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Chapter 1

Introduction

1.1 What is this all about?
The purpose of this this thesis is to look at the relaxation of electrons and holes in one-
dimensional wires and how it may contribute somehow to a measurable e�ect.

1.2 What is a quantum wire?
Classically speaking a wire is a macroscopic metallic object, usually long and thin, in which
an electrical current can run. If we apply a voltage di�erence V between the ends of the wire,
a current I may be measured in it and from this we can calculate the electrical resistance
R = V/I of the wire. For su�ciently "nice" (ohmic) wires, the resistance is independent of
the voltage we apply to the wire. For a wire with a constant cross-section with area A and a
length L we can calculate the resistance from the resistivity ρ (a material constant) as R = ρL

A .
So it seems that the only information we can hope to gain from measuring the resistance

(or typically its inverse, the conductance G = I/V ), is another a number, which basically
just depends on the composition of the wire. If we shrink the dimensions of the wire, at
some point quantum e�ects begin to play a role, and the current is no longer as simple as the
classical ideas may suggest; we are dealing with a quantum wire. And now suddenly a lot of
information about the system can be extracted from the measurement of I against V .

A typical and characteristic features of a quantum wire, is the conductance quantization.
Varying some speci�c system parameter (which could be the voltage applied to a gate or the
force applied to a break junction) one reduces the dimensions of a critical part of the quantum
wire and the conductance is seen to be reduced in steps following the reduction in modes
available for transport through the wire.

1.2.1 The Extreme: the one-dimensional wire
Imagine a quantum wire which resembled a "classical" wire, that is, it has a constant cross-
section and a length which is much larger than its transversal dimensions; this is a one-
dimensional wire.

Let us look at an example well known from second year physics: the electron-in-a-box [1].
A box in this context is a structure in any number of dimensions where the potential is
either zero (inside the box) or in�nite (outside the box). We wish to solve the Schrödinger

1
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Equation of a single electron in a 3D rectangular box, and luckily this problem is separable.
Using standing wave boundary conditions for the transversal directions (x and y) and periodic
boundary conditions for the longitudinal direction (z), the eigenenergies of the system can be
written as follows in terms of the three quantum numbers associated with each direction,

Enxnynz = E(x)
nx

+ E(y)
ny

+ E(z)
nz

(1.1)

E(x)
nx

=
~2π2n2

x

2mL2
x

, nx = 1, 2, 3, . . . (1.2)

E(y)
ny

=
~2π2n2

y

2mL2
y

, ny = 1, 2, 3, . . . (1.3)

E(z)
nx

=
2~2π2n2

x

mL2
z

, nz = 0,±1,±2, . . . . (1.4)

We observe, that the eigenenergies associated with a certain direction goes as 1/L2, where
L is the length of the box in that direction. Thus it requires a much higher energy to excite the
electron in a transversal direction than to excite it in the longitudinal direction. For practical
purposes the electron may be considered as moving in a 1D channel with only one degree
of freedom, the longitudinal momentum kz, which would form a continuum. Each choice of
transversal quantum numbers would then correspond to a di�erent mode of the wire, these
being widely separated in energy, and to each mode would be associated a dispersion E(kz).
For the box under consideration the wire modes could be labeled by (nx, ny) and the dispersion
for that wire mode would then be

Enxny(kz) =
~2k2

z

2m
+

(~2π2n2
x

2mL2
x

+
~2π2n2

y

2mL2
y

)
. (1.5)

(1,1) would be the lowest laying wire mode and the next lowest wire modes (1,2) and (2,1)
(assuming Lx = Ly ≡ L) has a dispersion which is shifted upwards by 3~2π2

2mL2 relative to that of
(1,1). If we require that only a single mode (the lowest lying) is occupied at zero temperature,
we should have

3~2π2

2mL2
>
~2k2

F

2m
, (1.6)

or roughly kF L . 1. Here ~kF is the Fermi momentum, the numerically largest momentum,
which can be found amongst the occupied states. The smaller kF L is compared to one, the
less likely it is that a wire mode apart from the lowest lying would be involved in any physics
of the system, such a system would be called a single-mode wire, as opposed to a multi-mode
wire where several modes of the wire would contribute to for instance the current through the
wire.

Real 1D wires are somewhat like this primitive box-model; �rst of all they may not be
represented very well by the sharp box-potential, but by something similar with more soft
edges, which in the end still supports 1D wire modes. Also, the dispersions of the wire modes
would not necessarily just be shifted with respect to each other, the e�ective band mass could
for instance be di�erent between di�erent modes. See Appendix A for a calculation of the
single electron eigenstates and -energies in the solid-state system we are concerned about.
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1.3 Physical realizations of quantum and 1D wires
Let us look brie�y at some of the typical physical realizations of quantum wires and also what
issues arises when one wishes to fabricate a true one-dimensional wire and how to overcome
these problems.

1.3.1 Quantum Point Contacts
A Quantum Point Contact (QPC) is a narrow constriction between two bulk electrically
conducting materials on either side and may show quantum wire behavior. If one slowly opens
an electrical contact while monitoring the conductance through it, just before the contact
is broken one observes a conductance dropping o� in steps, corresponding to the stepwise
elimination of conduction channels in the contact. This experiment is not only an example
of a QPC but also of a so-called break-junction, so named because it is achieved by physical
stress. It is also one of the only quantum wire behavior observable at room temperature;
most other quantum wires are achieved in some solid-state structure and requires cryogenic
temperatures.

A more interesting QPC is made by constricting a two-dimensional electron gas (2DEG)
by electrostatic gating. High quality 2DEGs are supported by the quantum wells in the
heterostructures grown by the Molecular-Beam Epitaxy (MBE) method, see the next section
for a very short review. By contacting the 2DEG, a current can be made to �ow from one side
to the other. Metallic gates can be deposited on top of the crystal with a geometry well-de�ned
by lithographic methods and by applying a negative DC voltage to a top-gate, one can locally
deplete the 2DEG beneath that gate, thereby controlling the geometry of the 2DEG in turn.
Thus by gating one can construct the narrow constriction in the 2DEG and indeed quantum
wire behavior is observed, conduction quantization for instance; as the voltage on the gate is
lowered, fewer and fewer modes are available for conduction and the conduction falls o� in
steps of 2e2

h .
One of the disadvantages of the QPC is the small separation of the subbands which lead

to mode-mixing. Also we cannot use QPC for making �nite length 1D wires as random
width �uctuations will chop up the wire into discrete quantum dots, which will dominate the
conductance [2].

1.3.2 Carbon Nanotubes
A graphene sheet consists of Carbon atoms in a regular hexagonal lattice. If such a sheet
could be folded to a cylinder and excess atoms be removed, the outcome would be a carbon
nanotube (CNT). CNTs are cylindrical structures with diameters in the nanometer range and
lengths many order of magnitudes larger, typically micrometers of even millimeters. As such
they greatly resemble the classical wire. By depositing two contacts on top of a CNT one can
measure the current through it, and - surprise - the CNT is a prime example of a quantum
wire. Luttinger liquid behavior, the trademark of one-dimensionality, have been observed in
CNTs [3].

The limitations of CNTs as 1D wires lay in the lack of control the experimentalist has over
them, because they are grown. Therefore producing two CNT in parallel, for the purpose of
allowing tunneling between the two, is virtually impossible. An alternative option may be to
grow a multi-walled CNT (MWNT), one which consists of two or more concentric single-walled
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CNTs of di�erent diameters, perhaps this setup may behave as two parallel 1D wires.

1.3.3 Cleaved Edge Overgrowth

As already mentioned, it is possible using MBE to grow crystals, which contain one or more
quantum wells, each of which may support a 2DEG. By cleaving such a crystal and growing
further on the newly exposed surface, one can con�ne electrons electrostatically to the edge
of the 2D quantum well, thereby creating a 1D electron gas (1DEG) [4]. This method is
called Cleaved Edge Overgrowth (CEO) . The fabricated 1DEG has a length de�ned by the
dimensions of the crystal (could be millimeters) and has a very well-de�ned constant height
dictated by the atomically smooth surfaces of the quantum well. Its width is de�ned by the
strength of the electrostatically forces binding the electrons to the edge. Since the height and
width of the 1DEG can be very small (depending on the growth conditions), these quantum
wires feature large subband separation, possibly resulting in single mode 1D wires. Also one
could make several parallel quantum wells in the initial growth and thus creating two (or more)
1DEGs which are parallel along their whole length [5]. This latter option enables tunneling
between the wires and opens up a whole new �eld of wire spectroscopy, more on this later.
Unsurprisingly, Luttinger liquid behavior has been observed in these quantum wires [6].

Since this method is what we imagine to be used for fabricating the device we shall discuss
in this thesis, the next section will feature a brief review of the CEO method.

1.4 Fabrication and properties of CEO quantum wires

The Cleaved Edge Overgrowth [4] technique can be used for fabricating high quality, parallel
1D wires, and we shall look into its workings here. The principal idea behind CEO is illustrated
in Fig. 1.1. The basics of CEO is the Molecular-Beam Epitaxy (MBE) growing method for
semi-conductor heterostructures, but instead of growing in just a single direction a cleave is
performed and growth is continued on the cleaved surface in another direction.

(100) Growth
CleaveTop-gate

GaAs

AlGaAs

AlGaAs
GaAs

(a) The �rst growth on the (100)
surface and subsequent cleave to ex-
pose an (110) surface. In green is
the deposited top-gate.

(110) Growth

Top-gate

AlGaAs

(b) The second growth on the newly
exposed (110) surface. A deposited
side-gate is blue.

(c) Sketch of electronic sys-
tems of the previous �gure.
Blue is the 1DEG created at
the interface and orange is
the 2DEG used to contact the
1DEG.

Figure 1.1: Fabrication of single 1D wire by cleaved edge overgrowth. In the �rst two �gures
dark gray indicates AlGaAs and light gray indicates GaAs.
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1.4.1 Growth by Molecular-Beam Epitaxy

When growing structures using MBE one could use GaAs/AlGaAs or another set of similar
materials; we will only consider the GaAs/AlGaAs heterostructures. Starting from a GaAs
wafer polished on a (100) surface one can grow a structure upwards with any combination of
GaAs and AlGaAs. In the areas with AlGaAs the potential is higher and these areas will act
as barriers between the wells where GaAs is used. The growth rate is determined by the �ux
rate of the atomical vapors, and is �xed by the requirement of good quality growth. But by
choosing the growth time of each chemical composition, the experimentalist has control over
the thickness of each layer down to the atomical scale.

One can use AlGaAs doped with Si (or another suitable donor atom) to form electric �elds
in the materials binding electrons to certain regions of the material. Thus one could form a
2-dimensional electron gas (2DEG) in the well.

GaAs readily cleaves on the (110) surface, so if one is to cleave the original grown crys-
tal and continue growth on another surface, it must be the (110) surface. Originally this
posed some problems [7], as the growth in that direction required �ne-tuning of the growth-
parameters, but the trouble have been overcome, and growth on (110) is now possible, although
it requires a much higher concentration of dopant compared to (100) growth to achieve the
same level of 2DEG density. In order not to contaminate the newly exposed surface, which
may degrade the morphology of the yet-to-be-grown crystal, the cleave is performed in the
MBE apparatus with the growing conditions for growth on (110) already present, so that
growth can be assumed a few seconds after the cleave has been performed.

CEO can also be used for fabricating other structures than 1DEGs, 2DEGs for instance [8].
But if one is to fabricate a 1D wire a typical approach is as follows. On the (100) GaAs wafer
is grown a layer of AlGaAs - a couple of µm should do the job. Then the actual well is grown
using GaAs. The height of this layer will later de�ne the height of the 1D wire; typical heights
are 14−40 nm in [6], . Finally a second barrier is grown with AlGaAs, probably of comparably
size to the other. For addressing the quantum wire a a later stage, the last layer of AlGaAs
is doped in such a way, that the quantum well is populated by a 2DEG. Next the sample is
cleaved and growth is resumed on the exposed (110) surface. A AlGaAs layer with Si-doping
is grown followed by an undoped layer of AlGaAs and �nally a thin layer of GaAs as cap. A
high quality 1D wire is then formed with a height given by the height of the quantum well,
a width determined by the electric �eld strength from the donor-states in the second growth
AlGaAs and a length which may be the whole length of the crystal (millimeters).

From the simultaneous growth on a (110) reference wafer and later magnetoresistance
measurements on 2DEG formed on this wafer, the quality of the CEO growth can be estimated.
[2] reports �nding a density of n = 3·1011 cm−2 and a mobility of µ = 1.3·106 Vs−1, whereas [4]
reports very similar values at n = 4.6 · 1011 cm−2 and a mobility of µ = 4.8 · 105 Vs−1. In
general mobilities of 2DEGs grown on an (110) surface are much less than mobilities for growth
on the (100) direction [9].

The 1D wire need not be formed as described by binding the electrons to the side of the
well by an electric �eld from the doped AlGaAs grown on the (110) surface. One could also
fabricate intersecting quantum wells [10] and [11], in which the lowest energy eigenstate will
be a bound state in the two transversal directions, so that the system contains at least one
1D wire mode.



6 CHAPTER 1. INTRODUCTION

1.4.2 Controlling geometry
For controlling the geometry of setup, one takes advantage of electrostatic gating. Before
cleaving, several top-gates are deposited on top of the �rst growth, the later cleaving will
con�ne them to this area. By applying a gate voltage to one of these gates and lowering the
voltage, several things happens. At some voltage, the 2DEG beneath the gate will pinch o�,
and transport beneath the gate will only be possible through the 1D wire. As the gate voltage
is lowered further, the modes of the wires are depopulated one by one until �nally the 1D wire
is completely depopulated and no transport is expected to be possible under the gate.

On top of the second growth could also be deposited a metal-stripe to be used as a side-
gate. Applying a bias voltage to the side-gate is expected to speak more directly to the
1DEG than to the 2DEG, and so could be used for manipulating the 1DEG density, while not
changing the properties of the 2DEG too strongly.

The previously approach was good for fabricating a single 1D wire, but is also by slight
modi�cations usable for producing parallel quantum wires. The �rst growth on the (100)
wafer is simply modi�ed so that instead of just a single quantum well, two quantum wells are
grown with a barrier of AlGaAs in between. After cleaving and further growth we will now
have two 1D wires which are to a very high precision parallel. Only the upper quantum well
is usually made populated by a 2DEG. The top-gate now serves a further purpose; after the
wire closest to the top-gate has been pinched o�, the lower 1D wire is still populated and so
the current, which is observed, has moved through the wire.

1.5 Luttinger liquid theory vs. Fermi liquid theory
In a normal bulk 3D conducting material the interacting electrons are described by the Fermi
liquid theory [12]. In essence what this theory says is, that a system of interacting electrons
is equivalent to a gas of only very weakly interacting particles, so-called quasiparticles. One
of the prime reason for this similarity to a almost non-interacting gas lies in the large phase-
space associated with excitations in 3D. It is notably that no matter how strong the interaction
between electrons, the correspondence with the weakly interacting gas still holds.

In 1D the phase space available for excitations is much more restricted, which is one of
the reason why the Fermi liquid theory fails completely in this case. Instead, interacting 1D
electron gasses can be described by the Luttinger liquid theory [13] in which quasiparticles
are completely absent. The Luttinger liquid requires linearization of the actual dispersion (or
a dispersion which is really linear) and may thus only work well to describe small excitations.

In a Luttinger liquid with spin the excitations can be split into two independent degrees
of freedom: the spin and the charge, both reached by a bosonization of the original fermionic
system Hamiltonian. The spin-excitations will move with a velocity equal to the Fermi velocity,
vσ = vF , while the charge-excitations will move with a velocity vc = vF /g. g is a coupling
parameter characteristic for each Luttinger liquid; it comes out of the bosonization procedure.
Experiments [14] have con�rmed behavior consistent with this spin-charge separation.

So where a Luttinger liquid seems to be necessary to explain behavior which is observed
in 1D wires, it also has the misfortune of requiring a linear dispersion. One of the things we
are going to look at (lack of hole relaxation) speci�cally requires a non-linear band and is
therefore inconsistent with the linearization. Instead we may in a sense be using the Fermi
liquid theory as we shall use the Boltzmann Equation, which may be derived from the Fermi
liquid theory [12].
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1.6 Thesis outline
Let us brie�y outline what we are going to do in the rest of this thesis.

First of all (Chapter 2) we are going to describe how we imagine a device could be fab-
ricated, which could be used for measuring the relaxation of charge carriers in 1D wires.
Following that we will also present a very simple model to explain why this is supposedly
the case. Along the way we introduce some notation/notion in the framework of the simple
model, which will be employed later on.

In Chapter 3 we will prove, that at zero temperature a single hole in a single-mode 1D
wire is not able to relax if both energy and momentum are to be conserved. This result is
limited to the class of bands with a positive curvature, but it is not limited by the number
of electron-hole pairs created in the process. For the con�gurations of our device where the
current depends on the ability for holes to relax, we expect no current to be measured at all.

Next (Chapter 4) we are going to calculate the current through the device using the semi-
classical Boltzmann Equation approach. As we are unable to solve it algebraically, because
of the presence of some cumbersome integrals, we solve for the current numerically to �rst
order in the three-particle scattering rate W - that is we allow the excited electron to scatter
only once, creating two electron-hole pairs. Finally, we brie�y consider what happens to the
current, if the range of the interaction is changed.
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Chapter 2

Suggested 3-wire setup to measure
relaxation and toy model for current

In this chapter we will suggest a method by which the relaxation of charge carriers can be
measured. First we will describe how we imagine this device could be fabricated and next we
will look into its working and discuss how the current and the relaxation are connected.

2.1 Fabrication and measurements

The device we have in mind is to be fabricated by the already established CEO method as
described in the previous chapter.1 What di�ers from previous experiments is the geometry
chosen. Actually the experiment described by [15] uses a somewhat similar con�guration of
gates, but only includes a single 1DEG, whereas we need two such, but also .

First of all an ordinary GaAs/AlGaAs heterostructure is to be grown with two parallel
quantum wells. The thickness of the wells and the distance between them can be chosen by the
growing time with great precision and they in turn determines the height of our 1D wires and
the distance between them respectively. Typically achievable values are given in our previous
description of CEO. By the doping sequence, only the upper well is occupied by electrons
forming a 2DEG, which will later act as the contact to our 1D wires, whereas the lower well
is empty.

On the top of the AlGaAs cap layer Tungsten stripes are evaporated. These stripes are
to be used as gates to control the geometry. We will need at least three of these top-gates,
but evaporating several more stripes will allow the experimentalist to use the same device for
several geometries by using di�erent sets of three stripes as gates. Typically they could be
2µm wide and be spaced with the same distance in between.

After cleave the usual layers are grown on the exposed (110) surface forming two parallel
1D wires of very high quality on the cleaved edge. One could also evaporate a side-gate on
top of the second growth, allowing control of the electron density in the wires. This could also
be achieved by UV/IR radiation of the wire.

1There is no fundamental requirement, that the 1D wire system must be fabricated bye CEO. However, it
is currently the only feasible way of doing so.

9
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2.1.1 De�ning geometry
To one of the top-gates (G1) is applied a negative voltage so large, that the 2DEG and the
upper 1DEG are completely pinched o�, and only a single mode is populated in the lower
1DEG. The width of the region where only a lower wire mode is populated is related, though
not equal, to the width of the gate. Using a wider gate allows the region where interactions
between charge carriers occur to be longer. This could perhaps allow us to switch regime,
to go from incoherent regime (long interaction length) to coherent regime (short interaction
length).

