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Abstract

In this thesis we �rst introduce the concepts of the standard model and renormalization. We

then discuss e�ective �eld theories where we introduce the four-Fermi theory and the chiral

Lagrangian of pions as examples. We then discuss a simple method for deriving the e�ec-

tive action at tree-level from a ultraviolet theory. We also discuss how one might use e�ective

�eld theories to infer the nature of new heavy physics and how these shift the predictions of

low energy, or infrared, theories such as the standard model. Motivated by the discussion of

e�ective �eld theories and how they can provide tools for exploring new physics, we discuss

the standard model e�ective �eld theory (SMEFT).

Next we apply these concepts in order to derive the main result of this thesis, the Higgs de-

cay to two leptons and a photon H → ¯̀̀ γ at tree and one-loop level in the standard model

and the shifts to this from the SMEFT at tree-level. We discuss how this decay at tree-level

is chirally suppressed as m`/v due to the smallness of the leptonic Yukawa couplings and

how this presents an interesting phenomenological application of the SMEFT. We calculate

the matrix elements for the Higgs decays H → γγ and H → γZ. We then discuss the re-

maining one-loop contributions from the standard model and then calculate the full standard

model decay width at one-loop. We then move on to discuss the SMEFT contributions to the

Higgs decay to two leptons and a photon. We do this by assembling matrix elements of the

squares of tree-level SMEFT contributions as well as the SMEFT interference with the stan-

dard model tree and loop amplitudes. We then calculate the total decay width including the

SMEFT contributions and normalize this to the standard model decay width. We expand

this result in terms of the Wilson coe�cients from the SMEFT. We then produce Dalitz-

like plots showing the di�erent SMEFT contributions normalized to the standard model. We

use these plots in order to �nd cuts in the invariant mass of the di-lepton system suitable

for emphasizing speci�c SMEFT contributions. Finally, we study �ve regions in phase space

where we consider either weakly interacting new physics or an assumed new physics scale.

We use this to demonstrate that the contributions of di�erent operators within the SMEFT

can be emphasized when using these regions and the aforementioned assumptions about new

physics.
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1 Standard Model

In this section we will outline certain aspects of the standard model of particle physics. First

we discuss the underlying Lagrangian formalism which is used when working with relativistic

particles, where quantum �eld theory is needed. We then discuss the Higgs mechanism and

spontaneous symmetry breaking. Using this we discuss the process of spontaneous symmetry

breaking in the context of electro-weak theory, responsible for massive vector bosons in the

standard model.

1.1 The Lagrangian formalism

This section derives the Euler-Lagrange equations based on Refs. [1] and [2].

In quantum �eld theory one is using quantum mechanics paired with special relativity. This

enables a quantum description of objects moving comparable to the speed of light where

Newtonian mechanics fail. In a theory, where special relativity is needed, the formulation

must be Lorentz invariant such that it is consistent across inertial systems. For these pur-

poses quantum �eld theory, based on the Lagrangian formalism, is commonly used. One

of the applications of the Lagrangian is the Euler-Lagrange equation which we now discuss

in the context of �eld theory. Consider a Lagrangian density as a function of a scalar �eld

φ(x) and its derivative ∂µφ(x), L(x) = L(φ, ∂µφ). By in�nitesimally varying the �elds, as:

φ→ φ+ δφ, we then obtain:

δL(x) =
∂L
∂φ

δφ(x) +
∂L

∂(∂µφ(x))
δ(∂µφ(x)) (1)

The Euler-Lagrange equations for the �eld formalism can then be obtained by applying the

principle of least action as one would do in classical mechanics:

δS =

∫
d4xδL(x) = 0 . (2)

Plugging in the varied Lagrangian density:

0 =

∫
d4x

[
∂L
∂φ

δφ(x) +
∂L

∂(∂µφ(x))
δ(∂µφ(x))

]
. (3)

This we can write as:

0 =

∫
d4x

([
∂L
∂φ

δφ(x)− ∂L
∂(∂µφ(x))

δ(∂µφ(x))

]
+ ∂µ

[
∂L

∂(∂µφ(x))
δφ(x)

])
. (4)

Since the last term is the total derivative it only depends on the �xed end points and the

Euler-Lagrange equations consequently becomes:

0 =
∂L(φ(x), ∂µφ(x))

∂φ
− ∂µ

∂L(φ(x), ∂µφ(x))

∂(∂µφ(x))
. (5)

From this this equation the classical equations of motion can be found for the �eld φ. As we

will see later in Section 3, the classical equations can be useful in th context of e�ective �eld

theories.
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1.2 Electroweak Symmetry Breaking

The weak force is mediated by the massive vector bosons W±, Z. One problem with massive

particles is that their Lagrangian is not invariant under local symmetries, i.e. gauge symme-

tries. Which leads to their Lagrangian being non-renormalizable. A solution to the experi-

mental observation of massive gauge bosons is the Higgs mechanism. This will make it possi-

ble for particles in the Lagrangian to acquire mass through spontaneous symmetry breaking.

1.2.1 Example of Higgs mechanism with only U(1)

This section is based on discussions in Ref.[3].

De�ning the Higgs potential as a complex scalar �eld potential:

V (φ) =
1

2
µ2φ2 +

1

4
λφ4 , (6)

then the corresponding Lagrangian reads:

L = −1

4
F µνFµν + (Dµφ)(Dµφ∗)− µ2φ2 − λφ4 . (7)

Where Dµ is the covariant derivative de�ned as:

Dµ = ∂µ + igBµ , (8)

and Bµ is a new gauge �eld which has the �eld strength:

F µν = (∂νBµ − ∂µBν) . (9)

The Lagrangian is invariant under the local gauge transformations of U(1) de�ned as:

φ(x)→ exp (igG(x))φ(x) , Bµ → Bµ − ∂µG(x) . (10)

Plotting Eq. 6 for µ2 < 0 (Figure 1), we see that there is a degenerate minima in a continu-

ous circle of radius |φ| = v away from |φ| = 0. Expanding the �eld φ as a perturbation about

the minimum v in Figure 1 we �nd:

φ(x) =
1√
2

(v + h(x) + iξ(x)) . (11)

Where ξ is a Goldstone boson. The Goldstone boson ξ can be removed by an appropriate

gauge �xing choice, as such we neglect them in the discussion below. As a result we use the

�eld expanded as:

φ(x) =
1√
2

(v + h(x)) . (12)

We expand the Lagrangian about vacuum expectation value v by inserting Eq. 12 in Eq. 7

and we take µ2 = λv2. This yields two new mass terms in the Lagrangian. First we get a

massive Higgs scalar with Lagrangian terms:

(13)L =
1

2
(∂µh)(∂µh)− λh2v2 + Lint ,
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Figure 1: Example of complex scalar Higgs potential of the form in Eq. 6 with µ2 < 0 showing sym-

metric minima v around φ = 0

giving a Higgs mass, m2
h = 2λv2. We also get a massive gauge boson:

(14)L = −1

4
F µνFµν +

1

2
g2v2BµB

µ + Lint ,

Where the mass of the gauge boson is m2
B = g2v2. The Higgs mechanism thus allows for

massive particles within in a locally gauge invariant Lagrangian, facilitated by spontaneous

symmetry breaking where Higgs takes on constant vacuum expectation value v.

1.2.2 The Standard Model Vector bosons

The discussion in this section follows that of Ref. [2]. In the standard model the Higgs is in-

strumental in allowing for the famous electroweak uni�cation where a SU(2)×U(1) symmetry

is spontaneously broken. The Lagrangian is:

L = −1

4
(W a

µν)
2 − 1

4
B2
µν + (DµH)†(DµH)− V (H) . (15)

Where the Higgs potential is:

V (H) = −µ2H†H + λ(H†H)2 , (16)

with µ being positive de�nite and

H = exp

(
2i
πaτa

v

)(
0

v√
2

+ h√
2

)
, (17)

is the Higgs multiplet.

Employing the unitary gauge we can set πa = 0. W a
µν is the SU(2) gauge boson and Bµν is

the U(1) gauge boson. The covariant derivative is:

DµH = ∂µH + ig2W
a
µ τ

aH +
1

2
ig1BµH , (18)
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where τa = 1
2
σa with σa the Pauli matrices and g2, g1 are the SU(2) and U(1) coupling con-

stants respectively.

Now expanding the covariant derivative term of the Lagrangian, which contains the Higgs

interactions with Bµν and W a
µν

(DµH)†DµH = (g2
2W

a
µ τ

aH†W a
µ τ

aH +
1

2
g1g2BµW

a
µ τ

aHH†)+

(g2g1
1

2
W a
µ τ

aH†BµH +
1

4
(g1)2BµH

†BµH) .
(19)

We then expand the Higgs doublet in Eq. 19 around the vacuum expectation value v. Addi-

tionally we disregard terms with the Higgs scalar h in the following and �nd:

Lmass =
v2g2

2

8

(
0 1

)(
W a
µσ

aW a
µσ

a +
g1

g2

BµW
a
µσ

a +
g1

g2

W a
µσ

aBµ +

(
g1

g2

)2

BµBµ

)(
0

1

)
. (20)

The Pauli matrices satisfy:

(
0 1

)
σa

(
0

1

)
= −δ3,a , (21)

so that:

Lmass =
v2g2

2

8

(
(W 1

µ)2 + (W 2
µ)2 +

(
g1

g2

Bµ −W 3
µ

)2
)
. (22)

Then to diagonalize the masses we de�ne:(
Zµ

Aµ

)
=

(
cW −sW
sW cW

)(
W 3
µ

Bµ

)
⇐⇒

(
Bµ

W 3
µ

)
=

(
cW −sW
sW cW

)(
Aµ

Zµ

)
, (23)

where cW and sW are cos(φw) and sin(φw) with φw being the weak mixing angle de�ned by

the ratio between g1 and g2 in Eq. 24. Using:

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)2
,
g1

g2

= tan(θw) , (24)

we get

Lmass =
v2g2

2

8

(
2W+

µ W
−
µ +

Z2
µ

c2
W

)
= m2

WW
+
µ W

−
µ +

1

2
m2
ZZ

2
µ , (25)

with:

mZ =
vg2

2cW
, mW =

vg2

2
, (26)

and

mZ =
mW

cW
. (27)
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We see that the physical massive gauge bosons Z and W emerge from the Higgs coupling to

the electro weak SU(2) and U(1) gauge bosons. We also note that U(1)QED remains unbro-

ken and the photon remains massless. Furthermore Eq. 27 predicts a mass splitting between

the W and Z boson masses which is an important precision test of the standard model.

1.3 Standard Model Searches

In this section we present a summary of standard model data collected at the Large Hadron

Collider (LHC). With this we want to motivate our standard model e�ective �eld theory

studies by noting the large uncertainty there still is on Higgs production, as seen in Figure 2.

In fact among the observables shown in Figure 2, the Higgs measurements represent the least

well measured. Therefore we infer that the Higgs sector is a good place for new physics to

be hiding within experimental uncertainties. To reinforce this we have calculated the rela-

tive uncertainty of the Higgs branching ratios from the plot on the left of Figure 3. Doing

this we used the average of the upper and lower bound of the total uncertainties. These rel-

ative uncertainties are shown in Table 1, where we see just how large these are. However in

the future, after the current run of the LHC, it will be upgraded to the High luminosity-LHC

(HL-LHC). By the end of the HL-LHC 3000/fb of integrated luminosity is expected to be

collected. This data is then expected to reduce the uncertainty on the Higgs decays. The HL-

LHC projections for the Higgs branching ratio measurements, assuming the standard model

Higgs, are shown on the right in Figure 3 from Ref.[4]. Especially relevant to this thesis is

the branching ratio for the Higgs decay to a Z�boson and a photon, which has not yet been

measured but is expected to be measured to 19.1% relative uncertainty at HL-LHC as seen

on the right in Figure 3.

Branching ratios Relative Uncertainty [%]

σZZ
∗

ggF 11.50%

σV BF/σggF 23.79%

σWH/σggF 41.94%

σZH/σggF 40.10%

σtt̄+tH/σggF 24.17%

Bγγ/BZZ∗ 14.97%

BWW ∗/BZZ∗ 19.64%

Bττ/BZZ∗ 27.91%

Bb̄b/BZZ∗ 34.95%

Table 1: Table of the relative uncertainty of the branching ratios in Figure 3. In calculation these we

have used the average of the uncertainties lower and upper bound.
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Figure 2: Plot taken from Ref. [5]. This plot contains total production cross section measurements

for standard model particles, including the Higgs

Parameter normalized to SM value

0 0.5 1 1.5 2 2.5 3

Total Stat. Syst. SMATLAS
-1= 13 TeV, 24.5 - 79.8 fbs

| < 2.5
H

y= 125.09 GeV, |Hm

= 93%
SM

p
Total Stat. Syst.

ZZ*
ggFσ 1.13 0.13± ( 0.11−

0.12+
, 0.06± )

ggFσ/VBFσ 1.24 0.27−

0.32+
( 0.22−

0.24+
, 0.15−

0.21+
)

ggFσ/WHσ 1.24 0.45−

0.59+
( 0.35−

0.44+
, 0.29−

0.39+
)

ggFσ/ZHσ 1.01 0.34−

0.47+
( 0.29−

0.37+
, 0.19−

0.30+
)

ggFσ/
tH+Htt

σ 1.20 0.27−

0.31+
( 0.21−

0.24+
, 0.17−

0.20+
)

ZZ*B/γγB 0.87 0.12−

0.14+
( 0.11−

0.12+
, 0.06−

0.07+
)

ZZ*B/WW*B 0.84 0.15−

0.18+
( 0.11−

0.13+
, 0.11−

0.12+
)

ZZ*B/ττB 0.86 0.22−

0.26+
( 0.17−

0.19+
, 0.14−

0.18+
)

ZZ*B/
bb

B 0.93 0.27−

0.38+
( 0.21−

0.27+
, 0.18−

0.26+
)

Figure 3: Figure on the left is taken from Ref. [6], showing the di�erent Higgs decay branching ratios

and their experimental error. Figure on the right is taken from Ref. [4], showing relative uncertain-

ties on Higgs branching ratios expected from HL-LHC
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2 Renormalization

In this section we brie�y discuss renormalization in quantum �eld theory. We �rst discuss

how loops give rise to divergences and how this motivates the concept of renormalization

through a φ4-theory example. We then discuss how some loops in a renormalizable theory

with no possible counter term must be free of divergences, here we refer to these as non-

divergent. Finally we explore how adding higher dimensional terms to the φ4-theory makes

for a non-renormalizable theory and what non-renormalizability actually means. This section

is based on discussions from Refs. [1] and [2].

2.1 Renormalizable Theories

2.1.1 φ4-theory

Suppose we have a theory with Lagrangian:

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 − λ

4!
φ4 . (28)

The kinetic term gives the Feynman rule for the propagator of a φ going to a φ:

φ→ φ =
i

p2 −m2
. (29)

The interaction term proportional to φ4 gives the Feynman rule for the interaction of 4 φ

�elds, i.e. the 4φ scattering event (φφ → φφ), e.g. the matrix element for 4φ scattering at

tree level is simply given by:

iM4φ = −iλ , (30)

resulting in the square amplitude:

|M|24φ = λ2 . (31)

At one loop we then have two propagators and an additional vertex factor. (see Figure 4)
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p− k
p2

p1

p4

p3

Figure 4: One-loop diagram from the φ4 vertex

With momentum conventions de�ned in Figure 4, the matrix element would look like:

iM = −λ
2

2

∫
dk4

(2π)4

i

(p− k)2 −m2

i

k2 −m2
. (32)

Where the internal momentum k is not constrained by momentum conservation p1 + p2 =

p3 + p4 = p and we therefore have to integrate over it. A naive dimensional analysis of the

integrand indicates this integral is ill-de�ned. However, if we de�ne a high energy, or ultravi-

olet (UV) scale, Λ at which the momenta is cut o� we can de�ne a super�cial degree of diver-

gence. The super�cial degree of divergence is then logarithmic:

∝ lim
Λ→∞

∫ Λ

−Λ

dk

k
∼ log

(
Λ

c

)
→∞ , (33)

where c is some constant.

In order to remove divergences such as this, it is common to rede�ne the parameters of the

Lagrangian in a manner that allows for the introduction of counter terms which will cancel

the UV divergences. Writing the Lagrangian as:

L → L0 ≡
1

2
(∂µφ)(∂µφ)− 1

2
m2

0φ
2
0 −

λ0

4!
φ4

0 , (34)

with:

λ0 ≡ ZλλR , (35)

λR is referred to as the renormalized coupling constant and Zλ the renormalization constant.

