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Abstract

The Copenhagen Langevin Spin Simulation Code (CLaSSiC) is a simulation
suite developed to investigate the absolute temperature effects in frustrated
spin systems. Previous versions of CLaSSiC were not fast enough to run system
sizes on the order of 10.000 atoms. This report aims to increase its performance
to a level where it can run these systems overnight, which would mean a 400x
speedup. This will be done by rewriting it in C++ and making better use
of the available hardware. To verify the level of optimization, Intel Vtune is
used. It shows that there are still unoptimized sections, such as the Gaussian
number generation. Afterwards the model has been validated thoroughly to
check if it corresponds to theory, which it does. Overall the optimization has
been successful and CLaSSiC is now almost 10.000 times faster, running system
sizes of 10.000 atoms in under 20 minutes.
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Chapter 1

Introduction

In the field of condensed matter physics a lot of research is spent on frustrated
magnetism. Frustrated magnetism happens when due to the geometry of the
system the ground state is (infinitely) degenerate. This gives rise to complex
dispersions and effects such as the theorized spin liquids. However when a
small amount of temperature is added to the system it is unclear as to what
happens theoretically since it becomes very hard to solve these systems analyti-
cally. What is known is that the degeneracy lifts (partially) and thus properties
change.

To measure the magnetic properties generally neutron scattering is used since
they can interact with the magnetic moments of the material. However these are
real measurements and therefore will always be at some non zero temperature.
Which makes it even more relevant to investigate the effects of temperature in
frustrated systems.

To solve this issue multiple attempts have been made at finding a numerical
solution. The first iteration of this simulation was developed in 2011 in Matlab
by Jakob Garde which dealt with nanoparticles that have two submagnetiza-
tions[1]. A decade later this code was rewritten in python by Jonas Hyatt
such that it could handle more general systems[2]. Estrid Naver validated the
python model and got the first preliminary results[3]. However the simulations
were very long. A kagome lattice consisting of 27 atoms took 8 hours to run
1.000.000 time steps.

However to observe long range order the systems will have to be much larger.
These systems will have to have 20-50 units cells in each direction. So that
would mean that a kagome lattice will need at least 3600 magnetic moments. In
the current state it is not realistic to run such large systems for any reasonable
amount of steps.

Therefore the goal of this thesis is to make a faster implementation that can
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run a system on the order of 10.000 spins for 1.000.000 time steps overnight. To
realize this a speedup on the order of 400x would be required.

To reach the goal the Copenhagen Langevin Spin Simulation Code (CLaSSiC)
package will be rewritten in C++. It should be able to run different geometries
for various magnetic and anisotropic fields at a finite temperature. The opti-
mization aspect of the implementation will look at efficient memory layout as
well as SIMD instructions and possible parallelization to multiple cores. GPU’s
will not be considered within the scope of this thesis due to availability and the
time involved in developing GPU specific software.

This reports starts with laying the theoretical foundation for the physics in-
volved. Chapter 2 will go over the workings of magnetic moments and derive
the necessary equations that will be used in the simulation as well as the theo-
retical results to validate against. Then chapter 3 will give the physics behind
neutron scattering such that the simulation can be compared to the experimen-
tal data. Then with the physics done, chapter 4 goes in the theory behind
creating a fast simulation package. After the theory has been implemented it
will need to be checked if it has been done correctly, hence chapter 5. When
the validation is done a look is taken how to the code is structured followed by
an in depth analysis of the performance. Then a quick guide is given how to
install and setup the simulation package. Lastly the conclusion will tie every-
thing together and give an outlook on possibilities for further development and
usage.
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Chapter 2

Magnetism

This section will go over the theory for magnetic moments. It will first go
through the various interactions that play a role in magnetism. Then the dy-
namics of two simple systems will be described, the ferromagnetic and antiferro-
magnetic spin waves. The last part will be on how to add absolute temperature
to the system and the effects. All of this should provide the necessary equations
to create the simulation as well as the result it should be verified against.

2.1 Larmor precession

The basis of magnetism is the magnetic moment µ defined as the current I
running around area dS.

dµ = IdS (2.1)

µ =

∫
dµ = I

∫
dS (2.2)

Since the current loop exists of moving electrons which have mass. Therefore
angular momentum will also play a role. The magnetic moment can be written
as a function of the angular momentum,

µ = γL (2.3)

Where gamma is gyromagnetic ratio defined as γ = −gµB/h̄. When an magnetic
field is applied to the magnetic moment it wants to minimize the energy which
is given by:

E = −µ ·B (2.4)

The energy is minimal when µ and B are aligned. This creates a torque on the
magnetic moment and with the help of equation 2.3 the equation of motion can
be determined as:

dµ

dt
= γµ×B (2.5)
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Figure 2.1: The larmor precession for a magnetic field along the z-axis. From
Vesna Berec[5].

Concretely this means that the magnetic moment will move in a direction per-
pendicular to both itself and the magnetic field which means it will rotate around
the magnetic field axis. This rotation has a frequency which is known as the
Larmor precession frequency[4] and can be found as:

ω = γB (2.6)

2.2 Interactions

2.2.1 Magnetic field

As discussed in section 2.1, the magnetic moment is associated with the an-
gular momentum of the electrons orbiting the nucleus. Quantum mechanically
this is described by the orbital angular momentum operators L̂2 and L̂z with
eigenvalues l(l + 1)h̄2 and mlh̄ respectively[6]. However electrons also have an

intrinsic angular moment which is described by the spin operator Ŝ. Analogous
to the orbital angular momentum the spin operators Ŝ2 and Ŝz have eigenvalues
s(s+1)h̄2 and msh̄, respectively. Since both the orbital and intrinsic are always
either integer or half integer values of h̄ it is convenient to drop out h̄. Therefore
the angular and orbital angular momentum operators will be redefined as h̄L̂
and h̄Ŝ. This is the same as saying that measurements are done in units of h̄.
By combining equations 2.2 and 2.4 the energy for an electron in a magnetic
field becomes,

E = gµBs ·B (2.7)
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This means that the energy levels of an electron split by gµBB, this effect is
called Zeeman splitting. The hamiltonian for this term will be,

HZ = −gµBs ·B (2.8)

2.2.2 Single ion anisotropy

Anisotropy is the phenomenon where the magnetic moment has a preferential
axis, known as the easy axis, in the material. This effect is uniaxial meaning
that it does not matter which way it is aligned along the axis. Banis can be
both positive and negative. When the anisotropy is positive the energy for the
magnetic moments is minimized when they lie along the easy axis. When the
anisotropy is negative however the magnetic moments minimize their energy
when they are in the plane perpendicular to the easy axis. The Hamiltonian for
the anisotropy is written as:

Hanis = −gµBBanis

∑
i

sTi κsi (2.9)

Where κ is the matrix defining the direction of the uni axial easy axis. The easy
axis for the anisotropy is chosen along the z-axis so equation 2.9 simplifies to:

Hanis = −gµBBanis

∑
i

szi si (2.10)

2.2.3 Exchange interaction

The exchange interaction is a purely quantum mechanical effect that happens
when two electrons interact with another. Electrons follow Pauli’s exclusion
principle stating that no two electrons in the same atom can have the same
quantum numbers. This means that there are only two ways a pair of electrons
in the same orbital can overlap their wave functions, either in the singlet state
or in the triplet state.

ΨS =
1√
2
[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)]χS (2.11)

ΨT =
1√
2
[ψa(r1)ψb(r2)− ψa(r2)ψb(r1)]χT (2.12)

For the singlet state the wave functions are symmetric and the spin state χS

(S=0) is anti symmetric. For the triplet state it is reversed, the wave functions
are anti symmetric and spin state χT (S=1)is symmetric The Hamiltonian of
the two interacting electrons is,

H =
1

4
(ES + 3ET )− (ES − ET )s1 · s2 (2.13)

The first term is constant and is therefore unimportant but the second term is
interesting since it depends on the orientations of the spins. By defining the

9



exchange constant J as 1
2 (ES − ET ) and dropping out the constant term the

Hamiltonian can be rewritten to

H = −2Js1 · s2 (2.14)

This situation can then be generalized to a many spin system by using the
Heisenberg Hamiltonian which is simply the sum of all pairwise interactions.

H = −
∑
ij

Jijsisj (2.15)

If it is then also assumed that interactions are short ranged the sum can go over
only the nearest neighbours thus reducing complexity from O(nn) to O(2n).
Looking at equation 2.15 there are two possible configurations. One is for J > 0
and the other is for J < 0. In the first case the energy is minimized when
the spins all point in the same direction, this is called the ferromagnetic state.
When the value for the exchange constant is negative the system will be anti-
ferromagnetic meaning that the spins will want to be in the opposite direction
of their neighbours.

2.3 Spin dynamics

Now all the interaction Hamiltonians can be combing to get the total Hamilto-
nian. For the i’th spin the total Hamiltonian reads

Hi = −2J
∑
j

si · sj + gµBsis
z
iBanis − gµBsi ·B (2.16)

All of the terms can be rewritten such that there is one effective field, this is
known as the mean field approximation

Hi = −gµBsi

 2J

gµB

∑
j

sj + sziBanis +B

 (2.17)

Hi = −gµBsiB̃ (2.18)

For this report the semi classical approach is taken where the spins are repre-
sented as vectors that can point in any direction. This approximation works on
the assumption that s≫ 1.
To get from the Hamiltonian to the full equation of motion, Ehrenfests theorem
is used.

dsi
dt

=
1

ih̄
[si, Hi] (2.19)

To solve this the commutators of the spin operators are needed:

[Sx,Sy] = iSz [Sy,Sz] = iSx [Sz,Sx] = iSy (2.20)

Skipping the tedious math gives the following result for the equation of motion.

dsi
dt

=
−gµB

h̄
si × B̃ = γsi × B̃ (2.21)
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2.4 Ferromagnetic spin waves

Here the semi-classical derivation for the dispersion of spin waves with a positive
exchange constant, a magnetic field and anisotropy is given. Spin waves are a
small perturbation of the ground state. These small perturbations are small
deviations from the z-axis and together form a spin wave.