Having de�ned the interaction region, we want to be able to contact the wires. This is a
bit more tricky. Two other top-gates, G2 and G3 on di�erent sides of G1, are used for this
purpose. To each of these are applied a voltage, such that the 2DEG and the upper wire
pinches o� below. Whether or not it should pinch o� all modes except one in the lower wire
remains for the experimentalists to determine. In each of the regions between G1 and G2 and
between G1 and G3 a contact (C1 and C2 respectively) is made to the 2DEG, a usual choice
of material is Indium. These contacts couples directly to the 2DEG and since the 2DEG and
the upper wire are in physical contact, we also has good contact with the two sections of the
upper wire de�ned between. The coupling between a 1DEG and a �nite length "tap" 2DEG
has been studied in [16]. In the semi-in�nite regions outside gates G2 and G3, two contacts
are also made to the 2DEG (C3 and C4). Since the region is of "in�nite" extent, the upper
and lower wires are supposedly in equilibrium and so by using these contacts, we can contact
the two segments of the lower wire.

In Fig. 2.1 we have made a drawing of the resulting device.

G1G2 G3

C1 C2C3 C4

Wire 1 Wire 3

Wire 2

Figure 2.1: Our 3-wire system with geometry-de�ning top-gates (G1, G2 and G3) and Indium
contacts (C1, C2, C3 and C4). 1DEG's are blue and 2DEG's are orange. The Tungsten
top-gates are green.

2.1.2 Measurements
When performing the experiment, we use the four contacts made (C1-C4) to control the
potential of the two �nite segments of the upper wire and of the lower wire.2

Also a magnetic �eld B, perpendicular to the plane of the wires, is present, the purpose
of which is to boost tunneling electrons.

2So we expect to short-circuit contacts C3 and C4, regarding them as a single contact to the lower wire.
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The thing the experimentalist is going to measure, is the current in the right segment
of the upper wire. This could be done by usual lock-in methods as is the case for similar
experiments.

2.2 Modeling the system, notation and nomenclature
In this section we shall brie�y introduce the notation to be used in the rest of this thesis.

When modelling the system, we regard it as consisting of two segments of upper wire and
one segment of lower wire. These will be named respectively wire 1, wire 3 and wire 2. The
reason for this choice is that an electron which moves from one segment of the upper wire to
the other segment must have passed through the lower wire. The area between wire 1 and
wire 2 where tunneling between them may occur will be named tunneling junction A, between
wire 2 and wire 3 the corresponding area is named tunneling junction B.

Each wire i has a single chemical potential µi. By using the contacts to the wires, we can
impose a voltage di�erence between wire 1 and wire 2 (VA) and on between wire 2 and wire
3 (VB). These voltage di�erences translate directly into di�erences in chemical potentials of
the wires. We de�ne the relationship between the chemical potentials and the bias voltages
in the following way

µ3 − µ2 ≡ eVB (2.1)
µ2 − µ1 ≡ eVA, (2.2)

so that a positive bias at junction A will try to drive an electrical current from wire 1 to wire
2, and a positive bias at junction B will try to drive one from wire 2 to wire 3. Note that
e > 0 by de�nition, so that the charge of the electron is −e.

When neccesary we will use the following cartesian coordinate system. Imagine looking
into the plane of the wires from the end of the second growth. The x-axis will be to the right
along the direction of the wires, the y-axis will be upwards, still in the wire plane, and the
z-axis will be out of the wire-plane towards the beholder, parallel to the direction of the second
growth.

We write the magnetic �eld as
B = Bẑ, (2.3)

and the associated momentum boost (see Appendix. A) as

~qB(B) = eBd, (2.4)

where d is the vertical distance between the center of the upper and lower wire.

2.3 Regimes: coherent and incoherent
We want to look at processes where an electron transfers from wire 1 to wire 3, thereby giving
a current in wire 3, which we can measure. The reason for us wanting to look at these types of
processes will become clear in the next section. To lowest order in the tunneling, this electron
must �rst tunnel to wire 2, propagate to junction B and tunnel into wire 3.

We basically deal with two regimes:
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Coherent regime Everything happens as one process. We only need overall energy conser-
vation. The single tunneling or relaxation event may break energy conservation.

Incoherent regime Regard the individual processes as separate processes. Each single tun-
neling or relaxation event must conserve energy.

2.4 Toy model for current in incoherent regime
In this section we present a simpli�ed, quantitative model to partially explain the current and
the processes going on. Along the way we will introduce some ideas and notions, which will
be employed later on.

2.4.1 1D wire tunneling spectroscopy
Each single-mode wire is represented by its dispersion ε(k). The dispersion could be any
function, but we will assume it to be an even function of k with a curvature that is strictly
positive everywhere. When we need to be speci�c, we shall assume it to be the good old
quadratic dispersion. Since the di�erent wires are fabricated in the same fashion, we will let
each wire be represented by the same dispersion, although the single mode we address could
be di�erent physical modes.

Looking at only a pair of wires, if no bias voltage is applied between the wires, they are
in equilibrium. In equilibrium each wire is characterized by the same chemical potential µ,
which determines the �lling of each wire; states far below the chemical potential in energy are
�lled, whereas states far above are empty. In between these extremes, the �lling is determined
by the Fermi distribution. At zero temperature the situation is much simpler, here all states
with a momentum numerically smaller than the Fermi momentum ~kF are �lled and all other
states are empty.

Neglecting for a moment tunneling, when we bring the pair of wires out of equilibrium by
applying a bias voltage between them what happens is that the dispersions move vertically
with respect to each other in such a fashion that the di�erence between the chemical potentials
is the applied voltage (multiplied by the electron charge) while maintaining the total number
of electrons in the single wire. What is worth noting is the last claim; that the number of
electrons is unchanged by the bias, we would expect a high positive applied bias to increase
the number of electrons. However the change induced is fractionally rather small and this
approach seems to reproduce the experimental result and may thus be the right way to think
about what happens.

Energy conservation dictates that electrons can only move between the wires if the corre-
sponding points on the dispersion are at the same height. Thus a bias voltage that shifts the
dispersions vertically will speak more or less directly to energy conservation.

Neglecting for a moment the presence of the magnetic �eld, tunneling is allowed between
states which di�er in momentum by an amount inversely proportional to the tunneling junction
width. Assuming this width to be large compared with other length scales in the problem,
momentum is conserved, and tunneling may thus only occur if the corresponding points on the
dispersions are vertically above each other. Turning on the magnetic �eld will have the e�ect
of boosting tunneling electrons, but will by assumption not change anything else. Maintaining
our previous rule of tunneling vertically, we must impose the condition, that the dispersions
are also shifted horizontally with respect to each other, by an amount ~qB. For positive B,
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the dispersions for wire 1 and 3 should always be to the right of the dispersion for wire 2, so
that an electron gains momentum by tunneling from the former to the latter. The dispersions
for wire 1 and 3 should not be shifted horizontally with respect to each other, as they sit
at the same height above wire 2 thus giving electrons the same momentum boost in the two
tunneling junctions.3
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Figure 2.2: The dispersions for our three single-mode wires and how changing the system
parameters B, VA and VB a�ects them. INSERT, the physical situation. Note that both
voltages are negative in the case displayed. Tunneling is only possible between states at
points where dispersions intersect, these have been labeled in terms of their wave-number.
Since wave-numbers depends on which wire we are looking at, two wave-number axis have
been added; one for the lower wire (2) and one for the upper wires (1 and 3).

To summarize: We have three dispersions and three independent parameters to adjust,
two voltages and a magnetic �eld, which allows us to shift the dispersions vertically and
horizontally respectively. If tunneling is to conserve both momentum and energy, it is only
allowed between points, where the dispersions intersect. For the class of bands we consider
(ones with a strictly positive curvature) two dispersions only intersect each other in precisely
one point.4 This allows us to address the di�erent points along the dispersions separately and
thus to perform spectroscopy on a 1D wire.

These results are summarized in Fig. 2.2. In this �gure we have also introduced the
3We also use that the magnetic �eld has the same value at the two junctions. If technology would allow

for a �eld gradient so large, that we could independently vary the magnetic �eld at position no more than a
dozen micrometers separated, that would open up new possibilities for spectroscopy, as we could then move
the three dispersions completely independent of each other. This may also open up new theoretical pits, as
other system parameters may depend on the magnetic �eld, and they too would then vary across the system.

4If the two dispersions are not displaced horizontally with respect to each other, they may also intersect
each other in no points at all or in every point. Since we are interested in the intersection of the dispersion of
wire 2 with the dispersions of wire 1 and 3, this anomaly may only occur at zero magnetic �eld, and we shall
simply eliminate this possibility from all further calculations. Thus henceforth B > 0 when necessary.
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following notation for the wave-numbers of the states, where tunneling is allowed: kA
2 and kA

1

are the states where tunneling between wires 1 and 2 are allowed seen from the perspective of
wire 2 and 1 respectively, correspondingly kB

2 and kB
3 are the states where tunneling between

wires 3 and 2 are allowed as seen from the perspective of wire 2 and 3 respectively.
Now the purpose of this whole exercise becomes apparent. If we for instance want to

examine how electrons relax, we could do the following: With one of the upper wires (wire 1)
we inject electrons at a position kA

2 far above the Fermi sea in wire 2. With wire 3 we are able
to extricate electrons from a position kB

2 in wire 2 of our choice, so we simple scan kB
2 between

the Fermi sea and kA
2 while we monitor the current between wire 2 and 3. This current will

say something about the distribution of electrons in wire 2 and (hopefully) thereby something
about how the electron injected at kA

2 has relaxed.

2.4.2 Possibility of current
So we measure the current IB in tunneling junction B between wire 2 and 3 and try to extract
information about the relaxation in wire 2. However we suspect this relaxation contributes
only slightly to the total current, and so we need to look at something which may drown in
noise in an actual experiment.

This is why we now impose the requirement, that wire 2 and wire 3 are always kept at the
same voltage, that is VB = 0. By imposing this condition we ensure, that the only way for IB

to be non-zero is if wire 1 has somehow disturbed the equilibrium Fermi distribution of wire
2. But the tunneling of electrons between wire 1 and 2 is only possible, if they have a di�erent
degree of occupation at the single point where tunneling is possible, and thus the number

nF (εkA
2
− µ2)− nF (εkA

1
− µ1) (2.5)

must be non-zero if we are to observe a current. For T 6= 0 this is the case everywhere except
for the line VA = 0, so what we really mean, is that the current is expected to be proportional
to this number. In Fig. 2.3 we have plotted this function at zero temperature as a function
of the two remaining free adjustable parameters, VA and B. Note that we don't expect the
current to be non-zero everywhere on the area thus de�ned, but under no circumstances can a
current be measured outside of this area, since in these areas all three wires are in equilibrium
at the positions, where tunneling is allowed. For a �nite temperature in the Kelvin range
no signi�cant change of appearance is expected, only a small smearing of the edges between
areas.

Several comments are in order. First of all what we see involves only wires 1 and 2 and is
as such an example of the tunneling current between a pair of 1D wires. In this 2-wire case,
the current is actually non-zero when nF (εkA

2
− µ2)− nF (εkA

1
− µ1) is non-zero and so if one

measures the current and plot the di�erential conductance ∂IB
∂VA

, one would observe lines which
would correspond to the borders between the areas of Fig. 2.3.

These borders are easily understood with the help of our dispersion curves: If there is to
be a tunneling current, the point where tunneling is allowed need to be occupied in one of the
wires and unoccupied in the other wire. The border between the areas are then traced out by
letting a Fermi point of one of the wires follow the dispersion of the other wire. It then follows
that what we observe as the borders are actually just two copies of each of the dispersion
turned ninety degrees and scaled according to the connection between ~qB and B and VA and
the chemical potentials. The two left-facing borders are the dispersion of the lower wire (wire
2) and the two right-facing borders are the dispersion of the upper wire (wire 1).
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Figure 2.3: A plot of nF (εkA
2
− µ2) − nF (εkA

1
− µ1) as a function of VA and B with VB = 0

at T = 0. In the yellow areas the value of the function is −1, in the blue areas it is +1 and
in the grey areas it is 0. The very small area to the right of VA = 0 is blue. We have used a
quadratic dispersion with an e�ective electron mass m∗ = 0.067me, me being the free electron
mass. We have used reasonable values for the rest of the system parameters: d = 31nm,
kF1 = 0.7 · 108m−1, kF2 = 0.9 · 108m−1, kF3 = 0.8 · 108m−1.

Looking at the borders we observe two crossing points, a lower situated at zero magnetic
�eld and at a �nite voltage V ′

A and an upper crossing point situated at zero bias voltage and
at a �nite magnetic �eld B′. The upper crossing point is the point where the negative Fermi
point of one wire and the positive Fermi point of the other coincide and thus

eB′d
~

= qB′ = kF2 + kF1, (2.6)

whereas the lower crossing point corresponds to the two dispersions overlapping completely,
and therefore

eV ′
A = εkF2

− εkF1
. (2.7)

From this we see, that from the two-wire experiment a lot of useful information about the
wires could be extracted, namely the dispersions and the Fermi momentums.

2.4.3 Current mechanisms
Returning to Fig. 2.3, we have included a horizontal line at a B-�eld B′′ determined by

eB′′d
~

= qB′′ = kF2 + kF3.
5 (2.8)

5If wire 1 and wire 3 have the same Fermi momentum, B′ = B′′ and the line will pass through the upper
crossing point. We have deliberately chosen kF1 and kF2 to be slightly di�erent, so as to distinguish between
the two magnetic �elds. In an actual experiment wire 1 and wire 3 are just segments of the same physical 1D
wire and so may have very similar Fermi momentums.
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Above this line (for B > B′′), the wires 2 and 3 are both unoccupied at the point where
tunneling between them may occur, whereas below this line (for B < B′′), both wires are
occupied at the tunneling point. This line along with the line VA = 0 partitions the VA-B-
plane into four segments, which have been labeled 1-4 counterclockwise in the �gure. In each
of the partitions a current may run, but the mechanism for the current is di�erent in each
segment. In Fig. 2.4 we have sketched the four di�erent situations and the relaxation in wire
2 which may or may not yield a current.

W1

W2

W3

(a) Possible current in area 1. In this situa-
tion an electron from wire 1 enters wire 2 at
kA
2 . It then relaxes in wire 2 from kA

2 to kB
2

where it can be picked up by wire 3. Since
we cannot distinguish electrons, it may also
equally well be an electron from the Fermi
sea which has been excited to kB

2 , thus the
�gure is a bit misleading. IB is negative.

(b) Possible current in area 4. Here an elec-
tron at kA

2 has been removed by wire 1. This
hole then relaxes towards the Fermi point
creating at least one electron-hole pair, of
one of which the electron ends up in kB

2 ,
where it can be picked up by wire 3. IB

is negative.

(c) Possible current in area 2. An electron
from wire 1 enters wire 2 at kA

2 , where it
then relaxes. At least one electron-hole pair
is created with a hole situated at kB

2 , so an
electron can enter at this position from wire
3. IB is positive.

(d) Possible current in area 3. Here an elec-
tron is removed from kA

2 in wire 2 by wire
1. The hole at kA

2 relaxes towards the Fermi
point either ending up in kB

2 or creating at
least one electron-hole pair with a hole situ-
ated at kB

2 . Wire 3 then delivers an electron
to this position. IB is positive.

Figure 2.4: The possible mechanisms for a tunneling current in each of the four areas de�ned
in the text and in Fig. 2.3. The electrons being excited up from the Fermi sea in all four
cases represent the creation of electron-hole pairs. The Fermi Level has been changed in the
right-handed �gures for convenience only. INSERT: The color codes (see Fig. 2.2), which are
as follows: wire 1 is green, wire 2 is red and wire 3 is blue.
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2.5 Conclusion
In this chapter we have looked at a very speci�c device. First we described a possible way of
manufacturing this device and next we looked at a primitive model for the current in through
the device, a model which will be expanded on later.

We considered everything to be at zero temperature, but may wonder what (if anything)
changes at a �nite temperature. The Fermi distribution is no longer a sharp step function but
changes smoothly from zero to one over an interval of width (in energy) comparable to kBT .
Replotting Fig. 2.2 at a �nite, but small, cryogenic temperature (a couple of millikelvins),
wont change its overall appearance, as kBT is still very small compared to the Fermi energy6,
but will smoothen the edges. As for the four areas we introduced, they will now overlap, or
formulated in another way, several of the processes depicted in Fig. 2.4 may contribute to the
current at the same time.

6The smallest Fermi energi is approximately 33K for the choice of parameters in Fig. 2.3
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Chapter 3

Impossibility of hole relaxation at zero
temperature

We consider a single-mode 1D wire at zero temperature. In the ground state of the wire all
electron states with energy below the Fermi energy εF (corresponding to states with momen-
tum between ±~kF ) are occupied and all states with energy above are empty. The simplest
way to excite this system is one of two things: either an electron can be put into the wire
above the Fermi energy or an electron from below the Fermi energy can be removed from the
wire (creation of a hole). In either case, momentum and energy conserving electron scattering
could allow the excitation, be it an electron or a hole, to relax, that is to move closer to the
Fermi energy, see Fig. 3.1 for examples of this, while creating one or more electron-hole pairs.

The class of bands we shall consider are those, which are an even function of k, ε(k) =
ε(−k), and have a positive, non-zero curvature everywhere, ∂2ε

∂k2 > 0.1 We shall see, that
in these bands, two-electron scattering - even at a �nite temperature - cannot change the
distribution function. Furthermore at zero temperature, a single hole cannot relax no matter
how many other electrons are involved in the scattering.

We note that the class of bands considered include the good old quadratic band, ε(k) =
~2k2

2m , since its curvature is just a positive constant (~2/m).

3.1 Two-particle scattering
We start by looking at two-particle processes.2 If the two-electron scattering conserves energy
and momentum, it is governed by

ε(k1) + ε(k2) = ε(k′1) + ε(k′2) (3.1)
k1 + k2 = k′1 + k′2, (3.2)

corresponding to a situation where electrons with momenta k1 and k2 scatter o� each other and
end up with momenta k′1 and k′2 respectively.3 De�ning the energy and momentum changes

1Thus we also require, that the second derivative exists everywhere. We will also assume that this second
order derivative is nicely enough behaved, that it can again be integrated once and twice to yield the original
functions. The choice of zero point of the dispersion is such that ε(0) = 0.

2Note, that since temperature does not enter at all in this section, it also applies to the case of �nite
temperature.

3If the spins of the electrons are equal, the electrons are indistinguishable, and all we really know is that
after scattering one of them has momentum k′1 and the other has momentum k′2. However for convenience we

19
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(a) Relaxation of a hole from k′1 to k1 in which
an electron moves the opposite way.
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(b) Relaxation of an electron from k1 to k′1.

