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Abstract

This thesis focuses on analog quantum simulation, specifically studying topological
quantum pumping in a superconducting network known as the Josephson junctions array.
The Josephson junctions array provides a versatile and highly tunable platform for simulating
quantum many-body phenomena. The main objective of this study is to investigate
topological pumping in the presence of external superconducting leads.

In condensed matter physics, one way of studying quantum many-body phenomena and
emergent collective behaviors is through the use of analog devices. Our study specifically
explores the analog quantum simulation of topological quantum pumping in a Josephson
junctions array. The choice of superconducting networks is motivated by their tunability and
the research orientations of the Center for Quantum Devices. The thesis investigates the
implementation of the Rice-Mele model, one of the simplest examples of Thouless pumping,
on the Josephson junctions array, which becomes possible by exploiting the quantum limit
EC0 ≫ EJ0 and the hardcore boson approximation. The study showcases the underlying
mechanisms of quantized pumping in the Rice-Mele model with periodic boundary conditions
through Berryology and Floquet theory. The quantization of particle transport is expressed in
terms of the Chern number and/or equivalently as the nontrivial winding of the Floquet band
over the Floquet-Brillouin zone. The influence of various effects such as finite size effects,
nonadiabaticity and disorder on the quantized current is also explored.

The investigation extends to studying pumping in the presence of external
superconducting leads. The presence of the superconducting phase difference is accounted for
by establishing a connection to twisted boundary conditions. The study demonstrates that
transport is quantized when the winding of the many-body quasienergy over the
Floquet-Brillouin zone, as the superconducting phase difference varies, is nontrivial. The
quantization remains robust against disorder and nearest-neighbor interactions for specific
parameter choices. The thesis also discusses the potential for future research, including the
exploration of other models, relaxation of assumptions, and the inclusion of
next-nearest-neighbor interactions.

In conclusion, this thesis contributes to the understanding of topological quantum pumping
in the context of the Josephson junctions array. The study reveals the robustness of quantization
against disorder and the influence of the superconducting phase difference on the system’s
evolution. The findings open up possibilities for further research in different system conditions
and the validation of approaches used for external leads. Overall, this work highlights the
potential of analog quantum simulation for studying quantum many-body phenomena.

iii



Contents

Contents iv

List of Figures vii

1 Introduction 1

1.1 Josephson junctions arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thouless pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Josephson junctions array and the mapping to the Rice-Mele model 7

2.1 The Quantum Phase Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The road map towards the Rice-Mele model . . . . . . . . . . . . . . . . . . . . 9

2.3 The Hardcore boson approximation . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 The charging Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 The role of the Josephson Hamiltonian . . . . . . . . . . . . . . . . . . . 13

2.4 Embracing the Rice-Mele model . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 The mapping to free fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 A spin description of JJA Hamiltonian . . . . . . . . . . . . . . . . . . . 15

2.5.2 The Jordan-Wigner transformation . . . . . . . . . . . . . . . . . . . . . 16

3 Floquet Theory in Quantum Systems 19

3.1 The mathematical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Periodically driven systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 The mapping to an effective, static description . . . . . . . . . . . . . . . . . . . 22

3.4 Charge pumping in the Floquet picture . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 The infinite time limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.2 Adiabatic limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Rice-Mele Model 28

iv



CONTENTS v

4.1 Brief discussion on the concept of Thouless pumping . . . . . . . . . . . . . . . 28

4.2 The driving protocol of the Rice-Mele model . . . . . . . . . . . . . . . . . . . . 29

4.3 The current operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 The origins of quantized transport in the RM model . . . . . . . . . . . . . . . . 33

4.4.1 The momentum space formalism . . . . . . . . . . . . . . . . . . . . . . 33

4.4.2 Berry Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.3 Floquet Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 The impact of perturbations on pumping . . . . . . . . . . . . . . . . . . . . . . 38

4.5.1 Finite size effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.2 Nonadiabatic effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Open boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Disorder and the 1+1D to 2+0D mapping 42

5.1 Pumping with disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Mapping to the 2D static system . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 The clean Rice-Mele model . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.2 Adding on-site static disorder . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 The Local Chern Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.2 LCM of the static system . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 The strange correlation function . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.1 The concept of the strange correlator . . . . . . . . . . . . . . . . . . . . 51

5.4.2 Characterization of topological phases in the RM model . . . . . . . . . . 52

5.4.3 Disorder and the breakdown of the strange correlation at strong disorder 54

6 Pumping with external leads 58

6.1 Modeling of the leads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 The many-body gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 The quantization of the pumped charge . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Short-time dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.5 Pumping in the presence of the leads . . . . . . . . . . . . . . . . . . . . . . . . 68

6.6 On-site disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.7 Nearest-neighbour interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Conclusions and Outlook 75

A The SSH model 77



CONTENTS vi

A.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.2 Overlap of states in the SSH model . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.3 Characterization of topological phases using the strange correlator . . . . . . . . 80

B Supplementary material for Chapter 3 84

B.1 Pumped charge in the infinite-time limit . . . . . . . . . . . . . . . . . . . . . . 84

B.2 The pumped charge as a function of the quasienergy . . . . . . . . . . . . . . . 86

C Supplementary material to Chapter 6 87

Bibliography 89



List of Figures

1.1 Josephson junctions array (JJA) (a) The experimental setup of realizing a 2D JJAs,

showing the layers of the heterostructure used for the device. The superconducting

islands are fabricated in the shape of a square. Adapted from [14] (b) A sketch of a 2D

superconducting network. Adapted from [15] (c) The phase diagram of the tunable

parameters of a JJA, qx (induced charge - associated with the charging Hamiltonian)

and EJ/EC0 (ratio between the Josephson and charging energy). Adapted from [10]. 2

1.2 Classical pump and the ’quantum’ version. (a) The classical water pump of

Archimedes, used to transfer water from low-lying areas up to high ones. The water

was technically pumped by turning a screw-shaped surface inside the pipe. Adapted

from [20]. (b) A sinusoidal confining potential is applied to a 1D system coupled to

two electrodes on both sides (and no external bias). Under certain conditions (’high’

enough confining potential and low chemical potential compared to that height such

that N electrons are confined in each trough), we pump N electrons per driving

period. Adapted from [21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Consequences of disorder and driving with finite speed on pumping. (a) The pumped

charge is quantized for weak disorder, as long as the energy gap remains opens. When

the latter is violated, then quantized transport ceases. Adapted from [27]. (b) The

pumped charge as a function of the driving frequency. As the driving frequency grows,

the quantized value of 1 is affected by ω2 and sinusoidal corrections. Adapted from [28]. 5

2.1 A sketch of a one-dimensional array of Josephson junctions. The superconducting

islands are represented by a cross shape. EJ is the Josephson energy associated with

the hopping of Cooper pairs between islands while Vgj is the gate voltage of the island,

and by adjusting it we can access specific states. The charging energy EC0 is the

energy required to add a Cooper pair on the island, and Eg0 is the energy associated

with the island-gate capacitance, discussed in the text. . . . . . . . . . . . . . . . . 8

2.2 The Rice-Mele lattice model of staggering potential µ and hopping parameters EJ1/2 . 10

2.3 The hardcore boson approximation scheme established in the limit EC0 ≫ EJ . (a)

The spectrum of the charging Hamiltonian Eq. 2.3.2 consists of parabolas, each

corresponding to a different particle number N . These parabolas intersect at

multiple values of the induced charge ng. The dashed red line indicates the

degeneracy points at which the involved particle states differ by one particle.

Similarly, the dashed green line indicate those states that differ by two particles. (b)

A closeup view of the spectrum, in which we focus at the near-degeneracy point at

ng ≈ N + 1/2. At the vicinity of this point, the spectrum is linear in terms of the

induced charge, as shown in the inset plot. . . . . . . . . . . . . . . . . . . . . . . 12

vii



LIST OF FIGURES viii

2.4 A gap opening due to the coupling term HJ at the near-degeneracy point ng ≈ 1/2. . 13

3.1 A representation of the extended Floquet Hamiltonian (y-axis corresponds to the

energy). H(0) (not shown) describes the physics on a single level characterized by the

frequency index m and H(±1) couple states of frequency indices, which differ by 1.

Couplings of higher order |∆m| > 1 represented by H(|∆m|) are not displayed. Levels

of different m are shifted with respect to each other by the driving frequency ω,

resembling energy shifts because of a static electric field [42]. . . . . . . . . . . . . . 24

4.1 The Rice-Mele lattice model of staggering potential µ and hopping parameters EJ1/2 . 29

4.2 The pumping protocol of the Rice-Mele model for (a) the hopping parameters EJ1/2(t)

and (b) the on-site staggered potential µA/B(t), for δE = EJ0 and ∆ = 3EJ0 . . . . . 30

4.3 The pumping protocol on the ∆EJ - µ plane, where the ellipse of Eq. 4.2.4 encircles

the gapless point (orange dot), for ∆ = 2EJ0 and δE = 1.5EJ0 . . . . . . . . . . . . . 30

4.4 A flux passes through the a system with periodic boundary conditions . . . . . . . . 32

4.5 The spectrum of the Rice-Mele model. (a) The two energy bands ε±(k, t) are periodic

functions of k, t. The minimum gap is located at the center of the Brillouin zone, and

(b) along the time direction at t = 0, π/2. . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 When a two-dimensional surface in the R⃗ parameter space (a) encloses the Berry

monopole or equivalently the gapless point, the flux passing through the surface is

nonzero, and thus the pumped charge is nonzero, assuming adiabaticity. Otherwise,

(b) the flux is zero as well as the pumped charge. The surface in (a) corresponds to

δE = 0.5EJ0 ,∆ = EJ0 , A = 0, while in (b) to δE = 0.5EJ0 ,∆ = EJ0 , A = 2EJ0 . . . . 36

4.7 (a) A periodic drive in a 1D band insulator changes the geometry of the spectrum.

Adapted from [48]. (b) The Floquet-Brillouin zone for the Rice-Mele model. The

Floquet bands wind in opposite direction thus generate a current of different sign.

The right-moving and left-moving bands are colored green and yellow respectively.

Adapted from [49]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.8 An illustration of the folding of bands in the Bloch theorem. (a) The effect of Bragg

planes on the free electron, in the presence of other electron. This is the extended-zone

scheme. (b) The folding of the bands correspond to the reduced-zone scheme. (c) The

’pattern’ is repeated forming the repeated-zone scheme. Figures adapted from [39]. . 37

4.9 The dependence of the pumped charge on the system size for various values of the

amplitude of the modulation of the hopping parameters δE. This concerns the

Rice-Mele model with periodic boundary conditions. The parameters chosen here are

∆ = 3EJ0 , ω = 0.05EJ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.10 Nonadiabatic effects on pumping of the Rice-Mele model. (a) The deviations from the

quantized value are characterized by a quadratic trend (red line) on the frequency,

for small values of it. As we keep increasing the frequency, pumping breakdowns

completely. δE = 1EJ0 ,∆ = 3EJ0 , L = 20. (b) The dependence of the pumped charge

on the driving frequency, for various values of δE. Smaller values of δE leads to

earlier breakdown of pumping because of reduction in the value of the minimum gap.

∆ = 3EJ0 , L = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



LIST OF FIGURES ix

4.11 The instantaneous spectrum of the Rice-Mele model with open boundary conditions

for δE = EJ0 ,∆ = 3EJ0 , L = 20. The right (green) edge mode moves a particle from

the lower band to the upper band, which generates a particle current to the opposite

direction. Likewise, the left edge mode moves a particle from the upper to the lower

band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 The effect of the disorder on pumping in the Rice-Mele model. The pumped charge

remains quantized in the presence of disorder as long as adiabaticity holds and the

gap is open. Otherwise, a disorder-driven phase transition is observed which leads to

a trivial state in which the current is zero. Parameters: δE = EJ0 ,∆ = 3EJ0 , ω =

0.05EJ0 , L = 20, Nconfig = 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 A sketch representing the processes described by Eq. 5.2.11. . . . . . . . . . . . . . 45

5.3 By considering a closed path around the plaquette, one can deduce the flux that

penetrates it. The overall flux however between adjacent plaquettes in the horizontal

direction (a unit cell in the x direction) is zero, and complies with the zero magnetic

field in the original system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 (a) The local Chern marker for a topological state of the 2D static Rice-Mele model.

(b) The frequency-averaged local Chern marker as a function of the real space index.

