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Abstract

Tides are ubiquitous in nature. Indeed, any extended object in a non-uniform

gravitational field will be subject to tidal effects, whether it be the moon

giving Earth its tides or entire galaxies giving each other tidal tails. A third

example of particular interest in the age of gravitational wave astronomy,

is the tidal interaction between black holes. Although this thesis wont go

into detail regarding the effects of tides on gravitational wave signals, we

will cover the theoretical foundations of tidal interactions in EMR binary

systems of Schwarzschild black holes. We consider a large Schwarzschild black

hole, referred to as the background black hole, and a much smaller black,

referred to as the (tidally) deformed black hole, in orbit around the background

black hole. As we will see, a vacuum region of an arbitrary spacetime can

be described by a set of tidal moments. In particular, the tidal moments of

the background spacetime will serve as building blocks for the metric around

the tidally deformed black hole. The resulting metric is referred to as the

Poisson-Vlasov metric and will serve as the foundation of much of this thesis.

We mainly work under the assumption that the deformed black hole follows a

radial geodesic in the background spacetime, implying that all magnetic tidal

moments and potentials vanish identically. We compute the tidal shifts in

the ISCO parameters of a test-particle orbiting the deformed black hole to

quadrupole and octupole order. Furthermore, we compute the specific energy

of the test-particle as a function of the Euler angles that specify the orientation

of the ”deformed black hole + test-particle” binary system with respect to

the background black hole. We find that the specific energy is minimized for

co-planar orbits, i.e. configurations for which the inclination angle vanishes.

Furthermore, we compute the specific energy of the test-particle to octupole

order. In particular, the specific energy is found to be increasing as a function

of advanced time. Finally, we study the geometry of the deformed horizon.

With the precision maintained in this text, the horizon is located at r = 2m as

in the unperturbed case. However, the mass of the deformed black hole now

acquires a non-trivial time-dependence. Using the approach of Poisson, we

compute the change in m to leading order for a radial infall and for a circular

orbit.
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Conventions and notation

A given spacetime is, as always, modelled by some Lorentzian manifold (M , g) equipped

with a metric g. We take the signature of g to be (−,+,+,+). With respect to some

coordinate system {xµ}µ∈{0,1,2,3} on an open neighborhood O ⊆ M , the components of

the metric are written gµν . The spacetime indices on an arbitrary tensor defined on O

may be lowered (raised) using gµν (gµν). On the other hand, frame indices are raised and

lowered using η = diag[−1, 1, 1, 1]. We work with the following index convention for the

Riemann tensor:

Rρ
σµν =

∂

∂xν
Γρ

µσ −
∂

∂xµ
Γρ

νσ + Γρ
νκΓ

κ
µσ − Γρ

µκΓ
κ
νσ (1)

For the Ricci tensor, we use the following convention:

Rµν = Rσ
µσν (2)

Finally, we work in geometrical units, such that G = c = 1.
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Below is a notation key, featuring commonly used symbols and their descriptions.

Notation Description

(M , g) Lorentzian manifold
O,S ,N Open subsets of M
(S , g′) Hypersurface of (M , g) where g′ is the induced metric on S
D Levi-Civita connection on (M , g)
µ, ν, . . . (Indices) Spacetime indices, taking values in {0, 1, 2, 3}
i, j, . . . (Indices) Spatial indices, taking values in {1, 2, 3}
a, b, . . . (Indices) Frame indices, taking values in {0, 1, 2, 3}
xµ Coordinate system on a coordinate patch O
Tµν Components of a (0, 2) tensor T with respect to xµ

T(µν) Symmetrization symbol, defined by T(µν) :=
1
2
(Tµν + Tνµ)

T[µν] Antisymmetrization symbol, defined by T[µν] :=
1
2
(Tµν − Tνµ)

T STF
µν The symmetric and trace free part of Tµν

Tµν,σ = ∂σTµν = ∂
∂xσTµν Partial differentiation

Tµν;σ = DσTµν Covariant differentiation
εαβγδ Components of the Levi-Civita tensor with respect to xµ

ϵαβγδ Permutation symbol in four dimensions
ϵijk Permutation symbol in three dimensions
λµ
a Orthonormal tetrad

eµâ Carter’s basis
Eij (Eijk) Quadrupole (octupole) order electric tidal moments
Bij (Bijk) Quadrupole (octupole) order magnetic tidal moments
E Specific energy
L Specific angular momentum
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Chapter 1

Introduction

The overarching theme of this text is that of tidal effects in two-body systems. Tides can

be found in a plethora of physical systems, whether it be the tidal interaction between the

Earth and the moon, between stars in a binary system, between entire galaxies or between

black holes. In this text, we will concern ourselves with the latter of these, specifically the

tidal interaction between a pair of extreme mass ratio Schwarzschild black holes. To this

end, we review and extensively use the results obtained by Eric Poisson and Igor Vlasov

in [15].

Suppose we consider a binary system as described above. The larger of the black

holes, referred to as the background black hole, is treated as a background source of a

gravitational field. A much smaller black hole, treated as a test-particle with respect to

the background black hole, is then placed in this field. We refer to this black hole as the

tidally deformed (or simply deformed) black hole. An equivalent formulation would be

that we consider a Schwarzschild black hole and then turn on a tidal field, given rise to by

a much larger Schwarzschild black hole. As a consequence of turning on this tidal field,

the mass of the deformed black hole seizes to be constant in time, an effect known as tidal

heating which will be explored in section 7.

Additionally, we will observe tidally induced deformations in the orbits around the

deformed black hole. In particular, we consider a third black hole with mass even less

than that of the deformed black hole (so that the entire system can be described as a

three-body hierarchical system). This black hole is then considered a test-particle with

respect to the deformed black hole and we explore how the orbit of this test-particle is

effected by the presence of a tidal field. For example, we will observe a tidally induced
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shift in each of the ISCO parameters of the test-particle.

The tidal environment itself is described by the tidal moments of the background

spacetime. Below, we give a brief overview of tides in Newtonian mechanics, closely

following the section ”Tensors in Newtonian mechanics” from [20]. This overview will

result in the introduction of the non-relativistic tidal tensor. With our Newtonian intuition

in mind, we go on to consider a relativistic generalization of tides, resulting in the

introduction of the relativistic tidal tensors.

1.1 Newtonian tides

In Newtonian mechanics, tides arise when the gravitational force experienced by a body

is non-uniform across the extent of the body. For example, the gravitational field from

the moon is stronger at a point on Earth that faces the moon, than at a point which

faces away from the moon. As a result, Earth is stretched in the direction of the moon.

Furthermore, every point on Earth will be pulled toward the center of gravity of the moon.

This results in a squishing of the Earth in the direction perpendicular to the direction of

stretching. Figure 1.1 gives an illustration of this. We take this squishing (and stretching)

as a defining feature of the tidal interaction between the moon and the Earth, and more

generally between any two bodies.

Figure 1.1: Tidal effects on Earth due to the gravitational influence of the moon. The
strength of the gravitational attraction from the moon is greater at point A than at point
B. Furthermore, points C and D are pulled toward each other.

Suppose we have a spacetime inhabited by two test-particles, call them test-particle A

and test-particle B which are at rest relative to each other. Now suppose a non-uniform

gravitational field, Φ is introduced. As a result, the two test-particles will begin to move
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relative to each other, i.e. the separation distance between them becomes a non-trivial

function of time. In the following, we set out to determine an evolution equation for this

separation distance.

We adopt a coordinate system, (t, xi) where t is the universal coordinate time of

Newtonian mechanics and xi, i ∈ {1, 2, 3} are spatial coordinates centred on the center

of mass of the source of the gravitational field. Now, we would like to describe how the

distance between the two test-particles changes as a function of t. We denote by rA(t)

and rB(t) the respective positions of test-particle A and test-particle B at time t. Their

separation vector S at time t is then defined as S(t) = rB(t)− rA(t). The acceleration of

test-particle B is then given by

d2rB

dt2
= −∇Φ(rB) = −∇Φ(rA + S) (1.1)

In many cases, it is appropriate to assume ∥S∥ ≪ ∥rA∥, ∥rB∥. In other words, the

test-particles are much farther from the source of the gravitational field than they are

from each other. In this case, we perform a Taylor expansion of (1.1) to first order, which

in component form reads

d2riB
dt2

= − ∂Φ

∂xi
(rA)−

∂2Φ

∂xj∂xi
(rA)S

j (1.2)

The evolution of S is then readily obtained:

d2Si

dt2
= −E i

jS
j (1.3)

where

E i
j := δik

∂2Φ

∂xk∂xj
(1.4)

are the components of the non-relativistic tidal tensor. Notice that Eij is symmetric and

also traceless owing to Φ satisfying Laplace’s equation. In conclusion, we see that the

tidal environment around a source of gravitation is described by the tidal tensor E . In

general relativity, we continue to have a tidal tensor E in analogy with the above. A new

feature, exclusive to general relativity, is that we need also consider a second tidal tensor

B. These then serve to describe the tidal environment around a source of gravitation in
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general relativity.

1.2 Relativistic tides

Guided by our Newtonian intuition, we expect tidal effects to be directly tied to the

relative acceleration of test-particles in spacetime. It is clear that a single test-particle is

insufficient to detect a gravitational field. Indeed, an observer travelling along a timelike

geodesic may adopt a set of Fermi normal coordinates. Let xµ be such a set of coordinates.

Then at a point p in a normal convex neighborhood of the geodesic, the components of

the metric for the spacetime at hand evaluate to [16]:

g00|p = −1−R0i0j|qxixj +O(s3) (1.5a)

g0i|p = −2

3
R0jik|qxjxk +O(s3) (1.5b)

gij|p = δij −
1

3
Rikjl|qxkxl +O(s3) (1.5c)

where R is the Riemann tensor and where s measures the spatial distance between the

geodesic and p. Notice in particular that the metric reduces to the Minkowski metric

along the geodesic. This shows the inadequacy of using a single particle to detect gravity.

Appendix A gives a more detailed description of Fermi normal coordinates as well as a

derivation of (1.5).

We are thus compelled to instead compare two closely separated test-particles and

their trajectories. More precisely, we will compare two closely separated (non-intersecting)

timelike geodesics. We will refer to them as γ and β. An observer travelling along γ picks

a coordinate system xµ, µ ∈ {0, 1, 2, 3} and chooses to parameterize γ by its proper time.

For each τ in the domain of γ, we construct a spacelike vector S(τ) with components given

by Sµ(τ) := xµ ◦ β(τ ′ = τ)− xµ ◦ γ(τ) where τ ′ is proper time along β. We interpret S(τ)

as a separation vector between γ and β along a line of constant time equal to τ . One then

computes (see appendix B):

D2Sµ

dτ 2
= uαDα(u

βDβS
µ) = −Rµ

ανβu
αuβSν (1.6)

where u is the four-velocity along γ and D is the Levi-Civita connection on the spacetime.

We thus see that the tides of general relativity are completely described by the Riemann
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curvature tensor of the spacetime. We define the relativistic analogue of (1.4) by

Eµ
ν := Rµ

ανβu
αuβ (1.7)

and refer to it as the gravito-electric tidal tensor. In this text, we exclusively consider

vacuum solutions to Einstein’s field equations in which case R has ten independent

degrees of freedom. However Eµν , being symmetric and trace-free, can at most have nine

independent components. The remaining degrees of freedom are encoded in the tensor B

with components

Bµ
ν = (R∗)µανβu

αuβ (1.8)

where R∗ is the dual Riemann tensor (more details can be found in section 2.4). We refer

to B as the gravito-magnetic tidal tensor and it is unique to general relativity, with no

analogue in Newtonian mechanics, unlike E . We have already seen how E is responsible

for the stretching and squishing of objects, so a natural question to ask is what physical

interpretation B has. As it turns out, B describes the ”twisting” of objects subject to a

tidal field [2]. This effect occurs as a consequence of frame-dragging, which is especially

prevalent in the Kerr solution. As we shall see later on, B vanishes identically for radial

geodesics in the Schwarzschild spacetime, leaving only E non-zero.

1.3 Motivation for studying relativistic two-body sys-

tems

We have seen how tidal tensors arise naturally in the study of two-body systems. This

allows for a succinct and efficient way of describing the tidal interaction between the

two bodies in question. The motivation for studying two-body systems in the first place

is plentiful and we mention one of the experimental avenues in which tidal heating, in

particular, is likely to play an important role. Suppose we have an astrophysical source

of gravitational radiation. In particular, we might imagine a small black hole spiralling

around a much larger black hole. The tidal heating of the smaller black hole may then

likely be responsible for the generation of low frequency gravitational waves [17], which

could be measured by space-based gravitational wave observatories, such as LISA [9]. In
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fact, for a close encounter between a black hole travelling on a parabolic orbit around a

much larger black hole, tidal heating can account for about 5% of the loss in orbital energy,

while the remainder of the lost orbital energy is carried away in the form of gravitational

waves [11]. In turn, this may then be used as a benchmark for high-precision numerical

simulations of gravitational wave sources; one should expect to observe a time dependence

in the mass of each black hole [15].
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Chapter 2

Preliminaries and the Poisson-Vlasov

metric

The main goal of this chapter is to introduce the Poisson-Vlasov metric, the metric that

describes the spacetime around a tidally deformed Schwarzschild black hole. To this

end, we start by covering some preliminaries. Firstly, the tidal environment around the

Schwarzschild black hole is described by a set of tidal moments and corresponding tidal

potentials. These are covered in section 2.4, which closely follows the outline given in [15].

As we will see, the aforementioned section relies heavily on the the use of orthonormal

tetrads which are introduced in section 2.1, closely following part I of [16]. The Poisson-

Vlasov metric will be put forth as an ansatz, motivated in part by the fact that it reduces

to the background metric in the appropriate limit. For this reason, we explicitly introduce

the background metric in section 2.5, closely following [15]. The construction of the

background metric relies on some of the features of Synge’s world function and bitensors in

general. These are introduced in section 2.2 which closely follows [16]. The components of

the metric (both the background metric and the Poisson-Vlasov metric) will be expressed

in a set of lightcone coordinates which are introduced in section 2.3, closely following [14].

Finally, the Poisson-Vlasov metric is introduced in section 2.6, closely following [15].

2.1 Orthonormal tetrads

This section covers orthonormal tetrads and their role in decomposing tensors along a

world-line. The core idea is to take a geodesic γ, construct a vectorial basis at some point
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along γ and then parallel transport the basis along γ. The result is a vectorial basis that

can be used at each point of the geodesic. In this sense, a tetrad is a convenient choice of

basis for a freely falling observer travelling along γ. For this reason, tetrads are intimately

related to Fermi normal coordinates as well as lightcone coordinates and allow us to adopt

a frame in which the metric of spacetime is locally flat in a neighborhood around γ. The

tetrad formalism will prove particularly useful when we compute the tidal moments of

the background spacetime. Indeed, these tidal moments will be defined as components of

the Riemann tensor with respect to a tetrad erected along a geodesic of the background

spacetime. A more precise description of orthonormal tetrads now follows.

Let (M , g) be a Lorentzian manifold and consider a neighborhood N ⊆ M equipped

with a coordinate system xµ, µ ∈ {0, 1, 2, 3}. Then consider a future-directed timelike

geodesic γ : [a, b] → N . The proper time of γ is defined in the usual way:

τγ :=

∫ b

a

√
−gµν(γ(t))

d(xµ ◦ γ)
dt

(t)
d(xν ◦ γ)

dt
(t)dt (2.1)

The parameter for γ is chosen to be proper time τ ∈ [0, τγ] along γ. The components of

the four velocity along γ are then defined as

uµ(τ) =
d(xµ ◦ γ)

dτ
(τ), τ ∈ [0, τγ] (2.2)

The four velocity is normalized according to

gµν(γ(τ))u
µ(τ)uν(τ) = −1, τ ∈ [0, τγ] (2.3)

and of course u is parallel propagated along γ,

uµDµu
ν = 0 (2.4)

The first task in establishing an orthonormal tetrad along γ, is to construct an

orthonormal basis at some point on γ, consisting of one timelike vector and three spacelike

vectors. Without loss of generality, this initial point is taken to be γ(0) and the members

of the basis at γ(0) are denoted by λa, a ∈ {0, 1, 2, 3}. The index a is referred to as a frame

index and such indices will be raised and lowered using the matrix η = diag[−1, 1, 1, 1].

By convention, λ0 := u(0). Parallel transporting each member of the basis along γ, yields
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an orthonormal basis along the whole of γ. Hence, λa is promoted to be a function of τ for

all a ∈ {0, 1, 2, 3}. The basis vectors thus constructed are referred to as an orthonormal

tetrad on γ and explicitly we have the following defining equations:

λµ
0(τ) = uµ(τ),

D

dτ
λµ
a(τ) = 0, λµ

a(τ)λ
ν
b (τ)gµν(γ(τ)) = ηab, τ ∈ [0, τγ] (2.5)

where a, b ∈ {0, 1, 2, 3}. Given a tetrad {λa}a∈{0,1,2,3}, its dual is then defined by

λa
µ(τ) := ηabgµν(γ(τ))λ

ν
b (τ), τ ∈ [0, τγ] (2.6)

Note that λµ
aλ

a
ν = δµν and λµ

aλ
b
µ = δba. As a consequence of the last equality in (2.5) together

with (2.6), the following two completeness relations hold along γ:

gµν = −λ0
µλ

0
ν + δijλ

i
µλ

j
ν (2.7)

gµν = −uµuν + δijλµ
i λ

ν
j (2.8)

On γ, we will often want to decompose tensors with respect to {λa}a∈{0,1,2,3}. Let A be

some arbitrary tensor defined on γ with components given by Aµ1···µn
ν1···νm where m,n ∈ N.

Then the frame components of A with respect to {λa}a∈{0,1,2,3} are defined by

Aa1···an
b1···bm := Aµ1···µn

ν1···νmλ
a1
µ1
· · ·λan

µn
λν1
b1
· · ·λνm

bm
(2.9)

where a1, . . . , an, b1, . . . , bm ∈ {0, 1, 2, 3}. We will also take frame components of the first

covariant derivative of tensors on γ. To this end, we define

Aa1···an
b1···bm|c := Aµ1···µn

ν1···νm;σλ
a1
µ1
· · ·λan

µn
λν1
b1
· · ·λνm

bm
λσ
c (2.10)

These definitions will be central in defining the tidal moments of the background spacetime.

2.2 Bitensors

This section briefly covers bitensors and the notation associated with these. In particular,

Synge’s world function is introduced and some of its properties are derived. The motivation

for doing so is two-fold. Firstly, Synge’s world function plays a central role in the
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construction of the lightcone coordinates to be introduced in chapter 2.3. Secondly,

Synge’s world function and its derivatives enter in the components gvi and gij of the inverse

background metric which are computed in chapter 2.5. In particular, the components gij

will be computed as an expansion in the radial coordinate r, to be introduced later. In

order to accomplish this, we will need to expand the second derivatives of Synge’s world

function in r. As we will see, the parallel propagator provides an efficient way of computing

one of these expansions, which is why it is included in this discussion. It will pay dividends

to have the formalities in check, which is why we often start out by discussing bitensors

in general and then specializing to Synge’s world function. Indeed, we start by defining

bitensors in general.

Let (M , g) be a Lorentzian manifold. A tensor field A which is defined on M × M

is known as a bitensor. In other words, A is a tensor field which depends on two points

in M . We denote the two points by p′ and p. The point p′ is referred to as the base

point while p is referred to as the field point. It is always assumed that p lies within a

normal convex neighborhood Np′ of p
′ such that the two points can be linked by a unique

geodesic. This geodesic will be denoted by β and is taken to be parameterized by some

affine parameter t ∈ [t0, t1]. By construction, we have β(t0) = p′ and β(t1) = p.

Suppose now that zµ, µ ∈ {0, 1, 2, 3} is a coordinate system on Np′ . Any bitensor

defined on Np′ may then be decomposed with respect to zµ. However, care must be taken

in assigning indices to the tensor for the following reason. Generally, a bitensor which

transforms as e.g. a vector at p′ need not transform as a vector at p. To account for this,

p′ is assigned indices α′, β′, . . . while p is assigned indices α, β, . . .. An arbitrary point

along β will be assigned indices µ, ν, . . ..

2.2.1 The parallel propagator

Say we are given a vector (or a tensor in general) at p and wish to parallel transport it

to p′. This section covers the parallel propagator which accomplishes this task using the

tetrad formalism.