Figure 2.2: Excited state of a one dimensional spin wave with ferromagnetic cou-
pling. Each spin will rotate around the z-axis but with some phase difference
with respect to each neighbour creating spin waves. From Nature Nanotechnol-
ogy[7].

To this extend the individual spins can be rewritten for δ ≪ 1 as

si = sẑ + δsi (2.22)

Filling this into the equation of motion gives:

d

dt
(sẑ + δsi) = γ(sẑ + δsi)×

 2J

gµB

∑
j

sj + sziBanis +B

 (2.23)

To reduce the complexity only nearest neighbour interactions are taken into
account, the z-component of the spin is assumed to be constant and δszi = 0.

1

γ

d

dt
(δsi) = (sẑ + δsi)×

(
2J

gµB
(2sẑ + δsi+1 + δsi−1) + sziBanis +B

)
(2.24)

1

γ

d

dt
(δsi) = sẑ× 2J

gµB
(δsi+1 + δsi−1)+δsi×

(
2J

gµB
2sẑ + sziBanis +Bz

)
(2.25)

Now wave-like solutions in the x-y plane are assumed.

δsxi = Axe
i(ωt−k·ri) (2.26)

δsyi = Aye
i(ωt−k·ri) (2.27)

1

γ

d

dt
(δsxi ) =

2Js

gµB

(
2δsyi − δsyi+1 − δsyi−1

)
+ δsyi (B

z
anis +Bz) (2.28)

1

γ

d

dt
(δsyi ) = − 2Js

gµB

(
2δsxi − δsxi+1 − δsxi−1

)
+ δsxi (B

z
anis +Bz) (2.29)
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1

γ
ωAx =

2Js

gµB
Ay

(
2− e−i(k·(ri+1−ri)) − e−i(k·(ri−1−ri))

)
+Ay(B

z
anis +Bz)

(2.30)

1

γ
ωAy = − 2Js

gµB
Ax

(
2− e−i(k·(ri+1−ri)) − e−i(k·(ri−1−ri))

)
+Ax(B

z
anis +Bz)

(2.31)

The distance between two neighbouring sites is a and the chain is along the
x-axis.

1

γ
ωAx =

2Js

gµB
Ay

(
2− e−ikxa − eikxa

)
+Ay(B

z
anis +Bz) (2.32)

1

γ
ωAy = − 2Js

gµB
Ax

(
2− e−ikxa − eikxa

)
+Ax(B

z
anis +Bz) (2.33)

1

γ
ωAx =

4Js

gµB
Ay (1− cos(kxa)) +Ay(B

z
anis +Bz) (2.34)

1

γ
ωAy = − 4Js

gµB
Ax (1− cos(kxa)) +Ax(B

z
anis +Bz) (2.35)

Solving for ω gives:

h̄ω = 4Js(1− cos(kxa)) + gµB(B
z
anis +Bz) (2.36)

Figure 2.3: The dispersion for a ferromagnetic spin chain at various magnetic
field strengths.

As can be seen in figure 2.3 the magnetic field has the effect of shifting the
dispersion. The same holds when the anisotropy is varied.
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2.5 Antiferromagnetic spin waves

In the case of the antiferromagnetic system the lattice is split up into two sub-
lattices with the k sub-lattice having all the spins point up and the l sub-lattice
having all the spins point down.

dsk
dt

= γsk × B̃k
dsl
dt

= γsl × B̃l (2.37)

with:

B̃k =
2J

gµB

∑
l

sl − szkBanis −B B̃l =
2J

gµB

∑
k

sk − szlBanis −B (2.38)

sk = sẑ + δsk sl = −sẑ + δsl (2.39)

Now everything is filled in and only the first order terms in δs are kept.

dδsl
dt

= γδsl ×

(
2J

gµB

∑
k

szk − szlBanis −B

)
− 2J

gµB

∑
k

sẑ × sk (2.40)

dδsk
dt

= γδsk ×

(
2J

gµB

∑
l

szl − szkBanis −B

)
− 2J

gµB

∑
l

sẑ × sl (2.41)

Just like in the ferromagnetic case wave like solutions are assumed.

A(k) =

√
N

2

∑
k

e−ik·rkδsk (2.42)

B(k) =

√
N

2

∑
l

e−ik·rlδsl (2.43)

A(k)

dt
= γA(k)× (

2J

gµB
+ sBanisẑ +Bẑ) +

2J

gµB
e−ik·(rk−rl)B(k)× sẑ (2.44)

B(k)

dt
= γB(k)× (

2J

gµB
+ sBanisẑ +Bẑ) +

2J

gµB
e−ik·(rk−rl)A(k)× sẑ (2.45)

Next the assumption is made that there are only interactions between neigh-
bouring sites. Therefore the fourier term can be written as:∑

j

Je−ik·(rk−rl) = zJγq (2.46)

with z the number of nearest neighbours and γq is the Fourier transform. To
make progress the following change of variables is performed:

A+(k) = Ax(k) + iAy(k) (2.47)

B+(k) = Bx(k) + iBy(k) (2.48)
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After adding the equations for the x and y components the new equations of
motion become:

dA+(k)

dt
= γi((

2J

gµB
zs+ sBanis +B)A+(k)− 2JzsγqB+(k))) (2.49)

dB+(k)

dt
= γi((

2J

gµB
zs+ sBanis +B)B+(k)− 2JzsγqA+(k))) (2.50)

∣∣∣∣h̄ωq − (2Jzs− gµBsBanis − gµBB) −2Jszγq
2Jszγq h̄ωq + (2Jzs− gµBsBanis − gµBB)

∣∣∣∣ = 0

(2.51)
Solving this gives:

h̄ω =
√
(2Jzs)2(1− γ2q )− 4JzsgµBBanis + (gµBBanis)2 ± gµBB (2.52)

For a one dimensional chain z = 2 and γq = cos(kxa) filling this in gives the
dispersion as:

h̄ω =
√
(4Js)2(1− cos2(kxa))− 8JsgµBBanis + (gµBBanis)2 ± gµBB (2.53)

Figure 2.4: The dispersion for an antiferromagnetic system with various
anisotropies.

Figure 2.4 shows that increase anisotropy has not only the effect of shifting the
dispersion up but also changing the shape. While the magnetic field has the
effect of splitting the dispersion.
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2.6 Langevin equation

As was shown in section 2.1 the magnetic moment wants to align with the field to
minimize its energy. However when there is temperature present the moments
will experience random fluctuations which keep the system from reaching a
minimum energy. The average magnetic moment along the z-axis in a material
is given by the Langevin equation,

< µz >

|µ|
= L(y) = coth(y)− 1

y
(2.54)

Where y is defined as: y = µB
kbT

.

2.7 Temperature

Temperature is a collection of effects that cause excitation and fluctuations in
the direction of the spins. On a very short time scale all of these effects are
deterministic interactions between the phonon, electrons and magnetic fields.
However this calculation is not feasible but since the timescales are long enough
all of the deterministic effects will follow a Gaussian. Since it is important to
have a model that can be compared to experiments the Gaussian variance will
have to depend on the absolute temperature which will be derived here.

The thermal properties are modelled as if the system is in contact with a heat
bath of temperature T. This means that the field that is created by the en-
ergy that is added to the system must have the following properties. It will
be a Gaussian distribution that is isotropic[8]. The fluctuations are random
deviations of the B̃ field, so therefore the mean should be zero.

< bi(t) >= 0 (2.55)

The strength of the random b field should be dependent on the frictional con-
stant λ and the temperature T . These dependencies show up in the correlation
function.

< bi(t)bj(t
′) >= Dδijδ(t− t′) (2.56)

Where D is the diffusion constant given by the Einstein relation[9]:

D = 2
λ

|γ|m
kbT (2.57)

The model without any temperature effects has been described in equation 2.21.
Firstly the contact with the heat bath allows for dissipation from the system into
the heat bath. This dissipation interaction can be seen as a sort of friction on the
system. This interaction can be added by use of the Landau–Lifshitz–Gilbert
equation[10].

dsi
dt

= γsi × (B̃− λ
dsi
dt

) (2.58)
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Which states that the friction term is the dissipation constants λ times the ve-
locity of the spin.

Combing both the random fluctuations and the dissipation term into the Langevin
equation gives,

dsi
dt

= γsi × (B̃i + bi)±
λ

m
si ×

dsi
dt

(2.59)

Then dsi
dt will be expanded once:

dsi
dt

= γsi × (B̃i + bi)±
λ

m
si ×

(
γsi × (B̃i + bi)±

λ

m
si ×

dsi
dt

)
(2.60)

Now when the second order terms in λ are removed. This gives the Landau-
Lifschitz equation:

dsi
dt

≈ γsi × (B̃i + bi)±
λγ

m
si × (si × B̃i) (2.61)
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Chapter 3

Scattering

In practice it is not possible to measure the real time movement of the spins.
So instead neutron scattering is used to measure the magnetic properties of the
system. This chapter will go over the physics behind neutron scattering.

3.1 The basics

Neutrons are ideal particles for doing these measurements. They are neutral
and have spin 1/2. Since they are neutral they do not interact with charges and
can therefore penetrate materials deeply. The spin on the other hand allows it
to interact with the magnetic moments of the material, thus making it possible
to measure their effects. Lastly by adjusting the energy of the neutrons it can
have wavelengths comparable to interatomic distances.