The average over the frequency is taken within the yellow box. We note that the upper

limit of the LCM colorbar is truncated to give equal emphasis to positive and negative

values. Parameters: δE = EJ0 ,∆ = 3EJ0 , ω = 0.05EJ0 , L = 20 . . . . . . . . . . . . 49

5.5 (a) The local Chern marker for a trivial state of the 2D static Rice-Mele model. (b)

The frequency-averaged (yellow box) local Chern marker as a function of the real

space index n. The Chern marker vanishes in the bulk. Parameters: δE = EJ0 ,∆ =

3EJ0 , ω = 0.05EJ0 , L = 20, A = 6EJ0 . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 The local Chern marker for a topological state of the 2D static Rice-Mele model with

open boundary conditions. We note that the upper limit of the LCM colorbar is

truncated to give equal emphasis (in color) to positive and negative values. Parameters:

δE = EJ0 ,∆ = 3EJ0 , ω = 0.05EJ0 , L = 20 . . . . . . . . . . . . . . . . . . . . . . . 50

5.7 The local Chern marker of the Rice-Mele model in the presence of disorder. (a) The

bulk-averaged local Chern marker as a function of disorder. (b) The

frequency-averaged local Chern marker as a function of the real space index n. As

the disorder strength increases, we transition from a topological state to a trivial one.

Parameters: δE = EJ0 ,∆ = 3EJ0 , ω = 0.05EJ0 , L = 20, Nconfig = 20 . . . . . . . . . 50

5.8 (a) The scaling of the strange correlator with the system size for a trivial A1 = 6EJ0

and trivial A2 = 0 states. (b) The strange correlator in space ss,j,m,s′,j′,m′ for fixed

(j,m) (denoted by the black cross) and (s, s′) = (A,A). The horizontal and vertical

cuts show the correlation (SC) along that direction. Note, here n is the real space index

and express (s, j). Parameters: δE = EJ0 ,∆ = 5EJ0 , ω = 0.01EJ0 , A1 = 6EJ0 , A2 = 0 53

5.9 The scaling of the strange correlation function with the system size for (a) a set

of topological states A1 = 0.5EJ0 , A2 = 0 and for a set of trivial states (b) A1 =

6EJ0 , A2 = 5EJ0 . Parameters: δE = EJ0 ,∆ = 5EJ0 , ω = 0.01EJ0 , Nconfig = 20. . . . 54



LIST OF FIGURES x

5.10 The scaling of the strange correlator (SL)AB with the system size in the presence of

disorder. For weak disorder, (a) the correlator scales linearly and thus the target

state is in the topological phase. As the disorder strength gets large, the correlator

breaks down as shown in (b) and (c). Parameters:

δE = EJ0 ,∆ = 5EJ0 , ω = 0.01EJ0 , Nconfig = 20, A1 = 6EJ0 , A2 = 0. . . . . . . . . . 55

5.11 Box plots of the calculated values of the strange correlator for a number of disorder

configurations for (a) a regular linear scaling and a (b) irregular scaling of the correlator

with the system size. In (b), the values are spread over a wide range, indicating the

collapse of the correlator. Parameters: δE = EJ0 ,∆ = 5EJ0 , ω = 0.01EJ0 , Nconfig =

20, A1 = 6EJ0 , A2 = 0, (s, s′) = (A,B). . . . . . . . . . . . . . . . . . . . . . . . . 55

5.12 The median of the distributions of values for the (a) strange correlator, (b) the

numerator and (c) the denominator of the strange correlator, as a function of

disorder. Parameters:

δE = EJ0 ,∆ = 5EJ0 , ω = 0.01EJ0 , Nconfig = 20, A1 = 6EJ0 , A2 = 0, (s, s′) = (A,B). . 56

5.13 The strange correlator ss,j,m,s′,j′,m′ for fixed (s, j,m, s′) (denoted by the black cross)

for a strong disorder configuration Note, here n is the real space index and express

(s, j). δE = EJ0 ,∆ = 5EJ0 , w = 4EJ0 , ω = 0.01EJ0 , Nconfig = 20, A1 = 6EJ0 , A2 =

0, (s, s′) = (A,B), L = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 A sketch of the Josephson junctions array, connected to external superconducting leads. 59

6.2 An example of degeneracy breaking by the boundary term for L = 4. The

instantaneous many-body spectrum for (a) Eℓ
0 = 0 and (b) Eℓ

0 = 0.2. The appearance

of a nonzero Eℓ
0 breaks the degeneracy of the energy levels at t = τ/2 where the

minimum gap is located. A simple sketch in (c) shows closely the effect of the

boundary term at t = τ/2. Before the introduction of the leads, each of the three

energy levels are degenerate because of particle number conservation and of the

zero-energy edge modes. But when Eℓ
0 ̸= 0, the particle number is not conserved

anymore and the isolated sites at the ends of the chain are coupled to the leads. As a

result, the degeneracy due to these factors breaks. . . . . . . . . . . . . . . . . . . 62

6.3 The many-body gap as a function of Eℓ
0 for various values of δE. At values Eℓ

0 >

EJ0 , the gap saturates to a final value. This value decreases with decreasing δE.

Parameters: ∆ = 3EJ0 , ϕ = π/3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4 The time evolution of the pumped charge of Eq. 6.4.1 and the occupation numbers of

the real lattice for 3 periods. (a) The pumped charge associated with the intra-cell

(blue) and inter-cell (orange) currents are shown. After the completion of a driving

period, the average pumped charge is quantized. (b) The occupations (colorbar) of

each island are shown. After half a period, either an intra- or inter-cell current flows

depending on which sublattice is occupied, either A or B. Parameters chosen: δE =

EJ0 ,∆ = 3EJ0 , E
ℓ
0 = EJ0 , ω = 0.1EJ0 , ϕ = π/3, L = 6 . . . . . . . . . . . . . . . . . 67

6.5 The pumped charge (at the infinite-time limit) and the energy gap as a function of Eℓ
0.

As we increase Eℓ
0, pumped charge becomes quantized once adiabaticity is established,

while at Eℓ
0 = EJ0 the gap adopts its final value of Eg = 2EJ0 . Parameters chosen:

δE = EJ0 ,∆ = 3EJ0 , ω = 0.1EJ0 , ϕ = π/3, L = 6 . . . . . . . . . . . . . . . . . . . 68



LIST OF FIGURES xi

6.6 The nontrivial winding of the quasienergies over the Floquet-Brillouin zone as a

function of ϕ, for (a) δE = EJ0 and (b) δE = 0.5EJ0 . The colorbar shows the

occupation number of the Floquet states. Parameters:

∆ = 3EJ0 , E
ℓ
0 = EJ0 , ω = 0.05EJ0 , L = 6. . . . . . . . . . . . . . . . . . . . . . . . 69

6.7 (a) The pumped charge as a function of δE for various values of ϕ. As δE → EJ0 , the

pumped charge becomes less dependent on ϕ. (b) The quasienergy spectra as a function

of ϕ for δ = 0.25EJ0 . The gaps appear due to nonadiabatic effects described in the

text. The colorbar shows the occupation number of the Floquet states. Parameters:

∆ = 3EJ0 , E
ℓ
0 = EJ0 , ω = 0.05EJ0 , L = 6 . . . . . . . . . . . . . . . . . . . . . . . . 70

6.8 (a) The pumped charge as a function of the phase ϕ for several values of the system size

L. As the system size increases, the dependence of the pumped charge on ϕ diminishes.

(b) An instance of a trivial winding of the quasienergies over the Floquet-Brillouin zone

as a function of ϕ, for δE = EJ0 and A = 4EJ0 where A is the energy shift in the

Josephson energy EJ1(t) of Eq. 4.2.5. The colorbar shows the occupation number of

the Floquet states. Parameters: ∆ = 3EJ0 , E
ℓ
0 = EJ0 , E

ℓ
0 = EJ0 , ω = 0.05EJ0 , L = 6 . 71

6.9 Introduction of on-site disorder. (a) The saturation of the gap due to increasing

disorder, and how the value of saturation depends on the system size. (b) The

insensitivity of the pumped charge against disorder and the breakdown of it at strong

disorder. Parameters chosen: δE = EJ0 ,∆ = 3EJ0 , E
ℓ
0 = EJ0 , L = 6. . . . . . . . . . 72

6.10 A sketch of the Josephson junctions array with nearest neighbour interactions. . . . 73

6.11 Nearest neighbour interactions in a 1D Josephson junctions array with leads. (a)

A phase diagram of ECX
and Eℓ

0. The colorbar corresponds to the pumped charge

(in units of the particle charge). (b) The system is robust against interactions for

δE = EJ0 as explained in the text. Parameters chosen: δE = EJ0 ,∆ = 3EJ0 , EC0 =

8EJ0 , ω = 0.05EJ0 , L = 6. Additionally for (b) we have Eℓ
0 = EJ0 . . . . . . . . . . . 74

A.1 THe overlap of SSH states with periodic boundary conditions for Λ1 = 0.5 and varying

Λ2. When Λ2 becomes greater than unity, the SSH model enters the topological phase.

The overlap vanishes once Λ2 = 1 for an even unit cell number while it behaves

smoothly for an odd number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.2 The scaling of the strange correlator with the system size for the SSH model with

twisted boundary conditions, for Λ1 = 0.5,Λ2 = 2 and (a) ϕ = π/4, (b) ϕ = π/2 and

(c) ϕ = 3π/4. The deviation between the trends of the odd and even unit cells number

vanishes for ϕ = π/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.3 The scaling of the strange correlation function with the system size for the SSH model

with twisted boundary conditions for ϕ = π/2. The states involved in the strange

correlator in (a) correspond to Λ1 = 0.5,Λ2 = 2.0 while in (b) correspond to Λ1 =

0.5,Λ2 = 0.6. The two curves in each plot correspond to the correlator with sublattice

indices s, s′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.4 The scaling of the strange correlator with the system for the SSH model with twisted

BCs in the presence of disorder. (a) For weak disorder the correlator scales linearly

indicating that the target state is still topological. (b) For strong disorder, the

correlator breaks down with unpredictable consequences. Parameters chosen:

Λ1 = 0.5,Λ2 = 2.0, ϕ = π/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



Chapter 1

Introduction

’...nature isn’t classical ..., and if you want to make a simulation of nature, you’d better
make it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so
easy...’

Richard Feynman, 1981

The simulation of quantum many-body systems is considered to be a difficult
computational task [1], especially if done with classical means. It becomes a real challenge
when dealing with large-sized and strongly interacting systems, which require a large amount
of memory to store quantum states, growing exponentially with the system size. In addition,
this also means that the computational time grows at this trend. In the case of strong
correlations, even the most elaborate classical computers fail to do the task [2]. Feynman
proposed a different approach to this problem: ’..let the computer itself be built of quantum
mechanical elements which obey quantum mechanical laws’ [3], in accordance to his statement
above. Let us talk then about quantum simulations!

There are two forms of quantum simulations, digital and analog. The former correspond
to programmable, general purposed quantum devices [2]. We can think of them as the
quantum ’version’ of a classical computer, in which the classical bits are replaced by elements
of quantum nature, the qubits. An important feature of a digital quantum computer is that it
has to be universal, promising great flexibility on the models to be solved. In contrast, analog
quantum simulations [1] are problem-specific machines. Analog devices are typically highly
controllable platforms, which are able to mimic the dynamical evolution or properties of the
original system. The interest on quantum simulation has been grown the last couple of
decades, primarily because the domain of application is wide [1], involving scientific areas
such as low-energy physics, high-energy physics, chemistry etc, and secondly because of the
technological advancements, making the fabrication of devices accessible and straighforward.

In condensed matter physics, we are interested in studying quantum many-body
phenomena and emergent collective behaviors with unique and intriguing features. Typical
analog devices used for this cause, among others are ultra-cold atoms in optical lattices [4, 5],
photonics [6], solid-state devices with quantum dots [7, 8] and superconducting circuits [9, 10,
11].

In the current work, we focus on analog quantum simulation of a phenomenon called
topological quantum pumping [12] in a superconducting network, the Josephson

1
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Figure 1.1: Josephson junctions array (JJA) (a) The experimental setup of realizing a 2D JJAs,
showing the layers of the heterostructure used for the device. The superconducting
islands are fabricated in the shape of a square. Adapted from [14] (b) A sketch of a
2D superconducting network. Adapted from [15] (c) The phase diagram of the tunable
parameters of a JJA, qx (induced charge - associated with the charging Hamiltonian) and
EJ/EC0 (ratio between the Josephson and charging energy). Adapted from [10].

junctions array [13]. The focus on superconducting networks is inspired by the research
orientations of the Center for Quantum Devices, where they realize such devices [14]. These
systems are currently under development, aiming to achieve the ability to fine-tune individual
junctions rather than entire arrays. Moreover, the incorporation of external superconducting
leads allows for current measurements for transport purposes and maintains the coherent
dynamical evolution of the system. Indeed, tunability, coherence and the ability to investigate
transport are three key features of these systems.

In the subsequent sections, we delve into the two central themes of this thesis: Josephson
junction arrays and topological quantum pumping. Additionally, we provide an outline of the
thesis.