Figure 3.1: Examples of how an electron or a hole may relax by three-electron scattering in a
quadratic band. In both cases two electrons are excited from below the Fermi energy (at k2

and k3) to above it (k′2 and k′3), thus creating two electron-hole pairs.

for each electron as

∆Ei ≡ ε(k′i)− ε(ki), ∆qi ≡ k′i − ki, i = 1, 2, (3.3)

eq's (3.1) and (3.2) now assumes the form 0 = ∆q1 + ∆q2 and 0 = ∆E1 + ∆E2 and so we
note that ∆E2 must be opposite in sign to ∆E1 and likewise for the ∆q's, and we may as well
choose ∆E1 ≤ 0, ∆q1 ≤ 0 and ∆E2 ≥ 0, ∆q2 ≥ 0.4 If ∆q1 = ∆q2 = 0 nothing happens at
all (no change to the distribution function), so let us assume that they are non-zero, meaning
that we can introduce the "average slope" α for each electron

αi ≡
∆Ei

∆qi
≥ 0. (3.4)

If we de�ne a generalized slope as a function of initial momentum k and momentum change
∆q 6= 0 as

α(k, ∆q) ≡ ε(k + ∆q)− ε(k)
∆q

, (3.5)

we get by di�erentiation

∂α(k, ∆q)
∂k

=
∂ε
∂k (k + ∆q)− ∂ε

∂k (k)
∆q

> 0. (3.6)

In the last step we use that the band is assumed to have a positive curvature everywhere,
∂2ε
∂k2 > 0, which by integration yields ∂ε

∂k (k) > ∂ε
∂k (q) ⇔ k > q. We conclude that α(k, ∆q) is a

strictly growing function of k, i.e. that α(k, ∆q)<α(q, ∆q) ⇔ k < q. By combining everything

can think of them as described here, it doesn't really matter in this context.
4The sign of the ∆q's can be changed by letting all k → −k, which will not change the validity of a solution

to eq's (3.1) and (3.2), since the band is even.
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derived this far

0 = ∆E1 + ∆E2 = α1∆q1 + α2∆q2 = ∆q2(α2 − α1) (3.7)

⇔ 0 = α2 − α1 =
ε(k′2)− ε(k2)

∆q2
− ε(k′1)− ε(k1)

∆q1

=
ε(k2 + ∆q2)− ε(k2)

∆q2
− ε(k′1)− ε(k′1 −∆q1)

∆q1

=
ε(k2 + ∆q2)− ε(k2)

∆q2
− ε(k′1)− ε(k′1 + ∆q2)

−∆q2

= α(k2, ∆q2)− α(k′1, ∆q2) (3.8)
⇔ α(k2, ∆q2) = α(k′1, ∆q2) (3.9)

⇔ k2 = k′1 ⇔ k′2 = k1. (3.10)

Thus the only processes allowed are those, where the two electrons exchange their momenta
(or where nothing happens at all). We therefore conclude that an excited electron or hole
cannot relax by a mechanism involving just a single other electron! An excited electron could
however get its spin �ipped by being exchanged with an electron with opposite spin, and
similarly for holes, probably providing some sort of measurable e�ect somehow.

One could ask if the opposite is also true; is two-particle scattering possible in a band
where the curvature is zero in just one �nite interval?5 The answer must be yes, provided
that the two electrons scatter within this region of the band! Since the curvature is zero in a
�nite interval, by integration twice, the dispersion is linear in this interval. And for a linear
dispersion (no matter how small), two-particle scattering is possible, since momentum and
energy conservation amounts to the same thing.

3.2 Three-particle scattering
Since two-particle scattering is forbidden for the type of bands considered, we turn to the
next order processes: three-particle scattering. The extra degrees of freedom introduced by
the third electron guaranties, that in general three-particle scattering at a �nite temperature
is allowed.

However, it turns out, that at zero temperature, the relaxation of holes is impossible by
three-particle processed. In other words, the equations

k1 + k2 + k3 = k′1 + k′2 + k′3 (3.11)
ε(k1) + ε(k2) + ε(k3) = ε(k′1) + ε(k′2) + ε(k′3) (3.12)

have no solutions ful�lling |k2|, |k3| < kF , |k′2|, |k′3| > kF and kF < |k′1| < |k1|.6 An easy
explanation is as follows: the electron relaxing does so at a point, where the slope of the
dispersion is "small" and so yields a relative low energy per momentum. The electrons being
excited must do so at places, where the slope of the dispersion is numerically larger and so

5This is the second smallest relaxation of the requirement that the curvature be positive, non-zero every-
where. The smallest relaxation is that the curvature could be zero in a series of discrete points, but this
probably still does not allow for two-particle scattering.

6We will label the relaxing electron 1 and the two electrons being excited 2 and 3. The label i will sometimes
be used to refer to any one electrons and at other times to refer only to any one of the electrons being excited.
Also we let ki and k′i denote the momentum of electron i before and after the scattering respectively.
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spends relatively much energy per momentum. Thus if the momentum taken up by the excited
electrons are to match the momentum given up by the relaxing electron, the excited electrons
will have to absorb more energy than is given up by the �rst energy, which clearly departs
with the concept of energy conservation.

But let us now proceed to prove this claim more rigourously. For ease of calculation we
immediately recast the equations in dimensionless form; measuring wave-vectors in units of
kF and energies in units of εF . Using the same symbols for the new dimensionless variables,
the equations (3.11) and (3.12) are unchanged, and the conditions under which they should
have no solutions are |k2|, |k3| < 1, |k′2|, |k′3| > 1 and 1 < |k′1| < |k1|. The dispersion now
ful�lls ε(−1) = ε(1) = 1, ε(0) = 0 and ∂2ε(k)

∂k2 > 0.
As in the previous section we introduce the energy and momentum change for each electron

as
∆Ei ≡ ε(k′i)− ε(ki), ∆qi ≡ k′i − ki, i = 1, 2, 3, (3.13)

and note that if one of the ∆q's was zero, that electron would just be a spectator and we
would not be dealing with three-particle scattering. Thus all ∆q's are non-zero and we can
again introduce the average slope for each electron

αi ≡
∆Ei

∆qi
. (3.14)

Furthermore we must have ∆E1 ≤ 0 and ∆E2, ∆E3 ≥ 0 by de�nition.
In order to deal e�ectively with the unknown sign of the k's, we treat the two branches

of the dispersion separately and deal with right-movers (R) with k > 0 and left-movers (L)
with k < 0. An electron which is excited out from below the Fermi energy, can do so in
four di�erent ways, α (R→R), β (R→L), γ (L→L) and δ (L→R), see Fig. 3.2. One would
also expect the electron relaxing to be able to do so in four di�erent ways, but because - as
previously noted - the de�ning equations are symmetric under the mirror operation k → −k,
it is su�cient to look at just half of the cases: a (R→ R) and b (L→ R), see Fig. 3.2 as well.

3.2.1 Derivation of inequalities

De�ning two functions of k as

f(k) = ε(k)− k (3.15)
g(k) = ε(k) + k, (3.16)

we immediately observe that f(−1) = g(1) = 2 and f(0) = f(1) = g(−1) = g(0) = 0. By
di�erentiation twice, ∂2f(k)

∂k2 = ∂2g(k)
∂k2 = ∂2ε(k)

∂k2 > 0, and so the derivative of f and g must be
monotonously growing: ∂f(k)

∂k < ∂f(k+δk)
∂k ⇔ δk > 0 and likewise for g. This implies that each

function can have at most one extremum, and looking at the functional values in -1, 0 and 1,
this extremum must exist and be a minimum, located between 0 and 1 for f and between -1
and 0 for g. Away from this minimum each function must grow.

From these observations immediately follow the following inequalities for each of the 6
types of electron processes de�ned above:
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L      R

(a) a

L      R

(b) α

L      R

(c) β

L      R

(d) b

L      R

(e) γ

L      R

(f) δ

Figure 3.2: De�nition of the four di�erent ways an electron can be excited up from below the
Fermi energy and of the two di�erent (relevant) ways an electron inside the Fermi sea can
relax.

α : 0 < ki < 1 < k′i ⇒ ∆Ei −∆qi = f(k′i)− f(ki) > f(1)− f(ki)
> f(1)− f(1) = 0 (3.17)

β : k′i < −1 < 0 < ki < 1 ⇒ ∆Ei −∆qi = f(k′i)− f(ki) > f(−1)− f(1) = 2 (3.18)
γ : k′i < −1 < ki < 0 ⇒ ∆Ei + ∆qi = g(k′i)− g(ki) > g(−1)− g(−1) = 0 (3.19)
δ : −1 < ki < 0 < 1 < k′i ⇒ ∆Ei + ∆qi = g(k′i)− g(ki) > g(1)− g(0) = 2 (3.20)
a : 0 < k′1 < k1 < 1 ⇒ −2 < ∆E1 + ∆q1 < 0 (3.21)
b : −1 < k1 < 0 < k′1 < 1 ⇒ ∆E1 + ∆q1 > 0 ∧∆E1 −∆q1 < 0. (3.22)

We also introduce a generalized slope function, depending on two momenta

α(k, k′) ≡ ε(k′)− ε(k)
k′ − k

, (3.23)

which by di�erentiation with respect to the second index gives

∂α(k, k′)
∂k′

=
∂ε
∂k (k′)
k′ − k

− ε(k′)− ε(k)
(k′ − k)2

=
1

(k′ − k)2
(
(k′ − k)

∂ε

∂k
(k′)− (ε(k′)− ε(k))

)

=
1

(k′ − k)2
(
(k′ − k)

∂ε

∂k
(k′)−

∫ k′

k
dk′′

∂ε

∂k
(k′′)

)
> 0. (3.24)

The last step is realized by considering separately the two cases and evaluating the integrand
up or down. For k′ > k,

∫ k′

k
dk′′

∂ε

∂k
(k′′) <

∂ε

∂k
(k′)

∫ k′

k
dk′′ =

∂ε

∂k
(k′)(k′ − k), (3.25)



24 CHAPTER 3. IMPOSSIBILITY OF HOLE RELAXATION AT T=0

while for k′ < k

∫ k′

k
dk′′

∂ε

∂k
(k′′) = −

∫ k

k′
dk′′

∂ε

∂k
(k′′) < −∂ε

∂k
(k′)

∫ k

k′
dk′′ =

∂ε

∂k
(k′)(k′ − k). (3.26)

Because k and k′ enter α(k, k′) in a symmetrical manner, the derivative with respect to k
must be positive as well. Thus α(k, k′) must be a growing function of both momenta. With
the help of this function, we immediately get the following relationship between the slopes of
the intra-branch processes (α, γ and a)

a : αi > 0 (3.27)
α : αi = ε(k′i)−ε(ki)

k′i−ki
= α(k′i, ki) > α(k1, ki) > α(k1, k

′
1) = α1 (3.28)

γ : αi < −α1. (3.29)

To reach the �rst inequality we used that k′i > k1, because k′i is the only of the four momenta to
be above kF , and that the electron being excited must start above where the relaxing electron
ends up (k′1 < ki) which follows from energy conservation. The second inequality follows by
similar reasoning.

3.2.2 Proving impossibility of solutions
We now have the tools ready to prove the lack of solutions to the original problem. The
three initial momenta are all interchangeable and all that matters are the number of left or
right movers, giving us the four initial states RRR, RRL, RLL and LLL. The �nal momenta
are not interchangeable as one of them should be positioned below the Fermi energy and we
should thus distinguish between this electron, which can be either L or R and the remaining
2 electrons above the Fermi sea which can be either RR, RL or LL. This gives a total of
4× 2× 3 = 24 situation to consider. Because of overall mirror symmetry, we need only look
at half of these (12) so to be explicit, let us say that the �nal momentum below the Fermi
surface is always an R.

We proceed to apply our tools to each of the individual cases. In general, apart from in
the trivial cases, we assume the existence of a solution and proceed to prove that this leads to
a contradiction. Because of the indistinguishability of electrons, we are free to choose which
�nal momenta belongs to which initial momenta, if this helps us solve the problem.7

(1) RRR → RRR
We choose to regard this process at that of one a electron (1) and two α electrons (2 and 3),
α1 < α2, α3 and ∆q1, ∆q2 > 0 and so we must have

0 = ∆E1 + ∆E2 + ∆E3 = α1∆q1 + α2∆q2 + α3∆q3 > α1(∆q1 + ∆q2 + ∆q3) = 0. (3.30)

(2) RRL → RRR
This case is easy. Since all electrons move towards higher momenta, momentum conservation
is going to be hard to ful�ll, and so the process is trivially forbidden.

7We are also free to do it, if it doesn't help us, but that would just be plain silly!
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(3) RLL → RRR
This case is similar to the previous one.

(4) LLL → RRR
This case is similar to the two previous ones.

(5) RRR → RRL
This case consists of one a electron (1), an α electron (2) and a β electron (3), so α2 > α1 > 0,
∆q2 > 0, ∆E3 > 0 and ∆q3 < 0, yielding

0 = ∆E1 + ∆E2 + ∆E3

> ∆E1 + ∆E2 = α1∆q1 + α2∆q2

> α1(∆q1 + ∆q2) = α1(−∆q3)
> 0. (3.31)

(6) RRL → RRL
We have one a electron (1), an α (2) and a γ (3), so −α3, α2 > α1 > 0 and −∆q3, ∆q2 > 0,
resulting in

0 = ∆E1 + ∆E2 + ∆E3 = α1∆q1 + α2∆q2 + α3∆q3

> α1(∆q1 + ∆q2) + α3∆q3 = ∆q3(α3 − α1)
> 0. (3.32)

(7) RLL → RRL
Here we have one a (1), a γ (2) and a δ (3), so we have ∆E1 + ∆q1 > −2, ∆E2 + ∆q2 > 0
and ∆E3 + ∆q3 > 2 and

0 = ∆E1 + ∆E2 + ∆E3

> −2−∆q1 −∆q2 + 2−∆q3 = 0. (3.33)

(8) LLL → RRL
This process is composed of one b electron (1), a γ electron (2) and a δ electron (3). Using
the inequalities ∆E1 + ∆q1 > 0, ∆E2 + ∆q2 > 0 and ∆E3 + ∆q3 > 2,

0 = ∆E1 + ∆E2 + ∆E3

> −∆q1 −∆q2 + 2−∆q3 = 2
> 0. (3.34)

(9) RRR → RLL
In this process all electrons jump towards lower momenta, so it can easily be excluded.
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(10) RRL → RLL

This case is similar to the previous one.

(11) RLL → RLL

Excluded by same reason as the two previous ones.

(12) LLL → RLL

Here we have one b electron (1), and two γ electrons (2 and 3). Now ∆E1 + ∆q1 > 0,
∆E2 + ∆q2 > 0 and ∆E3 + ∆q3 > 0, so that

0 = ∆E1 + ∆E2 + ∆E3 > −∆q1 −∆q2 −∆q3 = 0. (3.35)

Since all of the 12 cases yielded either a contradiction (all of the form 0 > 0) or could be
excluded by (lack of) momentum conservation, we have now shown, that at zero temperature
a single hole cannot relax by three-particle scattering.

3.3 N-particle scattering

In this section we will generalize the results of the previous section and show, that at zero
temperature a single hole cannot relax by N-electron scattering (N > 3). Taken together with
the two previous sections we then know, that at zero temperature a single hole cannot relax
at all by scattering o� other electrons in energy and momentum conserving processes.

Before the scattering there are NR R electrons and NL L electrons and after the scattering
they have shifted to N ′

R R electrons and N ′
L L electrons, with NR + NL = N ′

L + N ′
R = N .

Because of the overall mirror symmetry we require without loss of generalization that the �nal
momentum below the Fermi momentum is always an R, so that N ′

R ≥ 1. In the scattering
the �rst electron performs either an a-process or a b-process and of the remaining electrons
nα performs an α-process, nβ performs a β-process, nγ performs a γ-process and nδ performs
a δ-process, and so 1 + nα + nβ + nγ + nδ = N . The set of electrons performing an α-process
is denoted Sα and likewise for a, b, β, γ and δ.

The procedure with which we shall disprove the existence of solutions is the same as
in the three-particle case; we assume the existence of a solution and using the inequalities
derived previously along with energy and momentum conservation we lead this assumption
to a contradiction. Again we are also free to imagine the initial and �nal momenta to be
connected in any way we like, as to make the calculation easier. It turns out that we only
need to consider four cases.
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3.3.1 N ′
R = NR and N ′

L = NL

We choose na = 1, nα = NR − 1, nβ = 0, nγ = NL and Nδ = 0. We have the inequalities
α1 > 0, ∀i ∈ Sα : αi > α1 ∧∆qi > 0 and ∀i ∈ Sγ : −αi > α1 ∧ −∆qi > 0, which results in

0 = ∆E1 +
∑

i∈Sα

∆Ei +
∑

i∈Sγ

∆Ei = α1∆q1 +
∑

i∈Sα

αi∆qi +
∑

i∈Sγ

αi∆qi

> α1

∑

i∈Sa∪Sα

∆qi +
∑

i∈Sγ

αi∆qi =
∑

i∈Sγ

(αi − α1)∆qi

> 0. (3.36)

If nα = 0 the �rst inequality becomes an equality but the second inequality still holds and if
instead nγ = 0 it is the other way around. Since both cannot be zero at the same time (that
would be a one electron process), this case is forbidden.

3.3.2 N ′
R = NR −M and N ′

L = NL + M with M ≥ 1

We choose na = 1, nα = N ′
R − 1, nβ = M , nγ = NL and Nδ = 0. If nα = 0 all electrons jump

towards lower momenta and the process is trivially forbidden, so we let nα 6= 0. Using the
inequalities α1 > 0, ∀i ∈ Sα : αi > α1 and, ∀i ∈ Sβ ∪ Sγ : ∆qi < 0 ∧∆Ei > 0, we get

0 = ∆E1 +
∑

i∈Sα

∆Ei +
∑

i∈Sβ∪Sγ

∆Ei = α1∆q1 +
∑

i∈Sα

αi∆qi +
∑

i∈Sβ∪Sγ

∆Ei

> α1(∆q1 +
∑

i∈Sα

∆qi) +
∑

i∈Sβ∪Sγ

∆Ei = α1(−
∑

i∈Sβ∪Sγ

∆qi) +
∑

i∈Sβ∪Sγ

∆Ei

>
∑

i∈Sβ∪Sγ

∆Ei

> 0. (3.37)

3.3.3 N ′
R = NR + M and N ′

L = NL −M with NR = 0

We choose nb = 1, nα = 0, nβ = 0, nγ = N ′
L and Nδ = M − 1. With the help of the

inequalities ∆E1 + ∆q1 > 0, ∀i ∈ Sγ : ∆Ei + ∆qi > 0 and ∀i ∈ Sδ : ∆Ei + ∆qi > 2, we see
that

0 = ∆E1 +
∑

i∈Sγ

∆Ei +
∑

i∈Sδ

∆Ei

> −∆q1 +
∑

i∈Sγ

(−∆qi) +
∑

i∈Sδ

(2−∆qi) = 2nδ

≥ 0. (3.38)

3.3.4 N ′
R = NR + M and N ′

L = NL −M with NR ≥ 1

We choose na = 1, nα = NR − 1, nβ = 0, nγ = N ′
L and Nδ = M ≥ 1. We have the following

inequalities ∆E1 + ∆q1 > −2, ∀i ∈ Sα : ∆Ei > 0 ∧ ∆qi > 0, ∀i ∈ Sγ : ∆Ei + ∆qi > 0 and
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∀i ∈ Sδ : ∆Ei + ∆qi > 2, which yield

0 =
∑

i∈Sa∪Sα∪Sγ∪Sδ

∆Ei

> −2−∆q1 +
∑

i∈Sγ

(−∆qi) +
∑

i∈Sδ

(2−∆qi) = 2(nδ − 1) +
∑

i∈Sα

∆qi

> 2(nδ − 1)
≥ 0. (3.39)

3.4 Concluding remarks
This chapter was a rather technical exercise. However the conclusion should not be lost in
mathematical detail: it is energetically forbidden for a single hole to relax by scattering on
a zero-temperature Fermi sea. As the hole must relax at a position where the average slope
of dispersion is numerically smaller than at the position of the electron-hole pairs it create,
there will be surplus momentum if energy is conserved (or a shortage of energy if momentum
is conserved). The same conclusions (that holes cannot relax and electrons cannot relax by
creating only a single electron-hole pair) are reached by [17] in what appears to be a graphical
manner.



