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Abstract

This thesis investigates the magnetically active detached eclipsing binary system V80 by
using new photometric data from the Kepler Space Telescope along with observations
from Brogaard et al. (2011). Magnetically active stars are known to show discrepan-
cies between observation and stellar models which predict stellar radii and temperatures
which are ⇠ 10% lower and ⇠ 5% higher than what is observed, respectively. The stan-
dard procedure to regain agreement is to decrease the mixing-length-parameter ↵

MLT

in
order to mimick the expected reduction in convective e�ciency due to starspots. This
procedure is however highly likely to result in flawed estimates of the stellar parameters
of such systems since it is assumed that the discrepancies can be explained solely by
↵
MLT

while keeping parameters such as helium abundance and [Fe/H] constant and dis-
regarding their uncertanties. V80 is a member of the open cluster NGC 6791 which has
an age constrained to be 8.3± 0.3 Gyr from two other longer period deatched eclipsing
binaries that show no signs of magnetic activity. By knowing the mass-radius (MR)
relation that V80 is expected to follow if it was una↵ected by magnetic activity, we per-
form light curve analysis to obtain the best estimate of the radii of the components. We
determine the radii of V80 to lie in the range of 1.396±0.067R� < Rp < 1.354±0.067R�
and 0.7595R� < Rs < 0.8358R� for the primary and secondary components, respec-
tively. For the primary component this is 6.8� 10.5% larger than what is expected for
star which are not magnetically active.

V80 has high variability in its light curve which is caused by starspots generated by
magnetic activity. Further signs of magnetic activty reveals itself by V80 being an X-ray
source and by our identification of a superflare in its Kepler light curve. We present
evidence indicating that the magnetic activity of V80 is originating from the primary
component which also seems to be experiencing anti-solar di↵erential rotation.
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1. Introduction

Detached eclipsing binary systems are of fundamental importance to stellar physics and
the study of stellar evolution models since they are the only stars for which we can
precisely and accurately measure quantities such as mass, radius and surface gravity.
Stars in a binary system are born from the same gas cloud and they therefore share a
common age together with other stellar parameters. Even though the two stars are part
of the same mutual gravitationally bound system they still evolve as single stars if they
are well separated. This is why detached binary systems are perfect for testing stellar
evolution models.

Stars in stellar clusters are all formed from the collapse of the same gas cloud and
they therefore generally share the same age and original composition of hydrogen, he-
lium and heavy elements. Because of this, stellar model isochrones can be compared to
the brightness and color of the cluster members in order to determine the cluster age
and test stellar models.

V80 is a detached eclipsing binary system which is showing variability in its light curve
between eclipses which is believed to be caused by starspots generated by magnetic
activity. Magnetic activity in the components of binary systems are known to result
in discrepancies between observations and models of stellar parameters. Stellar models
are known to predict stellar radii and temperatures which are ⇠ 10% lower and ⇠ 5%
higher than what is observed, respectively. The standard procedure is to decrease the
mixing-length-paramter ↵

MLT

in order to mimick the expected reduction in convective
e�cience due to starspots. This procedure is however highly likely to result in flawed
estimates of the stellar parameters such as age of such systems, since it is assumed that
the discrepancies can be explained solely by ↵

MLT

while keeping parameters such as
helium abundance Y and [Fe/H] constant and disregarding their uncertanties.

V80 is a member of the open cluster NGC 6791 which has an age constrained to be
8.3 ± 0.3 Gyr from two other longer period detached eclipsing binaries that show no
signs of magnetic activity. By knowing the mass-radius (MR) relation that V80 would
follow if it was una↵ected by magnetic activity we can be certain that the possible
discrepancies between observation and the MR relation are indeed real and not a conse-
quence of a wrong estimate of the stellar parameters of the system.

1
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In Chapter 2 we address the basics of detached eclipsing binaries and how parame-
ters such as mass and radii can be obtained through radial velocity and photometric
light curve measurements. If the reader is familiar with the theory of detached eclipsing
binaries Chapter 2 can be skipped. In Chapter 3 we present the light curve data from
the Kepler Space Telescope and introduce the data analysis performed in Brogaard et al.
(2011) which we will incorporate into our investigation of V80. Chapter 4 explains the
data analysis which was done for V80. Chapter 5 shows the obtained results where the
results will also be discussed. In Chapter 6 we conclude on our investigation of V80.

2



2. Theory - Eclipsing Binary systems

2.1 Two-body orbital motion

Newton was the first to show that a spherical body of mass m has a gravitational poten-
tial field equivalent to a point mass m located af the centre of the sphere. By considering
this, two spherical stars can be treated as two point masses orbiting each other in their
mutual gravitational field. Stars are not completely spherical bodies due to their ro-
tation and the tidal forces they excert on each other. However, if the stars are well
separated (detached), this approximation is valid. Around 85-90 % of a main-sequence
star’s total mass is contained within the inner 50 % of its radius which means that the
point mass approximation is a good descripion for detached binaries. As stars evolve they
become even more centrally condensed which only justifies the approximation even more.

A force, F , is described as a central force if it is always directed towards a fixed point
and if it is parallel to the radial direction ~r. In a two-body system this fixed point will be
the location of the centre of mass which both bodies will be orbiting. The central force
is a conservative force if the motion of a body in the force field obeys the laws of conser-
vation of energy which means that the kinetic and potential energy is constant. In such
a scenario angular momentum will be conserved and angular momentum, ~J = m~r ⇥ ~̇r,
will therefore be constant for a body of mass m.

If one wants to investigate the motion of a body of mass m which is acted upon by
a central force, one can look at Figure 2.1 where the central force is directed towards
the origin O. In a time dt the body moves from P

1

to P
2

, where its radial and angular
position changes from r to r + dr and ✓ to ✓ + d✓, respectively. The velocity ~̇r can be
seperated into two components, namely, the radial component along the direction of ~r
and the transverse component in the direction of ✓̂. The radial component of the velocity
is given by dr/dt = ṙ, while the transverse component of the velocity is rd✓/dt = r✓̇.
The velocity is therefore given by

~̇r = ṙr̂ + r✓̇✓̂ (2.1)

where r̂ and ✓̂ are the unit vectors in the raidal and transverse directions, respectively.
In order to evaluate the acceleration the body experiences due to the action of the
force ~F , ~̇r needs to be di↵erentiated with respect to time. Since we are in cylindrical

3
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coordinates, the unit vectors themselves must also be operated on. Evaluating the unit
vectors, we see that dr̂/dt = (dr̂/d✓) (d✓/dt) = ✓̂✓̇ and d✓̂/dt = (d✓̂/d✓) (d✓/dt) = �r̂✓̇.
The acceleration of the body therefore becomes

~̈r = r̈r̂ + ṙ✓̇✓̂ + ṙ✓̇✓̂ + r✓̈✓̂ + r✓̇✓̇(�r̂) = (r̈ � r✓2) r̂ + (2ṙ✓̇ + r✓̈) ✓̂. (2.2)

In Eq. 2.2 the second term is the transverse component of the acceleration, which is
directly linked to Kepler’s second law. Kepler’s second law states that the radius vector
r̂ sweepts out equal areas in equal time intervals in the orbit. This can easily be shown
by considering the magnitude of the angular momentum vector ~J , which is given by
J = mr ⇥ ṙ = mr2✓̇. The area which is sweept out by ~r is given by dA = r2d✓/2
resulting in dA/dt = (1/2)r2✓̇ = J/(2m). Since J is constant, r2✓̇ will be constant as
well. This means that for large r, the value of ✓̇, the rate of change of the position
angle, must be small and vice versa for small r, ✓̇ must be large in order to satisfy our
expression. It is also worth noting that

1

r

d(r2✓̇)

dt
= 2ṙ✓̇ + r✓̈ = 0 (2.3)

since r2✓̇ is constant. This means that the transverse component of the acceleration is
zero, which is was what expected since the force field is purely radial dependent.

Figure 2.1 – The orbital motion of a body of mass m acted upon by a central for F directed
towards the origin O. In a time dt the body moves from P

1

to P
2

, where its radial and angular
position changes from r to r + dr and ✓ to ✓ + d✓, respectively. Credit: Hilditch (2001).

In order to determine which kind of motion the body will take under the influence of

4
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the force ~F , the laws of conservation of energy and of angular momentum can be used

1

2
m~̇r 2 � Gmmc

~r
= C (2.4)

d

dt
~J =

d

dt
(m~r ⇥ ~̇r) = 0 (2.5)

where G is the gravational constant, mc is the central mass and m is the mass of the
body which is under consideration. By making the law of conservation of energy in Eq.
2.4 purely radial dependent, it can be shown that the form of the orbit is described by
the equation

r =
l

1 + e cos(✓)
(2.6)

where l = J2/(Gmcm2). Eq. 2.6 is the standard polar equation for a conic section.
For binary systems such conic sections will be ellipses where e is the eccentricity and l
is called the semi-latus rectum of the ellipse1. The eccentricity can vary in the range
of 0  e < 1 and the semi-latus rectum of the ellipse is l = a(1 � e2) where a is the
semimajor axis of the ellipse. The position of the binaries in their orbit can then be
described by Eq. 2.6, which will be important when determining the orbital speed of
the stars.

2.1.1 Relative and barycentric orbits

There are two kinds of orbits which are important to understand in order to estimate
the radii and masses of the components in a binary system. These orbits are the relative
and barycentric orbits of the two stars which will be considered by using Figure 2.2.

Figure 2.2 – A vector diagram with a reference point, O, the centre of mass, C, and the positions
of the masses, m

1

and m
2

at P
1

and P
2

, respectively. Credit: Hilditch (2001).

1Hilditch (2001), page 32.
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The two stars will orbit their common centre of mass C, relative to a reference point,
O. At a given time, t, the masses of the stars, m

1

and m
2

are located at P
1

and P
2

,
respectively. The distance between the stars is ~P

2

P
1

= ~r = ~r
1

� ~r
2

, with the unit vector
r̂ = ~r/r. The equation of motion of the two stars will then be given by

m
1

~̈r = �Gm
1

m
2

r2
r̂; m

2

~̈r = �Gm
1

m
2

r2
(�r̂) (2.7)

2.1.1.1 Relative orbit

The relative motion is an important tool to estimate the varius system parameters and
it is therefore worthwhile to consider the motion of one component of a binary system
relative to its companion. The relative motion is easily achived by subtraction the two
equations of motion in Eq. 2.7.

~̈r = ~̈r
1

� ~̈r
2

= �G(m
1

+m
2

)

r2
r̂ (2.8)

By introducin a mass term, µ = m
1

m
2

/(m
1

+ m
2

), which is called the reduced mass,
the equation of the relative motions takes the following form

µ~̈r = �G(m
1

+m
2

)

r2
µ r̂ = �Gm

1

m
2

r2
r̂ (2.9)

This means that the motion of either star in the relative orbit is as though the orbiter
has a mass µ and the central mass is the total mass of the system.

2.1.1.2 Barycentric orbits

The barycentric orbits describe the motion of each of the stars with respect to the centre
of mass of the binary system. By referring back to Figure 2.2, we can define the vectors
#      »
CP

1

= ~R
1

and
#      »
CP

2

= ~R
2

which leads to the following:

~r
1

= ~R+ ~R
1

; ~r
2

= ~R+ ~R
2

; ~r = ~R
1

� ~R
2

(2.10)

The centre of mass is defined as:

m
1

~r
1

+m
2

~r
2

= (m
1

+m
2

)~R (2.11)

which combined with Eq. 2.10 leads to m
1

~R
1

+m
2

~R
2

= 0. The vector ~r connecting the
two stars can now be written as two di↵erent expressions

~r = +
m

1

+m
2

m
2

~R
1

or ~r = �m
1

+m
2

m
1

~R
2

(2.12)

We want to know the expressions for ~̈R
1

and ~̈R
2

, which will describe the motion of the
barycentric orbits of the stars around their common centre of mass. From Eq. 2.10 we

see that the accelerations are ~̈r
1

= 0 + ~̈R
1

and ~̈r
2

= 0 + ~̈R
2

, because the centre of mass

6
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will move with constant velocity through space unless it is being a↵ected by external
sources. The two barycentric equations of motion then become

~̈R
1

= � Gm3

2

(m
1

+m
2

)2
~R
1

~R3

1

; ~̈R
2

= � Gm3

1

(m
1

+m
2

)2
~R
2

~R3

2

(2.13)

2.1.1.3 Kepler’s 3rd law and relationships between barycentric and relative

orbits

It is important to understand the connections between the barycentric and relative
orbits given in Eq. 2.9 and Eq. 2.13, so their relative sizes and orientations can be used
to measure the masses and radii of the stars through observations. All three equations
consist of a combination of the gravitational constant and a variable expression involving
the masses of the two stars. The centre of mass does not change which means that the
periods of the three di↵erent orbits will be the same, namely, P = P

1

= P
2

. If we
consider Kepler’s third law which is given in Eq. 2.14, the fraction a3/P 2 is proportional
to a mass term, M .

M = 4⇡2

a3

P 2

(2.14)

The mass term together with the semimajor axis will be di↵erent for each of the three
orbits which are given by the following:

relative orbit: a = a; M = G(m
1

+m
2

) (2.15)

barycentric orbit of m
1

: a = a
1

; M = Gm3

1

/(m
1

+m
2

)3 (2.16)

barycentric orbit of m
2

: a = a
2

; M = Gm3

2

/(m
1

+m
2

)3 (2.17)

All three orbits are in the same plane with the same eccentricity, together with the
following relations:

a = a
1

+ a
2

;
a

m
1

+m
2

=
a
1

m
2

=
a
2

m
1

(2.18)

2.1.2 Speed as a function of position

The orbital speed as a function of position in elliptic orbits will be a continuously varying
function of position and time. By recalling Kepler’s 2nd law which states that the radius
vector sweeps out equal areas in equal intervals of time, i.e. r2✓̇ is constant, and that
dA/dt = (1/2)r2✓̇, we will now consider the area sweept out during a full orbit. The
time interval will be dt = P , the orbital period and the area will be given by dA = 2⇡ab
where b is the semiminor axis of the ellipse. This leads to r2✓̇ = 2⇡ab/P = L where L
is the angular momentum per unit mass, also known as the specific angular momentum
which will be important when evaluating the orbital speed.

The velocity of the orbiting body was found in Eq. 2.1 and thus the linear speed V
will be given by

V 2 = ṙ2 + r2✓̇2 (2.19)

7
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In order to evaluate the linear speed we need to di↵erentiate Eq. 2.6 with respect to
time and thereby obtain

�e sin(✓) ✓̇ = � l

r2
ṙ (2.20)

By using L = r2✓̇, we can get the radial and tangential components of the velocity:

ṙ =
L

l
e sin(✓); r✓̇ =

L

l
(1 + e cos(✓)) (2.21)

The square of the linear speed can then be found to be

V 2 = ṙ2 + r2✓̇2 =
L2

l2


2l

r
� (1� e2)

�
(2.22)

By using the fact that L = Ml, where M is the mass term from Section 2.1.1.3 and that
the semi-latus rectum is l = a(1� e2), the square of the linear speed is found to be the
following:

Elliptic orbit: e < 1; l = a(1� e2); V 2 = M


2

r
� 1

a

�
(2.23)

Circular orbit: e = 0; l = a; V 2 =
M

a
(2.24)

2.1.3 Kepler’s equation

The position of a star in an elliptical orbit is not a simple function of time and the
equation which is needed to describe this relation is known as Kepler’s equation. It is
given by the following expression

E � e sin(E) =
2⇡

P
(t� T

0

) (2.25)

where t is a point in time in the orbit and E is the angle called the eccentric anomaly
which is given by E = QOR and can be viewed in Figure 2.3. T

0

is the time of periastron
passage, i.e. r = a(1� e) or ✓ = E = 0, which corresponds to the point ⇧ in Figure 2.3.
O is the centre of the ellipse, S is the focus where the centre of mass is located for the
orbiting body, P is the position of the orbiting body and A is known as apastron which
is the point of maximum r = a(1+ e). ✓ is called the true anomaly and its relation with
the eccentric anomaly is given by

tan(✓/2) =


1 + e

1� e

� 1

2

tan(E/2) (2.26)
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Figure 2.3 – This figure represents the properties of an ellipse. O is the centre of the ellipse and
S is the focus which is where the centre of mass is located. ⇧ is the pericentre, the point of closest
approach of the orbiting body to S, also known as periastron. A is the apocentre, the point of the
orbiting body which is the furthest away from S, also known as apastron. The angle E and ✓ are
called the eccentric anomaly and the true anomaly, respectively. Credit: Hilditch (2001).