Suppose A is a vector field on β, the unique geodesic connecting p and p′, with

components Aµ with respect to zµ, µ ∈ {0, 1, 2, 3}. Furthermore, suppose an orthonormal

tetrad {λa}a∈{0,1,2,3} is installed on β. Then A may be decomposed with respect to this

tetrad according to Aµ = Aaλµ
a . The coefficients Aa are given by Aa = Aµλa

µ. If A is
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parallel transported along β, then the coefficients Aa must be constant along β since the

tetrad is parallel transported along β. We then obtain the components of A at p as

Aα(p) = Aα′
(p′)λa

α′(p′)λα
a (p) = gαα′(p, p′)Aα′

(p′) (2.11)

where gαα′(p, p′) := λα
a (p)λ

a
α′(p′) = gα′

α(p, p′) is a bitensor known as the parallel propagator.

The interpretation is clear from the above. The parallel propagator gαα′(p, p′) takes a

vector at p′ and parallel transports it along β to p. Similarly, the components of A at p′

can be written

Aα′
(p′) = gα

′

α(p, p
′)Aα(p) (2.12)

where gα
′

α(p, p
′) := λa

α(p)λ
α′

a (p′) takes a vector at p and parallel transports it along β to

p′. Hence, gα
′

α(p, p
′) can be interpreted as the inverse of gαα′(p, p′) and indeed we see that

gα
′

αg
β
α′ = δβα, gα

′

αg
α
β′ = δβ

′

α′ (2.13)

The argument can be extended to tensors of arbitrary rank. For instance,

Aαβ(p) = gαα′(p, p′)gββ′(p, p′)Aα′β′
(p′) (2.14)

2.2.2 Synge’s world function

Synge’s world function σ is an example of a biscalar. With the same setup as above, it is

defined by

σ(p, p′) :=
1

2
(t1 − t0)

∫ t1

t0

gµν(γ(t))T
µ(t)T µ(t)dt (2.15)

where T is the tangent vector field to γ, defined by T µ := d(zµ ◦ γ)/dt. Since γ is a

geodesic, ε := gµνT
µT ν is constant along γ. Explicitly then,

σ(p, p′) =
1

2
ε(t1 − t0)

2 (2.16)

If γ is timelike, then we may choose t to be proper time τ so that σ(p, p′) = −1
2
(t1−t2)

2. If γ

is spacelike, then we may choose t to be proper distance s in which case σ(p, p′) = 1
2
(t1−t2)

2.
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If γ is null, then σ(p, p′) = 0. In general, σ(p, p′) is half the squared geodesic distance

between p and p′. The world function may be differentiated with respect to either of its

arguments. To this end, we define

σα(p, p
′) :=

∂σ

∂zα
(p, p′) (2.17)

as the derivative of σ with respect to the first of its arguments. Notice that σα transforms

as a one-form at p but as a scalar at p′. Similarly, we define

σα′(p, p′) :=
∂σ

∂zα′ (p, p
′) (2.18)

as the derivative of σ with respect to its second argument. Notice that σα′ transforms as a

scalar at p but as a one-form at p′. Continuing, we take the covariant derivative of σα and

σα′ and define

σαβ := Dασβ (2.19)

σα′β′ := Dα′σβ′ (2.20)

Both of these are symmetric in their respective indices. Indeed,

σαβ := Dασβ = ∂α∂βσ − Γλ
αβσλ = Dβσα = σβα (2.21)

owing to the symmetry of mixed partial derivatives and the symmetry in the lower indices

of the Christoffel symbols. Similarly for σα′β′ . Additionally, we define σα′β := Dα′σβ and

σαβ′ := Dασβ′ . Since σα transforms as a scalar at p′, we have σα′β = ∂α′σβ = σβα′ . This

last identity generalizes to arbitrary bitensors with an arbitrary number of primed and

unprimed indices. Indeed if Ω is a bitensor and if Ω...αβ′... are its components where . . .

denotes an arbitrary arrangement of both primed and unprimed indices, then

Ω...αβ′... = Ω...α′β... (2.22)

It will prove useful to explicitly compute σα which is accomplished in the following.

Start by considering the variation of (2.15) as p is varied. In particular we consider a small

displacement of p such that the new field point is p+ δp. This results in a corresponding
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change in σ, described by δσ := σ(p+ δp, p′)− σ(p, p′). The change in p will also induce a

change in β. In particular, we denote by β + δβ the unique geodesic that connects p+ δp

and p′. We scale the affine parameter of this new geodesic such that it runs from t0 to t1.

Since p′ is kept fixed, δβ(t0) = δp′ = 0. We then compute

δσ =
1

2
∆t

∫ t1

t0

[T µ(t)T ν(t)δgµν(β(t)) + 2gµν(β(t))T
µ(t)δT ν(t)] dt

= ∆t

∫ t1

t0

[T µ(t)T ν(t)gµσ(β(t))Γ
σ
ρν(β(t))δz

ρ(β(t)) + gµν(β(t))T
ν(t)δT µ(t)] dt

= ∆t [gµν(β(t))T
ν(t)δzµ(β(t))]t1t0 −∆t

∫ t1

t0

[
Ṫµ(t)− Tν(t)T

σ(t)Γν
µσ(β(t))

]
δzµ(β(t))dt

(2.23)

where ∆t := t1 − t0 and where the last equality follows from an application of integration

by parts. The integral vanishes since T satisfies the geodesic equation. In particular, since

T µDµTν = 0 for all ν ∈ {0, 1, 2, 3}. Furthermore, δzµ(β(t0)) = 0 by assumption so we are

left with

δσ = ∆tgαβ(β(t1))T
α(t1)δz

β(β(t1)) (2.24)

or equivalently,

σα(p, p
′) = (t1 − t0)gαβ(β(t1))T

β(t1) (2.25)

In particular, σα(p, p′) is simply a rescaled tangent vector of β at p. Similarly,

σα′(p, p′) = (t1 − t0)gα′β′(β(t1))T
β′
(t1) (2.26)

From these expressions, we conclude that

σασ
α = σα′σα′

= 2σ (2.27)

Notice also that

σαβσ
β = σα (2.28)
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The proof is as follows. Firstly we compute

σαβσ
β = (∂ασβ)σ

β − Γγ
αβσγσ

β (2.29)

Owing to (2.27), the first term is simply σα. We expand the second term as follows:

Γγ
αβσγσ

β =
1

2
(∂αgβδ + ∂βgαδ − ∂δgαβ)σ

δσβ

=
1

2
(∂αgβδ)σ

δσβ

=
1

2
[(∂ασβ)σ

β − (∂ασ
δ)σδ]

= 0 (2.30)

This finishes the proof. Similarly, σα′βσ
β = σα′ .

2.2.3 Coincidence limits and the expansion of Synge’s world

function near coincidence

As mentioned at the beginning of this chapter, we seek to derive expressions for the

expansions of the second derivatives of Synge’s world function. In particular, we seek

to derive expansions for σα′β′(p, p′) and σα′β(p, p
′). Analogously to the procedure in real

analysis, we will treat p′ as a base-point and expand σα′β′(p, p′) (σα′β(p, p
′)) around this

base-point. The expansion will be carried out near the coincidence limit of σα′β′(p, p′)

(σα′β(p, p
′)). The coincidence limit is the limit in which p → p′ and will be the subject of

study in this section.

Consider some arbitrary bitensor Ω(p, p′) with components ΩII′(p, p
′) where I =

α1 . . . αi, i ∈ N and I ′ = α′
1 . . . α

′
j, j ∈ N are multi-indices representing an arbitrary number

of unprimed and primed indices respectively. As already mentioned, a primed index and

an unprimed index always commute so there is no loss of generality in this notation. It is

then reasonable to ask what happens if we let p → p′. This leads us to the definition of

coincidence limits. A set of assumptions must be made about Ω before the coincidence

limit can be defined in a meaningful way. We include them in the following definition:

• Assume that ΩII′(p, p
′) → Ω̃Ĩ′(p

′) as p → p′ where Ω̃Ĩ′(p
′) is an ordinary tensor at p′

and where Ĩ ′ is a multi-index with i+ j primed indices. In other words, Ω approaches
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an ordinary tensor at p′ as p → p′.

• Assume that the limit tensor Ω̃Ĩ′(p
′) is unique in the sense that ΩII′(p, p

′) → Ω̃Ĩ′(p
′)

as p → p′ independent of the direction in which the limit is taken. Explicitly, if

β : [t0, t] → M is a geodesic connecting p = β(t) and p′ = β(t0), then ΩII′ can

be viewed as a function of t. We then assume that the limit of ΩII′ as t → t0 is

independent of the choice of β.

• If the assumptions above are satisfied, then we define

[ΩII′ ] := lim
p→p′

ΩII′(p, p
′) (2.31)

and refer to [ΩII′ ] as the coincidence limit of ΩII′(p, p
′).

For future reference, the coincidence limit of Synge’s world function and the first few of

its derivatives are computed in the following. From the definition of σ, we immediately

get [σ] = 0. From (2.25) and (2.26) we get [σα] = [σα′ ] = 0. Next, from (2.28), we obtain

σαβσ
β = σα = gαβσ

β or 0 = (σαβ − gαβ)σ
β. Recall that σα is simply a rescaled tangent

vector to β. Hence, when we take the coincidence limit of (σαβ − gαβ)σ
β, the dependence

on σβ must drop out. In conclusion, [σαβ] = gα′β′ . Similarly, [σαβ′ ] = [σα′β] = −gα′β′ . The

procedure can be continued by repeated differentiation of (2.27) and by using the Ricci

identity which, in the case of σα, reads σαβγ − σαγβ = Rϵ
αβγσϵ. We obtain the following:

[σα′β′γ′ ] = 0 (2.32)

[σα′β′γ′δ′ ] = −1

3
(Rα′γ′β′δ′ +Rα′δ′β′γ′) (2.33)

[σα′β′γ′δ′ϵ′ ] = −1

4
(Rα′γ′β′δ′;ϵ′ +Rα′δ′β′γ′;ϵ′ +Rα′δ′β′ϵ′;γ′ +Rα′ϵ′β′δ′;γ′ +Rα′ϵ′β′γ′;δ′ +Rα′γ′β′ϵ′;δ′)

(2.34)

The corresponding coincidence limits with any number of unprimed indices can then be

computed by using Synge’s rule, which we state without proof (the proof can be found in

section 4.2 of [16]):

[σ...α′ ] = [σ...];α′ − [σ...α] (2.35)

where the dots can be any combination of primed and unprimed indices.
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As before, consider a generic bitensor Ωα′β′(p, p′). In real analysis, the expansion of

this object would be carried out in powers of the separation between the base-point p′ and

the free point p. The Lorentzian analogue to this, is an expansion in powers of −σα′
(p, p′).

The expansion will thus take the form

Ωα′β′(p, p′) = Aα′β′(p′) + A1
α′β′γ′(p′)σγ′

+
1

2
A2

α′β′γ′δ′(p
′)σγ′

σδ′

+
1

6
A3

α′β′γ′δ′ϵ′(p
′)σγ′

σδ′σϵ′ + . . . (2.36)

where the coefficients A,A1, A2, A3, . . . are all ordinary tensors at p′. Our task is then to

compute these coefficients. It follows immediately by taking the coincidence limit of both

sides of (2.36) that [Ωα′β′ ] = Aα′β′ . Differentiating (2.36) and taking the coincidence limit

of the resulting expression yields [Ωα′β′;γ′ ] = Aα′β′;γ′ + A1
α′β′γ′ . Differentiating once more

and taking the coincidence limit yields [Ωα′β′;γ′δ′ ] = Aα′β′;γ′δ′+A1
α′β′δ′;γ′+A1

α′β′γ′;δ′+A2
α′β′γ′δ′ .

Differentiating a third time yields

[Ωα′β′;γ′δ′ϵ′ ] = Aα′β′;γ′δ′ϵ′ + A1
α′β′κ′ [σκ′

γ′δ′ϵ′ ] + A1
α′β′ϵ′;γ′δ′ + A1

α′β′δ′;γ′ϵ′ + A1
α′β′γ′;δ′ϵ′

+ A2
α′β′δ′ϵ′;γ′ + A2

α′β′γ′ϵ′;δ′ + A2
α′β′γ′δ′;ϵ′ + A3

α′β′γ′δ′ϵ′ (2.37)

The expressions derived above can then be solved for the expansion coefficients which in

turn are substituted into equation (2.36). This gives an expression for Ωα′β′ to third order

in −σα′
near coincidence. For the purposes at hand, this is a sufficient level of precision.

Now consider a bitensor with one primed and one unprimed index, Ωα′β. Then the

bitensor Ω̃ with components Ω̃α′β′ := gββ′Ωα′β can be expanded in precisely the same way

as above, namely

Ω̃α′β′(p, p′) = Bα′β′(p′) +B1
α′β′γ′(p′)σγ′

+
1

2
B2

α′β′γ′δ′(p
′)σγ′

σδ′

+
1

6
B3

α′β′γ′δ′ϵ′(p
′)σγ′

σδ′σϵ′ + . . . (2.38)

And then the original bitensor Ω can be recovered as

Ωα′β(p, p
′) = gβ

′

β

(
Bα′β′(p′) +B1

α′β′γ′(p′)σγ′
+

1

2
B2

α′β′γ′δ′(p
′)σγ′

σδ′

+
1

6
B3

α′β′γ′δ′ϵ′(p
′)σγ′

σδ′σϵ′
)
+ . . . (2.39)
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To compute the expansion coefficients directly in terms of Ωα′β, the coincidence limits of

the parallel propagator and its derivatives must first be obtained. We start by expanding

the definition of the parallel propagator as follows:

gαβ′(p, p′) = λα
a (p)λ

a
β′(p′) = λα

a (p)η
abgβ′γ′λγ′

b (p
′) (2.40)

Taking the coincidence limit and using the completeness relation (2.8), we obtain

[gαβ′ ] = δα
′

β′ (2.41)

Since the tetrad {λa}a∈{0,1,2,3} is parallel transported along β, we evidently have σβλα
a;β = 0

at p and σβ′
λα′

a;β′ = 0 at p′. This then implies

gαα′;βσ
β = gαα′;β′σβ′

= 0, gα
′

α;βσ
β = gα

′

α;β′σβ′
= 0 (2.42)

Repeated differentiation of each expression in (2.42) will yield the coincidence limits of

the derivatives of the parallel propagator. For instance, we get from gαα′;β′σβ′
= 0 that

gαβ′;γ′δ′σ
γ′
+ gαβ′;γ′σγ′

δ′ = 0. Taking the coincidence limit reveals that

[gαβ′;γ′ ] = 0 (2.43)

A second differentiation yields

gαβ′;γ′δ′ϵ′σ
γ′
+ gαβ′;γ′δ′σ

γ′
ϵ′ + gαβ′;γ′ϵ′σ

γ′
δ′ + gαβ′;γ′σγ′

δ′ϵ′ = 0 (2.44)

Taking the coincidence limit, this reduces to [gαβ′;γ′δ′ ] + [gαβ′;δ′γ′ ] = 0. Using the Ricci

identity for gαβ′;γ′δ′ , treated as a vector at p, we conclude

[gαβ′;γ′δ′ ] =
1

2
Rα′

β′γ′δ′ (2.45)

Similarly, [gα
′

β;γ′δ′ ] = −1
2
Rα′

β′γ′δ′ . Completely analogously, we obtain

[gαβ′;δ′γ′ϵ′ ] =
1

3
(Rα′

β′δ′γ′;ϵ′ +Rα′
β′δ′ϵ′;γ′) (2.46)

and similarly, [gα
′

β;δ′γ′ϵ′ ] = −1
3
(Rα′

β′δ′γ′;ϵ′ +Rα′
β′δ′ϵ′;γ′). We are now ready to compute the

20



coefficients in (2.39). Firstly, [Ωα′β] = Bα′β′ . Differentiating (2.39) once and taking the

coincidence limit gives [Ωα′β;γ′ ] = Bα′β′;γ′ +B1
α′β′γ′ . Differentiating once again, we obtain

[Ωα′β;γ′δ′ ] =
1

2
Rϵ′

β′γ′δ′Bα′ϵ′ −Bα′β′;γ′δ′ −B1
α′β′γ′;δ′ −B1

α′β′δ′;γ′ −B2
α′β′γ′δ′ (2.47)

A final differentiation yields

[Ωα′β;ϕ′θ′κ′ ] = Bα′β′;ϕ′θ′κ′ − 1

2
Rω′

β′ϕ′θ′Bα′ω′;κ′ − 1

2
Rω′

β′θ′κ′Bα′ω′;ϕ′ − 1

2
Rω′

β′ϕ′κ′Bα′ω′;θ′

− 1

3
(Rω′

β′ϕ′θ′;κ′ +Rω′
β′ϕ′κ′;θ′)Bα′ω′ − 1

3
(Rγ′

θ′ϕ′κ′ +Rγ′
κ′ϕ′θ′)B

1
α′β′γ′

+B1
α′β′κ′;ϕ′θ′ +B1

α′β′θ′;ϕ′κ′ +B1
α′β′ϕ′;θ′κ′ −

1

2
Rω′

β′ϕ′θ′B
1
α′ω′κ′ −

1

2
Rω′

β′θ′κ′B1
α′ω′ϕ′

− 1

2
Rω′

β′ϕ′κ′B1
α′ω′κ′B1

α′ω′κ′ +B2
α′β′θ′κ′;ϕ′ +B2

α′β′ϕ′κ′;θ′ +B2
α′β′ϕ′θ′;κ′ +B3

α′β′ϕ′θ′κ′

(2.48)

In the following, we specialize to Ωα′β′ = σα′β′ . Putting all the previous results together,

the expansion of σα′β′ near coincidence is given by

σα′β′ = gα′β′ − 1

3
Rα′γ′β′δ′σ

γ′
σδ′ +

1

12
Rα′γ′β′δ′;ϵ′σ

γ′
σδ′σϵ′ + . . . (2.49)

Similarly, for Ωα′β = σα′β we obtain the expansion

σα′β = gβ
′

β

[
−gα′β′ − 1

6
Rα′γ′β′δ′σ

γ′
σδ′ +

1

12
Rα′γ′β′δ′;ϵ′σ

γ′
σδ′σϵ′

]
+ . . . (2.50)

Equipped with these expansions, we are able to compute the components of the inverse

metric in section 2.5. Before then, we introduce the lightcone coordinates, advertised at

the beginning of the chapter.

2.3 Lightcone coordinates

This section introduces the coordinates with respect to which the components of the

background metric as well as the Poisson-Vlasov metric will later be written. The

coordinates are referred to as lightcone coordinates and, as the name suggests, are closely

tied to the geometry of (past) lightcones. We start by giving a heuristic overview of the

coordinates, followed by a formal definition.
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2.3.1 Heuristic overview

Consider a Lorentzian manifold (M , g) and an open neighborhood N ⊆ M of a smooth

timelike geodesic γ : [a, b] → N . To each point p on γ, there is a corresponding past

lightcone with apex at p. Since such a lightcone is a null hypersurface of M , it is generated

by a congruence of null geodesics as discussed in section 7.2. The quasi-spherical lightcone

coordinates of N , denoted by (v, r, θ, ϕ), are a set of coordinates specifically tailored to

describe the geometry of the generators of the past lightcones of N . In particular, v, r, θ

and ϕ are defined such that the following properties hold:

• v is constant on each lightcone. In particular, if a given lightcone has its apex at

γ(τ), τ ∈ [a, b], then v = τ on this lightcone.

• θ and ϕ are both constant on the null generators of each lightcone. In this sense,

they can be viewed as generator labels.

• −r is an affine parameter of the null generators of each lightcone.

In the case of Schwarzschild, these coordinates correspond to the ingoing Eddington-

Finkelstein coordinates. The lightcone coordinates also come in a quasi-Cartesian variant,

(v, x1, x2, x3). The construction of both variants will be formally carried out in the following

section.

2.3.2 Formal definition

Consider again a Lorentzian manifold (M , g) and an open neighborhood N ⊆ M equipped

with a coordinate system x̃µ, µ ∈ {0, 1, 2, 3}. Unless otherwise specified, all components

will be taken with respect to this coordinate system. For the construction below to be

successful, we demand that N be a normal convex neighborhood of γ. Consider now a

smooth future directed timelike geodesic γ : [a, b] → N on which an orthonormal tetrad

{λa}a∈{0,1,2,3} is installed. The goal is to assign to each point p ∈ N a set of lightcone

coordinates. Initially, we will assign p a set of quasi-Cartesian lightcone coordinates

(v, x1, x2, x3).