Chapter 4

Current in the incoherent regime
using the Boltzmann Equation

In this chapter we will attempt to actually calculate the tunneling current through our sys-
tem in the incoherent regime. Our approach will use the Boltzmann equation [18], which is
a semi-classical transport equation. Semi-classical in this context means, that we work on a
su�ciently large length and momentum scale that the electrons can be treated as classically
well-de�ned particles, each having both a momentum and a position.1 This enables us to
introduce an electron distribution function, which is a probability distribution function de-
scribing the probability of �nding electrons with a certain momentum at a certain position.
The Boltzmann equation couples the "drift" evolution of the distribution function, that is the
evolution due to the classical motion of the electrons, to the evolution due to collision be-
tween electrons or, as we shall use it, tunneling between wires, which e�ectively corresponds
to coupled source and drain terms.

4.1 Setting up and solving
We model our system (see Fig. 4.1) as consisting of three one-dimensional, single-mode wires
with leads. Each wire is described by an electron distribution function gi(kσ, x), i = 1, 2, 3
and is also assigned a chemical potential µi. Voltages are applied between the leads as shown,
such that µ3 − µ2 = eVB and µ2 − µ1 = eVA. We use that the tunneling barriers represent
the majority of the electrical resistance in the circuit and therefore almost all of the voltage
drops occur across the barriers and a single chemical potential can be assigned to each wire.
Tunneling junctions exists between wire 1 and 2 (junction A) and between wire 2 and 3
(junction B). Furthermore a magnetic �eld B is applied perpendicular to (actually out of) the
plane of the paper.

Each of the distribution functions is governed by a Boltzmann equation,

vk
∂gi(kσ, x)

∂x
=

(∂gi(kσ, x)
∂t

)
tunn.

+
(∂gi(kσ, x)

∂t

)
coll.

, i = 1, 2, 3. (4.1)

The �rst term on the right-hand side describes tunneling between the wires and will couple
the equations to each other, while the second term describes intra-wire collisions, which only

1Quantum mechanically we know, that electrons cannot have well-de�ned values of momentum and position
at the same instant of time.

29
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Figure 4.1: The system as we model it for calculating the current in the incoherent regime via
the Boltzmann equation. Looking at a single of the three 1D wires both ends connects to a
lead, both of which are kept at the same voltage. Between the leads of di�erent wires bias DC
voltages are applied as indicated. In between the upper wires and the lower wire is a barrier
which has just two small openings, allowing electrons to transfer between wire 1 and wire 2
at tunneling junction A at x = 0 and between wire 2 and wire 3 at junction B at x = LB.

involves the electrons of the wire in consideration. As it turns out, the collision terms are
considerably more cumbersome to deal with than the tunneling terms, and so we will end up
solving for the distribution functions (and ultimately for the tunneling current, which is what
is measured) pertubatively in the collisions. Imagine that the collision terms can be written
as (∂gi(kσ, x)

∂t

)
coll.

= λA[gi(kσ, x)], (4.2)

where A is a dimensionless functional and λ is the coupling parameter. We then imagine
writing the solution to Eq. (4.1), which will of course depend on λ, as a Taylor series in λ,

gi(kσ, x) = g
(0)
i (kσ, x) + g

(1)
i (kσ, x) + g

(2)
i (kσ, x) + g

(3)
i (kσ, x) + . . . , (4.3)

where the upper index indicates to what order in λ that term is.

4.1.1 Tunneling terms
We model the tunneling between a pair of neighboring wires by the Hamiltonian

HT = t

∫ W

0
dxΨ†

uσ(x)Ψlσ(x)e−iqBx + H.c. (4.4)

Here Ψiσ(x) is the �eld operator that annihilates an electron in wire i of spin σ at position
x, and Ψ†

iσ(x) is the �eld operator that creates one. The indices u and l refer to the lower or
upper wire. The term e−iqBx will eventually be responsible for the momentum boost gained
by electrons when tunneling. t is the tunneling amplitude, which is assumed to be constant
in the window from x = 0 to x = W where tunneling is enabled by this Hamiltonian. This
Hamiltonian also implies that when tunneling, an electron conserves its spin as well as its
position along the wires.
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Introducing the Fourier transform of the �eld operators

Ψ(x) =
1√
L

∑

k

ckeikx Ψ†(x) =
1√
L

∑

k

c†ke
−ikx, (4.5)

2 we can write HT as

HT =
t

L

∑

k1k2

c†uk1σclk2σf(k2 − k1 − qB) + H.c., (4.6)

where the function f, that determines how electron momentum can be changed upon tunneling,
is

f(k) ≡
∫ W

0
dxeikx =

eikW − 1
ik

. (4.7)
3 Ideally we would like the function |f(k)| to be nonzero only for k = 0, so that tunneling
would conserve momentum, that is k2 = k1 + qB. By rewriting the amplitude as |f(k)| =
2| sin(kW/2)/k|, we observe a central peak centered at zero with side peaks of amplitudes
which goes as 1/k2. The FWHM of the central peak, and thus also how much momentum
conservation is violated, is of order ∆k = 2π/W , so we need a large junction width to have
momentum conservation. On the other hand, as we shall soon see, we also want the junctions
to be relatively narrow, so that we can treat them as point-like in our Boltzmann equations.

We now want to determine the tunneling rate for transferring one electron from the state
kuσ in the upper wire to the state klσ in the lower wire. Starting in an initial state |i〉, an
eigenstate of the number operators, and ending in a �nal state |f〉, the rate is dictated by the
Fermi Golden Rule,

Γf←i =
2π

~
|〈f |HT |i〉|2δ(Ef −Ei), (4.8)

where the �nal state di�ers from the initial state by the moving of one electron from upper to
lower wire,

|f〉 = c†lklσ
cukuσ|i〉. (4.9)

By using HT in the form Eq. (4.6), we quickly arrive at

〈f |HT |i〉 =
t∗

L
f∗(kl − ku − qB)〈i|c†ukuσcukuσ|i〉〈i|clklσc†lklσ

|i〉 (4.10)

Γf←i =
2π

~
|t|2
L2
|f(kl − ku − qB)|2〈i|c†ukuσcukuσ|i〉〈i|clklσc†lklσ

|i〉δ(Ef − Ei). (4.11)

This was the rate of tunneling for a speci�c initial state |i〉, to get to the more general rate
we multiply by Pi, the probability for starting in this particular state, and sum over all initial
states. Since we want the semi-classical distribution function to appear, we have to introduce
some position dependence by hand. We arrive at

Γlklσ←ukuσ =
∑

i

PiΓf←i (4.12)

Γlklσ←ukuσ(x) =





2π
~
|t|2
L2 |f(kl − ku − qB)|2·

·gu(kuσ, x)
(
1− gl(klσ, x)

)
δ(Ef − Ei)

0 < x < W

0 else
(4.13)

2The wire is of length L and k is quantized on this length so that kn = n2π/L. Since the length L will play
no role, we use the same L for both wires.

3For k = 0 the integral gives trivially W and the right hand side converges to W for k → 0.
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Contained in this expression is the requirement, that electrons does not change their position
when tunneling. The population of the upper wire state kuσ can change for two reasons due
to tunneling alone; either electrons may enter the state by tunneling from the lower wire or
they may leave the state by tunneling to the lower wire,

(∂gu(kuσ, x)
∂t

)
tunn.

=
∑

kl

(
Γukuσ←lklσ(x)− Γlklσ←ukuσ(x)

)

=





2π
~
|t|2
L2

∑
kl

(
gl(klσ, x)− gu(kuσ, x)

)
·

·|f(kl − ku − qB)|2δ(Ef − Ei)
0 < x < W

0 else
. (4.14)

A convenient partial cancelation of terms occurred. To continue we take the width to be such
that |f(kl − ku − qB)| → Wδkl,ku+qB

. The energy conservation can be written

Ei − Ef = ε(kl)− ε(ku) +
(
µl − µu + ε(kFu)− ε(kFl)

)
, (4.15)

where we have introduced the chemical potential and Fermi wavenumber of each wires, their
appearance are not really important at this stage, what matters is, that together the two
delta-functions - representing energy and momentum conservation - allow only for a single
value of ku, which we shall denote k∗u. This is the only momentum (in the upper wire) for
which tunneling is possible. The sum over kl is solved by �rst converting to an integral over
kl and then converting to an integral over energy. When the dust settles, what remains is (for
0 < x < W )

(∂gu(kuσ, x)
∂t

)
tunn.

=
2π

~
|t|2
L2

W 2
∑

kl

(
gl(klσ, x)− gu(kuσ, x)

)
δkl,ku+qB

δ(Ef − Ei) (4.16)

=
2π

~
|t|2
L2

W 2
(
gl(k∗u + qBσ, x)− gu(k∗uσ, x)

) L

2π

(∂ε(kl)
∂kl

)−1
∣∣∣∣∣
kl=k∗u+qB

δku,k∗u .

Apart from a lot of constants, this rate contains a di�erence in occupation in the two wires
at the points where tunneling is possible and the density of states of the other wire at the
relevant momentum. In the following we will collect everything apart from the distribution
function in a tunneling rate Γ, and we will assume that this rate is a constant. This is done
purely out of convenience, as it would not be too hard to include the just found dependence
on momenta.

4.1.2 Tunneling terms for 3-wire system
We now return to the full 3-wire situation in which we have one lower wire and two segments
of upper wire. Along with the requirement of energy conservation in the single tunneling
event, since we are in the incoherent regime, this allows tunneling at a speci�c junction only
if the electron possesses a certain momentum. If the tunneling should be possible at junction
A the electron must possess a momentum ~kA

1 in wire 1 or a momentum ~kA
2 in wire 2 and

be at the position x = 0, and likewise for tunneling junction B, which is situated at x = LB.
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We thus write the tunneling terms as
(∂g1(kσ, x)

∂t

)
tunn.

= ΓA

(
g2(k + qBσ, x)− g1(kσ, x)

)
f(k − kA

1 , QA)f(x,WA) (4.17)
(∂g2(kσ, x)

∂t

)
tunn.

= ΓA

(
g1(k − qBσ, x)− g2(kσ, x)

)
f(k − kA

2 , QA)f(x,WA)

+ ΓB

(
g3(k − qBσ, x)− g2(kσ, x)

)
f(k − kB

2 , QB) ·
·f(x− LB,WB) (4.18)

(∂g3(kσ, x)
∂t

)
tunn.

= ΓB

(
g2(k + qBσ, x)− g3(kσ, x)

)
f(k − kB

3 , QB) ·
·f(x− LB,WB). (4.19)

The function f,
f(y, ∆) ≡ Θ(y + ∆/2)−Θ(y −∆/2), (4.20)

where Θ is the step function, plays the role of de�ning the tunneling junctions. Essentially
because of the approximations we will make along the way, we may as well have used a delta-
function, but that turned out to be a bit di�cult to work with; therefore this peculiar choice.
What is means, as seen from wire 1, is the following: a tunneling window is open around
position x = 0 of width WA, where electrons may tunnel to wire 2 if their wavenumber lies
in the window centered at kA

1 with width QA. For all electrons in the window, the tunneling
rate is equal and given by ΓA, assuming no occupancy of the receiving state.

The leads are supposedly perfect, absorbing all incoming states and �lling the outgoing
states according to a Fermi distribution. We write the boundary condition in a single wire as

gi(kσ, x) = nF (εk − µi) for
{

x →∞ , k < 0
x → −∞ , k > 0

. (4.21)

For the single wire, if one sits to the right of all tunneling junctions, the left-moving electrons
are Fermi distributed and likewise for right-moving electrons to the left of all tunneling junc-
tions. For the upper wires this is a coarse approximation, as the lead sits only in one end of
the wire. A more realistic boundary condition would require the electrons to re�ect perfectly
at the wire end not containing the lead.

We are at this point interested in solving for the distribution function to zeroth order in the
collisions, that is to determine g

(0)
i . These are easily seen to be the solution to the equations

vk
∂g

(0)
i (kσ, x)

∂x
=

(∂gi(kσ, x)
∂t

)(0)

tunn.
, i = 1, 2, 3, (4.22)

since no collisions may be involved. For k > 0, integrating from −∞, we �nd that,

vk

(
g
(0)
i (kσ, x)− nF (εk − µi)

)
=

∫ x

−∞
dx′vk

∂g
(0)
i (kσ, x′)

∂x′
=

∫ x

−∞
dx′

(∂gi(kσ, x′)
∂t

)(0)

tunn.
. (4.23)

A very simplifying assumption at this point, is that the junction widths WA and WB are
su�ciently small, that we may treat the distribution functions as being constants along the
width of the junctions in both position and momentum space. Recognizing that the tunneling
terms to zeroth order in the collisions are just the expressions Eq.s (4.17) with the zeroth
order distribution functions g

(0)
i inserted. This allows everything except the junction-de�ning
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function f(x) to be pulled outside the integral and thus we arrive at the following for wire 1
(still only valid for k > 0)

vk

(
g
(0)
1 (kσ, x)−nF (εk−µ1)

)
= ΓA

(
g
(0)
2 (kA

2 σ, 0)−g
(0)
1 (kA

1 σ, 0)
)
f(k−kA

1 , QA)F (x,WA), (4.24)

where F is the integral of f ,

F (x− L,∆) ≡
∫ x

−∞
dx′f(x′ − L,∆) =





0 , x ≤ L− ∆
2

x− L + ∆
2 , L− ∆

2 ≤ x ≤ L + ∆
2

∆ , L + ∆
2 ≤ x

.

For k < 0 we integrate Eq.s (4.22) from +∞ and arrive for wire 1 at

vk

(
g
(0)
1 (kσ, x)− nF (εk − µ1)

)
= −ΓA

(
g
(0)
2 (kA

2 σ, 0)− g
(0)
1 (kA

1 σ, 0)
)
·

·f(k − kA
1 , QA)F (−x,WA), (4.25)

because ∫ x

∞
dx′f(x′ − L,∆) = F (x− L,∆)−∆ = −F (L− x,∆). (4.26)

Using that sgn(vk) = sgn(k)4, Eq. (4.24) and Eq. (4.25) can be recombined to a single
equation. By simple rearrangements, the resulting expressions concerning all three wires valid
for all k 6= 0 are

g
(0)
1 (kσ, x) = nF (εk − µ1) +

ΓA

|vk|
(
g
(0)
2 (kA

2 σ, 0)− g
(0)
1 (kA

1 σ, 0)
)
f(k − kA

1 , QA)
(
F (x,WA)Θ(k) + F (−x,WA)Θ(−k)

)
(4.27)

g
(0)
2 (kσ, x) = nF (εk − µ2) +

ΓA

|vk|
(
g
(0)
1 (kA

1 σ, 0)− g
(0)
2 (kA

2 σ, 0)
)
f(k − kA

2 , QA)
(
F (x,WA)Θ(k) + F (−x,WA)Θ(−k)

)

+
ΓB

|vk|
(
g
(0)
3 (kB

3 σ, LB)− g
(0)
2 (kB

2 σ,LB)
)
f(k − kB

2 , QB)
(
F (x− LB,WB)Θ(k) + F (LB − x,WB)Θ(−k)

)
(4.28)

g
(0)
3 (kσ, x) = nF (εk − µ3) +

ΓB

|vk|
(
g
(0)
2 (kB

2 σ,LB)− g
(0)
3 (kB

3 σ,LB)
)
f(k − kB

3 , QB)
(
F (x− LB,WB)Θ(k) + F (LB − x,WB)Θ(−k)

)
(4.29)

In order to proceed we need justify another assumption: that the tunneling windows overlap
in neither momentum nor position space. That they do not overlap in position space is
straightforward, that follows from the physical realization of the system, the wires 1 and 3
simply does not extend across each other and so tunneling to wire 2 must occur at di�erent
positions along wire 2. That the windows do not overlap in momentum space is actually not
a necessity. There may be choices of the bias voltages and magnetic �eld, where kA

2 = kB
2 and

where as a consequence a current could run even in the absence of collisions. However, we
will simply impose on our system, the requirement, that this is not the case. Were it the case,
the dominating contribution to the overall current would be the noninteracting one, which is
beyond this approach.

4This follows from the positive curvature of the dispersion.
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By evaluating at the right positions and solving, we �nd, that the distribution functions
to zeroth order in the collisions are

g
(0)
1 (kσ, x) = nF (εk − µ1) +

ΓA

|vk|
f(k − kA

1 , QA)
(
F (x,WA)Θ(k) + F (−x,WA)Θ(−k)

)
·

·
nF (εkA

2
− µ2)− nF (εkA

1
− µ1)

1 + 1
2ΓAWA(|vkA

2
|−1 + |vkA

1
|−1)

(4.30)

g
(0)
2 (kσ, x) = nF (εk − µ2)

+
ΓB

|vk|
f(k − kB

2 , QB)
(
F (x− LB,WB)Θ(k) + F (LB − x,WB)Θ(−k)

)
·

·
nF (εkB

3
− µ3)− nF (εkB

2
− µ2)

1 + 1
2ΓBWB(|vkB

2
|−1 + |vkB

3
|−1)

+
ΓA

|vk|
f(k − kA

2 , QA)
(
F (x, WA)Θ(k) + F (−x,WA)Θ(−k)

)
·

·
nF (εkA

1
− µ1)− nF (εkA

2
− µ2)

1 + 1
2ΓAWA(|vkA

2
|−1 + |vkA

1
|−1)

(4.31)

g
(0)
3 (kσ, x) = nF (εk − µ3) +

ΓB

|vk|
f(k − kB

3 , QB)
(
F (x− LB,WB)Θ(k)

+F (LB − x, WB)Θ(−k)
) nF (εkB

2
− µ2)− nF (εkB

3
− µ1)

1 + 1
2ΓBWB(|vkB

2
|−1 + |vkB

3
|−1)

. (4.32)

One may wonder whether these functions represents valid distribution functions, do their
values lay between 0 and 1? The short answer is luckily yes. At k-values where electrons
cannot tunnel, the property is trivially true, since all g's then are just Fermi distributions.
Since the functions are well-behaved (sort of) with respect to x, what happens at the positions
of the tunneling junctions is not relevant, since that would be single points compared to the
whole length of the wire between the junctions.5 Finally the most interesting things may
happen for k-values in the tunneling windows but away from the tunneling junctions. Looking
at only one of the distribution functions, since the argument is trivially extended to include
the others, we rewrite,

g
(0)
1 (kA

1 σ, x) = nF (εkA
1
− µ1) +

Γ̃AWA

2|vkA
1
|
(
nF (εkA

2
− µ2)− nF (εkA

1
− µ1)

)

= nF (εkA
1
− µ1)

(
1− Γ̃AWA

2|vkA
1
|
)

+ nF (εkA
2
− µ2)

( Γ̃AWA

2|vkA
1
|
)

= nF (εkA
1
− µ1)

( 1 + ΓAWA
2|v

kA
2
|

1 + 1
2ΓAWA(|vkA

2
|−1 + |vkA

1
|−1)

)
+ nF (εkA

2
− µ2)

( Γ̃AWA

2|vkA
1
|
)
.

The second RHS expression is upward bound by
(
1 − Γ̃AWA

2|v
kA
1
|

)
+

(
Γ̃AWA
2|v

kA
1
|

)
= 1 and the third

RHS expression is always positive, and so 0 < g
(0)
1 (kA

1 σ, x) < 1 as hoped for.
5But don't worry, the g's also ful�ll the condition 0 ≤ g ≤ 1 at these points.
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4.1.3 Current
In the experiment we don't measure the distribution functions, but rather a current. The
tunneling current from wire 2 to wire 3 is arrived at using Eq. (4.19),

IB = (−e)
∑

σ

∫ ∞

−∞
dx

∫ ∞

−∞

dk

2π

(∂g3(kσ, x)
∂t

)
tunn.