2.1.4 Orientation of the orbit

The orientation of a binary system determines how well parameters such as the masses
and the semimajor axis can be determined via radial velocity measurments and light
curve analysis. It is therefore important to understand the orbit and how the stars move
on the tangent plane of the sky. In Figure 2.4 the relative orbit is seen where the primary
star is located at the origin O of the xyz coordinate system and the secondary star is
located at P

2

. The angle ✓ is the true anomaly defined by ⇧OP
2

and ⇧ is the point of
periastron, just like in Figure 2.3. The observer’s line of sight is in the direction Oz,
from below the figure, and Oz is perpendicular to the tangent plane of the sky which is
described by the xNy plane. N is located on a sphere defined by xNyzO, where the arc
through N is parallel to the orbit. The angle ⌦ = xON is called the longitude of the
ascending node. It desribes the angular position in the orbit where the star is receding
from the observer with the greatest velocity. The line NO continues through the sphere
on the other side to N 0 which is called the descending node which will be the point where
the star moves with the greates velocity towards the observer. The inclination of the
orbit is given by i. When i = 90� the observer will look directly into the orbital plane.
The last angle is called the longitude of periastron and it describes the oritation of the
orbit within its own plane and is given by ! = NO⇧. The six quantities a, i, e,!,⌦ and
T
0

are what defines the binary orbit in three-dimentional space which describe its size,
shape and orientation.

9
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Figure 2.4 – The figure shows the relative orbit where the primary star is located at the origin
and the secondary star is located at position P

2

. The observer’s line of view is in the Oz direction,
from below the figure, and is perpendiclar to the tangent plane of the sky defined by xNy.

2.1.4.1 Radial velocity

With the orbital parameters defined we can now proceed to define the radial velocity of
the stars which can be measured through spectroscopy. When we project the position
vector ~r along the line of sight Oz, we obtain

z = r sin(✓ + !) sin(i) (2.27)

By di↵erentiating z with respect to time we are able to determine the radial velocity
given by

Vrad = ż =
2⇡ a sin(i)

P (1� e2)1/2
[cos(✓ + !) + e cos(!)] (2.28)

The radial velocity is usually written in the following form

Vrad = K [cos(✓ + !) + e cos(!)] + � (2.29)

where

K =
2⇡ a sin(i)

P (1� e2)1/2
(2.30)
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K is called the semiamplitude of the velocity curve and � is the radial velocity of centre
of mass of the binary system.
By using the expression for K, one is able to derive the equations for the minimum
masses of the binary system in which can be seen in Eq. 2.31.

m
1,2 sin(i)

3 =
1

2⇡G
(1� e2)3/2 (K

1

+K
2

)2 K
2,1 P (2.31)

The subscripts represent the primary and secondary star. If one only has radial velocity
measurements of the two stars the orbital inclination i will be unknown and thus the
equation only provides the lower limit of the masses of the stars, hence the name. The
semiamplitudes of the primary and secondary can also be used to derive the projected
semimajor axis a

1

sin(i) and a
2

sin(i) from Eq. 2.32.

a
1,2 sin(i) =

(1� e)1/2

2⇡
K

1,2 P (2.32)

By using the relation a = a
1

+ a
2

, the radial velocity measurements can be used to
estimate the projected semimajor axis of the relative orbit.

2.2 Analytic theory of light curves

If one wants to know the true masses and the true semimajor axis of the relative orbit,
the orbital inclination of the binary system must be known. In order to estimate the
orbital inclination, the radii of the two stars in terms of the semimajor axis of the rela-
tive orbit and the ratio of the surface brightnesses, light curve measurements are needed.
By combining Eq. 2.31 and 2.32 together with the relative radii, r

1,2 = R
1,2/a and the

orbital inclination, the masses and radii of the stars can be determined. We will now go
through the basics of light curve analysis in order to described how the parameters such
as i and r

1,2 are obtained.

As the primary and secondary star passes in front of each other in our line of sight,
they will block some of the light from their binary partner. This will cause a variation
in the observed light curve and depending on the inclination, the shape of these eclipses
can take di↵erent forms. If i ⇠ 90� the light curve will have total eclipses which occur
when the smaller star is completely occulted by its larger companion. If the inclina-
tion is not around 90� both the primary and secondary eclipses will be partial since the
stars will only partial block each other. A representation of the same binary system
but with di↵erent orbital inclinations can be seen in Figure 2.5 and 2.6. The change
in orbital inclination causes the secondary eclipse to become only partially, but also
causes the eclipse duration to become shorter since the point of contact between the
stars changes2. If the inclination is i ⇠ 90� and the orbit is circular, it is very easy to

2Hilditch (2001), page 216.
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obtain the relative radii of the two stars, r
1

and r
2

. By looking at Figure 2.5 we get the
two following equations

�
2

� �
1

= �
4

� �
3

=
2R

2

2⇡a
(2.33)

�
3

� �
1

= �
4

� �
2

=
2R

1

2⇡a
(2.34)

where � is the phase angle where each contact point is described in Figure 2.5. This is a
very easy way to determine the relative radii, however when the orbit is not circular the
phase angle for the secondary eclipse relative to the primary eclipse will not be located
at � = 0.5. Furthermore, at lower inclinations there will only be partial eclipses and the
simple estimation in Eq. 2.33 and 2.34 cannot be used.

Figure 2.5 – A representation of a binary system with i = 90� where the primary and secondary
eclipses are shown. The primary eclipse is seen above the light curves, where we have first contact
�
1

(upper left), second contact �
2

(upper right), third contact �
3

(bottom left) and fourth contact
�
4

(bottom right). The secondary eclipse is completly occulted by the primary star which causes
the bottom of the secondary eclipse to be flat. Credit: Hilditch (2001).

For spherical stars with radii R
1

and R
2

and separation a, the condition for observing
eclipses in the ligth curve of a binary system with orbital inclination i is

sin(90� � i)  R
1

+R
2

a
(2.35)
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Figure 2.6 – Here is a representation of the same binary system as in Figure 2.5, but with the
orbital inclination changed to i = 85�. The secondary eclipse is now only partial, but also, the
di↵erent inclination causes the eclipse to changed in duration, since the point of contact of the two
stars will be di↵erent which results in a shorter duration of the eclipse. Credit: Hilditch (2001).

Observing eclipses is therefore less likely if the stars are small relative to their separation,
and thus, it is more likely to observe eclipses for relativly larger stars.

2.2.1 Eclipses in binary orbits

In this section we are going to go through the most important equations which relates
the di↵erent parameters to the light curve of the binary system. These parameters will
involve the orbital inclination, the radii of the two stars in terms of the semimajor axis
of the relative orbit, and the ratio of the surface brightnesses.

We start by looking at the projected separation � between the centre of the two stars. In
Figure 2.7 the two stars are represented by O

1

and O
2

and are separated by a distance
a ⌘ 1. They are seen at a phase angle � = NO

2

O
1

and the lengths are x = O
1

N and
y = O

2

N .

By noting that x0 = x cos(i) the projected separation becomes

�2 = x02 + y02 = a2[cos(i)2cos(�)2 + sin(�)2] (2.36)

13
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Figure 2.7 – Plan view : The two stars are located at O
1

and O
2

and have radii r
1

and r
2

,
respectively. The are separated by a distance a ⌘ 1 and are seen at a phase angle �. Line of

sight : Here the overlapping of the two stars are seen at an inclination of i = 85�. The projected
separation is given by � at a given phase angle �. Credit: Hilditch (2001).

This can be rewritten by defining the separation between the two stars as the unit of
length, a ⌘ 1.

�2 = cos(i)2 + sin(i)2 sin(�)2 (2.37)

By defning a quantity called the geometrical depth, p
geo

= (� � r
2

)/r
1

, and the ratio
of the radii, k = r

2

/r
1

, such that k  1, we can get a new expression for the projected
separation � = r

1

(1 + k p
geo

). This gives us the following relation

cos(i)2 + sin(i)2 sin(�)2 = r2
1

(1 + k p
geo

)2 (2.38)

This equation gives a the direct link between the orbital inclination, i, the ratio of the
radii, r

1,2, the geometrical depth, p
geo

, and the orbital phase, �. At the four di↵erent
points of contact in the eclipse, p

geo

will be equal to +1,�1,�1 and +1, respectively. If
the orbit is eccentric the general expression for � will take the following form

� =
1� e2

1 + e cos(✓)
[ 1� sin(✓ + !)2 ]1/2 (2.39)

which means that there are two more parameters which needs to be evaluated, namely,
e and !. However, if i ⇠ 90� the following expressions are valid

2⇡(tsec � tpri)

P
= X � sin(X) (2.40)
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where

X = ⇡ + 2arctan

✓
e cos(!)

(1� e2)1/2

◆
(2.41)

and

e sin(!) =
dsec � dpri
dsec + dpri

(2.42)

Here tpri and tsec represents the time of primary and secondary eclipse. dpri and dsec
are the durations of the two eclipses which will be the time between first and fourth
contact3. By using Eq. 2.40 and 2.42 one is able to determine e and ! purely from the
photometric observations of the light curve, noted that i ⇠ 90�. This gives independent
estimates of e and !, which can be compared with the ones obtained from radial velocity
measurements.

2.2.2 Modeling light curves

In order to get the parameters r
1,2 and i from a light curve, we need to know the relation

between p
geo

and the actual amount of light which is lost at any phase angle within an
eclipse. If both of the stars were uniformly illuminated this would be an easy task. How-
ever, there are di↵erent e↵ects which will cause the stars to vary in brightness across
their stellar surface. All e↵ects which will have an impact on the light curve will be
addressed in Section 2.5.

The basic idea behind the modeling of a light curve, is that we will have a non-uniformly
illuminated stellar disk which will have a surface brightness, I

1

, at any point on the
projected stellar disk. The total brightness of the entire apparent stellar disk is then
obtained by integrating over this area which will be a surface integral over the stellar
surface which is then

l
1

=

ZZ

S

I
1

dS (2.43)

The next step is then to calculate the amount of light which is lost during any phase of
an eclipse which can be written as

�l
1

=

ZZ

S

I
1

d� (2.44)

where the integral is taken over the eclipsed area of the star and d� is an element of
area on the eclipsed stellar disk. The fractional loss of light, �f

1

, for star 1 when it is
eclipsed by star 2 will be

�f
1

=
�l

1

l
1

(2.45)

When it comes to modeling light curves there are a lot of parameters which defines
the light curve. These parameters will be discussed in the next section, but for now

3Hilditch (2001), page 238.
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we will just list them here: the mean radii of the two stars, r
1,2, expressed in terms of

the semimajor axis of the relative orbit; the orbital inclination, i; the mass ratio of the
two stars q = m

2

/m
1

; the temperatures T
1,2; the albedos ↵

1,2; the gravity darkening
exponents �

1,2; and the limb darkening coe�cients u
1,2. The variations in flux relative

to an adopted level for a light curve model are then given by

�f = � f(r
1,2, i, q, T1,2,↵1,2,�1,2, u1,2) (2.46)

which will consists of minimum 12 parameters. The most dominant parameters in these
light curve models will be the ones which define the shapes and sizes of the stars, (r

1,2, q),
the orbital inclination i, and the ratio of the stellar surface brightnesses.

2.3 Roche model

In section 2.1 the two stars were regarded as point masses which are of course not a
true representation of the stars. A binary star will experience tidal distortion from its
companion and rotational flattening due to rotation about its own rotational axis which
will cause the shape of the star to be non-spherical. The tidal torques will cause the
rotational axes of the stars to become aligned perpendicular to the orbital plane of the
binary system. Furthermore the tidal torques will also enforce the rotational periods
of the stars to become equal to the orbital period, and over time also cause an elliptic
orbit to become circular. The rotation of the stars about their own axis will cause the
polar radius to become smaller than the equatorial radius. For elliptic orbits, the distor-
tions of the stars will create pertubations to the Newtonian gravitational theory. These
perturbations will be the rotational potential created by the star spinning around its
rotational axis, the tidal potential exerted on each of the stars by its companion and the
general relativity correction to Newtons equations. These corrections will cause what is
called apsidal motion, which is the precession of the orbit in its own plane4. In other
words, ! will not be constant but will change over time which can be observed in several
binary systems.

Binary systems come in varius configurations and will evolve quite di↵erently depending
on their relative separation and mass. During a stars evolution, its radius will change
quite substantially and in some binary systems the two binary stars will actually touch
each others surfaces and even exchange mass. It is therefore very important to use a
formulation which can describe the shape of the stars due to the perturbations which
they experience. That formulation is the Roche model, which is based on the considera-
tion of the gravitational potential in a system of two point masses that move in circular
orbits about their barycentre. The systems which are considered in the Roche model,
are the ones where the tidal torques will have had enough time to cause the binary orbit
to become circular and tidally locked in synchronous rotation. The time scales for syn-
chronoization and circularization are quite di↵erent for stars with convective envelopes

4Hilditch (2001), page 132.
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and radiative envelopes. The stars of V80 are in the mass range where they will have
convective envelopes illustrated by Figure 2.8. The time scale for stars with convective
envelopes from Zahn (1977) are given as

tsync ⇡ q�2

⇣ a

R

⌘
6

⇡ 104

1 + q

2q

�
2

P 4 years (2.47)

tcirc ⇡
2

q(1 + q)

⇣ a

R

⌘
8

⇡ 106

q


1 + q

2

�
5/3

P 16/3 years (2.48)

where q is the mass ratio of the two stars, a is the semimajor axis, R is the radius of the
star and P is the orbital period in days. These equations are strongly dependent on the
orbital period, a and R which means that binary systems with short periods and low
relative separation will have short time scales for synchronization and circularization of
their orbits.

2.4 Blackbody radiation

The radiation emitted from at star is aproximately described by black body radiation
which is a function of temperature T and frequency ⌫. Planck’s law of black body
radiation is given by

B(⌫, T ) =
2h⌫2

c2
1

eh⌫/kbT � 1
Wm�2Hz�1sterad�1 (2.49)

where c is the speed of light, h is the Planck constant and kb is the boltzmann constant.
The light curve of a binary system is very dependent on the projected surface of the
stars. If the stars are highly non-spherical the light curve will not be constant between
eclipses since the projected surface of the stars will vary during the binary orbit. For
detached binary systems, the relative radii, r = R/a, are below 0.1 which means that
they can be considered nearly spherical which means that they will have little or no
variations in their light curve between eclipses. This is of course not true if the system
is magnetically active like the case of V80.

2.5 Light curve pertubations

We are now going to go through the minor e↵ects which also will a↵ect the shape of the
light curve. Even though these e↵ects does not dominate the overall shape of the light
curve, they are still important when one wants to derive precise and correct parameters
from the light curve such as i and r

1,2.

2.5.1 Limb darkening

Limb darkening is a consequence of optical depth, and how this varies across the stellar
disk. Optical depth gives information about the amount of light that can travel through
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a gas without being absorbed or scattered by the interacting matter. When the pho-
tons in the star’s interior travel towards the stellar surface, the extent to which they
are getting absorbed is determined by the optical depth, which is �⌧ = ⇢�s. Here
�s is the distance the photon has to travel through the medium, ⇢ is the density of
the medium and  is the opacity, also known as the mass absorption coe�cient. When
�⌧ � 1, the medium is said to be optically thick and the photons will quickly collide
with the medium and thereby get absorbed. When �⌧ ⌧ 1 the medium is optically
thin and photons will travel freely without getting absorbed. When we look at a star,
we can only see to a certain depth before the star becomes opaque. The optical depth
of unity is where �⌧ = 1, which is where the stellar surface is defined to be. This is also
where the e↵ective temperature of the star, T

e↵

is observed5. The intensity loss for an
object which light passes through a given medium of optical depth �⌧ , at a frequency
⌫ is given by

I⌫ = I⌫,0 · e��⌧ (2.50)

where I⌫,0 is the intial intensity.

When we observe a star, the observed photon flux will di↵er across the stellar disk,
as the photons will have to travel through di↵erent layers of gas before escaping the
star. The observed flux will decrease as we go from the center towards the limb of the
star.

2.5.2 Gravity darkening

Gravity darkening is a consequence of the non-spherical shape of a star and is therefore
linked to the Roche model described in Section 2.3. The emergent flux from the stellar
surface is proportional to g� , where � is the gravity darkening exponent and g is the local
gravity. The emergent flux will increase with increasing surface gravity which means that
the equator of a star will be darker than at its poles6.

2.5.3 Reflection and heating

When the binary stars move around in their orbit they will radiate on each others
surfaces. The irradiated surface will then either reflect or absorb the radiation. If the
radiation is absorbed it will increase the surface temperature resulting in an increase
of the flux coming from its surface. The di↵erence between reclection and heating
is determined by the surface temperature of the irradiated star. For a temperature
of T ⇠ 4000 K, the radiation is completly absorbed by the atoms and ions in the
irradiated atmosphere which causes the surface temperature to rise. In this scenario the
albedo, ↵, will be 1. For temperatures of T ⇠ 30 000 K, the density of free electrons

5Stahler and Palla (2008), page 47.
6Hilditch (2001), page 243.
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in the atmosphere will be much higher which will result in 50% of the radiation being
Thomson scattered and thereby causing the radiation to be reflected7. The last 50% of
the incoming radiation will be absorbed in the atmosphere which means that the albedo
in this scenario will be ↵ = 0.5.

2.6 Stellar evolution in Detached Binary systems

As mentioned in the introduction, detached eclipsing binary systems are of fundamental
importance to stellar physics and the study of stellar evolution models since they are the
only stars for which we can precisely and accurately measure quantities such as mass,
radius and surface gravity. Detached eclipsing binary systems can be used to test stellar
model isochrones and estimate stellar parameters such as age with thight constraints.
In order to better understand what a↵ects isochrone models, we are going to go through
and explain some of these e↵ects. The main determinator of a star’s evolution is its mass
which determines the stellar core temperature and thereby the burning rate of hydrogen
fusion. Other than the mass, there are e↵ects such as the mass fraction of hydrogen X
and helium Y , the abundance of heavy elements which is linked to [Fe/H], di↵usion of
heavy elements and the abundances of C, N and O.