1.1 Josephson junctions arrays

In the context of analog quantum simulations, the engineering of systems with a high
degree of tunability is crucial. Quantum devices emerge as strong candidates for achieving
this goal. Such devices allow the experimentalist to indirectly control the parameters of the
target system, enabling the capability of studying the physics of the system in various regimes.
In particular, hybrid semiconducting-superconducting devices represent a versatile platform
that merges the advantages of superconducting systems, such as coherence, with the strengths
offered by semiconductors, such as control via electrostatic gates.

Superconducting networks have in particular drawn most of the attention. A prominent
example is the Josephson junctions array [16] (see Figure 1.1b), first established in the early
1980s [13], with the prospect of realizing electronic devices with superconducting materials.
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From that point onward, such devices were greatly used for simulating many-body systems in
both the classical and quantum regimes [10, 11, 14], at a mesoscopic level.

Originally, such superconducting networks were built on insulating substrates, and lacked
the tunability to be proper simulators. Hybrid semiconducting-superconducting devices
represent the modern iterations of such systems [17], the fabrication of which involves the
deposition of aluminum on a semiconducting substrate. Then the aluminum is etched to form
the superconducting islands, in some periodic formation (for instance see Figure 1.1a). In
principle, the superconducting islands and the Josephson junctions can be both tuned by
individual voltage gates. In practice, this can be cumbersome for large devices, however today
one can employ machine learning algorithms to achieve this individual tuning [18].

In the regime where superconductivity is well-established T ≪ Tc, there are two
characteristic energy scales in a Josephson junctions array, the charging energy EC0 and the
Josephson energy EJ0 . The charging energy of the system is typically determined by its
geometry and cannot be easily adjusted. In contrast, the Josephson energy can be controlled
using voltage gates, which depletes the semiconducting regions between superconductors. By
adjusting the ratio of the two, one can exploit different physical regimes, thus different phases
and properties (see Figure 1.1c). On one hand, the classical regime is obtained when
EJ0 ≫ EC0 , in which the phase fluctuations are suppressed and a global phase coherence is
established, corresponding to a superconducting phase. In the opposite limit, we have the
quantum limit EC0 ≫ EJ0 ; this limit corresponds to strong phase fluctuations and thus
well-defined particle number, ultimately resulting in the formation of a Mott insulating phase.
However, for special values of the chemical potential the Mott lobes may vanish even in the
strong charging energy limit - see Figure 1.1c.

Although significant progress has been made in the fabrication of these devices, we expect
disorder to be present. Therefore, to establish these hybrid platforms as a novel architectures
for analog quantum simulations, it is interesting to design systems that display phenomena
robust against disorder. Due to this reason, Thouless pumping is explored in this work; being
a topological phenomenon it is expected to display a certain robustness against disorder. In
practical terms, the implementation of Thouless pumping can turn an insulating systems as the
JJA in the quantum limit with weak disorder, into a superconducting system, characterized by
coherent and quantized transport of Cooper pairs.

1.2 Thouless pumping

One of the simplest, yet intriguing phenomena to study is the topological quantum pump
[12].

Naturally, when we think about the notion of pumping, our minds associate it with some
physical process that we have seen or interacted with in the real world. Take for instance the
famous Archimedean screw (see Fig. 1.2a), which was used to pump water from low-lying areas
to high ones by turning a screw 1. Admittedly, however, the quantum ’version’ of the pump is
a bit more intriguing. The example of Figure 1.2b provides an insight into the idea of quantum
pumping, in which we pump exactly N electrons after a pumping period.

1Remarkably, despite advances in technology, the concept remains highly applicable today.
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Figure 1.2: Classical pump and the ’quantum’ version. (a) The classical water pump of Archimedes,
used to transfer water from low-lying areas up to high ones. The water was technically
pumped by turning a screw-shaped surface inside the pipe. Adapted from [20]. (b) A
sinusoidal confining potential is applied to a 1D system coupled to two electrodes on both
sides (and no external bias). Under certain conditions (’high’ enough confining potential
and low chemical potential compared to that height such that N electrons are confined
in each trough), we pump N electrons per driving period. Adapted from [21].

In general, a quantum pump is defined as a device in which a particle current is generated
by slowly modulating the parameters of the system, without having an external bias [19]. In
contrast, in usual mesoscopic transport, a system is connected to external leads, with some
non-zero voltage bias across to allow for a particle current to flow. The topological quantum
pump is device in which the induced particle current (in units of the particle charge) is quantized
by an integer number. This number is linked to the underlying nontrivial topology of the system
and corresponds to the first Chern number of the occupied dynamical bands, parametrized by
(k, t).

By establishing the topological quantum pump, we have admitted ourselves into a new
realm of physical phenomena, systems possessing a nontrivial topological structure. Topological
properties have been understood within the framework of the geometrical theory of Berry [22],
who showed that a quantum mechanical phase can have physical implications.

The introduction of topology in condensed matter physics and the association of some
observables of the system with a topological invariant is by itself very powerful [23], especially
for practical applications. It has been demonstrated that in such systems these observables
are robust against local perturbations such as disorder [24] [25], as long as the energy gap
remains open 2 (see Fig. 1.3a). The initial surge of these promising discoveries captivated a
significant portion of the scientific community, leading to a widespread interest in the study of
these systems. The prospect of incorporating such systems into building a quantum computer
is far from random.

The topological quantum pump adopts some of these features, like topologically protected
observables and robustness against perturbations. David Thouless first introduced the notion of
a topological pump, also referred to as Thouless pumping, for a one-dimensional band insulator
in the thermodynamic limit, in which the potential is varied periodically in time, in an
adiabatic manner and the Fermi level lies within the energy gap at all times.. He
showed that the resulting pumped charge per period is quantized in terms of the first Chern
number, exploiting the geometry of the induced 2D Brillouin-zone of (k, t). It was shown later
that the quantized pumped charge is linked to the Berry phase acquired by the state after the

2In dynamical systems like Thouless pumping, the significant gap refers to the minimum gap observed
throughout the evolution.
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Figure 1.3: Consequences of disorder and driving with finite speed on pumping. (a) The pumped
charge is quantized for weak disorder, as long as the energy gap remains opens. When
the latter is violated, then quantized transport ceases. Adapted from [27]. (b) The
pumped charge as a function of the driving frequency. As the driving frequency grows,
the quantized value of 1 is affected by ω2 and sinusoidal corrections. Adapted from [28].

time evolution of a single period 3 [26]. Equivalently, the pumped charge can be expressed
as the integral of the Berry curvature (of occupied bands) over the Brillouin zone formed by
(k, t). The latter has the geometry of a torus and proper integration of the Berry curvature - of
the filled bands - over the surface is equal to a topological invariant named the Chern number
and it is an integer number. This statement corresponds to the physical implementation of the
Gauss-Bonnett-Chern theorem 4. We will revisit this topic in Chapter 4.

Typically, in a two-dimensional band insulator (like in the case of the quantum Hall effect),
one expects that quantities such as the linear response to an external electric field, are written
in terms of the Chern number obtained by the integral of the Berry curvature of occupied bands
over the two-dimensional Brillouin zone formed by (kx, ky) [23]. Therefore, Thouless pumping
is sometimes referred to as the dynamical version of the 2D quantum Hall effect.

Thouless pumping is realized under the conditions of adiabaticity and the Fermi level
lying in the energy gap (the gap between occupied and unoccupied bands), as well as the
thermodynamic limit. Adiabaticity requires that the energy gap is much larger than the driving
frequency to avoid particle-hole excitations, and thus start populating the higher bands. Away
from the adiabatic limit ω → 0, deviations from perfect quantization start to appear (see
Fig. 1.3b), because of non-adiabatic corrections [28]. The thermodynamic limit is necessary
for the Chern number to be defined, however, in practice one is concerned with finite-size
systems. Typically, we can choose a system size large enough to mimic the effects of the
thermodynamically infinite system, apart from some minor corrections.

The simplest example, resembling an adiabatic charge pump, is the time-dependent version
of the Rice-Mele model [29], a tight-binding model, with staggered on-site potential forming
two sublattice types. It requires the time modulation of the hopping parameters and the
staggered potential under some proper protocol that leads to a quantized current. This follows
the guidelines set by Thouless’s pioneering work on adiabatic pumps.

3This is exactly a consequence of the Berry theory, in which the Berry phase can have physical consequences,
rather than being just a phase.

4The Gauss-Bonnett-Chern theorem states that integration of the Gaussian curvature over the surface of
some manifold of 2N dimension is expressed in terms of the genus (roughly, the number of holes). It is the
generalization of the Gauss-Bonnett theorem, which is limited only to 2D manifolds.
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Thouless pumping is considered the first example of a topological phase that emerges from
a periodically driven system, hence its significance is great. By understanding the underlying
mechanisms, this finding opens the portal towards topological nonequilibrium phases of matter,
with remarkable features. It is noteworthy that by driving a system periodically in time, we
can access exotic out-of-equilibrium phases of matter that may have or not static counterparts
5. The Floquet theory is greatly employed to understand the underlying mechanisms of the
system.

1.3 Outline of this thesis

This work is focused on the theoretical realization of the Rice-Mele model, the simplest
example of a Thouless pump, in a one-dimensional Josephson junctions array, connected to
external, superconducting leads. The conditions under which quantized transport takes place
are examined.

Firstly, in Chapter 2 we present the theoretical model of the Josephson junctions array,
and we discuss the mapping of the JJA Hamiltonian to the Rice-Mele one by virtue of the
hardcore boson approximation. This is in fact the principle behind analog quantum simulation.
Ultimately, the resulting quadratic Hamiltonian is mapped from a bosonic description to a free
fermionic one via the Jordan-Wigner transformation. This transformation establishes the form
of the time-dependent Rice-Mele model.

Before delving into the physics of pumping, in Chapter 3 we introduce concepts from the
Floquet theory that are instrumental in understanding the mechanism of pumping. We also
discuss the mapping from a dynamical to an effective static system. Additionally, we explore
the phenomenon of pumping within the framework of Floquet theory.

In Chapter 4, we discuss the physics of the Rice-Mele model and the conditions under
which we observe quantized transport, such as half-filling, adiabaticity and finite size effects.
We view the quantization from the Berry and Floquet perspectives, which in the adiabatic limit
are equivalent.

In Chapter 5, we add static, on-site disorder to the Rice-Mele model. We study the
breakdown of pumping and the disorder-driven phase transition to an insulating phase, using
diagnostic tools such as the local Chern marker and the strange correlation function. These
require the mapping to an effective two-dimensional static problem and it is done in the context
of the Floquet theory. Unexpectedly, we observe the breakdown of the strange correlation
function in the strong disorder regime.

In Chapter 6, we introduce the superconducting leads in the setup. The Hamiltonian now
depends on the phase difference between the external leads and we study how a quantized
current is obtained. Importantly, the transferred charge requires a phase average, however we
find a sweet spot in the parameters choice in which the transferred charge does not require
phase averaging for finite system size. On this basis, we include disorder and nearest neighbour
interactions, in which we observe a notable robustness.

Lastly, we present our final thoughts and findings in Chapter 7.

5Such examples are Floquet topological insulators [30], tha anomalous Floquet insulators [31] and systems
in a many-body localization phase, which under periodic driving do not thermalize [32]



Chapter 2

Josephson junctions array and the
mapping to the Rice-Mele model

In Chapter 1, we have introduced the Josephson junctions array, an experimenal platform
to simulate many-body systems at the mesoscopic level. The basic idea of analog quantum
simulations lies on the fact that one can start from the Hamiltonian of the mesoscopic system,
and using proper arguments, this can be mapped to the target model, the one we are interested
in simulating. The other important element is to be able to tune the physical parameters of
the system in the considered device. In the JJA, this is indeed crucial to obtain the time
modulation of the parameters one needs for the Rice-Mele model. Thus, in this chapter we
present the Hamiltonian of a one-dimensional Josephson junctions array, and we show how one
can obtain the Hamiltonian of the Rice-Mele model in the hardcore bosonic limit. Notably, the
mapping to free fermions is achieved by the Jordan-Wigner transformation. The discussion of
the properties of the Rice-Mele model is left for Chapter 4.

2.1 The Quantum Phase Model

Josephson junctions arrays (JJA) consist of superconducting islands, of the conventional
BCS type. The islands are arranged periodically, such as in a 1D or 2D square array.
Typically, we are interested in the physics of this system in temperatures way below the
critical BCS temperature, at which the superconducting gap has been fully developed and
thus the quasiparticle excitations are suppressed. As a result, only Cooper pairs are allowed
to move freely. A sketch of a 1D superconducting network is displayed in Figure 2.1.

Each superconducting island is characterized by its own phase operator φ̂i and its conjugate
variable, the particle number operator N̂i. In the context of the coherent states theory, the
aforementioned operators satisfy the following commutation relation:[

N̂i, φ̂j

]
= iδij (2.1.1)

In a BCS superconductor, the state of the system corresponds to a coherent state |BCS⟩,
with a well-defined phase 1. Thus, the particle number is maximally undetermined given the
uncertainty relation arising from the commutation relation of 2.1.1.

