = 1.1
and ν = 0.53. In Table 8.1 the critical exponents for different models and the experiments are
summarized for an easier comparison. The experimentally determined critical exponents, even
though they differ from experiment to experiment, are in quite good agreement with the new
universality class. None of the other models fit the experimental values better.

More correct measurements, i.e. measurements in two-axis mode, and more precise measure-
ments, i.e. many points close to the transition temperature, are needed to determine the critical
exponents and thereby determine if the quasi-two-dimensional triangular systems, like YMnO3

belong to a new universality class.
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Model/Experiment β γ ν
2D 3d XY 0.345 1.316 0.669
1D 3d Ising 0.326 1.2378 0.6312
1D 2d Ising 0.125 1.75 1
3D 3d Heisenberg 0.367 1.388 0.707
Mean field 0.5 1 0.5
Chatterji et al. [12] 0.295 0.97 0.45
Roessli et al. [65] 0.187 – 0.57
Kawamura [33] 0.25 1.1 0.53
Our measurements (Bragg peak) 0.19 1.55 (1.51) 0.614 (0.569)
Our measurements (Spin wave gap) 0.27 – –

Table 8.1: The critical exponents associated with models and critical exponents deter-
mined from experiments. β is related to the magnetization, γ is related to the magnetic
correlation length and ν is related to the magnetic susceptibility. From [15]. The numbers
in parenthesis are the ones obtain without the T = 100 K data point.

8.2 The magnetoelastic coupling

Transverse energy scans around the (3 0 0) Bragg peak at T = 100 K revealed an acoustic
phonon dispersion with an energy of ~ω = 12 meV at the zone boundary. However, polarized
neutron scattering that can separate structural and magnetic signals, revealed the nature of the
dispersion. In Fig. 8.1 the color map at T = 100 K of the data taken at EIGER is plotted, using
labels to show whether the polarized data gave a structural, magnetic or mixed signal. The
nature of both the acoustic and the optical (only measured with polarized neutrons) phonon is
structural until the zone boundary h = 0.67 and a little beyond (h = 0.75), but between the
(0 3 0) and (2 2 0) zone centers the signals are mixed, i.e. both the spinflip and the non-spinflip
channels show a peak of equal size. It is strange that there is a magnetic contribution to the
dispersion above TN at h = 1. The energy scan at h = 1 also revealed a magnetic signal at
~ω = 11 meV. This peak is discussed further later, see Sec. 8.3.

Measurements at EIGER at T = 40 K of the dispersions revealed a crossing between a
transverse acoustic phonon and a magnon; a feature we had not anticipated. In Fig. 8.3 the
color map at T = 40 K of the data taken at EIGER is plotted, with labels showing what
the polarized data revealed about the nature of the dispersions. Inside the (0 3 0) zone, the
dispersions are characterized as anticipated i.e. both the acoustic and the optical phonon are
purely structural while the magnon is purely magnetic. At the (0 3 0) zone boundary and at the
crossing between the acoustic phonon and the magnon dispersion, on the other hand, all the
dispersions are mixed. At h = 1, between the (0 3 0) and (2 2 0) zone centers, the two low-energy
dispersions are separable again and the low-energy mode is of magnetic nature, while the high-
energy mode is mixed, and not structural as one would expect from Fig. 8.5. The optical phonon
is still mixed at this h-value.

Group theoretical analysis of magnetoelastic couplings have shown that interactions will not
occur between a magnon and a phonon branch for a line of symmetry passing through Γ in the
Brillouin zone if they belong to different irreducible space group representations [16]. Modes
with the same symmetry will result in an avoided crossing, while modes with different symmetry
can cross unperturbed, therefore the interacting magnon and phonon that we have observed
must have the same symmetry. In Fig. 8.5 the phonon and magnon modes cross and return to
their original nature after the crossing point. The magnon is magnetic after the crossing, while
the phonon is mixed from the zone boundary up to h = 1. Theoretical calculations are needed
to understand why the modes are mixed this far from their crossing regions between two zone
centers.
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8.2 The magnetoelastic coupling

Figure 8.1: Transverse acoustic phonon dispersion measured at T = 100 K (above TN )
with labels indicating the nature of the dispersions determined with polarized inelastic
neutron scattering. The zone boundary is marked with a red line. The color indicates
the logarithm to the number of counts per monitor.