2.6.1 Stellar abundances and [Fe/H]

The abundance of X and Y together with [Fe/H] will determine the stars properties and
how the star evolves. If the helium abundance is fixed, increasing [Fe/H] will increase the
opacity which will lower the luminosity and e↵ective temperature of the star. Isochrones
for di↵erent [Fe/H] with constant Y = 0.30 for NGC 6791 are shown in Figure 6 in
Brogaard et al. (2012) and demonstrate that increasing [Fe/H] will results in the stars
being cooler and having smaller radii. Increasing Y while decreasing X at fixed [Fe/H]
will result in a increase in the mean molecular weight which will cause the pressure in
the stellar core to decrease. This will cause the stellar core to contract and increase in
temperature which will increase the rate of hydrogen burning and thereby decrease the
time on the main-sequence for the star. Increasing [Fe/H] and holding Y constant or vice
versa can ultimately lead to the same result in the Color-Magnitude-Diagram (CMD).
It can therefore be hard to set tight constrains for Y when comparing stellar models to
CMDs of clusters if one does not have any binary systems to constrain the models with.

2.6.2 The CNO cycle

C, N and O can act as a catalyst in the hydrogen burning fase which will speed up
the depletion of hydrogen in the stellar core and thereby cause the star to go through
its main-sequence fase much faster. The energy generation rate from the CNO cycle is
much more temperature dependent than the energy generation rate from the PP-chains.
As a result of this, the PP-chains dominate at low temperatures whereas the CNO cycle

7Hilditch (2001), page 244.
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is dominant at relatively high temperatures8. Because of this, the CNO cycle is much
more e↵ective in high mass stars which have higher core temperatures and will not be
as significant for the isochrone of low mass stars.

2.6.3 Energy transport and mixing length parameter

There are two kinds of energy transport which can occur in a star, namely, radiative
and convective energy transport. The stellar mass is a dominant factor in determining
where the di↵erent energy transports dominate in the stellar interior. The energy trans-
port which will be dominant in a specific region of a star, will be the energy transport
which has the greatest temperature gradient r. One can divide the stars up into three
catagories which gives a general picture of how convection and radiation dominante in
di↵erent zones for main-sequence stars. This can be seen in Figure 2.8 where convection
zones are represented by the curly grey areas.

Figure 2.8 – A general picture of how convection and radiation dominate in di↵erent zones for
main-sequence stars. Convective zones are represented by curly grey areas. Credit: Dalsgaard
(2008).

In stellar models, convection is usually described by the Mixing-Length Theory, which
makes use of the mixing length scale in order to express the convective flux, velocity
and temperature gradients of the convective elements and stellar medium. A simple
explanation goes as follows:

A blob of stellar plasma that is unstable will transport its energy by convec-
tion. After a typical mixing length distance lm it dissolves into its surround-
ings and deposits its energy there. lm is determined by the mixing-length-
paramter ↵

MLT

by lm = ↵
MLT

HP , where HP is the pressure scale height.

Using a lower value of ↵
MLT

in stellar modeling decreases the physical distance that a
blob of plasma will travel before it dissolves into its surroundings. There is no physical
model which can determine ↵

MLT

, so it must be determined by comparing stellar models
to a calibrator, the Sun. The mixing-length-parameter is not necessarily the same in

8Further information can be found in Dalsgaard (2008), Section 8.5.
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all stars and at all evolutionary stages. Because of this, Trampedach and Stein (2011)
have made theoretical predictions for the variation of the mixing-lenght-parameter as a
function of T

e↵

and log(g) based on 3D convection simulations. Even so, the-mixing-
length-parameter contributes a certain uncertainty to stellar models9. Decreasing the
value of ↵

MLT

will generally decrease the e↵ective temperature and increase the radius
of a star. In order to get magnetically active binaries to match the same stellar parame-
ters, ↵

MLT

is sometimes changed from that of the solar calibration for one or both of the
components. This was done for V636 Centauri in Clausen et al. (2009) where the initial
mixing-length-parameter was calibrated to a solar value of ↵

MLT

= 1.68. However, the
best match of ↵

MLT

for the primary and secondary components, corresponding to an
age of 1.35 Gyr, were ↵

MLT

= 1.4 and ↵
MLT

= 1.0, respectively.

It is worth to mention that Pasetto et al. (2014) have presented a self-consistent an-
alytical formulation of stellar convection that determines the properties of stellar con-
vection as a fucntion of physical behaviour of the convective elements themselves and
the surrounding medium. If this new analytical formulation is indeed correct, it would
eliminate the need for a free parameter in stellar modeling which should greatly improve
these models. The predictions of this new theory is in agreement with the Mixing-Length
Theory made for the Sun and it would be very interesting to see how this model com-
pares to the Mixing-Length Theory for other stars.

The di↵usion of heavy elements also plays a role in stellar modeling. As a star ages
on the main-sequence, the di↵usion of heavy elements will deplete in the outer part of
the star, i.e. [Fe/H] at the stellar surface will be lower than the intial [Fe/H]. Convective
motion can however reduce this e↵ect by turbulent mixing. As the star leaves the main-
sequence its convection zones deepens and brings the heavy elements back up to the
stellar surface. [Fe/H] can even increase so much that it becomes greater than the intial
values as seen in Figure 2.9 from Brogaard et al. (2012). This is however not because of
a higher abundance of Fe but because of a change in Y in the stellar envelope. In Figure
2.9 an isochrone which includes heavy element di↵usion and turbulent mixing has been
compared to stars from NGC 6791. The intial metallicity is [Fe/H] = +0.35, Y = 0.30
and the color excess is E(B-V ) = 0.15. The current atmosphere [Fe/H] values for each
star is given in the left panel, while the di↵erence from the intial [Fe/H] is shown in the
right panel.

9Pasetto et al. (2014), page 1
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Figure 2.9 – Here the change in heavy element di↵usion can be seen for the cluster members
of NGC 6791 where [Fe/H] is increased to higher values than the intial [Fe/H] due to turbulent
mixing. Credit: Brogaard et al. (2012). 22



3. Data

In this chapter we are going to go through the data we use for the investigation of V80
which will include the light curves form the Kepler Space Telescope, but also the R and
V light curves and spectroscopic analysis from Brogaard et al. (2011). We will briefly
describe the Kepler Mission and how the light curve data extraction of V80 was done.
After that, we will go through the photometry and specroscopy done for V80 in Brogaard
et al. (2011).

3.1 The Kepler Space Telescope

The Kepler Space Telescope is designed for the Kepler Mission which was launched in
2009 with the goal of finding Earth-sized planets in the habitable zone around main-
sequence stars using the transit method. The Kepler Mission is designed to survey our
region of the Milky Way galaxy in order to explore the structure and diversity of plane-
tary systems by staring at the same area of the sky, looking at more than 100 000 stars.
Since the transit signal from an Earth-sized planet eclipsing its host star is very weak,
producing a change in brightness of only 100 ppm (parts per million), the Kepler Space
Telescope needs to be very sensitive. The combined di↵erential photometric precision
over a 6.5 hour integration is less than 20 ppm (one sigma) for a 12th magnitude solar-
like star, where a stellar variability of 10 ppm is also assumed. Even though the dynamic
range of the Kepler Space Telescope is in the range of 9th to 16th magnitude stars for
the hunt of Earth-sized planets, the high photometric precision also makes it excellent
for observing light curves of binary systems.

Because the Kepler telescope has to monitor 100 000 stars, it requries a very large field
of view of 105 square degrees which can be seen in Figure 3.1. The primary mirror is 1.4
meter in diameter with 21 modules each with two 2200⇥ 1024 pixel CCDs, resulting in
detectors of 95 mega pixels. The instrument has a spectral bandpass in the range 430 -
890 nm FWHM1.

The Kepler Mission was scheduled to last 3.5 years, which was extended another 4
years on April 4th 20122. However on August 15th 2013 the Kepler Space Telescope

1Full Width Half Maximum.
2http://www.nasa.gov/centers/ames/news/releases/2012/12-33AR.html
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team announced that two of the four gyroscope-like reaction wheels which is used to
keep the spacecraft steady and pointing in the right direction, had ceased to work3. The
first gyroscope was lost in July 2012 and the second in May 2013. The Kepler Spacecraft
needs three of its four gyroscopes in order to function but since the actual telescope is
still operating completely fine, the Kepler Space Telescope team announced that they
would be looking for what new science the Kepler Space Telescope could be used for.

On the 16th of May 2014 NASA approved a new mission for the Kepler telescope, called
the K2 mission. The K2 mission recieved funding for two years of exoplanet search,
together with new scientific observation opportunities to observe notable star clusters,
young and old stars, active galaxies and supernovae. The K2 mission uses the radiation
pressure from the sun as a third gyroscope in order to keep the Kepler spacecraft steady.
The K2 mission will observe targets along its orbital plane (approximately the ecliptic)
in order to minimize the impact from the radiation pressure of the Sun. This will be
done for approximately 83 days before it is necessary to rotate the spacecraft to prevent
sunlight from entering the telescope4.

With the Kepler Mission having observed more than 100 000 stars, there is still alot
of data to be processed, together with follow-up observations which need to done. So
far the Kepler Mission has discovered 978 exoplanets and 2165 binary systems, together
with 4234 exoplanet candidates which still need to be investigated further.

3http://kepler.nasa.gov/news/nasakeplernews/index.cfm?FuseAction=ShowNewsNewsID=292.
4http://kepler.nasa.gov/news/nasakeplernews/index.cfm?FuseAction=ShowNewsNewsID=339.
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Figure 3.1 – Kepler field of view. Credit: http://kepler.nasa.gov/images/MilkyWay-Kepler-
cRoberts-1-full.png.
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3.2 Kepler light curve data

3.2.1 Kepler data and extraction of data

The data extraction from Kepler can be done from the following link: http://archive.
stsci.edu/kepler/data search/search.php, where V80 has the Kepler ID, also called KIC
number, 2438061. The light curve data from Kepler are packed as FITS binary table files
with a primary header, a light curve extension and an aperture extension. The Kepler
instrument consist of 42 CCDs arranged in 21 modules. The half-maximum bandpass
is 435 to 845 nm, with > 1% relative spectral response as short as 420 nm and as long
as 905 nm. Each CCD has the size of 50 ⇥ 25 mm with 2200 ⇥ 1024 pixels, with a
readout time of 0.5189485261 seconds and an exposure time of 6.019802903 seconds. On
every integration all the pixels are read out, and temporally summed in the Science Data
Accumulator (SDA). On average 32 pixels are read out of the SDA per target. There
are two kinds of flux time series, the long cadence and the short cadence. The short
cadence data are summed into a total exposure time of 30 minutes (270 integrations),
while the short cadence are summed into one minute sums (9 integrations)5. The light
curve files for V80 consist of 11 long cadence files and one short cadence file.

3.2.1.1 Light Curve Binary Extension

The light curve binary Extension consists of several data columns, where our primary
focus will be on the following: TIME and PDCSAP FLUX.

TIME

The data column named ”Time” contain the time at the mid-point of the cadence in
BKJD (Kepler Barycentric Julian Day). BKJD is Julian day minus 2454833.0 (UCT =
January 1st, 2009 12:00:00) and is corrected to be the arrival times at the barycenter of
the Solar System. In order to transform BKJD into BJD (Barycentric Julian Date), the
Kepler pipline uses the right ascension and declination of the object, which can be found
in the header. V80 is located at a right ascension of 290.277020� and a declination of
37.790970�. The conversion can be done by using the following formula for each member
of the time series [i]:

BJD[i] = TIME[i] + BJDREFI + BJDREFF (3.1)

where BJDREFI and BJDREFF are giving as keywords in the header.

PDCSAP FLUX

The light curve file contains two columns with flux called SAP FLUX and PDCSAP FLUX
where each has a corresponding column of flux errors. SAP FLUX is the flux in elec-
trons per second contained in the optimal aperture pixels collected by the spacecraft.
The di↵erence between SAP FLUX and PDCSAP FLUX is that the PDCSAP FLUX

5Kepler Archive Manual, page 7. http://archive.stsci.edu/kepler/manuals/archive manual.pdf
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has undergone further analysis. The Presearch Data Conditioning (PDC) module of the
Kepler data analysis pipeline removes signatures in the SAP FLUX light curve that are
correlated with systematic error sources from the telescope and spacecraft. This includes
pointing drift, focus changes and thermal transients6. PDC tries to remove these errors
while still preserving planetary signals and other interesting astrophysical phenomenons.
The PDCSAP FLUX light curve coulmn will therefore be used to investigate V80 instead
of the SAP FLUX coulmn since this should yield better results.

3.2.1.2 Aperture Extension

For each target Kepler only accquires the pixles contained within a predefined mask
which is used to produce the light curve files. The aperture extension consists of a single
image that describes which pixels were collected by the spacecraft, which pixels are
contained in the optimal aperture and which pixels were used to calculate the centroids.
The pixels which were used in the optimal aperture are used to create the SAP FLUX
light curve.

3.2.2 Target Pixel Data

For each light curve file there exists a target pixel data file. Each file consists of a
header, a target table extension and an aperture extension. The target table extension
contains flux time series for both the raw and calibrated pixels where the pixel values
are encoded as images. The aperture extension contain a single image describing the
target pixel mask and optimal aperture. For further information on the light curve files
and target pixel data, see the Kepler Archive Manual7.

3.3 Brogaard et al. 2011

V80 was first investigated by Brogaard et al. (2011) together with the two other binary
systems V18 and V20 located in NGC 6791. We will in this section go through the
photometry and spectroscopy obtained for V80 in Brogaard et al. (2011) which we are
going to use in conjunction with the kepler light curves.

3.3.1 Photometry

The photometric data for V80 consists of V (Johnson) and R (Cousins) CCD obser-
vations acquired from the 2.56 m Nordic Optical Telescope (NOT) and its ALFOSC
instrument over 9 nights in the period between May and August 2009. This resulted
in 580 exposures (V ) with an exposure time of 240 s and 538 exposures (R) with an
exposure time of 180 s.

In Brogaard et al. (2011) the V and R band light curves were not good enough to

6Kepler Archive Manual, page 21.
7http://archive.stsci.edu/kepler/manuals/archive manual.pdf
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put the strong constraints on the photometric parameters of V80 which binary systems
otherwise are known for. The reason for this being the magnetic activity and the limited
amount of light curve measurements. In order to obtain measurements of the surface
gravity,log(g), which was to be used for T

e↵

and [Fe/H] measurements, Brogaard et al.
(2011) performed preliminary light curve analysis for V80. The V and R band light
curves had o↵sets in magnitude between each eclipse due to the magnetic activity which
they corrected for such that all observations between eclipses were aligned in magnitude.
They then found light curve solutions employing a V band light ratio constrain from
their Color-Magnitude-Diagram (CMD) of the cluster NGC 6791. The results from Bro-
gaard et al. (2011) can be seen in table 3.1, where the uncertainties are in the range of
6� 20%.

Parameter Value

Constraints from CMD:
Ls/Lp (V ) 0.15± 0.05
Measured parameters:
i (�) 84± 1
rp 0.0900± 0.0054
rs 0.061± 0.012

Table 3.1 – Photometric solution of V80 found in Brogaard et al. (2011).

3.3.2 Spectroscopy

The spectroscopic observations were carried out in service mode with UVES at the ESO
Very Large Telescope (VLT) during allocation period 81. The standard 580 nm setup
was used for UVES (Ultraviolet and Visual Echelle Spectrograph), together with an
on-chip binning of 2x2 pixels. The wavelength ranges which is covered by the two CCD
detectors in UVES are 477.5-575.0 nm and 587.5-683.0 nm. The observations at VLT
resulted in 10 usable epochs for V80 which can be seen in the spectroscopic double-lined
orbital solution for V80 in Figure 3.2. From these measurements the semiamplitude of
the primary and secondary components of V80 was found to be Kp = 66.05± 0.16 and
Ks = 87.38± 0.26 km s�1, respectively.

V80 Primary

T
e↵

5600± 95 K
log(g) 4.21
v sin(i) 14.00± 2.00 km s�1

v
micro

1.10± 0.10 km s�1

[Fe/H] +0.34± 0.10

Table 3.2 – Parameters determined from spectral analysis, where log(g) was fixed.
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3.3.3 Absolute dimensions

By using the parameters from the preliminary light curve analysis and the spectroscopic
analysis Brogaard et al. (2011) found the astrophysical data for V80 which can be seen
in Table 3.3.