= (−e)ΓB
QBWB

2π

∑

σ

(
g2(kB

2 σ, LB)− g3(kB
3 σ,LB)

)
. (4.33)

To zeroth order in the collisions, this current is

I
(0)
B = (−e)ΓB

QBWB

2π

∑

σ

(
g
(0)
2 (kB

2 σ, LB)− g
(0)
3 (kB

3 σ,LB)
)

= (−e)ΓB
QBWB

2π
2

nF (εkB
2
− µ2)− nF (εkB

3
− µ3)

1 + 1
2ΓBWB(|vkB

2
|−1 + |vkB

3
|−1)

, (4.34)

an expression we more or less would have expected, it involves the di�erence in occupations of
the one state in each wire, where tunneling is allowed, and then a lot of other stu�. Looking
at the denominator we observe, that the smaller the velocities of the tunneling electrons are
the smaller apparently is the current. This is easily explained; if the electrons from the source
wire are slow to move, they take time to arrive in the tunneling windows, likewise in the
drain, here the slow-moving electrons will remain longer in the tunneling window and thus
blocking further tunneling electrons. The remainder of the numerator is just proportionalities,
the current is of course proportional to both the charge of the charge carriers, the tunneling
rate and the width of the tunneling junction in both position and momentum space. Finally
there is a factor 2 due to spin.

We have till this point solved everything to in�nite order (ie. self-consistently) in the
tunneling and seen that it is possible. The results are, however, rather ugly to look at,
because of the denominators. But the in�nite-order results are nothing but a normalization
of the �rst order results. De�ning new tunneling rates Γ̃A and Γ̃B,

Γ̃A ≡
ΓA

1 + 1
2ΓAWA(|vkA

2
|−1 + |vkA

1
|−1)

Γ̃B ≡ ΓB

1 + 1
2ΓBWB(|vkB

2
|−1 + |vkB

3
|−1)

, (4.35)

all results hitherto obtained (Eq.s (4.30), (4.31), (4.32) and (4.34)) can be written without
the ugly denominator by replacing the Γ in the numerator by Γ̃.

4.1.4 Collision terms
We are now ready to implement the interesting part of the Boltzmann equation Eq. (4.1), the
intra-wire collisions. We consider a single, single-mode wire.6 Only multiple electron-electron
scattering are taken into account, that is no impurity scattering. The simplest possibility is

6Since we in this section deal only with a single wire at a time, we will omit the wire index for the time
being.
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two-electron scattering, the rate for which is
Γk′aσa,k′bσb←kaσa,kbσb

=
∑

i

PiΓf←i (4.36)

Γf←i =
2π

~
|〈f |V |i〉|2δ(Ef − Ei) (4.37)

|f〉 = c†k′aσa
c†
k′bσb

ckbσb
ckaσa |i〉 (4.38)

V =
1

2L

∑

k1k2q

∑

σ1σ2

c†k1+qσ1
c†k2−qσ2

Uqck2σ2ck1σ1 (4.39)

Ef −Ei = εk′a + εk′b
− εka − εkb

. (4.40)
Since V conserves momentum and because of overall translational symmetry of the wire in
consideration, the initial and �nal state must have the same momentum, which again implies
that k′a + k′b = ka + kb. Thus the rate contains both energy and momentum conservation,

Γk′aσa,k′bσb←kaσa,kbσb
∝ δka+kb,k′a+k′b

δ(εk′a + εk′b
− εka − εkb

). (4.41)
For the class of bands we consider, the only possible solutions are ka = k′a ∧ kb = k′b and
ka = k′b ∧ kb = k′a cf. section (). Thus two-electron scattering can at most lead to a spin-
�ip. If the leads supply a non spin-polarized current, this possibility of spin-�ip can lead to
no contribution to the current, due to a pure symmetry argument. If however we imagine
supplying a spin-polarized current and also measuring a spin-polarized current, two-electron
scattering may lead to a change in current.

The next level of complexity is the three-electron scattering. This in general will give
a contribution to the current, since there are non-trivial solutions to the three-body energy
and momentum conserving scattering. Calculating the rate Γf←i is the subject of the next
subsection. From this rate is easily derived the corresponding Boltzmann term.

4.1.5 Calculating the three particle scattering rate
The system starts out in some fock-state |i〉 and ends up in another fock-state |f〉, which is
separated from |i〉 by the reshu�ing of precisely three electrons. Thus we can write

|f〉 = c†a′c
†
b′c
†
c′cccbca|i〉. (4.42)

We require, that the same wavenumber does not appear in both the group of unprimed
wavenumbers and the group of primed wavenumbers (but may appear more than once in
the same group) to ensure, that we are dealing with genuine three-particle processes. What
goes into the scattering rate is the expression
〈f |T |i〉 = 〈i|c†ac†bc†ccc′cb′ca′T |i〉 = 〈i|c†ac†bc†ccc′cb′ca′(V + V G0V + V G0V G0V + . . .)|i〉, (4.43)

where
T = V + V G0T = V + V G0V + V G0V G0V + . . . (4.44)

G0 =
1

Ei −H0 + iη
(4.45)

H0 =
∑

kσ

εkc
†
kσckσ =

∑

kσ

εknkσ (4.46)

V =
1

2L

∑

k1k2q

∑

σ1σ2

c†k1+qσ1
c†k2−qσ2

Uqck2σ2ck1σ1 . (4.47)
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Here T is the so-called T-matrix, G0 the free propagator, H0 the non-interacting Hamiltonian
containing the single particle dispersion ε, and V is the interaction in second quantization, in
which appears Vq, which is the Fourier transform of the (�rst quantization) interaction.7. We
are now going to calculate 〈f |T |i〉. Since whatever operates on the initial state ket |i〉 must in
the end bring us back to the same state for this to yield something non-zero, the term to �rst
order in V is zero, since a single V can at most remove electrons from two of the unprimed
states, and the remaining three c's with primed indices cannot help us (since we required all
primed states to be di�erent from the unprimed states). The next term, that to second order
in V , is generally non-zero, and will thus be the focus of our main concern,

〈i|c†ac†bc†ccc′cb′ca′V G0V |i〉 =
1

4L2

∑

k1k2q

∑

σ1σ2

∑

k′1k′2q′

∑

σ′1σ′2

UqUq′

εk′2
+ εk′1

− εk′2−q′ − εk′1+q′ + iη
·

·〈i|c†ac†bc†ccc′cb′ca′c
†
k1+qσ1

c†k2−qσ2
ck2σ2ck1σ1c

†
k′1+q′σ′1

c†
k′2−q′σ′2

ck′2σ′2
ck′1σ′1

|i〉. (4.48)

We need to look at all the possible pairings of operators, each pair consisting of a raising
operator and a lowering operator. There can be no pairing between the 3 c's and the three
c†'s, since their arguments are never equal. Thus each of these 6 ladder operators must be
paired with an operator coming from one of the V 's. Pairing internally in a V is also not
possible, because if one pair of operators in a V were to have the same argument, the other
pair is forced also to have equal arguments, this V would then perform absolutely no function
(other than multiplying with Uq evaluated at some q) and with only the other V left, the
result would be zero; as of the reason of throwing away the term linear in V . Conclusion:
there must be a pairing between a c from one V and a c† from the other V , which can be done
in 4 + 4 = 8 ways.8

Let us take a closer look at two of these eight terms. Consider the term originating in the
pairing of the �rst c† from the �rst V with the last c from the second V ,

1
4L2

∑

k1k2q

∑

σ1σ2

∑

k′1k′2q′

∑

σ′1σ′2

UqUq′
1

εk′2
+ εk′1

− εk′2−q′ − εk′1+q′ + iη
·

· 〈i|c†ac†bc†ccc′cb′ca′c
†
k1+qσ1

c†k2−qσ2
ck2σ2ck1σ1c

†
k′1+q′σ′1

c†
k′2−q′σ′2

ck′2σ′2
ck′1σ′1

|i〉, (4.49)

and the term from the pairing of the second c† from the �rst V with the last C from the

7For simplicity we have at this point imposed a spin-independent dispersion.
8Two c's to select from in �rst V and two c†'s to select from in second V , 2 × 2 = 4 permutations. Add

also permutations where a c† from �rst V and a c from second V are selected.
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second V ,

1
4L2

∑

k1k2q

∑

σ1σ2

∑

k′1k′2q′

∑

σ′1σ′2

UqUq′
1

εk′2
+ εk′1

− εk′2−q′ − εk′1+q′ + iη
·

· 〈i|c†ac†bc†ccc′cb′ca′c
†
k1+qσ1

c†k2−qσ2
ck2σ2ck1σ1c

†
k′1+q′σ′1

c†
k′2−q′σ′2

ck′2σ′2
ck′1σ′1

|i〉

=
1

4L2

∑

k1k2q

∑

σ1σ2

∑

k′1k′2q′

∑

σ′1σ′2

UqUq′
1

εk′2
+ εk′1

− εk′2−q′ − εk′1+q′ + iη
·

· 〈i|c†ac†bc†ccc′cb′ca′c
†
k2−qσ2

c†k1+qσ1
ck1σ1ck2σ2c

†
k′1+q′σ′1

c†
k′2−q′σ′2

ck′2σ′2
ck′1σ′1

|i〉

=
1

4L2

∑

k1k2q

∑

σ1σ2

∑

k′1k′2q′

∑

σ′1σ′2

U−qUq′
1

εk′2
+ εk′1

− εk′2−q′ − εk′1+q′ + iη
·

· 〈i|c†ac†bc†ccc′cb′ca′c
†
k1+qσ1

c†k2−qσ2
ck2σ2ck1σ1c

†
k′1+q′σ′1

c†
k′2−q′σ′2

ck′2σ′2
ck′1σ′1

|i〉. (4.50)

We did some rewriting; in the �rst step a pair of raising operators were anti-commuted as was
a pair of lowering operators, and in the second step we made some substitutions: k1 → k2,
k2 → k1 and q → −q. What we observe is, that the two terms by rearrangement are almost
similar in appearance, the only di�erence being U−q where the other has Uq. Introducing the
symmetrized potential Ũ ,

Ũq ≡ Uq + U−q, (4.51)

we can now write the sum of the two terms as

1
4L2

∑

k1k2q

∑

σ1σ2

∑

k′1k′2q′

∑

σ′1σ′2

ŨqUq′
1

εk′2
+ εk′1

− εk′2−q′ − εk′1+q′ + iη
·

· 〈i|c†ac†bc†ccc′cb′ca′c
†
k1+qσ1

c†k2−qσ2
ck2σ2ck1σ1c

†
k′1+q′σ′1

c†
k′2−q′σ′2

ck′2σ′2
ck′1σ′1

|i〉. (4.52)

The other 3 pairs of terms is treated in a similar fashion, and we can now write9

〈f |T |i〉 =
1

4L2

∑

k1k2q

∑

σ1σ2

∑

k′1k′2q′

∑

σ′1σ′2

ŨqŨq′
1

εk′2
+ εk′1

− εk′2−q′ − εk′1+q′ + iη
·

·
(
〈i|c†ac†bc†ccc′cb′ca′c

†
k1+qσ1

c†k2−qσ2
ck2σ2ck1σ1c

†
k′1+q′σ′1

c†
k′2−q′σ′2

ck′2σ′2
ck′1σ′1

|i〉 (4.53)

+〈i|c†ac†bc†ccc′cb′ca′c
†
k1+qσ1

c†k2−qσ2
ck2σ2ck1σ1c

†
k′1+q′σ′1

c†
k′2−q′σ′2

ck′2σ′2
ck′1σ′1

|i〉
)
.

Next we pull out the contractions. Calculating them is easy enough,
〈i|c†kσck′σ′ |i〉 = δσσ′δkk′〈i|nkσ|i〉. Since, as noted before, no contractions are possible10 between
the remaining ladder operators of V G0V and so we may anticommute them at will, without

9It is easy to see, that the energy denominator is invariant under the substitution k′1 → k′2, k′2 → k′1 and
q′ → −q′ and so remains unchanged altogether.

10OK, they are possible, they just give zero.
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changing the outcome. Thus

〈f |T |i〉 =
1

4L2

∑

k2qσ2

∑

k′1k′2q′

∑

σ′1σ′2

ŨqŨq′
1

εk′2
+ εk′1

− εk′2−q′ − εk′1+q′ + iη
· (4.54)

·
(
〈i|c†ac†bc†ccc′cb′ca′c

†
k′1+q′+qσ′1

c†k2−qσ2
ck2σ2c

†
k′2−q′σ′2

ck′2σ′2
ck′1σ′1

|i〉〈i|(1− nk′1+q′σ′1
)|i〉

+〈i|c†ac†bc†ccc′cb′ca′c
†
k2−qσ2

ck2σ2ck′1−qσ′1
c†
k′1+q′σ′1

c†
k′2−q′σ′2

ck′2σ′2
|i〉〈i|nk′1σ′1

|i〉
)

=
1

4L2

∑

k2qσ2

∑

k′1k′2q′

∑

σ′1σ′2

ŨqŨq′〈i|c†ac†bc†ccc′cb′ca′c
†
k′1+q′+qσ′1

c†k2−qσ2
c†
k′2−q′σ′2

ck′2σ′2
ck2σ2ck′1σ′1

|i〉

( 〈i|(1− nk′1+q′σ′1
)|i〉

εk′2
+ εk′1

− εk′2−q′ − εk′1+q′ + iη
−

〈i|nk′1+qσ′1
|i〉

εk′2
+ εk′1+q − εk′2−q′ − εk′1+q+q′ + iη

)
.

In the last step we made the substitution k′1 − q → k′1 in the second term in order to collect
all the ladder operators in one chunk. Now we are almost done, what remains is just six con-
tractions. Instead of permuting the contractions, we shall permute the leftmost six operators
and then just contract in the order the operators appear.11 The possible ways the two pairs
of three operators each can be ordered are

∑

αβγ∈P (abc)

sgn(αβγ)
∑

α′β′γ′∈P (a′b′c′)

sgn(α′β′γ′)c†αc†βc†γcγ′cβ′cα′ . (4.55)

The matrix element of interest is reduced to

〈f |T |i〉 =
1

4L2

∑

αβγ∈P (abc)

∑

α′β′γ′∈P (a′b′c′)

∑

k2qσ2

∑

k′1k′2q′

∑

σ′1σ′2

sgn(αβγ)sgn(α′β′γ′)ŨqŨq′ ·

· 〈i|c†αc†βc†γcγ′cβ′cα′c
†
k′1+q′+qσ′1

c†k2−qσ2
c†
k′2−q′σ′2

ck′2σ′2
ck2σ2ck′1σ′1

|i〉 ·

·
( 〈i|(1− nk′1+q′σ′1

)|i〉
εk′2

+ εk′1
− εk′2−q′ − εk′1+q′ + iη

−
〈i|nk′1+qσ′1

|i〉
εk′2

+ εk′1+q − εk′2−q′ − εk′1+q+q′ + iη

)

=
1

4L2

∑

αβγ∈P (abc)

∑

α′β′γ′∈P (a′b′c′)

sgn(αβγ)sgn(α′β′γ′)Ũkβ−k′β
Ũkγ−k′γ · (4.56)

·〈i|nαnβnγ(1− nα′)(1− nβ′)(1− nγ′)|i〉δσασ′αδσβσ′β
δσγσ′γδkα+kβ+kγ ,k′α+k′β+k′γ ·

·
( 〈i|(1− nkγ+kα−k′γσα)|i〉

εkγ + εkα − εk′γ − εkα+kγ−k′γ + iη
−

〈i|nkα+kβ−k′βσ′1
|i〉

εkγ + εk′α+k′γ−kγ − εk′γ − εk′α + iη

)
.

All of a sudden, but not unexpected at all, appears both momentum and spin conservation.
Remembering Fermi's Golden Rule (similar to Eq. (4.37)), we will want to use 〈f |T |i〉 in
connection with energy conservation, which takes on the form

Ei = Ef ⇔ εkα + εkβ
+ εkγ = εk′α + εk′β

+ εk′γ . (4.57)

11The two procedures are precisely the same, but the way they are performed look di�erent.
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Applying this to the second energy denominator (and also applying momentum conservation
at will) we �nd

〈f |T |i〉 =
1

4L2

∑

αβγ∈P (abc)

∑

α′β′γ′∈P (a′b′c′)

sgn(αβγ)sgn(α′β′γ′)Ũkβ−k′β
Ũkγ−k′γ · (4.58)

·〈i|nαnβnγ(1− nα′)(1− nβ′)(1− nγ′)|i〉δσασ′αδσβσ′β
δσγσ′γδkα+kβ+kγ ,k′α+k′β+k′γ ·

·
( 〈i|(1− nkγ+kα−k′γσα)|i〉

εkγ + εkα − εk′γ − εkα+kγ−k′γ + iη
+

〈i|nkα+kβ−k′βσ′1
|i〉

εkα + εkβ
− εk′β

− εk′α+k′γ−kγ − iη

)
.

Finally we substitute γ ↔ β and γ′ ↔ β′ in the second term. Each substitution will change
the sign of the sgn-function, but those two signs conveniently cancel each other. The two
energy denominators will become almost equal, the only di�erence will be a +iη in the one,
where the other has a −iη. The imaginary part of the denominator was originally introduced
in order to deal with eventual singularities, so let us examine, when - and if at all - such
occurs. For simplicity we look at a quadratic band.

0 = εkα + εkβ
− εk′β

− εk′α+k′γ−kγ (4.59)
⇔ 0 = k2

α + k2
γ − k′2γ − (kα + kγ − k′γ)2 = 2(kα − k′γ)(k′γ − kγ), (4.60)

but the only way for this to be true, would be for one of the �nal momenta to equal an initial
momentum, which we have strictly forbidden, since that would correspond to two-particle
scattering. So no singularities occur and we can throw away the iη without concern. The
argument probably extends to the general class of bands we usually consider.

Returning to our calculations, there will be a partial cancelation of terms. Also a lot of
the other junk that appears under the summations is really independent of those and can be
pulled outside. Our penultimate result is

〈f |T |i〉 =
1

4L2
〈i|nanbnc(1− na′)(1− nb′)(1− nc′)|i〉δka+kb+kc,k′a+k′b+k′c (4.61)

∑

αβγ∈P (abc)

∑

α′β′γ′∈P (a′b′c′)

sgn(αβγ)sgn(α′β′γ′)Ũkβ−k′β
Ũkγ−k′γδσασ′αδσβσ′β

δσγσ′γ

εkα + εkγ − εk′γ − εkα+kγ−k′γ
,

which contains 6× 6 = 36 terms. Introducing the following quantity

V(aa′, bb′, cc′) ≡ δσaσ′aδσbσ
′
b
δσcσ′c

( Ũkb−k′
b
Ũkc−k′c

εka+εkb
−εk′

b
−εka+kb−k′

b

+
Ũkb−k′

b
Ũkc−k′c

εka+εkc−εk′c−εka+kc−k′c

+
Ũkc−k′c Ũka−k′a

εkb
+εkc−εk′c−εkb+kc−k′c

+
Ũkc−k′c Ũka−k′a

εkb
+εka−εk′a−εkb+ka−k′a

+
Ũka−k′a Ũkb−k′

b
εkc+εka−εk′a−εkc+ka−k′a

+
Ũka−k′a Ũkb−k′

b
εkc+εkb

−εk′
b
−εkc+kb−k′

b

)
, (4.62)

we can write the 36 terms in a more compact fashion as

〈f |T |i〉 =
1

4L2
〈i|nanbnc(1− na′)(1− nb′)(1− nc′)|i〉δka+kb+kc,k′a+k′b+k′c

(
V(aa′, bb′, cc′)

+V(ab′, bc′, ca′) + V(ac′, ba′, cb′)− V(aa′, bc′, cb′)− V(ac′, bb′, ca′)− V(ab′, ba′, cc′)
)
. (4.63)
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Our derivation of this expression valid for three particle interactions follows more or less [19]
even borrowing a large part of the notation from this paper, but there is one notable di�erence
in approach. Where [19] ignores the possibility of the intermediate state being already occupied
we have included this possibility. So where we only assume the correlation Eq. (4.42) between
the initial and �nal states, the paper assumes the initial state to consist of a vacuum with
only the tree states a, b and c occupied and likewise for the �nal state being the states a′,
b′ and c′ occupied and nothing else. Since there is an intermediate step in the three particle
scattering which involves a seventh state, whether or not this seventh state is occupied or not
may play a role for the outcome, which we have taken into consideration in our approach. It
is worth noting, however, that our result agrees with that of the paper, and so it is apparently
of no importance whether or not one assumes the intermediate state to be empty.