Consider an arbitrary point p ∈ N . Since N is normal convex, there is a unique

future directed null geodesic β which starts at p and intersects γ. The point of intersection

will be denoted by p′. The advanced time coordinate v of p is then defined indirectly by
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p′ = γ(τ = v). In other words, v is equal to the value of τ at the point where β and γ

intersect. Next, the spatial lightcone coordinates are defined by

xi := −λi
α′σα′

(p, p′), i ∈ {1, 2, 3} (2.51)

Furthermore, since p and p′ are linked by a null geodesic, we have σ(p, p′) = 0. The

quasi-spherical variant of the lightcone coordinates are defined in the following.

The advanced time coordinate continues to be defined as above. We then make the

following definition:

r(p) := −σα′(p, p′)uα′
(p′) (2.52)

which, for the moment, is simply a scalar field defined on N . In the following, it will be

made clear that −r in fact serves as an affine parameter along the null generators of the

past lightcone with apex at p′. Using (2.7), we compute

δijx
ixj = (gα′β′ + λ0

α′λ0
β′)σα′

σβ′
= uα′uβ′σα′

σβ′
= r2 (2.53)

having used that σα′σα′
= 0 and λ0

α′ = −uα′ . We then define

Ωi :=
xi

r
(2.54)

which, owing to (2.53), satisfies δijΩ
iΩj = 1. Furthermore, using (2.8), we may decompose

σα′
in terms of the tetrad {λa}a∈{0,1,2,3} as follows:

σα′
= gα

′β′
σβ′ = (−uα′

uβ′
+ δijλα′

i λβ′

j )σβ′ = r(uα′ − Ωiλα′

i ) (2.55)

Consider now a small displacement of p so that we end up at a new point p+ δp. This

point will have lightcone coordinates (v + δv, xi + δxi). Correspondingly, β is displaced to

a new null geodesic, denoted by β + δβ. This further induces a displacement in p′ which

becomes p′ + δp′. The coordinates of p′ + δp′ are denoted by xα′
+ δxα′

and it follows from

the definition of v that δxα′
= uα′

δv. This is then used in the following computation:

0 = σ(p+ δp, p′ + δp′) = σαδx
α + σα′δxα′

= σαδx
α + σα′uα′

δv = σαδx
α − rδv (2.56)
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to first order in the displacements. In other words,

∂αv = −lα (2.57)

where lα := −σα/r is future-directed and tangent to β at p. In a similar fashion, we seek

an expression for ∂αx
i. Firstly,

δxi = −λi
α′δσα′

= −λi
α′σα′

β′uβ′
δv − λi

α′σα′
βδx

β = λi
α′σα′

β′uβ′
lβδx

β − λi
α′σα′

βδx
β (2.58)

which is equivalent to

∂αx
i = λi

α′σα′
β′uβ′

lα − λi
α′σα′

α (2.59)

Completely analogously, we obtain

∂βr = σα′β′uα′
uβ′

lβ − σα′βu
α′

(2.60)

From eq. (2.28), we also obtain

σαβl
β = lα (2.61)

and similarly,

σα′βl
β = −σα′

r
(2.62)

Using the latter of these in (2.60) yields

lβ∂βr = −1 (2.63)

having used that lβl
β = 0.

The next step will be to compute the covariant derivative of lα. We start by observing

how lα changes under a small displacement as described earlier:

rδlα = −δσα − lαδr = [−σαβ + σαβ′uβ′
lβ − lα(σα′β′uα′

uβ′
lβ − σα′βu

α′
)]δxβ (2.64)
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In other words,

rDβlα = −σαβ + σαβ′uβ′
lβ − σα′β′uα′

uβ′
lαlβ + σα′βu

α′
lα (2.65)

Contracting with lβ, we find that l satisfies the geodesic equation in affine parameter form:

lβDβl
α = 0 (2.66)

Taken together with equation (2.63), this implies that −r is an affine parameter along β.

Hence a displacement along a given null generator of the past lightcone that converges to

p′ is described by

δxα = −lαδr (2.67)

Using this in (2.56) and (2.58), we obtain δv = 0 and δxi = Ωiδr. Integrating these, we

obtain v = constant and xi = rΩi(θA). The two angles θA, A ∈ {1, 2} are constants with

respect to r and serve to parameterize the unit vector Ω.

In conclusion, the geodesics to which lα is tangent are the generators of the lightcone

described by v = constant. A particular generator is chosen by fixing the two angles θA

and on this generator, −r is an affine parameter. The tuple (v, r, θ1, θ2) thus constitutes

the advertised quasi-spherical lightcone coordinates. See figure 2.1 for an illustration.

25



Figure 2.1: A particular lightcone, chosen by setting v equal to some constant. A particular
generator on this lightcone is then chosen by specifying the two angles θ1 and θ2. Then
−r serves as an affine parameter on this generator.

2.4 Tidal moments and tidal potentials

This section covers the set of tidal moments and corresponding tidal potentials that serve

to characterise the tidal environment of the background spacetime. The tidal potentials

will serve as the building blocks for the Poisson-Vlasov metric.

Let (M , g) be a Lorentzian manifold and consider a coordinate system xµ, µ ∈

{0, 1, 2, 3} defined on an open neighborhood O ⊆ M . It is assumed that O is a vacuum

region of spacetime, i.e. the Ricci tensor vanishes identically on N . Now consider a

smooth timelike geodesic γ in O, parameterized by proper time. The first step will be

to establish an orthogonal tetrad {λa}a∈{0,1,2,3} on γ analogously to how we did it for the

lightcone coordinates. In particular, we choose λ0 = u. The three remaining tetrad vectors

will be explicitly constructed for a geodesic in the Schwarzschild spacetime in chapter 3.

In four dimensions, the Weyl tensor C has ten independent components. We encode these
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components in the two symmetric-tracefree tensors whose components are given by

Eij := Cαµβνλ
α
i u

µλβ
j u

ν (2.68)

Bij := C∗
αµβνλ

α
i u

µλβ
j u

ν (2.69)

where i, j = {1, 2, 3} and C∗ is the dual Weyl tensor with components given by

C∗
αµβν =

1

2
εγσαµCγσβν (2.70)

Here, ε is the Levi-Civita tensor with components given by

εµνσρ = ±
√
− det(g)ϵµνσρ (2.71)

where g is the matrix representation of the metric tensor in the coordinate system

xµ, µ ∈ {0, 1, 2, 3} and ϵ is the permutation symbol with convention ϵ0123 = 1. The sign

in front of the square root depends on the orientation of the coordinate system. We

refer to Eij and Bij as the quadrupole tidal moments of electric type and magnetic type

respectively along γ. Note that since O is Ricci flat, the Weyl tensor and the Riemann

tensor coincide on O . Henceforth, we will therefore simply use the Riemann tensor in the

construction of tidal moments. Notice also that (2.68) and (2.69) are related to the tidal

tensors (1.7) and (1.8) simply by Eij = Êαβλα
i λ

β
j and Bij = B̂αβλ

α
i λ

β
j , having introduced

hats to distinguish between the the full spacetime tensors of the introduction and the tidal

moments introduced here. Next comes the definitions of the octupole tidal moments:

Eijk :=
(
Rαµβν;σλ

α
i u

µλβ
j u

νλσ
k

)STF

(2.72)

Bijk :=
(
R∗

αµβν;σλ
α
i u

µλβ
j u

νλσ
k

)STF

(2.73)

where the STF symbol instructs us to symmetrize in all free indices and remove all traces.

For future reference, we also use angled brackets around indices to serve the same purpose.

For example, A⟨µν⟩αβ is obtained by symmetrizing Aµναβ in µ and ν and removing the

trace over µ and ν. We refer to Eijk and Bijk as the octupole tidal moments of electric

type and magnetic type respectively along γ.

In the following, the tidal moments introduced above will be used to define a set of
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tidal potentials. To get started, the coordinate system xµ is assumed to be quasi-Cartesian,

namely it is assumed that x0 is a temporal coordinate and xi, i ∈ {1, 2, 3} are Cartesian

coordinates (later we will specialize to quasi-Cartesian lightcone coordinates). Then define

Ωi :=
xi

r
, i ∈ {1, 2, 3} (2.74)

to be a radial unit vector where r :=
√

δijxixj. The radial direction will be referred to as

the longitudinal direction while the orthogonal space will be referred to as the transverse

directions. Next, define a projector γ which projects to the transverse space, orthogonal

to Ωi:

γi
j := δij − ΩiΩj (2.75)

We may transform the Cartesian coordinates xi, i ∈ {1, 2, 3} to spherical coordinates,

(r, θ, ϕ) by

xi = rΩi(θA) (2.76)

where A ∈ {1, 2} and θ1 = θ, θ2 = ϕ. This implies

∂xi

∂r
= Ωi,

∂xi

∂θA
= rΩi

A (2.77)

where

Ωi
A :=

∂Ωi

∂θA
(2.78)

Since xix
i = r2 which is independent of θA, we have

ΩiΩ
i
A = 0 (2.79)

In later sections, we will explicitly set Ω1 = cos θ, Ω2 = sin θ sinϕ and Ω3 = sin θ cosϕ.
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With this choice, two additional identities hold:

γijΩ
i
AΩ

j
B = ΩAB (2.80a)

ΩABΩi
AΩ

j
B = γij (2.80b)

where ΩAB is defined through the matrix representation, ΩAB ∼ diag[1, sin2 θ].

The tidal moments can be split into two sectors, namely the even parity sector and

the odd parity sector. To see this, we first define a parity transformation as follows. A

parity transformation is defined by the following change in tetrad vectors:

λ0 → λ0, λi → −λi, i ∈ {1, 2, 3} (2.81)

That is, the timelike vector remains unchanged while the three spacelike vectors change

sign. Under such a transformation, the tidal moments change as follows:

Eij → Eij, Eijk → −Eijk (2.82)

Bij → −Bij, Bijk → Bijk (2.83)

Hence, Eij and Eijk both transform as Cartesian tensors under a parity transformation.

For this reason, they are said to have even parity. Meanwhile, Bij and Bijk transform as

pseudotensors and are therefore said to have odd parity. The goal is now to construct a

set of tidal potentials out of the tidal moments and Ωi. As a consequence of the parity

transformation properties above, the potentials will be divided into an even parity sector

and an odd parity sector. We demand that each scalar potential should transform as a

scalar under a parity transformation. Likewise, each vector potential should transform

as a vector under a parity transformation. Furthermore, each vector potential should be

orthogonal to Ωi. Finally, each tensor potential should transform as a tensor under a

parity transformation and should be orthogonal to Ωi as well as being tracefree. Each

tidal potential, regardless of type, should correspond to an irreducible representation of

SO(3), labeled by multipole order l. In the following, we spell out this last point in a bit
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more detail. Generically, the even parity potentials are constructed as follows:

E (l) = Ek1k2···klΩk1Ωk2 · · ·Ωkl (2.84)

E (l)
i = γi

jEjk2···klΩk2 · · ·Ωkl (2.85)

E (l)
ij = 2γi

jγj
mEjmk3···klΩ

k3 · · ·Ωkl + γijE (l) (2.86)

where Ek1k2···kl are the components of a constant STF tensor of rank l. The potentials

satisfy the following eigenvalue equations (see appendix C):

r2γijDiDjE (l) + l(l + 1)E (l) = 0 (2.87)

r2γijDiDjE (l)
m + [l(l + 1)− 1]E (l)

m = 0 (2.88)

r2γijDiDjE (l)
mn + [l(l + 1)− 4]E (l)

mn = 0 (2.89)

where Di is a derivative operator defined through

DiTj1j2···jq = γi
pγj1

m1 · · · γjqmq∂pTm1···mq (2.90)

where Tj1j2···jq , q ∈ N are the components of an arbitrary tensor. The odd-parity sector is

constructed in a similar way:

B(l) = Bk1···klΩ
k1 · · ·Ωkl (2.91)

B(l)
i = ϵimnΩ

mBn
k2···klΩ

k2 · · ·Ωkl (2.92)

B(l)
ij = (ϵimnΩ

mBn
qk3···klγ

q
j + ϵjmnΩ

mBn
pk3···klγ

p
i )Ω

k3 · · ·Ωkl (2.93)

satisfying a set of eigenvalue equations completely analogous to (2.87)-(2.89), simply by

replacing E with B.

As an example, a scalar potential is constructed in the following. For the even-parity

sector, the simplest case involves the quadrupole tidal moments Eij. As we have seen, Eij
transforms as a tensor under a parity transformation and so Eq := EijΩiΩj transforms

as a scalar under a parity transformation. Since, by construction, Eij is symmetric and

trace-free, it also satisfies the scalar potential eigenvalue equation for l = 2. Hence, Eq

satisfies all the criteria demanded of a tidal scalar potential. Similarly, Eq
i := γm

i EmnΩ
n

satisfies all the requirements for a vector tidal potential. Going through this procedure, we
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end up with the potentials listed in table 2.1. We will primarily work with quasi-spherical

Eq = EklΩkΩl

Eq
i = γi

kEklΩl

Eq
ij = 2γi

kγj
lEkl + γijEq

Eo = EklmΩkΩlΩm

Eo
i = γi

kEklmΩlΩm

Eo
ij = 2γi

kγj
lEklmΩm + γijEo

Bq
i = ϵiklΩ

kBl
mΩ

m

Bq
ij = ϵiklΩ

kBl
mγ

m
j + ϵjklΩ

kBl
mγ

m
i

Bo
i =

4
3
ϵiklΩ

kBl
mnΩ

mΩn

Bo
ij =

4
3
(ϵiklΩ

kBl
mnγ

m
j + ϵjklΩ

kBl
mnγ

m
i)Ω

n

Table 2.1: Potentials constructed from Eij/Eijk (left) and from Bij/Bijk (right). Superscript
q means quadrupole, while superscript o means octupole.

lightcone coordinates in the chapters to come. For this reason, it will be useful to convert

the potentials to spherical coordinates. This is accomplished using Ωi
A. For example,

Eq
A := Eq

i Ω
i
A, Eq

AB := Eq
ijΩ

i
AΩ

j
B (2.94)

The potentials constructed in this chapter will serve as the building blocks for both the

background metric and the Poisson-Vlasov metric.

2.5 The background metric

This section covers the metric of the tidal background. The main goal will be to express

the components of the background metric in a set of lightcone coordinates. The notation

used closely follows that introduced in section 2.3.2.

Firstly, the components of the inverse metric in quasi-Cartesian lightcone coordinates

are given by

gvv = gαβ∂αv∂βv (2.95)

gvi = gαβ∂αv∂βx
i (2.96)

gij = gαβ∂αx
i∂βx

j (2.97)

By virtue of (2.57) and the fact that lα is null, gvv = 0 identically. Using (2.57) and (2.59),

we compute

gvi = λi
α′lβσα′

β = −1

r
λi
α′σα′

=
xi

r
= Ωi (2.98)
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where the second equality follows from (2.62). Similarly,

gij = λi
α′λ

j
β′g

αβσα′
ασ

β′
β − λi

α′σα′
β′uβ′

Ωj − λj
α′σ

α′
β′uβ′

Ωi (2.99)

For these components, we will use (2.49), (2.50) and (2.55) and write the result as a power

series in r. For notational convenience, we thus write

gij = Gij
0 + rGij

1 + r2Gij
2 + r3Gij

3 + . . . (2.100)

and compute

Gij
0 = δij (2.101)

Gij
1 = 0 (2.102)

Gij
2 =

1

3

[
Ri j

0 0 − (Ri j
k 0 +Rj i

k 0)Ω
k +Ri j

m kΩ
mΩk

+(Ri
0m0Ω

m −Ri
km0Ω

kΩm)Ωj + (Rj
0m0Ω

m −Rj
km0Ω

kΩm)Ωi
]

(2.103)

Gij
3 = − 1

12

[
2(Ṙi j

0 0 − (Ṙi j
0 l + Ṙi j

l 0)Ω
l + Ṙi j

l kΩ
lΩk) + (Ṙi

0l0Ω
l − Ṙi

lk0Ω
lΩk)Ωj

+(Ṙj
0l0Ω

l − Ṙj
lk0Ω

lΩk)Ωi + 2(−Ri j
0 0|lΩ

l + (Ri j
m 0|l +Rj i

m 0|l)Ω
mΩl −Ri j

m k|lΩ
kΩmΩl)

+ (−Ri
0m0|lΩ

mΩl +Ri
km0|lΩ

kΩmΩl)Ωj + (−Rj
0m0|lΩ

mΩl +Rj
km0|lΩ

kΩmΩl)Ωi
]
(2.104)

where the components of the Riemann tensor are frame components with respect to the

tetrad {λa}a∈{0,1,2,3} and overdots denote differentiation with respect to proper time. For

example,

Ṙi
lk0 = Rα′

β′γ′δ′;ϵ′λ
i
α′λ

β′

l λ
γ′

k u
δ′uϵ′ (2.105)

We introduce the potentials

Pij := Ri0j0 − (Rimj0 +Rjmi0)Ω
m +RimjkΩ

mΩk (2.106a)

Pi := PijΩ
j = Ri0m0Ω

m −Rimk0Ω
mΩk (2.106b)

Qij := −Ri0j0|mΩ
m + (Rimj0|k +Rjmi0|k)Ω

mΩk −Rimjk|lΩ
mΩkΩl (2.106c)

Qi := QijΩ
j = −Ri0m0|kΩ

mΩk +Rimk0|lΩ
mΩkΩl (2.106d)
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allowing us to write

Gij
2 =

1

3
(P ij + P iΩj + P jΩi) (2.107)

Gij
3 = − 1

12
(2Ṗ ij + Ṗ iΩj + Ṗ jΩi)− 1

12
(2Qij +QiΩj +QjΩi) (2.108)

Notice that the inverse metric takes the form

gαβ = ηαβ + hαβ (2.109)

where ηαβ are the components of the inverse Minkowski metric in lightcone coordinates

(ηvv = 0, ηvi = Ωi and ηij = δij) and hij = r2Gij
2 + r3Gij

3 +O(r4) with all other components

vanishing. Hence to order r3, the background metric is then given by gαβ = ηαβ − hαβ

where indices are lowered using the Minkowski metric. Explicitly, we have

gvv = −1− r2P +
1

3
r3Ṗ +

1

3
r3Q+O(r4) (2.110a)

gvi = Ωi + γk
i

[
−2

3
r2Pk +

1

4
r3Ṗk +

1

4
r3Qk +O(r4)

]
(2.110b)

gij = γij + γk
i γ

m
j

[
−1

3
r2Pkm +

1

6
r3Ṗkm +

1

6
r3Qkm +O(r4)

]
(2.110c)

where P := PiΩ
i and Q := QiΩ

i. It will be useful to express (2.110) in terms of the

tidal potentials of table 2.1. Firstly, with the notation employed in this section, the tidal

moments of quadrupole order are written as

Eij = Ri0j0 (2.111)

Bij =
1

2
ϵi

mnRmnj0 (2.112)

and the tidal moments of octupole order are written as

Eijk = (Ri0j0|k)
STF (2.113)

Bijk =
3

8
(ϵi

mnRmnj0|k)
STF (2.114)

The next step will be to express the Riemann tensor and its derivatives in terms of these
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tidal potentials. Of course, Ri0j0 = Eij. Inverting (2.112), we obtain

Rijk0 = ϵijmBm
k (2.115)

having made use of the identity ϵijkϵ
mnk = δmi δ

n
j − δni δ

m
j . To obtain an expression for

Rimjn, we start by making the following observations. Firstly, by using the completeness

relation of equation (2.8), we have

0 = Rµν = −uρuσRρµσν + δijλρ
iλ

σ
jRρµσν (2.116)

Taking frame components then yields

δmnRimjn = Eij (2.117)

Additionally, the following tracelessness condition holds:

δijδmnRimjn = 0 (2.118)

Hence the number of independent components of Rimjn is five, the same number of

independent components as that of Eij. This then implies that (2.117) can be inverted to

give an expression for Rimjn in terms of Eij. From (2.117), we obtain

R1313 = E11 + E22 = −E33 R1213 = E23, R1223 = −E13

R1323 = E12, R2323 = E22 + E33 = −E11 (2.119)

as the independent components of Rimjn. These are summarized as

Rikjl = δijEkl + δklEij − δilEjk − δjkEil (2.120)

Moving on to the derivatives of the Riemann tensor, we start by expanding the definition
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of Eijk:

Eijk =
1

3
(Ri0j0|k +Ri0k0|j +Rj0k0|i)

= Ri0j0|k −
1

3
(Ṙjki0 + Ṙikj0)

= Ri0j0|k −
1

3
(ϵjkmḂm

i + ϵikmḂm
j) (2.121)

where the second equality follows from the second Bianchi identity. Hence,

Ri0j0|k = Eijk +
1

3
(ϵjkmḂm

i + ϵikmḂm
j) (2.122)

In a similar fashion, we have

Rijk0|l = ϵij
m

[
4

3
Bmkl −

1

3

(
ϵmlnĖn

k + ϵklnĖn
m

)]
(2.123)

Rijkl|m = −ϵij
pϵkl

q

[
Epqm +

1

3

(
ϵpmnḂn

q + ϵqmnḂn
p

)]
(2.124)

Inserting these expressions into (2.106) results in the background metric (2.110) taking

the following form:

gvv = −1− r2Eq +
1

3
r3Ėq − 1

3
r3Eo +O(r4) (2.125a)

gvi = Ωi −
2

3
r2(Eq

i − Bq
i ) +

1

3
r3(Ėq

i − Ḃq
i )−

1

4
r3(Eo

i − Bo
i ) +O(r4) (2.125b)

gij = γij −
1

3
r2(Eq

ij − Bq
ij) +

5

18
r3(Ėq

ij − Ḃq
ij)−

1

6
r3(Eo

ij − Bo
ij) +O(r4) (2.125c)

For future reference, we also note the components of the background metric in quasi-

spherical coordinates. As is always the case, the metric transforms according to

gsphericalµν = gCartesian
αβ

∂x̃α

∂xµ

∂x̃β

∂xν
(2.126)

where x̃α, α ∈ {v, x1, x2, x3} are quasi-Cartesian coordinates and xµ, µ ∈ {v, r, θ1, θ2} are

quasi-spherical coordinates. We then use (2.77) as well as (2.94) to arrive at the following
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non-vanishing components of the background metric in quasi-spherical coordinates:

gvv = −1− r2Eq +
1

3
r3Ėq − 1

3
r3Eo +O(r4) (2.127a)

gvr = 1 (2.127b)

gvA = −2

3
r3(Eq

A − Bq
A) +

1

3
r4(Ėq

A − Ḃq
A)−

1

4
r4(Eo

A − Bo
A) +O(r5) (2.127c)

gAB = r2ΩAB − 1

3
r4(Eq

AB − Bq
AB) +

5

18
r5(Ėq

AB − Ḃq
AB)−

1

6
r5(Eo

AB − Bo
AB) +O(r6)

(2.127d)

Note that gvr = 1 is exact.