Primary Secondary

M/M� 1.0588± 0.0091 0.8003± 0.0062
R/R� 1.341± 0.081 0.90± 0.18
log(g) [cgs] 4.208± 0.052 4.43± 0.18
T
e↵

[K] 5600± 95 (...)
v
rot

[km s�1] 14.1± 2.00 (...)
v
sync

[km s�1] 13.88± 0.83 9.33± 1.9

Table 3.3 – Absolute dimensions of V80 found from Brogaard et al. (2011). v
rot

is the observed
equatorial rotational velocity and v

sync

is the theoretical equatorial velocity for synchronous rota-
tion.
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Figure 3.2 – The spectroscopic double-lined orbital solution for V80 from Brogaard et al. 2011.
The horizontal dottet line in the upper panel represents the system velocity of V80. Credit:
Brogaard et al. (2011).
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4. Data analysis

In this chapter we will describe the data analysis which has been done to the Kepler
long and short cadence light curves and the R and V band light curves from Brogaard
et al. (2011). During the data analysis we will address the e↵ects which is observed in
the light curve and how these are removed or interpreted.

4.1 Starspot period

The light curve data of V80 from Kepler shows high magnetic activity indicated by the
fact that it is not constant outside eclipses which can be seen in Figure 4.1. In order to
analyse the system the light curve variations caused by the magnetic activity needs to
be removed. Before the removal of the light curve variations, it is interesting to see if the
variations are periodic and if so, what the period is. If one looks closely, the eclipses are
out of synchronization with the varaitions of the magnectic activity. In order to inves-
tigate the period of the light curve variations we use a program called pdm2.pro1. The
program computes a �2 statistic for period searching in time-series data which is based
on the technique called Phase Dispersion Minimization (PDM) described in Stellingwerf
(1978).

The Kepler Spacecraft rotates 90 degrees every quarter of the year in order to keep
the solar arrays oriented towards the Sun and to make sure that the radiator is pointed
towards deep space2. Because of this, the Kepler objects are observed by four di↵erent
CCDs during a year. This means that the light curves from the di↵erent quarters will
not lie at the same flux level due to the e↵ects of CCD read-out-noise, dark current and
pixel-to-pixel variations3. The rotation of the Kepler Spacecraft means that the light
curves from each quarter need to be normalized. After we normalize the light curves,
the time series are converted to phases of the orbital period of the system using the
period found in Brogaard et al. (2011). In Brogaard et al. (2011) the orbital period was
estimated to be 4.88594 ± 0.00016 days with a time of primary eclipse found to be at
54652.3045 (HJD-2 400 000) which converted to BJD is 54652.3052 (BJD - 2 400 000).
The conversion is done in order to compare the time of primary eclipse with the Kepler

1http://www.astro.washington.edu/docs/idl/cgi-bin/getpro/library30.html?PDM2
2Kepler Archive Manual, page 7.
3Howell (2006), page 78.
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Figure 4.1 – A portion of the Kepler long cadence light curve is shown. The light curve is not
constant outside of the eclipses due to what looks like a periodic light variation caused by magnetic
activity which is not synchronized in time with the eclipses.

time series. In Figure 4.2 all the long cadence light curves can be seen, before and after
the eclipses has been removed.

Figure 4.2 – The Phased light curves of the long cadence data can be seen to the left. To the
right, the eclipses of the light curves have been removed.
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After the removal of the eclipses, pdm2.pro can be used to find the period of the light
curve variations caused by the magnetic activity. In Figure 4.3 the �2 fit is shown where
a minimum can be seen. There also seems to be a local minimum, which could indicate
that there could be yet another perodic signal in the light curve data. The period of the
light curve variations caused by magnetic activity is estimated to be 4.738± 0.008 days
which we through the thesis will refer to as the main starspot period. The uncertanty
of the main starspot period is found by fitting a gaussian function to the minimum in
Figure 4.3.
Now that the period of the primary signal in the Kepler light curve has been determined,

Figure 4.3 – Here the �2 fit shows a period of 4.7385 days for the magnetic activity, together
with a local minimum at a period of 4.7078 days which indicate that the light curves contain more
than one perodic signal.

we proceed by taking the light curves, still with the eclipses removed, and phasing them
with the main starspot period and the secondary signal of 4.708 days. This can be seen
in Figure 4.4 where the phase diagram for the main starspot period has been fittet with
a sine function. The phase diagram for the secondary signal to the right in Figure 4.4
shows more spread of the data points compared with the phase digram of the primary
signal, expecially in the interval of [0.55; 0.75]. For this reason, we only focus on the
primary signal which seems to have a constant period.

To further investigate the phase diagram of the primary magnetic signal, we divide it
up into four phase diagrams, one for each CCD. Each CCD is referred to as 0, 1, 2 or
3, where CCD0 corresponds to the quarters 0, 4, 8 and so forth. Figure 4.5 shows how
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Figure 4.4 – Left : The long cadence light curves with the eclipses removed have been phased
with the main starspot period, where a sine function has been fittet to the data. Right : This is
the same scenario as on the left, but where the secondary signal of 4.708 days has been used to
phase the light curves.

the magnetic signal is somewhat changing for each quarter. None of the CCDs represent
data points which are good for a sine fit which means that the light curve variations
caused by the magnetic activity is changing substantially over a year since this is the
time di↵erence for each quarter which has been observed with the same CCD.
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Figure 4.5 – Each quarter has been divided into the CCD which was used for observing V80.
Each CCD is referred to as 0, 1, 2 or 3, where CCD 0 corresponds to the quarters 0, 4, 8 and so
forth. All four plots show substantial changes for each quarter.
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4.2 Orbital period of V80

4.2.1 Estimation of the orbital period of V80 from PDM

Even though the light curve variations caused by the magnetic activity might not be
completely constant, we can still use the sine fit from Figure 4.4 to remove the overall
shape caused by the magnetic activity from the light curve. By doing so, we can isolate
the primary eclipses in the light curve and use the PDM method to get an estimate of
the period of V80. The result is a period of 4.88586 days which is in agreement with the
result found in Brogaard et al. (2011) where a orbital period of 4.88594± 0.00016 days
was found. The PDM method does not provide an error estimation for the period of a
given signal, so in order to get some idea about how well the period is determined and
if there might be possible changes of the period, we need to use the Kwee Van Woerden
method.

4.2.2 Kwee Van Woerden method

The code we construct for the Kwee Van Woerden method is written according to the
original paper of Kwee and Van Woerden (1956) without any modifications which we
use to estimate the time of minimum for a given light curve and its corresponding un-
certainty. The method is highly used amongst eclipsing binaries since it does not require
any assumptions about the shape of the light curve. The only downside about the Kwee
Van Woerden method is that Mikulášek et al. (2013) showed that the method tends to
understimate the uncertainties of the corresponding mid-eclipse times.

The method assumes that the light curve is symmetric, where the time of mid-eclipse
is found by folding the light curve about the estimated time of minimum. The correct
time of minimum is found by altering the reflection axis until the di↵erence between the
square of the sum of each observation pair, s(t) =

P
�m2, is at its minimum. Here �m

is the di↵erence between an observation pair and t is the estimated time of mid-eclipse.
When a good estimate of the minimum of s is found, the values of s(t ± �t) will be
higher and these three points can be used to solve a second degree polynomial. The
minimum of this polynomial will be the time of mid-eclipse.

4.2.2.1 Kepler long and short cadence data

For the long cadence data, each eclipse is covered by about 9 data points and the correct
time of minimum is easily found by using the Kwee Van Woerden method. For the
short cadence data it is not that easy. The short cadence data light curves consist of 30
times more data points than that of the long cadence ligth curves, but of significantly
lower signal-to-noise ratio. Because of this, the reflection axis will produce local minima
which will result in wrong estimates of the time of minimum for the short cadence data
if the estimated time of minimum is not chosen wisely. A comparison of the short and
long cadence light curves can be seen in Figure 4.6, where it is easy to see that the long
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Figure 4.6 – The light curves for long and short cadence data. The crosses represents data points,
where the red ones is used in the Kwee Van Woerden method. Triangles represents the interpolated
data points used for the reflection of the light curve about the estimated time of minimum which
is represented by the vertical red line. For the short cadence light curve, the estimated time of
minimum is crusial for getting the correct value of the mid eclipse time, since s could be calculated
for a local minimum.

cadence light curve will not be able to produce local minima because of the amount of
data points are too low. For each of the light curves, the crosses represents data points,
where the red crosses are the ones which are used in the Kwee Van Woerden method.
The triangles represents the interpolated data points used for the reflection of light curve
about the estimated time of minimum which is represented by the vertical red line. The
triangles have been omitted for the short cadence light curve to avoid confusion.
In order to bypass the issue with a possibility of finding a local minimum instead of the
global minimum for s, we define an area around the estimated time of mid-eclipse where
we reflect the light curve and calculate s values for each of these. It is still the same
method but instead of letting the code search for a minimum of s, we construct a series
of s values in order to find the global minimum. The search for the global minimum for
the short cadence light curve can be seen in Figure 4.7 for the same light curve seen to
the right in Figure 4.6.

The estimated time of mid-eclipse which was used in Figure 4.6 was 5834.6858 (BJD -
2450000) which when running the Kwee Van Woerden code gave a time of mid-eclipse
of 5834.6958 (BJD - 2450000). As we can see in Figure 4.7 this cannot be right, and by
making a sequence of s values we find the correct time of mid-eclipse to be 5834.7005
(BJD-2450000). The di↵erence between these mid-eclipse times are 0.005 days which
is very significant since the estimated unceratainties of each of these times are ±0.0001
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Figure 4.7 – By defining an area around the estimated time of mid-eclipse, we construct a sequence
of values for s in order to find the time of global minimum which is marked with a red symbol. If
this procedure is not done, the Kwee Van Woerden code would find the time of mid-eclipse to be
5834.6958, instead of the correct value of 5834.7005 (BJD -2450000).

days. For scenarios where we have estimated times of mid-eclipse from both short and
long cadence light curves, we use the times obtained with the short cadence light curves,
since their uncertanties are much lower than the once obtained for the long cadence data
and a weighted mean of the two times would not make a significant di↵erence.

4.2.2.2 V and R band data

From Brogaard et al. (2011) we have the V and R band data from two primary eclipses
and two secondary eclipses in HJD which we converted to BJD. By using the Kwee Van
Woerden method on these light curves we find that some of the mid-eclipse times do not
correspond well with each other. In order to investigate this issue, Karsten Brogaard
provided single pixel long cadence light curves from quarter 1 and 2 from the Kepler
superstamp sample. The time series in quarter 1 and 2 corresponds with the time from
when the R and V light curves were observed. By comparing the time of mid-eclipse
from the Kwee Van Woerden method for the R, V and Kepler long cadence light curves
we got information which we processed in the following way:

Primary eclipse (2454984.554 BJD)

Here the V and R mid-eclipse times showed variations of more than 2� between
each other. The long cadence supported the V band, where the mid-eclipse times
agreed within 1�. Because of this, we took a weighted mean over the V band and

38



Master’s thesis 19 September 2014 Astrophysics

long cadence mid-eclipses in order to compute an accurate estimate of the primary
eclipse.

Primary eclipse (2454989.438 BJD)

In this scenario both the V and R mid-eclipse times corresponded well with each
other, however the light curve which was used here did not cover the whole eclipse.
In order to make sure that the imperfect light curve did indeed give the correct
time of mid-eclipse, we compared it to the time obtained from the long cadence
light curve. The di↵erence between these times was more than 3�! In the light
of this and because the long cadence light curve completely covered the eclipse we
decided to use the time of mid-eclipse obtained from the long cadence light curve.
The light curve of the V and R band can be seen in Figure 4.8.

Figure 4.8 – Here the light curves of the primary eclipse (2454989.438 BJD) for the V and R
band can be seen. The times of mid-eclipse correspond well with each other, but not with the one
obtained from the long cadence light curve. Due to the fact that the light curves for either the V
or R band do not cover the whole elicpse, we use the time obtained from the Kepler long cadence
light curve.

Secondary eclipse (2455006.543 BJD)

Here the V and R band did not agree within 1�. The Kepler long cadence light
curve showed very good agreement with the V band and thus we used these two
times to get an accurate estimate of the secondary eclipse.

Secondary eclipse (2455045.632 BJD)
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For this eclipse, the V and R band agreed well with each other and it was in fact
the long cadence light curve which showed some inconsistency, however it was still
within 1� of the two others. Because of this, we used all three times of mid-elicpse
to compute a weighted mean for this secondary eclipse.

4.2.3 Period and ephemerides

By using the Kwee Van Woerden method we have estimated times of mid-eclipse and
their corresponding uncertainties for 189 primary and secondary eclipses using the V , R,
short- and long cadence light curves. We can now use these ephemerides for the primary
and secondary eclipses to estimate the orbital period of V80 with very high accuracy.
The following linear ephemerides for the primary and secondary eclipses of V80 are:

T
min

(primary) = 2454984.5539
±0.0002

+ 4d.885889
±0.000001

· E (4.1)

T
min

(secondary) = 2455006.5440
±0.0003

+ 4d.885871
±0.000002

· E (4.2)

where E is the number of cycles away from the first eclipse. As we can see, the orbital
period of V80 obtained from both the primary and secondary eclipses agree well until
we get to the last two digits. The uncertainty of the orbital period obtained from the
primary and secondary eclipses are of the order 0.1 s and 0.2 s, respectively. The reason
for the unconsistency between the last two digits of the orbital period is simply that
we can not claim to know the period with such high accuracy. When the uncertainty
gets below 1s, e↵ects such as special and general relativity begins to play a role in
our measurments. Furthermore considering the possiblity of an underestimate of the
uncertainties of the mid-eclipse times stated by Mikulášek et al. (2013), we adopt an
uncertainty for the orbital period of 1 s which means that we find the orbital period of
V80 to be 4.88589± 0.00001 days.

4.2.4 O-C diagram

In order to investigate if there exists periodic changes in the orbital period of V80 we
construct O-C diagrams from the primary and secondary eclipses. The O-C diagrams
are constructed by taking the observed times of mid-eclipse and subtracting the calcu-
lated times of mid-eclipse by using the linear ephemerides in Eq. 4.1 and 4.2. From the
two O-C diagrams in Figure 4.9 there does not seem to be any systematic changes in the
orbital period over the time interval of 1402 days which we have investigated. The un-
certainty of each point have been removed for clarification, however the data agree very
well with a normal distribution which one would expect for random errors. Notice the
di↵erence in the spread of the primary and secondary eclipses. This is simply because
the depth of the primary eclipse is greater than the depth of the secondary which results
in a much lower spread for the primary. By looking at the O-C diagrams of V80 we can
conclude that there are not signs of a third body in the system which could a↵ect the
light curves of V80.
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Figure 4.9 – The O-C diagrams for both the primary and secondary eclipses do not show any
signs of periodic changes in the orbit of V80. Notice the di↵erence in spread for the primary and
secondary eclipses which is caused by a better precision in estimation of the time of mid-eclipse
for the primary eclipse due to the di↵erence in eclipsing depth.

4.3 Removal of the magnetic activity

If we want to investigate the photometric elements of V80, we first need to remove the
parts of the Kepler light curve which we do not understand well enough to model in
detail. This will be the light curve variations caused by the magnetic activity which
appear to be somewhat periodic in the system. In order to remove the shape of the
light curve which is caused by the magnetic activity, we first need to determine how
it should be removed. By fitting a curve to the continuum of the light curve we can
remove the shape by either dividing or subtracting the fit from the light curve. The
magnetic activity is represented in the form of starspots which will be on located either
the primary or secondary component, where we in Section 4.6 will present evidence and
argue that the starspots must be located on the primary component.

By assuming that the starspots are located on the surface of the primary component of
V80, we can argue for how we would expect the depth of the primary eclipse to vary.
Since the main starspot period does not have the same period as the orbit of V80, the
primary eclipse will occur at di↵erent phases of the main starspot period. This means
that the depth of the eclipses will be di↵erent depending on the location of the starspots
which are causing the light curve variations.

Scenario 1:

If the secondary star covers the surface of the primary star where the starspots
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are located, then the depth of the primary eclipse will be di↵erent depending on
where in the phase of the main starspot it is located. The correct procedure for
removing the magnetic activity will then be to divide the light curve with the fit
of the light curve continuum.

Scenario 2:

If the secondary star does not cover any area of the surface of the primary where
the starspots are located, then the depth of the primary eclipse will be una↵ected
by where it lies in the phase of main starspot period. The correct procedure for
removing the magnetic activity will in this case be to subtract the continuum of
the light curve.

Before any of these two scenarios can be investigated we first need to make a fit to the
light curve continuum. In order to do so, we first remove the primary and secondary
eclipses of the long cadence light curves. Such a fit can been seen in Figure 4.10 where the
vertical line represents the time of primary mid-eclipse and the red line is a least-square
polynomial fit with weighted uncertainties. In the case of this light curve, a polynomial
of 6th degree was found to be the best fit. Such a fit was done for 186 long cadence light
curves covering one orbit.

Figure 4.10 – The primary and secondary eclipses have been removed for the Kepler long cadence
light curves in order to make a fit to the continuum of the light curves. The light curve in this
figure has been fitted with a least-square polynomial fit of 6th degree which is seen as the red line.
The vertical line represents the time of primary mid-eclipse.

For each of these fits we measure the vertical distance between the bottom of the poly-
nomial fit to the location of the primary eclipse. This distance will be an estimator for
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where in the phase of main starspot period the primary eclipse will be located. Because
the shape of the continuum for each light curve changes, expecially over di↵erent quar-
ters, we divide the distance with the total vertial extent of the polynomial fit for each
light curve. By doing so, we are able to relate the position for each primary eclipse in
terms of relative distance from the mininmum of the continuum fit.