Now must of our trouble is over. The scattering rate from the initial state to the �nal
state is

Γf←i =
2π

~
∣∣〈f |T |i〉

∣∣2δ(Ei − Ef ), (4.64)

from which follows the scattering rate Γa′b′c′←abc as before. Assuming that the collisions are
local, the position dependence of the scattering rate, is implemented by hand by putting the
same position everywhere.

Γa′b′c′←abc =
∑

i

PiΓf←i (4.65)

Γa′b′c′←abc(x) =
2π

~
1

16L4
g(kaσa, x)g(kbσb, x)g(kcσc, x)(1− g(k′aσ

′
a, x))(1− g(k′bσ

′
b, x)) ·

·(1− g(k′cσ
′
c, x))δka+kb+kc,k′a+k′b+k′cδ(εka + εkb

+ εkc − εk′a − εk′b
− εk′c) ·

·
∣∣∣V(aa′, bb′, cc′) + V(ab′, bc′, ca′) + V(ac′, ba′, cb′)

−V(aa′, bc′, cb′)− V(ac′, bb′, ca′)− V(ab′, ba′, cc′)
∣∣∣
2

≡ Wa′b′c′←abcg(kaσa, x)g(kbσb, x)g(kcσc, x)) ·
·(1− g(k′aσ

′
a, x))(1− g(k′bσ

′
b, x))(1− g(k′cσ

′
c, x)), (4.66)

and �nally the collision term for use in the Boltzmann equation is arrived at
(∂g(kaσax

∂t

)
coll.

=
∑

bc

∑

a′b′c′

(
Γabc←a′b′c′(x)− Γa′b′c′←abc(x)

)

=
∑

bc

∑

a′b′c′
Wa′b′c′←abc

(
g(k′aσ

′
a, x)g(k′bσ

′
b, x)g(k′cσ

′
c, x))(1− g(kaσa, x)) ·

·(1− g(kbσb, x))(1− g(kcσc, x))− g(kaσa, x)g(kbσb, x)g(kcσc, x)) ·
·(1− g(k′aσ

′
a, x))(1− g(k′bσ

′
b, x))(1− g(k′cσ

′
c, x))

)
. (4.67)

We have employed that the rate W has some built in symmetry, Wa′b′c′←abc = Wabc←a′b′c′ ,
which follows from its de�nition and the de�nition of V.

4.1.6 Solving to lowest order in W
We are now ready to calculate the current to �rst order in the collisions, which as it has turned
out, is also to �rst order in W . Equating the �rst order terms of both sides of Eq. (4.1), we
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get

vk
∂g

(1)
i (kσ, x)

∂x
=

(∂gi(kσ, x

∂t

)(1)

tunn.
+

(∂gi(kσ, x

∂t

)(1)

coll.
, i = 1, 2, 3. (4.68)

Since the tunneling terms Eq. (4.17) does not contain any W explicitly,
(

∂gi(kσ,x
∂t

)(1)

tunn.
must

be linear in W through the distribution functions; so we simply replace every appearance of
gi in Eq. (4.17) by g

(1)
i to arrive at

(
∂gi(kσ,x

∂t

)(1)

tunn.
. Since W appears explicitly in Eq. (4.67),

(
∂gi(kσ,x

∂t

)(1)

coll.
is found by inserting g

(0)
i in that expression.

The boundary condition for the g
(1)
i 's (as for that matter for any g

(j)
i with j > 0) is

g
(1)
i (kσ, x) = 0 for

{
x →∞ , k < 0
x → −∞ , k > 0

. (4.69)

The procedure is pretty much the same as before. We integrate every single Boltzmann
equation; for k > 0 it is from −∞ to x and for k < 0 it is from +∞ to x. The left hand sides
of Eq.'s (4.68) all trivially yield vkg

(1)
i (kσ, x). The tunneling terms are treated as previously

by assuming, that the distribution function varies only on a scale larger than that set by
f(x,W ); thus we again encounter the integral F of f . For k > 0 we arrive at

vkg
(1)
1 (kσ, x) = ΓA

(
g
(1)
2 (kA

2 σ, 0)− g
(1)
1 (kA

1 σ, 0)
)
f(k − kA

1 , QA)F (x, WA)

+
∫ x

−∞
dx′

(∂g1(kσ, x′)
∂t

)(1)

coll.
(4.70)

vkg
(1)
2 (kσ, x) = ΓA

(
g
(1)
1 (kA

1 σ, 0)− g
(1)
2 (kA

2 σ, 0)
)
f(k − kA

2 , QA)F (x, WA)

+ΓB

(
g
(1)
3 (kB

3 σ, LB)− g
(1)
2 (kB

2 σ, LB)
)
f(k − kB

2 , QB)F (x− LB, WB)

+
∫ x

−∞
dx′

(∂g2(kσ, x′)
∂t

)(1)

coll.
(4.71)

vkg
(1)
3 (kσ, x) = ΓB

(
g
(1)
2 (kB

2 σ,LB)− g
(1)
3 (kB

3 σ,LB)
)
f(k − kB

3 , QB)F (x− LB,WB)

+
∫ x

−∞
dx′

(∂g3(kσ, x′)
∂t

)(1)

coll.
. (4.72)

For k < 0 the results are very similar, F (x,W ) is replaced by −F (−x,W ) and the lower limit
on the remaining integral is changed to +∞. To continue, we impose the physical requirement
that VB = 0. As earlier discussed this could be a good idea on the grounds, that we measure
the current between wire 2 and 3. If a current is observed it must then be due to something
disturbing the equilibrium distribution of wire 2, since there is no voltage di�erence between
wire 2 and 3. And this something is precisely the electrons from wire 1.

The Fermi distribution is invariant under the kind of collisions we consider. This follows
from inserting the Fermi distribution in the RHS of the expression Eq. (4.67) and applying
the H-theorem12, which states that with energy conservation (ε1 + ε2 + ε3 = ε1′ + ε2′ + ε3′),

nF (ε1)nF (ε2)nF (ε3)(1− nF (ε1′))(1− nF (ε2′))(1− nF (ε3′))
−(1− nF (ε1))(1− nF (ε2))(1− nF (ε3))nF (ε1′)nF (ε2′)nF (ε3′) = 0, (4.73)

12No, it's not a capital h, it is in fact a capital η.
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a property unique to the Fermi distribution. A simple proof of the H-theorem can be found
in Appendix B.

The requirement of no voltage di�erence leads to nF (εkB
3
− µ3) = nF (εkB

2
− µ2), which

results in
g
(0)
3 (kσ, x) = nF (εk − µ3). (4.74)

Therefore
(

∂g3(kσ,x′)
∂t

)(1)

coll.
= 0, and Eq. (4.72) and its cousin valid for k < 0 could together be

solved for g
(1)
3 (kσ, x). We will however only solve it for the point, where we will need it,

g
(1)
3 (kB

3 σ,LB) = ΓB

(
g
(1)
2 (kB

2 σ, LB)− g
(1)
3 (kB

3 σ, LB)
) WB

2|vkB
3
| (4.75)

⇔ g
(1)
3 (kB

3 σ,LB) =
g
(1)
2 (kB

2 σ,LB)

1 +
2|v

kB
3
|

ΓBWB

. (4.76)

The zeroth order current is zero, I
(0)
B = 0, because of the lack of voltage di�erence. The total

current up to �rst order in W is given by the �rst order term

I
(1)
B = (−e)ΓB

QBWB

2π

∑

σ

(
g
(1)
2 (kB

2 σ, LB)− g
(1)
3 (kB

3 σ,LB)
)

= (−e)
QB|vkB

3
|

π

(
1 +

2|vkB
3
|

ΓBWB

)−1 ∑

σ

g
(1)
2 (kB

2 σ,LB). (4.77)

Thus we only need know g
(1)
2 at a single point. Evaluating Eq. (4.71) at this point, the �rst

term drops out as the tunneling windows do not overlap, and by using Eq. (4.76) we can solve
for g

(1)
2 (kB

2 σ, LB). Thus for kB
2 > 0,

g
(1)
2 (kB

2 σ,LB) =
(
|vkB

2
|+ |vkB

3
|
(
1 +

2|vkB
3
|

ΓBWB

)−1
)−1

∫ LB

−∞
dx′

(∂g2(kB
2 σ, x′)
∂t

)(1)

coll.
. (4.78)

We �nally arrive at an expression for the current, valid for kB
2 > 0,

I
(1)
B = (−e)

QBWB

2π

Γ̃B

|vkB
2
|
∑

σ

∫ LB

−∞
dx′

(∂g2(kB
2 σ, x′)
∂t

)(1)

coll.
. (4.79)

For the other case, kB
2 < 0, simply change the sign of the RHS and change the lower limit of

the integral to +∞. The collision rate we need in both cases is

(∂g2(kB
2 σ, x′)
∂t

)(1)

coll.
=

∑

k1σ1

∑

k2σ2

∑

k′1σ′1

∑

k′2σ′2

∑

k′3σ′3

Wk1σ1kB
2 σk3σ3←k′1σ′1k′2σ′2k′3σ′3

(
g
(0)
2 (k′1σ

′
1, x

′) ·

·g(0)
2 (k′2σ

′
2, x

′)g(0)
2 (k′3σ

′
3, x

′)(1− g
(0)
2 (k1σ1, x

′))(1− g
(0)
2 (kB

2 σ, x′))

(1− g
(0)
2 (k3σ3, x

′))− g
(0)
2 (k1σ1, x

′)g(0)
2 (kB

2 σ, x′)g(0)
2 (k3σ3, x

′) ·
·(1− g

(0)
2 (k′1σ

′
1, x

′))(1− g
(0)
2 (k′2σ

′
2, x

′))(1− g
(0)
2 (k′3σ

′
3, x

′))
)
. (4.80)
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Recalling Eq. (4.31) and VB = 0, we have

g
(0)
2 (kσ, x) = nF (εk − µ2) +

Γ̃A

|vkA
2
|f(k − kA

2 , QA)
(
F (x,WA)Θ(kA

2 ) + F (−x,WA)Θ(−kA
2 )

)
·

·
(
nF (εkA

1
− µ1)− nF (εkA

2
− µ2)

)
. (4.81)

As it appears g
(0)
2 is just a Fermi distribution except in the vicinity of the point k = kA

2 , where
it could have another value due to tunneling to or from wire 1. Thus, due to the H-theorem
and the fact that W contains energy conservation, at least one of the sums of Eq. (4.80) must
hit near kA

2 for the collision rate (and thereby the current) to be non-zero. If one of the primed
sums hits kA

2 , none of the unprimed sums can, as that would amount to two-particle processes.
So we deal with two kind of processes, an unprimed sum hitting kA

2 and a primed sum hitting
kA

2 . There is nothing fundamental wrong in two (two or three) of the unprimed (primed) sums
hitting kA

2 , this would correspond to processes where two (or three) electrons jump from wire
1 into wire 2 (or the other way) and then interact with each other (and perhaps an electron
from the Fermi sea of wire 2), involving at least one electron starting or ending with k = kB

2 .13
We will at this point focus only on what we believe to be the dominating processes, the

ones where only a single excitation from wire 1 is involved. Thus we get two terms; one in
which an unprimed sum hits kA

2 and one in which a primed sum hits kA
2 . For the k's that do

not hit kA
2 , the corresponding g

(0)
2 are replaced by the Fermi distribution (or the �rst term of

Eq. (4.81) if you like). Actually this seems to be invalid, because the sum of that k should
no longer include kA

2 , but as that is just a single point, and the summand is well behaved as
a function of that k, we do not change the outcome by including a single point in the sum.14
For the single k sums that hits kA

2 , we get a distribution function g
(0)
2 (kA

2 σ, x which can be
written as a sum of two parts, see Eq. (4.81): A Fermi distribution plus some deviation.
Multiplying out with the other Fermi distributions, only the second term survives, as the �rst
term is killed by the H-theorem. Note that the second term survives in the same form in both
g
(0)
2 (kA

2 σ, x) and 1− g
(0)
2 (kA

2 σ, x), since the one minus a Fermi distribution is required for the
H-theorem to work.

Assuming that F changes so abruptly, that we can treat it as a step function, all x-
dependence should be easily integrated out of the current. For kA

2 · kB
2 < 0, however, the

integral diverges. This divergence is an artefact of the model: Apparently there is a �nite,
constant probability per length of the wire for electrons to scatter into or away from k = kB

2 .
Now imagine the following situation, an electron jumps from wire 1 to 2 at the A junction and
becomes left moving as kA

2 < 0, at some point to the left of the junction it scatters into kB
2 > 0

and moves to the right until it can tunnel into wire 3 at the B junction. Since the scattering
may happen in an semi-in�nite region, and no further scattering is taken into account as we
only look at the current to �rst order in the scattering, this process will lead to an in�nite
contribution to the current. The way to deal with this divergence is of course to replace the
LB that appears when the integral converges for kA

2 ·kB
2 > 0 by an e�ective interaction length

Li and claim that the results always holds. We shall then further neglect that Li may vary
with circumstances.

13It may seem impossible, due to the Pauli Principle, for three electrons to jump from wire 1 to the same
k-value in wire 1. But remember that the scale of the k-values are determined by their use in the Boltzmann
equation and each may represent several "true" k-states.

14If this bothers you, simply change the sums to integrals, then it is obvious that a single point does not
change the integral, if there are no delta functions in the integrand.
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Changing the k sum that hits kA
2 into an integral,

∑
k →

∫
dk L

2π , before performing it, we
get the current,

I
(0)
B = (−e)

QBWB

2π

Γ̃B

|vkB
2
|
QAWA

2π

Γ̃A

|vkA
2
|LLi

(
nF (εkA

1
− µ1)− nF (εkA

2
− µ2)

)
× Z, (4.82)

where Z is the part containing all the sums,

Z ≡ Z1 − Z2 + Z3 − Z4 (4.83)
Z1 = (1− nF (εkB

2
− µ2))3

∑

σ

∑

k1σ1

∑

k2σ2

∑

k′1σ′1

∑

k′2σ′2

∑

σ′3

Wk1σ1kB
2 σk2σ2←k′1σ′1k′2σ′2kA

2 σ′3

×nF (εk′1
− µ2)nF (εk′2

− µ2)(1− nF (εk1 − µ2))(1− nF (εk2 − µ2)) (4.84)

Z2 = nF (εkB
2
− µ2)2

∑

σ

∑

k1σ1

∑

σ2

∑

k′1σ′1

∑

k′2σ′2

∑

k′3σ′3

Wk1σ1kB
2 σkA

2 σ2←k′1σ′1k′2σ′2k′3σ′3

×nF (εk1 − µ2)(1− nF (εk′1
− µ2))(1− nF (εk′2

− µ2))(1− nF (εk′3
− µ2) (4.85)

Z3 = nF (εkB
2
− µ2)3

∑

σ

∑

k1σ1

∑

k2σ2

∑

k′1σ′1

∑

k′2σ′2

∑

σ′3

Wk1σ1kB
2 σk2σ2←k′1σ′1k′2σ′2kA

2 σ′3

×nF (εk1 − µ2)nF (εk2 − µ2)(1− nF (εk′1
− µ2))(1− nF (εk′2

− µ2)) (4.86)

Z4 = (1− nF (εkB
2
− µ2))2

∑

σ

∑

k1σ1

∑

σ2

∑

k′1σ′1

∑

k′2σ′2

∑

k′3σ′3

Wk1σ1kB
2 σkA

2 σ2←k′1σ′1k′2σ′2k′3σ′3

×nF (εk′1
− µ2)nF (εk′2

− µ2)nF (εk′3
− µ2)(1− nF (εk1 − µ2)). (4.87)

That does it; this is the tunneling current in junction B to �rst order in the three-particle
scattering rate W .

We notice that the four terms appearing here precisely corresponds the four processes
discussed in Fig. 2.4 and we have therefore labeled them accordingly.

4.2 Numerical calculation of current
What remains for us to do is the not-so-simple task of now performing the sums of Eq.s (4.84)-
(4.87). We have in all cases four k-sums and 6 σ-sums. Since the scattering rate W which
appears in all four expressions contains both energy and momentum conservation, we are able
to eliminate two of the k-sums using these delta-functions.

One of the delta-functions is a Dirac delta-function and we thus convert one of the sums to
an integral

∑
k →

∫
dk L

2π before eliminating it. The two remaining sums are also converted to
integrals in the same fashion, and we thus make a convenient observation: The L-dependence
of the current cancel out. From converting three sums to integrals we get L3 and there is an
explicit L in Eq. (4.82), but the scattering rate W contains L−4 (Eq. (4.66)) and so there is
a complete cancelation of terms. This means that we can take the continuity limit L → ∞
and the results will still be well behaved.

That leaves just two remaining k-integrals, which in general cannot be solved algebraically.
In order to proceed we restrict ourselves to the zero-temperature case and then attempt to
solve the remaining integrals numerically. Our goal will be to be able to calculate the current
at any point in Fig. 2.3.
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4.2.1 No current by kinematic arguments
Looking at the current to only �rst order in W corresponds to allowing only a single scattering
to occur. Taking the second order term into account would correspond to terms where two
consecutive three-particle scatterings had occurred. As it turns out, not everywhere in the
areas previously de�ned (area 1 and area 2), is the relaxation possible.

In area 2 the relaxing electron can give up no more than a speci�c amount of energy, as
it cannot relax below the Fermi sea. But if the electron which must be excited lies further
down from the Fermi sea than this amount, the process is not possible. Quantitatively we
must have

εkA
2
− εkF2

≥ εkF2
− εkB

2
. (4.88)

In the parts of area 2 where this is not ful�lled, we expect the current to be small, as the
single excited electron can never relax su�ciently for a hole to appear at kB

2 . The argument
is valid also to higher order in N-particle scattering rates as long as only one excited electron
is involved.

The argument could perhaps be further re�ned by using some of the inequalities derived
in Chapter 3, but that would require the limitations to a speci�c number of particles in the
scattering, so what we have stated is the most general.

There is no easily discovered analog to this in area 1.

4.2.2 Electron relaxation part I: Z1
We use the delta-functions to eliminate k1 and k2 as this leaves only the integrals running
over �nite domains, hoping that these are easier to deal with numerically. Using symmetry
arguments we can also eliminate several redundant calculations, optimizing the numerical
integration. First of all, since we have overall spin-symmetry, we �x one of the spins and
multiply the result by two. Since k1 and k2 appear completely symmetric (as the should), the
elimination of them can be performed two ways. We simply choose one of these and multiply by
(again) a factor of two. Finally the integration variables k′1 and k′2 also appear symmetrically
so instead of integrating over the complete square −kF2 ≤ k′1 ≤ kF2 ∧ −kF2 ≤ k′2 ≤ kF2, we
integrate only over the triangle −kF2 ≤ k′1 ≤ kF2 ∧ −kF2 ≤ k′2 ≤ k′1 and multiply by a factor
two.