The �elds and parameters with subscript 0 are referred to as bare, likewise the �elds and pa-

rameters with subscript R are the renormalized ones. In order to regulate the one-loop diver-

gence in Eq.32 we take:

Zλ = 1 + δλ . (36)
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With this de�nition we �nd two terms in the potential:

V =
λ0

4!
φ4

0 →
λR
4!
φ4

0 +
λRδλ

4!
φ4

0 . (37)

The �rst term is the tree level interaction and the second term is a counter term. The counter

term is treated as formally of one-loop order. Writing the matrix element again, now with

the counter term:

iM = −iλR −
λ2
R

2

∫
dk4

(2π)4

i

(p− k)2 −m2

i

k2 −m2
− iλRδλ . (38)

By de�ning a subtraction scheme we can remove the UV divergences in the theory:

iM = −iλR −
λ2
R

2
lim

Λ→∞
log

(
Λ

c

)
− iλRδλ , (39)

δλ ≡ iλR
2

lim
Λ→∞

log

(
Λ

c

)
, (40)

iM = −iλR . (41)

In general it is not necessarily the entire loop contribution which is subtracted o� in this

manner. This discussion is meant as a simpli�ed example of how UV divergences are removed

from a quantum �eld theory. In addition to divergences in interactions, the one loop correc-

tions to two-point functions (propagators) can be UV divergent, a combination of rewriting

φ0 → ZφφR and the counter term from m0 are used to regulate these divergences. In this

way there is one counter term for each divergence, we say the theory is renormalizable. More

generally we de�ne: A theory is renormalizable if its UV divergences can be removed with

a �nite amount of counter terms. Vice versa: A theory is non-renormalizable if its UV di-

vergences require an in�nite number of counter terms to be removed. Non-renormalizable

theories are therefore technically able to be renormalized given an in�nite number of counter

terms. In section 2.2 we discuss that these theories are still well de�ned for phenomenolog-

ical purposes in the correct kinematic limit. A general theory of space-time dimension d is

renormalizable if its operators Q are of dimension 0 ≤ [Q] ≤ d. We discuss this further in

Section 2.2.

2.1.2 Non-Divergent loops

In a renormalizable theory such as the φ4 theory in Eq.28 the divergences of loop diagrams

are canceled by counter terms which comes from interactions in the Lagrangian. If a loop

diagram forms a process that does not have a corresponding tree-level interaction term in the

Lagrangian, there is also no possibility for a counter term. If the corresponding Lagrangian
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is renormalizable, it then follows that the process cannot be divergent since no counter term

exists. Examples of this is the Higgs decay to 2 gluons or 2 photons which is not allowed at

tree level but is through the loop diagrams(�g. 5, �g. 6):

q

q

q

H

g

g

Figure 5: Diagram of the non-divergent loop process allowing for gluon production from Higgs decay

W

W

W

H

γ

γ

Figure 6: Example diagram of the non-divergent loop process allowing for photon production from

Higgs decay

2.2 Non-renormalizable theories

In section 2.1.1 renormalizable and non-renormalizable theories were de�ned by how many

counter terms were needed to renormalize them, more speci�cally if there was an �nite or

in�nite number of counter terms needed. Here is a simple example of how an in�nite number

of required counter terms could arise. Consider this Lagrangian:

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 − λ

4!
φ4 − c(1)

6!M2
φ6 − c(2)

8!M4
φ8 − c(3)

10!M6
φ10 − c(4)

12!M8
φ12 , (42)

with c(i) being dimensionless coupling constants and M is a relevant scale of mass dimension

one. In the following we imagine that we are adding the terms of dimension six and higher

one at a time.

Starting with the φ6 term, a one-loop diagram of a 8φ interaction can be formed by two φ6

vertices as seen in the diagram in Figure 7.
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Figure 7: One-loop diagram from the φ6 vertex

To cancel the divergence in Figure 7 we need, as in section 2.1.1, a one-loop order counter

term. For such a counter term we need a tree-level equivalent process, i.e. a 4φ → 4φ inter-

action at tree-level. This means a φ8 term in the Lagrangian as one 8φ vertex would provide

the 4φ → 4φ at tree-level as seen in Figure 8. Already this is worrying since this tree-level

equivalent process needed for a counter term, originates from a higher order term in the La-

grangian. This is unlike the one-loop process from the φ4 term in section 2.1.1.

Figure 8: Tree-level diagram from the φ8 vertex, with the same number of external lines as the one-

loop diagram from the φ6 term in Figure 7

We have discussed the addition of a φ6 term to the Lagrangian and how this, for renormal-

ization purposes, needs the φ8 which we then added. Combining these two terms we are now

able to create a one-loop diagram for a 10φ process with one φ6 vertex and one φ8 vertex (see

Figure 9). Since this is a 10φ process we would then need, as discussed previously, a tree-

level equivalent process in order to have a suitable counter term for this process. For a such a

counter term we need a φ10 term in the Lagrangian.
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Figure 9: one-loop diagram of a 5φ→ 5φ scattering process formed from one φ6 and one φ8 vertex

We can continue this idea by considering the φ8 term we now have in our Lagrangian. This

term itself sources a one-loop 12φ process which needs a counter term from the tree-level

equivalent process sourced by a φ12 term. By now it is evident that every time we add a term

to the Lagrangian in order to source a counter term, this term itself has no such counter term

which results in adding even more terms. In fact, a theory like this needs an in�nite number

of counter terms and is therefore non-renormalizable. Additionally, from this simple analysis

it is apparent that the φ4 term is special in that it sources its own tree-level equivalent pro-

cess to its one-loop process, allowing for a one-loop order counter term.

Using dimensional analysis, we see from the Lagrangian in Eq. 2.1.1 that, since the Lagrangian

has mass dimension [L]M = 4 , the non-renormalizable terms have coupling constants of neg-

ative mass dimension: [λ6]M , [λ8]M , [λ12]M < 0 . The renormalizable terms on the other hand

have coupling constants with either positive or 0 mass dimension: [m2]M = 2, [λ]M = 0. This

can be generalized and added to the de�nition of renormalizable theories in section 2.1.1,

such that renormalizable theories have coupling constants of mass dimension d ≥ [λ]M ≥ 0,

where d is the space-time dimension.

Despite theories being non-renormalizable they can still be predictive and of use to us. Gen-

erally the divergences arising from loop diagrams will always be polynomial in external mo-

menta p.[2] This means that the theory is perturbative given the momentum of a process in

consideration, is small relative to the mass m. This means that in this regime where p � M ,

i.e. low energy regime, only a �nite number of these divergences are relevant by order in the
p
M

power counting. As such perturbation theory is still well de�ned. Non-renormalizable the-

ories therefore constitute well de�ned and systematically improvable quantum �eld theories.

This leads us to discuss the utility of non-renormalizable theories, which within a certain en-

ergy regime are both well de�ned and predictive, in order to approach important problems in

particle physics.
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3 E�ective Field Theories

In this section we introduce e�ective �eld theories as low energy e�ective theories obtained

by the assumption that some �eld(s) has a very large mass compared to the other �elds in

the theory. These heavy �elds can therefore be treated as a constant when looking at inter-

actions among the remaining light �elds. We introduce this process integrating out the heavy

�eld. We discuss how the remaining �elds in the e�ective �eld theory has corrections to them

from the heavy �eld which was integrated out. As a result some e�ects of the heavy �eld can

still be present in the e�ective �eld theory. We then introduce a way of obtaining an e�ec-

tive action at tree-level expanding the action around its equation of motion. Finally we use

a method to obtain and e�ective action for the standard model Higgs modi�ed by a heavy

singlet scalar �eld which is integrated out at tree-level. We use this example to discuss how

such �eld theories can be used and explore new physics their e�ects on standard model �elds,

possibly providing predictions of new heavy �elds.

3.1 Introduction

E�ective �eld theories are theories that use e�ective actions such as[7]:

Γ =

∫
dx4Leff(x) , (43)

where Leff(x) is the e�ective Lagrangian. The e�ective action is produced by integrating out

�elds in the action formed from the full theory, also known as the UV theory, thereby nar-

rowing the degrees of freedom. For example[7]:∫
Dφ ei

∫
d4xLeff(φ(x)) =

∫
DφDH ei

∫
d4xL(φ(x),H) , (44)

where H is some heavy �eld integrated out. It is notable that even though H is integrated

out of the theory thus producing an e�ective theory, H can still have e�ects on the remain-

ing �elds. These e�ects come as corrections to existing operators consisting of the so-called

Wilson coe�cients. These e�ective actions therefore depend on fewer �elds, only valid in a

limited regime and notably are non-renormalizable. These theories are often favored over full

theories because easier calculations and little loss in predictability when applied in the cor-

rect range of validity. E�ective �eld theories can also be used to probe for new physics. This

is done by exploring the e�ects of new potential particles integrated out at current energy

levels of experiments. Then if any predictions from a theory with a heavy �eld that has been

integrated out, match experimental data, it could hint new heavy physics. These predictions

would then be in the form of Wilson coe�cients and their correlations as corrections to the

UV theory.
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3.1.1 E�ective Action at Tree Level

Following B.Henning et al.[8] we de�ne the e�ective action:

ei
∫
d4xLeff(φ) =

∫
DΦ ei

∫
d4xL(φ,Φ) , (45)

where Φ is a heavy real scalar �eld we want to integrate out. Then expanding Φ around its

minima Φc, which is determined by its equations of motion i.e.:

δS(φ,Φ)

δΦ
= 0 =⇒ Φc . (46)

The expansion then reads to tree-level order:∫
d4xL(φ,Φ + η) = S(φ,Φ + η) = S(Φc) +O(η2) . (47)

From this we compute the e�ective action as:

ei
∫
d4xLeff(φ) =

∫
Dη ei

∫
d4xL(φ,Φc+η) ≈ ei

∫
d4xL(Φc) , (48)

such that:

Leff ≈ L(Φc) . (49)

We can therefore obtain an e�ective Lagrangian at tree-level by solving for the Lagrangian's

classical equations of motion and plugging them back into the Lagrangian.

3.2 E�ective Field Theory as a Probe for New Physics

In e�ective �eld theories heavy particles, that are otherwise integrated out, can still in�u-

ence physics in a measurable way. This enables e�ective �eld theory to be a useful tool in

the search for new physics beyond. As we can theorize a new particle that is heavy so that

we can integrate it out and then perform measurement at energy scales well below its mass.

Then compare the e�ective theory to these measurement to see if there are signs of this new

particle.

Following Corbett et al. [9] we can use the method introduced in Section 3.1.1, to calculate

an e�ective �eld theory at tree level. This e�ective theory is based on a UV complete theory

of the standard model Higgs with the addition of a heavy real singlet scalar, which is then

integrated out. We discuss UV completions in the next section in the context of four-Fermi

theory.

The new �eld added is S and the Higgs doublet is:

Φ = exp

(
i
ω(x) · τ

v

)(
0
v+h√

2

)
, (50)
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where ω(x) is the Goldstone bosons and τ is the Pauli matrices. The lagrangian is

L = (DµΦ)†(DµΦ) +
1

2
(∂νS)2 − V (Φ, S) , (51)

with potential:

V (Φ, S) = −µ̃2
H |Φ|2 + λ|Φ|4 +

1

2
M2

SS
2 + λmvS|Φ|2S +

1

2
λm|Φ|2S2 +

6λSvs
3!

S3 − 6

4!
λSS

4 . (52)

The S dependent part of the Lagrangian can then be written:

∆L =
1

2
(∂νS)2 − 1

2
M2

SS
2 − A|Φ|2S − 1

2
k|Φ|2S2 − 1

3!
µS3 − 1

4!
λ̃SS

4 , (53)

where:

µ = 6λSvS , A = λmvS , k = λm , λ̃S = 6λ . (54)

As in Section 3.1.1 we can integrate out the S-�eld at tree level by solving for its classical

equations of motion and plugging that back into the Lagrangian. Using the Euler-Lagrange

equation of Section 1.1:
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

= 0 . (55)

Evaluating each term separately we �nd:

∂∆L
∂S

= −M2
SS − A|Φ|2 − k|Φ|2S −

1

2
µS2 − 1

3!
λ̃SS

3 , (56)

and

∂µ
∂∆L
∂(∂µS)

= ∂µ(∂µS) . (57)

We obtain for our Euler-Lagrange equation:

−M2
SS − A|Φ|2 −

1

2
k|Φ|2S − 1

2
µS2 − 1

3!
λ̃SS

3 − ∂µ(∂µS) = 0 . (58)

Solving to linear order in S and using the de�nitions, U = k|Φ|2 and B = −A|Φ|2 we �nd the

equation of motion(EOM):

SC =
1

∂µ∂µ +M2
S + U

B (59)

Solving to linear order because the e�ects of solving to higher orders would only manifest at

1/M10 order in the e�ective Lagrangian. Therefore solving the EOM to higher than linear

order would not have any e�ect on terms of dimension 8 and lower, and in the following we

will just be keeping terms of dimension 8 and below.

In "integrating the S-�eld out" we assume that the mass MS is very large which, lets us ex-

pand around 1
M2
S
:

SC u
B

M2
S

− ∂µ∂
µB +Bk|Φ|2
M4

S

. (60)
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Here we have expanded to an order which gives us terms of dimension 8 or lower in inverse

mass, as explained above. Evaluating the terms of ∆L one at a time:

1

2
(∂νSC)2 u

A2∂ν |Φ|2∂ν |Φ|2

2M4
S

−
A2∂ν |Φ|2∂µ∂µ∂ν |Φ|2 + 2A2k|Φ|2∂ν |Φ|2∂ν |Φ|2

M6
S

−
1

2
M2
SS

2
C u −

A2|Φ|4

2M2
S

−
A2∂µ∂µ|Φ|2∂µ∂µ|Φ|2 +A2|Φ|4k2|Φ|4 − 4A2k|Φ|2∂µ|Φ|2∂µ|Φ|2

2M6
S

+
−A2∂µ|Φ|2∂µ|Φ|2 +A2k|Φ|6

M4
S

−A|Φ|2SC u
A2|Φ|4

M2
S

−
A2|Φ|4∂µ∂µ +A2|Φ|4k|Φ|2

M4
S

−
1

2
k|Φ|2S2

C u −
A2k|Φ|6

2M4
S

+
−2A2k|Φ|2∂µ|Φ|2∂µ|Φ|2 +A2k2|Φ|8|Φ|2

M6
S

−
1

3!
µS3

C u
1

3!
µ
A3|Φ|6

M6
S

+
1

2
µ
A3|Φ|2∂µ|Φ|2∂µ|Φ|2 −A3k|Φ|8

M8
S

−
1

4!
λ̃SS

4
C u −

1

4!
λ̃S

A4|Φ|8

M8
S

(61)

Now Putting the terms together to get ∆L(SC) from Eq. 53

1

2
(∂νSC)2 − 1

2
M2
SS

2
C −A|Φ|2SC −

1

2
k|Φ|2S2

C −
1

3!
µS3

C −
1

4!
λ̃SS

4
C

→ A2

2M2
S

|Φ|4 +
A2

2M4
S

∂ν |Φ|2∂ν |Φ|2 +
A2

2M4
S

(
Aµ

3M2
S

− k
)
|Φ|6 +

A2

2M6
S

(
− λ̃SA

2

12M2
S

+ k2 − Aµk

M2
S

)
|Φ|8

+
2A2

M6
S

(
Aµ

2M2
S

− k
)
|Φ|2∂ν |Φ|2∂ν |Φ|2 +

A2

2M6
S

∂ν∂
ν |Φ|2∂µ∂µ|Φ|2

(62)

This e�ective Lagrangian provides predictions for the Wilson coe�cients of the various ef-

fective higher dimensional operators of the Higgs doublet Φ. These can then be compared

to experiment to see if there is an indication of the correlation of between the Wilson coe�-

cients, i.e. the coe�cients for the e�ective operators, that this theory predicts. The discovery

of such correlations could then be indirect evidence of there being a real heavy scalar singlet.

This is an example of how useful e�ective �eld theories can be at producing predictions to

look for new physics.

3.3 Weak interaction & Fermi-Theory

This discussion of the Fermi theory follows that of [2].

The four-Fermi interaction:

L4-Fermi,β = GF ψ̄pψnψ̄eψν , (63)

can be used to model proton β-decay at low energy compared to 1/
√
GF . Where:

GF = 1.1663787× 10−5GeV−2 .[10][11] (64)

In section 2.2 a renormalizable theory was de�ned to have coupling of mass dimension 0 ≤
[λ] ≤ d. This means, since the mass dimension of the Fermi constant [GF ] = −2, four-Fermi
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theory is non-renormalizable. In general we would then have to add all operators consistent

with the symmetries of quantum electro-dynamics, i.e. an in�nite number of terms, to this

theory in order to fully renormalize it.

We might have Lagrangian terms of the form:

L̂4-Fermi,β = GF ψ̄pψnψ̄eψν+c
(1)G2

F ψ̄p2ψnψ̄eψν+c
(2)G3

F
/∂ψ̄p/∂ψn/∂ψ̄e/∂ψν+c

(3)G4
F ψ̄p2ψn2ψ̄e2ψν+... .