As stated earlier, we do not fully understand the magnetic activity’s impact on the
light curve, and thus, our focus regarding the removal of the the light curve will be
around the primary and secondary ecilpses. Analysing the light curve by removing the
magnetic activity from the whole light curve would put constrains on the shape of the
light curve. We do not have any evidence which suggest how the light curve should
look outside of eclipses and therefore we will not use this part of the light curve when
investigating the photometric elements of V80.

In the light of this, when removing the light variations caused by the magnetic activity
from the light curve we will only fit around, but not during the primary and secondary
eclipses. Again we use the light curves where the primary and secondary eclipses have
been removed in order to fit to the continuum for the light curves. Just as before we
use a least-square polynomial fit around the eclipses which can be seen in Figure 4.11.
The left plot shows the points around the eclipse which has been used for producing the
fit which is represented by the red line. The triangels in the plot to the right in Figure
4.11 represents the data points defining the eclipse which will be used in the light curve
analysis.

The polynomial fit is then interpolated onto each of the triangels and are then subtracted
and divided from the light curve. The result of this can be seen in Figure 4.12 where
the red triangles and blue squares are the divided and subtracted light curve, respec-
tively. It is hard to see, in the case of this primary eclipse, if there in fact is a di↵erence
between either dividing or subtracting the continuum fit from the Kepler long cadence
light curve.

By measuring the depth of each primary eclipse for these two di↵erent ways of removing
the magnetic activity we should be able to conclude whether it is scenario 1 or scenario
2 which is present in the light curve for V80. As we can see in Figure 4.13 there is very
little di↵erence in the measured depth of the primary eclipses as a function of position
in the starspot pattern. There seems to be a tendency around phase 0 where the depths
of the eclipses are lower than elsewhere. The spread in this area is however also greater
which means that we cannot really correct for this tendency. It seems that there are
di↵erent e↵ects which alters the light curve of V80 and not only the magnetic activity.
An big expected contributor to the altering of the light curve is the variation in the
amount of light from additional objects in the aperature for V80. The field of view of
the Kepler Space Telescope is very large and therefore the aperture for each target star
can easily contain additional objects. This not a big deal for bright stars, however the
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Figure 4.11 – The left plot shows the area around the eclipses where a least-square polynomial
fit has been done. The triangles in the right plot represents the data points of the eclipse which
will be used in the light curve analysis. The polynomial fit is then interpolated onto each of the
triangels which then are subtracted and divided from the light curve.

Figure 4.12 – The red triangles and blue squares are the divided and subtracted light curve,
respectively. There does not seem to be any significant di↵erent between dividing or subtracting
the continuum fit from the Kepler long cadence light curve.

apparent magnitude of V80 in the V band is m
v

⇠ 17.886, making it a faint object. Even
more importantly, there are many stars close together since V80 is in a cluster which
increases the possibility for additional objects in the aperature of V80. The smallest
drift of the Kepler Spacecraft, which is not corrected for, can alter the light curve of
V80. A combination of all these e↵ect might be why we see a tendency around phase 0
in Figure 4.13. Our conclusion from Figure 4.13 is that it does not seem to matter how
we remove the light variations caused by the magnetic activity at the level of accuracy
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we can accomplish. The light curve variations are large and it seems likely that the sec-
ondary component would partly cover some of the starspots on the primary component
and we therefore choose to use the divided Kepler light curve in our light curve analysis.

Figure 4.13 – Dividing or subtracting the magnetic activity continuum does not seem to make
a di↵erence regarding the depth of the primary eclipses. There however seems to be a tendency
around phase 0 where the depths of the eclipses are lower than elsewhere.

4.4 Determining limb darkening coe�cients for the com-
ponents of V80

Before using the Kepler long and short cadence light curves in a light curve analysis
we first need to determine the limb darkening coe�cients u

1,2 for both the primary and
secondary components of V80. In order to do so, we use the JKTLD4 code for comput-
ing theoretically calculated limb darkening coe�cients. The coe�cients of the JKTLD
output is based on published tables of limb darkening coe�ceints calculated from stellar
model atmospheres.

The inputs of JKTLD are the e↵ective temperature of the star T
e↵

, the surface gravity
log(g), the metallicity expressed by [Fe/H] and the microturbulence velocity v

micro

. The
e↵ective temperature of the secondary was not listed in Brogaard et al. (2011) and
we therefore have to use a color-temperature-metallicity relation which we obtain from

4http://www.astro.keele.ac.uk/jkt/codes/jktld.html
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Casagrande et al. (2010) which can be seen in Eq. 4.3

✓
e↵

= a
0

+ a
1

Xc + a
2

X2

c + a
3

[Fe/H] + a
4

[Fe/H] + a
5

[Fe/H]2 (4.3)

where ✓
e↵

= 5040/T
e↵

, Xc is the color and ai(i = 0, ..., 5) are the coe�cients which can
be found in Table 4 in Casagrande et al. (2010) where the proposed standard deviation
of the calibration �(T

e↵

) is also given. By solving Eq. 4.3 with respect to Xc and us-
ing [Fe/H] and the e↵ective temperature of the primary component we find the color
Xc which the primary component needs to have in order to give the observed e↵ective
temperature from the color-temperature-metallicity relation. We can calculate the color
di↵erence between the two components of (B� V ) = 0.897 and (B� V ) = 1.200 for the
primary and secondary components, respectively. Then by using the measured [Fe/H]
for the secondary, we can calculate the e↵ective temperature of the secondary component
which is found to be 4864± 254 K.

The microturbulence velocity listed for the primary component in Brogaard et al. (2011)
is 1.10 ± 0.10kms�1, but most limb darkening coe�cients in JKTLD are only available
for a microturbulence velocity of 2.0 km s�1. Because of this, we have to settle with a
microturbulence velocity of 2.0 km s�1 for each component. For the Kepler band, there
only exists limb darkening coe�cients for three laws, namely, the linear law, the Sing
three-parameter law and the quadratic law. The linear limb darkening law have shown
to be a poor fit to both the observed limb darkening of the Sun and that predicted
by theoretical model atmospheres, and we will therefore not use this law5. The Sing
three-parameter law is not available for the V and R bands, and thus, for consistency
we use the quadratic law for all three bands. The limb darkening e↵ect Iu is described
by the quadratic law in Eq. 4.4.

Iu = I
0

⇥
1� u

1

(1� µ)� u
2

(1� µ)2
⇤

(4.4)

Here µ = 1 � cos(�), where � is the angle between a line normal to the stellar surface
and the line of sight of the observer and I

0

is the surface brightness per unit area at the
centre of the stellar disk. The input and output parameters of JKTLD is given in table
4.1 where we refer to the Kepler band as Kp.

5Brogaard et al. (2011), page 4.
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Parameters Primary Secondary

Input:
T
e↵

[K] 5600 4864
log(g) [cgs] 4.208 4.43
[Fe/H] 0.3 0.3
v
micro

[km s�1] 2.0 2.0
Output:
u
1

(R) 0.3824 0.5420
u
2

(R) 0.3039 0.1934
u
1

(V ) 0.4976 0.6910
u
2

(V ) 0.2572 0.1075
u
1

(Kp) 0.4483 0.5965
u
2

(Kp) 0.2304 0.1249

Table 4.1 – The input for JKTLD together with the limb darkening coe�cients for the quadratic
law for the Kepler, R and V band.
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4.5 Preliminary light curve analysis

By using the R, V and Kp (Kepler band) light curves we want to perform preliminary
light curve analysis in order to determine the quality of the data. R and V light curves
were not good enough to put strong constraints on the photometric parameters of V80,
however they might still be useful for comparison with the results for the Kepler long
and short cadence light curves.

4.5.1 JKTEBOP code

The light curve model we use to analyse V80 is the Nelson-Davis model which represents
the deformed stars as biaxial ellipsiods and applies a simple bolometric reflection model6.
We use the JKTEBOP code by John Southworth which relies on the Nelson-Davis model
and which is a revised and extension of the orginal EBOP code from Etzel (1981). Times
of minimum, spectrosopic light ratios, third light values and orbital eccentricity can be
included as observed quantities to constrain the solution. JKTEBOP o↵ers Monte Carlo
simulations to assign robust errors to the fitting parameters7.

4.5.2 Preliminary light curve analysis using V , R and Kp light curves

In our preliminary light curve analysis the period of V80 is well known and we therefore
included it as a fixed parameter. From the spectroscopic orbit in Brogaard et al. (2011)
the orbit of V80 was found to be circular and we therefore adopt a fixed eccentricity of
e = 0. Just like Brogaard et al. (2011) we applied gravity darkening coe�cients corre-
sponding to convective atmospheres and keept the mass ratio q = ms/mp fixed. The
limb darkening coe�cients were fixed since including them as free parameters resulted
in unphysical values of these. Altering both the gravity and limb darkening coe�cients
had negligible e↵ect on the derived photometric elements and because of this it was safe
to keep them fixed during the light curve analysis.

By running the JKTEBOP code for a range of fixed values of k = rs/rp we got re-
sults for each of the four di↵erent light curves which can be seen in Figure 4.14. The
results from the R light curve model does not show any miminum in the root-mean-
square (rms) of the fit for any value of k. The V light curve model shows a clear minium
at k ⇠ 0.625 which also seems to be the case for the Kepler long cadence light curve
model. There is however not a clear minimum but rather a flat minium in the interval
k = [0.60, 0.66] which means that the light curve model finds equal good fits for this
range of k values. The Kepler short cadence light curve model shows a jump in the
rms around k ⇠ 0.61 suggesting that some parameters in the model changes somewhat
dramatically.

6Nelson and Davis (1972)
7http://www.astro.keele.ac.uk/jkt/codes/jktebop.html
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Figure 4.14 – The results for the preliminary light curve analysis of the four di↵erent light curves.
The V band shows the most clear evidence for a prefered value of k, where the Kp long cadence
light curve also shows indications of k being in the same range as the V band suggests. The R
band light curve model does not show a minimum of rms for a specific value for k. The Kp short
cadence light curve shows evidence of some kind of parameter change that a↵ects the rms of the
model at k ⇠ 0.61.
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In order to investigate further we compared the estimated values of the orbital inclina-
tion which from Brogaard et al. (2011) was estimated to be i = 84 ± 1�. Even though
the R light curve model did not show any preference for a specific value of k, it does
however agree with V in regards to the orbital inclination as can been seen in Figure
4.15. The Kepler long cadence light curve model has an o↵set from the V and R light
curve models of about 1� at k = 0.63 which is where we expect the true value of k lies if
one is to trust the V light curve model in Figure 4.14. The Kepler short cadence light
curve model is not included in Figure 4.15 due to its very bad fit, which is a consequence
of the amount of third light in these light curves which is about 80% of the total light.
The Kepler short cadence data covers 7 orbital periods while the Kepler long cadence
data covers 189 orbital periods. The Kepler short cadence light curves were observed in
quarter 11. If the amount of third light in this CCD from quarter 11 is around 80%,
then it also might be for the rest of the quarters where the same CCD has been used
to observe V80. The aperture mask is not excatly the same for each quarter due to the
algorithm in the Kepler Telescope. Because of this, the quarters which are from the
same CCD which observed quarter 11 might not have the same amount of third light in
their light curve.

Figure 4.15 – Here the orbital inclination can be seen for the di↵erent values of k, where V and R
correspond very well with each other. The Kp long cadence light curve shows a orbital inclination
of about 85.3� which is about 1� higher than V and R at the expected value of k = 0.63 indicated
by V in Figure 4.14.
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4.5.3 Preliminary light curve analysis using Kepler long cadence light
curves

Due to the amount of third light indicated by the Kepler short cadence light curve
models, we want to further investigate the Kepler long cadence light curves by dividing
the quarters into the four di↵erent CCDs which were used for observing V80. The
amount of third light of 80% from the Kepler short cadence light curves indicates that
the third light of the Kepler long cadence light curves of ⇠ 68% is driven up by the high
amount of third light coming from the CCD which observed quarter 11. We therefore
divide the quarters up into their respectable CCD which can be seen in Table 4.2.

Quarter
CCD 0 8, 12, 16
CCD 1 9, 13
CCD 2 6, 10, 14
CCD 3 7, 11, 15

Table 4.2 – The quarters are dividing into each of the CCDs which was used for the observation
of V80.

By performing a new preliminary light curves analysis of each light curve configuration
for each CCD we get four new results. These results can be seen in Figure 4.16 where
we can note that CCD 3 produces the worst rms fit which we also would expect if the
third light is high in the aperture of CCD 3. CCD 3 does however also show a sign
of a prefered fit around k = 0.54, together with CCD 0 with k = 0.525. These results
are not consistent with the analysis of V which was not a↵ected by a third light source.
CCD 0 does show a relatively high jump in rms from k = 0.525 to k = 0.50 which might
indicate that the light curve fit becomes much worse here and that it may therefore not
be a real indication for a rms minimum of k. It seems very likely that the minimum
around k = 0.54 for CCD 3 is caused by the high amount of third light. The light curves
observed with CCD 1 and 2 show very little variation in the rms over the range of k
values which indicates (just like the whole Kepler long cadence light curve model) that
the light curve model does not prefer a specific value of k.

The orbital inclination and third light is represented in Figure 4.17 where we can see
an expected strong correlation between these two components. As the amount of third
light increases in the light curve, the depths of the primary and secondary eclipses
will decrease, just like they would if the orbital inclination would decrease. Just as
we expected, the amount of third light for CDD 3 is very high which means that the
overall third light gets driven up in the Kepler long cadence light curve. The light curves
observed with CCD 0 and 2 also show a high amount of third light in them, however their
orbital inclination are within 1 and 1.5 � of what was found in Brogaard et al. (2011).
The result of CCD 1 is the one which matches the orbital inclination from Brogaard
et al. (2011) the best. It does however only consists of two quarters, namely, quarter 9
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Figure 4.16 – The results for the preliminary light curve analysis of the four di↵erent CCDs for
di↵erent values of fixed k.
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and 13. If we only used the light curves from CCD 1 the uncertainty estimates for the
photometric elements would presumably be less constrained due to the low number of
data points used in the analysis. The consequence of this is that we decided to omit the
light curves observed with CCD 3 and keep the ones observed with CCD 0, 1 and 2. In
the following we will refer to the whole Kepler long cadence light curve as Kpl, whereas
we will refer to the light curve where CCD 3 has been omitted as Kp?.

Figure 4.17 – The results for the preliminary light curve analysis of the four di↵erent CCDs for
di↵erent values of fixed k.

With the CDD 3 light curves ommited we perform the same procedure for Kp? as we
did for Kpl in order to see if the light curve model has been improved. By comparing
Figure 4.14 and 4.18 we see that Kp? indeed shows a better fit, with an improvement of
⇠ 0.23 mmag in the rms. Despite of this, there still does not seem to be any values of k
which is prefered by the Kp? since the rms values does not show any sign of a minimum.
Further comparison with between Kpl and Kp? in Figure 4.19, but also the results for
each CCD in Figure 4.17, show that the estimate of the orbital inclination decreases as
the overall amount of third light in the light curves decrease.

The main goal of this preliminary light curve analysis was to see if we could find a
preferred value of k which we could constrain the light curve fit with. Even by omitting
the quarters observed with CCD 3 in Kp? there still does not seem to be any preferable
value for k in the light curve model. The light curve analysis from V shows a clearly
prefered value of k ⇠ 0.63 which also is consistent with the flat interval in Kp?. We do
not feel comfortable enough to choose a value of k based solely of the results of V which
only consists of two primary and secondary eclipses. Instead we use a di↵erent approach
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Figure 4.18 – Preliminary light curves solutions for the Kp? light curve. The result is the same
as in Figure 4.14 for the Kpl light curve which also showed a flat bottom for the rms values of a
di↵erent range of k.

Figure 4.19 – The results for the preliminary light curve analysis of the four di↵erent CCDs.

which we will discuss in Section 4.7.
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4.6 Analysing the magnetic activity of V80

V80 shows signs of magnetic activity in the form of brighness variations in V , R and Kp.
We will in this section analyse the Kepler long cadence light curve and present evidence
for di↵erent signatures which are assosiated with magnetic activity.

4.6.1 Stellar magnetic fields and starspots

A stellar magnetic field is generated by the motion of conductive plasma inside of the
star. According to dynamo models, the motion is created by convection where the
conductive plasma acts like a dynamo which generates a dipolar field. Fast rotation and
di↵erential rotation together with deep convective zones in the upper layers of a star will
increase its magnetic activity. Localized magnetic fields can exert a force on a region of
plasma which will cause it to rise relative to the surounding plasma until it reaches the
stellar surface. This will create a starspot which will be cooler than the stellar surface
which will cause a decrease of flux in this region. If the ditribution of starspots on a
star is not uniform, the star will display brightness variations as it rotates about its own
axis. Two magnetic active binary components have shown light curve variations with
an amplitude as high as 0.6 mag in the V band. Large variations in color in these two
systems have suggested the presence of coool spotted areas, which cover up to 20% of
the entire stellar surface or about 40% of the stellar disk8. The temperature di↵erence
between starspots and stellar surfaces decreases from about 2000 K in G0 stars to 200
K in M4 stars9.