Figure 8.2: Transverse acoustic phonon dispersion measured at T = 100 K (above TN )
with a color scaling so it is easier to see the increased background the zone boundary,
which is marked with a red line. The color indicates the logarithm to the number of
counts per monitor.

Pailhès et al. observed a hybrid mode at low temperatures T < 25 K (at T = 40 K the mode
was hard to distinguish from the background and very strong at T = 1.5 K) close to the zone
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8.2 The magnetoelastic coupling

Figure 8.3: Transverse acoustic phonon, optical phonon and magnon dispersion mea-
sured at T = 40 K (below TN ) with labels indicating the nature of the dispersions
determined with polarized inelastic neutron scattering. The zone boundary is marked
with a red line. The color indicates the logarithm to the number of counts per monitor.

Figure 8.4: Transverse acoustic phonon, optical phonon and magnon dispersion mea-
sured at T = 40 K (below TN ) with a color scaling making it easier to see less intense,
but important part of the dispersions. The zone boundary is marked with a red line.
The color indicates the logarithm to the number of counts per monitor.

center as shown in Sec. 4.8. The mixed modes observed in Fig. 8.3 are quite similar to the mode
observed by Pailhès et al., but occur at the zone boundary instead of the zone center and are

96 of 137



8.3 Magnetic signal above TN

Figure 8.5: Crossing, at k0 between a magnon and a phonon-mode. The dotted lines
indicate the form the dispersion would have had, had the modes not crossed each other.
From [16].

not hard to distinguish from the background at higher temperatures, (T = 40 K and not T < 25
K). An interesting experiment would be to measure the dispersion (analogous to Fig. 8.4) at
T = 1.5 K in order to see whether the signal intensifies, indicating a hybrid mode similar to the
one reported by Pailhès et al.. Mixed modes are perhaps some of the most common excitations
of multiferroic systems, and our measurements show the first example of observing them far from
the zone center.

8.3 Magnetic signal above TN

The energy scan at h = −1 at T = 100 K, plotted again in Fig. 8.6, shows a clear magnetic peak
at ~ω = 11 meV. When looking at the data in Fig. 8.1 it is clear that the peak at ~ω = 11 meV
is part of a dispersion decreasing in energy for smaller h, and it is therefore necessary to measure
at another h-value in that region to be certain that the peak is part of a dispersion. Looking at
the polarized data for h = 0.75 at ~ω = 7 meV in Fig. 7.4 (Bottom Left) the magnetic signal is
stronger than the structural signal. A dispersion suggests long range order, but there is no long
range order above the magnetic ordering temperature and the peak probably originates from the
paramagnetic fluctuations that occur in this frustrated system.

Spin waves above the magnetic ordering temperature were observed in iron up to 1.5TC with
neutron scattering by Lynn et al. [49]. In this system the effect was called persistent spin
waves. The measurements were questioned for many years but recent simulations by Tao et
al. [80] confirmed the data. The spin waves were measured in the (1 1 0) directions as seen in
Fig. 8.8 with the zone boundary at q = 1.55 Å−1. The energy of the spin waves is lowered as the
temperature is increased. At the zone center the spin waves are not detectable.

In many ways our dispersion resembles the persistent spin wave observed by Lynn et al. in
that they are only visible at finite energies and q away from the zone center and are not visible
at the zone center.

Demmel et al. [17], on the other hand, saw persistent spin waves above the Néel temperature
in YMnO3 in a powder sample close to the zone center. Two broad peaks occurred in their
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Figure 8.6: Energy scan at h = −1 and T = 100 K right in between the (0 3 0) and the
(2 2 0) zone centers, revealing a magnetic peak at ~ω = 11 meV.