(65)

Here, following the symmetries we cannot add more �elds. It is therefore apparent that each

higher order term must be as such due to additional derivatives. The terms will, as a result,

be suppressed by powers of external momentum from the derivatives, compared to GF as

c(n) (GFp
2)
n. Since the energies typical in β-decay (O(1MeV) [12]) are much less than GF ,

i.e. p2 ∝ s� G−1
F . The higher order terms will be negligible at typical energy scales and con-

sequently the leading-order term can be used predictively. As the four-Fermi theory is only

predictive at low energies a theory consistent at higher energies, a UV completion, is required

to make predictions at these energies. A UV completion is a theory that works above the ef-

fective theory's energy scale of validity, and reduces to an equivalent theory at low energies.

There are many possible UV completions of the four-Fermi theory, however the predictions,

and measurements of the W bosons properties indicate that the UV completion consistent

with nature is the electroweak sector of the standard model.

W

l1

l2
Figure 10: lepton interaction through charged current W boson

Since the W only couples to left-handed fermion we get, at tree level:

M =
−e2

2s2
w

(
l̄Lγ

µνlL
) (gµν − pµpν

M2
W

)
q2 −M2

W

(ν̄lLγ
νlL) , (66)

where s2
w is sin2(θw) and θw is the weak mixing angle. In the limit M2

W � q2 this becomes:

M =
−e2

2M2
W s

2
w

(
l̄γµPLνl

)
(ν̄lγ

µPLl) , (67)

where PL = 1
2

(1− γ5) is the left-hand projection operator. This amounts to integrating out

the W and we are now left with a four-Fermi interaction of the form ψ̄γµPLψψ̄γ
µPLψ, with

4GF√
2
≡ e2

2M2
W sw

(68)
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Thus this shows how a UV completion reduces to a low energy e�ective, or infrared (IR), the-

ory when energy is below the threshold of the e�ective theory. This IR theory notably con-

tains the symmetries of the UV theory. Where the W only couples to left handed fermions,

the four-Fermi couples two left handed fermion currents. The originally proposed four-Fermi

theory in Eq. 63 did not have this symmetry by default. We can therefore obtain a symmetry

consistent e�ective theory by going from a UV theory to an IR theory. However, if we went

the other way we would have no way of knowing this symmetry except by inferring from ex-

perimental data. Yet comparing experiments with four-Fermi theory was how the V-A struc-

ture of the weak sector was discovered[2]. As such IR theories can be instrumental in �nding

hints of the structure of a UV model consistent with nature.

3.4 Strong interaction and the e�ective �eld theory of pions

This discussion on pions follows that of [2]. As was explored in Section 3.3 we found that an

IR theory deduced from a UV theory obeys the original symmetries of the UV theory. Using

this we will motivate an e�ective �eld theory based on the symmetries of quarks and gluons.

The theory describing the strong interaction is that of Quantum Chromodynamics (QCD)

which has the Lagrangian (including just up and down quarks):

LQCD, quarks = −1

4
(F a

µν)
2 + iūL /DuL + iūR /DuR + id̄L /DdL + id̄R /DdR (69)

This Lagrangian is symmetric under separate left and right handed rotations between the up

and down quarks. This symmetry is called a chiral symmetry, written SU(2)L × SU(2)R in

group theory. Below a certain energy we do not observe quarks but instead observe hadrons.

In describing pions, hadrons formed of a quark and anti quark, we will assume they are com-

posite particles which behave as the Goldstone bosons of the spontaneously broken symmetry

SU(2)L × SU(2)R → SU(2)V . However we also have:

SU(2)L × SU(2)R = SU(2)V × SU(2)A . (70)

This implies that the SU(2)A symmetry has been spontaneously broken. Spontaneous sym-

metry break of a continuous group is associated with Goldstone bosons[13]. Goldstones' the-

orem states for every broken generator of a broken gauge group a massless degree of freedom

follows. SU(2)A has 3 generators, as such we have three massless Goldstone bosons: the pi-

ons (π0, π±). We can put the pions in a �eld that transforms linearly under SU(2)L×SU(2)R:

U(x) = exp

[
i

fπ
σaπa

]
, (71)

where fπ is called the pion decay constant, σa are the Pauli matrices and πa are the pion

�eld components: π0 = π3 and π± = 1√
2
(π1 ± iπ2). It should be noted that pions have been

observed to be massive, this can be incorporated into the theory using spurions. Spurions are

treated as �elds with symmetry properties, however they are later set to appropriate constant

Page 21 of 61



Thor Blokker Rasmussen Master's Thesis

values which break the symmetry allowing for, e.g. pion masses, while allowing a consistent

treatment of an e�ective Lagrangian based on the UV symmetries.

E�ective low energy theories like the four-Fermi theory have the advantage of being much

easier to actually use and produce predictions. Producing predictions in QCD is generally

di�cult as the coupling constant, g3, is large. The coupling constant is known to grow as the

energy decreases, and at some energy this coupling constant becomes much larger than one,

causing perturbation theory to fail. At these low energies where perturbation theory fails the

theory should still work, but we lack mathematical techniques to produce predictions. This

has led to advances like lattice QCD which is able to make limited predictions in the low en-

ergy regime. Therefore e�ective low energy non-renormalizable theories, like the chiral La-

grangian, are useful in making predictions. The chiral Lagrangian to leading order is:

Lχ,1 =
f 2
π

4
Tr
[
DµUD

µU †
]
. (72)

With covariant derivative:

Dµ = ∂µ − iQiAµ , (73)

where Qi is the charge of the pion, Aµ is the photon �eld.

The form of the chiral Lagrangian in Eq. 72 is the lowest order e�ective Lagrangian in U(x)

obeying its symmetries. Expanding the exponential in Eq 72 for small 1/fπ we �nd the ki-

netic terms:

(74)Lkin =
1

2

(
∂µπ

0∂µπ0
)

+ (Dµπ
+)(Dµπ−) .

Expanding to higher orders incurs more factors of 1
fπ

with mass dimension
[

1
fπ

]
= m−1,

which is why this theory is non-renormalizable. Since UU † = 1 expansion of interaction terms

in this theory must be a derivative expansion as:

Lχ =
f 2
π

4
Tr
[
DµUD

µU †
]

+ L1Tr
[
DµUD

µU †
]2

+ · · · (75)

for which each additional term will have increasing powers of
√
s

fπ
. As such this theory is well

behaved perturbatively given
√
s � fπ. The parameters of the model, e.g. fπ , L1 can be

measured experimentally and they can be used to make more predictions.

4 Standard Model E�ective Field Theories

In this section we want to lay the groundwork of introducing the concepts of the standard

model e�ective �eld theory (SMEFT). We �rst discuss the formulation and the de�nition of

the SMEFT as well as motivate its use in the search for new heavy physics. We then go on to
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discuss the �nite �eld rede�nitions that arise when reconstructing the canonical forms of the

standard model after add the SMEFT operators. We discuss these �nite �eld rede�nitions

through two examples one of which is the canonical form for the Higgs kinetic term. We then

use this in our discussion of the Yukawa coupling where we show how rede�ning the Higgs

to obtain a canonical kinetic term introduces shifts to all Higgs couplings. Finally we discuss

the concept of the geoSMEFT as a way to write the SMEFT operators to all order in a com-

pact fashion.

4.1 Formulation

The standard model is a successful model of many phenomena within the �eld of particle

physics. A notable example is how it predicted the Higgs, which was later found, in order

to explain particle masses. The standard model however, being renormalizable, gives us con-

crete predictions. When in search of physics beyond the standard model, the model itself is

of little help. One way of trying to �nd new physics could be increasing the energy at parti-

cle colliders to see if anything new or unexplained appears. This trial and error approach has

the disadvantage of being very expensive and hard to justify as one does not necessarily know

what one is looking for. As discussed in section 3.1.1 e�ective �eld theories have heavy parti-

cles integrated out, yet e�ects of these heavy particles can still manifest in the e�ective �eld

theory. The SMEFT is an e�ective �eld theory created as an extension of the standard model

to be able to search for heavy new, beyond standard model, physics at current or near future

experimentally achievable energies. The complete basis of operators in the SMEFT at dimen-

sion six was �rst written in [14]. The SMEFT Lagrangian can be de�ned to all orders in 1/Λ

as[15]:

L = LStandardModel + LSMEFT . (76)

Where LSM is the standard model Lagrangian. And the SMEFT extension is:

LSMEFT =
∞∑
i

∑
j

cjQ(4+i)
j

Λ(i)
. (77)

The sum over j is the sum of all operators Qj consistent with the symmetries of the standard

model at dimension d = i + 4. We then sum over i to include operators of dimension d > 4

suppressed by Λ the mass scale of heavy new physics. The coe�cients of each operator cj are

called Wilson coe�cients and sometimes these have the 1/Λ(i) absorbed into them such that

the notation becomes:
cj
Λi
→ c

(n)
j , (78)

where i = n − 4 so that n is the dimension of the operator. At leading order d = 5 there is

only one operator, namely the neutrino mass operator[16]:

L5 =
cαβ
Λ

(L̄cαH̃)(H̃†Lβ) (79)
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As this operator generates interactions between the Higgs boson and neutrinos which will not

be visible at colliders like the LHC, this operator is not relevant to this thesis. At dimension

d = 6 there exists 59(neglecting �avor) operator forms, with many of them given in Table 5

taken from [17]. The SMEFT is reminiscent of four-Fermi theory in section 3.3 where we

added all symmetry consistent terms to the Lagrangian. In four-Fermi theory the higher or-

der terms were suppressed by the Fermi coupling, GF ∼ 1/M2
W . Likewise in SMEFT we have

higher order corrections to the standard model which are suppressed by the mass scale of

heavy new physics Λ. The SMEFT is therefore, as four-Fermi theory, a bottom-up approach

to an e�ective �eld theory. In this context a bottom-up approach means that since we have

added all possible operators to the Lagrangian we do not know or predict the values of Wil-

son coe�cients. Using the SMEFT therefore amounts to �nding what operators introduces

shifts, or corrections, to standard model interactions. Where experiments can attempt to ex-

trapolate values of Wilson coe�cients and their predicted correlations among each other. The

Wilson coe�cients can then give hints of possible new physics.

4.2 Finite Field Rede�nitions

The many operators from the SMEFT can have contributions to the canonical forms of the

standard model Lagrangian when the Higgs attains a vacuum expectation value(vev). The

canonical form for the kinetic and mass terms of the Higgs singlet are de�ned as:

LCanonical, h =
1

2
∂µh∂

µh− 1

2
m2
hh

2 (80)

4.2.1 A class 3 operator example

Taking from Table 5, we can use a class 3 operator as an example of how the SMEFT shifts

the canonical form of the Higgs singlet and how to make a �eld rede�nition that results in a

canonical form for the shifted Higgs singlet. We consider the operator QH2

C3 = cH2(H†H)∂µ∂
µ(H†H) , (81)

where H is the Higgs doublet. The Higgs attains a vev such that H → v + h (we are using

unitary gauge):

C3 = cH2(h†h+ v2 + h†v + vh)∂µ∂
µ(h†h+ v2 + h†v + vh) , (82)

where h is the real part of the second component of the Higgs doublet so h† = h. We then

have contributions to the canonical form for scalar of the form: −cH2v
2∂µh∂

µ h. Adding this

to the standard model kinetic term and transforming h→ h′√
CcH2

:

Lkin,SMEFT =
1

CcH2

(
1

2
∂µh

′∂µh′ − cH2v
2∂µh

′∂µh′
)
. (83)
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Then taking CcH2 = 1− 2cH2v
2 we then get a canonical kinetic form for the h′:

Lkin,SMEFTCanonical
=

1

2
∂µh

′∂µh′ . (84)

We can expand 1
CcH2

around cH2 � 1:

1

CcH2

= 1 + 2cH2v
2 + 2c2

H2v
4 + · · · , (85)

yielding an in�nite series in cH2. In this way we can parameterize the resulting shifts in the

Higgs interaction terms (as discussed below) to any order in cH2.

4.2.2 A class 4 operator example

As with the Higgs singlet in the previous section, we now describe a similar example for a

class 4 operator from Table 5

C4 = cHB(H†H)(BµνB
µν) , (86)

where:

Bµν = ∂νBµ − ∂µBν , (87)

is the U(1) gauge boson �eld strength from the weak sector of the standard model. The Higgs

attains a vev such that H → v + h,

C4 = cHB(v2 + h†h+ h†v + vh)BµνB
µν . (88)

We have shifts to the canonical form like: cHBv2BµνB
µν . The standard model canonical form

kinetic term is:

Lkin = −1

4
BµνB

µν . (89)

Adding the two and transforming the �eld Bµν → B′µν√
C
:

Lkin,SMEFT =
1

CcHB

(
−1

4
B′µνB

′µν + cHBv
2B′µνB

′µν

)
. (90)

Then taking CcHB = 1− 4cHBv
2 we get a canonical form for B′:

Lkin,SMEFTCanonical
= −1

4
B′µνB

′µν . (91)

Expanding 1
CcHB

for cHB � 1:

1

CcHB
= 1 + 4cHBv

2 + 8c2
HBv

4 + · · · , (92)

we have an in�nite series in the Wilson coe�cient cHB. As with the Higgs shift we can now

parameterize this shift to any order in the wilson coe�cient cHB. In addition to shifting the

�elds away from canonical kinetic and mass terms, Class 3 and 4 operators also a�ect the

mixing between the neutral gauge bosons [18, 19]. We do not elaborate on this in this thesis.
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4.2.3 Implications of the �eld rede�nitions

In this section we will see how a shift to the canonical form of Higgs kinetic term, shifts all

couplings to the Higgs. Taking the Yukawa coupling from the standard model as example, we

have the Lagrangian[2]:

LY ukawa = −Hq̄LYddR − H̃q̄LYuuR −HL̄LYeeR + h.c. . (93)

This Lagrangian is responsible for generation of the fermion masses by means of coupling

them to the Higgs. Here Yd, Yu, Ye are the Yukawa coupling matrices of the down type quarks,

up-type quarks and leptons respectively. The subscripts L,R means left and right-handed

�eld respectively. H̃ = iσ2H is the conjugate Higgs doublet used for up-type quark couplings

where σ2 are the second Pauli matrix obeying σ∗2 = −σ2. All the Yukawa couplings are of a

similar form:

LY ukawa = −gYHΨ̄ψ + h.c. , (94)

where Ψ represents a left-hand fermionic SU(2)L doublet and ψ represents a right-hand fermionic

singlet. After spontaneous symmetry breaking we have:

LY ukawa = −gY (h+ v)Ψ̄ψ + h.c. . (95)

Using h→ h′√
CcH2

from Eq 83 gives us:

LY ukawa,SMEFT = −gY (
h′√
CcH2

+ v)Ψ̄ψ + h.c. . (96)

The shift from the class 3 operator in Eq 81 shifts all couplings to the Higgs. For this reason

it is a tremendous task rede�ning all the interactions with shifts from the SMEFT, but the

procedure can be simpli�ed as well as generalized to all orders in 1/Λ using a methodology

called the geoSMEFT.

4.3 geoSMEFT

In this section we brie�y discuss the idea of the geoSMEFT theory described in Ref. [20]

One can imagine how cumbersome it would be to write and work with the operators of the

SMEFT to all orders. Indeed, in the previous discussion of Sections 4.2.1 and 4.2.2 we only

considered two of the �ve operators which shift the kinetic and mass terms of the �elds. Ad-

ditionally, at dimension eight there are six operators further complicating the procedure.

geoSMEFT is a method in which this process is simpli�ed. In the standard model we have,

for example, the kinetic term for the Higgs:

LHkinetic
= (DµH)(DµH†) . (97)

If we then write the Higgs doublet in real scalar �eld coordinates we �nd:

H =
1√
2

(
φ2 + iφ1

φ4 − iφ3

)
. (98)
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In this way we can write Eq.97 as:

LHkinetic
= δIJ(Dµφ)I(Dµφ)J . (99)

The geoSMEFT uses this idea to encode the operators of the SMEFT to all orders in 1/Λ

within an object that corrects the δ-function, δIJ → hIJ . The Lagrangian with all of the

SMEFT corrections can the be written[20]:

LHkinetic,SMEFT = hIJ(Dµφ)I(Dµφ)J . (100)

Where:

(101)hIJ =

[
1 + φ2 cH2

Λ2
+
∞∑
n=0

(
φ2

2

)n+2
(
c

(8+2n)
HD − c(8+2n)

H,D2

Λ2+2n

)]
δIJ

+
ΓIA,JφKΓKA,LφL

2

(
c

(6)
HD

2Λ2
+
∞∑
n=0

(
φ2

2

)n+1 c
(8+2n)
H,D2

Λ2+2n

)
.