Cooper pairs are allowed to hop to adjacent islands via a Josephson junction. In
experimental setups, the supeconducting islands are fabricated on a semiconducting substrate,

1The phase symmetry is broken in the superconducting phase, establishing a unique, well-defined phase for
a particular state.

7
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Figure 2.1: A sketch of a one-dimensional array of Josephson junctions. The superconducting islands
are represented by a cross shape. EJ is the Josephson energy associated with the hopping
of Cooper pairs between islands while Vgj is the gate voltage of the island, and by adjusting
it we can access specific states. The charging energy EC0 is the energy required to
add a Cooper pair on the island, and Eg0 is the energy associated with the island-gate
capacitance, discussed in the text.

and the junction is of the SNS (superconductor-normal-superconductor) type. The energy
associated with the effect is given by the Beenakker formula [33], valid for T ≪ Tc.

E(ϕ) =
∑
i

∆0

√
1− ti sin

2(ϕ/2) (2.1.2)

where ∆0 is the superconducting gap, ti are the transmission coefficients of the SN
interface for an Andreev state, and ϕ is the superconducting phase difference of the involved
superconductors. It is assumed that tunneling of Cooper pairs occurs through the Andreev
process. The summation index i runs over the number of channels corresponding to Andreev
states. We recover the familiar cosine form if we assume that the transmission coefficient ,
which is associated with a superconductor-insulator interface, is small, i.e. ti ≪ 1,

E(ϕ) ≈ ∆0t

4
cosφ (2.1.3)

where t =
∑

i ti. For a one-dimensional array of Josephson junctions and in second
quantization, the contribution to the Hamiltonian from the tunneling of Cooper pairs is given
by,

ĤJ = −
∑
j

EJj,j−1
cos(φ̂j − φ̂j−1) (2.1.4)

and the summation index j runs over the number of junctions within the array. In the above
expression we assumed that all the junctions are identical, and hence they are characterized by
a single Josephson energy.

One also has to consider the electrostatic effects due to Coulomb interactions. In electronic
devices, usually one considers the electrostatics in terms of the capacitance matrix C−1

ij ,

ĤC =
1

2

∑
ij

(Q̂i − qgi)C
−1
ij (Q̂j − qqj) (2.1.5)



CHAPTER 2. JOSEPHSON JUNCTIONS ARRAY AND THE MAPPING TO THE
RICE-MELE MODEL 9

where the summation indices run over the number of superconducting islands. The
operator Q̂i is called the charge operator and is directly related to the particle (Cooper pair)
operator N̂i via Q̂i = QN̂i = −2eN̂i, and qgi = Qngi is the induced charge which allows us to
access specific states of the system, and it is controlled by voltage gates 2. The induced charge
number is related to the gate voltage as follows,

ngi =
1

Q

∑
k

CgikVgk (2.1.6)

where Cgij are the capacitances associated with the islands and the gates and Vgk are the
gate voltages.

We note that the capacitance matrix C−1
ij describes the interactions between islands, and

depends on the geometry of the device. Roughly, the island-island capacitance decreases with
increasing distance. There is another set of capacitances that develop between the islands
and the gates, Cgij . These are the ones involved in the expression for the induced charge. In
general, the induced charge in a given island is affected by all voltage gates. However, as a first
approximation we consider the capacitance between an island j and a gate k ̸= j to be small,
and thus we have,

ngi ≈
1

Q
CgiiVgi (2.1.7)

We now re-write 2.1.5 in terms of the particle number operator.

ĤC =
∑
ij

ECij
(N̂i − ngi)(N̂j − nqj) (2.1.8)

where ECij
= Q2C−1

ij /2 is the charging energy involving two interacting Cooper pairs.
Finally, the Hamiltonian of the Quantum phase model (QPM) involves two terms, the Josephson
Hamiltonian 2.1.4 and the charging Hamiltonian 2.1.8,

ĤQPM = ĤJ + ĤC (2.1.9)

2.2 The road map towards the Rice-Mele model

The QPM Hamiltonian given by Eq. 2.1.9, describes an array of Josephson junctions in a
quite general setup, assuming that only Cooper pairs can be involved in the dynamics. Our goal
for the rest of the chapter is to identify the energy regimes and apply simplifications and/or
approximations in order to deduce the problem towards the target model, the Rice-Mele (RM)
model. The RM model is a one-dimensional lattice with a two-site unit cell, in which fermions
are allowed to tunnel. The Hamiltonian is,

ĤRM(t) = −EJ1(t)
∑
j

(
ĉ†2j−1ĉ2j + h.c.

)
− EJ2(t)

∑
j

fj
(
ĉ†2j ĉ2j+1 + h.c.

)
+
∑
j

(
µA(t)ĉ

†
2j−1ĉ2j−1 + µB(t)ĉ

†
2j ĉ2j

)
(2.2.1)

2A superconducting island contains a large (macroscopic) number of Cooper pairs, however if we want to deal
with states of the system with a few Cooper pairs, we tune the system to this regime by applying appropriate
gate voltages.
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where the time-dependent hopping parameters EJ1/2(t) and on-site potential µA/B(t) have
the following form,

EJ1/2(t) = EJ0 ± δE cosωt, µA/B(t) = ±µ(t) = ±∆sinωt (2.2.2)

Figure 2.2: The Rice-Mele lattice model of staggering potential µ and hopping parameters EJ1/2 .

We will delve into the properties of this model in Chapter 4. We expect the hopping term
to be deduced from the Josephson Hamiltonian and similarly the on-site staggered potential
terms from the charging Hamiltonian. Let us start with the Josephson Hamiltonian of Eq. 2.1.4,
which we re-write as follows,

ĤJ = −
∑
i

EJi,i−1

(
e−iφ̂ieiφ̂i−1 + h.c.

)
(2.2.3)

The phase operators in the exponential form correspond to the creation and annihilation
operators of the Cooper pairs, i.e. ∆̂†

i ∼ e−iφ̂i and ∆̂i−1 ∼ eiφ̂i+1 , and they are bosonic. Thus
the Josephson Hamiltonian corresponds to a hopping term, expressing the tunneling of Cooper
pairs between adjacent islands, and reads (apart from |∆|2),

ĤJ = −
∑
i

EJi,i−1

(
∆̂†

i∆̂i−1 + h.c.
)

(2.2.4)

In its current form, the Josephson Hamiltonian does not resemble the hopping term in the
Rice-Mele model because the operators live in a much larger Hilbert space of a macroscopic
number of Cooper pairs. However, the approximation scheme we develop in the next section
will enable the reduction of this Hilbert space to a much smaller one. Before we establish this
scheme, we assume that the island-island interactions ECi ̸=j

are very small compared to the
charging energy EC0

3. We discuss the effect of interactions in Chapter 6. Therefore, Eq. 2.1.8
reduces to,

ĤC ≈
∑
i

EC0

(
N̂i − ng,i

)2

(2.2.5)

where EC0 is the charging energy of the island, and expresses the amount of energy needed
to add a Cooper pair to the island. We silently assumed that all the islands are identical, that
is of the same size and geometry, i.e. EC,ii = EC0 .

Up to this point, the two-part Hamiltonian has taken the form given by Eq. 2.2.4 and
Eq. 2.2.5. It is clear now that the dynamics of it is dictated by two energy scales, the Josephson
energy EJ and the charging energy EC0 . As we have discussed briefly in the introduction, the
case EC0 ≫ EJ corresponds to the quantum limit. Large charging energy corresponds to
localized states. Localization is translated into having a well-defined particle number, and

3It is a valid assumption if we consider that the island-island capacitance decreases with the distance, and
this has the same effect on the associated energies.
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thus by virtue of the uncertainty relation of φ̂, N̂ 4, the phase is also characterized by strong
quantum phase fluctuations. We thus summarize the energy hierarchy at the problem at hand,

T ≪ EJ ≪ EC0 ≪ ∆BCS (2.2.6)

In the next section, we exploit the hardcore bosonic limit, starting from the charging
Hamiltonian, and treating the Josephson Hamiltonian as a perturbation.

2.3 The Hardcore boson approximation

In this section, we study the approximation scheme that takes us from a macroscopic
description of the island to a two-level system. At the end of this section, we will end up with a
quadratic Hamiltonian which resembles that of Eq. 2.2.1. The basis of this approximation lies
in the energy hierarchy, and in particular EC0 ≫ EJ . We will initially focus solely on Ĥ ≈ HC .
Later on, we include the Josephson Hamiltonian and study its impact to the approximation
scheme.

2.3.1 The charging Hamiltonian

We start by looking the form of Eq. 2.2.5, and we write it as follows:

ĤC = EC0

∑
j

Ĥj, Ĥj =
(
N̂j − ngj

)2
(2.3.1)

where the Hamiltonian Ĥj is the same for any island j. We focus on the spectrum of the

Hamiltonian Ĥj of an individual island. Because the latter commutes with the particle number

operator N̂j, they share common eigenstates. Therefore, the spectrum is trivially obtained as
a function of the induced charge, parametrized by the particle number.

E(ng;N) = EC0

(
N − ng

)2
(2.3.2)

The spectrum is shown in Figure 4.5a for a few parabolas, each one corresponding to
a different particle number, as a function of the induced charge. The parabolas intersect at
several values of ng, where we have degeneracy in energy. At these intersections, transitions
are allowed between states of different particle number for some tunneling energy EJ . In
Figure 4.5a, transitions between states of up to a difference of two particles are displayed. At
ng ≈ N + 1/2, we identify the degeneracy point of energy EC0/4, which involves two particles
states that differ by a particle, and correspond to the ground state of the system at zero
temperature. The first excited state corresponds to the degeneracy point involving the states
|N − 1⟩ and |N + 2⟩. The energy difference between the first excited state and the ground state
is E(N − 1 ↔ N + 2) − E(N ↔ N + 1) = 9EC0/4 − EC0/4 = 2EC0 . If the charging energy is
large compared to some hopping parameter that mixes particle states, then we can only regard
single particle transitions at energies E ∼ EC0/4.

We fine-tune our system at the near-degeneracy point of ng ≈ N + 1/2 (or any other
equivalent point), such that we reduce the Fock space of the individual island to two particle
states {|N⟩ , |N + 1⟩} (see Figure 4.5b). At the vicinity of this point, the spectrum behaves
linearly as a function of the induced charge. If we assume a background of some Cooper pair

4The uncertainties σφ, σN of the phase and number operators follow σφσN ∼ 1, arising from the commutation
relation of the involved operators.



CHAPTER 2. JOSEPHSON JUNCTIONS ARRAY AND THE MAPPING TO THE
RICE-MELE MODEL 12

(a) (b)

Figure 2.3: The hardcore boson approximation scheme established in the limit EC0 ≫ EJ . (a) The
spectrum of the charging Hamiltonian Eq. 2.3.2 consists of parabolas, each corresponding
to a different particle number N . These parabolas intersect at multiple values of the
induced charge ng. The dashed red line indicates the degeneracy points at which the
involved particle states differ by one particle. Similarly, the dashed green line indicate
those states that differ by two particles. (b) A closeup view of the spectrum, in which we
focus at the near-degeneracy point at ng ≈ N + 1/2. At the vicinity of this point, the
spectrum is linear in terms of the induced charge, as shown in the inset plot.

number N0, this choice of ng allows us to view the system as an effective two-level system and
we identify |N⟩ → |0⟩ , |N + 1⟩ → |1⟩. The resulting particle number operator is given in this
reduced basis as

Nj =

(
0 0
0 1

)
(2.3.3)

with the property N2
j = Nj. At the same time, we define new creation and annihilation

operators in this reduced basis:

a†j =

(
0 0
1 0

)
, aj =

(
0 1
0 0

)
(2.3.4)

which partly resemble bosonic operators,[
â†i , âj

]
=

[
â†i , â

†
j

]
= [âi, âj] = 0, i ̸= j (2.3.5)

and partly resemble fermionic operators,

{â†i , âi} = 1, {â†i , â
†
i} = {âi, âi} = 0 (2.3.6)

We commonly refer to these particles which are described by this set of operators, as
hardcore bosons, and the approximation scheme we presented becomes the hardcore boson
approximation. Under this assumption, the individual charging Hamiltonian admits the
following simplification, using the fact that N̂2 = N̂ .

Ĥj = (N̂j − ngj)
2 ≈ (1− 2ñgj)N̂j (2.3.7)

where ñgj = ng − N ≈ 1
2
. The overall charging Hamiltonian becomes a on-site potential

term.
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ĤC =
∑
j

µjN̂j, µj = EC0(1− 2ñgj) (2.3.8)

2.3.2 The role of the Josephson Hamiltonian

At this point, let us briefly demonstrate the implications of adding a hopping term on the
linear spectrum at the near-degeneracy point. Such term allows for the transitions to different
particle states, and in our work it resembles the tunneling of Cooper pairs between adjacent
islands via the Josephson effect. A hopping term mixes the particle states, and we also expect
a gap opening at the crossing of the energies.