When the experiment is performed a beam of neutrons is fired at the sample
where they will scatter from the sample. Then the scattered neutrons are mea-
sured. This measurement is called scattering cross section. It is simply the
number of measured neutrons normalized by the neutron flux from the beam.
Since the angle at which they scatter is also important the differential scattering
cross section is measured as well. This is the same as the regular cross section
but now per solid angle dΩ. The next part will go over how to calculate these
cross sections.
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3.2 Semi-classical elastic scattering

3.2.1 Single nucleus

Due to particle wave duality the neutron can behave both as a wave and particle.
Therefore the incoming neutron will be written as a plane wave

ψi(r) =
1√
Y

exp(iki · r) (3.1)

where Y is a normalization constant. The time dependence of the wave has
been left out since it will not effect the results in this case. The incoming plane
wave will scatter isotropically on the nucleus at position rj . Since it is isotropic
it will be spherically symmetric and can therefore be described by a spherical
wave. Combining all of this gives the equation for the scattered (final) particle
as:

ψf (r) = ψi(rj)
−bj

|r − rj |
exp(ikf |r − rj |) (3.2)

Where bj has units [m] and is denoted as the scattering length. Note that
equation 3.2 is only valid when the scattering length is much smaller than the
distance between the scattering event and the observation.

3.2.2 System of nuclei

In general it is more interesting to look at systems of particles instead of a
single nucleus. Therefore this section will go through the two particle system
first which can then later be generalized for n particle systems. The incoming
wave will scatter from both nuclei and the final wave will be a superposition of
both scattered waves. It should be noted that the Born approximation is used
which says that the wave is not noticeably attuned between the two nuclei. This
results in the following equation for the final wave.

ψf (r) =

(
ψi(rj)

bj
|r − rj |

exp(ikf |r − rj |) + ψi(rj′)
b′j

|r − rj′ |
exp(ikf |r − rj′ |)

)
(3.3)

Next it is assumed that the nuclei are very close together compared to the
distance to the observer. Thus for |rj − rj′ | ≪ r it can be approximated that:

1

|r − rj |
≈ 1

|r − rj′ |
≈ 1

r
(3.4)

With this approximation the equation for the final wave becomes

ψf (r) = − 1√
Y

1

r
[bj exp{(iki · rj)} exp{(ikf |r − rj |)}

+bj′ exp{(iki · rj′)} exp{(ikf |r − rj′ |)}] (3.5)

Now unlike the approximation made before with the denominator the same will
not hold for the exponential. Since the value in the exponent is the phase of
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the complex wave function a small shift might move it out of a maximum into a
minimum. To make calculations easier the nuclear coordinate rj can be written
as a component parallel and a component perpendicular to r.

|r − rj | = |r − rj,∥ − rj,⊥| =
√
|r − rj,∥|2 + |rj,⊥|2 (3.6)

Since |rj,⊥|2 ≪ |r − rj,∥|2 the approximation
√
x2 + δ2 ≈ |x| is valid. Thus

|r − rj | ≈ |r − rj,∥| and with this term in the exponent in equation 3.5 can be
rewritten as a scalar product as follows:

kf |r − rj | = kf |r − rj,∥| (3.7)

= kf · (r − rj,∥) (3.8)

= kf · (r − rj) (3.9)

Where kf is the vector that is parallel to r and has length kf . Further it is
used that the dot product of kf with the rj,⊥ is zero. At last this gives the final
equation for the total scattered wave equation

ψf (r) = − 1√
Y

1

r
exp(ikf · r)

[bj exp(i(ki − kf ) · rj) + bj′ exp(i(ki − kf ) · rj′)] (3.10)

Which is a plane wave with wave vector kf on which an interference pattern is
imposed. From this the scattering intensity can be written as:

1

Y

h̄kf
mn

dΩ|bj exp(iq · rj) + bj′ exp(iq · rj′)|2 (3.11)

Where q is the neutron scattering vector which is defined as:

q = ki − kf (3.12)

For the simple case that bj = bj′ = b the differential scattering cross section
becomes:

dσ

dΩ
= 2b2(q + cos(q · (rj − rj))) (3.13)

To generalize this to a system of nuclei is straightforward since the interference
effect applies for all particles as long as they are close enough together. So the
general equation for the differential scattering cross section becomes:

dσ

dΩ
=

∣∣∣∣∣∣
∑
j

bj exp(iq · rj)

∣∣∣∣∣∣
2

(3.14)
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3.3 Quantum mechanical inelastic scattering

The quantum mechanical treatment of scattering has the same starting point
as the semi-classical approach namely the incoming neutron is given by a plane
wave.

|ψi⟩ =
1√
Y

exp{iki · r} (3.15)

However now instead of the scattered wave being spherical it will also be a plane
wave.

|ψf ⟩ =
1√
Y

exp{ikf · r} (3.16)

The Fermi Golden Rule governs this scattering process[11]. It gives the change
between the initial state |ψi⟩ of the incoming neutron and the final state |ψf ⟩
of the outgoing neutron.

Wi→f =
2π

h̄

dn

dEf

∣∣∣⟨ψi| V̂ |ψf ⟩
∣∣∣2 (3.17)

Here V̂ is the scattering potential and is defined as

V̂ =
2πh̄2

mn

∑
j

bjδ(r −Rj) (3.18)

with dn
dEf

the density of states. In this case the density of states is a spherical

shell in k-space in scattering direction dΩ and is given by

dn

dEf
=
Y kfmn

2π2h̄2
dΩ

4π
(3.19)

With this, equation 3.17 can be rewritten such that the it gives neutrons per
solid angle dΩ.

Wi→f,dΩ =
Y kfmn

(2π2)2h̄3
dΩ
∣∣∣⟨ψi| V̂ |ψf ⟩

∣∣∣2 (3.20)

Here Wi→f,dΩ is the rate of scattered neutrons in dΩ per second. Now that the
scattering rate is know the differential scattering cross section can be determined
as

dσ

dΩ
= Y 2 kf

ki

(
mn

2πh̄2

)2 ∣∣∣⟨ψi| V̂ |ψf ⟩
∣∣∣2 (3.21)

When the scattering is inelastic the ration kf/ki = 1 and this gives the classical
scattering equation 3.14, again. In elastic cases the energy of the neutrons will
change. The following equation keeps track of the difference in energy between
the initial state |kfλf ⟩ and the final state |kfλi⟩.

∂2σ

∂Ω∂Ef

∣∣∣∣
λi→λf

= Y 2 kf
ki

(
mn

2πh̄2

)2 ∣∣∣⟨λik| V̂ |kfλf ⟩
∣∣∣2δ(Eλi

− Eλf
− h̄ω) (3.22)
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The δ function makes sure that the energy is conserved through the scattering
process. Writing out the matrix elements gives:∣∣∣⟨λik| V̂ |kfλf ⟩

∣∣∣2 =

(
2πh̄2

mn

)2∑
j,j′

bjbj′ ⟨λi| exp(−iq ·Rj) |λf ⟩ ⟨λi| exp(−iq ·Rj′) |λf ⟩

(3.23)
Where |λi⟩ and |λf ⟩ are the initial and final states of the sample which scatters
the neutrons. The δ function can also be rewritten as

δ(Eλi − Eλf
− h̄ω) =

1

2πh̄

∫ ∞

−∞
exp

(
i(Eλf

− Eλi
)t

h̄

)
exp(−iωt)dt (3.24)

Using both of these equations the equation for the differential scattering cross
can be written as:

∂2σ

∂Ω∂Ef

∣∣∣∣
λi→λf

= Y 2 kf
ki

∑
bjbj′

bjbj′

2πh̄
⟨λi| exp(−iq ·Rj) exp(−iq ·Rj′) |λf ⟩

× exp

(
iEλf

t

h̄

)
exp

(
−iEλi

t

h̄

)
exp(−iωt)dt (3.25)

= Y 2 kf
ki

∑
bjbj′

bjbj′

2πh̄
⟨λi| exp(−iq ·Rj) |λf ⟩

× ⟨λi| exp
(
iHt

h̄

)
exp(−iq ·Rj′)exp(

−iHt
h̄

) |λf ⟩ exp(−iωt)dt (3.26)

= Y 2 kf
ki

∑
bjbj′

bjbj′

2πh̄
⟨λi| exp(−iq ·Rj(0)) |λf ⟩

× ⟨λi| exp(−iq ·Rj′(t)) |λf ⟩ exp(−iωt)dt (3.27)

Here it is used that the energy is an eigenvalue of the Hamiltonian H and that
time dependence can be expressed by the time-dependent Heisenberg operators,

Rj(t) = exp(
iHt

h̄
)Rjexp(

−iHt
h̄

) (3.28)

In an experimental setting the actual final state of the sample is not measured,
only the final state of the neutrons. Thus a sum can be taken over all final
sample states, which should be equal to one by the completeness rule. Also it is
assumed that the system is in thermal equilibrium and it is studied over a much
longer time than the neutron frequency. This means the thermal average of the
initial states of the sample can be taken. Combining all of these assumptions
gives

∂2σ

∂Ω∂Ef
=
∑
λiλf

∂2σ

∂Ω∂Ef

∣∣∣∣
λi→λf

(3.29)
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∂2σ

∂Ω∂Ef
=
kf
ki

∑
bjbj′

bjbj′

2πh̄
× ⟨exp(−iq ·Rj(0))exp(−iq ·Rj′(t)) exp(−iωt)⟩

(3.30)
This is the observable scattering cross section and deals with both elastic and
inelastic scattering.

3.4 Magnetic scattering

All that is left is adding the effects of magnetic moments to the differential
scattering cross section. To do this the scattering potential needs to be modified.
The total interaction between the unpaired electrons in the sample and the
neutrons is given by the sum of nuclear Zeeman interactions at each of the
magnetic sites j.