4.6.2 Preparing the Kepler long cadence light curve

To verify that these brightness variations are in fact due to starspots we will analyse the
Kepler long cadence light curve. In the investigation of starspots we had the assistance
of Heidi Korhonen from the Niels Borh Institute who could help us verify the pressence
of starspots. Before Heidi Korhonen could analyse the light curve, we first had to divide
the light curve into light curves for the primary and secondary components, respectively.
The light curve variation caused by the main starspot period must be coming from one
of the two components. By dividing the light curve up into two di↵erent light curves for
the primary and secondary components we are able to see how much each of the stars
have to vary in brightness, in order to produce what we observe in the light curve of V80.
In order to divide the light curve up into two light curves, several steps are needed. The
first step is to removed the amount of third light in the light curve. From Section 4.5
we found di↵erent estimates of the amount of third light for di↵erent quarters as seen in
Figure 4.17. For each of the four CCDs, we run a light curve solution for a fixed value
of k found from the best estimate in the V light curve of k ⇠ 0.63. We then use the
estimated third light and light ratio L = Ls/Lp found in these solutions to create the two
light curves for the primary and secondary star where a section of them can be seen in

8Berdyugina (2005), page 8.
9Berdyugina (2005), page 26.
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Figure 4.20. By looking at Figure 4.20 we can see that if the secondary is responsible for
brightness variation in the light curve of V80, it has to have magnitude variations of ⇠ 1
mag, whereas the primary component only has to have magnitude variations of ⇠ 0.2
mag. A variation of magnitude of ⇠ 1 mag is very high for starspots and considering
that the highest amplitude variations which has been observed is ⇠ 0.63, it seems like
the starspots are indeed located on the primary component.

Figure 4.20 – The Kepler long cadence light curve where the primary and secondary eclipses
and the third light has been removed. The light ratio L = L

2

/L
1

from the preliminary light curve
analysis has been used to make a light curves for the primary and secondary components of V80. If
the magnetic activity in the form of starspots is coming from the secondary component it requires
variations of ⇠ 1 mag in order to produce the brighness variations seen in V80 which seems highly
unlikely.

4.6.3 Confirmation of starspots

By analysing the full light curve Heidi Korhonen confirmed our suspicion, that the
brightness variations in the light curve is indeed caused by starspots. The patterns seen
in the full light curve with changing aplitude is typical for magnetic activity and the
amplitude change in the primary light curve of ⇠ 0.1 � 0.3 mag is normal for large
starspots on magnetically active stars. Heidi Korhonen also pointed out that it is highly
likely if not almost certaint that the starspots are located on the primary component.
Heidi Korhonen pointed out that due to its deep convective zones in its upper layers, the
secondary component could easily be magnetically active and have starspots, however
they would be hidden in the variations of the primary. The magnitude variations of the

56



Master’s thesis 19 September 2014 Astrophysics

primary can be seen in Figure 4.21 where we can see how the magnitude variations are
quite di↵erent as time goes by which is common for starspots.

Figure 4.21 – Here the magnitude variations over the whole kepler light curve can be seen. The
magnitude scale is abitrary and does not matter, since it is the variations that are investigated.
Credit: Heidi Korhonen.

Heidi Korhonen continued her analysis of the light curve with a period search with a
Lomb Normalised periodogram. The periodogram showed that there is basically only
one region in the periodgram that has a signal. This signal is around 4.7 days with
a couple of distinct peaks around the main period of 4.74 days. This is a common
indication that the star is rotating di↵erentially. If the starspots are spread out on the
stellar surface at di↵erent latitudes, the di↵erential rotation of the star will change the
starspot period and thereby cause what is seen in the periodogram. The periodogram
can be seen in Figure 4.22 which is the same result we got in Section 4.1 where we found
the main starspot period of 4.738± 0.008 days.

A more detailed investigation of the light curve was also carried out. Here the rotational
phase was calculated using the main starspot period of 4.738 ± 0.008 days. 25 plots
were constructed, each consisting of ⇠ 40 days of data, corresponding to ⇠ 8.5 stellar
rotations. These plots can be seen in Figure 4.23 where the title of the plots are given
in JD minus 2455000. All 25 plots show clear starspot evolution, often within the
⇠ 8.5 stellar rotation period. The light curve shape indicates that there are several
starspots on the surface. Heidi Korhonen has thereby helped us confirm that the light
curve variations are indeed caused by magnetic activity in the form of starspots which
is most likely located on the primary component. Even so, the secondary could also be
magnetically active with starspots, however this would be lost in the varations of the
primary.
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Figure 4.22 – The period search for the primary light curve where only one region has a signal.
This is around the main period of 4.74 which we also found in Figure 4.3. The di↵erent periods
are a common indication that the star is di↵erentially rotating. Credit: Heidi Korhonen.

58



Master’s thesis 19 September 2014 Astrophysics

Figure 4.23 – The magnitude scale is abitrary since it is only the variations we are looking for.
The title of each plot are given in JD - 2455000. Each plot show starspot evolution even within
the ⇠ 8.5 stellar rotation period. The light curve shape indicate that there are several starspots
on the surface which are causing the observed light curve variations. Credit: Heidi Korhonen.
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4.6.4 Observation of a superflare

Superflares are caused by the sudden release of magnetic energy stores near starspots
where they release high amounts of energy on a times scale of hours. Maehara et al.
(2012) have reported observations of 365 superflares for about 83 000 stars observed over
120 days from data obtained from the Kepler Space Telescope. The 365 superflares with
energy of > 1033 erg were found on 148 solar-type stars. It is suggested that superflares
occur more frequently on rapidly rotating stars. Their amplitude are generally of the
order of 0.1 � 1% of the stellar luminosity, however Maehara et al. (2012) also finds
some superflares which have amplitudes of 8.4% of the stellar luminosity. We have

Figure 4.24 – The Kepler long cadence light curve where the primary and secondary eclipses
and the third light has been removed. The light ratio L = L

2

/L
1

from the preliminary light
curve analysis has been used to make a light curves for the primary (left) and secondary (right)
components of V80. The luminosity of the superflare is ⇠ 10% and ⇠ 40% of that of the primary
and secondary, respectively.

identified a sign of a superflare in the Kepler light curve of V80. We use the two light
curves which was used in Figure 4.20 to investigate the origin of the starspots. These
two light curves showing the superflare can be seen in Figure 4.24. The luminosity of
the superflare is ⇠ 10% and ⇠ 40% of that of the primary and secondary, respectively.
Given our observations just as for the starspot origin it seems like the superflare is
coming from the primary component, as a luminosity of ⇠ 40 of the secondary seems
highly unlikely. We compare the shape of the observed superfare in the light curve of
the primary component to light curves of typical superflares from Maehara et al. (2012)
which can be seen Figure 4.25. As can be seen, the signature of the light curve of V80
agrees well with that from Maehara et al. (2012) which comfirms that the superflare
indeed seems to be originating from the primary component and has a duration of ⇠ 2.4
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hours.

Figure 4.25 – Left : The light curve of the primary component where we have zoomed in on the
superflare. Right : Typical light curves of superflares from Maehara et al. (2012).

4.6.5 Line emission

Emission of H↵ balmer lines is a strong indicator of high magnetic activity. Birkby et al.
(2012) have reported H↵ emission in 3 out of 16 detached M-dwarf eclipsing binaries
and argueed that it was likely that it was caused by high magnetic activity in these
systems. Other lines such as Ca II K (3968.5 Å) and Ca II H (3933.7 Å) can also be
an indication of strong magnetic activity. By using periodic measurement of variations
of the line emissions of Ca II K and Ca II H di↵erential rotation together with rotation
period can be determined10. V80 does not show any emission in H↵ for the primary
component and unfortunately we have no observation of Ca II K or H line emission since
the spectra from Brogaard et al. (2011) did not cover this wavelength range.

10Korhonen and Elstner (2011), page 120
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4.6.6 X-ray emission and stellar rotation period

X-ray emission from magnetically active stars arises from hot gas in the corona which
is the outermost part of the stellar atmosphere. Emperical observations suggest from
papers such as Pizzolato et al. (2003) that there exists relations between X-ray luminosity
and stellar rotation period. Van den Berg et al. (2013) have performed an X-ray study
of NGC 6791 with the aim of uncovering the poplation of close interactive binaries with
X-ray luminosities down to L

X

⇠ 1·1030 erg s�1 (0.3 - 7 KeV). In their research they also
observed V80 which showed emission of X-rays. The unabsorbed X-ray luminosity of
V80 was found to be L

X,u = 2.2·1030 erg s�1 or compared to the V band, log(F
X

/FV )u =
�2.5 ± 0.2. Since there exists a relation between X-ray luminosity and stellar rotation
period we can compare the main starspot period of 4.738 ± 0.008 days and the X-ray
luminosity of V80 with the empirical laws found in Pizzolato et al. (2003) for the mass
ranges of the components of V80. These empirical laws can be seen in Figure 4.26. The
masses of the primary and secondary components was found in Brogaard et al. (2011) to
be 1.0588±0.0091R� and 0.8003±0.0062R�, respectively. The horizontal line represents

Figure 4.26 – Left : The relation between X-ray luminosity and stellar rotation period for the
primary component of V80. Right : X-ray luminosity and stellar rotation period relation for the
secondary component of V80. Squares represent cluster members, crosses represents field stars and
left hand arrows indicate field dwarfs with periods derived from v sin(i) data. Credit: Pizzolato
et al. (2003)

the level where the X-ray luminosity becomes saturated. The age of V80 is 8.3 ± 0.3
Gyr and we would therefore expect the rotation period of the primary and secondary to
be synchronized with a period around the main starspot period of 4.738 ± 0.008 days.
By looking at Figure 4.26 we can see that X-ray luminosity of V80 is much higher than
was is expected for the empirical law of the secondary component. It is however also
higher for the empirical law of the primary component. Even if both components were
magnetically active and followed the X-ray luminosity and period relation they would
still be around a factor of 10 too low compared to the observed X-ray luminosity of
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L
X,u = 2.2 · 1030 erg s�1 in Van den Berg et al. (2013) which could indicate that both

components of V80 are highly magnetically active.

4.7 Light curve analysis of Kp?

The results of our preliminary light curve analysis showed that Kp? was not good enough
to constrain a value of k due to the amount of third light in the light curve. In order to
be able to get further knowledge about V80 through the investigation of the Kp? light
curve we use the light ratio constrain in JKTEBOP and the mass-radius relation from
the isochrone of the best age estimate of NGC 6791 found in Brogaard et al. (2012).

4.7.1 Light ratio in Kp?

In Southworth et al. (2007) a new feature was incorporated in JKTEBOP where an
externally determined light ratio could be applied in the light curve analysis. Since
the light ratio in detached eclipsing binaries is highly correlated with k an observed
spectroscopic light ratio can be used to constrain k. In Table 3.1 the light ratio was
given to be L = Ls/Lp = 0.15 ± 0.05 in V which can be used in our Kp? light curve
analysis, by rescaling the light ratio to the Kp band. In order to do so, we assumed that
each of the stars were perfect black bodies and used Planck’s law of black body radiation
to calculate the flux of each star. We then used the V response function found at the
NOT home page11 and the Kp response function from the Kepler home page12.

Figure 4.27 – A visualization of the Kepler and V band response functions used in the determi-
nation of the light ratio in the Kepler band.

11http://www.not.iac.es/instruments/filters/filters.php
12http://keplerscience.arc.nasa.gov/kepler response hires1.txt.
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The two response functions can be seen in Figure 4.27, showing how wide a wavelength
range the kepler bandpass actually spans. When performing this transformation from
V to Kp we do not take into account the e↵ects of limb and gravity darkening since
these e↵ects are minor and will generally not change over such a short wavelength shift.
Furthermore the uncertainty from the light ratio of the V band will be dominant which
means that these minor e↵ects can be ignored. We find the light ratio of the Kepler
band to be L = Ls/Lp = 0.267± 0.102.

4.7.2 Implementing the isochrone of NGC 6791

In order to get more insights on the light curve solution from the Kp? light curve we
want to employ the best matching isochrone of NGC 6791 found in Brogaard et al.
(2012). Before we use the isochrone we will give a short describtion of what was done
in Brogaard et al. (2012) in order to obtain this isochrone.

4.7.2.1 Brogaard et al. (2012)

Brogaard et al. (2011) investigated the binary systems V18, V20 and V80, where ac-
curate masses and radii were determined for the components of V18 and V20. By
using Mass-Radius diagrams (MR), Mass-T

e↵

diagrams (MT) and cluster member Color-
Magnitude-Diagrams (CMD) Brogaard et al. (2011) performed stellar model comparison
in order to constrain the age and helium content of the open cluster NGC 6791. Bro-
gaard et al. (2012) is an extension of this investigation where conclusions of NGC 6791
are made by making detailed studies of stellar models and abundance pattern of these
models. One of the best matching isochrones from Brogaard et al. (2012) which we will
use in our light curve analysis was a an isochrone with an age of 8.3 Gyr, [Fe/H] = 0.35,
Y = 0.30 and E(B-V ) = 0.14 where a solar abundance pattern was used.

4.7.3 Using the isochrone from NGC 6791 as a constaint

By using the constraints from the light ratio and isochrone of NGC 6791 we perform
light curve analysis using the JKTEBOP code. We performed two JKTEBOP runs of the
Kp? light curve. By assuming that one of the components will match the mass-radius
relation from the isochrone we lock rp,s and include this as a fixed parameter in the
JKTEBOP solutions. In order to find the values of rp,s we use the results of the masses
of the components from Brogaard et al. (2011). Even though Brogaard et al. (2011)
were not able to constrain the uncertainty of the orbital inclination to more than ±1�,
the masses of the components are still very precise with uncertainties for the primary
and secondary of 0.85% and 0.77%, respectively. We can therefore be very certain of
where on the isochrone in the Mass-Radius diagram the two components should lie on
the mass axis.

In Section 4.6 we found evidence which suggest that the magnetic activity is primarily
originating from the primary component. However, assuming that the X-ray luminosity
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and stellar rotation period relation is indeed correct, the high X-ray luminosity of V80
could indicate that the secondary could also be highly magnetically active. Nevertheless,
the primary component still seems to be much more active. The mass-radius relation we
have from Brogaard et al. (2012) assumes that the components of the binary are none
active which we know is definitely not true for the primary component. This means that
by performing a light curve solution with a fixed rp we constrain the primary compo-
nent to not be magnetically active. Papers such as Birkby et al. (2012), Clausen et al.
(2008), Clausen et al. (2009), Clausen et al. (2010) and Vos et al. (2012) have reported
discrepancies between observatoions and stellar models for magnetically active binary
components with a range of masses below 1.1M�. They show that stellar models predict
⇠ 10% smaller radii and ⇠ 5% higher temperatures than what is observed. We would
therefore not expect our light curve solution with rp fixed to give a realistic estimate of
the photometric elements from V80 since the primary component is highly mangetically
active. By fixing rs in the light curve solution we expect a much more realistic estimate
of the photometric elements of V80 since this would allow the radius of the primary
component to show an increased radius which we would expect since this is one of the
expected discrepancies of highly magnetically active stars. There is however also a pos-
siblity that the secondary could be magnetically acitve. We will therefore also include
a photometric light curves solution where we have increased rs with 10% which is the
highest discrepancy we would expected for the secondary radius if it is also magnetically
active.

For the two JKTEBOP solutions with rp and rs fixed, we applied 10 000 Monte Carlo
simulations, whereas we applied 1 000 Monte Carlo simulations for rs+10%. JKTEBOP
assumes gaussian uncertainties and because of this, the large unceratinty in the light
ratio Ls/Lp might not be su�ciently covered in the photomteric analysis. In order to be
certain that it does not a↵ect the photometric results we run the light curve solutions
for di↵erent ranges of Ls/Lp within the range of the uncertainties for the Kp light ratio.
We find no significant di↵erences in the photomtric results and we therefore trust the
photometric solutions when we use the light ratio contraint of Ls/Lp = 0.267 ± 0.102.
In order to run the Monte Carlo task in JKTEBOP we adopt rms values for each data
point from the preliminary light curve solutions in Figure 4.18 of 3 mmag. The results
of the three JKTEBOP solutions can be seen in Table 4.3, where l

3

is the amount of
third light defined by l

3

= L
3

/(L
1

+ L
2

+ L
3

).

As we can see in Table 4.3 each of the photometric solutions show an equally good
light curve fit, despite the di↵erence in the input parameters. This is expected since we
showed in Section 4.5 that the light curve solutions did not show a rms minimum for the
di↵erent ranges of k values. The three models can be seen in Figure 4.28 where there is
no visible di↵erence between the three di↵erent synthetic light curves.
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Parameter rp (fixed) rs (fixed) rs + 10% (fixed)

Constraints
Ls/Lp [Kp] 0.267± 0.102 0.267± 0.102 0.267± 0.102
i[�] 84.31± 0.40 84.82± 0.48 84.62± 0.47
rp 0.0863 0.0939± 0.0045 0.0910± 0.0046
rs 0.0655± 0.0042 0.0511 0.05621
l
3

0.60± 0.04 0.58± 0.08 0.59± 0.07
Monte Carlo, N 10 000 10 000 1 000
Reduced �2 1.319± 0.024 1.320± 0.025 1.320± 0.025

Table 4.3 – Photometric solutions from the JKTEBOP code where rp, rs and rs + 10% were
adopted from the mass-radius relation of the ischrone of NGC 6791.