2.6 The Poisson-Vlasov metric

This section introduces the metric that describes the spacetime around a tidally deformed

Schwarzschild black hole, namely the Poisson-Vlasov metric. A detailed derivation of the

metric lies outside the scope of this text and we instead give a brief overview of some of

the steps taken in deriving it.

To start with, we again consider a smooth timelike geodesic γ : [a, b] → M in some

background spacetime, as described in the previous sections. We then consider a Ricci

flat normal convex neighborhood N ⊆ M of γ, equipped with a set of quasi-spherical

lightcone coordinates (v, r, θ, ϕ). In contrast to the previous sections, we now place a black

hole of mass m on γ. This black hole will be referred to as the tidally deformed black

hole (or simply, the deformed black hole) and will be the centerpiece of the remainder of

the text. The horizon of the deformed black hole will trace out a world tube as depicted

in figure 2.2. We demand that this world tube fit well within N , which is achieved by

imposing the following:

m ≪ R (2.128)

where R is the length scale that characterizes the tidal environment. More precisely, R is

the local radius of curvature of the background spacetime evaluated at the position of the
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deformed black hole. In particular, R is defined by

R2 =
1√
K

(2.129)

where K is the Kretschmann scalar (evaluated at the position of the deformed black hole).

It is also required that the neighborhood N itself should be small as compared to R. In

particular, we demand that

r ≪ R (2.130)

Two further implications of (2.128) and (2.130) are that the black hole is weakly perturbed

by the background, and that the world tube is small as viewed on the scale of R. It is in

this sense that it is sensible, at least approximately, to speak of the black hole following a

worldline.

Figure 2.2: The world tube traced by the black hole horizon. The corresponding lightcones
are generated by a congruence of null geodesics. On each lightcone, v is constant and
along each generator, the angles θ1 and θ2 are constant. Furthermore, r still serves as an
affine parameter along each generator. The generators now converge toward the world
tube and not a worldline.

Despite the fact that there is no longer a worldline for the lightcone coordinates to

be calibrated with respect to, each surface of constant v is still a lightcone. The main
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difference from the background case, is that the generators of each lightcone now converge

towards the world tube traced by the deformed black hole, as opposed to a worldline.

Nevertheless, we can still make sure that on each lightcone, v is constant (this is true by

definition) and on each generator, the angles θ1 and θ2 are constant. Furthermore, r can

still be made to serve as an affine parameter along each generator. Shortly, we will see

that this is accomplished by imposing a set of gauge conditions on the tidal perturbations.

Firstly, however, we make a comment on the ”rigidity” of the lightcone coordinates in the

black hole spacetime. As already mentioned, the lightcone coordinates on each lightcone

are no longer as well behaved as we might like. For instance, we are no longer able to

say that r = 0 corresponds to a point on a worldline γ. We can make up for this, at

least partially, by matching the asymptotic behaviour of the black hole spacetime to the

behaviour of the background spacetime in the following sense. Far from the deformed

black hole in a region where r ≫ m (but still r ≪ R, of course), the gravitational influence

of the deformed black hole will be small compared to that of the background. Namely,

light rays will behave (nearly) the same in this region as they would in the background

spacetime. This motivates the choice to tune the black hole lightcone coordinates so

that the asymptotic description of each generator of a given lightcone coincides with the

corresponding description in the background spacetime. This choice will manifest itself in

the components of the Poisson-Vlasov metric, which will be required to reduce to those of

the background metric in the asymptotic region r ≫ m.

In going from the spacetime around an unperturbed Schwarzschild black hole to the

spacetime around a tidally perturbed Schwarzschild black hole, we would like for the

lightcone coordinates around the black hole to retain their geometrical properties, as

mentioned above. In the following we will see how this leads to the so-called lightcone

gauge. Start by considering the metric of an unperturbed Schwarzschild black hole, denoted

g0. In Eddington-Finkelstein coordinates, the line element corresponding to g0 is given by

ds2 := g0µνdx
µdxν = −fdv2 + 2dvdr + r2dΩ2 (2.131)

where

f := 1− 2m

r
, dΩ2 := dθ2 + sin2 θdϕ2 (2.132)
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Furthermore, the advanced time v is related to the usual coordinate time through

v = t+ r + 2m ln
( r

2m
− 1
)

(2.133)

We then introduce a perturbation with components pµν and write the full metric of the

tidally deformed black hole as

gµν = g0µν + pµν (2.134)

In our case, the perturbation components pµν will be functions of the tidal potentials of

section 2.4 as well as a set of radial functions to be introduced later. Furthermore, it is

assumed that any v-dependence of the metric is entirely contained in the tidal moments

and that this v-dependence is slow in the sense that it has a characteristic time scale of

order R. In particular, this implies that any process which occurs over time scales of

order 2m cannot be described using this metric. The perturbation is constructed as a

power series in r/R and in this text, we only consider terms through order (r/R)3. Terms

of order (r/R)2 will be referred to as quadrupole order terms. These terms will contain

the quadrupole moments Eij and Bij. Next, the terms of order (r/R)3 will be referred

to as octupole order terms and will, in addition to the quadrupole moments, contain the

octupole moments Eijk and Bijk as well as the v-derivatives of the quadrupole moments.

In the unperturbed case, corresponding to pµν = 0, we recall that the vector field l with

components given by

lµ := −Dµv = −δµ0 (2.135)

is null. As we saw in section 2.3.2, this implies that each surface of constant v is a null-

hypersurface of the spacetime. In particular, these null hypersurfaces are past lightcones.

The index of lµ is raised according to

lµ = −(g0)µ0 = −δµ1 (2.136)

making it clear that θ and ϕ are constant on each generator of the null congruence

corresponding to the lightcone and that −r is an affine parameter along each generator.

The geometrical meaning of the lightcone coordinates is thus encapsulated in equations
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(2.135) and (2.136). For this to carry over to the perturbed spacetime, we then require

that (2.135) and (2.136) continue to hold when the perturbation is introduced. Allowing

for a non-vanishing perturbation, we have

lµ = (g0µν + pµν)l
ν (2.137)

Hence the requirement to be imposed is equivalent to demanding that pµνl
ν = 0. Written

out more explicitly, this amounts to the following:

pvr = prr = prθ = prϕ = 0 (2.138)

Collectively, these four conditions are known as the lightcone gauge conditions. As shown

by Poisson and Preston, there is in fact some residual gauge freedom which allows one to

further impose

pvv = pvA = 0 at r = 2m (2.139)

These are known as the horizon-locking conditions and imply that the black hole horizon

is located at

rhorizon = 2m+O
[
(m/R)5

]
(2.140)

In other words, even in the perturbed case, the horizon continues to be described by

r = 2m at the level of precision maintained here. The following ansatz is then put forth

for the metric around a tidally deformed Schwarzschild black hole, utilizing the lightcone

gauge from above (including only terms through octupole order):

gvv = −f(1 + r2fEq) +
1

3
r3eq2

d

dv
Eq − 1

3
r3eo1Eo (2.141a)

gvr = 1 (2.141b)

gvA = −2

3
r3(eq4E

q
A − bq4B

q
A) +

1

3
r4(eq5

d

dv
Eq
A − bq5

d

dv
Bq
A)−

1

4
r4 (eo4Eo

A − bo4Bo
A) (2.141c)

gAB = r2ΩAB − 1

3
r4 (eq7E

q
AB − bq7B

q
AB)

+
5

18
r5(eq8

d

dv
Eq
AB − bq8

d

dv
Bq
AB)−

1

6
r5(eo7Eo

AB − bo7Bo
AB) (2.141d)
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where the radial functions, eqi , e
o
i , b

q
i and boi are all required to approach unity in the limit

2m/r → 0. Note that gvr = 1 is exact, owing to the properties of the lightcone coordinates

with respect to which the components are given. The motivation for the ansatz above

is threefold. Firstly, it reduces to the Schwarzschild metric when the perturbation is

switched off, corresponding to setting all tidal moments to zero. Secondly, it reduces to

the background metric in the limit 2m/r → 0. Thirdly, the expansion in tidal moments

as above, amounts to a decomposition of the metric into a basis of spherical harmonic

modes. This last point is not one we will dwell further on, but simply mention it for

completeness sake. The main task at hand is then to impose Einstein’s field equations in

order to determine the radial functions. We will not go through the computations here,

but simply list the results obtained by Poisson and Vlasov. They can be seen in table

(2.2).

eq1 = f 2

eq2 = f
[
1 + 1

4x
(5 + 12 log x)− 1

4x2 (27 + 12 log x) + 7
4x3 +

3
4x4

]
eq4 = f

eq5 = f
[
1 + 1

6x
(13 + 12 log x)− 5

2x2 − 3
2x3 − 1

2x4

]
eq7 = 1− 1

2x2

eq8 = 1 + 2
5x
(4 + 3 log x)− 9

5x2 − 1
5x3 (7 + 3 log x) + 3

5x4

eo1 = f 2(1− 1
2x
)

eo4 = f(1− 2
3x
)

eo7 = f + 1
10x3

bq4 = f

bq5 = f
[
1 + 1

6x
(7 + 12 log x)− 3

2x2 − 1
2x3 − 1

6x4

]
bq7 = 1− 3

2x2

bq8 = 1 + 1
5x
(5 + 6 log x)− 9

5x2 − 1
5x3 (2 + 3 log x) + 1

5x4

bo4 = f(1− 2
3x
)

bo7 = f − 1
10x3

Table 2.2: Radial functions. Here, x := r/(2m) and f := 1− 1/x.

In certain cases, it will prove useful to express the metric in standard Schwarzschild

spherical coordinates (t, r, θ, ϕ). Denote by g̃ the metric in these coordinates. Then using
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v := t+ r + 2m ln(r/(2m)− 1), we get

g̃tt = gvv (2.142)

g̃tr =
1

f
gvv + 1 (2.143)

g̃rr =
1

f

(
1

f
gvv + 2

)
(2.144)

g̃tA = gvA (2.145)

g̃rA =
1

f
gvA (2.146)

g̃AB = gAB (2.147)
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Chapter 3

Computing tidal potentials for a

Schwarzschild perturber

In this section, we compute the tidal potentials for a Schwarzschild black hole of mass

M ≫ m. That is, we consider the case in which the Schwarzschild black hole of mass m

is perturbed by a much larger, background, Schwarzschild black hole of mass M . The

resulting binary system is thus an EMR and the tidally deformed black hole can be viewed

as a test-particle orbiting the background black hole.

Sections 3.2 and 3.3 closely follow [10].

3.1 Introducing a second coordinate system

Since we are considering a binary system of black holes, it will prove useful to introduce two

coordinates systems, namely one for the background black hole and one for the deformed

black hole.

First erect a Schwarzschild coordinate system around the background black hole. With

respect to this coordinates system, the coordinates of the tidally deformed black hole will

be denoted (t′, r′, θ′, ϕ′). Next, establish a second Schwarzschild coordinate system around

the deformed black hole. With respect to this coordinate system, the coordinates of a

test-particle orbiting the deformed black hole will be denoted (t, r, θ, ϕ). See figure 3.1 for

an illustration.

Furthermore, with reference to the background black hole, we denote the specific energy

and specific angular momentum of the deformed black hole as E ′ and L′ respectively.
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Similarly, with reference to the deformed black hole, the specific energy and specific angular

momentum of the test-particle will be denoted E and L respectively.

Figure 3.1: Coordinates of the tidally deformed black hole in relation to the background
black hole (left). Coordinates of a test-particle in orbit around the deformed black hole
(right).

With respect to the coordinate system of the background black hole, the non-vanishing

components of the background metric g′ are given by [18]:

g′00 = −
(
1− 2M

r′

)
(3.1)

g′11 =
1

1− 2M
r′

(3.2)

g′22 = r′2 (3.3)

g′33 = r′2 sin2 θ′ (3.4)

where it is understood that the components are evaluated at the position of the deformed

black hole. Furthermore, the independent, non-vanishing components of the Riemann
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tensor are then easily computed:

R′
0101 = −2M

r′3
(3.5)

R′
0202 =

M

r′

(
1− 2M

r′

)
(3.6)

R′
0303 =

M sin2 θ′

r′

(
1− 2M

r′

)
(3.7)

R′
1212 =

M

2M − r′
(3.8)

R′
1313 =

M sin2 θ′

2M − r′
(3.9)

R′
2323 = 2Mr′ sin2 θ′ (3.10)

Assuming the deformed black hole follows a geodesic γ : [a, b] → M , the usual integrals of

motion apply [10]:

ṫ′ =
E ′

1− 2M
r′

(3.11)

ṙ′2 = E ′2 − 1

r′2

(
1− 2M

r′

)
(r′2 +K) (3.12)

θ̇′2 =
1

r′4

(
K − L′2

z′

sin2 θ′

)
(3.13)

ϕ̇′ =
L′
z′

r′2 sin2 θ′
(3.14)

where L′
z′ is the specific angular momentum about the axis of symmetry of the deformed

black hole and K is Carter’s fourth constant (see appendix D) given by

K = p′2θ′ +
L′2
z′

sin2 θ′
(3.15)

where p′θ′ is the latitudinal component of the deformed black hole’s specific angular

momentum. Finally, overdots denote differentiation with respect to the proper time along

γ.

3.2 Constructing an orthonormal tetrad

In accordance with the procedure outlined in section 2.4, we start by constructing an

orthonormal tetrad, {λa}a∈{0,1,2,3} along γ. Denote the four-velocity of the deformed black
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hole by u′ and set λ0 := u′. To construct the next vector of the tetrad, we introduce the

Killing-Yano tensor field f for the Schwarzschild geometry (see appendix E for more on

Killing-Yano tensors). With respect to the Schwarzschild coordinates (t′, r′, θ′, ϕ′), the

components of f may be denoted fµν . The defining equations for f are then fµν = −fνµ

and

Dµfσν +Dνfσµ = 0 (3.16)

For the Schwarzschild spacetime, the nonvanishing components of f are f23 = −f32 =

r′3 sin θ. Consider then the vector X with components Xµ = K−1/2fµ
νu

ν . This vector is

parallel transported along γ. Indeed, since u obeys the geodesic equation, since K is a

constant of motion and since the connection D by assumption is metric compatible, we get

D

dτ
Xµ = K−1/2gµσuρuνDρfσν = 0 (3.17)

having used the anti-symmetry of Dρfσν in ρ and ν. Furthermore, X is normalized:

XµX
µ = K−1fµνf

µ
σu

νuσ = K−1Qµνu
µuν = 1 (3.18)

where Qµν = fµνf
µ
σ is the Killing tensor corresponding to Carter’s constant (see appendices

D and E). Finally, X is orthogonal to λ0:

Xµλ
µ
0 = K−1/2fµνu

νuµ = 0 (3.19)

having used the antisymmetry of f . In conclusion, we can justifiably set λ2 := X.

Explicitly,

λ2 =

(
0, 0,

L′
z′

K1/2r′ sin θ′
,− r′

K1/2 sin θ′
θ̇′
)

(3.20)

In order to construct the remaining two members of the tetrad, we put forth two candidates,

λ′
1 and λ′

3, solely inspired by the fact that they are normalised and orthogonal to both

46



each other as well as to λ0 and λ2. They are given by the following:

λ′
1 =

(
r′ṙ′√

K + r′2
(
1− 2M

r′

) , E ′r′√
K + r′2

, 0, 0

)
(3.21)

λ′
3 =

(
E ′

1− 2M
r′

√
K

K + r′2
,

√
K

K + r′2
ṙ′,

√
K + r′2

K
θ̇′,

√
K + r′2

K

L′
z′

r′2 sin2 θ′

)
(3.22)

They are, however, not parallel transported along γ. To remedy this, we introduce a

time-dependent rotation angle Ψ. The final two members of the tetrad are then given by

λ1 = λ′
1 cosΨ− λ′

3 sinΨ (3.23)

λ3 = λ′
1 sinΨ + λ′

3 cosΨ (3.24)

Owing to the properties of λ′
1, λ

′
3, these vectors are normalized and orthogonal to both

each other and to λ0 and λ2. Now, we would like to determine a condition on Ψ which

ensures that they are parallel transported along γ. Explicitly, we demand that

uµDµλ
ν
i = 0, i ∈ {1, 3} (3.25)

for all ν ∈ {0, 1, 2, 3}. It is straightforward, albeit tedious, to show that we must then

have:

Ψ̇ =
K1/2E ′

K + r′2
(3.26)

This finishes the construction of the tetrad. Before moving on to calculate any tidal

moments, it will prove useful to express the tetrad in Carter’s basis {eâ}a∈{0,1,2,3}, given by

e0̂(τ) =

 1√
1− 2M

r′(τ)

, 0, 0, 0

 (3.27)

e1̂(τ) =

(
0,

√
1− 2M

r′(τ)
, 0, 0

)
(3.28)

e2̂(τ) =

(
0, 0,

1

r′(τ)
, 0

)
(3.29)

e3̂(τ) =

(
0, 0, 0,

1

r′(τ) sin θ′

)
(3.30)
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Explicitly, we decompose each λa with respect to Carter’s basis according to

λµ
a = λ̃â

ae
µ
â (3.31)

where λ̃â
a are the components of λa with respect to Carter’s basis. We also decompose

tensors on γ with respect to Carter’s basis. If T is an arbitrary rank (k, l) tensor on γ

with components given by T µ1···µk
ν1···νl , then we write

T µ1···µk
ν1···νl = T̃ â1···âk

b̂1···b̂le
µ1

â1
· · · eµk

âk
eb̂1ν1 · · · e

b̂l
νl

(3.32)

where

eâµ = ηâb̂gµνe
ν
b̂

(3.33)

defines the dual of Carter’s basis. For future reference, we explicitly write the components

of our tetrad in Carter’s basis:

λ̃0 =

(
E ′(

1− 2M
r′

)1/2 , ṙ′(
1− 2M

r′

)1/2 , θ̇′r′, L′
z′

r′ sin θ′

)
(3.34)