V̂ =
µ0

4π
gµBγµN σ̂ ·∇×

(
sj × (r− rj)

|r− rj |3

)
(3.31)

Inserting the new magnetic scattering potential into the equation for the scat-
tering cross section results in

∂2σ

∂Ω∂Ef

∣∣∣∣
σi→σf

=
kf
ki

(µ0

4π

)2( mn

2πh̄2

)
(gµBγµN )

2
∑
λi,λf

pλi (3.32)

× | ⟨kfλfσf |σ̂ ·∇×
(
sj × (r− rj)

|r− rj |3

)
|kiλiσi⟩|

2

(3.33)

× δ(h̄ω + Eλi
− Eλf

) (3.34)

It should be noted that the scattering cross section also depends on the neutron
spin sate |σ⟩. The magnetic scattering cross section will be rewritten by using
the following identity[12]

∇×
(
s× r

r3

)
=

1

2π2

∫
q̂′ × (s× q̂′) exp(iq′ · r)d3q′ (3.35)

Where q̂′ is the unit vector pointing in the direction of q′. Now applying the
identity to the matrix elements gives

⟨kfλfσf |V̂ |kiλiσi⟩ = (3.36)

1

2π2
⟨kfλfσf |σ ·

∫
q̂′ × (sj × q̂′) exp(iq′ · (r− rj))d

3q′|kiλiσi⟩ = (3.37)

1

2π2
⟨λfσf |exp(iq · r)× exp(iq′ · (r− rj))σ · (q̂′ × (sj × q̂′))d3q′d3r|λiσi⟩ =

(3.38)

4π ⟨λfσf |exp(iq · rj)σ · (q̂′ × (sj × q̂′))|λiσi⟩ = (3.39)

4π ⟨λfσf |exp(iq · rj)σ · sj,⊥|λiσi⟩ (3.40)
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In the first step the integration over all the k states is performed. The next step
used the identity: ∫

exp(i(q+ q′) · r)d3r = (2π)3δ(q+ q′) (3.41)

Finally the last step made use of,

q̂′ × (sj × q̂′) = sj,⊥ (3.42)

where sj,⊥ is the perpendicular component to the scattering vector on site j. This
means that the perpendicular component is the only component that contributes
to scattering cross section. Since σ is the neutron spin state it depends only on
|σ⟩ and sj,⊥ is only influenced by the sample state |λ⟩ the inner product can be
factorized. ∑

σf ,σi

| ⟨λfσf |σ · sj,⊥|λiσi⟩|2 =

∑
σf ,σi

∣∣∣∣∣∑
α

⟨σf |σα|σi⟩ ⟨λf |sαj,⊥|λi⟩

∣∣∣∣∣
2

=

∑
σf ,σi

∑
α,β

⟨σi|σβ |σf ⟩ ⟨σf |σα|σi⟩ ⟨λf |sαj,⊥|λi⟩ ⟨λf |s
β
j,⊥|λi⟩ =∑

σi

∑
α,β

⟨σi|σασβ |σi⟩ ⟨λf |sαj,⊥|λi⟩ ⟨λf |s
β
j,⊥|λi⟩ =

In the last step the completeness relation is used which says that
∑

σf
|σf ⟩ ⟨σf | =

1. Then looking at the polarization of the atoms simplifies this further.{∑
σi

⟨σi|σασβ |σi⟩ = 1 if α = β∑
σi

⟨σi|σασβ |σi⟩ = 0 if α ̸= β
(3.43)

Applying this result removes all of the sums and gives us the much simpler
equation, ∑

σf ,σi

| ⟨λfσf |σ · sj,⊥|λiσi⟩|2 = ⟨λf |sj,⊥ · sj,⊥|λi⟩ (3.44)

Now the perpendicular projection can be written as,

sj,⊥ = sj − (sj · q̂) · q̂ (3.45)

This is then applied to the dot product,

= sj,⊥ · sj′,⊥ =
∑
α,β

(δαβ − q̂αq̂β)s
α
j s

β
j′ (3.46)
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With this all of the components for the master scattering cross section for neu-
trons, with magnetism included, are gathered and can be added together[13].

∂2σ

∂Ω∂Ef
=(γr0)

2 kf
ki

(g
2
F (q)

)2∑
α,β

(δαβ − q̂αq̂β) (3.47)

×
∑
λf ,λi

pλi

∑
j,j′

⟨λi|exp(−iq · rj)sαj |λf ⟩ ⟨λf |exp(iq · rj′)sβj′ |λi⟩

(3.48)

δ(h̄ω + Eλi
− Eλf

) (3.49)

Where F (q) is the magnetic form factor and is defined as

Fm(q) =

∫
exp(iq · r)ρs(r)d3r (3.50)

with ρs the normalized spin density in the unfilled orbitals. Just like in the
inelastic calculation the δ function can be transformed into an integral by using
the time dependent Heisenberg operators. Then using the completeness identity
for the final states |λf ⟩ the following cross section is achieved,

∂2σ

∂Ω∂Ef
=(γr0)

2 kf
ki

(g
2
F (q)

)2∑
α,β

(δαβ − q̂αq̂β) (3.51)

× 1

2πh̄

∑
j,j′

∫ ∞

−∞
exp(−iωt) (3.52)

×
〈
exp(−iq ·Rj(0))s

α
j (0) exp(−iq ·Rj′(t))s

β
j′(t)

〉
dt (3.53)

Here R is the nuclear position but this can be pulled outside of the thermal
average by replacing it with r, the nuclear equilibrium position.

∂2σ

∂Ω∂Ef
=
(γr0)

2

2πh̄

kf
ki

(g
2
F (q)

)2∑
α,β

(δαβ − q̂αq̂β) (3.54)

×
∑
j,j′

∫ ∞

−∞
exp(−iωt) exp(iq · (rj′ − rj))

〈
sαj (0)s

β
j′(t)

〉
dt (3.55)

By going back to the semi classical representation s can be represented as vector
again instead of an operator. Then dropping out all of the prefactors gives the
scattering function Sα,β .

Sα,β(q, ω) =
∑
j

sαj (0) exp(−iq · rj)
∑
j′

∫ ∞

−∞
exp(iq · rj′)sβj′(t) exp(iωt)dt

(3.56)
This is the equation that will be simulated and will show the dispersions. Since
the prefactors are dropped out the absolute values will not be comparable but
it will only differ by a constant prefactor. In most cases α = β will hold since
sums over α and β will cancel out due to the anti symmetric property of the
scattering function Sα,β = −Sβ,α.
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Chapter 4

Computational

4.1 Integration

To solve integrals numerically the midpoint method is used[14]. Most numerical
integration methods are a variation on Euler’s method. the most common ones
are the midpoint method (2nd order) and the Runge-Kutta method (4th order).
Here the midpoint method is used since precision is not a huge priority since
every iteration will be perturbed by the random temperature fluctuation. Since
more precision comes at the cost of computational speed the midpoint method
is a good balance. The midpoint method works as follows,

yn+1 = yn + hf

(
tn +

1

2
h,

1

2
(yn +

1

2
hf(tn, yn))

)
(4.1)

where y′(t) = f(t, y(t)). First the differential equation is evaluated at t+ 1
2h to

give the slope. Then the point to be approximated (yn+1) can be determined
by moving one step h along this slope from the previous point (tn). A visual
explanation of this is given by figure 4.1.
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Figure 4.1: An illustration of the midpoint method where y(t) is integrated from
n to n+ 1. From wikipedia[15].

4.2 Temperature

In section 2.7 the relation for the random b field was derived. Now it needs to be
implemented numerically. To do this the variance needs to be found such that
at each iteration for each spin a random field can be generated that represents
the temperature fluctuations. To do this the time evolution of equation 2.61 is
discretized in time.

si(tN )− si(t0) =

∫ tN

t0

∂si
∂t

dt =

N−1∑
j=0

∫ tj+1

tj

∂si
∂t

dt (4.2)

The initial condition for si(t0) is given which allows 4.2 to be rewritten as:

si(tn) = s(t0) +

n∑
t=0

∆si(t) (4.3)

With:

∆si(tn) =

∫ tn+1

tn

∂si
∂t

dt (4.4)

Then the goal becomes to find a proper approximation for the terms ∆si(tn).
To approximate the random term b(t) it is assumed that on this time interval
the si(t) barely has any time dependence compared to b(t). This allows the
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random term in the equation of motion to be rewritten as

∆f =

∫ tn+1

tn

γsi(t)× b(t)dt (4.5)

= γsi ×
∫ tn+1

tn

b(t)dt (4.6)

= γsi ×∆b (4.7)

with

∆b =

∫ tn+1

tn

b(t)dt (4.8)

The temperature fluctuation can be seen as a Gaussian random walk. According
to random walk theory the variance is proportional to t. In the case for ∆b(t)
the time interval is:

tn+1 − tn = ∆t (4.9)

And therefore the variance will scale with ∆t. The total variance can now be
calculated from the correlation function:

< ∆bi(t)∆bj(t
′) > =

∫ tn+1

tn

bi(t)dt

∫ tn+1

tn

< bj(t
′)dt′ > (4.10)

=

∫ tn+1

tn

∫ tn+1

tn

< bi(t)bj(t
′) > dtdt′ (4.11)

= Dδij

∫ tn+1

tn

bi(t)dt

∫ tn+1

tn

δ(t− t′)dtdt′ (4.12)

= Dδij

∫ tn+1

tn

dt (4.13)

= Dδij∆t (4.14)

To implement this in the software the following steps are taken. For every time
step first generate N random numbers from a Gaussian distribution with vari-
ance equal to Dδij∆t. Where N is the system size and ∆t the time step. Then
calculate the deterministic part of the equation and to this add the temperature
fluctuations.