In similar fashion we can de�ne:

WA
µ = {W 1

µ , W
2
µ , W

3
µ , B

1
µ} . (102)

So that the standard model W and B �elds kinetic terms, can be generalized to all orders

SMEFT:

LWkinetic, SM = −1

4
δABWA

µνWB,µν → LWkinetic, SMEFT = −1

4
gABWA

µνWB,µν . (103)

These de�nitions can then be used to rede�ne the �elds to all orders in the mass eigenstate

basis with:

ACµ ≡ {W+,W−, Z, γ} =
√
gCBUBAW

A
µ , (104)

and

ΦK ≡ {Φ+,Φ−, χ, h} =
√
hKJVJIφ

I . (105)

Where U and V are the matrices which in the standard model rotate the weak eigenstate

�elds to their mass eigenstates. Further, U includes shifts in the de�nition of the Weinberg

angle (Weak mixing angle) and is therefore an implicit function of
√
g. This gives us the La-

grangian with canonically normalized �elds to all order in the SMEFT:

LWkinetic, SMEFT = −1

4
gABWB,µν → −1

4
AB,µνABµν . (106)

LHkinetic,SMEFT = hIJ(Dµφ)I(Dµφ†)J → (DµΦ)I(DµΦ)I . (107)

In this way we are able to transform all �elds such that they have canonical kinetic terms

while keeping track of the interaction terms in a much more straightforward manner than

that outlined in Section 4.2. This is the methodology that was employed in deriving the Feyn-

man rules of Appendix C.1, using the FeynRules package of [21].
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5 H → ¯̀̀ γ in the Standard Model

The standard model calculation of H → ¯̀̀ γ has been discussed extensively

in the literature [22, 23, 24, 25, 26, 27, 28]. In this thesis we present results also published in

[29].

In this section we discuss the standard model Higgs decay to two leptons and a photon, H →
¯̀̀ γ. We will discuss the contributions from tree-level, how they are chirally suppressed and

calculate the decay width at tree-level. We then go on to discuss the contributions at one-

loop, here we go into more depth about the contributions from loops of top-quarks and cal-

culate the matrix elements of the Higgs decay via top quark loop to two photons and to a

photon and a Z boson respectively, allowing the Z and one of the photons to be o�-shell.

We then discuss the rest of the one-loop contributions of the H → ¯̀̀ γ based on Ref.[29]

to later be able to use their calculations of the total one-loop standard model contribution

to this particular Higgs decay. We use a parameterization of the total one-loop amplitude

from Ref.[29] to perform the decay width integral. We note that the decay widths obtained

at one-loop are of same or larger order of magnitude compared to the tree-level decay width

for muons and electrons respectively. With this in mind we also introduce Dalitz plots as a

way to obtain more information about at what energies, which contributions a�ect the decay

width the most.

The results in this section have also been published in [29].

5.1 Standard model at Tree-level

In the standard model the Higgs decays at tree level to two leptons through the Yukawa cou-

pling. If one of these leptons radiate a photon we �nd that the Higgs can decay to two lep-

tons and a photon, H → ¯̀̀ γ at tree-level. Feynman diagrams for this decay are shown in

Figures 11 and 12. The Yukawa coupling as de�ned in Section 4.2.3 couples left and right

handed leptons together and is proportional ot mf/v. As a result the production of leptons

from the Yukawa coupling is chirally suppressed as m`/v.

H(k1 + k2 + k3)

ψ̄(k2)

ψ(k3)

γµ, k1

Figure 11: Higgs to two leptons and photon through radiation of photon
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ψ(k3)

H(k1 + k2 + k3) ψ̄(k2)

γµ, k1

Figure 12: Higgs to two leptons and photon through radiation of photon

The two diagrams in Figures 11 and 12 correspond to the two cases of H → ¯̀̀ γ at tree-level,

where either the lepton or the anti-lepton radiates a photon. To �nd the matrix elements for

this decay we need the following Feynman rules de�ned in Appendix C: The Higgs coupling

to fermions, the photon coupling of leptons and the fermion propagator. For the �rst diagram

in Figure 11 we obtain the matrix element:

M1 = −Qfemf

v
ε∗µ(k1)ū(k3)aγ

µ
ab

(
(/k3 + /k1)bc +mf

(k3 + k1)2 −m2
f + iε

)
v(k2)c . (108)

Where εµ(k1) is the photon polarization associated with the external photon with momentum

k1 and Qf is the fermion charge. For the second diagram, Figure 12, we obtain:

M2 = −Qfemf

v
ε∗µ(k1)ū(k3)a

(
(−/k2 − /k1)ab +mf

(k2 + k1)2 −m2
f + iε

)
γµbcv(k2)c . (109)

We are interested in calculating the squared matrix element, and since the total matrix ele-

ment is the sum of the two matrix elements i.e.: MTotal = M1 +M2, the squared matrix

element will be:

|MTotal|2 = |M1|2 + |M2|2 +M1M†
2 +M2M†

1 = |M1|2 + |M2|2 + 2R
[
M1M†

2

]
. (110)

Where R(x) takes the real part of x. Evaluating the terms separately we �nd the following:

|M1|2 =
−Q2

fe
2m̄2

f

v2 ((k3 + k1)2)2 gρµTr (/k3γ
µ (/k3 + /k1) /k2 (/k3 + /k1) γρ) . (111)

|M2|2 =
−Q2

fe
2m̄2

f

v2 ((k2 + k1)2)2 gρµTr (/k3 (/k2 + /k1)) γµ/k2γ
ρ (/k2 + /k1)) . (112)

M1M†
2 =

−Q2
fe

2m̄2
f

v2(k3 + k1)2(k2 + k1)2
gρµTr (/k3γ

µ (/k3 + /k1) /k2γ
ρ (−/k2 − /k1)) . (113)

From these squared matrix elements we see the chiral suppression in the prefactor as (m̄f/v)2.

Employing the rules in Table 7 for traces over γ-matrices and contracting the Lorentz-indices

we take the lepton's mass to be mf → 0 except in the leading order from the Yukawa cou-

pling. This is done be able to write the equations in a publication friendly way, however the

masses are used in the calculation of the decay widths below. Furthermore, we introduce the

invariant variables de�ned in Appendix D, which with our momentum assignment becomes:
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s1 = (k1 + k2)2, s2 = (k2 + k3)2 and s3 = (k3 + k1)2. Finally, using the relation between these

variables and masses, s3 = M2
H − s1 − s2 to eliminate s3 we �nd:

|MTotal|2 =
4e2m2

f (MH + s2
2)

v2s1(s1 + s2 −M2
H)

. (114)

Where MH is the mass of the Higgs introduced as the square root of the center of mass en-

ergy,
√
s = MH . Using the de�nition of the decay width in three body phase space of Sec-

tion D we �nd:

Γ
(0)

H→l̄lγ =
1

2MH

1

(2π)5

8π2

32M2
H

∫
ds1ds2Θ[−G(s1, s2,M

2
H ,m

2
l̄ , 0,m

2
l )]

4e2m2
f (MH + s2

2)

v2s1(s1 + s2 −M2
H)

. (115)

Here the superscript (0) denotes that this is the tree level result. Eq. 115 has an IR diver-

gence because of the s1 in the denominator which makes the integral ill de�ned at s1 → 0. As

a result we use a minimum photon energy of 5GeV. To see how this works we use the expres-

sion for s2 from Appendix D but written in terms of the decaying particle's momentum in its

center of mass frame p = [
√
s, 0]:

s2 = (p− p1)2 . (116)

Where our momentum assignment has p1 as the photon momentum. This then lets us write

the photon energy as[30]:

E1 =
s− s2

2
√
s
. (117)

Taking the photon energy to a minimum of 5GeV therefore corresponds to:

5GeV ≤ M2
H − s2

2MH

. (118)

The parameters used are presented in Table 2. The integral was performed with the Vegas

algorithm from the CUBA library for Mathematica[31].

Γ
(0)
H→ēeγ = 3.44× 10−12 GeV , (119)

Γ
(0)
H→µ̄µγ = 1.01× 10−7 GeV , (120)

Γ
(0)
H→τ̄ τγ = 2.10× 10−5 GeV . (121)

We have calculated the tree-level decay width for the Higgs decay H → ¯̀̀ γ. We found these

to be chirally suppressed and it is therefore interesting to compare these to the loop contribu-

tions.

5.2 Standard Model Loops

At the order of one loop in the standard model the Higgs can decay to two leptons and one

photon through many processes. Two examples of one-loop Higgs decay are the top quark

loop processes producing either two photons from which a photon can convert into a lepton

pair, or a photon and a Z boson which can produce a lepton pair. See Figure 13. Since top-

quarks have Yukawa coupling of order one Yt ∝ mt/v ≈ O(1), the top-quark loop has a large

contribution from the Yukawa coupling compared to other lighter fermions.
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e 0.308253

MH 125.10GeV

me 0.51099895× 10−3 GeV

mµ 105.6583745× 10−3 GeV

mτ 1.77686GeV

mt 172.4GeV

MZ 91.1876GeV

GF 1.1663787× 10−5 GeV−2

Table 2: Parameters used in numerical integration of decay width see Refs. [32] , [33] , [34], [10]

and [11]

5.2.1 H → γγ at through top-quark loop

l

l − p1

l + p2

H(p1 + p2)

γµ, p2

γν , p1

(a)

H(p1 + p2)

γµ, p2

γν , p1

(b)

Figure 13: (a) Feynman diagram of the non-divergent top-quark loop process allowing for double

photon production from Higgs decay. (b)Second Feynman diagram for the H → γγ process through

top-quark loop it is identical to Figure a, except it has reversed fermion �ow in the top-quark loop,

amounting to a reversal p1 and p2

To calculate the top-quark one-loop matrix element for the process H → γγ, we use the

Feynman rules from Appendix C. For the Feynman diagram in Figure 13a we obtain the ma-

trix element:

M(1)
Hγγ = −imt

4g2Nce
2

9mW

ε∗µ(p2)ε∗ν(p1)

∫
dDl

(2π)D

Tr
(

(−/l + /p1
+mt)γ

ν(−/l +mt)γ
µ(−/l − /p2

+mt)
)

(l2 −m2
t + iε)((l − p1)2 −m2

t + iε)((l + p2)2 −m2
t + iε)

.

(122)

Where mt is the top quark mass, εµ , εν are the on shell photon polarization and g2 is as dis-

cussed in Section 1.2.2 the SU(2) gauge coupling. Furthermore the top-quark charge Qt = 2
3
e

has been introduced explicitly, and quark colors have been introduced as the number of col-

ors Nc. The superscript (1) denotes that this is a one-loop order process. The second dia-

gram, Figure 13b simply introduces a factor of two which is included in Eq. 122.

To compute this integral we use the Package-X library for Mathematica [35], which allows

for fast loop calculations. In order to compare with Ref. [36] we parametrize the result and

expand in terms of a = MH

4mt
keeping terms up to O(a) and obtain:

M(1)
Hγγ = −i e

2

8π2

4

3
ε∗µ(p2)ε∗ν(p1)

(
p1,µp2,ν

3
+

(
7p1,µp2,ν

90
− 2m2

t

3
gµν
)
a+O(a2)

)
. (123)
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Where we have usedg2 = 2mW
v

and Nc = 3. We get similar momentum dependence as

Ref.[36].

Allowing one of the photons to be o�-shell would then allow for a γ → ¯̀̀ vertex with lepton-

photon Feynman rule from Appendix.C:

γ → ¯̀̀ = −iQ`eγ
µ . (124)

5.2.2 H → Zγ at through top-quark loop

l

l − p1

l + p2

H(p1 + p2)

γµ, p2

Zν , p1

(a)

H(p1 + p2)

γµ, p2

Zν , p1

(b)

Figure 14: (a)Feynman diagram of Higgs decay to a Z boson and a photon through a top-quark loop.

(b)Second Feynman diagram for the H → γZ process through top-quark loop it is identical to Fig-

ure a, except it has reversed fermion �ow in the top-quark loop, amounting to a reversal p1 and p2

We assemble the Feynman diagram in Figure 14a using Feynman rules in Appendix.C. We

use the same conventions as for H → γγ in Eq. 122, obtaining a factor two for the second

diagram in Figure 14b. We �nd the matrix element:

M(1)
HγZ = −imt

2Ncg2e

3cwmW

ε∗µ(p2)ε∗ν(p1)

×
∫

dD

(2π)D

Tr
(

(−/l + /p1
+mt)γ

ν(gLPL + gRPR)(−/l +mt)γ
µ(−/l − /p2

+mt)
)

(l2 −m2
t + iε)((l − p1)2 −m2

t + iε)((l + p2)2 −m2
t + iε)

.

(125)

We computing the integral with with Package-X as we did for the H → γγ loop. We then

parameterize the result as a series in a =
M2
H

4m2
t
, b =

M2
Z

4m2
t
to order O

(
1
m2
t

)
, with MZ being the

Z-boson mass and �nd:

M(1)
HγZ = −i e

2

4π2

(
1

2
− 4

3
sin(θw)2

)
ε∗µ(p2)ε∗ν(p1)

×
(
p1,µp2,ν

3
+

(
11
p1,µp2,ν

90
+

2m2
t

3
gµν
)
b+

(
7p1,µp2,ν

90
− 2m2

t

3
gµν
)
a+O

(
(a+ b)2

))
.

(126)

Here θw is the weak mixing angle. We �nd similar momentum dependence as Ref. [36].
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(a) (b) (c)

Figure 15: The rest of the diagrams contributing to the standard model Higgs decay with �nal states

of either two photons or a photon a Z�boson taken from Ref. [29]. (a) and (b) have internal lines

of either W�bosons, charged Goldstone bosons, charged ghosts[29], or fermions as we saw in the

top-loop of Figures 13 and 14. If �nal state is a photon and a Z�boson (c) the loops can have in-

ternal lines from either one Goldstone boson and two W�bosons or two Goldstone bosons and one

W�boson[29].

As with the H → γγ process, if we let the Z-boson be o�-shell it would allow for a Z → ¯̀̀

vertex with Feynman rule as de�ned in Appendix.C:

Z → ¯̀̀ = −iγµ(gLPL + gRPR) . (127)

In the following applications we will use the full expressions for H → γγ and H → γZ and

not the parameterized expressions in Eqs. 123 and 126.

5.2.3 Electro-weak Loops

As mentioned previously the two top-quark loops are not the only loops contributing to H →
¯̀̀ γ at one-loop level in the standard model. The other possible standard model one-loop di-

agrams contributing to H → ¯̀̀ γ consists of the electro-weak bosonic or fermionic loops to �-

nal states containing either two photons or a photon and a Z�boson[29], see Figures 15 and 16a.

These contribute to H → ¯̀̀ γ by a photon or a Z�boson going o� shell and decaying to two

leptons like the top-quark loops from Sections 5.2.1 5.2.2 did. Among these are the top-quark

loops as discussed in the previous section. The rest of the electro-weak loops, shown in Fig-

ures 16a through 16c, are the Higgs decaying to two external fermions via loops of two W or

Z�bosons and a fermion. Then either an external fermion or the internal fermion line can ra-

diate a photon and thereby contribute to H → ¯̀̀ γ at one-loop. It should be noted that these

electroweak loops are not chiral in nature but bosonic. This means that they are not sup-

pressed as mf/v as chirally suppresed tree-level contribution, but proportional to M2
Boson/v

which is large for gauge bosons of the standard model.

5.3 Full Standard model loop calculation

As discussed above, there are more processes than the H → γγ and H → γZ, that can

contribute to the H → ¯̀̀ γ at one-loop level, these are the electro-weak loops discussed in
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(a)
(b) (c)

Figure 16: Feynman diagrams from Ref. [29] (a) are diagrams of one-loop order Higgs decays result-

ing in a either two photons or a photon and a Z-boson the box therefore represents all possible loops

for those �nal states. Figure 15 shows the possible loops which are represented by the box in Figure a.

(a) contains the top-loops from Sections 5.2.1 5.2.2. The diagrams of (b) and (c) have decays of the

Higgs boson to loops of two W or Z-bosons resulting in two external fermions. A photon can radiate

from either one of the external fermions (b) or the internal fermion line in the loop(c).

Section 5.2.3. The total one-loop amplitude can parametrized as[29]:

(128)
iM1−loop = (c1Lη

µν + c2Lk
µ
2k

ν
1 + c′2Lk

µ
3k

ν
1)ūa(k2)(γνPL)abvb(k3)

+ (c1Rη
µν + c2Rk

µ
2k

ν
1 + c′2Rk

µ
3k

ν
1)ūc(k2)(γνPR)cdvd(k3) .