λ̃1 = λ̃′
1 cosΨ− λ̃′

3 sinΨ (3.35)

λ̃2 =

(
0, 0,

L′
z′

K1/2 sin θ′
,
r′2θ̇′

K1/2

)
(3.36)

λ̃3 = λ̃′
1 sinΨ + λ̃′

3 cosΨ (3.37)

where

λ̃′
1 =

 r′ṙ′√
(K + r′2)

(
1− 2M

r′

) , E ′r′√
(K + r′2)

(
1− 2M

r′

) , 0, 0
 (3.38)

λ̃′
3 =

(√
K

(K + r′2)
(
1− 2M

r′

)E ′,

√
K

(K + r′2)
(
1− 2M

r′

) ṙ′,√
K + r′2

K
r′θ̇′,

√
K + r′2

K

L′
z′

r′ sin θ′

)
(3.39)
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Furthermore, the nonvanishing components of the Riemann tensor in Carter’s basis are

R′
0̂1̂0̂1̂

= −R′
2̂3̂2̂3̂

= −2M

r′3
(3.40)

R′
0̂2̂0̂2̂

= R′
0̂3̂0̂3̂

= −R′
1̂2̂1̂2̂

= −R′
1̂3̂1̂3̂

=
M

r′3
(3.41)

3.3 Tidal moments

In this section, we put together the pieces from the previous section in order to compute

the tidal moments for a Schwarzschild perturber. Having introduced Carter’s basis, we

first note that the tidal moments of section 2.4 can be written as follows:

Eij := R̃âb̂ĉd̂λ̃
â
i λ̃

b̂
0λ̃

ĉ
jλ̃

d̂
0 (3.42)

Bij := R̃∗
âb̂ĉd̂

λ̃â
i λ̃

b̂
0λ̃

ĉ
jλ̃

d̂
0 (3.43)

Eijk :=
(
R̃âb̂ĉd̂;êλ̃

â
i λ̃

b̂
0λ̃

ĉ
jλ̃

d̂
0λ̃

ê
k

)STF

(3.44)

Bijk :=
(
R̃∗

âb̂ĉd̂;ê
λ̃â
i λ̃

b̂
0λ̃

ĉ
jλ̃

d̂
0λ̃

ê
k

)STF

(3.45)

Without loss of generality, it will be assumed that γ lies in the θ′ = π/2-plane and that

ϕ̇′ ≥ 0. With this choice, L′
z′ = L′ = r′2ϕ̇′ is the total angular momentum of the orbiting

body and K = L′2. From this point forth, we will exclusively be working in Carter’s

basis and so we drop the tildes for notational convenience. The electric quadrupole tidal

moments are given by:

Eij =
M

r3

[
(λ0̂

0)
2(−2λ1̂

iλ
1̂
j + λ2̂

iλ
2̂
j + λ3̂

iλ
3̂
j)− (λ1̂

0)
2(2λ0̂

iλ
0̂
j + λ2̂

iλ
2̂
j + λ3̂

iλ
3̂
j)

+(λ3̂
0)

2(λ0̂
iλ

0̂
j − λ1̂

iλ
1̂
j + 2λ2̂

iλ
2̂
j) + 2λ0̂

0λ
1̂
0(λ

0̂
iλ

1̂
j + λ1̂

iλ
0̂
j)− λ0̂

0λ
3̂
0(λ

0̂
iλ

3̂
j + λ3̂

iλ
0̂
j)

+λ1̂
0λ

3̂
0(λ

1̂
iλ

3̂
j + λ3̂

iλ
1̂
j)
]

(3.46)
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Explicitly, the nonvanishing components are

E11 =
(
1− 3

r′2 + L′2

r′2
cos2Ψ

)
M

r′3
(3.47)

E22 =
(
1 + 3

L′2

r′2

)
M

r′3
(3.48)

E33 =
(
1− 3

r′2 + L′2

r′2
sin2Ψ

)
M

r′3
(3.49)

E13 = −3
r′2 + L′2

r′5
M cosΨ sinΨ (3.50)

with

Ψ =
E ′L′

L′2 + r′2
τ (3.51)

Furthermore, the nonvanishing electric octupole moments are given by

E111 =
15M√

L′2 + r′2r′6

[(
L′2 + r′2

)
(E ′r′ cosΨ− L′ṙ′ sinΨ) cos2Ψ

−2r′E ′

5

(
L′2 +

3r′2

2

)
cosΨ +

L′ṙ′r′2

5
sinΨ

]
(3.52)

E113 =
15M√

L′2 + r′2r′6

[(
L′2 + r′2

)
(E ′r′ sinΨ + L′ṙ′ cosΨ) cos2Ψ

−2L′ṙ′

3

(
L′2 +

11r′2

10

)
cosΨ− 2r′E ′

15

(
L′2 +

3r′2

2

)
sinΨ

]
(3.53)

E122 = − 7M√
L′2 + r′2r′6

[
E ′r′

(
L′2 +

3r′2

7

)
cosΨ− 5ṙ′L′

7

(
L′2 +

r′2

5

)
sinΨ

]
(3.54)

E133 = − 15M√
L′2 + r′2r′6

[(
L′2 + r′2

)
(E ′r′ cosΨ− L′ṙ′ sinΨ) cos2Ψ

−13E ′r′ cos (Ψ)

15

(
L′2 +

12r′2

13

)
+

ṙ′L′ sinΨ

3

(
L′2 +

4r′2

5

)]
(3.55)

E223 = − 7M√
L′2 + r′2r′6

[
5ṙ′L′

7

(
L′2 +

r′2

5

)
cosΨ + E ′r′

(
L′2 +

3r′2

7

)
sinΨ

]
(3.56)

E333 = − 15M√
L′2 + r′2r′6

[(
L′2 + r′2

)
(E ′r′ sinΨ + L′ṙ′ cosΨ) cos2Ψ

−ṙ′L′
(
L′2 +

4r′2

5

)
cosΨ− 3E ′r′

5

(
L′2 +

2r′2

3

)
sinΨ

]
(3.57)
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Similarly, the nonvanishing quadrupole magnetic tidal moments are

B12 = −3ML′

r′5

√
L′2 + r′2 cosΨ (3.58)

B23 = −3ML′

r′5

√
L′2 + r′2 sinΨ (3.59)

whereas the octupole magnetic moments all vanish identically. We will primarily concern

ourselves with the case in which γ is radial, in particular we assume that ϕ′ ≡ 0 along γ.

This implies L′ = 0 and Ψ̇ = 0. Hence, Ψ is an arbitrary constant which we take to be

zero. With this choice, only the following tidal moments remain nonvanishing:

E11 = −2M

r′3
, E22 = E33 =

M

r′3
(3.60)

and

E111 =
6ME ′

r′4
, E122 = E133 = −3ME ′

r′4
(3.61)

3.4 Tidal potentials

In this section, we convert the previously computed tidal moments into tidal potentials.

We start by placing a test-particle in orbit around the tidally deformed black hole and then

assign to this test-particle the coordinates (t, r, θ, ϕ) as described earlier. We will need to

decide on an orientation of the resulting binary system with respect to the background

black hole. Two common choices are [4]:

• Polar configuration. This amounts to setting Ω1 = cos θ, Ω2 = sin θ sinϕ and

Ω3 = sin θ cosϕ.

• Equatorial configuration. This amounts to setting Ω1 = sin θ cosϕ, Ω2 = sin θ sinϕ

and Ω3 = cos θ.
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We will choose to consider a polar companion (see figure 3.2). In spherical coordinates,

the electric quadrupole potentials are then given by

Eq =
M

r′3
[1− 3 cos2 θ] (3.62)

Eq
1 =

3

2

M

r′3
sin 2θ (3.63)

Eq
11 = −3

M

r′3
sin2 θ (3.64)

Eq
22 = 3

M

r′3
sin4 θ (3.65)

The electric octupole potentials are given by

Eo =
3ME ′

r′4
[
5 cos2 θ − 3

]
cos θ (3.66)

Eo
1 = −3ME ′

r′4
[
5 cos2 θ − 1

]
sin θ (3.67)

Eo
11 =

750ME ′

r′4

[
1

4

(
sin 2ϕ− sin2 2ϕ+ 4

)
cos2 θ +

1

8
sin 2θ sin 2ϕ (sinϕ+ cosϕ) cos4 θ

+
1

125

(
52 sin2 2ϕ− 52 sin 2ϕ− 198

)
cos4 θ

+
73

500
sin 2θ cos2 θ

(
cos3 ϕ− 1

2
cosϕ sin 2ϕ− 198

73
cosϕ− 125

73
sinϕ

)
+

(
83

500
sin 2ϕ− 83

500
sin2 2ϕ+

271

250

)
cos2 θ +

73

500
sin 2θ (cosϕ+ sinϕ)− 73

250

]
cos θ

(3.68)

Eo
22 = −375ME ′

r′4

[(
cos4 θ − 208

125
cos2 θ +

83

125

)
cos4 ϕ− 1

4

(
cos2 θ − 73

125

)
sin 2θ cos3 ϕ

+

(
1

4
cos2 θ sin 2θ sinϕ− cos4 θ − 73

500
sin 2θ sinϕ+

208

125
cos2 θ − 83

125

)
cos2 ϕ

+

(
1

4
cos2 θ sin 2θ − 1

2
cos4 θ sinϕ+

104

125
cos2 θ sinϕ− 73

500
sin 2θ − 83

250
sinϕ

)
cosϕ

−27

50
cos2 θ +

83

250

]
sin 2θ sin θ (3.69)

Eo
12 =

375ME ′

4r′4

[
1

2
(cosϕ− sinϕ) cos3 θ +

1

4
sin 2θ cos 2ϕ cos θ

+
73

250
(sinϕ− cosϕ) cos θ − 83

250
sin θ cos 2ϕ

]
sin2 2θ sin 2ϕ (3.70)

where E ′ is the specific energy of the tidally deformed black hole.

52



Figure 3.2: Illustration of the binary system in the polar configuration.

53



Chapter 4

ISCO shifts

In this chapter, we consider the shifts in the radial position, specific energy and specific

angular momentum that are brought on by the presence of a tidal field. We start by

considering the problem at quadrupole order and then later move on to octupole order.

Sections 4.1 and 4.3 closely follow the methods of [4]. Section 4.2 is based off a

conversation with Troels Harmark and Daniele Pica.

4.1 Quadrupole order ISCO shift

Suppose a test-particle is orbiting an unperturbed Schwarzschild black hole of mass m in

the θ = π/2-plane along a geodesic β : [a, b] → M . Then the innermost stable circular

orbit (ISCO) of the test-particle is located at r0 = 6m. While orbiting in the ISCO, the

specific energy of the test-particle must be E0 =
2
√
2

3
while the specific angular momentum

of the test-particle must be L0 =
√
12m. In this section, we seek to find the corrections to

these quantities, brought on by the presence of a tidal field. We do this perturbatively,

first noticing that (2.128) together with M ≫ m implies

ϵ :=
Mm2

r′3
≪ 1 (4.1)
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for any r′ ≥ 2M . Hence ϵ is a valid expansion parameter. To quadrupole order, we may

write

rISCO = 6m+ r1ϵ (4.2)

LISCO =
√
12m+ L1ϵ (4.3)

EISCO =
2
√
2

3
+ E1ϵ (4.4)

where r1, L1 and E1 are the shifts in the radial coordinate, specific angular momentum

and specific energy respectively. Given the current setup, the non-vanishing components

of the metric (2.141) are as follows:

g00 = −f

(
1 +

fMr2

r′3

)
(4.5)

g01 = −fMr2

r′3
(4.6)

g11 =
1

f

(
1− Mfr2

r′3

)
(4.7)

g22 = r2
[
1− M

r′3
(2m2 − r2)

]
(4.8)

g33 = r2
[
1 +

M

r′3
(2m2 − r2)

]
(4.9)

with respect to the usual Schwarzschild spherical coordinates. The metric is independent

of both t and ϕ, giving rise to two Killing vectors, ξt and ξϕ with components given by

ξµt = δµ0 and ξµϕ = δµ3 . The two corresponding conserved quantities are the specific energy

E and specific angular momentum L:

E := −u · ξt = −g00ṫ− g01ṙ = f

(
1 +

r2fM

r′3

)
ṫ+

r2fM

r′3
ṙ (4.10)

L := u · ξϕ = g33ϕ̇ =

[
1 + (2m2 − r2)

M

r′3

]
r2ϕ̇ (4.11)

Overdots now denote differentiation with respect to the proper time of the test-particle.

Note that by setting M = 0, we recover the usual conservation of specific energy and

specific angular momentum for the unperturbed Schwarzschild solution.
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Inserting E and L into uµuµ = −1, yields the following differential equation:

E2 = ṙ2 + V (r) (4.12)

where the potential V is given by

V (r) := −
(
1 +

1

g33
L2

)
g00 (4.13)

Expanding V to quadrupole order, we get the following:

V (r) =
2 (L2 + r2)

(
r
2
−m

)
r3

+
(2m− r) (2L2 (m2 + rm− r2) + 2mr3 − r4)

r3m2
ϵ+O(ϵ2)

(4.14)

Stable circular orbits are characterized by

E2 − V (r) = 0,
dV (r)

dr
= 0,

d2V (r)

dr2
> 0 (4.15)

Inserting (4.2)-(4.4) into (4.15), we find

r1 = −1536m (4.16a)

L1 = 174
√
3m (4.16b)

E1 =
76
√
2

3
(4.16c)

Furthermore, the ISCO frequency, ΩISCO := ϕ̇/ṫ evaluated at the ISCO, is then

ΩISCO =
1 + 491ϵ

6
√
6m

(4.17)

A straightforward modification of the above procedure lets us compute the shift in the

photon-sphere for the tidally deformed black hole. Indeed, we simply impose uµuµ = 0

instead of uµuµ = −1. We obtain (where PS stands for photon sphere):

rPS = 3m(1 + 5ϵ) (4.18)

bPS = 3
√
3m(1− 5ϵ) (4.19)
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where b := L/E is the impact parameter. The photon sphere frequency is:

ΩPS =
1 + 5ϵ

3
√
3m

(4.20)

4.2 Time dependence in octupole order computations

This section is an interlude pertaining to the advanced-time parameterization of γ. When

we defined the tidal moments in section 2.4, we considered a test-particle travelling on a

geodesic γ in the background spacetime. Having parameterized γ in terms of its proper

time τ ′, it naturally follows that the tidal moments are functions of τ ′. However, we

are really considering a binary system consisting of a tidally deformed black hole and a

test-particle. In the region where the binary is far away from the background black hole,

these two descriptions match. In other words, we may in this case consider the binary as

a point particle and use τ ′ to parameterize γ. However, as the binary moves closer to the

background black hole, the tidal field increases in strength and the structure of the binary

becomes important. Hence, we can no longer describe the binary as a point-particle. As

mentioned earlier, this means we have to consider a world tube around γ traced by the

tidally deformed black hole. For this reason, τ ′ loses its usefulness as a parameter and we

must instead switch to the advanced time coordinate v. The two regimes thus described

are illustrated in figure 4.1.

Figure 4.1: Left: Asymptotic region where γ and the tidal moments are parameterized by
proper time. Right: Binary region where γ and the tidal moments are parameterized by
advanced time, v.
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In the intermediary region between the two regions above, both descriptions must be

valid, which implies that

v = τ ′ + r + 2m log(r/(2m)− 1) (4.21)

At quadrupole order, this distinction is not of importance since time-dependence is

neglected altogether. However, in the next section we go on to octupole order where it

becomes important.

4.3 Octupole order ISCO shift

In this section, we go through the same procedure as in section 4.1 but this time to

octupole order. To be precise, the question we are addressing in this section is: If the

binary is at some point r′ with instantaneous velocity dr′/dv, then what are the ISCO

parameters rISCO, EISCO and LISCO at this point. To octupole order, we write

rISCO = r0 + r1ϵ+ r2ϵ
4/3 (4.22)

LISCO = L0 + L1ϵ+ L2ϵ
4/3 (4.23)

EISCO = E0 + E1ϵ+ E2ϵ
4/3 (4.24)

where r2, L2 and E2 are the octupole order shifts to r, L and E respectively. The

nonvanishing components of (2.141) with respect to the usual Schwarzschild spherical
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coordinates are:

g00 = −
[
f

(
1 + f

r2M

r′3

)
+

Mr3

r′4
dr′

dv
eq2

]
(4.25)

g01 = −
[
f
r2M

r′3
+

Mr3

fr′4
dr′

dv
eq2

]
(4.26)

g11 =
1

f

[
1− f

r2M

r′3
− Mr3

fr′4
dr′

dv
eq2

]
(4.27)

g02 = −3

4
r4f

(
1− 4m

3r

)
ME ′

r′4
(4.28)

g12 = −3

4
r4
(
1− 4m

3r

)
ME ′

r′4
(4.29)

g22 = r2
[
1− M

r′3
(2m2 − r2) +

5

2
r3
M

r′4
dr′

dv
eq8

]
(4.30)

g33 = r2
[
1 +

M

r′3
(2m2 − r2)− 5

2
r3
M

r′4
dr′

dv
eq8

]
(4.31)

For concreteness, it will be assumed that E ′ = 1. The specific energy and angular

momentum of the test-particle are given by

E = −g00ṫ− g01ṙ (4.32)

L = g33ϕ̇ (4.33)

Similarly to before, we obtain the following differential equation:

E2 = ṙ2 + V (r) (4.34)

where

V (r) := −
(
1 +

1

g33
L2

)
g00 (4.35)
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Expanding the potential to octupole order, yields

V (r) =
2 (L2 + r2)

(
r
2
−m

)
r3

+
(2m− r) (2L2 (m2 +mr − r2) + 2mr3 − r4)

r3m2
ϵ

+
dr′

dv

36 (r − 2m)

(Mm2)
1
3 m2r4

[
1

3

(
L2
(
m2 + rm− r2

)
+mr3 − 1

2
r4
)
rm ln

2m

r
+

r6

36
+

5mr5

72

+

(
7L2

72
− 3m2

4

)
r4 +

(
7

24
L2m+

7

18
m3

)
r3 +

(
1

3
m4 − 5

4
L2m2

)
r2

−7L2m3r

18
+ L2m4

]
ϵ
4
3 (4.36)

Imposing (4.15), we then find

r2 = −72V (128 ln (3) + 469) (4.37a)

L2 = 4V (261 ln (3) + 746)
√
3 (4.37b)

E2 =
8V
m

(19 ln (3) + 45)
√
2 (4.37c)

where

V :=
dr′

dv

(
m4

M

) 1
3

(4.38)

Notice, in particular, that the octupole order shifts have opposite signs as compared to

their quadrupole order counterparts. For instance, r1 is negative while r2 is positive.

Recall that ṙ′ satisfies the differential equation (3.12) with E ′ = 1. Differentiating this

equation and using that ṙ′ ≤ 0 we have r̈′ ≤ 0 which implies d2r′/dv2 ≤ 0. In other words,

the deformed black hole speeds up along it’s radial trajectory. We thus see that r2 is an

increasing function of v, while L2 and E2 both are decreasing functions of v.

4.4 A lower bound on the energy required to keep

test-particle from inspiralling

In this section, we consider the binary system in the polar configuration with θ = π/2 to

octupole order. Subject to a set assumptions made clear below, we seek to find a lower

bound on the energy of the test-particle such that it will not spiral into its deformed

companion.

60



We assume that the binary starts at rest a distance r′0 from the the background

with E ′ = 1. Hence, the results of the previous section apply. For clarity, we switch

expansion parameter from ϵ to λ = m/M to avoid having time-dependence in the expansion

parameter. A quantity A may be expanded with respect to λ as follows:

A = A0 + AqM
3

r′3
λ2 + AoM

4

r′4
λ3 (4.39)

to octupole order. Here A0, Aq and Ao are the expansion coefficients of A at orders 0,

quadrupole and octupole respectively.