4.3 Coordinate system

A coordinate system is needed to represent the spin vectors and there are two
options to consider. On the one hand there is the standard Cartesian coordinate
system and on the other there is the spherical coordinate system.
The first intuition would be to choose the spherical coordinate system. Since
the magnitude of the spin is constant it moves on the surface of a sphere. For
a spherical coordinate system this means that the r coordinate is constant and
the system effectively becomes 2D. This reduces the amount of memory needed
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to store the orientations of the spin as well as having one less component to
calculate. It is also an answer to one of the numerical problems that show up
where the length does not stay constant due to integration errors and therefore
normalization has to be applied at every time step (This will be discussed in
more detail in section 5.1).

However there are two big flaws. The first has to do with the fact that there is
a singularity when the moment aligns with the z-axis. This is because when the
azimutal angle φ is zero the polar angle can take on any value. This problem
showed up both when implementing this in the current CLaSSiC as well as in
the previous[3] iteration by producing inconsistent results. The second issue has
to do with speed. The equation of motion (equation 2.21) has a cross products
and cross products are highly non-trivial in spherical coordinates. To do the
cross product in spherical coordinates first the system is written in Cartesian
coordinates, then the regular cross product is taken and finally it is transformed
back to spherical coordinates. The equation of motion in spherical coordinates
can be found in the appendix C. As can be seen this method makes use of a
lot of trigonometric functions which are much slower then simple arithmetic
functions. Both of these problems weigh much heavier then possible benefit
of reducing the dimensionality of the problem as well as no longer needing to
normalize.

4.4 Python vs C++

The original version of the model was written in Matlab and later moved on to
Python and is now written in C++. This chapter will explain why moving the
code to C++ makes the simulation time much shorter.
The first thing to note is that Python is an interpreted high level language while
C++ is a compiled lower level language. So first interpreted vs compiled[16].
When a Python program is run it will look at a line, execute it and move on
to the next one. On the other hand a compiler will look at all of the code and
make a set of instructions called an executable, which is then be run. The big
advantage is the compiler can use optimizations a lot better since it can for
example predict what memory might be need later since it can look ahead. A
disadvantage of compiled languages is that compiling can be slow, especially for
larger projects.

Next low vs high level languages[17]. The lower level a programming language
is the more the programmer has to do. This is both a good thing and a bad
thing. The good part is that now there is a lot more control over the resources.
However with the drawback is that ease of use goes down. For example when
declaring a variable in Python there is no need for a type declaration (int,
float, etc) while in C++ you must declare it beforehand and cannot change this
afterwards. This makes for more difficult programming but allows for faster
runtimes since now there is no need to check if the data type has changed.
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4.5 Data structures

The next important thing in optimizing runtime is making sure the data is
laid out efficiently. To understand what makes a good data structure a short
explanation of memory architecture will be needed. To start of the storage is
divided up into multiple tiers where the lower tiers have much higher access
speed but that is offset by their size. For example the lowest tier data storage
is the L1 data cache which is 128 KB in size and has access speed of 700 GB/s
this in comparison to the ram which will have a size on the order of 10 GB and
an access time of 10 GB/s.

When the CPU needs something from memory it will ask the memory controller
for that piece of data. The memory controller is smartly designed however and
gets more of the data than needed. The idea is that the CPU will not only
need that single data point but also some of the surrounding data. To take
full advantage of the it is important to put all of the data that is needed for
a calculation together. In this case that means a structure where there is an
separate array for each of the three Cartesian coordinates since most of the
calculations involve only one coordinate at the time and thus multiple atoms
can be done simultaneous.

4.6 Parallelization

One way to increase performance is by running tasks in parallel. Theoretically
the speedup will be equivalent in how many ways the task is split. Most mod-
ern computers have 8 cores per CPU, that would mean a 8x increase in speed.
However there are also GPUs which are specifically build for massively paral-
lel tasks. They will have over a 1000 cores thus allowing for equally massive
speedups. However for parallelism there is always an overhead thus there needs
to be enough number crunching to make it worth it.

When talking about parallelizing the first thing one looks at are the parts that
are pleasingly parallel. These are parts of the code where there is only sequential
data dependence and it is just pure calculation. An example of this in CLaSSiC
would be the random number generation for the temperature deviations. Here
an array equal to the system size is filled with random numbers. These numbers
have no dependence on each other so they can be generated independently,
which means the array can be split among the CPU cores and each core can
do a different part of the array. The issue here is in the fact that setting up
parallelism has overhead and it is only as fast as the slowest core since it has to
wait until every core is finished before it can continue. Otherwise race conditions
may happen which produces strange results. Thus for small systems it is not
worth doing this kind of parallelism. To break even in the random number
generation case the array size would have to be on the order of 10.000 elements
and right now the systems that are run with CLaSSiC are more on the order of
a 1000.

29



Then there are the parts of the code that can be parallelized but the cores would
need to communicate between each other since there is data dependence. This
can be a very big bottleneck as well as making implementation much harder.
Ideally the whole integration part would be parallelized since that is where all
of the work is done but when calculating the effective field there is the term
concerning the exchange interaction. Here the core would have to have the
data of the neighbours. One could implement this smartly so that most of the
neighbours are done by the same core but there will always be some that are
on the border between two CPU cores. This would require all of the cores to
synchronize after each evaluation in the midpoint method giving up a lot of
the potential speed up. This has not been implemented since the systems that
are simulated where already too small to parallelize random number generation
thus it is expected the same would hold in this case.
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Chapter 5

Validation

Chapter 5 will cover over the results from the model and compare them to the
theory. This comparison is performed to validate the code for errors and its
correspondence with the theory. All of the simulation parameters are given in
table B.1. All of the data is available upon request.

5.1 Zeemann interaction

As was seen in section 2.1, a single spin in a magnetic field will precess around
the magnetic field. The spin should have a periodic motion with an energy equal
to:

h̄ω = −h̄γB (5.1)

For a magnetic field of 5 T the theoretical energy is E = 0.579509 meV and the
simulation gives E = 0.578993 meV so there is an error of ∆E = 0.0005 meV.
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Figure 5.1: Single spin in 5 T magnetic field in z-direction. The first figure
shows the time evolution, the second the real part of the Fourier transform and
the last the time evolution in the x-y plane.

Figure 5.1 shows that the spin indeed rotates around the z-axis with a constant
speed. One thing to note that cannot be seen from the figure, is that the
system loses a little bit of energy since Sz goes slightly down, however this is on
the order of 1 × 10−8 over the whole duration of the simulation which is 1 ns.
This scales linearly with time so if it is run for 10 ns it will be on the order of
1×10−7. This is caused by small integration errors. When doing the integration,
the estimation will always be slightly too large which makes the spins a little
bit longer. This is an unphysical effect and to combat this renormalization is
introduced. When the spin is renormalized the orientation is changed slightly
leading to a small error. When the system is then integrated over a long time
the error accumulates. When the system is run without renormalization the
z-difference is zero.

5.2 Anisotropy

When there is anisotropy in a single spin system the spin will precess around
the anisotropy axis with the energy depending the angle with the perpendicular
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axis. This can be seen by rewriting the dot product in equation 2.9 to the cosine.

h̄ω = gµBBanis cos (θ) (5.2)

Figure 5.2: Single spin anisotropy with strength Banis = 10 T in the z-direction.
Here θ is the angle with respect to the z-axis, also known as the polar angle.

Figure 5.2 shows that the theory follows the simulation well. At the tip of the
v-shape the spins are perpendicular to the easy axis. The more they align with
the anisotropy axis the faster they will spin.

5.3 Temperature

Temperature introduces fluctuations in the spin orientation. The average of the
spin orientation along the z-axis is given by the Langevin curve as was seen in
equation 2.54:

< µz >

|µ|
= L(y) = coth(y)− 1

y
(5.3)

with

y =
µBz

kbT
(5.4)
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The simulation seen in figure 5.3 is run for 100 ns with dissipation term λ = 0.001
and starts aligned with the magnetic field. Note that the figure average values
for the spin components over the last 10% of the simulation. Faster conversion
can be achieved by taking a smaller window to average over or by increasing λ.

Figure 5.3: Average position for a single spin in various magnetic fields. The
lines represent the theory and the points are the data produced by the simula-
tion.

5.4 Rotor

The simplest case to test the exchange interaction is with two spins pointing
anti parallel. They will start to rotate and the speed depends on the angle they
make with x-y plane. The relation is

h̄ω = 2Js(2 sin(θ)− 1) (5.5)
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Figure 5.4: Two spins start out anti parallel to each other and are then rotated
by an angle with respect to the x-y plane. This is shown for various exchange
constants. The lines are equation 5.5 and the points are the data produced by
the simulation.

As can be seen in figure 5.4, the spin will rotate faster for larger angles. The
energy is evaluated by performing a Fourier transform thus, the 90◦ point is not
included since the spins would not rotate.

5.5 Ferromagnetic spin chain

Figures 5.5 and 5.6 show the dispersion for a ferromagnetic spin chain where
the x-axis is a path through the high symmetry points in k-space. The data
points come from the peaks of the scattering function Sαβ(k, ω).
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Figure 5.5: The dispersion of a ferromagnetic spin chain for various magnetic
fields.

Figure 5.6: The dispersion of a ferromagnetic spin chain for various anisotropies.

The origin of the peaks are determined can be seen in figure 5.7. Here the
top plot represents the same dispersion but now the dots are colored based on
their intensity. The bottom plot shows the scattering function Sαβ(k, ω) at the
red line in the top plot. As can be seen in figures 5.7 and 5.8 the peaks are
very distinct, but the intensities vary wildly. However the peaks are still in the
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proper place, corresponding with the prefactors being dropped out, as explained
in section 3.4. One of these, the magnetic form factor, has a dependency on k
and might explain the results since it varies from point to point in k-space. As
a side note the energy axis goes on for much longer but is cut off because there
are no effects that have such high energy.

Figure 5.7: Intensities at various points in k-space for a spin chain started in
the first mode. The scattering function is given at the 4th point in k space.
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Figure 5.8: Intensities at various points in k-space for a spin chain started in
the first mode. The scattering function is given at the 14th point in k space.