To demonstrate this, we consider the effect on a single island. The coupling term is,

HJ = −EJ(|N⟩ ⟨N + 1|+ h.c.) (2.3.9)

such that the total Hamiltonian contains this term and the chemical potential terms
obtained from the hardcore boson approximation, in the newly-defined basis {|0⟩ , |1⟩},

H = ϵ1 |0⟩ ⟨0|+ ϵ2 |1⟩ ⟨1| − EJ(|0⟩ ⟨1|+ h.c.) (2.3.10)

where ϵ1/2 are the energies associated with each particle state.

ϵ1/2 =
EC0

4
± EC0

(
ñg −

1

2

)
(2.3.11)

The Hamiltonian in the reduced basis of {|0⟩ , |1⟩} adopts the following matrix form,

H →
(

ϵ1 −EJ

−EJ ϵ2

)
(2.3.12)

The hopping term mixes the particle states and following diagonalization, the resulting
eigenstates are superpositions of {|0⟩ , |1⟩}. The corresponding energies are obtained.

Figure 2.4: A gap opening due to the coupling term HJ at the near-degeneracy point ng ≈ 1/2.

E± =
ϵ1 + ϵ2 ±

√
(ϵ2 − ϵ1)2 + 4E2

J

2
=
EC0

4
±
√
E2

C0

(
ñg −

1

2

)2

+ E2
J (2.3.13)

and the gap is given when ng = 1/2,

Eg = 2|EJ |2 (2.3.14)

Figure 2.4 demonstrates a gap opening at ng = 1/2, when we consider a coupling term like
Eq. 2.3.9.
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To make this rigorous, one should consider two neighbouring islands both tuned at the
near-degeneracy, with a general state |n1, n2⟩ and apply a similar treatment.

2.4 Embracing the Rice-Mele model

The JJA Hamiltonian within the hardcore boson approximation, has been cast into a
quadratic Hamiltonian in terms of the newly defined hardcore bosonic operators â†i , âi,

Ĥ =
∑
j

µjN̂j −
∑
j

EJj,j+1

(
â†j âj+1 + h.c.

)
(2.4.1)

where µj = EC0(1 − 2ngj) and N̂j = â†j âj. Eq. 2.4.1 resembles the form of the Rice-Mele
Hamiltonian, however we still need to show how the parameters µj, EJj,j+1

are modulated in
time through voltage gates.

Let us begin with the on-site potential µj. Recall that the induced charge of a given island
j is expressed in terms of the gate voltage associated with that island,

ngj ≈
1

Q
CgjjVgj (2.4.2)

Assuming that the geometry of the island-gate capacitor is identical to all islands, then we
define a unique island-gate capacitance Cgjj = Cg0 .

Therefore, by tuning the gate voltage, we effectively tune the on-site potential term of the
Rice-Mele model. To create a bipartite lattice with sublattice indices {A,B}, we apply an AC
voltage over a DC voltage,

VgA/B
(t) = Vg0 ∓ δV sinωt (2.4.3)

Then Eq. 2.4.2 becomes,

ngA/B
(t) =

Cg0Vg0
Q

∓ Cg0δV

Q
sinωt (2.4.4)

At this point recall that the foundation of the hardcore boson approximation is the
fine-tuning of the induced charge at ng ≈ 1/2. Then, we identify Vg0 = Q

2Cg0
, and since

Eg0 =
Q2

2Cg0
, we obtain,

ngA/B
(t) =

1

2
∓ QδV

2Eg0

sinωt (2.4.5)

We are required to remain in the vicinity of ng = 1/2 for our two-level system to hold,
therefore we should only allow for a small modulation of the induced charge. This is taken care
of when QδV

Eg0
≪ 1. Since the chemical potential is provided by µj = EC0(1 − 2ngj), then in

combination with Eq. 2.4.5, we obtain,

µA/B(t) = ±∆sinωt, ∆ ≡ QδV
EC0

Eg0

(2.4.6)

Given the assumption of small modulations of the induced charge, the parameter ∆ should
be much smaller than the charging energy EC0 , i.e. ∆ ≪ EC0 . Now, let us discuss the tunneling
term. In the experimental setup we propose, the driving of the Josephson energies is attributed
to voltage gates placed on the junctions [34]. These gates essentially control the transmission
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coefficient of the SN interface by depleting or attracting electrons. The explicit analysis of the
modulation of the Josephson energies through gate voltages is beyond the scope of this thesis.
The gate voltages can be tuned appropriately as to induce two types of hopping; the intra-cell
EJ1 (hopping between sites of the same unit cell) and inter-cell EJ2 (hopping between sites of
adjacent unit cells) hoppings,

EJ1/2(t) = EJ0 ± δE cosωt (2.4.7)

After combining everything, the Hamiltonian resembles that of the Rice-Mele model,

Ĥ(t) =
∑
j

µA(t)â
†
2j−1â2j−1 +

∑
j

µB(t)â
†
2j â2j

−
∑
j

EJ1(t)
(
â†2j−1â2j + h.c.

)
−
∑
j

EJ2(t)
(
â†2j â2j+1 + h.c.

)
(2.4.8)

and the summation runs over the number of unit cells, and the time-dependent parameters
are given by Eq. 2.4.6 and Eq. 2.4.7. Still, there is one more thing we need to account for,
and that is the operators themselves. Because of the mixed algebra of the hardcore bosonic
operators, we are not able to find a proper unitary transformation to diagonalize it (in a
single-particle basis). In physical terms, the Hamiltonian of Eq. 2.4.8 actually corresponds to
infinitely interacting bosons. This can be understood from the fact that a single site cannot
accommodate more than one boson, and this is attributed to strongly interacting bosons. In
fermionic systems, only one fermion can be accommodated on a single orbital, because of their
particle nature, of them obeying the Pauli exclusion principle. But in hardcore bosons, we
somehow enforce this behavior. Nevertheless, we will exploit a technique in the section that
maps the hardcore bosonic system to a free fermionic one, and thus we can work with it in a
straighforward manner.

2.5 The mapping to free fermions

This section exploits the Jordan-Wigner (JW) transformation [35] which allows us to map
a spin Hamiltonian to a fermionic one. Thus, we show how an alternative description of the
system in terms of spins can be established, and then apply the JW transformation to map to
a free fermionic system.

2.5.1 A spin description of JJA Hamiltonian

We consider a mapping from hardcore bosons to a spin-1/2 representation. The hardcore
bosonic commutation/anticommutation algebra is similar to the one obeyed by the ladder
operators in the spin picture. In the hardcore boson approximation, we consider two energy
levels at the near-degeneracy point. If we make the following identification of the basis kets of
the two representations,

|0⟩ ↔ |↑⟩ , |1⟩ ↔ |↓⟩ (2.5.1)

then the ladder spin operators and annihilation/creation hardcore bosonic operators are
associated with each other as follows,

a†j ↔ σ−
j , aj ↔ σ+

j (2.5.2)
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The resulting Hamiltonian in the spin representation is trivially obtained:

Hspin(t) =
∑
j

µA(t)σ
−
2j−1σ

+
2j−1 +

∑
j

µB(t)σ
−
2jσ

+
2j

− EJ1(t)
∑
j

(
σ−
2j−1σ

+
2j + h.c.

)
− EJ2(t)

∑
j

(
σ−
2jσ

+
2j+1 + h.c.

)
(2.5.3)

We are able now to demonstrate the mapping to free fermions using the Jordan-Wigner
transformation.

2.5.2 The Jordan-Wigner transformation

The Jordan-Wigner transformation offers an alternative description of a system in terms
of fermionic operators [35], [36]. The fundamental concept underlying the Jordan-Wigner (JW)
transformation is to find a transformation that maps a given set of operators, obeying some
commutation/anticommutation relations, to a set of fermionic operators, that obey the usual
anticommutation relations,

{ĉ†i , ĉj} = 1δij, {ĉ†i , ĉ
†
j} = {ĉi, ĉj} = 0, ∀i, j (2.5.4)

We seek a unitary transformation Lj,

L†
j : σ̂

−
j 7→ ĉ†j, Lj : σ

+
j 7→ ĉj (2.5.5)

such that the spin operator transform as follows,

σ−
j = L†

j ĉ
†
j, σ+

j = Lj ĉj (2.5.6)

The transformation Lj is expressed in terms of the fermionic particle number,

L†
j = e−iπ

∑
k<j ĉ

†
k ĉk , Lj = eiπ

∑
k<j ĉ

†
k ĉk (2.5.7)

and it is called the string operator. The sum on the exponent contains all fermion
occupancies at sites before site j, hence the ’string’ name. Evidently, it is a non-local
transformation. This transformation is unitary, i.e. L†

jLj = 1, and because of that, it
preserves the spectrum. Given this explicit map, we are in a position to entirely write
Eq. 2.5.3 in terms of fermions.

The on-site staggering potential terms transform as follows:

σ−
2jσ

+
2j 7→ ĉ†2j ĉ2j, σ−

2j−1σ
+
2j−1 7→ ĉ†2j−1ĉ2j−1, (2.5.8)

where we have exploited the unitarity of the transformation. The Josephson tunneling
term for hopping between sites of the same unit cell, transforms as follows:

σ−
2j−1σ

+
2j 7→ L†

2j−1ĉ
†
2j−1L2j ĉ2j = ĉ†2j−1L

†
2j−1L2j ĉ2j = ĉ†2j−1e

iπĉ†2j−1ĉ2j−1 ĉ2j (2.5.9)

where we have used the fermionic anticommutation relations of Eq. 2.5.4. The
transformation resulted into an additional phase which can be removed. Consider the sites
2j − 1 and 2j and the particle product state |ψ⟩ = |n1⟩2j−1 ⊗ |n2⟩2j, where n1, n2 ∈ {0, 1}, as
imposed by the Pauli exclusion principle. Let us define the operator:
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K̂ ≡ ĉ†2j−1e
iπĉ†2j−1ĉ2j−1 ⊗ ĉ2j (2.5.10)

which is the fermionized version of σ−
2j−1σ

+
2j. Now, let the new operator act on the particle

state |ψ⟩,

K̂ |ψ⟩ =
(
ĉ†2j−1e

iπĉ†2j−1ĉ2j−1 ⊗ ĉ2j
)(

|n1⟩ ⊗ |n2⟩
)
=

(
ĉ†2j−1e

iπĉ†2j−1ĉ2j−1 |n1⟩2j−1

)
⊗
(
ĉ2j |n2⟩2j

)
There are four possible combinations for {n1, n2} = {00, 01, 10, 11}. Only one of these give

a non-zero K̂ |ψ⟩, the combination (c1 = 0, c2 = 1). For this case, we get:

K̂ |ψ⟩ =
(
ĉ†2j−1e

iπĉ†2j−1ĉ2j−1 |0⟩2j−1

)
⊗

(
ĉ2j |1⟩2j

)
= eiπ0ĉ†2j−1 |0⟩2j−1 ⊗ ĉ2j |1⟩2j = ĉ†2j−1ĉ2j |ψ⟩

where we used n̂2j−1 |n⟩2j−1 = ĉ†2j−1ĉ2j−1 |n⟩2j−1 = n |n⟩2j−1. The obtained result involves
the same product of fermionic operators as initially, but without the phase. The Josephson
term that involves tunneling between sites of different unit cells, transforms in exactly the same
way, where the argument of omitting the phase still holds. The total fermionic Hamiltonian
reads:

Ĥf (t) =
∑
j

µA(t)ĉ
†
2j−1ĉ2j−1 +

∑
j

µB(t)ĉ
†
2j ĉ2j

−
∑
j

EJ1(t)
(
ĉ†2j−1ĉ2j + h.c.

)
−
∑
j

′
EJ2(t)

(
ĉ†2j ĉ2j+1 + h.c.

)
(2.5.11)

where
∑

j

′
runs over the number of unit cells minus one. The fermionized Hamiltonian of

Eq. 2.5.11 applies specifically to open boundary conditions. The case of periodic boundary
conditions is slightly subtle because of the boundary term, which has to be considered
separately. The boundary term, between the 2N site and the first one is:

Hboundary = −EJ2

(
σ−
2Nσ

+
1 + h.c.