Figure 4.28 – The three di↵erent light curve solutions from JKTEBOP where phase 0 and 0.5
represents the primary and secondary eclipse, respectively. There are no visible di↵erence between
the three models.
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5. Results and discussion

In this part of the thesis we will go through and discuss the di↵erent results obtained
through the photometric analysis of the Kepler light curve. We will address the issues
related to the estimates of stellar parameters of magnetically active binary systems where
stellar models have been used to predict stellar parameters by decreasing the mixing-
length-parameter of the magnetically active components.

5.1 Absolute dimensions

By using the photometric solutions from the JKTEBOP code and the spectroscopic
orbital solution from Brogaard et al. (2011) we can calculate absolute dimensions for
the components of V80. By comparing these results in the MR diagram together with
the mass-radius relation from the isochrone of NGC 6791 we can deduce which of the
photometric solutions are most probable. The absolute dimensions from the di↵erent
photometric solutions can be seen in Table 5.1.

rp (fixed) rs (fixed) rs + 10% (fixed)

Absolute dimensions:
Mp/M� 1.0566± 0.0074 1.0539± 0.0075 1.0549± 0.0075
Ms/M� 0.7987± 0.0048 0.7967± 0.0048 0.7974± 0.0049
Rp/R� 1.2839 1.396± 0.067 1.354± 0.067
Rs/R� 0.958± 0.063 0.7595 0.8358

rp (fixed) rs (fixed) rs + 10% (fixed)
Secondary Primary Primary

log(g) [cgs] 4.377± 0.131 4.171± 0.096 4.197± 0.099
v
sync

[km s�1] 9.93± 0.43 14.47± 0.69 14.03± 0.69
v
rot

[km s�1] (...) 14.1± 2.0 14.1± 2.0

Table 5.1 – Absolute dimensions obtained from our photometric solutions and the spectroscopic
orbital solution from Brogaard et al. (2011). log(g) is calculated using the mass and radius. v

rot

is obtained from Brogaard et al. (2011).

A comparision between the known mass-radius relation from the isochrone and the di↵er-
ent results from the Kepler light curve analysis can be seen in Figure 5.1. The mass-T

e↵
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relation from the isochrone is also included together with the observed e↵ective temper-
atures of the primary and secondary components. The MT diagram is included since we
would expect to see a temperature discrepancy which is due to the magnetic activity of
V80.

The light curve solution for fixed rp gives an estimate of the radius of the secondary
which is 26% higher than what the isochrone predicts. Even though the secondary could
be highly magnetically active it would be unlikely that it would show such a high dis-
crepancy in radius, especially when the magnetic activity in V80 seems to be originating
from the primary component which we showed evidence for in Section 4.6. We would
expect the primary to be the one which shows discrepancies and by fixing rp in the light
curve solution it is assumed that the primary component acts as a star with no mag-
netical activity, even though we have confirmation of it being highly magnetical active.
By comparing the results from the magnetic analysis and the photometric solutions for
fixed rp it seems very unlikely that the photometric solution for rp fixed gives a reliable
view of the real photometric elements of the components of V80.

It is much more interesting to compare the two results from the photometric solution
where we fixed rs and rs + 10% which can be seen in the top and bottom right in Fig-
ure 5.1. If we look in Table 5.1 the two results are quite similar. However, when we
look at Figure 5.1 the small di↵erences between these solutions proves to become highly
relevant. The solution where rs is fixed on the isochrone shows a value 10.5% greater
than what the isochrone predicts for the primary and does not match the isochrone
to within 1�. Meanwhile the photometric solution for fixed rs + 10% does match the
isochrone just within 1�. The solution for fixed rs + 10% does still however show a ra-
dius 6.8% higher than the mass-radius relation of the isochrone. This is what we would
expect according to the known desrepancies observed between observations of radius
and stellar models, if the primary component is indeed magnetically active which our
observation do suggest. If we believe that the radius of the secondary component is in
the range rs < Rs < rs + 10%, then the radius of the primary must lie in the range of
1.396 ± 0.067 < Rp < 1.354 ± 0.067, and thus supporting the theory that the magnetic
activety is causing the radius of the primary to be 6.8% - 10.5% larger than what stellar
models predict.

Several papers such as, Clausen et al. (2009), Birkby et al. (2012) and Morales et al.
(2010) have shown that stellar models predict ⇠ 3� 5% higher temperatures than what
is observed for magnetic active stars. Most of these discrepancies occur at masses in
the range of 0.2� 0.8M�, however some stars with masses of ⇠ 1.1M� have also shown
dicrepancies in temperature such as the primary component in the binary system V636
Centauri in Clausen et al. (2009). Here the 0.8M� secondary is moderately magnet-
ically active with starspots and Ca II H and K emission, where the 1.05M� primary
shows signs of magnetic activy as well, but at a much lower level. For the estimated age
of the primary, the secondary component is 10% larger than model predictions. Both
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Figure 5.1 – MR diagrams constructed from the photometric JKTEBOP solutions combined with
the spectroscopic orbital solution from Brogaard et al. (2011). Top left : fixed rp. Top right : Fixed
rs. Bottom left : Mass-Temperature digram of the primary and secondary components, bottom

right : fixed rs + 10%. The uncertainties are represented by 1�.
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the primary and secondary show temperatures which are ⇠ 200 K and ⇠ 400 K cooler
than predicted by stellar models, respectively. To investigate if this is also true for the
components of V80, we compare the ischrone of NGC 6791 with the observed e↵ective
temperature of the primary from Brogaard et al. (2011) and the e↵ective temperature
of the secondary calculated in Section 4.4. This can be seen in the mass-temperature
diagram in the bottom left of Figure 5.1 where the isochrone predicts temperatures 39
K higher and 203 K lower than what is observed for the primary and secondary, respec-
tively. This corresponds to a temperature di↵erence of 0.7% for the primary and 4.3% for
the secondary. It does not look like the primary component share the same temperature
discrepancy which is observed for other magnetically active stars which are in the same
mass range. The secondary component of V80 which could also be magnetically active
does also not show any sign of discrepancy in temperature. The secondary component
is in fact hotter and not cooler, however it still matches the isochrone to within 1�. The
high uncertainty of the secondary component makes it hard to conclude anything from
its possible observed discrepancy in temperature.

5.2 Radius estimation of the primary component

With confirmation that the light curve variations are caused by starspots which are
highly likely to be located on the primary component of V80 we want to use the main
starspot period to calculate its radius. From Brogaard et al. (2011) we have the projected
rotational velocity of the primary component, v

sin(i) = 14.00 ± 2.00 km s�1. If we
assume that the main starspot period represents the starspots on the equator of the
primary component we can calculate the radius of the primary component which is
nearly independent of the light curve analysis. The dependence comes from the orbital
inclination, however i shows a very small dependence of which light curve solution we
pick as can be seen in Table 4.3.

V80
Time scales:
t
sync

[Myr] 7.6860± 0.0005
t
circ

[Gyr] 1.2348± 0.0009

Table 5.2 – The synchronisation and circularisation time scales for V80 calculated by using Eq.
2.47 and 2.48.

All i values are consistent with each other to within 1� and also with the value found
in Brogaard et al. (2011) of i = 84 ± 1�. We find the radius of the primary component
by using the relation in Eq. 5.1.

v
rot

= v sin(i) =
2⇡R

P
(5.1)
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Figure 5.2 – left : radius of primary obtained using the main starspot period,left :radius of primary
component assuming synchronisation rotation, using the orbital period. The rotational velocity
used for both radius estimates are from the spectral analysis of the primary component in Brogaard
et al. (2011).

When estimating the radius we assume that the starspots which is causing the primary
signal in the light curve is located on the equator of the primary. Unfortunately we can-
not be certain that this is the case, so the radius inferred from the main starspot period
is in fact a minimum radius estimate of the primary component. The synchronisation
and circularisation time scales for V80 can be seen in Table 5.2 where synchronisation
is estimated to occur after 7.6860 ± 0.0005 Myr. Since NGC 6791 is estimated to be
8.3 ± 0.3 Gyr old, the components of V80 should be synchronised by now and thus if
this is in fact true, the orbital period is equal to the rotation period of both the primary
and secondary components. The periods and radii calculated using Eq. 5.1 can be seen
in Table 5.3. The results of using di↵erent values of i for the photometric solutions
does not have an e↵ect in the calculated radius for the primary since the dominating
uncertainty comes from the observed v sin(i). The observation of v sin(i) assumes solid
body rotation and is not the observation of the equtorial velocity, however the high un-
certainty seems to compensate for this assumption. The two estimates of the radius of
the primary using the main starspot and orbital period can be seen in Figure 5.2 where
they are compared to the mass-radius relation of the isochrone in the MR diagram. The
estimate from the main starspot period and orbital period are seen to the left and right,
respectively. The radii are 3.8% and 7.0% higher than what the isochrone of NGC 6791
predicts for the main starspot period and orbital period, respectively. If we compare
the results in Figure 5.2 we can see that by applying the orbital period for the radius
estimate does in fact increase the radius of the primary to an extent which levels the
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Starspot Orbital
Parameter:
Period [days] 4.738± 0.008 4.88589± 0.00001
Rp/R� 1.32± 0.19 1.36± 0.19

Table 5.3 – Estimation of the radius of the primary component based on the main starspot period
and the orbital period. The rotational velocity used for both radius estimates are from the spectral
analysis of the primary component in Brogaard et al. (2011).

radius to that obtained in the photometric solutions were rs was fixed. Even though the
uncertainties in Figure 5.2 are high for the radius obtained for the main starspot period,
it does however confirm that the starspots responsible for the light curve variations is
indeed coming from the primary component.

By looking at Figure 4.22 which shows the periodic signals in the light curve, we can see
that there are no significant signals above the orbital period of 4.88589± 0.00001 days.
If the primary is indeed synchronized which the time scale suggests, then the starspots
cannot be located at the equator, but must be located at higher latitudes. The fact
that the starspots do not seem to be located on the equator of the primary component
implies that the primary component does rotate slower at its equator than at higher
latitiudes which means that the primary component seems to be experiencing anti-solar
di↵erential rotation.

5.3 Magnetically active detached binaries

When estimating the radii of the components of V80 we are so fortunate that Brogaard
et al. (2012) have analysed the age and stellar parameter for NGC 6791 to very high
precision. This was done by using CMD of NGC 6791 and two detached binary systems
(V18 and V20) which did not show any signs of being magnetically active. Because of
this, the isochrone was very tightly constrained in regards to stellar parameters. This
means that we know what the radius-mass relation is expected to be if the components of
V80 were not magnetically acitve. We have therefore been able to compare our observa-
tions to this mass-radius relation and have thereby been able to measure and investigate
the known discrepancies which are associated with magnetic activity in a way which has
never been done before. If a magnetically active binary is a field star or if the cluster it
resides in has not yet been investigated, the stellar parameters cannot be know and the
mass-radius relation is therefore unknown. The fact that one or both of the components
are magnetically active makes the investigation of the correct stellar model very hard
if not impossible. Examples of where a stellar model has been determined even though
the binary is magnetically active are Clausen et al. (2009),Clausen et al. (2008) and Vos
et al. (2012). We will briefly go through each of these and in Section 5.3.4 address their
methods and conclude on them.
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5.3.1 Clausen et al. (2008)

In Clausen et al. (2008) the detached binary system EW Ori was investigated where the
secondary shows signs of magnetic activity where it reveals weak lines of Ca II H and
K emissions. The best age estimate is found at the age of 2.3 Gyr for the system. In
order to get this perfect agreement, a slight downwards adjustment of the mixing-length-
parameter was done for the secondary and a slightly lower amount of helium content
was adopted.

5.3.2 Clausen et al. (2009)

The procedure of Clausen et al. (2009) was mentioned earlier where both components
are magnetically active. In order to get the best stellar model to match the mixing-
length-parameter was lowered to 1.4 for the primary and 1.0 for the secondary to obtain
the best age estimate of 1.35 Gyr for the system. The observed [Fe/H] was estimated
to be �0.20 ± 0.08, however in the best fitting stellar model [Fe/H] was fixed without
taking its uncertainty into account.

5.3.3 Vos et al. (2012)

Vos et al. (2012) investigated the detached binary system EF Aquarii where the sec-
ondary shows signs of high magnetic activity in the form of starspots and strong Ca II
H and K emission lines. The primary component does also show signs of being mag-
netically active but at a much lower level. Like in Clausen et al. (2009) the observed
[Fe/H] = 0.00± 0.10 is fixed to the observed value and the best age estimate is found by
lowering the mixing-length-parameter to ↵

MLT

= 1.30 for the primary and ↵
MLT

= 1.05
for the secondary, giving both components the common age of 1.5± 0.6 Gyr.

5.3.4 Article discussion

As we can see from the Clausen et al. (2008), Clausen et al. (2010) and Vos et al. (2012)
a common way to correct for the descripacies between observation and stellar models
in binaries, is to decrease the mixing length parameter for the magnetically active com-
ponents. The justification for doing this, is that the magnetic activity is believed to
decrease the e↵ectiveness of the energy transport for convection and thereby cause the
star’s radius to increase and its surface temperature to cool. There is in principle noth-
ing wrong with decreasing ↵

MLT

in order to account for magnetic activity in a star if
the other parameters are well known. However, since parameters such as age, helium
abundance and [Fe/H] are not known to very high precission in the mentioned papers,
the uncertainties of age, helium abundance and [Fe/H] will be incorporated into ↵

MLT

.
In other words, it is assumed that the descripancies between observation and models can
be described solely by decreasing ↵

MLT

. This does not seem likely and doing so means
that the age of the stellar model isochrone is not necessarily a good estimator of the true
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age of the binary system.

In Clausen et al. (2008) where the secondary is the only component observed to be
magnetically active, the primary is fixed on a isochrone which best matches the pri-
mary component with a fixed observed [Fe/H], disregarding the uncertanties of [Fe/H].
↵
MLT

is then decreased for the secondary until it matches the isochrone of the primary
component. It seems like that there would be many isochrones which would match the
primary component within 1� and how is the best isochrone then selected? Using 1� as
a threshold when comparing models seems necessarily, at least for radius-temperature
and mass-temperature diagrams since there is a relative high uncertainty in tempera-
ture, but not for MR diagrams. Statistically the chance for one component matching the
isochrone to within 1� is ⇠ 68%. When decreasing ↵

MLT

for the secondary in order to
get the best match for both components the chance for both the primary and secondary
to agree to within 1� is ⇠ 46%. The situation gets even worse in Clausen et al. (2009)
and Vos et al. (2012) where both components are magnetic active and ↵

MLT

needs to be
decreased to di↵erent values for the primary and secondary.

Obtaining the right age estimates of magnetically active detached binaries seems to
be very dependent on the chosen values of the mixing-length-parameter ↵

MLT

which is
used to match the binary components to the same isochrone. In order to match the
components correctly, the stellar parameters need to be known to very high precission
like in the case of NGC 6791.

5.4 Anti-solar di↵erential rotation

There does not exist any observations of stars where anti-solar di↵erential rotation has
firmly been confirmed even though some papers claim to have indications which suggest
the observation of this. In this section we want to address some of the papers which
have claimed to have detected stars which experience anti-solar di↵erential rotating.

5.4.1 Reports of stars indicating anti-solar di↵erential rotation

There are several papers which claim to have observed anti-solar di↵erential rotation
such as Strassmeier et al. (2003), Weber et al. (2005), Kőovári et al. (2007), Weber
(2007), Hackman et al. (2001) and Vogt et al. (1999) where Doppler imaging has been
applied. Doppler imagning can be used to map starspots on rapidly rotating late-type
stars by studying the line profiles of high resolution spectra. Starspots on the surface
of a rapidly rotating star will cause distortions in the observed spectral line profiles
indicated by ”bumps”. As the star rotates these bumps will move across the absorption
line profiles and by tracing these distortions a surface map of the star can be made.
Including photometric measurements of the light curve of the star can constrain the
temperature range of model atmospheres and thereby be used to calculate a surface
temperature distribution of the star. In order to trace di↵erential rotation, two surface
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images are indeed which should be separated by a time interval high enough so the
starspots would have had time to move on the stellar surface, but not so much that the
short-lived starspots disappear. By cross-correlating constant latitude slices of the two
images and then calculating the shift as a function of the latitude can give a description
of the di↵erential rotation. This has been done in all of the mentioned papers, except
for Hackman et al. (2001).

5.4.2 Strassmeier et al. (2003)

Of the papers where cross-correlation has been used, the best evidence of the observation
of anti-solar di↵erential rotation are presented in Strassmeier et al. (2003). Strassmeier
et al. (2003) investigated the rapidly rotating single K2 giant HD 31993 where Doppler
images from two consecutive stellar rotations was used. The cross-correlation function
in Strassmeier et al. (2003) from the two independent consecutive Doppler images can
be seen in Figure 5.3 where the dots represents the cross-correlation peaks in each lat-
itude strip. The grey scale represents the correlation coe�cient where black is perfect
correlation and white is no correlation. The vertical line is the rotational period of 25.3
days.