We assume the test-particle has energy

E =
2
√
2

3
+ δ, δ ≪ 1 (4.40)

where δ is a function of v. In accordance with (4.39), we write

δ = EqM
3

r′3
λ2 + Eo(v)

M4

r′4
λ3 (4.41)

We wish to find a lower bound, δ0, on δ such that if δ ≥ δ0 for all v then the radial

coordinate of the test-particle will never be smaller than that of the ISCO of the deformed

black hole. As we have seen, the quadrupole order ISCO shift, E1 is positive while the

octupole order ISCO shift E2 is negative. Hence, the ISCO energy will be greatest at the

initial distance r′0 where the positive E1 dominates over the negative E2. We thus conclude

δ0 =
76
√
2

3

Mm2

r′30
(4.42)

having used that E2 is zero at r′0.
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Chapter 5

Orbital stability considerations

Thus far, the the deformed black hole and its test-particle companion have been assumed

to be in the polar configuration with θ = π/2. In this section, we consider the more general

situation in which this binary system has some generic orientation with respect to the

background black hole. In particular, we seek an expression for the specific energy of the

test-particle as a function of the Euler angles that specify the orientation of the binary. In

addition, we find that the specific energy of the test-particle is minimal for a co-planar

orientation, i.e. one in which the inclination angle of the binary is zero. In this sense, one

may refer to co-planar orbits as stable. The approach will be to write down and minimize

the Hamiltonian for the test-particle with respect to the inclination angle. We thus start

this chapter by giving a brief review of the Hamiltonian formalism, following chapter three

of [7].

5.1 The Hamiltonian formalism

Let (M , g) be a Lorentzian manifold and consider a free test-particle of mass m∗, travelling

along a worldline γ : [a, b] → M . Furthermore, let O be an neighborhood of γ equipped

with coordinates xµ, µ ∈ {0, 1, 2, 3}. Denoting the parameter of γ by t, the action for γ is

then given by

S(γ) =
∫ b

a

dtL(t, γ(t), u(t)) (5.1)
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where L = L(t, q, u) is the Lagrangian for the system, q being the canonical position of

the particle and u being the four-velocity of the particle. Explicitly, L is defined by [3]:

L(t, q, u) := m∗

2
gµν(q)u

µuν (5.2)

The Hamiltonian for the particle is then obtained as the Legendre transform with respect

to u of the Lagrangian. For our purposes this simply amounts to

H(t, q, p) = u(t, q, p) · p− L(t, q, u(t, q, p)) (5.3)

where p is the canonical momentum of the particle and where u is given as the unique

solution to

pµ =
∂L
∂qµ

(t, q, v) (5.4)

For the Lagrangian (5.2), we compute pµ = m∗gµνu
ν which is the familiar result for the

four-momentum. Hence,

H(t, q, p) =
1

2m∗
gµν(q)pµpν (5.5)

The motion of the test-particle is then determined by Hamilton’s equations which read

dqµ

dt
(t) =

∂H

∂pµ
(t, q(t), p(t)),

dpµ
dt

(t) = −∂H

∂qµ
(t, q(t), p(t)) (5.6)

Applying (5.6) to (5.3) then yields the following:

dqµ

dt
=

∂H

∂pµ
=

1

m∗
gµνpν (5.7)

dpµ
dt

=
∂H

∂qσ
= −pµpν

m∗
Γµ

σλg
λν (5.8)

Using the chain rule, these equations can then be combined to yield

0 = pµ
(
∂pν
∂qµ

− Γσ
µνpσ

)
= pµDµpν (5.9)
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which is the geodesic equation in affine parameter form. We may take the corresponding

affine parameter to be the proper time along γ. In this case,

H = −1

2
m∗ (5.10)

owing to the normalization of u. Going forward, we will predominantly be working with

the dimensionless Hamiltonian H̃ := H/m∗.

For the binary system at hand, g is the Poisson-Vlasov metric and m∗ is the mass of

the test-particle orbiting the deformed black hole. When considering the dynamics of the

binary over timescales much larger than the orbital timescale of the test-particle, it will

be of interest to consider the secular orbital average of the Hamiltonian, defined by [19]:

⟨H̃⟩ := 1

2π

∫ 2π

0

dϕH̃|γ (5.11)

where H̃|γ is H̃ evaluated along γ. We explicitly compute ⟨H̃⟩ in the following section.

5.2 Energy of inclined orbits

We are now in a position to tackle the problem mentioned at the beginning of the chapter.

Firstly, we will need to define a set of Euler angles to describe the orientation of the

binary. Consider a reference plane, defined as the orbital plane of the binary around

the background black hole. Install on this reference plane a Cartesian coordinate system

oriented as in the equatorial configuration; the z-axis is perpendicular to the reference

plane, the y-axis points from the binary to the background black hole and the x-axis is

determined by the right-hand rule. We then perform three rotations in order to arrive at

a generic orientation: Firstly, rotate the coordinate system around the z-axis by an angle

ϑ. The rotated coordinate system then has axes x′, y′ and z. Secondly, rotate this new

coordinate system around the x′-axis by an angle I, known as the inclination angle. This

results in a new coordinate system with axes x′, y′′ and z′′. Finally, perform a rotation

around the z′-axis by an angle γ. This then results in a final coordinate system with axes

X, Y and Z := z′′. See figure 5.1 for an illustration.
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Figure 5.1: Illustration of the Euler angles used to rotate the binary system.

Since the reference plane and the corresponding reference coordinate system is defined

as in the equatorial configuration, a generic configuration is given by the vector

Ω =


cos γ sin γ 0

− sin γ cos γ 0

0 0 1



1 0 0

0 cos I sin I

0 − sin I cos I




cosϑ sinϑ 0

− sinϑ cosϑ 0

0 0 1



sin θ cosϕ

sin θ sinϕ

cos θ


(5.12)

The Hamiltonian H̃ is then computed using (5.5). We will assume that the test-particle

follows a circular orbit in the θ = π/2-plane. In this case,

H̃ =
1

2

[
Luϕ − Eut

]
(5.13)

where

L := gϕµu
µ = gϕtu

t + gϕϕu
ϕ (5.14)

E := −gtϕu
µ = −gttu

t − gtϕu
ϕ (5.15)

with metric components given by (2.141) where the tidal potentials are computed using

(5.12). Taking the secular average yields the following:

⟨H̃⟩ = L2

2r2
− E2

2
(
1− 2m

r

) + M

4r′3
(
2− 3 cos2 I sin2 γ + 3 cos2 γ

) [
E2r2 +

(
1− 2m2

r2

)
L2

]
(5.16)
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We then impose (5.10) and find the following expression for E2:

E2 =
L2 + r2

r2

(
1− 2m

r

)
+

M

2r′3r2
[
2L2

(
m2 + rm− r2

)
+ 2r3m− r4

] (
3 cos2 I sin2 γ + 3 cos2 γ − 2

)(
1− 2m

r

)
(5.17)

Since E ≥ 0, maximizing (minimizing) E is equivalent to maximizing (minimizing) E2. It

then follows from (5.17) that E has local extrema at I1 = 0 and I2 = π/2. The second

derivative of E2 with respect to I is given by

d2E2

dI2
= − 3M

r′3r2
sin2 γ

[
2L2

(
m2 + rm− r2

)
+ 2r3m− r4

](
1− 2m

r

)(
2 cos2 I − 1

)
(5.18)

The term in square parentheses is negative for all r ≥ 2m and so

d2E2

dI2

∣∣∣∣
I=0

> 0,
d2E2

dI2

∣∣∣∣
I=π/2

< 0 (5.19)

In other words, orbits with zero inclination (i.e. co-planar orbits) are stable. On the other

hand, orbits for which the orbital plane of the test-particle is perpendicular to the orbital

plane of the binary are unstable.
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Chapter 6

Evolution of energy at octupole order

In this section, we return to the polar configuration with θ = π/2. At octupole order, the

energy E of the test-particle will no longer be conserved as the binary moves towards the

background black hole. We seek to find an expression for E as a function of advanced time

v, using the Hamiltonian approach. It is assumed that the test-particle starts in a circular

orbit. We will be working in an adiabatic approximation, allowing us to assume that

the radial velocity of the test-particle can be neglected, ur = 0. The physical reasoning

behind this choice is as follows. Recall that there are two distinct timescales in play for the

problem at hand. Firstly, there is the short timescale associated with the motion of the

test-particle in the binary system. Secondly, there is the long timescale associated with the

motion of the binary with respect to the background black hole. A possible change in the

radial coordinate r will only enter at octupole order (given an initially circular orbit) and

must therefore happen over the long timescale. However, viewed over short time-scales,

ur = 0. To a reasonable degree of accuracy, we can thus assume that the test-particle

adiabatically moves between circular orbits over long timescales so that we may assume

ur = 0, even over long timescales. The test-particle Hamiltonian is computed using (5.5)

and we obtain

H̃ =
L2

2r2
− E2

2f
+

M

2r′3

[
E2r2 +

(
1− 2m2

r2

)
L2

]
+

rM

4r′4

[
2

(
Er

f

)2

eq2 + 5L2eq8

]
dr′

dv
(6.1)
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where

E := −gvµu
µ = −gvvu

v − gvϕu
ϕ (6.2)

L := gµϕu
µ = gϕϕu

ϕ (6.3)

Imposing (5.10) yields the following expression for E2:

E2 =
f (L2 + r2)

r2
+

M

r′3

[
f
(
L2 + r2

)
+ L2

(
1− 2m2

r2

)]
f

+
M

2r′4
[
r (5feq8 + 2eq2)L

2 + 2r3eq2
] dr′
dv

(6.4)

In the adiabatic approximation, the v-dependence of E comes entirely from the v-

dependence in r′. We therefore start by deriving an expression for r′(v). Owing to

(4.21), dτ ′/dv = 1 in the adiabatic approximation and so from (3.12), we obtain

dr′

dv
= −

√
2M

r′
(6.5)

having set K = 0 and assuming E ′ = 1. Integrating from v = 0 to v nonzero and imposing

the initial condition r′(0) = r′0, we obtain

r′(v) =
1

4

(
8r′

3
2
0 − 12

√
2Mv

) 2
3

(6.6)

The time at which the deformed black hole merges with the background black hole will be

denoted vmerge and is given by r′(vmerge) = 2M . This yields the following:

vmerge =
2

3

√
r′30
2M

(
1−

(
2M

r′0

) 3
2

)
(6.7)

Using (6.6) and (6.7) in (6.4), yields the following:

E2 =
f (L2 + r2)

r2
+

A

(1− wz)2
− B

(1− wz)3
(6.8)
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where w := v/vmerge and

A :=
Mf

r2r′30

[
fr4 + L2 (f + 1) r2 − 2L2m2

]
(6.9)

B :=
r

2

(
2M

r′30

) 3
2
[
5

2
L2eq8f + eq2

(
L2 + r2

)]
(6.10)

z := 1−
(
2M

r′0

) 3
2

(6.11)

This is the general expression for the energy (squared) of the test-particle to octupole

order. Note that since 2M < r′0, z < 1 and so for v < vmerge, W := wz < 1. In this case,

(6.8) has the following series expansion:

E2 = a0 +
∞∑
n=1

anW
n (6.12)

where

a0 :=
f(L2 + r2)

r2
+ A−B, an := A(n+ 1)− B

2
(n+ 1)(n+ 2) (6.13)

Note that the convergence of the series expansion (6.12) happens very slowly. We illustrate

this with a numerical example in which we fix m = 1, r := 6m, L :=
√
12m, M = 102m

and r′0 = 103M . This results in a merger time of vmerge = 1.490578651 × 106. The

corresponding values of an for 0 ≤ n ≤ 5 are listed in table (6.1). Figure (6.1) shows E2 as

n an

0 0.888888888892
1 5.777712398× 10−12

2 8.666535907× 10−12

3 1.155533763× 10−11

4 1.155533763× 10−11

5 1.733287567× 10−11

Table 6.1: Numerical values of an for 0 ≤ n ≤ 5.

a function of v both for the exact solution and the approximate solution to orders v5 and

v40. Notice that the energy is increasing with v. At order v5, the approximate solution

already starts deviating significantly from the exact solution around v ∼ 106. At order v40,

the approximation is accurate for much longer but still differs significantly for v ∼ vmerge.
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(a) Red curve shows exact solution while blue
curve shows the approximate solution to order
v5.

(b) Red curve shows exact solution while blue
curve shows the approximate solution to order
v40.

Figure 6.1: Specific energy (squared) as a function of v. Both the exact solution and
the approximate solution have been plotted. The approximate solution is plotted at two
different orders, namely 5 and 40.
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Chapter 7

Dynamics of the tidally deformed

Schwarzschild black hole

This section is restricted to the background black hole and its tidally deformed companion,

thus leaving out the test-particle in orbit around the deformed black hole. The deformed

black hole is subject to a number of dynamical effects, not present in the unperturbed

Schwarzschild solution. In particular, we will see that the surface gravity of the deformed

black hole is non-uniform over its horizon with tidal contributions starting at order (r/R)3.

Furthermore, we will see that the mass of the deformed black hole acquires a non-trivial

time-dependence, an effect which is known as tidal heating. Much of this chapter boils

down to giving a description of the geometry of the horizon of the tidally deformed black

hole. For this reason, it will prove useful to start by covering some general preliminaries. In

particular, section 7.1 covers null geodesic congruences, closely following [13]. Associated

with a given null geodesic congruence is an expansion scalar which will be central in the

study of how the geometry of the horizon evolves. As we will see, the horizon of the

deformed black hole is a null hypersurface of the background spacetime and is generated

by a null geodesic congruence. For this reason, it will prove useful to review hypersurfaces

and some of their properties in general. This is accomplished in section 7.2, which closely

follows [13].

Having gone through the preliminaries, we then consider the geometry of the deformed

horizon in section 7.3. Subsequently, we present a derivation of the surface gravity of the

deformed black hole in section 7.4. Both sections closely follow [15]. Finally, we cover

tidal heating in section 7, closely following both [15] and [12].
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7.1 Null geodesic congruences

Let (M , g) be a Lorentzian manifold and consider an open subset O ⊆ M . Then a family

of curves in O is called a congruence in O, if for every p ∈ O, exactly one member of

the family passes through p. Clearly a congruence always gives rise to a vector field on

O. In particular, the tangent vectors to the members of the congruence yield a vector

field on O. The converse is also true, in the sense that given a smooth vector field v on

O, one can construct a corresponding congruence on O. Indeed the integral curves of v

exactly yield a congruence on O (section 2.2 of [18]). If every member of the family is a

null geodesic, then the congruence is called a null geodesic congruence. In this section,

we exclusively work with null geodesic congruences. The goal will be to determine how

such null congruences evolve in time. In particular, we will determine how the separation

between neighboring members of the congruence changes in time.

Consider a null geodesic congruence on O . Then pick two geodesics γ0 and γ1 belonging

to the null geodesic congruence. By the defining property of congruences, each point

between γ0 and γ1 will have exactly one null geodesic going through it. This then gives

rise to a two-parameter family of null geodesics which we denote by γ(λ, s) where s ∈ [0, 1]

specifies a null geodesic and λ is a parameter for the given null geodesic. We choose s such

that γ(λ, 0) = γ0 and γ(λ, 1) = γ1. See figure 7.1 for an illustration of the setup.
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Figure 7.1: Two-parameter family of geodesics γ(λ, s) labeled by s and parameterised by
λ. The vector k is tangent to the null geodesics, while ξ is tangent to the curves connecting
γ0 and γ1.

For a given value of s, we define the tangent to the corresponding null geodesic by

kα(λ, s) :=
∂(xα ◦ γ)

∂λ
(λ, s) (7.1)

with respect to some coordinate system xµ, µ ∈ {0, 1, 2, 3} on O. Of course, this implies

that k satisfies the geodesic equation in its general form:

kβkα
;β = κkα (7.2)

where κ is some scalar. For a given value of λ, we can interpret s 7→ γ(λ, s) as describing

a curve (generically this will not be a geodesic) going from γ0 to γ1. The tangent to this

curve is defined as

ξα(λ, s) :=
∂(xα ◦ γ)

∂s
(λ, s) (7.3)

We interpret ξ(λ, 0) as a deviation vector between γ0 and γ1 for λ ∈ [a, b]. It is this

deviation vector which will be the object of study in the following.
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As already mentioned, since k is tangent to the members of a congruence, k constitutes

a vector field on O. This then allows a decomposition of the metric g into a transverse

part and a longitudinal part on O:

gαβ = hαβ − (kαNβ +Nαkβ) (7.4)

where h is the transverse part and N is an auxiliary null vector field chosen such that

kαN
α = −1. By construction, hαβN

α = hαβk
α = 0 showing that h is indeed purely

transverse in the sense that it is orthogonal to both k and N . We will mainly be concerned

with the transverse behaviour of the null geodesic congruence which is why we went

through the trouble of introducing h. Next, define a tensor B with components

Bαβ = kα;β (7.5)

and note that it measures the extent to which ξ fails to be parallel transported along the

congruence, since

ξα;βk
β = kα

;βξ
β = Bα

βξ
β (7.6)

The first equality follows directly from the definitions of k and ξ. For later use, note that

B satisfies the following evolution equation:

kγBαβ;γ = kα;βγk
γ

= (kα;γβ −Rδαγβk
δ)kγ

= (kα;γk
γ);β − kα;γk

γ
;β −Rδαγβk

δkγ

= κBαβ + κ;βkα −BαγB
γ
β −Rδαγβk

δkγ (7.7)

where we recall that κ is given by kα
;βk

β = κkα. The transverse part of B will be denoted

B̃ and has components

B̃αβ = hµ
αh

ν
βBµν = Bαβ + kαN

µBµβ + kβBαµN
µ + kαkβBµνN

µN ν (7.8)

We then decompose B̃ into its irreducible parts, i.e. its trace, its symmetric trace free part
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and its antisymmetric part:

B̃αβ =
1

2
Θhαβ + σαβ + ωαβ (7.9)

where Θ := B̃α
α is the expansion scalar, σαβ := B̃(αβ) − 1

2
Θhαβ are the components of

the shear tensor and ωαβ = B̃[αβ] are the components of the rotation tensor. We note

without proof that Θ measures the fractional rate of change of the cross-sectional area of

the congruence (see section 2.4.8 of [13]). In the following, we derive an evolution equation

for Θ. Firstly, expanding the definition of Θ yields

Θ = kα
;α + kαNµBµα + kαBαµN

µ = kα
;α − κ (7.10)

Taking the trace of (7.7) and using (7.10) then yields

∂Θ

∂λ
+

∂κ

∂λ
= κ2 + κΘ+

∂κ

∂λ
−BαγB

γα −Rαβk
αkβ (7.11)

A straightforward computation reveals that

BαγB
γα = B̃αγB̃

γα + κ2 (7.12)

and furthermore,

B̃αγB̃
γα =

1

2
Θ2 + σαβσ

αβ − ωαβω
αβ (7.13)

Hence, (7.11) reduces to the following:

∂Θ

∂λ
= κΘ− 1

2
Θ2 − σαβσ

αβ + ωαβω
αβ −Rαβk

αkβ (7.14)

This is known as Raychaudhuri’s equation for null geodesic congruences. Before moving

on, we note some of the implications of (7.14). Firstly, if λ is an affine parameter, then

κ = 0. Furthermore, since σ is purely transverse, σαβσ
αβ ≥ 0. Additionally, in the next

section, we will see that the hypersurfaces of relevance to us have vanishing rotation.

Finally, assume that the spacetime in question satisfies the null energy condition then

Rαβk
αkβ ≥ 0. This will, in particular, hold for vacuum spacetimes. In conclusion, we then
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observe that:

∂Θ

∂λ
≤ 0 (7.15)

Say the members of the congruence are initially converging, so that Θ < 0. Then (7.15)

implies that this convergence will happen ever more rapidly into the future, serving to

focus the members of the congruence. Notice that under the assumptions above, we in

fact have a stronger bound:

∂Θ

∂λ
≤ −1

2
Θ2 (7.16)

Integrating this inequality yields the following:

1

Θ(λ)
≥ 1

Θ(0)
+

λ

2
(7.17)

showing that if Θ(0) < 0 (i.e. the congruence is converging at λ = 0), then Θ(λ) → −∞

as λ → 2
|Θ(0)| from the left. This usually happens when a so-called caustic forms in the

congruence, a caustic being a point at which the members of the congruence cross each

other. See figure 7.2 for an illustration.

Figure 7.2: A caustic where the members of a congruence cross each other.
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In the next section, it will be made clear how null-hypersurfaces are generated by

null-geodesic congruences.

7.2 Embedded submanifolds

Let (M , g) be a Lorentzian manifold of dimension n and consider a second Lorentzian

manifold (S , g′) of dimension p where p ∈ {1, . . . , n} and S ⊆ M . The manifold

(S , g′) is called an embedded submanifold of (M , g) if there exists a diffeomorphism

φ : S → φ(S ) ⊆ M . Furthermore, the structure of (S , g′) is inherited from that of

(M , g) by choosing g′ to be the pullback by φ of g to S . We will also refer to g′ as the

induced metric of the embedded submanifold, with the understanding that it is induced

by the metric g. We compute the induced metric later in this section. If the codimension

of (S , g′) in (M , g) is one, then (S , g′) is called a hypersurface of (M , g). In particular,

a hypersurface (S , g′) is called a null-hypersurface of (M , g) if g′, as defined above, is

degenerate. Equivalently, a hypersurface is a null-hypersurface if its normal is everywhere

null.