5.6 Antiferromagnetic spin chain

The correct dispersion is also found in the antiferromagnetic case as figures 5.9
and 5.10 show but again the scattering function shows a big variation in inten-
sity. It should be noted that the antiferromagnetic system is rather temperature
sensitive, especially when introducing a magnetic field making it hard to get the
correct dispersion. But for the low temperature (T = 1× 10−16) simulated here
it produces good results.
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Figure 5.9: Antiferromagnetic chain with various easy axis anisotropies.

Figure 5.10: Antiferromagnetic chain with various easy axis magnetic fields.
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When simulating the antiferromagnetic chain with zero temperature and no
dissipation it produces additional peaks depending on the mode the system
was started in. This can be seen in figure 5.11, where it clearly shows that the
maximum does not follow the dispersion, however the peak corresponding to the
dispersion is still there. This effect disappears when small temperature effects
are introduced as figures 5.9 and 5.10 show. Thus this is most likely a result of
numerical errors in the starting position.

Figure 5.11: Antiferromagnetic chain with T = 0 and λ = 0.
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Chapter 6

Benchmark

6.1 Setup

All of these benchmarks are run on a HP Z-book. It has an Intel(R) Core(TM)
i7-7700HQ CPU which has a base clock speed 2.80 GHz and can turbo to 3.80
GHz. For the memory there is a single stick of 8GB, 2400 MHz Hynix DDR4
RAM. For reference these specs are decent but not top of the line and will
usually be slower than desktop equivalents. This is because laptops can use
only limited power since cooling is a major concern. So a more top of the line
CPU will be able to boost to 5.0 GHz and RAM speeds can be up to 3200 MHz.
Of course if enterprise hardware is taken into account more is possible.

6.2 Scaling

The model is expected to scale linearly with all parameters that change the
amount of computation. These are the number of time steps and geometry,
which affects number of nearest neighbours as well as the number of atoms
in the system. Each time step is independent from the previous and it will
perform the same calculations every time step. Thus it is expected to scale
linearly. Figure 6.1 shows that it indeed scales linearly with the number of time
steps.

When the geometry is varied it influences the number of calculation per it-
eration. Changing the number of nearest neighbours only has affect on the
calculation for the exchange field. The number of calculation will scale as nA
with n the number of neighbours and A the number of atoms and is thus linear.
The results are shown in figure 6.2 and show indeed a linear dependence.

Lastly for different numbers of atoms. The mean-field will simply have to be
calculated and applied more often but since a single calculation does not depend
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Figure 6.1: The runtime for different values of time steps. The system size was
100 atoms in the line geometry.

on the number of atoms it is linear as well. This not very clear from figure 6.3
since it is only approximately linear. However there are not that many data
points and they are very close together. So fluctuations in the runtime will have
a big effect on this plot.

The model being linear is a very nice property since it means that making
bigger or more complex systems does not take that much additional time. If for
example all spins could interact with each other, it would be become a N-body
problem. This has nn scaling which means increasing system size is extremely
costly.
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Figure 6.2: Benchmark for the line geometry for runs with 1.000.000 time steps
and temperature enabled.

Figure 6.3: This figure shows the speed dependency on the number nearest
neighbours. The systems are run for 1.000.000 time steps, temperature enabled
and 100 atoms.
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6.3 Intel VTune

Intel VTune[18] is a profiling tool for computer programs in a variety of lan-
guages. It gives insight in where the most time is spent, how well it parallelizes
and where potential bottlenecks are. The tool is free and will work for both
Intel and AMD CPUs. The next sections are based on an article by Intel called
the Intel VTune Profiler Performance Analysis Cookbook[19]. It will explain
what the measurements mean, where they come from and how they should be
interpreted. All measurements are done for a line geometry with 500 atoms run
for 1.000.000 time steps unless noted otherwise.

6.3.1 Background

The micro architecture is the inside of a CPU which has many different modules
for different tasks. For example there is the division unit which handles division
and the ALU (Arithmetic Logic Unit) which handles, as the name suggests,
arithmetic and logic. A good way to analyze the efficiency of the hardware is
by looking at pipelines.

First of all a pipeline is a chain of processes that are executed one after another
where the output of one process is the input for the next. The process can
be divided into two halves, front end and back end. The front end takes the
software instructions and decodes them into hardware level operations called
micro-operations (µOps). Then it moves these to the next step in the pipeline
which is the back-end, this step is called allocation. The back-end is responsi-
ble for executing the µOps so it will fetch the required data and send it to an
appropriate execution unit. If an execution is successful is said to have been re-
tired. However not all of the micro-operations will be retired, this is because the
front-end will speculate on future muOps and memory and these speculations
will not always turn out to be correct.
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Figure 6.4: A µOps pipeline produced by intel VTune with the minGW compiler.
From the top to the bottom there is Front-End Bound (red), memory bound
(gray), retiring (green), Core bound (red) and lastly bad speculation (gray).

The pipeline in figure 6.4 is created in the following way. Every CPU cycle
the front-end can allocate a set amount of µOps and the back-end can also
process a set amount. Then a pipeline slot will be defined as the requirements
for processing a single µOp. Each slot can be divided into 4 categories. If, for
a given cycle, the slot does not have a µOp it will classified as a stall. If the
front-end cannot provided µOps fast enough the stall is denoted as front-end
bound. If it is empty because the back-end cannot accept a new µOp yet it will
be classified as back-end bound. Then if the pipeline slot is not empty it will be
classified one of two ways depending on if it will be retired or not. If it is retired
eventually it will be classified as retired and otherwise it will be classified as
bad speculation.
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Figure 6.5: The decision tree for the categorization of pipeline slots. From Intel
VTune Profiler Performance Analysis Cookbook[19].

Before talking about how to optimize these categories it is important that the
focus will be on so called hotspots. Hotspots are the points in the software that
use the most CPU cycles. Optimizing these parts of the code gives the biggest
performance increase for the amount of work since a potential improvement
will affect a larger portion of the run time. It should be noted that looking at
hotspots is only relevant after any parallelization has been done as well as any
algorithmic tuning. This is because otherwise the hotspots might change if the
algorithm is changed and therefore tuning a certain section might not be worth
it anymore.

6.3.2 Possible optimization

Most of the unoptimized programs turn out to be back-end bound. This is
usually due to latency issues where the retirement process takes much longer
than needed because it needs to wait on resources. There are two types of
resources it might need to wait on, memory and execution units. To solve
memory bound issues one would need to make sure that the required data is
closer to the core. Since the closer it is the faster it can be accessed. Latency
in execution units is called core bound and happens when there is only a very
small amount of data on which a lot of computation is done. For example there
are only so many divider units available in the CPU so doing many divisions
will overload the units and causes stalls. This can be solved by spreading the
work out if possible.

Front-end bound problems occur less often and are seen more in interpreted
languages such as Python. This is because the instructions are created on
the go and can therefore not be optimized. However the front-end also does
speculation on what µOps it should create. This is mostly caused by writing
lengthy code with a lot of if-else statements. This makes for a lot of possible
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ways the code can run since for each if-else statement it can branch one of two
ways. Thus the compiler cannot properly predict what will happen. To solve
this, reduce the complexity of the code and the amount of if-else statements.
Also different compilers may produce different results.

6.3.3 Compiler choice

The main compiler choice for this project was the minGW compiler since it
is open-source and works for both AMD and Intel platforms. However Intel
VTune came with its one compiler so it seemed like a good idea to compare
the two. Figure 6.4 shows the pipeline for the minGW compiler while figure
6.6 shows the results for the intel compiler. As it turns out the Intel compiler
is much better at optimizing the front-end as it almost completely removes the
front-end bound bottleneck. For minGW it accounts for 16.7% and in the Intel
case it is only 2.5%. This is also seen in the run time of the program which is
approximately twice as fast when compiled by the Intel compiler.

However where it does most of these optimizations is hard to say since the
function naming was not working for the minGW compiled program. This
means that it gives only the function pointer, which looks something like:
func@0x1402324e7. Thus comparing the on a function basis is not realistic.
For the rest of the analysis the Intel compiler is used since there the function
naming works properly.

Figure 6.6: A µOps pipeline produced with the Intel compiler.

6.4 Hotspot analysis

Now lets take a look at the hotspots in the code. Figure 6.7 shows the top 15
functions sorted by the number of clock cycles spend in them. The following
section will go through each of the functions listed here.
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Figure 6.7: The top 15 functions sorted by the number of CPU cycles.

6.4.1 Temperature analysis

The first thing that sticks out is, that the functions in the top 5 all deal
with generating numbers from a Gaussian. This should be obvious from the
std::normal distribution functions but std::mersenne twister is a random num-
ber generator which makes use of std::generate canonical to produces proper
random numbers. The only place where random number generation is used
is for the temperature effects. To verify this the program was run with zero
temperature which disable the random number generation. The execution time
went from 55 seconds to 10 seconds. So the potential gain here is massive.

So where do these issues come from? The biggest issue is back-end core bound.
This is partly because std::normal distribution<double>::operator() hits the di-
vision units hard. Over 75% of the cycles is spent division, which is a lot. Then
the other are using scalar operations and not vector operations therefore not us-
ing the CPU to its full potential. The front-end issues are much smaller. Note-
worthy are that std::normal distribution<double>:: Eval 21% of its branches
are mispredicted and std::normal distribution<double>::operator() is memory
bound by the L1 cache.

There are several ways in which this could in theory be optimized but it should
be noted that this a library function. Therefore it is quite likely that it has
already been optimized to some degree and further optimization will most likely
not give big improvements. However there are multiple things to consider. First
of all is the choice of algorithm. The current algorithm produces high quality
random numbers so choosing a different algorithm could be faster at the cost
of quality. Another way to improve in this area is by applying the temperature
effects only once every 10 or a 100 iterations. This would massively reduce
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the time spent to generate numbers from a Gaussian. The variance for this
Gaussian contains a factor dt and can thus be adjusted accordingly. However
in both cases it should be checked that the proper results are still produced.