Figure 8.7: Transverse acoustic phonon dispersion measured at T = 100 K (above
TN ). The magnetic dispersion is emphasized with a black line. The color indicates the
logarithm to the number of counts.

energy scans at small q and Demmel et al. argue that the short life time and two dispersions
close together in energy made it impossible to see them for q > 1.

Persistent spin waves are often seen in low-dimensional systems, like YMnO3, due to the fact
that two-dimensional spin waves are not dependent on three-dimensional long range order. Chat-
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8.3 Magnetic signal above TN

Figure 8.8: Spin wave dispersions in iron measured at different temperatures. The
filled black circles are room temperature measurements, open circles are measurements
at 0.86TC and the open squares are measurements at TC → 1.4TC . The solid black line
indicates the longitudinal acoustic phonon. From [49].

terji et al. [11] observed unusual spin responses above TN in the two-dimensional ferromagnet
La1.2Sr1.8Mn2O7 with inelastic neutron scattering. Inelastic peaks were seen in constant-energy
scans, but not in constant Q-scans. Birgeneau et al. [3] observed persistent magnons in the
two-dimensional antiferromagnet K2NiF4 and Skalyo et al. [75] observed short-wavelength ex-
citations along the chain at 2TN in the one-dimensional antiferromagnet CsMnCl3 · 2 D2O. The
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8.3 Magnetic signal above TN

low-dimensionality systems present new aspects of understanding spin dynamics also above the
ordering temperature.

As a last comment, the magnetic peak (or, hopefully, dispersion) observed in YMnO3 at temper-
atures higher than TN could be the reason for the paramagnetic scattering reducing the thermal
conductivity as proposed by Sharma et al. [71] at temperatures larger than TN . A plot of the
thermal conductivity data and the models fitted to the data can be seen in Fig. 8.9. The sup-
pression at lower temperatures (down to T = 20 K) could be a result of the phonon-magnon
coupling observed at T = 40 K. For T < 20 K, the temperature might be too low for the coupling
energy at ~ω = 15 meV to be populated, eliminating the suppression of the thermal conductivity
at low temperatures.

Our measurements together with theoretical calculations, both above and below the critical
temperature, may contribute to the solution of the mystery of the suppressed thermal conduc-
tivity in YMnO3.

Figure 8.9: Thermal conductivity κ (black line) as a function of temperature. The
dashed lines correspond to two different fits to κ assuming phonon only interactions.
The open squares correspond to a model where the effect of spin fluctuations, possibly
caused by the magnetic dispersion above TN (as measured in this thesis project), on κ
is taken into account. The model is scaled to match the size of the thermal conductivity
measurements at TN . TN is indicted with the vertical dotted line. Adapted from [71].
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9 Conclusion

The frustrated and multiferroic material h-YMnO3, which is both ferroelectric and antiferromag-
netic below TN ∼ 70 K has been investigated with both elastic and inelastic neutron scattering.
The magnetic ordering temperature was determined by following the intensity of the (1 0 0) mag-
netic Bragg peak from base to 80 K, revealing a critical temperature of TN = 72 K and a critical
exponent β = 0.19. The elastic data also revealed a great amount of diffuse scattering around
the (1 0 0) due to spin fluctuations, giving critical exponents of γ = 1.5 and ν = 0.72. The
critical exponents cannot be associated with standard model systems, but are closer to a new
universality class proposed for two-dimensional triangular antiferromagnets to which YMnO3

belongs. Improved measurements are needed to confirm or reject this theory.
The magnon branches around (1 0 0), measured with inelastic neutron scattering, show a

dispersion broadening as the temperature is increased, giving the spin waves a shorter life time
for temperatures near TN . The gap closes as TN is approached and reveals a critical exponent
of β = 0.27, which fits well with the new two-dimensional model.

The transverse component of the acoustic phonon at (0 3 0) was measured and the temperature
dependence determined. The line-width of the transverse phonon dips down at TN for reasons
that are still unknown.