Where we have the same momentum con�guration as in Figures 13 and 14. The ciL,R are the

coe�cients of the kinematic structures from the full one-loop matrix element for H → l̄lγ in

the standard model. Squaring this matrix element in the limit ml → 0 we obtain:

|M1−loop|2 =
1

2
s2(4c1Lc

∗
1L+4c1Rc

∗
1R+(c

′∗
2Lc2L+c′2Lc

∗
2L+c∗2Rc2R+c′2Rc

∗
2R)s1(s1+s2−M2

H)) . (129)

Where we have used the invariant variables de�ned in Appendix.D. We supplement our cal-

culation of the top loop contribution from Sections 5.2.1 and 5.2.2, with the electroweak loops

as calculated in Ref. [29] to obtain the coe�cients ci,L,R of Eq. 129. We then go on to calcu-

late the decay width. The numerical integration was done with Mathematica libraries CollierLink[35]

and CUBA[31] with error at the level of less than a per mil (<h). The parameter used are

those in Table 2 We �nd:

Γ
(1)
H→ēeγ = 5.70× 10−7 GeV , (130)

Γ
(1)
H→µ̄µγ = 3.73× 10−7 GeV , (131)

Γ
(1)
H→τ̄ τγ = 2.84× 10−7 GeV , (132)

It is interesting to compare these results with the tree level results. Since the tree-level pro-

cess is chirally suppressed we �nd that the one-loop result is very signi�cant in compari-

son. In particular we �nd that for electrons the one-loop contributions is far more signi�cant

than the tree-level and for the muon the two are of the same order of magnitude. To learn

more about the processes one can make a Dalitz plot. We produce Dalitz plots by plotting

the integrand of the decay width, as de�ned in Eq. D.8, over the physical region de�ned by

G[x, y, z, u, v, w] in Eq.D.6 on the (s1, s2) plane. Such a plot will then show what part of the
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integrand of the decay width has the most impact on the total decay width. As an example,

take the tree-level decay width for H → ¯̀̀ γ in Eq. 115. Plotting:

dΓ
(0)

H→l̄lγ

ds1ds2

=
1

2MH

1

(2π)5

8π2

32M2
H

Θ[−G(s1, s2,M
2
H ,m

2
l̄ , 0,m

2
l )]

4e2m2
f (MH + s2

2)

v2s1(s1 + s2 −M2
H)

, (133)

for muons gives the plot on the left in Figure 17. The Dalitz plots presented in this section

are also published in Ref [29]. The plot on the right in Figure 17 is the Dalitz plot of the

0 m̄2
H

0

m̄2
H

m̄2
Z

s1

s 2

SM Tree

0 m̄2
Hs1

SM Loop

10−18

10−16

10−14

10−12

Figure 17: Dalitz of the standard model Higgs decay to two fermions and a photon. The dotted line

marking the Z-boson mass are to compare with the one-loop, which has a pole at m2
Z from the H →

γZ processes where the Z�boson decays to two fermions. An example of this is the top loops to a

photon and a Z�boson in Figure 14. Units are [GeV]−3. Also published in Ref [29].

one-loop decay width from Eq. 129. Dalitz plots such as those in Figure 17 are incredibly

useful in learning about the kinematics of a given process. We note that in Figure 17 we can

see, for the one-loop case, a resonance in s2 at the mass of the Z-boson squared m2
Z . Since

s2 = (p2 + p3)2 corresponds to the squared center of mass energy of the two �nal state lep-

tons, this pole corresponds to the case where the Z�boson from a H → γZ process, such as

the ones in Figure 14, are allowed to be o�-shell and convert to a lepton pair. We also see

the di�erential width is peaked as the photon corresponding to the lepton pair goes o� shell,

i.e. s2 → 0 and produce the lepton pair, corresponding processes with H → γγ → ¯̀̀ γ.

An example of such a process is the top-quark loop to two photons in Figure 13 Finally the

tree level process seems to have increasing e�ect at higher s2 where the one-loop contribution

falls o�. It is evident Dalitz plots such as those in Figure 17 can be instrumental for experi-

ments, guiding their search and helping distinguish speci�c processes by isolating particular

regions of s2. In particular it is evident that we can study the standard model of di�erent

loop contributions as well as tree level separately by using cuts in s2 on the di�erential width

in Eq.133, Ref. [37].
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5.4 Conclusions from the Standard Model Calculations

In this section we discussed the Higgs decay to two leptons and a photon, H → ¯̀̀ γ at both

tree and one-loop level. We went on to calculate the tree-level decay width we also note that

the tree-level decay is chirally suppressed. We assembled the matrix elements of the Higgs

decay via top-quarks loops in the standard model and explained how the two cases H → γγ

and H → γZ could contribute to H → ¯̀̀ γ at one loop. We then discussed the rest of the

one-loop contributions of the H → ¯̀̀ γ and using a parameterization of the total one-loop

amplitude we calculated the total decay width at one-loop in the standard model. We discov-

ered that in the standard model the decay widths of H → ¯̀̀ γ at one-loop can be of same

order of magnitude or larger than the tree level depending on the �avor of the lepton. We

then introduced Dalitz plots to obtain information about dominant contributions to the total

decay width at di�erent energies.

6 SMEFT Contributions at Tree-Level

In this section we discuss the tree-level SMEFT contributions to the Higgs decay H → ¯̀̀ γ.

We then calculate the matrix elements for the tree-level SMEFT contributions to H → ¯̀̀ γ.

These matrix elements are then used to calculate the SMEFT contribution to the decay width

H → ¯̀̀ γ, normalized to the standard model. This is �rst done at tree-level in and then we

include the interferences of the tree-level SMEFT and the one-loop standard model ampli-

tudes. The result is expanded in terms of the Wilson coe�cents for the di�erent SMEFT op-

erators involved. The results in this section are also published in collaboration with T.Corbett

Ref. [29].

The SMEFT as discussed in Section 4 is a bottom-up EFT produces predictions with correc-

tions to the standard model in terms of the SMEFT Wilson coe�cients. In the case of the

process H → ¯̀̀ γ we have particular interest, because the tree-level amplitude is chirally

suppressed. This means that the SMEFT contributions could have larger signi�cance and

might be more easily found through experiments. We are interested in �nding the tree-level

SMEFT corrections to H → ¯̀̀ γ.

6.1 Tree-level SMEFT

Following Ref.[29] we have the Tree-level squared matrix element with SMEFT corrections:

|MTree|2= |M(0)
Standard Model|2(1 + 2∆H ¯̀̀ + [∆

(6)

H ¯̀̀ ]2) + |MC1 +MC2|2 . (134)

The ∆H ¯̀̀ is the SMEFT correction to the standard model Yukawa coupling H → ¯̀̀ , com-

ing from the �nite �eld rede�nitions (from class 3 operators) as was discussed in Section 4.2
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as well as direct contributions from the Class 5 operators of 5 which are rescalings of the

standard model Yukawa couplings. The corrections in the parenthesis of Eq. 134 are de�ned

as[29]:

∆H ¯̀̀ = v2

[
c

(6)
H2 −

1

4
c

(6)
HD −

v2

8
(c

(8)
HD + c

(8)
HD,2) +

3v2

32
(c

(6)
HD − 4c

(6)
H2)2

]
− 3v3

2
√

2m̄`

(
c

(6)
eH +

v2

2
c

(8)
eH

)
.

(135)

The barred lepton mass m̄` has implicit SMEFT shifts in it, and as lepton masses are among

our input parameters this implicit dependence is absorbed into the input parameter. The

term with superscript (6) in Eq. 134 is just the dimension 6 part, i.e. the part with super-

script (6) in Eq. 135. This is simply a result of truncating the expansion in 1/Λ (see Sec-

tion 4) at order 1/Λ4. Additionally, in Eq. 134, we have two new tree-level amplitudesMC1,MC2

for H → ¯̀̀ γ from the SMEFT. These come from the class 4 operators in Table 5 and allow

for the processes H → γγ (MC1) and H → γZ (MC2) at tree-level. Following Ref. [29] we

de�ne these tree-level SMEFT processes as the following numbered cases:

1. Higgs coupling directly to two photons as the H → γγ vertex with Feynman rule

Eq. C.5 where the photon then decays to a lepton pair via the standard model coupling

modi�ed by e→ ē. (Class 4 operators in Table 5).

2. Higgs coupling directly to a photon and a Z�boson as the H → γZ vertex with Feyn-

man rule Eq. C.6 where the Z�boson then decays to a lepton pair via the modi�ed cou-

pling of Eq. C.10. (Class 4 operators in Table 5).

Where the case numbers are represented as subscripts on matrix elements asMCi. Using

the Feynman rules for these couplings found in Appendix.C.1, we can reproduce the matrix

elementsMC1 MC2:

iMC1 = −i ēQlgHAAv

s2
(kν1(k2 + k3)µ − k1 · (k2 + k3)ηµν)ū(k2)γνv(k3)ε∗µ(k1) . (136)

iMC2 = iMC2,L + iMC2,R . (137)

iMC2,L =
−ivgHAZ ḡZ(gL + g′L)

4(s2
2 −M2

Z + iΓZMZ)
(kν1(k2 +k3)µ−k1 ·(k2 +k3)ηµν)ū(k2)γν)PLv(k3)ε∗µ(k1) . (138)

iMC2,R =
−ivgHAZ ḡZ(gR + g′R)

4(s2
2 −M2

Z + iΓZMZ)
(kν1(k2 +k3)µ−k1 ·(k2 +k3)ηµν)ū(k2)γν)PRv(k3)ε∗µ(k1) . (139)

The barred parameters in these matrix elements as mentioned above correspond to implic-

itly shifted parameters due to the SMEFT operators. g′L, g
′
R are also such shifts to the left

and right handed couplings. We see the tree-level SMEFT matrix elements are not chirally

suppressed as the standard model tree-level matrix element. As mentioned earlier in this sec-

tion, this makes the H → ¯̀̀ γ a good place to look for SMEFT corrections to the standard

model through experiment. The expression in Eq. 6 can be integrated numerically and used
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to obtain the SMEFT contributions normalized to the standard model in terms of the Wilson

coe�cients, de�ning in the case of muons (our calculations henceforth will be with muons):

∆ =
ΓSMEFT
H→µ̄µγ

ΓStandard Model
H→µ̄µγ

− 1 . (140)

Where the input parameters used are those given in Table 2. Using the tree level SMEFT

contribution of Eq. 134 normalized to the standard model decay width of Sections 5.1and 5.3

as in Eq.140 we obtain:

∆ = 0.40c̃
(6)
H2 − 0.10c̃

(6)
HD − 0.050c̃

(8)
HD − 0.050c̃

(8)
HD,2 + 0.81[c̃

(6)
H2]2 − 0.40c̃

(6)
H2c̃

(6)
HD + 0.050[c̃

(6)
HD]2

− 0.43
v

m̄µ

c̃
(6)
eH + 0.23

v2

m̄2
µ

[c̃
(6)
eH ]2 − 0.21

v

m̄µ

c̃
(8)
eH − 0.43

v

m̄µ

c̃
(6)
eH c̃

(6)
H2 + 0.11

v

m̄µ

c̃
(6)
eH c̃

(6)
HD

+ 104
(

5.9[c̃
(6)
HB]2 + 1.9c̃

(6)
HB c̃

(6)
HW + 1.1[c̃

(6)
HW ]2 + 4.9c̃

(6)
HB c̃

(6)
HWB − 2.5c̃

(6)
HW c̃

(6)
HWB + 1.8[c̃

(6)
HWB]2

)
.

(141)

Where the following notation has been used:

c̃
(6)
i = v2c

(6)
i , (142)

c̃
(8)
i = v4c

(8)
i . (143)

The result in Eq.141 was obtained by integrating over all of phase space with the exception

of the 5GeV minimum photon energy, as was done in the standard model section 5. However,

in our discussion about Dalitz plots in Section 5.3 it was evident that some regions of phase-

space can be more interesting than others. This is particularly so when looking for speci�c

corrections such as those of the di�erent Wilson coe�cients. This will be explored further in

Section 6.4. We have found in Eq. 141 the ratio of the SMEFT corrected decay width with

the standard model decay width. As was discussed in Section 5 we expect the SMEFT con-

tributions to be signi�cant even at tree-level because of the chiral suppression of the tree-

level interaction in the standard model. With some of the Wilson coe�cients having contri-

butions of order O(1) to the standard model this expectation seems to have been correct.

6.2 Tree-level SMEFT at one-loop

Beyond tree level we have the tree-level SMEFT contribution interfered with the standard

model one-loop as[29]:

|Mone−loop|2 =
1

16π2
2Re

[
M(1)

Standard Model (MC1 +MC2 +MC3 +MC4)∗
]
, (144)

withMC1,MC2 de�ned as in Eqs. 136, 137, 138 and 139. We have two new casesMC3 and

MC4 in Eq.144, which we label as we did for the casesMC1 andMC2:
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3. Higgs decay directly to ¯̀̀ γ through 4-point interaction vertex with Feynman rule Eq. C.17.

(Class 11 operators of dimension 8, see Table 6).

4. Higgs decay directly to ¯̀̀ γ through 4-point interaction vertex with Feynman rule Eq. C.17

(Class 15 operators of dimension 8, see Table 6).

We note that standard model tree-level matrix, including its SMEFT shift is of the form

ūγµγνv (see Eq. 108). Therefore its interference with any other matrix elements in Eq. 144

is proportional to the fermion mass (see Table 8) and therefore negligible under mf → 0.

MC3 andMC4 can be constructed from the Feynman rules in Appendix. C.1:

MCi =MCi,L +MCi,R . (145)

iMC3,L = i
A11Qlev

2
(kν1)(k2 + k3)µū(k2)γνPLv(k3)ε∗µ(k1), . (146)

iMC3,R = i
B11Qlev

2
(kν1)(k2 + k3)µū(k2)γνPRv(k3)ε∗µ(k1) . (147)

(148)iMC4,L = ivA15(kν1(k2 + k3)µ − k1 · (k2 + k3)gµν)ū(k2)γνPLv(k3)ε∗µ(k1) .

(149)iMC4,R = ivB15(kν1(k2 + k3)µ − k1 · (k2 + k3)gµν)ū(k2)γνPRv(k3)ε∗µ(k1) .

These matrix elements,MC3,MC4, corresponds to the decay H → ¯̀̀ γ happening at tree-
level through a single four-point vertex. If we include Eq. 144 in Eq. 140 we obtain the full
equation:

∆=0.40c̃
(6)
H2 − 0.10c̃

(6)
HD − 0.050c̃

(8)
HD − 0.050c̃

(8)
HD,2 + 0.81[c̃

(6)
H2]2 − 0.40c̃

(6)
H2c̃

(6)
HD + 0.050[c̃

(6)
HD]2

−0.43
v

m̄µ
c̃

(6)
eH + 0.23

v2

m̄2
µ

[c̃
(6)
eH ]2 − 0.21

v

m̄µ
c̃

(8)
eH − 0.43

v

m̄µ
c̃

(6)
eH c̃

(6)
H2 + 0.11

v

m̄µ
c̃

(6)
eH c̃

(6)
HD

+104
(

5.9[c̃
(6)
HB]2 + 1.9c̃

(6)
HB c̃

(6)
HW + 1.1[c̃

(6)
HW ]2 + 4.9c̃

(6)
HB c̃

(6)
HWB − 2.5c̃

(6)
HW c̃

(6)
HWB + 1.8[c̃

(6)
HWB]2

)
−270(c̃

(6)
HB + c̃

(8)
HB)− 80(c̃

(6)
HW + c̃

(8)
HW + c̃

(8)
HW,2) + 150(c̃

(6)
HWB + c̃

(8)
HWB)

−540[c̃
(6)
HB]2 − 160[c̃

(6)
HW ]2 + 590c̃

(6)
HB c̃

(6)
HWB − 0.016c̃

(6)
HW c̃

(6)
HWB + 17[c̃

(6)
HWB]2

−270c̃
(6)
HB c̃

(6)
H2 + 130c̃

(6)
HB c̃

(6)
HD − 80c̃

(6)
HW c̃

(6)
H2 − 43c̃

(6)
HW c̃

(6)
HD + 150c̃

(6)
HWB c̃

(6)
H2 + 4c̃

(6)
HWB c̃

(6)
HD

−5.2c̃
(6)
HB c̃

(6)
He − 8.1c̃

(6)
HB(c̃

(6),1
Hl + c̃

(6),3
Hl ) + 5.2c̃

(6)
HW c̃

(6)
He + 8.1c̃

(6)
HW (c̃

(6),1
Hl + c̃

(6),3
Hl )

−3.3c̃
(6)
HWB c̃

(6)
He − 5.2c̃

(6)
HWB(c̃

(6),1
Hl + c̃

(6),3
Hl )

−1.3c̃
(8),1
e2BH2D

− 0.24(c̃
(8),1
e2H2D3 + c̃

(8),2
e2H2D3) + 0.72c̃

(8),1
e2WH2D

− 0.13(c̃
(8),1
l2BH2D

+ c̃
(8),5
l2BH2D

)

+0.025(c̃
(8),1
l2WH2D

+ c̃
(8),5
l2WH2D

)− 0.070(c̃
(8),1
l2WH2D

+ c̃
(8),5
l2WH2D

) . (150)
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We now have the SMEFT corrections to the standard model decay width expanded in terms

of the Wilson coe�cients. Expressions like this can be used when exploring how the ratios

between di�erent Wilson coe�cients change as we restrict the phase space integral to certain

regions. Additionally expression like this are also useful on their own when compared again

large datasets of experimental measurements to hopefully in the future constrain the parame-

ter space of the SMEFT and measure deviations from the standard model.