6.4.2 Code analysis

Next up are the functions that are actually written by myself. However to
properly benchmark this a large enough number of clock cycles need to be spend
in these functions to give accurate results. In the run shown in the previous
section almost all time is spent in the random number generation section and
therefore not enough is spent in the rest. So the evaluation was run again
but this time with zero temperature and for 10.000.000 times steps. The new
pipeline can be seen in figure 6.8 and the hotspots in figure 6.9. A quick look at
the pipeline shows that now a bigger percentage of the µOps get retired. There
is also lower amount of pipeline slots that are core bound and the amount of
bad speculation is significantly reduced (the gray area at the bottom). This is
expected since most of these issue stem from the Guassian number generation
which is now removed.

Figure 6.8: The µOps pipeline compiled by the Intel compiler for zero temper-
ature.
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Figure 6.9: The top 10 functions based on number of CPU cycles. Here the
temperature is put to zero.

Looking at the hotspots reveals that Simulation::run is no longer present. This
is because in this function the results of the Gaussian number generation are
allocated to memory. When the temperature is zero this of course no longer
happening.

CalculateEffectiveField

Most of the work is expected to be done in the Integrator class since this is
where the bulk of the calculation happens and this reflects relatively well in the
number of clock cycles.
At the top is Integrator::calculateEffectiveField. The main point of interest is
here is the retirement rate being really high at over 88%. While this means
that a lot of useful work is done it means optimization here might be gained
by doing the work more efficiently. One of the main ways to do this is by
using parallelization and it turns out that this function does mostly perform
scalar operations as opposed to vector operations. Looking at the source code
shows that the magnetic field and anisotropy use SIMD operations and are
thus vectorized. The exchange interaction on the other hand is not vectorized.
Thus the low fraction of vectorization indicates that the bottleneck lies in the
exchange interaction. The exchange interaction can be vectorized but it has not
been done as of yet since it is less trivial than the magnetic field and anisotropy.

Normalize

Next are two functions that are almost equal in time. Also they have switched
position when the temperature was turned off. This is mostly likely due to there
not being enough clock cycles with temperature to make an accurate prediction.
Furthermore the relative position is not actually important since it is simply an
indication of where a lot of time is spent.
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First Simulation::normalize, here the main issue is division. Since normalization
requires dividing each component by its magnitude it is very costly on division
which takes a long time compared to multiplication for example. To remedy
this the reciprocal magnitude is calculated and this is multiplied with each
component. Reducing the number of divisions by three. However there is still
one division per atom which is unavoidable.

Another issue here is that it is memory bound, from the L1 cache. This can
be potentially be improved however. Currently the magnitude is calculated for
each atom which means that it will need to access the x, y and z components.
This is slow since they are not next to each other in cache because the memory
layout is {x1, x2, ...., xn}, {y1, y2, ..., yn}, {z1, z2, ..., zn}. It would therefore be
better to calculate 4 atoms at the same time such that everything will be on a
single cache line, thus reducing the pressure on the L1 cache. Something else
that could be investigated is checking if it is possible to normalize less often,
lets say every 10th iteration. This would reduce computation time at the cost
of accuracy, the question is if this is accuracy that can be given up.

Integrate

Next is the the function where the actual integration happens, Integrator::integrate.
This function is heavily core bound. Looking at the results show that memory is
not an issue here and that it is perfectly vectorized. Therefore the issue is most
likely in data dependency. It cannot perform calculations out of order since it
needs to wait on previous calculations to finish. A way that could potentially be
improved is by breaking the chain of calculations and splitting it up in several
smaller calculations. This would allow for small parts that are not depended on
each other to be calculated separately and combined later.

Evaluate

Finally there are the two Integrator::evaluate functions. It is not completely
clear why there are two but the best guess is that since there are two calls to
this function with different inputs they are treated separately. Since they show
roughly the same characteristics they will be treated together. It should also be
noted that if the number of clock cycles are added together they form the second
biggest hotspot. In performance it is very similar to that of Integrator::integrate.
It is also core bound while being completely vectorized and it also not memory
bound. Thus the same possible improvement applies.

std::vector

Then at last there are the std::vector functions. The first two of these have to do
with moving the pointer and are very efficient with over 95% retirement. Then
there are the std::vector<>operator[] functions. These provide the data stored
at the element given in the brackets. Some of these have a very high retirement
rate around 90% will other will go as low as 25%. VTune classifies this core

51



bound but it is unclear what causes this. A guess would be that the data is
accessed in a different patterns and some cause more troubles than others. The
weird thing here is that it is said to be core bound while it is data lookup, so it
would be expected to be memory bound.
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Chapter 7

A brief tour through the
code

7.1 The model

7.1.1 Files

All of the files CLaSSiC produces follow the same naming scheme. The name
of the produced data, for example energy, followed by the identifier of the sim-
ulation. So if it is the second run of the simulation it will produce energy1.dat.

CLaSSiC produces in total 3 files for every run. The first being data0.dat. This
file starts with all of the parameters for that particular run and its followed
by the orientations of the spins. They are in a long list which is structured as
follows: x0, y0, z0, x1, .... This file is written as a binary file to reduce file size
and increase writing speed.

The next file that is produced is energy0.dat. This file is also a binary file for
the same reasons and stores the value of the Hamiltonian for each iteration.
This is useful for tracking how the total energy of the system changes.

Lastly there are the positions of the atoms on which the spins are located. This
is simply a csv file that lists all of the atoms with the rows being the atom
number and the columns the x, y and z coordinates respectively.

The only input is the run.bat file. This file is a batch file and makes it possible
to automate command line arguments. This way all of the input parameters are
organized neatly and makes it possible to loop over variables.
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7.1.2 Structure generation

CLaSSiC generates structures from the unit vectors and basis atoms of the
crystal. It will start by putting down all the atoms in the unit cell. Then for
each atom it will put another atom 1 unit vector away until the desired number
of unit cells is reached. Then if there is 2D component it will take all of the
atoms generated so far and adds the second unit vector to each of atoms. The
same of course goes for the third unit vector if it is specified. As a note the
first unit vector should be along the x axis otherwise undefined behavior might
happen.

The next thing is locating the nearest neighbours. This is a relatively easy task
which is solved by checking if the distance between two positions is the less
than the theoretical distance plus a small error. The small error accounts for
any numerical issues.

Lastly there is the issue of applying periodic boundary conditions. A periodic
boundary condition should be applied if the position of an atom is translated
by a unit vector times the width and is then within nearest neighbour range.

7.1.3 Constants

The constants.cpp file has all the global constants of the code. It is important
that they are also defined as extern in constants.hpp such that they can be used
in the other files without creating multiple definitions of the same variable.
These constants can be divided into three categories. First of all there are the
physical constants. Then there are the user defined system parameters such as
the step size or magnetic field strength. Lastly there are the derived parameters,
these are a function of the other two. This is for example the number of atoms
but also prefactors for equation that can be calculated ahead of time.

7.1.4 Integration

As mentioned in section 4.1 the integration is done by the midpoint method
which is fairly simple and requires only a couple of steps. The first thing to
do is to evaluate the differential equation. To do the evaluation the mean field
needs to be calculated. If the evaluation is done the system can be integrated
for a single time step.

7.2 Plotting

The CLaSSiC software also provides python scripts to create plots to analyze
the results. Here a brief rundown will be given of the different plotting scripts.
As a general concepts most files will have two variables called fNum and atom.
fNum refers to the file that is being plotted and atom specifies a certain atom
to analyze.
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7.2.1 helper.py

This script deals with all of the automation. It stores all of the constants, and
has functions to read the data files. Then there also functions for the physics
behind the plotting such as the calculation for the scattering cross section and
the theoretical dispersions. In short, anything that can be used by multiple
scripts will be here.

7.2.2 Zeeman.py

Here three plots are produced to analyze a single spin. The first one shows the
x, y and z spin components as a function of time. The second one is the real
part of the Fourier transform and lastly it shows the time evolution of the spin
in the x-y plane. An example of this plot is figure 5.1. Apart from the plot it
will also calculate if the spin turns clock wise or anti clock wise.

7.2.3 Anisotropy.py

This is a very basic script. It calculates the initial angles from the data and
calculates the Fourier transform to determine the energy. Then these are plotted
against the theoretical value. This is shown in figure 5.2

7.2.4 Temperature.py

This file shows the average spin orientation as a function of the temperature.
So to use this the user is expected to run multiple simulations with various
temperatures with the initial condition 0 (see table B.2) where the spins are
aligned with z-axis. It also possible to produce multiple curves for different
magnetic fields.
The script takes the average over the last 10% of the data changing this value
will change the fluctuations of the data unless the simulation has run over a
very long time or with a very high relaxation constant. It also calculates the
theoretical Langevin curve for reference. An example of this script is figure 5.3.

7.2.5 Rotor.py

To run rotor.py the user is expected to run several simulations with two spins
opposing each other in the xy-plane with varying angles. Then the script will
determine what these angles were and perform a Fourier transform to get their
energy. An example can be seen in figure 5.4

7.2.6 Scatteringpath.py

This script produces the dispersion based on the scattering function S(αβ)(q, ω).
The first step is to create a path through reciprocal space. There are some pre-
defined paths for different geometries that go through the high symmetry points.
Then for each point on this path the scattering cross section is calculated. This
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produces an intensity curve on which rudimentary analysis is done to find the
peaks. There are two options for this analysis. One is to simply selected the
maximum of the curve and the other is the find peaks function provided by the
SciPy library. The SciPy option is selected by setting the variable usePeaks
equal to true. If this option is selected, then there is also the option to select
the number of peaks that are plotted in the dispersion by setting maxPeaks to
that value.