The nature of the acoustic and optical phonon dispersions at T = 100 K was determined
with polarized neutron scattering. Even though the measurements were done at T � TN , the
polarized measurements revealed a magnetic contribution to both the optical and acoustic phonon
between the (0 3 0) and (2 2 0) zone centers. In addition to that, the T = 100 K data revealed at
magnetic signal at ~ω = 11 meV and Q =(1 3− 1

2 0). From the non-polarized data, it seems that
the signal is part of a dispersion and can, therefore, be associated with persistent spin waves,
i.e. spin waves above the magnetic ordering temperature, due to the frustration of the system.
Persistent spin waves may be the link between the microscopic and macroscopic properties of
YMnO3 i.e. the unexplained suppressed thermal conductivity at temperatures higher than the
ordering temperature.

Below the magnetic ordering temperature at T = 40 K, an acoustic phonon branch and a
magnon branch cross at the transverse position Q =(0.75 3 − 0.75

2 0). Polarized neutron data
from the zone center and out to the zone boundary show that the acoustic phonon and magnon
are purely structural and magnetic, respectively. At the crossing point the nature of the modes
changes to a mixed state. Between the two zone centers, on the other side of the crossing, the
lower branch is purely magnetic, while the higher branch is still mixed. The optical phonon is
mixed from the zone boundary and out to Q =(1 3 − 1

2 0). The phonon-magnon coupling at
~ω = 15 meV and Q =(1 3− 1

2 0) may be the reason for the suppressed thermal conductivity at
low temperatures. Theoretical calculations are needed to support this hypothesis.

Our measurement of mixed modes, i.e. excitations associated with multiferroic systems, is
the first example of mixed modes at the zone boundary in YMnO3.
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10 Outlook

In this section future experiments are proposed. Experiments that are a continuation of the ex-
periments presented in this thesis, as well as experiments that take completely different directions
are considered.

10.1 Completion of present data

The following suggestions for measurements can all be made on EIGER or a similar thermal three-
axis instrument. All the measurements are quick and would make it easier to draw conclusions
about the data taken so far. Some of the measurements are merely aesthetic and would make
the data more beautiful for publishing.

10.1.1 Color maps at T = 40 K and T = 100 K

First the (~ω,Q) maps, Fig. 6.13, should be completed so the optical phonon is measured at
T = 100 K to compare with the polarized data. More data would improve the statistics in the
crossing at T = 40 K, and finally scans at h = 1 are needed. The (~ω,Q) area below the acoustic
phonon and beyond the zone boundary would be useful to get more statistics on, because the
polarized data show that the higher background seems related to a persistent spin wave mode.
Since one point at EIGER takes about 1 minute to measure, the data could be collected over a
prolonged weekend.

If any beam time is left, data at T = 40 K at large Q and low energy could be collected so
the maps are the same size (aesthetic reasons) although the maps look as if there is only a flat
background in that area.

10.1.2 Temperature dependence

At EIGER it would also be interesting to measure the temperature dependence and the Q-
dependence of the magnetic peak at T = 100 K at ~ω = 11 meV at h = 1, Fig. 7.4 (Lower
right)25. The peak in the EIGER data at T = 100 K at ~ω = 8 meV at h = 0.75, Fig. 7.5
(Lower left), which is not seen in the polarized data, would be interesting to measure again and
determine the Q-dependence. Measurements of the width in energy as a function of temperature
of the transverse phonon and magnon branches at three different Q-values: at h = 0.4 where
they are completely distinguishable, at h = 0.75 right at the crossing and at h = 1 after the
crossing.

Finally the temperature dependence of the optical phonon should be measured in order to
test Pailhès et al.’s [56] prediction that the optical phonon spectrum should exhibit anomalies
at TN .

10.1.3 Other directions in reciprocal space

Until now only the transverse components of the mode has been measured apart from the two
longitudinal scans at k = 3.25 and k = 3.35. It would be interesting to measure along other
directions in reciprocal space i.e. investigating both the longitudinal and transverse components
60 ◦ away or only the longitudinal components 90 ◦ away from the current transverse position.
A model for determining the influence of the persistent spin wave on the acoustic phonon might
be the key in explaining the suppressed thermal conductivity in YMnO3.