4.2.3 Electron relaxation part II: Z2
First we assumed that it would be smart to use the delta-functions to eliminate two equivalent
momenta k′2 and k′2, as this would allow for some further reduction using similar symmetry
arguments as earlier. However it turned out, that performing either of the remaining two
integrals (over k1 and k′1) would yield a divergence. This divergence may be integrable if
treated analytical, but treating it numerically it was not integrable.

So instead we choose to eliminate an initial and a �nal momenta (k1 and k′1), a procedure
which yielded no intermediate singularities.15 So we need to integrate numerically over the
two remaining momenta k′2 and k′3, which must be positioned outside the Fermi sea. Looking
at the scattering situation in Fig. 2.4(c), kA

2 , k′1, k′2 and k′3 are situated above the Fermi
sea and k1 and kB

2 below it. When we deal with actual numbers, we chosse a set of Fermi
momenta such that kF2 ≥ kF1, which implies that kA

2 > 0 everywhere in area 2. Thus two of
15Which indicates that the previous divergence should be integrable.
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the primed momenta must be at k > kF2 and the remaining at k < −kF2. Since all unprimed
momenta are equivalent, we choose the negative one to be k′1 and multiply by a factor of three
and choose to integrate (again) over the triangle kF2 < k′2 < k′3 < kF2 and multiply by two.
Fixing one of the spins at an arbitrary value gives a �nal factor of two.

The integrand of the �rst integral to be numerically solved for only yielded something
non-zero in a very small area outside the Fermi sea. Thus simply making the integration go
over the whole k-axis apart from the Fermi sea resulted in garbled results, mostly zero. For a
much better result we had to single out the small domain, where the integrand was non-zero
and integrate over only this. Doing so was rather technical as the borders of that domain
depended on most of the other parameters of the system.

4.2.4 Hole relaxation: Z3 and Z4
We know already (see Chapter 3), that there is no way a single hole can relax at zero tem-
perature. This means that the processes shown in Figs. 2.4(b) and 2.4(d) are not possible,
and no current is going to run if it depends on hole-relaxation. Thus without performing any
further calculations we immediately know, that no current is going to run in area 3 and 4.
This results extends to N-particle scattering processes as long as only a single hole at a time
is involved.

4.2.5 The tunneling current
An �nally we arrive at our goal: The tunneling current to �rst order in the three-particle
scattering rate in the incoherent regime as a function of VA and B with VB = 0 at zero
temperature. The current resulting from the numerical calculation in area 1 and area 2 is
displayed in Fig. 4.2. In areas 3 and 4 the same tunneling current is, as mentioned, zero, and
so we felt no reason to plot it here.

We had to make particular choices of system parameters for the calculations, these are as
follows

m∗ = 0.067 ·me

d = 31nm

kF1 = 0.7 · 1081/m

kF2 = 0.9 · 1081/m

kF3 = 0.8 · 1081/m,

which are, respectively, the e�ective electron mass, the distance from center to center of the
two wires and the Fermi wavevectors of the three wires. It is precisely the same choice we
made for the calculations behind Fig. 2.3. For the interaction we made the following choice

V (q) =
4πe2

0

q2 + q2
t

, (4.89)

with qt = 0.2kF2. The origin of this potential is the �nite-range Coulomb Potential (the
Yukawa Potential),

e2
0

r
e−qtr, (4.90)
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Figure 4.2: The tunneling current to �rst order in the three-particle scattering rate W in
the incoherent regime at zero temperature. Displayed are traces at constant values of VA,
respectively -0.02V, -0.0175V, -0.015V, -0.0125V, -0.01V, -0.0075V and -0.005V (the latter
only in area 2). The scaling factors of the two vertical scales are the same, so the size of the
current can be compared between the two regions. Note that a change of sign in current is
expected as one crosses from one region into the other; thus only the magnitude of current is
plotted. INSERT: the locations of the cross-sections in the areas 1 and 2, as de�ned in Fig.
2.3. The second right-facing parabola is de�ned by the equality sign of Eq. (4.88).

which when Fourier Transformed to momentum space yields Eq. (4.89). The range of the
real-space potential is 1/qt, which for the present choice of qt is ≈ 56nm.

In the insert of Fig. 4.2 we have also included the parabola given by the equality sign of
Eq. (4.88). In area 2 (that is below the horizontal line) the current must be zero to the right of
this parabola, as relaxation in this area would require a departure from energy conservation.
Only one of our traces actually includes points in this region, but we observe the expected
behavior as the current along this trace goes towards zero and is zero where we expects it to
be.

In general the current in area 2 seems to display much more interesting structures than the
current in area 1. In the latter area the current grows monotonically towards lower B-�elds
and diminishes monotonically towards lower voltages, all in all a rather boring behavior. In
contrast the current traces in area 2 shows a local maxima, whose position moves with the
value of VA for the trace.

4.3 How the current depends on the interaction

We also brie�y tried to examine what changing the interaction does to the current. Maintaining
every other parameter, we changed only the range of the interaction (contained in qt) and
calculated the current along a constant VA trace through areas 1 and 2. The results are shown
in Fig. 4.3.

Because of the nature of the interaction, Eq. (4.89), the current grows monotonically with
qt at every single point.
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Figure 4.3: Traces of tunneling current along VA = −0.0125V with varying values for the
range of the interaction. The curves labeled qt = 0.2kF2 is identical to the blue curves of
Fig. 4.2. The �gures have been scaled by qt, so magnitude of current cannot be compared
between di�erent curves. The vertical scales are logarithmic because the data encompasses a
large range of values.

4.4 Further development
When we solved for the current we included only terms to �rst order in three-particle scatter-
ing. Hoping to improve the results could be done in to possible ways. Either we could also
include the �rst order term in the four-particle scattering rate or we could go to second order
in the three-particle scattering.

Going to �rst order in three-particle scattering resulted in a two-dimensional integral,
which we could solve for numerically. If we go to second order in the three-particle scattering
we get a �ve-dimensional integral: Two integrations for each three-particle scattering and a
further integration for the momentum of the intermediate state. Whereas we could solve a
2D integral numerically, though it did take considerable amounts of time, we can never hope
for solving a 5D integral in a similar manner. Another approach is clearly needed. We could
hope for making approximations which would enable us to solve for the current exactly. The
easiest such approximation to make, is linearizing the band between the end-points of the
relaxing electron and assuming the scattering rate W to be constant. This however requires
us to know the endpoint of the relaxation, so only in the case where both kA

2 and kB
2 lies far

above the Fermi sea and we can clearly regard kB
2 as the endpoint of relaxation of the electron

at kA
2 , is this approach meaningful. And this requirement is only ful�lled for large magnetic

�elds (the upper left corner of the insert of Fig. 4.2(b)), where the current is just featureless,
which is why we have not included the results of this calculation, however they did correspond
reasonably well to the results of the numerical integration in the region.

So far we have only considered calculating the current at zero temperature, and so we
now ask ourselves, if we can deal with a �nite temperature as well. The expression for the
current in Eq. (4.82) is still valid, but there is no longer the clear association of the processes
depicted in Fig. 2.4 and described by Eq.s (4.84)-(4.87) with the areas de�ned in Fig. 2.3.
So within a couple of kBT 's (converted to corresponding values in either B-�eld or voltages)
of the borders, one has to include more than a single of the current terms, perhaps at certain
points in the BVA-diagram all four terms. Each of the current terms (the two latter no longer
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being necessarily zero) is reduced to a 2D integral precisely as in the zero-temperature case.16
But contrasted to before, where the limits of the integrals where well-de�ned by the domains,
where solutions where possible, this is no longer the case, as everything is smoothed out by the
Fermi distribution. In principle every integral should now run over the entire k-axis, but we
may argue that it is su�cient to expand the integration domains of the zero-temperature case
with a couple of kBT 's converted to momenta. This former approach, while simpler, probably
only yields gibberish, because the domains where the integrand is non-zero is very small, and
so we must stick to the latter approach.

16Well only the same way for the two terms which actually played a role at zero temperature. But the two
hole-relaxation terms can be treated similar.
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Chapter 5

Conclusion/summary

We have in this thesis looked at the connection between electron-electron interaction in one-
dimensional wires and the current in a speci�c solid-state device consisting of three one-
dimensional wires.

The particular reason for using one-dimensional wires is, that tunneling between two such
parallel wires in the presence of a magnetic �eld perpendicular to the plane of the wires, will
be greatly enhanced for electrons with a very speci�c momentum, dictated by the magnetic
�eld and the voltage di�erence imposed on the wires. Thus we are able to perform tunneling
spectroscopy on such a set of wires. The reason for using three wires is that we may both
inject and subtract an electron at two known (and di�erent) positions.

First of all we looked at how we imagine the system could be fabricated. Using Cleaved
Edge Overgrowth and a smart choice of gating we could see no fundamental reason why our
desired system could not be fabricated and be utilized as we desired. In connection with this
we also discussed a conceptually very simple model for the current, which made it possible
to imagine the connection between the tunneling current in the system, which is what is
measured, and the electron or hole relaxation in the second of three one-dimensional wires.

We generally distinguish between two regimes: the incoherent regime and the coherent
regime. In the coherent regime electrons may violate energy conservation i a single tunneling
event, whereas in the incoherent regime energy must be conserved individually in each tun-
neling event. Only in the incoherent regime can we speak of wire spectroscopy and so we limit
any further considerations to this regime.

Using this model we concluded, that in some situations, the presence of a measurable
current would rely on the ability of holes to relax. But there is a clear breaking in the
symmetry between electron and holes. Whereas an excited electron above the Fermi Sea has
no problem relaxing by creating multiple electron-hole pairs, in a single mode wire a single hole
situated in the Fermi Sea cannot relax by similar means at zero temperature. We have proven
this remarkable property. This lack of relaxation rested on a dispersion which had a positive
curvature, and so for the Luttinger Liquid, which requires linearization of the dispersion, we
would not encounter it.

Excited electrons generally don't mind relaxing, and so a current will run in the system,
when it depends on electron relaxation. Using the semi-classical Boltzmann Equation we
tried to set up a way of calculating the tunneling current. We made several approximations
along the way, mostly by assuming that several in reality extended regions were point-sized.
The approximations would be justi�ed, as taking into account the �nite size of these regions
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would correspond to higher order corrections to the current and we only wanted it to the
lowest possible order. In the end we ended with a rather messy expression for the current
(Eq.s (4.82)-(4.87)) valid even at a �nite temperature (and thus also encompassing the hole-
relaxation regions, since after all holes are allowed to relax at a �nite temperature).

We were however not able to get much further with these expressions, so after some small
initial calculations (mostly eliminating integrations with delta-functions) we integrated them
numerically at zero temperature to get a current. We were thus able to compute how the
current changed when we changed the two system parameters, the magnetic �eld and the
voltage applied between two of the wires. We were never able to get absolute numbers out
of the calculations, we only worked in proportionalities. As it turned out, the current was
completely featureless in one of the regions, where it just fell o� monotonously. In another
region it sported a ridge along which the current was at a maximum.

We also brie�y examined what e�ect the range of the interaction would have on the current.
No conclusion was reached apart from the calculation itself.

We could remark, that what we succeeded in doing is to calculate the tunneling current
(albeit with a lot of approximations and only to lowest order in the three-particle scattering
rate) from the interaction, what the experimentalist has, is the inverse problem. The current
is measured and from this needs to be deducted some information about the interaction. But
this is the same as in all of physics.
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Appendix A

The energy eigenfunctions and
tunneling between them

Here we will �nd the energy eigenstates of a single wire by solving the time-independent
Schrödinger equation with a potential, which mimics the physical situation, while still being
(more or less) exactly solvable. This resulting energy eigenvalues are quadratic in the (kine-
matic) momentum along the wires and contains several modes corresponding to excitations
in the transversal directions. Next we consider a system consisting of two such wires running
parallel to each other. From the wavefunctions of the energy eigenstates we can calculate
the tunneling matrix element between the di�erent modes of the wires, and we observe the
momentum boost in tunnelling between the wires, which is due to the perpendicular magnetic
�eld.

We orient our x-axis along the wire, our z-axis perpendicular to the cleaved edge (along the
B-�eld) and our y-axis in the cleaved edge, perpendicular to the wire direction. We assume
the potential to be separable in these three directions, enabling us to write the total potential
V (r) as

V (r) = Vx(x) + Vy(y) + Vz(z). (A.1)
On this scale we consider the wire to be of in�nite extent, so that is is translational invariant
in the x-direction. Vx should therefore be a constant, and we may as well choose Vx(x) = 0.
Along the y-direction the electrons see the potential that would normally con�ne them to a
plane perpendicular to the �rst growth direction, thus forming the usual 2DEG. On each side
this plane is con�ned by a atomically smooth layers. We could model it by a �nite square
well, but for ease of calculation we instead model it by a harmonic potential, with a harmonic
frequency ω0 and a minimum value of 0 situated at y = y0. Thus Vy(y) = 1

2mω2
0(y − y0)2.

Along the z-direction we model the potential with a triangular well, which approaches in�nity
very fast to the right of the well because electrons are not allowed to leave the material
altogether. The well itself is what binds the electrons to the cleaved edge thus forming our
1DEG. This potential also supports non-localized states corresponding to the extended 2DEG
states of the full system. All three potentials are shown in Fig. A.1.

In the presence of a magnetic �eld the kinetic energy for an electron changes from the
usual T = p2

2m to

T =
(p− qA)2

2m
, (A.2)

with p = −i~∇ being the canonical momentum, q the electron charge (q = −e, e > 0) and
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Figure A.1: Examples of the potential in the three di�erent directions. Units are arbitrary
(but on the order of nm and eV).)

A the magnetic vector potential with the property that B = ∇ ×A. The magnetic �eld is
B = Bẑ, so we choose A = −Byx̂.1 The Hamiltonian can now be written

H = T + V =
(p− eByx̂)2

2m
+ V (r) =

((px − eBy)2 + p2
y + p2

z

2m
+ Vy(y) + Vz(z), (A.3)

and is separable in z, since it can be written H = H(x, px, y, py) + H(z, pz). We also observe
that [H, px] = 0 allowing us to �nd common eigenfunctions of H and px. The eigenfunctions
of px goes as exp(−ikx) and thus we conclude, that we can choose the eigenfunctions of H
such that they can be factorized completely as

Ψ(x, y, z) = eikxY (y)Z(z), (A.4)

where Y (y) and Z(z) are solutions to the one-dimensional Schrödinger equations
( p2

z

2m
+ Vz(z)

)
Z(z) = E(z)Z(z) (A.5)

((~k − eBy)2 + p2
y

2m
+ Vy(y)

)
Y (y) = E

(y)
k Y (y), (A.6)

and the eigenenergy of Ψ is E(z) + E
(y)
k .

A.1 The z-equation
The z-equation (Eq. (A.5)) can only be solved numerically2, but we shall see how it becomes
much easier to solve by changing the potential slightly. Assuming that the ground state
and the �rst couple of excited states lies far below the energy of the �rst extended state,
their wavefunctions are vanishingly small outside the triangular well. We can thus change the
potential outside of the well and still retain these states as eigenstates. Changing the potential
into an in�nitely deep triangular well, the Schrödinger equation Eq. (A.5) changes into

(
− ~2

2m

d2

dz2
− (z + z0)

V0

z0

)
Z(z) = E(z)Z(z), (A.7)

1There is a large degree of freedom (the choice of gauge) associated with selecting the vector potential, and
any one choice which ful�lls B = ∇×A will in principle do the job. However some choices could be easier to
work with than others, and this speci�c choice seems to do the job pretty well.

2Numerically in the sense that a solution can be found in each of the three regions, but the matching of the
wavefunction and its �rst derivative at the boundaries yields equations which can only be solved numerically.
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with the boundary condition Z(0) = 0.3 Introducing a dimensionless position p as

2m

~2

(
V0

z

z0
+ E(z) + V0

)
≡ −

(2mV0

~2z0

)2/3
p, (A.8)

the equation now reads in terms of Q(p(z)) = Z(z), 0 =
(

d2

dp2 − p
)
Q(p), with the boundary

condition Q(p0) = 0, p0 being the value of p when z = 0. Now the solutions to this equation
is the well known Airy function of the �rst kind, Ai(p)4,

Q(p) = Ai(p) =
1
π

∫ ∞

0
dt cos

( t3

3
+ pt

)
. (A.9)

Quantization of the energy is achieved by imposing the boundary condition; this gives us the
eigenenergies in terms of the zero points pn of the Airy function as,

E(z)
n = (−pn)

(V 2
0 ~2

2mz2
0

)1/3
− V0. (A.10)

The �rst few zero points are given in Table A.1. We will use the same n to label the corre-
sponding eigenfunction, Zn(z), the �rst few of which are shown in Fig. A.2.

n 0 1 2 3 4 5 6
pn -2.33811 -4.08795 -5.52056 -6.78671 -7.94413 -9.02265 -10.0402

Table A.1: The �rst seven zero points of the Airy function Ai(p).

The in�nitely deep well obviously only has bound state solutions, but the original potential
also supported unbound states. These would be relevant if we were to look at tunneling
between a 1DEG wire-mode in the lower wire and the 2DEG of the upper wire. But since
the 2DEG modes are extended whereas the 1D modes are limited, the overlap (and thereby
tunneling) would be small compared to tunneling between the 1DEG modes of the two wires.

A.2 The y-equation
Now let us consider the y-equation (Eq. (A.6)). The Hamiltonian of this problem is rewritten

Hy =
(~k − eBy)2 + p2

y

2m
+ Vy(y) =

(~k − eBy)2 + p2
y

2m
+

1
2
mω2

0(y − y0)2 (A.11)

=
p2

y

2m
+

1
2
mω2(y − y′0)

2 +
(~k − eBy0)2

2m

ω2
0

ω2
. (A.12)

Here we have introduced the cyclotron frequency ωc ≡ eB/m and an e�ective frequency
ω2 ≡ ω2

c + ω2
0. We observe, that the total potential is still a parabola in y, but with ω as the

3Since the potential is in�nite for z > 0 the electron is prohibited from being here. Now, a general solution
to Eq. (A.7) does not ful�ll this. So if we construct our eigenfunctions as solutions Z(z) to Eq. (A.7) for z < 0
and as zero for z > 0 we must require that Z(0) = 0, so that the eigenfunctions are continuous. The derivative
of the wave function is on the other hand not required to be continuous at this point, as the potential changes
by an in�nite amount.

4The Airy function of the second kind Bi(p) also solves the equation, but its behavior is unphysical as it is
exponentially growing in the classically forbidden region that lays below some z.
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Figure A.2: The �rst four normalized eigenfunctions of the in�nite, triangular potential well.
In this case we have used V0 = 6eV and z0 = 5nm. (Of course, what really matters is only
the slope of the potential, so it is really a redundancy to use two variables to describe the
potential.)

frequency and no longer centered around y0 but around

y′0 ≡
eB~k/m2 + ω2

0y0

ω2
. (A.13)

So we just have a harmonic oscillator Hamiltonian, the solving of which is very well known.
The eigenfunctions are labeled by an integer m (m = 0, 1, 2, 3, . . .) and we can immediately
write down the corresponding eigenenergy

E
(y)
k,m = ~ω(m + 1/2) +

(~k − eBy0)2

2m

ω2
0

ω2
. (A.14)

Here the second term is carried directly over from the Hamiltonian, since it only involves
c-numbers. Thus the eigenfunctions and -energies of the original problem are

Ψkmn(x, y, z) =
1√
2π

ei(k+eBy0/~)xYm(y − y′0)Zn(z) (A.15)

Ekmn =
~2k2

2m

ω2
0

ω2
+ ~ω(m + 1/2) + (−pn)

(V 2
0 ~2

2mz2
0

)1/3
− V0, (A.16)

where m and n are any non-negative integer and k is any real number (with dimensionality
of length−1). Note that we rede�ned k, so that ~k is now the kinematic momentum and no
longer the canonical momentum. Ym(y) is the m'th excited state of a harmonic oscillator
with frequency ω, mass m and centered at y = 0, whereas Zn(z) is the n+1'th eigenfunction
of the in�nite triangular potential well. What we observe from the �rst term in the energy
expression is, that in the absence of a magnetic �eld, the energy would depend quadratically
on the momentum along the wire direction, the constant of proportionality being just 1/2m, as
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we would have expected. Now, in a �nite magnetic �eld, the energy still depends quadratically
on the kinematic momentum in the middle of the wire with a renormalized mass. Also the
energy due to excitations along the y-direction are modi�ed, whereas the last term in the
energy is unchanged, this is because this term is due to motion along the z-direction which is
parallel to the magnetic �eld and therefore ignorant of its existence.