In practical applications, one typically opts for a local description of a given hypersurface

(S , g′). Indeed, suppose S is contained in an open subset O ⊆ M equipped with a

coordinate system xµ, µ ∈ {0, 1, 2, 3}. Then S can be specified by imposing a condition

on the coordinate functions xµ ◦ p for p ∈ O. Concretely,

S = {p ∈ O : Φ(xµ ◦ p) = 0} (7.18)

where Φ : R4 → R is a smooth function. Hence, in this local description, S can be viewed

as a level set of some smooth scalar function Φ. This implies that the gradient of Φ is

everywhere normal to S . In the following, we take (S , g′) to be null. Inspired by the

observation above, we define a normal vector k to S by kα = −∂αΦ. The sign is chosen

such that k is future-directed when Φ is an increasing function of time. We then compute

kβDβkα =
1

2
Dα(kβk

β) (7.19)

Since kβk
β is identically zero (and hence constant) on S , its gradient must point in the

direction normal to S . In other words, Dα(kβk
β) = 2κkα for some scalar κ. This then
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implies

kβDβk
α = κkα (7.20)

which is the geodesic equation in its general form. Since (S , g′) is null, we have kαk
α = 0

and so k is also tangent to S , meaning that the geodesics whose tangents are given by k

lie within O . In light of this, we say that S is generated by null geodesics and k serves as a

tangent to the geodesic generators. Since k as given above serves to define a vector field on

O, we know that there is a corresponding congruence on O. Hence, what we have shown

is that every null hypersurface is generated by a corresponding null geodesic congruence

(which might have caustics). Since the tangent vector field k is proportional to the normal

of the null hypersurface, the corresponding congruence is called hypersurface orthogonal.

As we will see below, it is a general result that such congruences have vanishing rotation.

The setup is the same as above, except we now assume the more general statement

that k simply be proportional to the normal of the null hypersurface. In particular, we

write

kα = −µΦ;α (7.21)

for some scalar µ. Explicitly writing out ω, using (7.8) yields the following:

ωαβ = B[αβ] −Bµ[αkβ]N
µ − k[αBβ]µN

µ (7.22)

We note that

k[α;βkγ] =
1

3!
(kα;βkγ − kα;γkβ + kγ;αkβ − kγ;βkα + kβ;γkα − kβ;αkγ) = 0 (7.23)

having used that Φ;αβ = Φ;βα owing to the symmetry of the mixed partial derivatives and

the symmetry of the lower indices of the Christoffel symbols. Using the definition of B

and contracting with Nγ, this implies

0 = −B[αβ] +Bγ[αkβ]N
γ + k[αBβ]γN

γ (7.24)

Inserting this into (7.22), we obtain ωαβ = 0 as desired.
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Finally, we compute the induced metric of the null hypersurface. On S , we may choose

to use a coordinate system ya, a ∈ {1, 2, 3} which is intrinsic to S . It will prove useful to

construct these coordinates in a way that is well suited to the behaviour of the generators

of the hypersurface. To this end, we choose one of the coordinates to be the parameter

λ. The two remaining coordinates will be denoted θA, A ∈ {2, 3} and serve to label the

generators of the congruence, in the sense that they are constant on each generator.

When restricted to S , the ambient coordinates xµ, µ ∈ {0, 1, 2, 3} can be viewed as

functions of the intrinsic coordinates ya, a ∈ {1, 2, 3}. This then defines a coordinate

transformation with corresponding Jacobian given by

Jα
a :=

∂xα

∂ya

∣∣∣∣
S

(7.25)

We also introduce the notation

Jα
A :=

∂xα

∂θA

∣∣∣∣
S

(7.26)

The induced metric g′ is then given by

g′ab = gαβ|S Jα
a J

β
b , a, b ∈ {1, 2, 3} (7.27)

So far, the discussion applies to any hypersurface. We now impose the condition that the

hypersurface be null. In this case, we have Jα
1 = ∂xα/∂λ = kα by definition. Hence,

g′11 = gαβ|S kαkβ = 0 (7.28)

since k is null. Furthermore,

g′1A = gαβ|S kαJβ
A = − ∂Φ

∂xβ

∂xβ

∂θA

∣∣∣∣
S

= − ∂Φ

∂θA

∣∣∣∣
S

= 0 (7.29)

since Φ only changes in the direction normal to S . Hence, the induced metric is degenerate

and effectively two-dimensional as expected. Motivated by this observation, we write

γAB = gαβ|S Jα
AJ

β
B (7.30)
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for the non-vanishing components of the induced metric.

7.3 Geometry of the deformed horizon

Once again, we consider the spacetime around a tidally deformed Schwarzschild black

hole. Let (M , g) be the corresponding Lorentzian manifold where g is the Poisson-Vlasov

metric. In lightcone coordinates, the condition r = 2m defines a hypersurface of (M , g)

in accordance with the discussion of section 7.2. This hypersurface has a corresponding

induced metric g′, given by (7.27). Since we are simply restricting the value of r and

leaving the other coordinates unchanged, Jα
A = δαA and Jα

1 = δ0α. Evaluating (2.141)

at r = 2m and using (7.27), we see that the only non-vanishing components of g′ are

g′AB = gAB|r=2m. In particular, the metric is degenerate and effectively two-dimensional.

Hence, the hypersurface defined by r = 2m is null and we can justifiably refer to it as the

horizon of the deformed black hole. As encapsulated by equation (2.140), this conclusion

holds through order (r/R)4. In light of the observations made above, we can use the

notation reserved for null-hypersurfaces in section 7.2. The non-vanishing components of

g′ are thus denoted by γAB:

γAB := gAB|r=2m = 4m2ΩAB − 8

3
m4(Eq

AB + Bq
AB)−

8

15
m5(Eo

AB + Bo
AB) (7.31)

We refer to γ as the horizon metric. We emphasize that kα = Jα
1 = δ0α is null on the

horizon and tangent to the generators of the horizon. This will be used in the next section.

Since the horizon is a null-hypersurface of (M , g), it is generated by a (hypersurface

orthogonal) congruence of null geodesics. Following the procedure outlined in section 7.1,

we define a tensor field B with components given by

BAB = kα,βJ
α
AJ

β
b (7.32)

Note that this corresponds to the B̃ of section 7.1, but we have omitted the tilde for

notational convenience. Next, B is decomposed into its irreducible parts:

BAB =
1

2
ΘγAB + σAB (7.33)
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having used that the null congruence has vanishing rotation as argued in section 7.2.

Notice that by (7.29), Jα
A is transverse to kα and so the metric γ is in fact transverse to

the generators of the horizon. This justifies the appearance of γ as the transverse metric

in (7.33).

7.4 Surface gravity

In this section, we will see how the surface gravity of the deformed horizon becomes

non-uniform at octupole order.

Firstly, recall the defining equation for κ:

kβkα
;β = κkα (7.34)

Completely analogously to the unperturbed case, this is also the defining equation for the

surface gravity of the black hole. Hence, we are justified in identifying κ as the surface

gravity of the deformed black hole. Using the metric (2.141) and kα = δ0α, we explicitly

compute,

κ = Γ0
00

∣∣
r=2m

= − 1

2

(
g01∂1g00

)∣∣∣∣
r=2m

(7.35)

having used that the metric only implicitly depends on time through the time-dependence

of r′, θ′ and ϕ′. Now by definition, the metric g and its inverse satisfy gαγgβγ = δαβ and

using (2.141), we immediately get g01 = 1. We thus obtain

κ =
1

4m

[
1 +

16

3
M3dEij

dv
ΩiΩj

]
(7.36)

to octupole order. To quadrupole order, the surface gravity of the deformed black hole is

uniform across the horizon with the same value as in the unperturbed case. However at

octupole order, this uniformity no longer holds.

7.5 Tidal heating

As a consequence of the tidal interaction between the two black holes, the mass m of the

tidally deformed black hole should be regarded as a function of time, m = m(v). We only
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consider long-term changes in m, such that the black hole starts in some initial stationary

state with mass m and then after a time ∆v settles into another stationary state with

mass δm. The averaged change of mass over the time period ∆v is then defined by

〈
dm

dv

〉
=

δm

∆v
(7.37)

To leading order, Poisson has shown that [12]:

〈
dm

dv

〉
=

16

45
m6

(
d

dv
Eij

d

dv
E ij +

d

dv
Bij

d

dv
Bij

)
(7.38)

The main objective of this section is to give an outline of the proof for this equation.

Having done this, we finish the section with two applications of the equation.

7.5.1 Outline of Poisson’s proof

Firstly, we set out to find an evolution equation for the horizon metric. To this end, we

compute the following:

∂γAB

∂v
= kαγAB;α

= kα(gαβ|S Jα
AJ

β
B);α

= gαβ|S Jα
A;γk

γJβ
B + gαβ|S Jα

AJ
β
B;γk

γ

= 2gαβ|S Jα
AJ

β
B;γk

γ

(†)
= 2gαβ|S Jβ

Bk
α
;γJ

γ
A

= 2kβ;γJ
γ
AJ

β
B

= 2BAB (7.39)

where (†) uses

Jα
A;βk

β = kα
;βJ

β
A (7.40)
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which follows from a straightforward computation using Jα
A = δαA and kα = δ0α. Hence, we

arrive at the following evolution equation for γ:

∂γAB

∂v
= ΘγAB + 2σAB (7.41)

Now contract with the inverse of γ to arrive at an expression for the expansion scalar:

Θ =
1

2
γAB ∂γAB

∂v
=

1
√
γ

∂
√
γ

∂v
(7.42)

where γ is the determinant of the matrix representation of γAB in some basis. Explicitly,

√
γ = 4m2 sin θ

[
1 +O

(
1

R4

)]
(7.43)

which is shown in appendix F. Using this in (7.42), we conclude that

Θ = O
(

1

R5

)
(7.44)

This will be important later, when we decide which terms should be included and which

should be omitted given our level of precision.

We turn now to the shear tensor. Using the previous results, eq. (7.41) implies

σAB =
1

2
∂vγAB +O

(
1

R5

)
= −4

3
m4

(
d

dv
Eq
AB +

d

dv
Bq
AB

)
+O

(
1

R4

)
(7.45)

The indices on σAB should be raised using the inverse of the induced metric. Given the

present level of precision, it will prove sufficient to take

γAB =
1

4m2
ΩAB +O

(
1

R2

)
(7.46)

This then results in

σAB = − 1

12

(
d

dv
EqAB +

d

dv
BqAB

)
(7.47)

where indices on Eq
AB and Bq

AB have been raised with ΩAB.

Next, we turn to Raychaudhuri’s equation. As was argued in section 7.2, the congruence

of generators of the horizon will have vanishing rotation. Furthermore, we are considering
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a vacuum solution to Einstein’s field equations so the Ricci tensor vanishes. In this case,

Raychaudhuri’s equation simplifies to

∂Θ

∂v
= κΘ− 1

2
Θ2 − σABσ

AB (7.48)

We write κ = κ0 + κcorrection where κ0 := (4m)−1 is the surface gravity of the unperturbed

black hole and κcorrection is the tidally induced correction to κ0, as given by (7.36). Owing

to (7.44), κΘ = κ0Θ+O(1/R8). Since the desired equation (7.38) is of order 1/R6, we

can justifiably set κ = κ0 in (7.48). Similarly, the Θ2-term in (7.48) can be completely

neglected. We are thus left with the following:

∂Θ

∂v
= κ0Θ− σABσ

AB (7.49)

Below, we will see that the evolution of the area of the deformed horizon is intimately tied

to the expansion scalar Θ.

On the horizon, the area element
√
γdθdϕ is given in terms of the induced metric. The

area A(v) of the deformed horizon as a function of v is then defined by

A(v) :=

∫
√
γdθdϕ (7.50)

Using (7.42), we then compute the advanced time derivative of A:

d

dv
A(v) =

∫
Θ
√
γdθdϕ (7.51)

Furthermore,

d2

dv2
A(v) =

∫
∂Θ

∂v

√
γdθdϕ+

∫
Θ2√γdθdϕ (7.52)

Once again, we neglect the term containing Θ2. Using (7.49) and (7.43), we then have

κ0
d

dv
A− d2

dv2
A =

∫
σABσ

AB√γdθdϕ

=
4

9
m6

∫ [
d

dv
Eq
AB

d

dv
EqAB +

d

dv
Bq
AB

d

dv
BqAB + 2

d

dv
Eq
AB

d

dv
BqAB

]
dΩ

(7.53)
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where dΩ = sin θdθdϕ. In the following, we evaluate these angular integrals and express

them in terms of their corresponding derivatives of quadrupole tidal moments.

Firstly, by definition

d

dv
Eq
AB :=

d

dv
Eq
ijΩ

i
AΩ

j
B,

d

dv
Bq
AB :=

d

dv
Bq
ijΩ

i
AΩ

j
B (7.54)

which implies

d

dv
Eq
AB

d

dv
EqAB =

d

dv
Eq
ijΩ

i
AΩ

j
B

d

dv
EqAB =

d

dv
Eq
ij

d

dv
Eq ij (7.55)

and similarly for B. We then use the expressions for the tidal potentials as listed in table

(2.1) to compute the following:

d

dv
Eq
ij

d

dv
Eqij = (2γi

kγl
j

d

dv
Ekl + γij

d

dv
EklΩkΩl)(2γimγjn d

dv
Emn + γij d

dv
EmnΩ

mΩn)

=
d

dv
Ekl

d

dv
Emn(4γ

kmγln + 2γklΩmΩn + 2γmnΩkΩl + 2ΩmΩnΩkΩl)

=
d

dv
Ekl

d

dv
Emn

[
4(δkmδln − δkmΩlΩn − δlnΩkΩm + ΩmΩnΩkΩl)

+2(δklΩmΩn − ΩkΩlΩmΩn) + 2(δmnΩkΩl − ΩmΩnΩkΩl) + 2ΩmΩnΩkΩl
]

=
d

dv
Ekl

d

dv
Emn[4(δ

kmδln − δkmΩlΩn − δlnΩkΩm) + 2ΩmΩnΩkΩl] (7.56)

Note that γ in the above is not the induced metric, but rather the projector defined in

(2.75). We also made use of the fact that the tidal moments are traceless. We then wish to

integrate the above with respect to the surface measure dΩ. To do so, note the following

two identities, which can be established by straightforward computation:

∫ 2π

0

∫ π

0

sin θΩmΩnΩkΩldθdϕ =
4π

15
(δlkδmn + δlmδkn + δlnδkm) (7.57)∫ 2π

0

∫ π

0

sin θΩmΩndθdϕ =
4π

3
δmn (7.58)

We thus obtain

∫
d

dv
Eq
AB

d

dv
EqABdΩ =

32π

5

d

dv
Eij

d

dv
E ij (7.59)
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Completely analogously, we compute

∫
d

dv
Bq
AB

d

dv
BqABdΩ =

32π

5

d

dv
Bij

d

dv
Bij (7.60)

and

∫
d

dv
Bq
AB

d

dv
EqABdΩ = 0 (7.61)

Putting the preceding results together, we have

κ0

8π

d

dv
A− 1

8π

d2

dv2
A =

16

45
m6

(
d

dv
Eij

d

dv
E ij +

d

dv
Bij

d

dv
Bij

)
(7.62)

To continue, it will be useful to introduce the flux function, F defined by

F(v) :=
16

45
m6

(
d

dv
Eij

d

dv
E ij +

d

dv
Bij

d

dv
Bij

)
(7.63)

Then the general solution to (7.62) is

d

dv
A = eκ0v

dA
dv

(0)− 8π

∫ v

0

F(v′)eκ0(v−v′)dv′ (7.64)

Integrating by parts, we get:

d

dv
A =

8π

κ0

F(v) + eκ0v

[
dA
dv

(0)− 8π

κ0

F(0)

]
− 8π

∫
dF(v′)

dv′
eκ0(v−v′)dv′ (7.65)

The last term can be neglected as it is of order 1/R7. Furthermore, the term in brackets,

proportional to eκ0v, grows exponentially over time scales v ∼ 1/κ0 = 4m which is

unphysical for our setup. Rather, we would expect small changes in the surface area over

long time scales. Hence, we impose the initial condition that

dA
dv

(0) =
8π

κ0

F(0) (7.66)

whereby

d

dv
A =

8π

κ0

F(v) (7.67)
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Identifying κ0/(8π)
d
dv
A with ⟨dm

dv
⟩, we get the result in (7.38). Notice that the shear

tensor entered quadratically in (7.53). In other words, tidal moments will only appear

quadratically in ⟨δm/∆v⟩. This is the justification for using a metric of octupole order to

derive (7.38), which starts at order 1/R6.

7.5.2 Tidal heating for a radial infall

In the case of a radial infall, we simply plug (3.60) into (7.38) and obtain:

〈
dm

dv

〉
=

96m6M2

5r′8

(
dr′

dv

)2

(7.68)

7.5.3 Tidal heating for circular orbit

For a circular orbit, we use (3.47)-(3.50) and (3.58)-(3.59) with r′ > 2M equal to some

constant. Note that by the chain rule,

dΨ

dv
=

Ψ̇

ṫ′
=

1

L′2 + r′2

(
1− 2M

r′

)
(7.69)

We then compute

〈
dm

dv

〉
=

32

5

(m
M

)6
V 18 (1− 2V 2)

2
(1 + 2V 2)

(1 + V 2)
(7.70)

where V = ϕ̇′r′ =
√

M/r′ is the orbital speed.
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Chapter 8

Conclusion and outlook

We have seen how the metric of a vacuum region of an arbitrary spacetime can be

constructed in terms of a set of tidal moments and corresponding tidal potentials. This

is, in particular, true for the Poisson-Vlasov metric which was introduced to describe the

spacetime around a tidally deformed Schwarzschild black hole. We have seen how the

components of the Poisson-Vlasov metric are conveniently written with respect to a set

of lightcone coordinates. The advanced-time coordinate plays an especially important

role in octupole order computations and above, where it replaces the usual proper time

coordinate.

In chapter 3.4, we computed the tidal potentials for a Schwarzschild perturber. This

was done by taking frame components of the Riemann tensor along a geodesic in the

Schwarzschild spacetime. These moments were subsequently converted to potentials which

could then be substituted into the Poisson-Vlasov metric. For many of the practical

applications in this text, we chose to work with a radially infalling deformed black hole.

With this choice, we have seen that all magnetic tidal moments vanish identically.

In chapter 4, we used the Poisson-Vlasov metric to compute the tidally induced shifts

in the ISCO parameters of a test-particle orbiting the deformed black hole. This was first

done to quadrupole order where the deformed black hole could be assumed stationary

with respect to the background black hole. This allowed us to utilize two Killing vectors

to identify the specific energy and specific angular momentum of the test-particle. The

quadrupole order ISCO shifts are listed in (4.16). At octupole order, the distance between

the deformed black hole and the background black hole has to be regarded as a function

of advanced time, v. At a given point along the trajectory of the deformed black hole,
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the octupole order ISCO shifts were computed and are listed in (4.37). Having computed

the ISCO shifts, we computed a lower bound on the specific energy of the test-particle in

orbit around the deformed black hole such that its radial coordinate would never decrease

below the ISCO radius. This specific energy threshold is given in (4.42).

In chapter 5, we considered the specific energy of the test-particle as a function of

the Euler angles that specify the orientation of the binary system with respect to the

background black hole. In particular, we found that co-planar orbits are stable. That is

to say, configurations for which the inclination angle of the binary is zero, minimize the

specific energy of the test-particle. The specific energy of the test-particle was computed

by first determining the Hamiltonian of the test-particle and then imposing four-velocity

normalization. The specific energy (squared) of the test-particle to quadrupole order is

given in (5.17). In the subsequent chapter, we computed the Hamiltonian of the test-

particle to octupole order. The expression for the specific energy (squared) to octupole

order is given in (6.4). This allowed us to determine the evolution of the specific energy of

the test-particle as the binary moved closer to the background black hole. In particular,

we found that the specific-energy increases as a function of advanced time.