25Four days at the cold three-axis spectrometer PANDA at Forschungsreaktor München II in Germany has
been provided for this exact experiment.
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10.2 Theoretical calculations

10.1.4 Line-widths with spin-echo

In January 2014 we performed and experiment at a thermal three-axis spectrometer called TRISP
situated at Forschungsreactor München II (FRM II) in Garching in Germany. The instrument
uses neutron resonance spin echo, to determine energy widths of elementary excitations. For
a broad range of momentum and energy transfers the widths can be determined with a µeV
precision [52], which is one or two orders of magnitude better than normal three-axis experiments.
The experiment probably failed because that the counting time was much longer than anticipated.
A second attempt at measuring the energy width of the phonon with high resolution when
crossing the magnetic ordering temperature, should be made in order to obtain a complete
graph, as the one in Fig. 6.15 (Left) with more points, to see if the width really dips down at
the ordering temperature.

10.2 Theoretical calculations

Calculations of the spin modes including the spin-lattice coupling and the phonon modes needs
to be done and is currently being executed by theorists at the Niels Bohr Institute supervised
by Brian M. Andersen. The coupled spin-phonon modes should hopefully explain the nature of
the dispersions at the crossing and beyond the crossing point. We also anticipate that the result
of these calculations can help explain why the dispersions are mixed when crossing the zone
boundary, and possibly predict new features of the modes in e.g. the presence of an external
magnetic field or applied pressure.

10.3 Pressure experiments

Due to the large magnetoelastic coupling in YMnO3 applying pressure to the system, changing
the lattice parameters and thereby changing the magnetic couplings in the system could be
attempted.

Many groups have done pressure experiments on powder samples, but pressure experiments
on single crystals are yet to be performed. Kozlenko et al. [39] [40] and Janoschek et al. [31]
measured the angle between the magnetic moments and the hexagonal axes and the size of the
magnetic moment as a function of pressure, see Fig. 10.1 a). The angle between the Mn-spins
and the hexagonal axes is reduced from 90 ◦ at ambient pressure to around 38 ◦ at 6.7 GPa. The
magnetic moment is suppressed at high pressure (1.6 µB at 6.7 GPa), Fig. 10.1 b). The higher
pressure induces a larger frustration thereby making it more difficult for the system to order,
which results in a smaller magnetic moment. Also the bond lengths between the two different Mn-
O bonds, Mn-O3 and Mn-O4 change as a function of pressure (Fig. 10.1 c)), making them more
alike at thereby closer to a perfect triangular network of spins. The perfect triangular network
of spin creates a larger frustration with enhanced spin fluctuations and thereby a reduction in
magnetic moment.
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10.3 Pressure experiments

Figure 10.1: a) The change in the angle φ between the Mn-ions and the ab-axes as
a function of pressure. At ambient pressure the angle is 90 ◦. b) The total magnetic
moment as a function of pressure. From [39]. c) The Mn-O3 and Mn-O4 bond lengths
as a function of pressure. From [40].

Lancaster et al. [41] studied the ordering temperature as a function of pressure with Muon
Spin Relaxation and found that the ordering temperature increases with increasing pressure,
see Fig. 10.2. This is striking because the magnetic moment is suppressed when the pressure
is applied. In addition, the exchange couplings change as a function of pressure, enhancing the
ordering temperature. Competing interactions are present in YMnO3.

Figure 10.2: The ordering temperature TN increases with increasing pressure p. From
[41].

Finally Gao et al. [22] measured the unit cell volume and the compressibility along c and
in the ab-plane with powder synchrotron X-ray diffraction, Fig. 10.3. The cell volume decreases
with increasing pressure Fig. 10.3 a). The compressibility is largest in the ab and smallest along
the hexagonal axis c Fig. 10.3 b).
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10.4 Magnetic field experiments

Figure 10.3: a) The unit cell volume as a function of pressure. The data is fitted to a

Murnaghan equation of state: V (P ) = V0[1 +B′0(P/B0)]−1/B′0 . b) The a/b and c lattice
constants as a function of pressure. It is easiest to compress the ab-plane. From [22].