We also observe that since no constrains are imposed on k, the energies associated with the
longitudinal direction are a continuum. The con�nedness in the transversal directions lead to
quantization of the energy associated with these directions corresponding to di�erent modes
of the wire.

A.3 Origin of momentum boost
In the previous subsection we looked at a single wire, now let us imagine, that we have two
such wires running in parallel. One is centered around y0 = 0 and the other around y0 = d.5
We will assume that the frequency ω0 describing the binding potential is the same for both
wires.6

For the simple 1D system known as the double well, since the barrier between the two
wells in not of in�nite height, a single eigenstate is not con�ned to a single well, but will
unavoidably leak into the other. The same problem occurs in our situation. We will assume
the barrier between the wells to be su�ciently large, that we may talk about two separate
wires, and yet also su�ciently low, that tunneling between the wires is possible. Thus the
single wire modes we found previously are also eigenstates of the two-wire system. A wire
mode is labeled by the wire (U or L for respectively upper or lower) and the three quantum
numbers k, m and n.

The tunneling matrix element between a mode kumunu of the upper wire and a mode
klmlnl of the lower wire is

Tkumunu,klmlnl
=

∫
drΨ∗

Ukumunu
(r)H(r)ΨLklmlnl

(r) (A.17)

= E

∫
drΨ∗

Ukumunu
(r)ΨLklmlnl

(r) (A.18)

=
E

2π

∫
dre−i(ku+eBd/~)xY ∗

mu
(y − y′U0 )Z∗nu

(z)eiklYml
(y − y′L0 )Znl

(z) (A.19)

=
E

2π

∫
dxei(kl−ku−eBd/~)x

∫
dyY ∗

mu
(y − y′U0 )Yml

(y − y′L0 )
∫

dzZ∗nu
(z)Znl

(z)

= Eδ(kl − ku − eBd/~)δnu,nl

∫
dyY ∗

mu
(y − y′U0 )Yml

(y − y′L0 ). (A.20)

Several comments are in order. In the second equality we used that the Ψ's by construction are
eigenfunctions of the total Hamiltonian H. Since we may apply H(r) equally well to the right
and left, the energy E which is pulled out, must be the common eigenenergy of the two states
ΨUkumunu and ΨLklmlnl

; if they do not have the same eigenenergy, the integral - and thereby
the tunneling matrix element - is zero. In the last step we used that

∫∞
−∞ dx exp(−ikx) =

2πδ(k). We also used the ortogonality
∫

dzZ∗nu
(z)Znl

(z) = δnu,nl
, since Znu and Znl

are
eigenfunctions of the same Hamiltonian.

5So the orthogonal distance between the wires is d.
6In reality the lower well is 30 nm wide wile the upper is only 20-25 nm wide.
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The last integral
∫

dyY ∗
mu

(y− y′U0 )Yml
(y− y′L0 ) is nothing but the overlap of two harmonic

oscillator states displaced relative to each other. Atomic physicists may recognize it as the
Franck-Condon factor, which is used in calculating transition probabilities between electronic
states in atoms.7

What is most important to observe, is the momentum boost an electrons experiences when
it tunnels between the wires. An electron starting in an upper wire mode with momentum
~ku can only end up in lower wire modes with momentum ~kl = ~ku + eBd, so by tunneling
from the upper wire to the lower wire an electron gains a momentum eBd. And vice versa; an
electron tunneling from the lower to the upper wire looses a momentum eBd. Since we prefer
to work with wavenumbers instead, we shall write this momentum boost as kl = ku + qB,
where qB ≡ eBd

~ .

A.3.1 Direct calculation from the Lorentz force
We consider a classical particle of charge (−e) moving in a homogenous magnetic �eld B = Bẑ.
The only force acting on the particle is the Lorentz force, so the equation of motion for the
particle is

dp
dt

= F = −ev ×B = −eB(vyx̂− vxŷ), (A.21)

which when integrated from some initial time to some �nal time yields

∆p = −eB(∆yx̂−∆xŷ). (A.22)

Now consider the two-wire system; an electron in the middle of the upper wire which (some-
how) tunnels to the middle of the lower wire will move a vertical distance ∆y = −d and thus
gain a momentum along the wire direction of eBd. If the tunneling is in the opposite direction,
the elctron su�ers a momentum loss of eBd. So the Lorentz force is directly responsible for
the momentum boost we have derived.

An interesting observation: Here we assumed that the electrons moves along in the middle
of the wires, however as the full calculation shows, the distance between the wire modes is
not the same as the lithographic (replace with better word; growth?) distance d between the
wells but is in fact y′U0 − y′L0 = ω2

0
ω2 d, because of the presence of the magnetic �eld. But still

the momentum boost acts as if the distance between the modes was just d.

7The Franck-Condon factor generally does not require the same oscillation frequency in both subsystems.



Appendix B

Proof of H-theorem

We look at an expression of the form

A = nF (ε1) · . . . · nF (εm) · (1− nF (εm+1)) · . . . · (1− nF (ε2m)) (B.1)
−nF (εm+1) · . . . · nF (ε2m) · (1− nF (ε1)) · . . . · (1− nF (εm)), (B.2)

which typically appears in composite rates for processes where m particles scatter on each
other. Using a reexpression of the Fermi distribution,

nF (ε) ≡ 1
1 + eε/T

=
e−ε/2T

e−ε/2T + eε/2T
=

e−ε/2T

2 cosh(ε/2T )
(B.3)

1− nF (ε) = 1− 1
1 + eε/T

= nF (−ε) =
eε/2T

2 cosh(ε/2T )
, (B.4)

A is rewritten

A =
e

1
2T

(εm+1+...+ε2m−ε1−...−εm) − e−
1

2T
(εm+1+...+ε2m−ε1−...−εm)

2m+n cosh(ε1/2T ) · . . . · cosh(ε2m/2T )
(B.5)

=
2 sinh( 1

2T (εm+1 + . . . + ε2m − ε1 − . . .− εm))
2m+n cosh(ε1/2T ) · . . . · cosh(ε2m/2T )

. (B.6)

Now, the rate that is considered might also contain the requirement of energy conservation in
the scattering, ε1 + . . . + εm = εm+1 + . . . + ε2m. But if this energy conservation is imposed
on A, we get

A · δ(ε1 + . . . + εm − εm+1 − . . .− ε2m) = 0, (B.7)
since sinh is an odd function. This result is a property of the Fermi function, and does not
extend to a general distribution function.
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Appendix C

Mathematica Source Code

For completeness we include the source code for the Mathematica program used to perform
the numerical integrals.
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In[1]:= hbar = 1.05457148 *10^-34 H*hbar in J*s*L;
e = 1.60217646 *10^-19 H*Electron charge in C*L;
kb = 1.3806503 *10^-23 H*Boltzmann constant in J�K*L;
m = 0.067 *9.10938188 *10^-31 H*Effective electron mass in kg*L;
d = 6 + 15 + 10 H*Distance between wires in nm*L;
qb@B_D = e *B *d *10^-9 �hbar H*Wavevector boost when tunnelering in 1�m*L;
kf3 = 0.8 *10^8 H*Fermi wavevektor for wire 3 in 1�m*L;
kf2 = 0.9 *10^8 H*Fermi wavevektor for wire 2 in 1�m*L;
kf1 = 0.7 *10^8 H*Fermi wavevektor for wire 1 in 1�m*L;
disp@k_D = hbar^2 k^2 � H2 mL H*Dispersion in J*L;
k2A@VA_, qb_D = 1 � H2 qbL * Hkf2^2 - kf1^2 + qb^2 - H2 e m VAL � Hhbar^2LL

H*Valid for quadratic dispersion*L;
k2B@VB_, qb_D = 1 � H2 qbL * Hkf2^2 - kf3^2 + qb^2 + H2 e m VBL � Hhbar^2LL

H*Valid for quadratic dispersion*L;
V@q_D := 4 Π e^2 *1 � Hq^2 + qt^2L;H*Interaction in J*L
qt = 0.2 *kf2; H*Range of interaction in q-space*L
nf@Ξ_D := UnitStep@-ΞD; H*Zero temperature Fermi Distrribution*L

In[16]:= Vtilde@q_D := V@qD + V@-qD;
eta = 0;

VV@ka_, kb_, kc_, kd_, ke_, kf_, sa_, sb_, sc_, sd_, se_, sf_D :=

KroneckerDelta@sa, sdD *KroneckerDelta@sb, seD *KroneckerDelta@sc, sfD *

H Vtilde@kb - keD * Vtilde@kc - kfD � Hdisp@kaD + disp@kbD - disp@keD -

disp@ka + kb - keD + ä *etaL + Vtilde@kb - keD * Vtilde@kc - kfD �
Hdisp@kaD + disp@kcD - disp@kfD - disp@ka + kc - kfD + ä *etaL + Vtilde@ka - kdD *

Vtilde@kb - keD � Hdisp@kaD + disp@kcD - disp@kdD - disp@ka + kc - kdD + ä *etaL +

Vtilde@ka - kdD * Vtilde@kb - keD � Hdisp@kbD + disp@kcD - disp@keD -

disp@kb + kc - keD + ä *etaL + Vtilde@ka - kdD * Vtilde@kc - kfD �
Hdisp@kaD + disp@kbD - disp@kdD - disp@ka + kb - kdD + ä *etaL + Vtilde@ka - kdD *

Vtilde@kc - kfD � Hdisp@kbD + disp@kcD - disp@kfD - disp@kb + kc - kfD + ä *etaLL;
VGV@ka_, kb_, kc_, kd_, ke_, kf_, sa_, sb_, sc_, sd_, se_, sf_D :=

HVV@ka, kb, kc, kd, ke, kf, sa, sb, sc, sd, se, sfD + VV@ka, kb, kc, ke, kf, kd,

sa, sb, sc, se, sf, sdD + VV@ka, kb, kc, kf, kd, ke, sa, sb, sc, sf, sd, seD -

VV@ka, kb, kc, kd, kf, ke, sa, sb, sc, sd, sf, seD - VV@ka, kb, kc, ke, kd, kf,

sa, sb, sc, se, sd, sfD - VV@ka, kb, kc, kf, ke, kd, sa, sb, sc, sf, se, sdDL *1 �4;
W@ka_, kb_, kc_, kd_, ke_, kf_, sa_, sb_, sc_, sd_, se_, sf_D :=

H2 Π �hbarL * Abs@VGV@ka, kb, kc, kd, ke, kf, sa, sb, sc, sd, se, sfDD^2;



In[21]:= H*Z1*L
s0 = 1 �2;
kplus1@k2A_, k2B_, k1m_, k2m_D =

1

2
k1m + k2A - k2B + k2m +

k1m2 + k2A2 - 3 k2B2 + 2 k2A Hk2B - k2mL + 2 k2B k2m + k2m2 - 2 k1m Hk2A - k2B + k2mL ;

kminus1@k2A_, k2B_, k1m_, k2m_D =
1

2
k1m + k2A - k2B + k2m -

k1m2 + k2A2 - 3 k2B2 + 2 k2A Hk2B - k2mL + 2 k2B k2m + k2m2 - 2 k1m Hk2A - k2B + k2mL ;

Integrand1@k2A_, k2B_, k1m_, k2m_D := Sum@W@kminus1@k2A, k2B, k1m, k2mD, k2B,

kplus1@k2A, k2B, k1m, k2mD, k1m, k2m, k2A, s0, s1, s2, s3, s4, s5D, 8s1, -1 �2, 1 �2<,
8s2, -1 �2, 1 �2<, 8s3, -1 �2, 1 �2<, 8s4, -1 �2, 1 �2<, 8s5, -1 �2, 1 �2<D *

nf@kf2 - Abs@kminus1@k2A, k2B, k1m, k2mDDD nf@kf2 - Abs@kplus1@k2A, k2B, k1m, k2mDDD *

UnitStepAk1m2 + k2A2 - 3 k2B2 + 2 k2A Hk2B - k2mL + 2 k2B k2m + k2m2 - 2 k1m Hk2A - k2B + k2mLE *

1 � k1m2 + k2A2 - 3 k2B2 + 2 k2A Hk2B - k2mL + 2 k2B k2m + k2m2 - 2 k1m Hk2A - k2B + k2mL *

1 � H2 ΠL^3;
Z1@k2A_, k2B_D := NIntegrate@2 *2 *2 *m �hbar^2 *3 *

H1 - nf@disp@k2BD - disp@kf2DDL *Integrand1@k2A, k2B, k1m, k2mD,
8k1m, -kf2, kf2<, 8k2m, -kf2, k1m<, WorkingPrecision ® 40D;

2  Numerical integration.nb



In[26]:= H*Z2*L
s0 = 1 �2;
k1star@k2A_, k2B_, k2m_, k3m_D :=

Hk2A - k2mL H-k2B + k2mL
k2A + k2B - k2m - k3m

+ k3m;

k1mstar@k2A_, k2B_, k2m_, k3m_D := k2A + k2B - k2m +
Hk2A - k2mL H-k2B + k2mL
k2A + k2B - k2m - k3m

;

Integrand4@k2A_, k2B_, k2m_, k3m_D :=

Sum@W@k1star@k2A, k2B, k2m, k3mD, k2A, k2B, k1mstar@k2A, k2B, k2m, k3mD, k2m, k3m,

s0, s1, s2, s3, s4, s5D, 8s1, -1 �2, 1 �2<, 8s2, -1 �2, 1 �2<, 8s3, -1 �2, 1 �2<,
8s4, -1 �2, 1 �2<, 8s5, -1 �2, 1 �2<D *nf@Abs@k1star@k2A, k2B, k2m, k3mDD - kf2D *

nf@kf2 - Abs@k1mstar@k2A, k2B, k2m, k3mDDD *nf@kf2 - Abs@k2mDD *

nf@kf2 - Abs@k3mDD *1 � Abs@k2m + k3m - k2A - k2BD *1 � H2 ΠL^3;
Integrand4a@k2A_, k2B_, k2m_D := NIntegrateBIntegrand4@k2A, k2B, k2m, k3mD,

:k3m, IfB MinBReB1
2

k2A + k2B - k2m + kf2 +

k2A2 + k2B2 - 3 k2m2 + 2 k2B Hk2m - kf2L + 2 k2m kf2 + kf22 - 2 k2A Hk2B - k2m + kf2L F,
k2A2 + Hk2B - k2mL Hk2B + kf2L + k2A Hk2B - k2m + kf2L

k2A + k2B - k2m + kf2
F £

Max@k2A + k2B - k2m, kf2D ÈÈ ReB1
2

k2A + k2B - k2m - kf2 +

k2A2 + k2B2 - 3 k2m2 - 2 k2m kf2 + kf22 + 2 k2B Hk2m + kf2L + 2 k2A H-k2B + k2m + kf2L F
³ k2m , kf2, MaxBMax@k2A + k2B - k2m, kf2D, ReB1

2
k2A + k2B - k2m - kf2 +

k2A2 + k2B2 - 3 k2m2 - 2 k2m kf2 + kf22 + 2 k2B Hk2m + kf2L + 2 k2A H-k2B + k2m + kf2L FFF,
IfB MinBReB1

2
k2A + k2B - k2m + kf2 +

k2A2 + k2B2 - 3 k2m2 + 2 k2B Hk2m - kf2L + 2 k2m kf2 + kf22 - 2 k2A Hk2B - k2m + kf2L F,
k2A2 + Hk2B - k2mL Hk2B + kf2L + k2A Hk2B - k2m + kf2L

k2A + k2B - k2m + kf2
F £

Max@k2A + k2B - k2m, kf2D ÈÈ ReB1
2

k2A + k2B - k2m - kf2 +

k2A2 + k2B2 - 3 k2m2 - 2 k2m kf2 + kf22 + 2 k2B Hk2m + kf2L + 2 k2A H-k2B + k2m + kf2L F
³ k2m , kf2, MinBMinBReB1

2
k2A + k2B - k2m + kf2 +

k2A2 + k2B2 - 3 k2m2 + 2 k2B Hk2m - kf2L + 2 k2m kf2 + kf22 - 2 k2A Hk2B - k2m + kf2L F,
k2A2 + Hk2B - k2mL Hk2B + kf2L + k2A Hk2B - k2m + kf2L

k2A + k2B - k2m + kf2
F, k2mFF>, WorkingPrecision ® 15F;

Z2@k2A_, k2B_D := 2 *3 *2 *m �hbar^2 *2 *nf@disp@k2BD - disp@kf2DD *

NIntegrate@Integrand4a@k2A, k2B, k2mD, 8k2m, kf2, k2A<, WorkingPrecision ® 15D;
H*calculation*L

In[32]:= convolution@VA_, B_D :=

Hnf@Abs@k2A@VA, qb@BDDD - kf2D - nf@Abs@k2A@VA, qb@BDD - qb@BDD - kf1DL *

1 �k2A@VA, qb@BDD *1 �k2B@0, qb@BDD * Hm �hbarL^2

Numerical integration.nb  3



In[33]:= IBZ2@VA_, B_D := -convolution@VA, BD *Z2@k2A@VA, qb@BDD, k2B@0, qb@BDDD *10^-85 *10^11;

IBZ1@VA_, B_D := -convolution@VA, BD *Z1@k2A@VA, qb@BDD, k2B@0, qb@BDDD *10^-85 *10^11;

In[35]:= IBZ2@-0.0125, 3.6D
NIntegrate::nlim :  k3m = If@�1�D is not a valid limit of integration. �

NIntegrate::slwcon :  

Numerical integration converging too slowly; suspect one of the following: singularity, value of

the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. �

NIntegrate::ncvb :  

NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in k2m near 8k2m< =

91.5887136165129190031704070437969677818275972927019874692111141453́ 10
8=. NIntegrate

obtained 2.1224946373370573512271380315791532761228649249219222937701863955`65.*^-126

and 8.4257432778414606709471347647058920393311145283876211315120261135`65.*^-131

for the integral and error estimates. �

Out[35]= 6.55738 ´10-173

In[36]:= IBZ2@-0.0125, 3.5D
NIntegrate::nlim :  k3m = If@�1�D is not a valid limit of integration. �

NIntegrate::slwcon :  

Numerical integration converging too slowly; suspect one of the following: singularity, value of

the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. �

NIntegrate::ncvb :  

NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in k2m near 8k2m< =

91.2614705837403597344504309773819232248362161914368944422972754737́ 10
8=. NIntegrate

obtained 2.3015857816718515008271699201190993522170586619991227484482824566`65.*^-126

and 8.7404006184887250536001187528602926770983455087173894144821767614`65.*^-131

for the integral and error estimates. �

Out[36]= 7.30095 ´10-173
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