6.3 SMEFT Dalitz Plots

In this section we discuss Dalitz-like plots of the SMEFT contributions to the Higgs decay

H → ¯̀̀ γ. Dalitz-like plots meaning the plots are normalized to the standard model as to as-

certain the SMEFT contribution relative to the standard model. The Dalitz-like plots in this

section are also published in collaboration with T.Corbett in Ref.[29]. See Figures 18 and 19.

We will discuss how plots of the like can be used to distinguish which SMEFT operators

might be dominant in a certain regime. These Dalitz-like plots are plotted as the ratio of the

di�erent tree-level SMEFT contributions to the total standard model squared matrix element

much like Eq. 140 is normalized to the standard model:

R
(0)
Ci =

|MCi|2

|M(0)
Standard Model +M(1)

Standard Model|2
,

R
(0)
CiCj∗ =

2Re[MCiM∗
Cj]

|M(0)
Standard Model +M(1)

Standard Model|2
, (151)

R
(1)
Ci =

2Re[M(1)
Standard ModelM∗

Ci]

|M(0)
Standard Model +M(1)

Standard Model|2
.

Where the superscript denotes tree-level for (0) and interference with the standard model at

one-loop for (1). The Ci are the numbered cases as described previously. In Eq.150 the decay

widths were integrated over the whole phase-space with the caveat that there was a minimum

photon energy of 5GeV. Looking at the Dalitz-like plots in Figures 18 19 we see as in the

standard model Dalitz plots (Figure 17) there are regions where the di�erent operators have

larger contributions to the total decay width this motivates the idea of making certain cuts

in the kinematic invariant s2 to emphasize certain operators. As such the Dalitz-like plots ex-

plored here present an opportunity of �ne tuning predictions for experimentalists to test but

that process also introduces more model dependence. Curiously some of the Dalitz-like plots

have sign �ips indicated by solid black line, where the top-most region has been taken to al-

ways be positive. The sign of interferences of the formMiM∗
j are not guaranteed to be pos-

itive as in the case of a squared matrix element of the form |M|2. As a results sign �ips oc-

curs as can occur as s2 varies. It is interesting to note that in Figure 19 we see that there is

two sign �ips for the left handed parts whereas there are only one for the right handed part.

In tandem with the above discussion about emphasizing certain SMEFT contributions these

sign �ips could provide a way of combining certain regions as to isolate SMEFT contributions

of interest.
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Figure 18: Dalitz-like plots de�ned in Eq. 151. Wilson coe�cients have been pulled out of the ratios.

The �±� indicates that the Left and right handed parts are are the same up to the normalization indi-

cated by the plot title. Also published in Ref.[29]
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Figure 19: Second set of Dalitz-like with the same descriptions as in Figure 18. Also published in

Ref.[29]

We now turn from our discussion of the Dalitz-like plots to proposing regions as cuts of s2 in

the phase space with the goal of emphasizing the di�erent SMEFT contributions. We remind

the reader that s2 = (k2+k3)2 is the invariant mass of the two �nal state leptons, i.e di-lepton

system. We de�ne a set of cuts in s2 as regions R1 through R5 which are summarized in Ta-

ble 3. The �rst region R1 is just the full phase space yielding Eq. 150. For Region two our

goal is to emphasize the C1 contributions from the class 4 operators. Looking at Figure 18 we

see that these are concentrated at low s2 where the standard model is not resonant. Based on

this we de�ne R2 as [102 ≤ s2 ≤ 402].

Region three R3 has been designed to emphasize the C2 contributions of the class 4 opera-

tors in addition to the standard model resonance at m2
Z . Looking at Figures 18 and 17 we see

that the region [702 ≤ s2 ≤ 1002]GeV2 encapsulates the major contribution of C2 in addition

to capturing the Z-boson resonance of the standard model at one-loop.

A fourth region R4 is designed to emphasize the contribution from the standard model at

tree-level. This includes the shifts to it from the class 3 and 5 operators, contained in ∆H ¯̀̀

Page 42 of 61



Thor Blokker Rasmussen Master's Thesis

Region [GeV]2 Purpose of emphasis

R1 (0 ≤ s2 ≤ m̄2
H) No cut/General

R2 (102 ≤ s2 ≤ 402) Standard model non-resonant and C1

R3 (702 ≤ s2 ≤ 1002) Standard model resonant, C2 and C3

R4 (1002 ≤ s2 ≤ m̄2
H) Standard model tree and its SMEFT correction

R5 (452 ≤ s2 ≤ 502)− (652 ≤ s2 ≤ 802) C3L & C3L

R6 (452 ≤ s2 ≤ 502) + (652 ≤ s2 ≤ 802) Control for R5

Table 3: This table summarizes the di�erent cuts in the phase space integral discussed in Section 6.4

as the regions R1, R2, R3, R4, R5, R6 and what features they attempt to emphasize.

as discussed in Sections 4.2 and 6.Looking at Figures 17 and 18 we �nd that a region [100 ≤
s2 ≤ m̄2

H ]GeV2 encapsulates the standard model tree-level contribution, which is concentrated

at high s2 ∼ m̄2
H .

In the attempt to emphasize the direct four point vertices coming the class 11 and 15 opera-

tors we construct a �fth region R5. Looking at Figure 19 we see a large contribution from the

left handed part of both C3 and C4 in the middle and bottom of the s2 range. Additionally

the right handed region also has a large contribution through out these two regions. However

the left handed contribution has an additional sign �ip. In region R5 we attempt to use the

second sign �ip of the left hand C3L and C4L. This is done by subtraction of two ranges with

contribution of di�erent sign in the left handed case only due to the second sign �ip. sub-

tracting these regions should then have cancellations in all other cases than that of the C3L

and C4L. Ranges chosen are [452 ≤ s2 ≤ 502]GeV2 and [652 ≤ s2 ≤ 802]GeV2. The region for

R5 is then [452 ≤ s2 ≤ 502]GeV2 − [652 ≤ s2 ≤ 802]GeV2.

Finally we present as a sanity check the region R6 which is the sum of the subregions in R5.

This region should provide emphasize the opposite of R5 which means we should see suppres-

sion of the cases C3 and C4 and enhancement of C1 and C2.

6.4 Optimizing SMEFT Searches

In this section we discuss the combination of Dalitz plots as discussed in Sections 5 and 6.3

and the SMEFT contributions discussed in Section 6. We are interested in providing experi-

mentalists with as easily testable predictions as possible, but we are also interested in as lit-

tle model dependence as possible. We present two assumptions based on the dependence of

Eq. 150 on cuts in the kinematic invariant s2 (invariant mass of the �nal state di-lepton sys-

tem), where the third line without any assumptions seems dominant.

1. The �rst assumption is made by restoring the factor vi−4/Λi−4 absorbed into c̃(i)
j , then

assume that c(i)
j = 1. Assuming Λ to some scale then lets us �nd a scale for which
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the terms linear in dimension six Wilson coe�cients c̃(6)
j in Eq. 150 could dominate the

terms quadratic in those same Wilson coe�cients e.g. line 3 of Eq. 150. This is because

the quadratic dimension six and linear dimension eight terms would have 1/Λ4 depen-

dence whereas the linear dimension six term would have 1/Λ2 scaling.

2. The second assumption is the assumption of weakly interacting new physics where op-

erators of class 4 with Wilson coe�cients: (c
(6)
HB, c

(6)
HW , c

(6)
HWB), only occur at loop level [38].

These will therefore be suppressed by a factor of 1/(16π2) meaning we take
[
c

(6)
HB, c

(6)
HW , c

(6)
HWB

]
→

1/(16π2)
[
c

(6)
HB, c

(6)
HW , c

(6)
HWB

]
. This assumption leads to the third line remaining domi-

nant but suppressed in the full phase space (Eq. 150).

A third assumption with parts of both of the previous two could be made but this would be

very model dependent, therefore we do not consider it here. Additionally the Wilson coe�-

cients c̃(6)
eH have been constrained[39] and we neglect them in the following discussion.

As mentioned above we present cuts in s2, attempting to enhance di�erent contributions from

the SMEFT operators. In the case of the full phase space (region one R1) except the mini-

mum photon energy in Eq. 150, applying the �rst assumption the third line, corresponding

to |MC1|2 and |MC2|2, remains dominant at a scale from Λ ∼ 1TeV up to Λ ∼ 3.5TeV. Af-

ter this the class 4 operator terms linear in dimension six Wilson coe�cients dominate. Using

the loop assumption in R1 i.e. the full phase space, we �nd that contributions from the class

4 operators remain dominant and that the terms quadratic in the class 4 operators become of

same order as those linear in the class 4 operators. By using both assumptions class 4 opera-

tors will no longer be dominant at Λ ∼ 1TeV.

We present the rest of the results for region R2 to R5. For region two in phase space R2 (see

Table 3) we obtain:

∆R2 =0.12c̃
(6)
H2 − 0.029c̃

(6)
HD − 0.015c̃

(8)
HD − 0.015c̃

(8)
HD,2 + 0.23[c̃

(6)
H2]2 − 0.12c̃

(6)
H2c̃

(6)
HD + 0.015[c̃

(6)
HD]2

−0.12
v

m̄µ

c̃
(6)
eH − 0.062

v

m̄µ

c̃
(8)
eH + 0.066

v2

m̄2
µ

[c̃
(6)
eH ]2 − 0.12

v

m̄µ

c̃
(6)
eH c̃

(6)
H2 + 0.03

v

m̄µ

c̃
(6)
eH c̃

(6)
HD

+105
(

1.4[c̃
(6)
HB]2 + 0.83c̃

(6)
HB c̃

(6)
HW + 0.13[c̃

(6)
HW ]2 − 1.5c̃

(6)
HB c̃

(6)
HWB − 0.46c̃

(6)
HW c̃

(6)
HWB + 0.42[c̃

(6)
HWB]2

)
−720(c̃

(6)
HB + c̃

(8)
HB)− 220(c̃

(6)
HW + c̃

(8)
HW + c̃

(8)
HW2) + 400(c̃

(6)
HWB + c̃

(8)
HWB)

−1400[c̃
(6)
HB]2 − 430[c̃

(6)
HW ]2 + 150[c̃

(6)
HWB]2 + 1600c̃

(6)
HB c̃

(6)
HWB + 4.2c̃

(6)
HW c̃

(6)
HWB

−720c̃
(6)
HB c̃

(6)
H2 + 340c̃

(6)
HB c̃

(6)
HD − 220c̃

(6)
HW c̃

(6)
H2 − 110c̃

(6)
HW c̃

(6)
HD + 400c̃

(6)
HWB c̃

(6)
H2 + 5.9c̃

(6)
HWB c̃

(6)
HD

−18c̃
(6)
HB c̃

(6)
He − 14c̃HB(c̃

(6),1
Hl + c̃

(6),3
Hl ) + 18c̃

(6)
HW c̃

(6)
He + 14c̃

(6)
HW (c̃

(6),1
Hl + c̃

(6),3
Hl )

−11c̃
(6)
HWB c̃

(6)
He − 8.7c̃

(6)
HWB(c̃

(6),1
Hl + c̃

(6),3
Hl )

−3.1c̃
(8),1

e2BH2D − 0.55(c̃
(8),1

e2H2D3 + c̃
(8),2

e2H2D3) + 1.7c̃
(8),1

e2WH2D − 2.4(c̃
(8),1

L2BH2D + c̃
(8),5

L2BH2D)

−0.42(c̃
(8),1

l2H2D3 + c̃
(8),2

l2H2D3)− 0.21(c̃
(8),3

l2H2D3 + c̃
(8),4

l2H2D3) + 1.3(c̃
(8),1

l2WH2D + c̃
(8),5

l2WH2D) (152)

This region was designed to enhance the contributions of case one (C1) coming from the class
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4 operators as discussed in Section 4.2. This also emphasizes the non-resonant contribution

from the standard model as seen in Figure 17. We obtain this region by looking at Figure 18

where we see that the chosen region [102 ≤ s2 ≤ 402] is where C1 seems to have the largest

contribution. Looking at Figure 19 we observe that the direct four point couplings of C3 and

C4 also have a large contribution in the region. We therefore also see an enhancement in

those cases. In particular we �nd that the squared class 4 operator contribution is increased

by an order of magnitude. Using the assumption of a new physics scale 1/Λ the class 4 op-

erator contributions linear in dimension six Wilson coe�cients i.e. scaled as 1/Λ2 will be-

gin to dominate over the otherwise dominant quadratic tree-level class 4 contributions at

Λ ∼ 3.5TeV. Using the weakly interacting new physics assumption, leading to loop sup-

pression of class 4 operators, we �nd that the four-point vertex direct couplings of C3 and C4

become of the same order as the class 4 operators at tree-level. While these calculations are

done for the muon, it is also possible to in�uence the contribution of class 3 operators (those

with Wilson coe�cients: cHD, cH2) by considering lepton �avor. This is because the class 3

operators contribute through the chirally Yukawa coupling. Here tau-leptons will have the

largest contribution while the electron will have the smallest. In fact for tau leptons the class

3 operators will enhanced by (mτ/mµ)2 ∼ 3 × 102, as such we could see the class 3 operators

dominate under the loop-suppression assumption.

Using the region R3 (see Table 3) we �nd:

∆R3 =0.19c̃
(6)
H2 − 0.047c̃

(6)
HD − 0.023c̃

(8)
HD − 0.023c̃

(8)
HD,2 + 0.37[c̃

(6)
H2]2 − 0.19c̃

(6)
H2c̃

(6)
HD + 0.023[c̃

(6)
HD]2

0.19
v

m̄µ

c̃
(6)
eH + 0.10

v2

m̄2
µ

[c̃
(6)
eH ]2 − 0.010

v

m̄µ

c̃
(8)
eH − 0.20

v

m̄µ

c̃
(6)
eH c̃

(6)
H2 + 0.049

v

m̄µ

c̃
(6)
eH c̃

(6)
HD

+104
(

1.4[c̃
(6)
HB]2 − 2.5c̃

(6)
HB c̃

(6)
HW + 1.3[c̃

(6)
HW ]2 + 1.5c̃

(6)
HB c̃

(6)
HWB − 1.7c̃

(6)
HW c̃

(6)
HWB + 0.56[c̃

(6)
HWB]2

)
−16(c̃

(6)
HB + c̃

(8)
HB) + 9.1(c̃

(6)
HW + c̃

(8)
HW + c̃

(8)
HW,2)− 3.9(c̃

(6)
HWB + c̃

(8)
HWB)

−32[c̃
(6)
HB]2 + 18[c̃

(6)
HW ]2 + 2.7c̃

(6)
HB c̃

(6)
HWB − 18c̃

(6)
HW c̃

(6)
HWB + 31[c̃

(6)
HWB]2

−16c̃
(6)
HB c̃

(6)
H2 + 8.9c̃

(6)
HB c̃

(6)
HD + 9.1(6)c̃

(6)
HW c̃H2 − 7.2c̃

(6)
HW c̃

(6)
HD − 3.9c̃

(6)
HWB c̃

(6)
H2 + 10c̃

(6)
HWB c̃

(6)
HD

+4.5c̃
(6)
HB c̃

(6)
He − 16c̃

(6)
HB(c̃

(6),1
Hl + c̃

(6),3
Hl )− 4.5c̃

(6)
HW c̃

(6)
He + 16c̃

(6)
HW (c̃

(6),1
Hl + c̃

(6),3
Hl )

+2.9c̃
(6)
HWB c̃

(6)
He − 10c̃

(6)
HWB(c̃

(6),1
Hl + c̃

(6),3
Hl )

−1.0c̃
(8),1

e2BH2D + 0.57c̃
(8),1

e2WH2D − 0.18(c̃
(8),1

e2H2D3 + c̃
(8),2

e2H2D3) + 0.51(c̃
(8),1

l2BH2D + c̃
(8),5

l2BH2D)

+0.090(c̃
(8),1

l2H2D3 + c̃
(8),2

l2H2D3) + 0.045(c̃
(8),3

l2H2D3 + c̃
(8),4

l2H2D3)− 0.28(c̃
(8),1

l2WH2D + c̃
(8),5

l2WH2D) (153)

From this region we �nd that the SMEFT contribution from class 4 operators has decreased.

This is because in emphasizing C2 we have reduced the C1 contribution which is larger than

C2 by two orders of magnitude. However, as seen in the two �rst plots of Figure 18, in this

region we have thatMC1M∗
C2 has the opposite sign as |MC1|2. This means that some de-

structive interference takes place and is the reason that the class 4 operators are not reduced

by two orders of magnitude but only one. In introducing the assumptions in region R3 we

start with assuming a new physics scale we �nd that class 4 operator terms linear in dimen-
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sion six Wilson coe�cients, i.e. those with 1/Λ2 dependence, overtakes the squared class 4

operator terms with 1/Λ4 scaling at Λ ∼ 8TeV. Invoking the second assumption suppress-

ing the class 4 operators by the loop suppression factor 1/16π2 achieves a balance between all

operators, with them all being close to the same size.