Elastic and inelastic neutron experiments under pressure would be interesting to perform.
First one could follow the intensity of the (1 0 0) Bragg peak across the phase transition for
different pressures reproducing, hopefully the experiments by Lancaster et al. at a cold three-axis
experiment26. Inelastic neutron scattering experiments could provide the pressure dependence of
the spin wave dispersions. At a thermal experiment it would be interesting to see the development
of the phonon-magnon crossing as a function of pressure.

10.4 Magnetic field experiments

Magnetic fields have been applied numerous times to the type II multiferroics, i.e. the mul-
tiferroics where the ferroelectricity is induced because of the magnetic order, and where the
magnetoelectric coupling is large [42] [37] [28]. In the type II multiferroics, the magnetic fields
can switch and control the polarization.

In h-YMnO3 the direct magnetoelectric coupling is forbidden and therefore small. However,
the magnetoelectric coupling that is present is mediated by the magnetoelastic coupling and
magnetic fields can therefore enhance or change the magnetoelastic coupling and thereby the
electrostatic properties. A field of µ0H = 5 T is enough to change atomic positions and change
the dielectric constant [73], so the fields needed for these magnetoelastic experiments can be
reached at many facilities with standard magnets. The different measurements that could be
done are

1. Field variations along the c-direction, enhancing the DM-interaction that is mediating the
magnetoelectric effect.

2. Intensity of the (1 0 0) Bragg peak as a function of field.

3. Spin wave positions both at the zone center and zone boundary and both along (h 0 0) and
(hh 0) at different temperatures and fields.

4. Field effect of avoided crossing at zone boundary and the temperature dependence.

26In August 2014 a week of beam time has been provided for a pressure experiment at the cold three-axis
instrument RITA II at Paul Scherrer Institut in Switzerland.
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10.5 Electric field experiments

Electric field control of magnetic ordering has been obtained for type II multiferroics [66] [34] [5],
but also in the type I multiferroic h-HoMnO3 [85] and [47]. HoMnO3 is closely related to YMnO3

with the only difference being the magnetic rare earth ion Ho 3+. Polarized neutron scattering
experiments while applying an electric field of size E = 25 kV/cm show that the electric field
couples to the antiferromagnetic domain walls, i.e. that electric field induced mangetization
arises from uncompensated spins in antiferromagnetic domain walls [85].

Electric field experiments would be interesting to perform on YMnO3 as well, but may be
diffecult to perform due to the large electric fields needed. The displacements of the atoms can-
not be seen with experimentally accessible fields [91].

Even though the first neutron scattering experiments on YMnO3 were performed in 1963 [2]
many more are yet to be done.

106 of 137



REFERENCES

References

[1] Aikawa, Y., Katsufuji, T., Arima, T., and Kato, K. Effect of Mn trimerization on
the magnetic and dielectric properties of hexagonal YMnO3. Phys. Rev. B 71, 18 (May
2005), 184418.

[2] Bertaut, E. F., and Mercier, M. Structure Magnetique de MnYO3. Phys. Lett. 5, 1
(1963), 27–29.

[3] Birgeneau, R. J., Skalyo, J. J., and Shirane, G. Critical Magnetic Scattering in
K2NiF4. Phys. Rev. B 3, 5 (1971), 1736–1749.

[4] Blundell, S. Magnetism in Condenced Matter. Oxford Master Series in Condensed Matter
Physics, 2001.
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Space Group P63/mmc

A Space Group P63/mmc

Figure A.1: In the paraelectric (and paramagnetic) phase YMnO3 belongs to the space
group P63mmc (No. 194).
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Space Group P63/mmc

Figure A.2: In the paraelectric (and paramagnetic) phase YMnO3 belongs to the space
group P63mmc (No. 194).
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Space Group P63/mmc

Figure A.3: In the paraelectric (and paramagnetic) phase YMnO3 belongs to the space
group P63mmc (No. 194).
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Space Group P63cm