)
(2.5.12)

First, we make the identification, σ−
2Nσ

+
1 = σ−

2Nσ
+
2N+1. This form helps us to treat this

term virtually as any other term that involves tunneling between unit cells. We apply the
Jordan-Wigner transformation on the spin operator of the virtual site,

σ+
2N+1 = L2N+1ĉ2N+1 = eiπ

∑
k<2N−1 ĉ

†
k ĉk ĉ2N+1 = eiπn̂ĉ2N+1 (2.5.13)

where the number operator n̂ =
∑

k<2N−1 ĉ
†
kĉk gives the total number of fermions in the

system. At the same time, we have σ+
1 = ĉ1 and since σ+

1 = σ+
2N+1, then:

ĉ1 = eiπn̂ĉ2N+1 (2.5.14)

Therefore, the fermionized version of the boundary term is:

σ−
2Nσ

+
1 = ĉ†2Ne

−iπn̂ĉ1 (2.5.15)

Consider a particle state of Ne electrons, |Ne⟩ which describes the system under
consideration. Let us apply the fermionized operator of 2.5.15 to the aforementioned particle
state.

ĉ†2Ne
−iπn̂ĉ1 |Ne⟩ = ĉ†2Ne

−iπn̂ |Ne − 1⟩ (2.5.16)
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assuming that there is a fermion on site 1, otherwise the whole expression is zero. Now,
we proceed as follows:

ĉ†2Ne
−iπn̂ |Ne − 1⟩ = ĉ†2Ne

−iπ(Ne−1) |Ne − 1⟩ = −ĉ†2Ne
−iπNe |Ne − 1⟩ = −e−iπNe ĉ†2N ĉ1 |Ne⟩

(2.5.17)
where we have used |Ne − 1⟩ = ĉ1 |Ne⟩. Thus, we find:

ĉ†2Ne
−iπn̂ĉ1 |Ne⟩ = −e−iπNe ĉ†2N ĉ1 |Ne⟩ = (−1)Ne−1ĉ†2N ĉ1 |Ne⟩ (2.5.18)

and the overall sign depends on the parity of the particle number. If we have an odd
particle number, then we obtain an additional minus sign in front. On the other hand, having
an even number of particles does not yield an extra minues sign. This additional term does
not introduce any peculiarities to the system, from a physical point of view. However, it does
impact the mathematical side of things. If the parity of the particle number is odd, then this
corresponds to the minus sign and the system is treated as having ordinary periodic boundary
conditions. However, if the parity of the particle number is even, then the boundary term
switches to a plus sign. This can be translated into a complex phase +1 = −eiπ. We can
think about it as the effect of a magnetic flux penetrating the ring. It results to a shift of the
Brillouin zone in momentum space, which however does not impact the observable quantities
for large system sizes.

The fermionized Hamiltonian for periodic boundary conditions reads,

Ĥf (t) =
∑
j

µA(t)ĉ
†
2j−1ĉ2j−1 +

∑
j

µB(t)ĉ
†
2j ĉ2j − EJ2(t)(−1)Ne−1

(
ĉ†2N ĉ1 + h.c.

)
−

∑
j

EJ1(t)
(
ĉ†2j−1ĉ2j + h.c.

)
−
∑
j

′
EJ2(t)

(
ĉ†2j ĉ2j+1 + h.c.

)
(2.5.19)

where
∑

j

′
runs over the number of unit cells minus one. Because of the quadratic form

of the Hamiltonian, we can write it in a more compact form in the real space basis:

Hf = C†HC, C =
(
ĉ1 ĉ2 ĉ3 · · · ĉ2N

)T
(2.5.20)

and

H =



µA −EJ1 0 0 0 · · · −EJ2(−1)Ne−1

−EJ1 µB −EJ2 0 0 · · · 0
0 −EJ2 µA −EJ1 0 · · · 0
0 0 −EJ1 µB 0 · · · 0

0
. . . . . .

...
...

. . . −EJ1

−EJ2(−1)Ne−1 0 0 · · · −EJ1 µB


(2.5.21)

where the size of the matrixH is 2N×2N . In principal, because of translational invariance,
we can map to momentum space and work there. However, we will consider the real-space
formalism once we introduce disorder in the system in Chapter 5.



Chapter 3

Floquet Theory in Quantum Systems

Before diving deep into the physics of the Rice-Mele model and the extension thereof with
the introduction of superconducting leads, let us present some basic notions and concepts of the
theory of periodically time-dependent quantum systems, the Floquet theory. The latter will
be of great importance in the study of dynamics of the system of interest. For this reason, we
ought to devote a whole chapter, on which we emphasize on the implications of a periodically
driven system, arising within the context of Floquet theory.

3.1 The mathematical setup

The dynamics of a quantum system are governed by the time-dependent Schrödinger
equation:

i
d

dt
|ψ(t)⟩ = H(t) |ψ(t)⟩ (3.1.1)

Alternatively, the ket state of the system can be obtained by applying the unitary time
evolution operator to an initial state,

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ (3.1.2)

thus we just have to determine the time evolution operator, which also obeys the
time-dependent Schrödinger equation.

U̇(t, t0) = −iH(t)U(t, t0) (3.1.3)

where we use the dot above the operator to denote differentiation with respect to time, and
we have transferred the imaginary unit to the RHS. Eq. 3.1.3 constitutes a system of linear
first-order ordinary differential equations, of the general form U̇ = AU where both U and A
are n× n matrices, and in our case A = A(t) = −iH(t).

Since we are dealing with periodically driven systems in which H(t+ τ) = H(t) where τ is
the period of the drive, t hen A(t+ τ) = A(t) as well. Thus, we want to solve U̇(t) = A(t)U(t)
with A(t+ τ) = A(t). This situation was tackled first mathematically by Gaston Floquet [37].
Then, his theory was adopted by physicists to study classical and quantum systems under the
influence of a periodic drive 1 [38].

1Similar considerations to the Floquet theory were adopted by Bloch a few decades later when developing
his theory for systems with particles under the influence of a periodic potential, V (x + a) = V (x) where a
characterizes the lattice periodicity. The resulting theorem was therefore named after him.

19
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3.2 Periodically driven systems

In this section, we introduce the theory of periodically driven systems, the Floquet
theory. One who is already familiar with the Bloch theorem will find out that the two theories
share several similarities, but in a different context. The Bloch theorem applies to systems
with space periodicity, i.e. H(x⃗+ R⃗) = H(x⃗), where R⃗ is a linear combination of the primitive
lattice vectors. The space periodicity implies conservation of the crystal momentum (or
quasi-momentum) within a reciprocal lattice vector [39].

In Floquet theory, we are concerned with a similar situation. The Hamiltonian of the
system possesses discrete time translation symmetry since H(t + T ) = H(t), where T = mτ
is an integer multiple of the driving period τ . Then, as one should expect this leads in some
form of energy conservation, perhaps in the same way as in the Bloch theorem. We note
that, in general, the Hamiltonian does not commute with itself at different time moments, i.e.
[H(t′), H(t′′)] ̸= 0.

Given a time-dependent Hamiltonian H(t), the state of the system obeys the
time-dependent Schrödinger equation of Eq. 3.1.1. Equivalently, the time-evolved state is
obtained by applying the unitary time evolution operator U(t, t0), to an initial state.

Û(t, t0) : H → H× [0, t], Û(t, t0) : |ψ0⟩ 7→ |ψ(t)⟩ = Û(t, t0) |ψ0⟩ (3.2.1)

and U(t0, t0) = 1. The time evolution operator solves the time-dependent Schrödinger
equation,

i
d

dt
U(t) = H(t)U(t), U(t) = T exp

{
−i
ˆ t

0

H(t′)dt′
}

(3.2.2)

where T is the time-ordering operator. At time t = τ , we obtain the so-called Floquet
operator:

U(τ) ≡ F (τ) = T exp

{
−i
ˆ τ

0

H(t′)dt′
}

(3.2.3)

We define the effective or Floquet Hamiltonian which provide us with an effective
description of the system over a period of the drive.

F (τ) = exp{−iHF τ}, HF =
∞∑
k=0

H
(k)
F (3.2.4)

The Floquet Hamiltonian is written as an infinite sum over integrals and commutators of
the original time-periodic Hamiltonian over a period of the drive, in accordance to the Magnus
expansion. The first two expansion coefficients are provided.

H
(1)
F =

1

τ

ˆ τ

0

H(t1)dt1 (3.2.5)

H
(2)
F =

−i
2τ

ˆ τ

0

dt1

ˆ t1

0

dt2 [H(t1), H(t2)] (3.2.6)

The first term H
(1)
F of the expansion is the time-averaged Hamiltonian.
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Having determined the time evolution operator and obtained the Floquet operator at t = τ ,
we can diagonalize it by applying an appropriate unitary (basis) transformation UF .

UF : F (τ) 7→ UFF (τ)U
†
F = D (3.2.7)

where D is a diagonal matrix containing the eigenvalues. The basis transformation UF

contain the corresponding eigenvectors which are called Floquet states |ϕν(τ)⟩ and they form
a complete, orthonormal set with the following resolution of identity

∑
ν |ϕν(τ)⟩ ⟨ϕν(τ)| = 1.

The eigenvalues lie on the unit circle λν = eiγν , due to the unitarity of the Floquet operator.
Conventioanlly, we choose the parametrization γν = −iεντ and εν are the quasienergies.

Regarding the quasienergies, one might be tempted to write [38],

HF |ϕν⟩ = εν |ϕν⟩ (3.2.8)

however, this statement is only a part of the whole story. By taking into account that the
Floquet operator is a complex exponential, we should treat it accordingly when we take the
logarithm.

logF (τ) = −i
(
HF τ + 2πn

)
= −i

(
HF + ωn

)
τ, n ∈ Z (3.2.9)

and ω is the frequency of the drive. Then, if we express Eq. 3.2.9 with the Floquet
Hamiltonian on the LHS, then the eigenvalues will be:

ε(ν,m) = εν + ωm, m ∈ Z (3.2.10)

which implies multivaluedness of the quasienergies. For a given ν, the quasienergy εν,m is
multi-valued across the whole energy axis. The original quasienergies εν are uniquely defined
within a finite interval, identified as the first Floquet-Brillouin zone (FBZ), of width ω.

−ω/2 ≤ εν ≤ ω/2 (3.2.11)

This redundancy in the Floquet spectrum arises due to the discrete time-translation
invariance of the system. The quasienergy periodicity implies that under the effect of a
periodic drive, the system’s energy is conserved up to the absorption or emission of integer
multiples of the driving field quanta energy. Likewise, a similar situation occurs in the Bloch
theorem with the crystal momentum, as we briefly discussed in the beginning of the section.

Let us now discuss about the implications of the time periodicity in the time evolution
of the system. The time evolution operator at any time t is expressed as a product of itself
defined within a driving period and the Floquet operator.

U(t+ nτ, t0) = U(t, t0)[F (τ)]
n (3.2.12)

where F (τ) is the Floquet operator we introduced earlier. The knowledge of the unitary
operator within a driving period suffices to evolve the system in time ∀t ≥ 0. This statement
may appear somewhat obvious, given the transparent semigroup property. One needs to show
that the time evolution operator defined within a driving period obeys the same Schrödinger
equation as the full time evolution operator and also the same initial condition [40]. Let
us pause and think about this decomposition of the total time evolution operator. We can
distinguish two types of periodic motion, the micromotion and the stroboscopic motion. The
former expresses the motion of the system during a period of the drive and is affiliated with
U(t, t0). The latter is represented by the Floquet operator F (τ) and describes the system at
times t = mτ, m ∈ N.
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An alternative form of the time evolution operator can be defined by exploiting the form of
the Floquet operator. We write the time evolution operator within a single period as a product
of a periodic unitary operator P (t) and the exponential exp{−iHF t}.

U(t) = P (t)e−iHF t, P (t+ τ) = P (t) (3.2.13)

Now, let us evolve in time the initial ket state by applying the time evolution operator of
Eq. 3.2.13. We project the initial state on the Floquet basis, i.e. |ψ0⟩ =

∑
ν |ϕν⟩ ⟨ϕν |ψ0⟩ =∑

ν cn |ϕν⟩.

|ψ(t)⟩ = U(t) |ψ0⟩ = P (t)e−iHF t |ψ0⟩ =
∑
ν

cne
−iενt |un(t)⟩ (3.2.14)

where we have defined |uν(t)⟩ ≡ P (t) |ϕν⟩ and we called these states Floquet modes and
they possess the time periodicity of the system, inherited by P (t). We also used the fact that
e−iHF t |ϕν⟩ = e−iενt |ϕν⟩. Eq. 3.2.14 states that any state can be expanded with respect to
the Floquet states, and the coefficients cn that depend on the initial state are time-dependent.
Importantly, |cn|2 corresponds to occupation probabilities to the Floquet states, which are
preserved throughout the time evolution.