In chapter 7, we considered the dynamics of the tidally deformed black hole itself. We

found that the horizon of the deformed black hole is a null-hypersurface of the background

spacetime, generated by a null-geodesic congruence. The horizon was found to still be

located at r = 2m at the level of precision maintained in this text. However at octupole

order, the surface gravity of the deformed horizon is no longer uniform as can be seen

from (7.36). Furthermore, we have seen how the mass of the deformed black hole seizes

to be constant in time, with changes in mass arising at order (m/R)6. In particular, we

computed ⟨dm/dv⟩ to leading order for a radial infall and for a circular orbit. The results

are given in (7.68) and (7.70), respectively.

Further study, based off this thesis may include the following: Firstly, many of the

results presented in this thesis may be generalized further. For example, one might consider

the deformed black travelling along an arbitrary geodesic in the background spacetime.

One might also consider a Kerr perturber instead of a Schwarzschild perturber as has been

done in [1]. Secondly, higher order terms of the Poisson-Vlasov metric may be included.

Namely one might include contributions at hexadecapole order, the order to which Poisson

and Vlasov originally expressed their metric.
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Appendix A

Fermi normal coordinates

In this appendix, we introduce the Fermi normal coordinates for a free-falling observer,

closely following [16].

Let (M , g) be a Lorentzian manifold. Now, an observer at some point p ∈ M

can construct a local inertial coordinate system, xµ, µ ∈ {0, 1, 2, 3} around p. In these

coordinates, we write the components of the metric as gµν and

gµν |p = ηµν (A.1)

(∂ρgµν)|p = 0 (A.2)

In other words, at p (and in a small neighborhood around p) spacetime looks like flat

Minkowski spacetime. The core idea behind the construction of Fermi normal coordinates,

is to take an observer in free fall and then assign to that observer an inertial system

which applies to their entire worldline instead of just a single point. In other words, the

goal is to construct a coordinate system such that spacetime in a small tube around the

observer’s worldline looks like flat Minkowski spacetime. In this section, we go through the

construction of the Fermi normal coordinates for an observer following a geodesic in M .

Let [a, b] ⊆ R be an interval and let γ : [a, b] → M be a (smooth) timelike geodesic

on M . Consider now a coordinate system xµ, µ ∈ {0, 1, 2, 3} defined on a neighborhood

O ⊆ M with γ ⊆ O . Since γ is timelike, we refer to its arc length as the proper time of γ.

We denote the proper time of γ by τγ and it is defined in the usual way:

τγ =

∫ b

a

√
−gµν(γ(t))

d(xµ ◦ γ)
dt

(t)
d(xν ◦ γ)

dt
(t)dt (A.3)
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In the following, we parameterize γ by letting the proper time τ ∈ [0, τγ] along γ serve

as an affine parameter for the curve. With respect to xµ, the relativistic velocity on γ is

defined as

uµ(τ) =
d(xµ ◦ γ)

dτ
(τ), τ ∈ [0, τγ] (A.4)

Since γ is timelike, we have

gµν(γ(τ))u
µ(τ)uν(τ) = −1, τ ∈ [0, τγ] (A.5)

By assumption, u also satisfies the geodesic equation:

D

dτ
uµ = 0 (A.6)

for all µ ∈ {0, 1, 2, 3}.

Now, let O be a normal convex neighborhood of γ and take a point p ∈ O . Then there

is a unique space-like geodesic β : [c, d] → M , [c, d] ⊆ R which intersects γ orthogonally

and ends at p. The point of intersection will be labelled q and we define τ0 to be the value

of τ at the intersection point. That is, q := γ(τ0). Denote by sβ the geodesic distance

between q and p measured along β, or in other words, the arc length of β. We shall

parameterize β by the geodesic distance s ∈ [0, sβ] along β. Furthermore, we define the

tangent to β with respect to xµ as

tµ(s) =
d(xµ ◦ β)

ds
(s), s ∈ [0, sβ] (A.7)

However, we will primarily work with the rescaled tangent, vµ := sβt
µ. The requirement

that β intersect γ orthogonally then reads

gµν(γ(τ0))u
µ(τ0)v

ν(0) = 0 (A.8)

Now define the Fermi normal coordinates x̃µ for p as follows:

x̃0 = τ0, x̃i = λi
µ(τ0)v

µ(0) (A.9)
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where i ∈ {1, 2, 3} and {λa}a∈{0,1,2,3} is an orthonormal tetrad on γ with λ0 := u. Inverting

the last equation in (2.5) and using the definition of the Fermi normal coordinates, we see

that

δijx̃
ix̃j = δijλ

i
µ(τ0)v

µ(0)λj
ν(τ0)v

ν(0)

= [ηabλ
a
µ(τ0)λ

b
ν(τ0) + λ0

µ(τ0)λ
0
ν(τ0)]v

µ(0)vν(0)

= [gµν(γ(τ0)) + uµ(τ0)uν(τ0)]v
µ(0)vν(0)

= gµν(γ(τ0))v
µ(0)vν(0)

= s2β (A.10)

showing that sβ is simply the spatial distance between p and q measured along β. Gener-

ically, for a point β(s) on the geodesic connecting q = γ(τ) and p = β(sβ), the Fermi

normal coordinates are x̃0 = τ and x̃i = sΩi(τ), i ∈ {1, 2, 3} where Ωi(τ) := λi
µ(τ)t

µ(0), i ∈

{1, 2, 3}.

We still need to show that these coordinates indeed exhibit the local flatness property

mentioned at the start of the section. Indeed, we will see that the metric expressed in

Fermi normal coordinates and evaluated at p is given by the following:

g̃00|p = −1− R̃0i0j|qx̃ix̃j +O(s3) (A.11)

g̃0i|p = −2

3
R̃0jik|qx̃jx̃k +O(s3) (A.12)

g̃ij|p = δij −
1

3
R̃ikjl|qx̃kx̃l +O(s3) (A.13)

where the components of the Riemann tensor are evaluated in Riemann normal coordinates

centred on q. In order to show (A.11)-(A.13), we start by considering a general series

expansion of g̃ around q = γ(τ0), τ ∈ [0, τγ], evaluated at p = β(s), s ∈ [0, sβ]:

g̃µν |p = g̃µν(γ(τ0)) + g̃µν,α(γ(τ0))x̃
α +

1

2
g̃µν,αβ(γ(τ0))x̃

αx̃β +O(s3) (A.14)

92



We start by computing g̃µν(γ(τ0)). We make the following observation:

x̃iλµ
i (τ0) = vµ(0)

= s
d(xµ ◦ β)

ds
(0)

= s
∂(xµ ◦ β)

∂x̃i

∣∣∣∣
s=0

dx̃i

ds
(0)

= s
∂(xµ ◦ β)

∂x̃i

∣∣∣∣
s=0

λi
µ(τ0)t

µ(0)

= x̃i ∂(x
µ ◦ β)
∂x̃i

∣∣∣∣
s=0

(A.15)

Hence,

∂(xµ ◦ β)
∂x̃i

(0) = λµ
i (τ0) (A.16)

This construction works for any τ0 ∈ [0, τγ], showing that

∂xµ

∂x̃i

∣∣∣∣
γ

= λµ
i (A.17)

Together with the definition of λ0, we have

∂xµ

∂x̃a

∣∣∣∣
γ

= λµ
a (A.18)

for all a ∈ {0, 1, 2, 3}. Using the usual transformation rule for rank two tensors, we then

find that on γ

g̃ab|γ = gαβ|γ
∂xα

∂x̃a

∣∣∣∣
γ

∂xβ

∂x̃b

∣∣∣∣
γ

= gαβ|γλα
aλ

β
b = ηab (A.19)

Hence, the metric on γ is everywhere Minkowski. Next, we turn to the derivatives of the

metric on γ. Since β is a geodesic and parameterized by proper time, we have

d2(x̃a ◦ β)
ds2

+ Γ̃a
bc ◦ β

d(x̃b ◦ β)
ds

d(x̃c ◦ β)
ds

= 0 (A.20)
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with a, b, c ∈ {0, 1, 2, 3}. The first term vanishes and simplifying the second term yields

Γ̃a
ij ◦ βΩi(τ0)Ω

j(τ0) = 0 (A.21)

Generically, this requires the Christoffel symbols to vanish on β. In particular at q.

Similarly to before, this construction can be repeated for any point on γ. Hence,

Γ̃a
ij|γ = 0 (A.22)

Furthermore, the tetrad is parallel transported along γ and so

dλa
µ

dτ
+ Γ̃a

bc ◦ γλb
µλ

c
0 = 0 (A.23)

By (A.18), in Fermi normal coordinates, we have λa
µ = δaµ, so the above implies Γ̃a

b0|γ = 0.

Hence, all the Christoffel symbols vanish on γ. This of course implies g̃µν,α|γ = 0.

Now, as for the second derivatives of the metric on γ. Since the Christoffel symbols

are all zero on γ, we get

Γ̃a
µν,0|γ = 0 (A.24)

Then, by the coordinate expression for the Riemann tensor components, we have

Γ̃α
µ0,ν |γ = R̃α

µν0|γ (A.25)

Considering the derivative of the geodesic equation and permuting some indices we also

find

0 = Γ̃α
ij,k|γ + Γ̃α

jk,i|γ + Γ̃α
ki,j|γ (A.26)

From the coordinate expression for the Riemann tensor, it then follows that

Γ̃α
ij,k|γ = −1

3
(R̃α

ijk + R̃α
jik)|γ (A.27)

We wish to convert these expressions into statements regarding the second derivatives of
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the metric. Recall the coordinate expression for the Christoffel symbols:

Γ̃α
µν =

1

2
g̃αλ(g̃µλ,ν + g̃λν,µ − g̃µν,λ) (A.28)

On γ, the metric is simply the Minkowski metric. Differentiating this and setting µ = ν = 0,

yields

Γ̃α
00,σ|γ = −1

2
δαig̃00,iσ|γ (A.29)

Using (A.25), we thus get

g̃00,kj|γ = −2R̃k0j0|γ (A.30)

Next, we see that

−2

3
(R̃0jik + R̃0kij)|γ = 2η0α(Γ̃

α
ij,k + Γ̃α

ik,j)|γ = (2g̃0i,jk + g̃0j,ik + g̃0k,ij)|γ = g̃0i,jk|γ (A.31)

where the last equality follows from a derivative of Gauss’ lemma. Similarly,

g̃ij,kl|γ = −1

3
(R̃ikjl + R̃iljk)|γ (A.32)

Since the metric on γ is everywhere Minkowski, all the temporal derivatives of the metric

vanish. Plugging the above expressions into (A.14), we arrive at the desired result.

95



Appendix B

Derivation of the geodesic deviation

equation

In this appendix, we derive the geodesic deviation equation (1.6). The derivation closely

follows that presented in [13]. We consider the same setup as in section 7.1, although this

time we consider γ(λ, s) with λ varying to be timelike and we set λ equal to τ , namely

the proper time along γ for fixed s. As in the aforementioned section, we have

ξα;βu
β = uα

;βξ
β (B.1)

We then carry out a computation, using many of the same tricks as employed in (7.7):

D2ξα

dt2
= (ξα;βu

β);γu
γ

= (uα
;βξ

β);γu
γ

= uα
;βγξ

βuγ + uα
;βξ

β
;γu

γ

= uα
;γβξ

βuγ −Rα
µβγu

µξβuγ + uα
;βu

β
;γξ

γ

= (uα
;γu

γ);βξ
β − uα

;γu
γ
;βξ

β − uα
;βu

β
;γξ

γ −Rα
µβγu

µξβuγ

= −Rα
βγδu

βuδξγ (B.2)

as desired.
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Appendix C

Eigenvalue equations for tidal

potentials

In this Appendix, we show that eq. (2.87) holds with E (l) given by (2.84). Using the

definitions, we get

γijDiDjE (l) = γijγp
i γ

q
j∂p[DqE (l)]

= E (l)
k1···klγ

pq∂p[γ
m
q ∂m(Ω

k1 · · ·Ωkl)]

= E (l)
k1···klγ

pq[∂pγ
m
q ∂m(Ω

k1 · · ·Ωkl) + γm
q ∂p∂m(Ω

k1 · · ·Ωkl)] (C.1)

We note that

∂pγ
m
q = −1

r
(Ωqδ

m
p + Ωmδpq) (C.2)

and

∂m(Ω
k1 · · ·Ωkl) =

1

r
[δk1Ωk2 · · ·Ωkl + δk2Ωk1Ωk3 · · ·Ωkl + . . .+ δklmΩ

k1 · · ·Ωkl−1 ] (C.3)
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Furthermore,

∂p∂m(Ω
k1 · · ·Ωkl) =

1

r2
[δk1m δk2p Ωk3 · · ·Ωkl + . . .+ δk1m δklp Ω

k2 · · ·Ωkl−1

+ δk2m δk1p Ωk3 · · ·Ωkl + . . .+ δk2m δklp Ω
k1 · · ·Ωkl−1

...

+ δklmδ
k1
p Ωk2 · · ·Ωkl−1 + . . .+ δklmδ

kl−1
p Ωk1Ωkl−2 ] (C.4)

From (2.75), it is clear that

γi
i = γijδij = 2, γi

jΩ
j = 0 (C.5)

Collecting all the pieces, we compute the first term in (C.1):

E (l)
k1···klγ

pq∂pγ
m
q ∂m(Ω

k1 · · ·Ωkl) = − l

r2
E lγcpγ

p
dγ

cd = −2l

r2
E (l) (C.6)

The second term in (C.1) is computed as follows:

E (l)
k1···klγ

pqγm
q ∂p∂m(Ω

k1 · · ·Ωkl) =
1

r2
Ek1···kl [γk1k2Ωk3 · · ·Ωkl + . . .+ γk1klΩk2 · · ·Ωkl−1

+ γk2k1Ωk3 · · ·Ωkl + . . .+ γk2klΩk1Ωk3 · · ·Ωkl−1

...

+ γklk1Ωk2 · · ·Ωkl−1 + . . .+ γklkl−1Ωk1 · · ·Ωkl−2 ]

(C.7)

Owing to the tracelessness of Ek1···kl , we are justified in replacing γkmkn with −ΩkmΩkn in

the above, where 1 ≤ m,n ≤ l. Furthermore, the sum in brackets has a total of l(l − 1)

terms, so we end up with

E (l)
k1···klγ

pqγm
q ∂p∂m(Ω

k1 · · ·Ωkl) = − 1

r2
l(l − 1)E (l) (C.8)

In conclusion,

γijDiDjE (l) = −2l

r2
E (l) − 1

r2
l(l − 1)E (l) = − 1

r2
l(l + 1)E (l) (C.9)
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which yields the desired result. Equations (2.88) and (2.89) are shown similarly.
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Appendix D

Killing tensors and conserved

quantities

In this appendix, we review the concept of Killing tensors and their associated conserved

quantities. We start by reviewing Killing vectors, closely following chapter 8.2 of [8].

Let (M , g) be a Lorentzian manifold and let γ : [a, b] → M be a timelike geodesic.

We will work in a neighborhood O ⊆ M with a coordinate system xµ, µ ∈ {0, 1, 2, 3} and

we denote by t the parameter of γ. The action for γ is then given as in (5.1). For the

purposes of varying this action, one usually uses a slightly different Lagrangian than that

introduced in chapter 5.1, namely

L(t, q, u) = −m
√
−gµν(q)uµuν (D.1)

Of course the two produce equivalent Euler-Lagrange equations [3], which read

d

dt

(
∂L
∂uµ

(t, γ(t), u(t))

)
− ∂L

∂qµ
(t, γ(t), u(t)) = 0 (D.2)

If g is independent of xa for some particular a ∈ {0, 1, 2, 3}, then we have a corresponding

Killing vector, ξ with components ξµ = δµa . We then compute

∂L
∂ua

(t, γ(t), u(t)) =
m√

−gµν(γ(t))uµ(t)uν(t)
ξ(γ(t)) · u(t) (D.3)

In conclusion, we see that ξ · u is conserved along γ.

As Carter discovered [5], this procedure doesn’t produce all the conserved quantities
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for a given physical setup. Indeed, Carter’s constant doesn’t have a corresponding Killing

vector. Instead it has a corresponding Killing tensor field. Let Q be a symmetric tensor

field of rank k on M whose components with respect to xµ are denoted Qµ1···µk
. Then Q

is called a Killing tensor field if

D(νQµ1···µk) = 0 (D.4)

thus generalising the Killing equation to symmetric tensor fields [18]. Suppose M admits

a Killing tensor field and suppose u is the four velocity on γ. Then the scalar

K := Qµ1···µk
uµ1 · · ·uµk (D.5)

is conserved along γ. Indeed,

D

dτ
K =

D

dτ
(Qµ1···µk

uµ1 · · ·uµk)

= uµ1 · · ·uµkuνDνQµ1···µk

= uµ1 · · ·uµkuνD(νQµ1···µk)

= 0 (D.6)

In the third equality, we simply used that uµ1 · · ·uµkuν is symmetric in all indices and so

it picks out the symmetric part of DνQµ1···µk
. Finally, we made use of (D.4).

The Schwarzschild spacetime admits the following Killing tensor field (see page 321 of

[18]):

Qµν = 2r2l(µnν) + r2gµν (D.7)

where l and n are two null vectors given by

lµ =
1

1− 2m
r

δµ0 + δµ1 (D.8)

nµ =
1

2
δµ0 − 1

2

(
1− 2m

r

)
δµ1 (D.9)
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The non-vanishing components of Q come out to be

Q22 = r4, Q33 = r4 sin2 θ (D.10)

Hence, the corresponding conserved quantity is

K = r4θ̇2 + r4 sin2 θϕ̇2 (D.11)

This exactly reproduces the expression given in (3.15).
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Appendix E

Killing-Yano tensors

In this appendix, we review Killing-Yano tensors and their connection to Killing tensors,

closely following [6].

Let (M , g) be a Lorentzian manifold and let O ⊆ M be a neighborhood with coordi-

nates xµ. Let f be a totally antisymmetric tensor field of rank k on M whose components

with respect to xµ are denoted fµ1···µk
. Then f is called a Killing-Yano tensor field if

D(νfµ1)µ2···µk
= 0 (E.1)

Killing-Yano tensors are related to Killing tensors through the following proposition: If f

is a Killing-Yano tensor of rank k, then

Qαβ := fαµ2···µk
fβ

µ2···µk (E.2)

is a Killing tensor of rank 2. That Qαβ is symmetric in α and β is obvious. Using this

symmetry, we then compute

3D(σQαβ) = DσQαβ +DαQβσ +DβQσα

= fβ
µ2···µkDσfαµ2···µk

+ fαµ2···µk
Dσfβ

µ2···µk

+ fσ
µ2···µkDαfβµ2···µk

+ fβµ2···µk
Dαfσ

µ2···µk

+ fα
µ2···µkDβfσµ2···µk

+ fσµ2···µk
Dβfα

µ2···µk

Using (E.1), we see that the terms cancel pairwise and hence, D(σQαβ) = 0. We conclude

that given a Killing-Yano tensor on a spacetime, one can always construct a corresponding
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Killing tensor. The converse is not true in general. However, we note that the Schwarzschild

solution admits a Killing-Yano tensor whose only non-vanishing components are f23 =

−f32 = r3 sin θ [10]. Then fσµf
σ
ν exactly yields the Killing tensor in (D.10).
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Appendix F

Determinant of the horizon metric

In this appendix, we compute the (square root of the) determinant γ of the horizon metric,

following appendix B of [15]. First, write

γAB = 4m2ΩAB + pAB (F.1)

where

pAB = −8

3
m4(Eq

AB + Bq
AB)−

8

15
m5(Eo

AB + Bo
AB) (F.2)

To minimize cluttering, let ΩM and pM be the matrix representations, in some basis, of

4m2ΩAB and pAB respectively. Then,

√
γ =

√
det(ΩM + pM)

=
√

det(ΩM)
√
det
(
1 + Ω−1

M pM
)

=
√
det(ΩM) exp

[
1

2
ln det

(
1 + Ω−1

M pM
)]

=
√
det(ΩM) exp

[
1

2
Tr ln

(
1 + Ω−1

M pM
)]

=
√
det(ΩM) exp

[
1

2
Tr
(
Ω−1

M pM
)
+O

(
1

R4

)]
=
√
det(ΩM)

[
1 +

1

2
Tr
(
Ω−1

M pM
)
+O

(
1

R4

)]
= 4m2 sin θ

[
1 +O

(
1

R4

)]
(F.3)
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since, by construction of the tidal potentials,

Tr
(
Ω−1

M pM
)
= ΩABpAB = 0 (F.4)
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