With these values set, two plots will be made. The top plot will show the
energy for peaks at the k-point in reciprocal space and the bottom will show
the intensity as a function of energy at a the selected point. This point is
indicated by a red line in the top plot and can be set in the code by the variable
called point. The second plot can be toggled on and off by setting plotIntensities
to either true of false, respectively. If it is false the result will look like figure
5.6 and if it is true it will look like figure 5.8.

7.2.7 Allspins.py

Allspins.py will create a grid of plots and show the x, y (and z) components of
the spins. Here the variable end can be changed to shorten or lengthen the time
interval and rows and columns are used to change how many plots the script
produces. This script is mostly for debugging purposes and checking if the spins
move consistently over the whole time interval.

7.2.8 Animation.py

Like the name suggest this script creates an animation of the movement of the
spins in the xy-plane. Some things that are interesting to change are the the
time interval and the animation speed. The first is done by changing the value
for end. The animation speed can be changed by changing two parameters in
animation.FuncAnimation(). The first is to change the interval between two
frames and the other one is by changing the last value in the range() function.
Changing the frame interval will make the animation speed up or slow down
while the second will skip frames if it is increased.

7.2.9 Energy.py

This is a plot which shows the time dependence of the energy. The energy
calculated here is not the determined by a Fourier transform but is instead
determined by evaluating the Hamiltonian. Like in the other files the time
interval can be changed by altering the end variable. One thing that should be
paid attention to is the y-axis. If the energy only changes slightly the axis will
have very small values while if there is actually something physical happening
the scale will be on the order of meV.
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Chapter 8

Conclusion

In the end the target goal of 400x speedup has been blown out of the water.
With the current model running almost 10.000 times faster.
Validation shows that it produces the theory accurately. There are some issues
with the integration error and the dispersion anomalies for the antiferromagnetic
spin chain. But both of them stem from numerical problems and are small
enough to not effect results, especially if temperature is introduced.

The speed was mostly made possible by implementing the simulation in C++.
The compiled code was very efficient when all of the optimization were enabled.
Also the choice of integration method turned out to be a perfect balance between
speed and accuracy. The benchmark section gave a detailed overview of the
current bottleneck as well as suggestions on how to solve them. The biggest
being the generating of Gaussian numbers for the temperature but solutions are
relatively easy to implement.

Development was not without difficulties. The biggest of them was finding a sign
error which came from different definitions between sources. Another notable
setback was spherical coordinates not being feasible since at face value it seemed
very promising.

One of the original goals of the thesis was to use the CLaSSiC model to look
at the stability of kagomé lattices at nonzero temperatures. While the Q0 and
the

√
3×

√
3 soft modes have been implemented the spin waves are a different

story. To simulate these spin waves the initial state has to be known. The
calculation of spin waves for kagomé lattices is highly non trivial and no papers
which calculate the spin waves were found. Therefore due to time constraints
this has not been included but a cursory investigation suggest that it could be
calculated from equation 42 from the original spinW paper[20].

After the validation was finished CLaSSiC already went use by two groups
of bachelor students. There are Thomas Hansen and Peter Beck who work
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on the frustrated antiferromagnet hexagonal yttrium manganite (h-YMnO3)
where they will compare the simulation results against experimental data from
CAMEA. The other group consist of Frederik Philipsen and Simon Ørgaard.
They investigate the impact of the circular structures on the magnetic properties
of Ytterbium Gallium Garnet (Yb3Ga5012) by comparing simulation results
against experimental data.

There is still plenty of work left for the CLaSSiC model to be done. The most
pressing of these would be to write proper documentation and make the installa-
tion process more user friendly. As of now this thesis is the only documentation
that exists so getting started and using this simulation suite can be difficult. For
someone who is used to writing code, compiling code and using version control
it is all relatively straightforward. However this is not true for most people. So
it would be very helpful to create an installer that could fetch updates once in a
while as well as a decent Graphical User Interface (GUI) to make the experience
more streamlined.

Apart from making the package more user friendly there are other additions
that can be made to further expand the CLaSSiC suite. One of these would
be to take into account all of the prefactors when calculating the scattering
function 3.56. This would allow a better comparison between simulation and
experiment.
Another option could be to allow for systems with different atoms in the geom-
etry. This would give a much wider spectrum of possible geometries.
Lastly the current geometries are hard coded in. While it is not too difficult too
add new ones a proper solution will need to be found if the number gets larger.
Also it would be nice if new geometries could be added without changing the
source code.
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Appendix A

Setup Tutorial

All of the code can be found on Github. This section will go over all the tools
need to download, compile and run all of the code. This is all given from a
windows point of view but the code also runs on Mac OS and Linux but the
installation process will be different.

A.1 Github

The first thing to do is install git. Simply follow the download instructions from
https://git-scm.com/downloads and install git. If you are not familiar with
git you can simply use all of the default settings. Now with git installed you are
ready to make a setup a remote branch to get the code. Follow the following
steps:

1. Create a new folder named CLaSSiC2.0

2. Right-click and press: git bash here. This should open a terminal.

3. Type: ”git init” and press enter.

4. Type: ”git remote add origin https://github.com/timooo0/CLaSSiC2.0”
and press enter.

5. Type: ”git pull origin master” and press enter

Now all of the code should be found inside the file CLaSSiC2.0 you just cre-
ated. Whenever the code is update you can get the newest code by opening the
terminal again and running the last command.
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A.2 Compile

Now the folder contains all of the .cpp and .hpp files but there is no executable
yet since you have to make that yourself. To do this you need a c++ compiler
and I have used minGW which can be found here and run the installer with the
default options

Then you need to add minGW to your path. You do this by following these
steps, note however that theses steps are depended on the language of your
computer.

1. type: ”environmental variables” in the search bar and click: ”Edit the
systems environmental variables”

2. Click the button ”Environment Variables...” in the bottom right.

3. Select the variable ”Path” and click ”Edit...”

4. Click ”New” in the top right and type ”C:\MinGW\bin” (note: if you
install minGW somewhere this should be the path to the bin folder of
minGW)

5. Click ”OK” until all the opened windows are gone

To check if the installation went successful open a terminal by pressing the
windows button, typing: ”cmd” and press enter. In the terminal that opened
type: ”g++ –version”. The output of this should show the version number of
the compiler. Version 9.2.0 was used when compiling this project.

A.3 Python

For Python there are two ways of installing the necessary packages. The first is
to install them directly with pip install and the second way is to install them
in an environment. This is the preferred way to do it such that the versions
and what packages are easier to keep track of and troubleshoot. To do this
a package manager called anaconda is used, which can be downloaded from
https://www.anaconda.com/. Then open anaconda prompt (anaconda3) and
type the following commands.

1. Type ”conda create –name CLaSSiC” and press enter, then press y to
confirm when it prompts you to do so.

2. Type ”conda activate CLaSSiC” and press enter.

3. Type ”conda install numpy matplotlib scipy” and press enter, then press
y to confirm when it prompts you to do so.

4. Type ”conda install -c conda-forge pyfftw” and press enter, then press y
to confirm when it prompts you to do so.
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Appendix B

constants and settings

B.1 Validation settings

Zeeman Anisotropy Temperature Rotor F chain AF chain
step width 1e-15 1e-15 1e-14 1e-15 1e-15 1e-15
step number 1e6 1e6 1e7 1e6 1e6 1e16

Exchange constant 0 0 0 Varies 2 -2
Magnetic field 5 0 Varies 0 Varies Varies

Axial anisotropy 0 10 0 0 Varies Varies
Planar anisotropy 0 0 0 0 0 0
Relaxation constant 0 0 1e-3 0 1e-3 1e-5

Temperature 0 0 Varies 0 1 1e-6
Initial state 1 1 0 3 2 2

Mode 0 0 0 0 2 2
Angle 45 Varies 0 Varies 0 0

Structure Single Single Single Line Line Line
Unit cells in x̂ 1 1 1 2 30 30
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B.2 Initial states

Number Initial state
0 Aligned with z-axis
1 Angle with z-axis
2 Spin wave for chain
3 Rotor mode for 2 spins
4 Spin wave for square lattice
5 Single triangle

6 Kagome
√
3×

√
3 soft mode

7 Kagome Q0 soft mode

B.3 Constants

Symbol Name Units Numerical value
γ Gyromagnetic ratio s−1T−1 −1.760859644× 1011

µB Bohr magneton JT−1 9.274009994× 10−24

h̄ reduced Planck constant Js 1.054571817× 10−34

g g-factor - 2.002
s spin - 7/2
kb Boltzmann constant JK−1 1.38064852× 10−23

B.4 Simulation variables

Symbol Name Units Typical value
dt Time step size s 1× 10−15

steps Number of time steps - 1× 106

B Magnetic field strength T 10
J Exchange constant J ±2kb
anisotropyAxis anisotropy strength T T
T Temperature K 1× 10−1

lambda relaxation constant - 1× 10−3
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Appendix C

Spherical coordinates

dϕi
dt

=
γ

sin θi cosϕi

(
λBx cosϕi sinϕi cos

2 θi

− λBy cos
2 ϕi cos

2 θi

− λBz sin θi sinϕi cos θi

− λBx cosϕi sinϕi

+ λBy cos
2 ϕi

+ λBy cos
2 θi

− b sin θi cosϕi cos θb

+ b sin θb cosϕb cos θi

−Bz sin θi cosϕi

+Bx cos θi)

+ γ cot θi tanϕi (−b sin θb sinϕb cosϕi
+Bxλ cos θi cosϕi

−By cosϕi cos θi sinϕi

+ b sin θb cosϕb sinϕi

+Byλ cos θi sinϕi

+Bx sinϕi

−Bz sin θiλ)
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