We can go further and defined the time-dependent Floquet states |ψν(t)⟩ ≡ e−iενt |uν(t)⟩
which also form a complete, orthonormal set. The time-dependent Floquet states are
decomposed into a plane wave and a function with the periodicity of the driving field. A
similar decomposition is encountered in the Bloch theorem, in which the periodic function
inherits the periodicity of the real lattice. Note that the states |ψν⟩ (t) are not periodic in
time themselves. Instead, a phase factor arises

|ψν(t+ τ)⟩ = e−iεντ |ψν(t)⟩ (3.2.15)

As a final remark, notice that the phase factors e−iενt appearing throughout this analysis,
resemble the usual factors e−iEnt associated with the time evolution of the eigenstates of a time
independent Hamiltonian. Hence, the quantities εν are called quasienergies.

3.3 The mapping to an effective, static description

In the following lines, we describe a different approach of treating a time-periodic system
using Fourier expansion. This approach is sometimes referred to as the Shirley-Floquet
approach [38]. This approach is the basis of the mapping of a dynamic system to a static one
by creating a synthetic dimension.

Given a time-periodic Hamiltonian H(t+ τ) = H(t) with τ being the driving period, then
we can Fourier expand as follows:

Ĥ(t) =
∑
m

e−imωtĤ(m) (3.3.1)

where ω = 2π/T is the driving frequency. The summation index m covers the whole set
of integers. The coefficients Ĥ(m) are obtained by the inverse Fourier transformation.

Ĥ(m) =
1

τ

ˆ τ

0

dt Ĥ(t)eimωt (3.3.2)
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From the Floquet theorem, the time-dependent Floquet states are expressed as a product
of a plane wave and a periodic function |ψn(t)⟩ = e−iϵnt |un(t)⟩. The Floquet modes |un(t)⟩ are
periodic functions of time and hence they can be Fourier expanded.

|un(t)⟩ =
∑
m

e−imωt
∣∣u(m)

n

〉
(3.3.3)

The Floquet states are solutions of the time-dependent Schrödinger equation,

i
∂

∂t
|ψn(t)⟩ = Ĥ(t) |ψn(t)⟩ (3.3.4)

and thus we can use the product form of it to obtain:[
εn + i∂t

]
|un(t)⟩ = Ĥ(t) |un(t)⟩ (3.3.5)

We use the expansion of the Floquet modes, Eq. 3.3.3, and of the Hamiltonian, Eq. 3.3.1,
to expand Eq. 3.3.5.∑

l,m

e−i(l+m)ωtH(l)
∣∣u(m)

n

〉
−

∑
m

mωe−imωt
∣∣u(m)

n

〉
= εn

∑
m

e−imωt
∣∣u(m)

n

〉
(3.3.6)

Let us work with the first term. Allow the change of variables l+m→ m to occur for the
sum over m. ∑

l

∑
m

e−i(l+m)ωtH(l)
∣∣u(m)

n

〉
→

∑
l

∑
m

e−imωtH(l)
∣∣u(m−l)

n

〉
(3.3.7)

and the sum over m still runs over the infinite integer value set. We can now change the
order of the summations without consequences, and allow a change of variables m− l → l for
the summation over l.∑

m

e−imωt
∑
l

H(l)
∣∣u(m−l)

n

〉
→

∑
m

e−imωt
∑
l

H(m−l)
∣∣u(l)n 〉

(3.3.8)

and the sum over l still runs over the infinite integer value set. After this small step, we
return back to 3.3.6. This procedure leads to the following result, in which we left out the
summation over m and the complex exponentials.∑

l

[
H(m−l) − lωδm,l

] ∣∣u(l)n 〉
= εn

∣∣u(m)
n

〉
(3.3.9)

Now, this is an eigenvalue equation of the form:

Hun = εnun (3.3.10)

and the quasienergies εn form the spectrum of the extended Hamiltonian H, which is
represented by infinite copies of the Floquet-Brillouin zone (extended spectrum) [41]. The
extended Hamiltonian H and the Fourier coefficients un are given by,

H =


. . . H(−1) H(−2)

H(1) H0 −mω H(−1) H(−2)

H(2) H(1) H0 − (m+ 1)ω H(−1)

H(2) H(1) ...

, un =


...∣∣∣u(m)

n

〉∣∣∣u(m+1)
n

〉
...

 (3.3.11)
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Figure 3.1: A representation of the extended Floquet Hamiltonian (y-axis corresponds to the energy).
H(0) (not shown) describes the physics on a single level characterized by the frequency
index m and H(±1) couple states of frequency indices, which differ by 1. Couplings of
higher order |∆m| > 1 represented by H(|∆m|) are not displayed. Levels of different m are
shifted with respect to each other by the driving frequency ω, resembling energy shifts
because of a static electric field [42].

From now on, m is the frequency index. The extended Floquet Hamiltonian is block
structured, since each Fourier component of the Hamiltonian H(m) is a d × d matrix, where d
is the dimension of the original Hilbert space. H(0) is the time-averaged Hamiltonian, defined
on each frequency index and H(∆m),∆m ̸= 0 couple different frequency indices. In the case of
a driving of sinusoidal form, we have H(∆m) = 0, |∆m| > 1. The driving field appears here
as a shift in energy, proportional to the frequency index, and resembles an applied, constant
electric field. In Figure 3.1, the energy levels of a few values of the frequency index are shown,
along with the associated nearest-neighbour couplings. The levels are shifted relative to each
other by the driving frequency ω.

Because of the infinite size of the objects in Eq. 3.3.10, one has to truncate the total space,
reducing to an effective, finite system of algebraic equations. In the case of an adiabatic driving
in which ω → 0, the truncation can be chosen arbitrarily since effetively the shift between
energy levels because of ω is negligible in this regime.

Notably, this feature highlights the importance of driven systems of topological character,
and especially the prospect of understanding higher order topological phases [43], that cannot
be accessed with experiments in real space.

3.4 Charge pumping in the Floquet picture

In this section, we discuss adiabatic quantum pumping in the context of Floquet theory.
Floquet theory allows us to study a system dynamically, for long times. Importantly, by
exploiting Eq. 3.2.12, one can study the system at any arbitrary time since all we need is to
determine the Floquet operator and the time evolution operator within a driving period. In
contrast, this can become a cumbersome task if we choose to solve the Schrödinger equation
directly. In the following subsection, we show how we obtain the transferred charge in the
infinite-time limit. This is only possible if we work explicitly in the Floquet representation.
Furthermore, we also touch the issue of adiabaticity later on.
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3.4.1 The infinite time limit

Given a many-body system with time-dependent Hamiltonian H(t) under the influence of
a periodic drive, we are interested in the charge Q transferred over a driving period, which is
given as the time integral over the expectation value of the current operator J (t),

Q =
1

τ

ˆ τ

0

dt ⟨J (t)⟩ , ⟨J (t)⟩ = tr{ρ(t)J (t)} (3.4.1)

where ρ(t) is the state of the system at time t. Usually we are interested in the behavior
of the system at a later time in the distant future, so we consider the infinite-time limit,

Q∞ = lim
m→∞

1

m

ˆ mτ

0

dt ⟨J (t)⟩ (3.4.2)

Let us start by addressing the time evolution of the state of the system. The system is
initialized in the ground state of the Hamiltonian H(t) at time t = 0.

ρ0 = |GS⟩ ⟨GS| (3.4.3)

The initial density matrix is then mapped to the Floquet basis via the basis transformation
UF established in Section 3.2, UF : ρ0 7→ ρ̃0 = UFρ0U

†
F ,

ρ̃0 =
∑
µ,ν

Cµν |Φµ⟩ ⟨Φν | (3.4.4)

where the coefficients Cµν = ⟨Φµ(τ)|ρ0|Φν(τ)⟩ = ⟨Φµ|GS⟩ ⟨GS|Φν⟩ correspond to the
overlaps of the ground state to the Floquet states. The states {|Φ⟩ν} are the many-body
Floquet states, obtained by diagonalizing the Floquet operator. The transformed density
matrix ρ̃0 is evolved in time by applying the time evolution operator
U(t, t0) : ρ̃0 7→ ρ̃(t) = U(t, t0)ρ̃0U

†(t, t0).

ρ̃(t) =
∑
µ,ν

Cµν U(t, t0) |Φµ(τ)⟩ ⟨Φν(τ)|U †(t, t0) (3.4.5)

Since the expectation value of the current operator is the trace of the product of the density
matrix and the current, then for t+mτ, m ∈ N,

⟨J (t+mτ)⟩ =
∑
µ,ν

Cµν e−i(Eµ−Eν)mτ ⟨Φν(t)| J (t) |Φµ(t)⟩ (3.4.6)

where |Φν(t)⟩ = U(t, t0) |Φν(τ)⟩ are the time-evolved Floquet states. Note that the matrix
element ⟨Φν(t)| J (t) |Φµ(t)⟩ is time-periodic since both the time-evolved Floquet states and the
current operator are periodic in time. Additionally, we have used the fact that

U(t+mτ) |Φµ(τ)⟩ = U(t)[F (τ)]m |Φµ(τ)⟩ = e−iEµmτU(t) |Φµ⟩ (3.4.7)

and Eµ is the many-body quasienergy. Now, using Eq. 3.4.6 the pumped charge in the
infinite-time limit admits the following form,

Q∞ = lim
m→∞

1

m

ˆ mτ

0

dt′
∑
µ,ν

Cµνe−iΩµν(m−1)τ ⟨Φν(t
′)| J (t′) |Φµ(t

′)⟩ (3.4.8)

where Ωµν = (Eµ −Eν). The time parameter t′ ≥ 0 is expressed as t′ = t+ (m− 1)τ where
t ∈ [0, τ) and m ∈ N. In the Appendix B, we show how to deal with this expression. After
some manipulations, the pumped charge in the infinite-time limit is expressed as the sum of
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integrals of the expectation value of the current operator in a Floquet state |Φµ⟩ , weighted by
the associated occupation number Nµ,

Q∞ =
∑
µ

Nµ

ˆ τ

0

dt ⟨Φµ(t)| J (t) |Φµ(t)⟩ (3.4.9)

This equation allows us to view the system after a very long time, essentially telling us
where the system will end up. All we have to do is use the knowledge provided to us within a
driving period such as the time evolution operator, the Floquet operator and the occupations
of the Floquet states. We can take it a step further by taking advantage of the properties
of the time evolution operator and that the current can be written as the derivative of the
Hamiltonian with respect to a fictitious flux ϕ, i.e. J = ∂ϕH|ϕ=0 - the latter is discussed in
detail in Section 4.3 in Chapter 4. Then, it is shown in the Appendix B that the charge is
re-written in terms of the derivative of the quasienergy,

Q∞ = τ
∑
µ

Nµ∂ϕEµ|ϕ=0 (3.4.10)

We will return to this expression in Chapter 6 in which ϕ will play a significant role. But at
the moment, let us admire the elegant form that the pumped charge takes in the infinite-time
limit in terms of the quasienergy and the occupations of the Floquet states. Admittedly, this
expression will allow us to interpret the quantized particle transport in the Rice-Mele model in
the presence of superconducting leads in Chapter 6.

3.4.2 Adiabatic limit

We complete our discussion on quantum pumping in the Floquet picture by exploring the
adiabatic limit. We consider a gapped Hamiltonian H(t) with H(t+ τ) = H(t) where τ is the
driving period and ω the driving frequency. The adiabatic regime is characterized by ω → 0.
The Hamiltonian can be diagonalized at each instant of time, obtaining thus the instantaneous
eigenstates {|χn(t)⟩} and energies {En(t)}.

Ĥ(t) |χn(t)⟩ = En(t) |χn(t)⟩ (3.4.11)

In the Floquet formalism, we have introduced the time dependent Floquet states, which
can be decomposed in a plane wave and a periodic function |uν(t)⟩ - the Floquet modes,

|ψν(t)⟩ = e−iενt |uν(t)⟩ (3.4.12)

and these states are solutions to the time-dependent Schrödinger equation.

i∂t |ψν(t)⟩ = Ĥ(t) |ψν(t)⟩ , |ψν(t)⟩ = U(t) |ψν(0)⟩ (3.4.13)

where |ψν(0)⟩ = |uν(0)⟩ 2 and U(t) is the time evolution operator. If the evolution is slow
enough, the adiabatic theorem states that after one period, the state of the system returns to
the initial state and acquires a phase αn, i.e.

|χn(τ)⟩ ≈ eiαn |χn(0)⟩ (3.4.14)

This is the zeroth-order correction in the adiabatic perturbation theory [44]. This phase
is a sum of the dynamical phase δn and the geometrical (Berry) phase γn,

2We identify the Floquet modes |uν(τ)⟩ = |uν(0)⟩ as the Floquet states |ϕν(τ)⟩, the eigenstates of the Floquet
operator, since at time t = τ we have |ψν(τ)⟩ = e−iεντ |uν(τ)⟩ and |ψν(τ)⟩ = F (τ) |uν(0)⟩.
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αn = δn + γn, δn = −
ˆ τ

0

dt En(t), γn = i

ˆ τ

0

dt ⟨χn(t)|∂tχn(t)⟩ (3.4.15)

Acting with the Floquet operator on the instantaneous eigenstate |χn(0)⟩ yields

|χn(τ)⟩ = U(τ) |χn(0)⟩ ≈ eiαn |χn(0)⟩ (3.4.16)

where we have exploited Eq. 3.4.14. At the same time, we recall the action of the Floquet
operator on the Floquet mode at t = 0 (or equivalently Floquet states),

|ψν(τ)⟩ = U(τ) |uν(0)⟩ = e−iεντ |uν(0)⟩ (3.4.17)

Comparing Eq. 3.4.16 and Eq. 3.4.17, we conclude that the instantaneous eigenstates of
the Hamiltonian |χn(0)⟩ coincide with the Floquet modes |uν(0)⟩ 3. At the same time, the
quasienergy εν is associated with the geometrical and dynamical phases,

εν = −1

τ

(
δn + γn

)
(3.4.18)

These results are essential when we discuss about quantized pumping of the Rice-Mele
model.