B Space Group P63cm

Figure B.1: In the ferroelectric (and paramagnetic) phase YMnO3 belongs to the
P63cm space group (No. 185).
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Space Group P63cm

Figure B.2: In the ferroelectric (and paramagnetic) phase YMnO3 belongs to the
P63cm space group (No. 185).
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Space Group P63

C Space Group P63

Figure C.1: In the antiferromagnetic (and ferroelectric) phaseYMnO3 belongs to the
P6′3 magnetic space group (No. 173).
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Space Group P63

Figure C.2: In the antiferromagnetic (and ferroelectric) phaseYMnO3 belongs to the
P6′3 magnetic space group(No. 173).
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Periodic table

D Periodic table

Figure D.1: Red boxes indicate the elements that naturally form in the hexagonal form
of RMnO3 with Mn-ions in a trigonal bipyramidal environment and blue boxes indicate
the elements that form the orthorhombic (perovskite) form RMnO3 with Mn-ions in an
octahedral environment. Green indicates the magnetic ions that can form multiferroic
systems of the form ABO3. Oxygen, which is present in all the mentioned compounds,
is marked with yellow. Adapted from [6].
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Conversion Tables

E Conversion Tables

Quantity Relationship Value at E = 10meV

Energy E[meV] = 2.072k2[Å
−1

] 10 meV

Wavelength λ = 9.044/
√
E[meV] 2.86 Å

Wave vector k[Å
−1

] = 2π/λ[Å] 2.20 Å
−1

Frequency ν[THz] = 0.24818E[meV] 2.418 THz
Wavenumber ν[cm−1] = ν[Hz]/(2.998 · 1010cm/s) 80.65 cm−1

Velocity v[km/s] = 0.6302k[Å
−1

] 1.38 km/s
Temperature T [K] = 11.605E[meV] 116.05 K

Table E.1: The relationships between wavelength, frequency, velocity are important
when doing neutron scattering.

Quantity Relationship Relationship
Pressure 1 Pa = 10−5 bar 1 bar = 105 Pa
Length 1 inch = 2.54 cm 1 cm = 0.394 inches
Magnetic field (B-field) 1 gauss = 0.0001 T 1 T = 10.000 gauss
Magnetic field (H-field) 1 oersted = 79.6 A/m 1 A/m = 0.0126 oersted

Table E.2: Other relationships that are useful, when planning and executing experi-
ments.
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Sample holder for C5

F Sample holder for C5

The sample holder for the C5 experiment was drawn by Dennis W. Wistisen from the Niels Bohr
Institute, Group of Instrumentation from sketches made myself, based on an old sample holder
and dimensions on the C5 sample stick. The design makes it possible to use it for co-aligning
samples and for samples of all sizes and forms due to the many sample stick positions as seen in
Fig. F.1.
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Figure F.1: The sample holder for the C5 experiment has potential for being used
to many other experiments, due to the flexibility of the position of the sample and the
possibility for co-aligning crystals.
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Plots

G Plots

G.1 Diffuse scattering around (0 1 0)
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Figure G.1: Diffuse scattering around (0 1 0) at T = 71 K, T = 72.5 K, T = 74 K and
T = 76 K.
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G.1 Diffuse scattering around (0 1 0)
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Figure G.2: Diffuse scattering around (0 1 0) at T = 78 K, T = 80 K, T = 85 K and
T = 90 K.
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G.1 Diffuse scattering around (0 1 0)

−0.6 −0.4 −0.2 0 0.2 0.4

10
−2

10
0

In
te
n
si
ty

[c
o
u
n
t/
m
o
n
]

k [r.l.u.]