Figure 5.3 – The cross-correlation function from Strassmeier et al. (2003) for two consecutive
Doppler images. The grey scale represents the correlation coe�cient where black is perfect corre-
lation and white is no correlation. The vertical line represents the rotational period of 25.3 days.
Credit: Strassmeier et al. (2003).

These cross-correlation peaks were fitted with a quadratic anti-solar di↵erential rotation
law of the form

(b) = ⌦
eq

+ ⌦
1

sin(b)2 (5.2)
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where ⌦eq is the angular velocity of the stellar equator, b is the surface latitude and ⌦
1

is
the di↵erence between the angular velocity of the equator and the pole, ⌦

1

= ⌦
eq

�⌦
pole

.
Strassmeier et al. (2003) find the constants to be ⌦

0

= 13.87±0.22 and ⌦
1

= 1.73±0.67
based on the latitude range �30� to +75�, in steps of 5�.

Even though Strassmeier et al. (2003) presents some of the best evidence for the obser-
vation of anti-solar di↵erential rotation, Doppler imaging maps should always be studied
critically since the method su↵ers from di�culties in modeling spectral lines in late-type
stars, as well as from uncertainties in stellar and spectral parameters. As mentioned in
Hackman et al. (2001), temperature maps obtained with some Doppler methods most
often show very large cool starspots covering the poles, whereas other methods rarely
show polar starspots. From instances where the same observations have been used, it
is evident that the results depend on the methods or the selected stellar and spectral
parameters used. A crusial point of Doppler imaging is how the line profiles for a given
temperature distribuion are calculated. Artifacts can be introduced if there are errors
in the calculated line profiles which will a↵ect the surface map of the star. A wrong
v sin(i) will manifest itself as a cool or hot belt in the image. Furthermore a wrong
estimate of the inclination will cause a latitudinal displacement together with a slight
distortion of the starspots. The e↵ect of di↵erential rotation is very sensitive to the
inclination and thus a decrease of the inclination will increase the e↵ect of di↵erential
rotation in the line profile1. In Strassmeier et al. (2003) the inclination of HD 31993
was determined by reducing the misfit of the line profiles as a function of the inclination
and by trial-and-error the inclination which gave the most homogeneous temperature
maps was adopted to be i = 65± 15�. It is not unlikely that the inclination adopted in
Strassmeier et al. (2003) might cause artifacts in the Doppler imaging which will a↵ect
the cross-correlation function in Figure 5.3. Nevertheless, what it particularly important
to note is that the observed starspots on HD 31993 is located at low latitdues in the
range 0 � 40� and no starspots are detected above a latitude of 60�. Even so, there is
still a strong signal in the cross-correlation function above the 60� latitude which might
indicate that there is something wrong in the Doppler images.

5.4.3 Hackman et al. (2001)

Another convincing report of anti-solar di↵erential rotation is Hackman et al. (2001) who
used a �2 landscape technique were Doppler imaging was used to construct a surface
temperature map of the FK Comae-type star HD 199178 (V1794 Cygni). Hackman
et al. (2001) derived temperature maps by using a modified code where di↵erent values
of rotational velocity, microturbulence, inclination and surface di↵erential rotation were
fitted to a model. The di↵erential rotation was implemented by adjusting the angular

1Strassmeier et al. (2003), page 173.
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rotational velocity at each latitude b using the following rotation law of the form

⌦(b) = ⌦eq (1� ↵
di↵

sin(b)2) (5.3)

where ↵
di↵

is the surface di↵erential rotation defined by ↵
di↵

= (⌦
eq

�⌦
pole

)/⌦
eq

. Bare
in mind that the definition of the parameter ↵

di↵

changes, depending on how it is used
in the corresponding article. The best model solution, i.e. the model which showed
the smallest deviation between the spectroscopic observations and the calculated line
profiles, was found to be ↵

di↵

= �0.17 implying anti-solar di↵erential rotation. The
best solution can be seen in Figure 5.4 where a large cool starspot is located at high
latitude and is 1200 � 1600 K cooler than the mean surface temperature. Photometric
data together with the line profiles which was used in the solution is also shown in Figure
5.4. For the model in Hackman et al. (2001) ↵

di↵

< 0 would cause a more flat bottomed
line profile which is also seen in the figure. However, these observed flat bottomed ab-
sorption lines are usually interpreted as evidence for a large cool starspot located at the
pole, which Hackman et al. (2001) also finds evidence of. Even though serveral other
configurations in the model were used such as solid body rotation and solar di↵erential
rotation the best solution found was still ↵

di↵

= �0.17.
Photometric periods P

phot

for the starspots on Hd 199178 have also been done which
supports the theory of di↵erential rotation of the star. By using the parameters de-
termined for the solution of ↵

di↵

= �0.17, Hackman et al. (2001) could calculate the
periods of the pole and of the equator where P

pole

was in fact larger than the smallest
measured periods from photometric observations, indicating a discrepancy in this so-
lution. Hackman et al. (2001) conclude that even though HD 199178 from the model
fits seems to be experincing anti-solar di↵erential rotation they do not find conclusive
evidence for this and note that there are still other possible explanations for the slightly
flat bottomed line profiles.
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Figure 5.4 – Surface temperature map of HD 199178 from Hackman et al. (2001) where a large
cool starspot is located at high latitude. A photometric light curve and the line profiles are also
included. Credit: Hackman et al. (2001).
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5.4.4 Comparison to the primary component of V80

Both Strassmeier et al. (2003) and Hackman et al. (2001) have used Doppler imaging in
order to investigate the surface rotation pattern. It is therefore hard to compare them
with the results from the primary component of V80 since we only have indications
of anti-solar di↵erential rotation through photometric observations and the assumption
that the primary should have synchronized rotation. The only comparison we can make
is with the photometric period discrepancy mentioned in Hackman et al. (2001) where
the estimated P

pole

from the model was larger than the smallest periods from photomet-
ric observations. All we can see is that there are no periods in the periodogram which
have a higher period than the orbital period. Then by assuming that the components
of V80 are synchronised, which the time scale for synchronisation suggest, it is hard to
come up with an explanation other than the fact that the primary component seems to
be experiencing anti-solar di↵erential rotation.

Observations of large starspots are currently the only way stellar surface rotation can
be measured and it is therefore crucial to investigate if the movement of the starspots
are indeed a good tracer of the stellar surface flow. Korhonen and Elstner (2011) have
investigated the surface di↵erential rotation by using snapshots of dynamo models to
perform cross-correlation. The obtained surface di↵erential rotations from the snap-
shots were then compared to the known internal rotation law in the dynamo models.
Korhonen and Elstner (2011) conclude that starspots caused by the large scale dynamo
field are not necessarily tracing the real surface di↵erential rotation which would be
the starspots at high latitude near the stellar pole. Starspots near the equator are in
much better agreement with the real surface di↵erential rotation. It therefore seems that
starspots caused by small scale localized magnetic fields are good tracers of the stellar
di↵erential rotation. One may therefore wonder whether the large starspots observed in
magnetically active stars could be caused by small scale magnetic fields and it is there-
fore still unclear if the true stellar surface rotation can be measured by observations of
large starspots.
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6. Summary and conclusions

In this thesis we have investigated the highly magnetically active detached eclipsing bi-
nary system V80 by using new photometric data from the Kepler Space Telescope along
with observations from Brogaard et al. (2011). By using the Kwee Van Woerden method
we determined the mid-eclipse times for the 189 primary and secondary eclipses from
the V , R, Kepler long and short cadence light curves. The orbital period determined
from the primary and secondary eclipses from the linear ephemerides was found to be
4.885889±0.000001 and 4.885871±0.000002 days, respectively. The uncertainties are of
the order 0.1 s and 0.2 s which means that e↵ects such as special and general relativity
begins to play a role in our measurements. Furthermore Mikulášek et al. (2013) showed
that the Kwee Van Woerden method tends to underestimate the uncertainties of the
corresponding mid-eclipse times. Because of this we adopted an uncertainty of 1 s and
found the period of V80 to be 4.88589 ± 0.00001 days. We constructed O-C diagrams
from the primary and secondary mid-eclipse times using the adopted ephemerides which
can be seen in Figure 4.9. We find no signs of a third body in the binary system which
could a↵ect our light curve analysis.

Before we removed the light curve variations caused by the magnetic activity in the
Kepler light curves we investigated how this should be done. As can be seen in Figure
4.13 there was no significant di↵erence between dividing or subtracting the continumm.
We chose to divide the light curves with the light curve continuum.

The e↵ective temperature of the secondary was not given in Brogaard et al. (2011)
and we therefore used a color-temperature-metallicity from Casagrande et al. (2010) in
Eq. 4.3. By using the color and [Fe/H] of the primary and secondary, together with the
e↵etive temperature of the primary measured in Brogaard et al. (2011) we estimated
the e↵ective temperature of the secondary component to be 4864 ± 254 K. By using
the JKTLD code together with the estimated e↵ective temperature of the secondary we
obtained the limb darkening coe�cients which was used in the JKTEBOP light curve
analysis. The microturbulence velocity listed for the primary component in Brogaard
et al. (2011) is 1.10 ± 0.10kms�1, however most limb darkening coe�cients in JKTLD
are only available for a microturbulence velocity of 2.0 km s�1. Because of this, we had
to adopt a microturbulence velocity of 2.0 km s�1 for both components. The quadratic
limb darkening law was available for all three bands and thus, for consistency we chose
to use this law. The limb darkening coe�cients are listed in Table 4.1.
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We performed preliminary light curve analysis of the R, V , Kepler long and short ca-
dence light curves and ran the JKTEBOP code for a range of fixed values of k. Only
the V light curve showed a minimum in rms for k ⇠ 0.63 whereas R and the Kepler
short cadence light curves showed very poor results. The Kepler long cadence light curve
showed a flat minimum in the range k = [0.60, 0.66]. Because of this we chose to inves-
tigate the Kepler long cadence light curve further by dividing each light curve quarter
up into the CCD which was used to measure the light from V80. As before, only no rms
minimum for k was found. The CCD which was used to measure quarter 7, 11 and 15
showed a high amount of third light in the light curve of ⇠ 80% and we therefore chose
to ommit these three quarters in our light curve analysis. By removing these quarters,
a much better agreement was made between the Kepler long cadence light curve and
the V light curve for the orbital inclination. Even though the V light curve showed a
minimum for k ⇠ 0.63 we did not use this in our analysis since the Kepler long cadence
light curve analysis could not reproduce the same result.

The preliminary light curve analysis showed that the Kepler light curve data is not
good enough to determine precise radii of the primary and secondary components since
a minimum in rms for k could not be found. The reason for this is a combination of
the high magnetic activity in V80 and the amount of third light in the Kepler light
curve. In order to get reliable results from the JKTEBOP light curve analysis for the
Kepler long cadence light curve we had to use some constraints. First we used the
light ratio constraint from Brogaard et al. (2011) of L = L

2

/L
1

= 0.15± 0.05 from the
V band and assumed that the primary and secondary components could be described
as perfect black bodies using Planck’s law of black body radiation. By using the Ke-
pler and V response functions we estimated the light ratio in the Kepler band to be
L = L

2

/L
1

= 0.267± 0.102 which was used as a constrain in the JKTEBOP light curve
solutions. The second constrain which we used was from the mass-radius relation from
one of the best isochrones estimated for NGC 6791 in Brogaard et al. (2012). By using
the masses of the primary and secondary, together with the spectrosopic results from
Brogaard et al. (2011) we could calculate the radii, rp,s which matched the isochrone
for the corresponding masses. By changing between fixing rp and rs in our JKTEBOP
solutions of V80 we got two di↵erent results for the components.

Magnetic activity in the components of binary systems are known to result in discrep-
ancies between observations and stellar models. Stellar models are known to predict
stellar radii and temperatures which are ⇠ 10% lower and ⇠ 5% higher than what is
observed, respectively. From our analysis of the magnetic activity we made observations
which indicates that the magnetic activity is originating from the primary component.
We could however not be certain that the secondary is not magnetically active as well
since its magnetic activity could be hidden in the magnetic activity of the primary
component. Because of this, we included a JKTEBOP solution where the radius of
the secondary was fixed with an increased radius of 10%. Each of the three JKTE-
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BOP solutions gave equally good fits to the light curve data and no visible di↵erence
in the three models could be seen. The MR diagram however revealed that the best
results were for fixed rs and rs + 10%. We therefore believe that the configuration of
the radii of the primary and secondary components are likely to lie in the range of
1.396 ± 0.067R� < Rp < 1.354 ± 0.067R� and 0.7595R� < Rs < 0.8358R�. For the
primary component this corresponds to descrepancies in radius that is 6.8% � 10.5%
larger than what stellar models predict.

The e↵ective temperatures of the components compared to the isochrone in the MT di-
agram did not show any discrepancies in Figure 5.1. Compared to the MT relation, the
primary is 0.7% cooler and the secondary is 4.3% hotter. It does therefore not look like
the primary component share the same temperature discrepancy which is observed for
other magnetically active stars. The temperature of the secondary is in fact 4.3% hotter
than what the stellar model predicts, however due to the high uncertainty in tempera-
ture we cannot conclude anything from its possible observed discrepancy in temperature.

By using a period search using the Phase Dispersion Minimuzation technique we found
a dominant starspot period of 4.738± 0.008 days. The time scale for synchronisation is
7.6860± 0.0005 Myr and the age of V80 is 8.3± 0.3 Gyr. Synchronisation should there-
fore have occurred a long time ago and the rotational period of the primary component
should therefore be equal to the orbital period of V80. By using the measured rotational
velocity of the primary in Brogaard et al. (2011) combined with the main starspot and
orbital periods we derived two estimates for the primary component using Eq. 5.1. This
resulted in a radius of the primary component of 1.32 ± 0.19R� and 1.36 ± 0.19R� for
the main starspot and orbital period, respectively. Both results agree with the light
curve solutions for fixed rs and rs+10%. Even though the uncertanties are high, it does
however indicate that the starspot pattern responsible for the light curve variation in
V80 is originating from the primary component.

V80 shows further precense of magnetic activity by being an X-ray source with L
X,u =

2.2 · 1030 erg s�1 and by having a superflare in the Kepler light curve. The empirical
relation between X-ray luminosity and stellar rotation period does not agree with the
luminosity observed for V80. Even by assuming that both components of V80 follow the
empirical relation, the X-ray luminosity of V80 is still a factor of 10 higher than what
is expected. This could suggest that both the primary and secondary components are
highly magnetically active. Superflares are known to have luminosities of 4� 10% of the
stellar luminosity from which they originate. If the observed superflare in the Kepler
light curve is considered to come from the secondary component, the luminosity of the
superflare would be 40% of the secondary, whereas it would be 10% of the luminosity
if it originated from the primary component. This further suggests that the magnetic
activity of V80 is indeed coming from the primary component.

In our analysis a period search was performed on the Kepler light curve which revealed
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several periods for the primary component which is a common indication that a star is
rotating di↵erentially. There are however no starspot periods at or above the orbital
period of V80. Assuming that synchronisation has occurred would suggest that the
primary rotates slower at the equator than at higher latitudes. It therefore seems as
though the primary component is experiencing anti-solar di↵erential rotation. In order
to further comfirm this, Doppler imagning could be used. Unfortunatly in order to use
Doppler imagning, the projected rotational velocities of the star needs to be more than
20 km s�1 which is not the case for the primary component which has a projected rota-
tional velocity of 14.00± 2.00 km s�1. Furthermore the spectra obtained from UVES in
Brogaard et al. (2011) had a signal-to-noise ratio of only 15, whereas Doppler imagning
requries a signal-to-noise ratio of atleast 10 times more. It therefore seems as though
it will be impossible to obtain observations which could confirm if the primary compo-
nent is indeed experiencing anti-solar di↵erential rotation. Stellar dynamo models could
however be used to see if the observations we have made in this thesis can be mimicked
by a star which is experiencing solar di↵erential rotation or if our observations can only
be reproduced if the star is experiencing anti-solar di↵erential rotation.

We discussed how several papers such as Clausen et al. (2008), Clausen et al. (2009)
and Vos et al. (2012) lower the mixing-length-parameter of magnetically active com-
ponents in detached binaries in order to mimick the expected reduction in convective
e�cience due to starspots. It seems that such an approach is highly likely to cause flawed
estimates of the stellar parameters of these systems since parameters such as [Fe/H] and
Y are fixed without assuming the uncertanties of these parameters. By doing so, it is
also assumed that the observed discrepancies between observatoin and stellar models are
solely caused by the mixing-length-parameter. In order to investigate the contribution
of the mixing-length-parameter related to the observed discrepancies of magnetically
active binary components, MR and MT relations need to be compared to observations.
In order to do this the binary systems need to be in a cluster for which the stellar pa-
rameters have been constrained to a very high precision as in the case of NGC 6791.
Investigating the relation between several magnetically active binaries located in NGC
6791 could therefore provide knowledge of how the mixing-length-parameter relates to
the discrepancies in radii and temperature between observations and stellar models.
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