Using region R4 (see Table 3) we �nd:

∆R4 =1.9c̃
(6)
H2 − 0.48c̃

(6)
HD − 0.24c̃

(8)
HD − 0.24c̃

(8)
HD,2 + 3.9[c̃

(6)
H2]2 − 1.9c̃

(6)
H2c̃

(6)
HD + 0.24[c̃

(6)
HD]2

+2.1
v

m̄µ

c̃
(6)
eH + 1.1

v2

m̄2
µ

[c̃
(6)
eH ]2 − 1.0

v

m̄µ

c̃
(8)
eH − 2.1

v

m̄µ

c̃
(6)
eH c̃

(6)
H2 + 0.51

v

m̄µ

c̃
(6)
eH c̃

(6)
HD

+600[c̃
(6)
HB]2 − 710c̃

(6)
HB c̃

(6)
HW + 470[c̃

(6)
HW ]2 + 320c̃

(6)
HB c̃

(6)
HWB − 700c̃

(6)
HW c̃

(6)
HWB + 256[c̃

(6)
HWB]2

+5.5(c̃
(6)
HB + c̃

(8)
HB)− 7.4(c̃

(6)
HW + c̃

(8)
HW + c̃

(8)
HW,2) + 5.2(c̃

(6)
HWB + c̃

(8)
HWB)

+11[c̃
(6)
HB]2 − 15[c̃

(6)
HW ]2 + 14c̃

(6)
HB c̃

(6)
HWB + 6.9c̃

(6)
HW c̃

(6)
HWB − 17[c̃

(6)
HWB]2

+5.5c̃
(6)
HB c̃

(6)
H2 − 2.4c̃

(6)
HB c̃

(6)
HD − 7.4c̃

(6)
HW c̃

(6)
H2 + 2.8c̃

(6)
HW c̃

(6)
HD + 5.2c̃

(6)
HWB c̃

(6)
H2 − 5.8c̃

(6)
HWB c̃

(6)
HD

−4.8c̃
(6)
HB c̃

(6)
He + 8.8c̃

(6)
HB(c̃

(6),1
Hl + c̃

(6),3
Hl ) + 4.8c̃

(6)
HW c̃

(6)
He − 8.8c̃

(6)
HW (c̃

(6),1
Hl + c̃

(6),3
Hl )

−3.1c̃
(6)
HWB c̃

(6)
He + 5.6c̃

(6)
HWB(c̃

(6),1
Hl + c̃

(6),3
Hl )

+0.27c̃
(8),1

e2BH2D + 0.049(c̃
(8),1

e2H2D3 + c̃
(8),2

e2H2D3)− 0.15c̃
(8),1

e2WH2D − 0.50(c̃
(8),1

l2BH2D + c̃
(8),5

l2BH2D)

−0.090(c̃
(8),1

l2H2D3 + c̃
(8),2

l2H2D3)− 0.045(c̃
(8),3

l2H2D3 + c̃
(8),4

l2H2D3) + 0.28(c̃
(8),1

l2WH2D + c̃
(8),5

l2WH2D) (154)

While this region was designed to emphasize the standard model tree contribution, we also

�nd that in this region, looking at Figure 18, class 4 operators are heavily suppressed, espe-

cially the tree-level contributions from squared class 4 operators (|MC1 +MC2|2). However,
despite this we still �nd these class 4 operators dominant before applying further assump-

tions. We make the assumption of a new physics scale and �nd that as for region R3 the class

4 operator terms linear in dimension six Wilson coe�cients begins to dominate the quadratic

terms at some scale. However here we �nd that this happens much earlier at Λ ∼ 2.5TeV.

Next we invoke the loop suppression assumption of the class 4 operators. Here we �nd that

the large suppression from the chosen region in phase space combined with the loop suppres-

sion makes the class 3 contributions in line one, coming from the standard model shift ∆H ¯̀̀ ,

dominate. It should be noted that this region could be enhanced further by considering the

heavier lepton �avor of tau-leptons. As mentioned above this is because the class 3 opera-

tors enter the equation through corrections to the chirally suppressed Yukawa coupling. This

leads to an enhancement of order O(102) for tau-leptons.
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Using region R5 (see Table 3) we �nd:

∆R5 =0.85c̃
(6)
H2 − 0.21c̃

(6)
HD − 0.11c̃

(8)
HD − 0.11c̃

(8)
HD,2 + 1.7[c̃

(6)
H2]2 − 0.85c̃

(6)
H2c̃

(6)
HD + 0.11[c̃

(6)
HD]2

−0.90
v

m̄µ

c̃
(6)
eH − 0.48

v2

m̄2
µ

[c̃
(6)
eH ]2 − 0.45

v

m̄µ

c̃
(8)
eH − 0.90

v

m̄µ

c̃
(6)
eH c̃

(6)
H2 + 0.22

v

m̄µ

c̃
(6)
eH c̃

(6)
HD

+103
(

8.0[c̃
(6)
HB]2 − 18.3c̃

(6)
HB c̃

(6)
HW + 7.4[c̃

(6)
HW ]2 + 12c̃

(6)
HB c̃

(6)
HWB − 8.6c̃

(6)
HW c̃

(6)
HWB − 2.2[c̃

(6)
HWB]2

)
+160(c̃

(6)
HB + c̃

(8)
HB)− 130(c̃

(6)
HW + c̃

(8)
HW + c̃

(8)
HW,2) + 73(c̃

(6)
HWB + c̃

(8)
HWB)

+330[c̃
(6)
HB]2 − 260[c̃

(6)
HW ]2 − 120c̃

(6)
HWB c̃

(6)
HW − 170[c̃

(6)
HWB]2 + 410c̃

(6)
HB c̃

(6)
HWB

+160c̃
(6)
HB c̃

(6)
H2 − 20c̃

(6)
HB c̃

(6)
HD − 130c̃

(6)
HW c̃

(6)
H2 + 12c̃

(6)
HW c̃

(6)
HD + 73c̃

(6)
HWB c̃

(6)
H2 − 80c̃

(6)
HWB c̃

(6)
HD

−180c̃
(6)
HB c̃

(6)
He + 100c̃

(6)
HB(c̃

(6),1
Hl + c̃

(6),3
Hl ) + 180c̃

(6)
HW c̃

(6)
He − 100c̃

(6)
HW (c̃

(6),1
Hl + c̃

(6),3
Hl )

−64c̃
(6)
HWB c̃

(6)
He + 64c̃

(6)
HWB(c̃

(6),1
Hl + c̃

(6),3
Hl )

−10c̃
(8),1

e2BH2D − 1.8(c̃
(8),1

e2H2D3 + c̃
(8),2

e2H2D3) + 6.9(c̃
(8),1

l2BH2D + c̃
(8),5

l2BH2D) + 5.7c̃
(8),1

e2WH2D

+1.2(c̃
(8),1

l2H2D3 + c̃
(8),2

l2H2D3) + 0.6(c̃
(8),3

l2H2D3 + c̃
(8),4

l2H2D3)− 3.8(c̃
(8),1

l2WH2D + c̃
(8),5

l2WH2D) (155)

With this region we see an enormous enhancement of the cases C3L and C4L but it is evi-

dent that class 4 operators still dominate. This is because, as seen in Figure 18 where C1

and C2 contributions are large at the middle and bottom of the s2 range respectively. This

means it is not possible to have one region cancel all class 4 operator contributions simulta-

neously. Additionally we note that the right handed contributions are also enhanced, because

the region encompasses its largest contribution while the cancellation is not perfect. Invok-

ing the two assumptions as we did for the other regions: First using assumption one, we �nd

the scale at which the class 4 operator terms linear in dimension six Wilson coe�cients over-

take and dominate those quadratic in the class 4 operators to be Λ ∼ 3TeV. The second as-

sumption, namely, the loop suppression of the class 4 operators achieves the dominance of

the cases C3 and C4 that we designed this region for. However, this only holds for muons and

electrons as for the heaviest lepton �avor, the tau-lepton, the contribution from the class 3

operators would increase by order of magnitude (mτ/mµ)2 ∼ O(102) and dominate.
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Finally region R6 (see Table 3) yields:

∆R6 =0.75c̃
(6)
H2 − 0.19c̃

(6)
HD − 0.093c̃

(8)
HD − 0.093c̃

(8)
HD,2 + 1.5[c̃

(6)
H2]2 − 0.75c̃

(6)
H2c̃

(6)
HD + 0.093[c̃

(6)
HD]2

−0.79
v

m̄µ

c̃
(6)
eH + 0.42

v2

m̄2
µ

[c̃
(6)
eH ]2 − 0.40

v

m̄µ

c̃
(8)
eH − 0.79

v

m̄µ

c̃
(6)
eH c̃

(6)
H2 + 0.20

v

m̄µ

c̃
(6)
eH c̃

(6)
HD

+104
(

4.0[c̃
(6)
HB]2 − 0.70c̃

(6)
HB c̃

(6)
HW + 0.82[c̃

(6)
HW ]2 + 2.8c̃

(6)
HB c̃

(6)
HWB − 1.7c̃

(6)
HW c̃

(6)
HWB + 1.2[c̃

(6)
HWB]2

)
−53(c̃

(6)
HB + c̃

(8)
HB)− 140(c̃

(6)
HW + c̃

(8)
HW + c̃

(8)
HW,2)− 140(c̃

(6)
HWB + c̃

(8)
HWB)

−110[c̃
(6)
HB]2 − 64[c̃

(6)
HW ]2 + 158c̃

(6)
HB c̃

(6)
HWB − 130c̃

(6)
HWB c̃

(6)
HW − 87[c̃

(6)
HWB]2

−53c̃
(6)
HB c̃

(6)
H2 + 76c̃

(6)
HB c̃

(6)
HD − 140c̃

(6)
HW c̃

(6)
H2 − 27c̃

(6)
HW c̃

(6)
HD + 144c̃

(6)
HWB c̃

(6)
H2 − 49c̃

(6)
HWB c̃

(6)
HD

−150c̃
(6)
HB c̃

(6)
He + 54c̃

(6)
HB(c̃

(6),1
Hl + c̃

(6),3
Hl ) + 150c̃

(6)
HW c̃

(6)
He − 54c̃

(6)
HW (c̃

(6),1
Hl + c̃

(6),3
Hl )

−94c̃
(6)
HWB c̃

(6)
He + 35c̃

(6)
HWB(c̃

(6),1
Hl + c̃

(6),3
Hl )

−2.5c̃
(8),1

e2BH2D − 0.44(c̃
(8),1

e2H2D3 + c̃
(8),2

e2H2D3) + 1.3c̃
(8),1

e2WH2D

+0.67(c̃
(8),1

l2BH2D + c̃
(8),5

l2BH2D) + 0.11(c̃
(8),1

l2H2D3 + c̃
(8),2

l2H2D3)

+0.06(c̃
(8),3

l2H2D3 + c̃
(8),4

l2H2D3)− 0.36(c̃
(8),1

l2WH2D + c̃
(8),5

l2WH2D) . (156)

As expected we see a tree-level contribution from C1 and C2 which is on the same order of

magnitude as for the full-phase space in region one Eq. 150. Additionally we �nd that the

terms from cases C3 and C4 are suppressed.

In Tables 3 and 4 we summarize the regions and the corresponding dominant contributions

under the two assumptions discussed in this section. From the above discussion we �nd that

cases C1 and C2 coming from the class 4 operators of the SMEFT dominate in all described

regions when no assumptions are applied. We �nd however that by assuming that the class

4 operators �rst occur at one-loop level, and therefore are suppressed by 1/16π2, suppresses

the class 4 operators su�ciently so that we are able to emphasize other contributions. Addi-

tionally we �nd that the class 4 operators coming from the one-loop order interference with

the standard model one-loop expression, can be distinguished from those contributing at tree-

level at a larger new physics scale Λ. We also note that �avor of the �nal state leptons has

a large impact on the contributions from the class 3 operators which shift the chirally sup-

pressed standard model Yukawa coupling. With these considerations we conclude that it is

possible to study H → ¯̀̀ γ in the SMEFT and distinguish between tree and loop generated

operators as well as resolve the direct contact four-point vertex which is �rst generated at di-

mension eight. Lastly we note that while the assumptions allow for more in depth studies of

the individual SMEFT contributions they are inherent biases with which one should be care-

ful making conclusions about UV physics.
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Class 4 operators Class 3 operators Class 11 and 15 operators Λ

R1 De,µ,τ � � 3.5 TeV

R2 Ce,µ Dτ Ce,µ 3.5 TeV

R3 Cµ Cµ, Dτ Cµ, De 8 TeV

R4 � Dµ,τ De 2.5 TeV

R5 � Dτ De,µ 3 TeV

Table 4: Table, showing for all �ve regions, the dominant operators D under the assumption that

the Class 4 operators are generated at one loop and therefore suppressed by 1/16π2. e, µ, τ indicates

lepton-�avors. Ce,µ,τ indicates that no particular contribution is dominant for the given �avor. Ad-

ditionally two C's in the same row means that the two contributions marked are of the same order

of magnitude. The last column shows the new physics scale Λ at which class 4 operator contributions

linear in dimension six Wilson coe�cients, begins to dominate those quadratic in the class 4 opera-

tors.

7 Conclusion

In Section1 we introduced the electroweak sector of the standard model. We started with

introducing the Lagrangian formalism but then went on to discuss the Higgs mechanism,

spontaneous symmetry break and how this is needed for the standard model to include the

observed massive gauge bosons. Then in Section 1.3 we discussed a summary of Higgs data

from the LHC and noted the high uncertainty on this data. This motivated the idea that

new physics could be hiding in these uncertainties. Based on this we deemed Higgs decays

an interesting area in which to hunt for new physics using future data from HL-LHC. E�ec-

tive �eld theories are a great way to do this, but before introducing e�ective �eld theories, we

needed to introduce the idea of renormalizable and non-renormalizable theories.

In Section 2 we discuss renormalizability and how a non-renormalizable theory is still useful

in the right context. This lead us to the concept of e�ective �eld theories. These are non-

renormalizable �eld theories, but where higher order terms are suppressed by some scale un-

der which the theory is perturbative. In Section 3 we discussed the e�ective action and the

concept of integrating out a heavy �eld. We then discussed two famous examples of these

e�ective �eld theories, the four-Fermi theory and the chiral Lagrangian of pions. We then fol-

lowed a calculation of an e�ective Lagrangian based on a standard model Higgs modi�ed by

heavy singlet scalar. We used this example to discuss how e�ective �eld theories can be used

to look for new physics.

Following the discussion of e�ective �eld theories and their use in predicting new physics,

we discuss the standard model e�ective �eld theory(SMEFT) in Section 4. The SMEFT is

introduced as an e�ective �eld theory extension of the standard model, to be used to look

for new physics beyond the standard model. We discussed the construction of the SMEFT

and the concept of the SMEFT operators shifting canonical forms of the standard model. We
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discussed the rede�nition of �elds which lets us transform the Lagrangian to one where the

�elds have canonical kinetic terms. We also outline the idea of the geoSMEFT theory which

provides a compact notation while including operators to all orders in the SMEFT.

We then moved on to explore the Higgs decay to two leptons and a photon in the standard

model. In Section 5 we start o� by calculating the squared matrix element for the process

H → ¯̀̀ γ at tree-level in the standard model. Using this we calculated the tree-level de-

cay width. We also noted the chiral suppression of the tree-level decay by m`/v coming from

the Yukawa coupling. Next we calculate the matrix elements for the processes H → γγ and

H → γZ mediated by top-quark loops and discuss how these contribute to the Higgs decay

H → ¯̀̀ γ at one-loop. We then discuss the rest of the one-loop contributions to H → ¯̀̀ γ,

namely the electroweak contributions, and using a parameterization we calculate the total de-

cay width at one-loop in the standard model of H → ¯̀̀ γ. Then for the standard model we

introduced Dalitz plots and produced such plots for the calculated standard model decay at

both tree and one-loop level. We also discussed how the decay width at one-loop was larger

than that at tree-level for electrons and on same order of magnitude for muons. This sup-

pression of the tree-level decay width then provided motivation for our SMEFT studies.