T = 100 KGaussian Amplitude = 0.00489 ± 0.00013

Gaussian Width = 0.0073 ± 0.0002

Lorenztian Amplitude =  0.00076 ± 0.00005

Lorenztian Width = 0.068 ± 0.007

Figure G.3: Diffuse scattering around (0 1 0) at T = 100 K.
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G.2 Energy scans around the (1 0 0) magnon dispersions

G.2 Energy scans around the (1 0 0) magnon dispersions
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Figure G.4: Energy scan at (1 0 0) for different temperatures. Fitting parameters from
the four scans: 71 K, 71.5 K, 72 K and 74 K, were not included in rest of the data
analysis due to the bad fits.
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G.3 Energy scans around (3 0 0) at T = 40 K and T = 100 K

G.3 Energy scans around (3 0 0) at T = 40 K and T = 100 K
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Figure G.5: Energy scans of the transverse phonon and magnon at (3 0 0).
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G.3 Energy scans around (3 0 0) at T = 40 K and T = 100 K
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Figure G.6: Energy scans of the transverse phonon and magnon at (3 0 0).
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G.4 Q-scans of transverse phonon around (3 0 0)

G.4 Q-scans of transverse phonon around (3 0 0)

Figure G.7: Q-scans of transverse phonon at different temperatures at (3 0 0). The
energy transfer was ~ω = 7.9 meV for all temperatures.
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G.5 Longitudinal phonon measured at k = 3.25 and k = 3.35
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Figure G.8: Longitudinal energy scans at k = 3.25 and k = 3.35.

131 of 137



G.6 Measurements above TN

G.6 Measurements above TN
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Figure G.9: The T = 100 K data taken at C5. Red is the horizontal field spinflip channel
(magnetic) and black is the horizontal field non-spinflip channel (nuclear). Upper left:
Energy scan at h = −0.4 right between the zone center and the zone boundary. Upper
right: Energy scan at h = −0.67 right at the zone boundary. Bottom left: Energy
scan at h = −0.75 at the crossing. Bottom right: Energy scan at h = −1 right in
between the (0 3 0) and the (2 2 0) zone.
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G.6 Measurements above TN
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Figure G.10: The T = 100 K data taken at C5 plotted with the non-polarized EIGER-
data. Red is the horizontal field spinflip channel (magnetic), black is the horizontal field
non-spinflip channel (nuclear) and green is the non-polarized EIGER data. Upper left:
Energy scan at h = −0.4 right between the zone center and the zone boundary. Upper
right: Polarized energy scan at h = −0.67 right at the zone boundary and non-polarized
data taken at h = 0.65. Bottom left: Energy scan at h = −0.75 at the crossing.
Bottom right: Polarized energy scan at h = −1 right in between the (0 3 0) and the
(2 2 0) zone and non-polarized data at h = 0.95.
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G.7 Measurements below TN

G.7 Measurements below TN
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Figure G.11: The T = 40 K data taken at C5. Red is the horizontal field spinflip chan-
nel (magnetic) and black is the horizontal field non-spinflip channel (nuclear). Upper
left: Energy scan at h = −0.4 right between the zone center and the zone boundary.
Upper right: Energy scan at h = −0.67 right at the zone boundary. Bottom left:
Energy scan at h = −0.75 at the crossing. Bottom right: Energy scan at h = −1 right
in between the (0 3 0) and the (2 2 0) zone.
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G.7 Measurements below TN
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Figure G.12: The T = 40 K data taken at C5 plotted with the non-polarized EIGER-
data. Red is the horizontal field spinflip channel (magnetic), black is the horizontal field
non-spinflip channel (nuclear) and green is the non-polrized EIGER data. Upper left:
Energy scan at h = −0.4 right between the zone center and the zone boundary. Upper
right: Polarized energy scan at h = −0.67 right at the zone boundary and non-polarized
data taken at h = 0.65. Bottom left: Energy scan at h = −0.75 at the crossing.
Bottom right: Polarized energy scan at h = −1 right in between the (0 3 0) and the
(2 2 0) zone and non-polarized data at h = 0.95.
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G.7 Measurements below TN

G.7.1 Horizontal field versus vertical field at T = 40 K
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Figure G.13: Left: Constant-Q scan at h = 1 at 40 K spinflip channel. Right:
Constant-Q scan at h = 1 at 40 K non-spinflip channel.
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Figure G.14: xkcd - The difference
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