In Section 6.4 we started by discussing the tree-level SMEFT contributions and assembling

the matrix elements for these. We then used these matrix elements to calculate the total de-

cay width shifted by the SMEFT which we normalized to the standard model. We expanded

the result of this in terms of the Wilson coe�cients from the contributing SMEFT opera-

tors. We then constructed Dalitz like plots of the SMEFT contributions normalized to the

standard model. These Dalitz like plots then were used to guide us in designing cuts in the

invariant mass of the �nal state di-lepton system. Using such cuts (see Table 3) in combina-

tion with the assumption of weakly interacting new physics or an assumed new physics scale,

we were able to emphasize di�erent SMEFT contributions(see Table 4). This was especially

so when also considering �avor of the �nal state leptons. We found however that the contri-

butions from class 4 operators dominate in all regions presented when no assumptions are

made. Finally we note that these assumptions bring inherent bias, or model dependence, and

should be taken with care.
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Appendices
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A SMEFT L6 Operators

1 : X3

QG fABCGAνµ GBρν GCµρ

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH2 (H†H)2(H†H)

QHD
(
H†DµH

)∗ (
H†DµH

)
5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GAµνG
Aµν

QHW H†HW I
µνW

Iµν

QHB H†H BµνB
µν

QHWB H†τ IHW I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσ
µνer)τ

IHW I
µν

QeB (l̄pσ
µνer)HBµν

QuG (q̄pσ
µνTAur)H̃ GAµν

QuW (q̄pσ
µνur)τ

IH̃ W I
µν

QuB (q̄pσ
µνur)H̃ Bµν

QdG (q̄pσ
µνTAdr)H GAµν

QdW (q̄pσ
µνdr)τ

IHW I
µν

QdB (q̄pσ
µνdr)H Bµν

7 : ψ2H2D

Q
(1)
Hl (H†i

←→
D µH)(l̄pγ

µlr)

Q
(3)
Hl (H†i

←→
D

I

µH)(l̄pτ
Iγµlr)

QHe (H†i
←→
D µH)(ēpγ

µer)

Q
(1)
Hq (H†i

←→
D µH)(q̄pγ

µqr)

Q
(3)
Hq (H†i

←→
D

I

µH)(q̄pτ
Iγµqr)

QHu (H†i
←→
D µH)(ūpγ

µur)

QHd (H†i
←→
D µH)(d̄pγ

µdr)

QHud + h.c. i(H̃†DµH)(ūpγ
µdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγ
µlt)

Q
(1)
qq (q̄pγµqr)(q̄sγ

µqt)

Q
(3)
qq (q̄pγµτ

Iqr)(q̄sγ
µτ Iqt)

Q
(1)
lq (l̄pγµlr)(q̄sγ

µqt)

Q
(3)
lq (l̄pγµτ

I lr)(q̄sγ
µτ Iqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγ
µet)

Quu (ūpγµur)(ūsγ
µut)

Qdd (d̄pγµdr)(d̄sγ
µdt)

Qeu (ēpγµer)(ūsγ
µut)

Qed (ēpγµer)(d̄sγ
µdt)

Q
(1)
ud (ūpγµur)(d̄sγ

µdt)

Q
(8)
ud (ūpγµT

Aur)(d̄sγ
µTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγ
µet)

Qlu (l̄pγµlr)(ūsγ
µut)

Qld (l̄pγµlr)(d̄sγ
µdt)

Qqe (q̄pγµqr)(ēsγ
µet)

Q
(1)
qu (q̄pγµqr)(ūsγ

µut)

Q
(8)
qu (q̄pγµT

Aqr)(ūsγ
µTAut)

Q
(1)
qd (q̄pγµqr)(d̄sγ

µdt)

Q
(8)
qd (q̄pγµT

Aqr)(d̄sγ
µTAdt)

H†i
←→
D µH ≡ H†iDµH − (iDµH

†)H

H†i
←→
D

I

µH ≡ H†iτ IDµH − (iDµτ
IH†)H

Table 5: The operators in the SMEFT at dimension d = 6 from [17].There are 59 unique operator

forms that occur at dimension-six. In this table we have removed the CP odd operators as they are

not relevant to our discussion. There are 5 four fermion operators which we have removed as they

are not relevant to this thesis.
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B Class 11 and 15 SMEFT Operators

Dimension eight we have the following operators from classes 11 and 15[29].

Class 11: ψ2H2D3

Q
(8),1

l2H2D3 i(l̄γµDνl)(D(µDν)H
†H)

Q
(8),2

l2H2D3 i(l̄γµDνl)(H†D(µDν)H)

Q
(8),3

l2H2D3 i(l̄γµτ IDνl)(D(µDν)H
†τ IH)

Q
(8),4

l2H2D3 i(l̄γµτ IDνl)(H†τ ID(µDν)H)

Q
(8),1

e2H2D3 i(ēRγ
µDνeR)(D(µDν)H

†H)

Q
(8),2

e2H2D3 i(ēRγ
µDνeR)(H†D(µDν)H)

Class 15: ψ2XH2D

Q
(8),1

e2WH2D (ēRγ
νeR)Dµ(H†τ IH)W I

µν

Q
(8),1

e2BH2D (ēRγ
νeR)Dµ(H†H)Bµν

Q
(8),1

l2WH2D (l̄γνl)Dµ(H†τ IH)W I
µν

Q
(8),5

l2WH2D (l̄γντ I l)Dµ(H†H)W I
µν

Q
(8),9

l2WH2D εIJK(l̄γντ I l)Dµ(H†τJH)WK
µν

Q
(8),1

l2BH2D (l̄γντ I l)Dµ(H†τ IH)Bµν

Q
(8),5

l2BH2D (l̄γνl)Dµ(H†H)Bµν

Table 6: SMEFT operators forms of dimension eight, taken from Ref.[29]. These are used in the cal-

culation of tree-level SMEFT contributions to the Higgs decay to two leptons and a photon

C Feynman Rules

Higgs coupling to fermions:

H → ff̄ = −imf
g2

2mW

. (C.1)

fermion propagator:

f → f =
i(γµpµ +mf )

p2 −m2
f + iε

. (C.2)

fermion coupling to photons:

ff → γ = −iQfeγ
µ . (C.3)

Fermion coupling to Z boson:

f̄f → Z = −i
(
g2

cw

)
γµ(cLPL + cRPR) = −iγµ(gLPL + gRPR) . (C.4)

C.1 SMEFT Feynman Rules

These are the tree-level SMEFT Feynman rules taken from Ref. [29]
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Tree-level coupling of Higgs to two photons or a photon and a Z-boson: H

A1

A2

 = igHAAv(kµ2

1 kµ1

2 − k1 · k2η
µ1µ2) (C.5)

 H

A1

Z2

 = −igHAZv
2

(kµ2

1 kµ1

2 − k1 · k2η
µ1µ2) (C.6)

With de�nitions:

gHAZ =
[
8(c

(6)
HB − c

(6)
HW )c̄W s̄W + 4c

(6)
HWB(c̄2

W − s̄2
W )
]

(1 + ∆HAZv
2)

+v2
[
8(c

(8)
HB − c

(8)
HW − c

(8)
HW,2)c̄W s̄W + 4c

(8)
HWB(c̄2

W − s̄2
W )
]

(C.7)

∆HAZ = 2c
(6)
HB + 2c

(6)
HW + c

(6)
H2 −

1

4
c

(6)
HD (C.8)

gHAA = 4
[
c

(6)
HB c̄

2
W + c

(6)
HW s̄

2
W − s̄W c̄W c(6)

HWB

]
+v2c̄2

W

[
c

(6)
HB(8c

(6)
HB + 4c

(6)
H2 − c

(6)
HD) + 2(c̄

(6)
HWB)2

]
+v2s̄2

W

[
c

(6)
HW (8c

(6)
HW + 4c

(6)
H2 − c

(6)
HD) + 2(c̄

(6)
HWB)2

]
(C.9)

−v2c̄W s̄W c
(6)
HWB

[
8c

(6)
HB + 4c

(6)
H2 − c

(6)
HD + 8c

(6)
HW

]
+4v2

[
c

(8)
HB c̄

2
W + (c

(8)
HW + c

(8)
HW,2)s̄2

W − s̄W c̄W c(8)
HWB

]
Class 7 operators shift the Z coupling to leptons yielding the rule Feynman rule: ¯̀

`

Ẑ1

 = i
ḡZ
2
γµ1 (g′LPL + g′RPR) (C.10)

g′L = v2
(
c

(6),1
Hl + c

(6),3
Hl

)
(1 + ∆Z``) +

v4

2

(
c

(8),1
Hl + c

(8),2
Hl + c

(8),3
Hl

)
(C.11)

g′R = v2c
(6)
He (1 + ∆Z``) +

v4

2
c

(8)
He (C.12)

∆Z`` =
v2

2

[
2c̄Wg2c

(6)
HW + 2s̄Wg1c̄

(6)
HB + (g2s̄W + g1c̄W )c

(6)
HWB

]
(C.13)

Class 11 operators shift the Z coupling to leptons yielding Feynman rule: ¯̀

`1

Ẑ2

 = i
ḡZ
8
v2 [A11(k1 · k2γ

µ2 + kµ2

1 /k2)PL +B11(k1 · k2γ
µ2 + kµ2

1 /k2)PR] (C.14)

A11 = 2c
(8),1

l2H2D3 − 2c
(8),2

l2H2D3 + c
(8),3

l2H2D3 − c(8),4

l2H2D3 (C.15)

B11 = 2c
(8),1

e2H2D3 − 2c
(8),2

e2H2D3 (C.16)
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Class 11 and Class 15 operators can generate a single vertex interaction H → ¯̀̀ γ:
¯̀

`

Â1

Ĥ2

 = iQ`ēv
2
kµ1

2 /k2(A′11PL +B′11PR)

−iv [A15(k1 · k2γ
µ1 − kµ1

2 /k1)PL +B15(k1 · k2γ
µ1 − kµ1

2 /k1)PR]

(C.17)

A′11 = 2c
(8),1

l2H2D3 + 2c
(8),2

l2H2D3 + c
(8),3

l2H2D3 + c
(8),4

l2H2D3 (C.18)

B′11 = 2c
(8),1

e2H2D3 + 2c
(8),2

e2H2D3 (C.19)

A15 = c̄W (c
(8),1

l2BH2D + c
(8),5

l2BH2D)− s̄W (c
(8),1

l2WH2D + c
(8),5

l2WH2D) (C.20)

B15 = c̄W c
(8),1

e2BH2D − s̄W c
(8),1

e2WH2D (C.21)

D 3-body phase space

This section is based on Ref. [30] The three body phase space is relevant when calculating

crosssections of 1→ 3 processes and can be modeled similarly to 2→ 2 processes. The physi-

cal region of phase space with in the 1→ 3 process can be described by the condition:

G(s1, s2, s,m
2
2,m

2
1,m

2
3) < 0 . (D.1)

Where {s1, s2, s,m
2
2,m

2
1,m

2
3} are the masses and invariant variable de�ned as:

s1 = (p1 + p2)2 . (D.2)

s2 = (p2 + p3)2 . (D.3)

s3 = (p1 + p3)2 . (D.4)

The decaying particles center of mass energy is
√
s, and the labels 1, 2, 3 refer to the decay

products. These are related by:

s1 + s2 + s3 = s+m2
1 +m2

2 +m2
3 . (D.5)

The center of mass energy of the decaying particle is equal to it's mass when in its rest frame

so that
√
s = MDecay. The function G can be interpreted as a tetrahedron function de�ned as

a Cayley determinant:

G[x, y, z, u, v, w] = −1

2

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 0 v x z

1 v 0 u y

1 x u 0 w

1 z y w 0

∣∣∣∣∣∣∣∣∣∣∣∣
. (D.6)

The three body decay rate is then:

Γ3 =
1

2
√
s

1

(2π)5
R3(s) . (D.7)
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With Lorentz invariant phase space integral :

R3(s) =
8π2

32s

∫
ds1ds2Θ[−G(s1, s2, s,m

2
2,m

2
1,m

2
3)] , (D.8)

where Θ(x) is the heavyside step-function.

E The Trace Technique and Spin Sums

This section follows the discussion in [3]. When calculating the squares of matrix elements in-

volving external on-shell fermions it is a common feature to obtain a combination of fermion

currents from which a trace can be formed. Employing the following identities we demon-

strate how spin sums can be calculated:

2∑
r=1

= vrv̄r = /p−m, (E.1)

2∑
s=1

= usūs = /p+m, (E.2)

makes spin sums easy to do.

Take as an example the process e−(p1) + e+(p2) → e+(p3) + e−(p4): The matrix element in

Feynmann guage: ε = 0 is:

iM = v̄(p2) (−ieγµ)u(p1)

(−i (gµν)

k2

)
ū(p4) (−ieγν) v(p3) . (E.3)

We �nd the matrix element squared:

|M|2 =
e4

k4

[
v̄α(p2)γµαβuβ(p1)

]
[ūρ(p4)γµρσvσ(p3)]×

[
ūα(p1)γµαβvβ(p2)

]
[v̄ρ(p3)γµρσuσ(p4)] . (E.4)

Since spinor indices keeps track of matrix multiplication for us, we are free to move the ele-

ments of this equation around. Using that for a square matrix M , Mii = Tr[M ], we can see

that this product of matrices reduces to the product of two traces:∑
Spins

|M|2 =
e4

k4

[
/p1

+m
]
βi

[
/p2
−m

]
jα
γµαβγ

ν
ij ×

[
/p3
−m

]
σn

[
/p4

+m
]
mρ
γνnmγµρσ . (E.5)

∑
Spins

|M|2 =
e4

k4
Tr
([
/p1

+m
]
γν
[
/p2
−m

]
γµ
)
× Tr

([
/p3
−M

]
γν

[
/p4

+M
]
γµ

)
. (E.6)

Where the dirac slash notation has been used, /p = γµpµ.
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The identities taken from [3] in Table 7 can then be used to obtain the �nal matrix element

squared in terms of the momentum of involved particles.

Tr(I) 4

Tr(
∏n=odd γµ) 0

Tr(γµγν) 4gµν

Tr(γµγνγργσ) 4gµνgρσ − 4gµρgνσ + 4gµσgνρ

Tr(γ5
∏n=odd γµ) 0

Tr(γ5) 0

Tr(γ5γµγν) 0

Tr(γ5γµγνγργσ) 4iεµνρσ

Table 7: Trace Identities from [3]. εµνρσ is the Levi-Cevita anti symmetric tensor.

The chiral basis {I, P±, γµP±, σµν}, forms a complete basis for the γµ-matrix space. Because

of this Table 8 contains all combinations of fermion bilinears in the chiral basis calculated

using Table 7.

Interference Result

ψ̄k1γ
µP±χk2(ψ̄k1P±χk2)† 2mχk

µ
1

ψ̄k1γ
µP±χk2(ψ̄k1P∓χk2)† 2mψk

µ
2

ψ̄k1γ
µP±χk2(ψ̄k1γ

νP±χk2)† 2kν1k
µ
2 + 2kµ1k

ν
2 − 2k1 · k2g

µν ± 2iεµνσρk1,σk2,ρ

ψ̄k1γ
µP±χk2(ψ̄k1γ

νP∓χk2)† 2mψmχg
µν

ψ̄k1γ
µP±χk2(ψ̄k1σ

µνχk2)† 6imχk
ν
1 − 6imψk

ν
2

ψ̄k1γ
µP±χk2(ψ̄k1Iχk2)† 2mχk

µ
1 + 2mψk

µ
2

Table 8: Table of all possible interferences of fermion bilinears in the chiral basis.εµνρσ is the Levi-

Cevita anti symmetric tensor.

F Dimensional regularization

This section is based on discussions in Ref. [7] There are many approaches to regulating di-

vergences in loop diagrams in quantum �eld theory. One of the most commonly employed

methods is dimensional regularization.

Take for example the photon vacuum energy loop integral:

− iΠ =

∫
d4l

(2π)2

(−iγµabe)(γµlµ +m)bc(−iγµcde)(γµ(l − p)µ +m)da
[l2 −m2 + iε][(l − p)2 −m2 + iε]

. (F.1)

This loop integral is divergent in four dimension but taking the dimension to be d = 4 − 2ε

we can compute the integral. Afterward we can then get physical result by taking the limit of
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d→ 4. We �nd:

− iΠ = µ2ε

∫
ddl

(2π)2

(−iγµabe)(γµlµ +m)bc(−iγµcde)(γµ(l − p)µ +m)da
[l2 −m2 + iε][(l − p)2 −m2 + iε]

, (F.2)

here µε is added to keep the units correct when going to d = 4 − 2ε dimensions. From here

one uses Feynman parametrization, Eq. F.3 to obtain an appropriate form in order to use the

loop integral master equation in dimensional regularization Eq. F.5

1

A1 · · ·An
=

∫ 1

1

dα1 · · · dαn
Γ(n)δ(1− α1 − · · · − αn)

[α1A1 + · · ·+ αnAn]n
. (F.3)

Where:

Γ(n) =

∫ ∞
0

xn−1e−xdx , (F.4)

is the extension of the factorial function to complex numbers[40].

∫
ddk

(2π)d
k2a

(k2 −∆)b
= i(−1)a−b

1

∆a−b− d
2

Γ(a+ d
2
)Γ(b− a− d

2
)

Γ(b)Γ(d
2
)

. (F.5)

In the limit ε→ 0 the Γ-function can be expanded as[2]:

Γ(ε) =
1

ε
− γE +O(ε) . (F.6)

Where γE = 0.5772 is known as the Euler-Mascheroni constant.
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