3We note that we keep separate sets of indices for the Hamiltonian eigenstates and the Floquet modes. This
is actually done to avoid confussion. Let us provide an example to illustrate this. The Hamiltonian ground
state n = 0 does not necessarily correspond to ν = 0 (even though we sort energies in increasing order), because
the quasienergies are energies folded within a finite window of certain width. Thus, εν=0 does not trivially
correspond to the ground state.



Chapter 4

Rice-Mele Model

The Rice-Mele model is one of the simplest examples of topological quantum pumping. Its
significance is central because of the elegance and simplicity of the model in studying various
perturbations and how topological systems respond to such effects [45, 28, 27]. The original
Rice-Mele model [29] is actually a static model and is used to study excitations in diatomic
polymers. The extension of it to a time-periodic system has profound consequences, which we
will explore in this chapter, primarily the case of periodic boundary conditions. We study some
key aspects of the Rice-Mele model which have topological character, and have an impact on
observables.

4.1 Brief discussion on the concept of Thouless pumping

Topological quantum pump was first established by David Thouless [12]. In his remarkable
paper, he showed that under a slow modulation of the potential V (x, t) of a one-dimensional
lattice of infinite size, the current is quantized in terms of the Chern number, which is associated
to the system energy bands evolving in time. Importantly, the Fermi level must lie inside a gap
that separates the filled and empty bands at all times. The expression for the current originates
from a first-order correction within the adiabatic perturbation theory.

Q = − i

2π

∑
n∈occ

ˆ τ

0

dt

ˆ
BZ

dk

[〈
∂ψn,k

∂k

∣∣∣∣∂ψn,k

∂t

〉
− c.c.

]
(4.1.1)

The quantity

Bn
kt = i

[〈
∂ψn,k

∂k

∣∣∣∣∂ψn,k

∂t

〉
− c.c.

]
(4.1.2)

is identified as the Berry curvature from Berryology [22]. The double integral of the Berry
curvature of an occupied band over the surface of the torus formed by (k, t) is the Chern
number, and it is reminiscent of the Gauss-Bonnett theorem in Mathematics 1. This treatment
resembles the one given in the original TKNN paper [23], where the linear response to an
electric field is quantized in a similar fashion, and the two periodic parameters were (kx, ky).
That is the reason that Thouless pumping is considered the dynamical 1D analog of the 2D
static Hall effect.

1The Gauss-Bonnett theorem states that the integral of the Gaussian curvature over a two-dimensional
manifold depends on a universal invariant, the genus (the number of holes on the manifold). It is because of
this theorem that we can say a mug is topologically equivalent to a doughnut. We can map between the two
geometries by continously deforming one into the other.

28
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Essentially, each band is assigned a Chern number by integrating the associated Berry
curvature. If the Fermi level lies within the gap, separating the occupied from the empty
states, then the pumped charge is simply (minus) the sum of the Chern numbers of the bands.

It must be emphasized that the evolution must be slow enough that we avoid inducing
excitations. Typically the driving frequency ω should be much smaller than the energy gap. If
one fails to preserve adiabaticity, contributions from higher energy bands are considered to the
current.

4.2 The driving protocol of the Rice-Mele model

Figure 4.1: The Rice-Mele lattice model of staggering potential µ and hopping parameters EJ1/2 .

The Rice-Mele (RM) model resembles a one-dimensional lattice of N units cells and two
sites per unit cell, with a total of L = 2N sites. Particles, in particular fermions, are allowed
to hop between different sites. There are two types of hoppings, intra-cell hopping EJ1 which
involves particle hopping within the unit cell, and inter-cell hopping EJ2 which involves particle
hopping between adjacent unit cells. The tunneling parameters and the on-site stagggered
potential are varied periodically in time. The RM Hamiltonian reads,

ĤRM(t) = −EJ1(t)
N∑
j=1

(
ĉ†2j−1ĉ2j + h.c.

)
− EJ2(t)

N∑
j=1

fj
(
ĉ†2j ĉ2j+1 + h.c.

)
+

N∑
j=1

(
µA(t)ĉ

†
2j−1ĉ2j−1 + µB(t)ĉ

†
2j ĉ2j

)
(4.2.1)

where the summation index j runs over the number of unit cells. For completeness, we
also define the coefficient fj which depends on the boundary conditions of the system.

fj =

{
1 PBC
1− δj,N OBC

(4.2.2)

We will mainly focus on the case of periodic boundary conditions, and thus fi = 1,∀i ∈
{1, 2, ...N} 2, which is the most interesting and leads to quantized pumping. However, we will
briefly discuss the OBC at the end of the chapter, because the associated Hamiltonian will be
the relevant one when we study the coupling of the RM model with external leads in Chapter
6.

The parameters EJ1/2 , µA/B are varied periodically in time with driving frequency ω and
period τ = 2π/ω. These admit the following form,

EJ1/2(t) = EJ0 ± δE cosωt, µA/B(t) = ±µ = ±∆sinωt (4.2.3)

2Note that for j = N , ĉ2N+1 = ĉ1.
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(a)
(b)

Figure 4.2: The pumping protocol of the Rice-Mele model for (a) the hopping parameters EJ1/2(t)
and (b) the on-site staggered potential µA/B(t), for δE = EJ0 and ∆ = 3EJ0 .

and this choice of modulation defines our pumping protocol. This specific choice of driving
is not unique, but as it turns out, it is a suitable one leading to quantized transport. Figures
4.2a and 4.2b present the form of the time-dependent parameters. It is evident that within a
driving period, the system exhibits both the trivial and topological phases of the SSH model
(Appendix A). At these points, µA/B = 0 while the hoppings are, in general, non-zero, thus
allowing particles to hop.

Figure 4.3: The pumping protocol on the ∆EJ - µ plane, where the ellipse of Eq. 4.2.4 encircles the
gapless point (orange dot), for ∆ = 2EJ0 and δE = 1.5EJ0 .

We can combine the expressions given in 4.2.3 as to remove the parametric dependence on
t,

∆EJ = 2δE cosωt ⇒ (∆EJ)
2 = (2δE)2 cos2 ωt

µ = ∆sinωt ⇒ µ2 = ∆2 sin2 ωt

}
⇒ (∆EJ)

2

(2δE)2
+
µ2

∆2
= 1 (4.2.4)

where ∆EJ = EJ1 −EJ2 . The resulting curve is that of an ellipse on the δEJ - µ plane and
is displayed in Fig 4.3. As time grows, the system ’moves’ counterclockwise along the ellipse,
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exhibiting both the trivial and topological phases of the SSH model. At the same time, notice
that the ellipse winds around the origin, the point corresponding to EJ1 = EJ2 and ∆ = 0.
This is the gapless point since at this exact point, the energy band gap closes, thus the system
is in a metallic phase. We will show this explicitly in Subsection 4.4. When the ellipse winds
around the gapless point, this is linked with non-trivial topology, in a similar fashion as in the
SSH model. We recall that in the SSH model we are concerned with the winding of the relevant
ellipse about the gapless point on the EJ1 vs EJ2 plane. In the Rice-Mele model, by mapping
to momentum space, we can show that the gapless point is directly connected to a Berry
monopole in the parameter space. At the same time, the ellipse corresponds to a closed surface
in this parameter space. Thus, we can imagine a surface enclosing the monopole, and finds a
magnetic analogue. The non-zero flux on the surface corresponds to non-trivial topology. This
brief analysis does not demonstrate how observables are influenced by the underlying nontrivial
topology. However, the above argument ensures the existence of the latter.

The pumping protocol given by Eq. 4.2.4 and depicted in Figure 4.3, ensures that the
system is in a topological phase, since the ellipse encircles the origin irrespective of the values
of EJ0 , δE,∆, unless δE = 0 or ∆ = 0 or both. To ’exit’ the topological phase, we add an
energy shift A to one of the hopping parameters, for instance in EJ1 .

EJ1 = EJ0 + δE cosωt+ A (4.2.5)

We note that this is a perturbation we consider here, for the sake of discussing the related
topological phase transition. However, in the following sections and chapters, the perturbation
A is set to zero, unless otherwise stated. Then the equation of the ellipse changes slightly, with
A appearing as a shift on the x-axis.

(δEJ − A)2

(2δE)2
+
µ2

∆2
= 1 (4.2.6)

We notice that the ellipse does not wind around the gapless point anymore when A > 2δE,
and thus we enter the topologically trivial phase. In the picture we set up earlier, this ellipse
corresponds to a closed surface that does not enclose the monopole, thus the outward flux
through the surface is zero, thus trivial topology.

4.3 The current operator

We now discuss the current operator, the relevant observable linked to transport. The
integral of the expectation value of the current is the pumped charge.

Q =
1

τ

ˆ τ

0

dt ⟨J ⟩ (t) (4.3.1)

For the derivation of the expression for the current operator, we follow [46].

We will employ a small trick by introducing a fictitious flux through the system, in which
in the case of periodic boundary conditions has the geometry of a ring. The insertion of
this magnetic flux results in the appearance of an Aharonov-Bohm [47] phase, which can be
uniformly distributed along the links of the chain.
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Figure 4.4: A flux passes through the a system with periodic boundary conditions

In a tight-binding model, the introduction of such a flux casts the hopping parameter from
a real quantity to a complex one through the Peierls substitution.

−EJc
†
j+1cj 7→ −EJe

iθjc†j+1cj, θj =
q

ℏc

ˆ j+1

j

A · dl (4.3.2)

The line integral of the vector potential is done along the length of the link connecting the
sites j and j + 1. There is zero magnetic field in the region outside the flux, and we choose a
radial vector potential with azimuthal symmetry. At radius R where the ring exists, the vector
potential will be constant, and is taken out of the line integral.

ˆ j+1

j

A · dl = |A|
ˆ j+1

j

dl = |A| 1
L

˛
dl =

1

L

˛
|A|dl = 1

L

¨
BdS =

1

L
Φ (4.3.3)

where Φ is the overall flux, penetrating the ring, and it is constant in value. The sum over
all θj is the gauge invariant quantity, and matches the flux due to the Stoke’s theorem. The
phase now becomes (considering ℏ = 1, c = 1)

θj = q
Φ

L
(4.3.4)

Let us now view our system in first quantization. The Hamiltonian in one-dimension under
the minimal substitution is

H =
∑
i

[
(pi + ℏκi)2

2m
+ V (xi)

]
(4.3.5)

where ℏκi = qA (assuming all particles carry the same charge), and A =
∣∣∣ ⃗A(x)

∣∣∣ is the

vector potential or gauge field. We take the derivative with respect to the momentum κi, and
then we let κi → 0 to remove the fictitious flux.

1

ℏ
∂H

∂κj
=

∑
i

[(pi + ℏκi)
m

δij

]
=

(pj + ℏκj)
m

κj→0−−−→ pj
m

= vj (4.3.6)

The current operator is then given by qvj where q is the charge of the particle. We can
express the current in units of the charge, and thus write,
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Jj =
∂H

∂κj

∣∣∣∣∣
κj=0

(ℏ = 1) (4.3.7)

The constant vector potential is written as |A| = Φ/L, (ℏ = 1) and thus κj = Φ/L.
Equivalently, we can write the current operator in terms of the flux or the phase associated
with this flux.

Jj = L
∂H

∂Φ

∣∣∣∣∣
Φ=0

=
∂H

∂θj

∣∣∣∣∣
θj=0

(4.3.8)

Let us return to Rice-Mele tight-binding model and introduce a fictitious 3 flux. Only the
kinetic term in the Hamiltonian will be affected by this effect. Because of this, the current
operator reduces to the derivative of the kinetic energy with respect to the flux, as one might
expect. According to Peierls substitution, the hopping parameters become complex, ẼJ1 =
EJ1e

−iθj and ẼJ2 = EJ2e
−iθj+1 where θj/j+1 = qΦ/L. Then, the kinetic part of the Hamiltonian

becomes

T̂RM = −
∑
j

(
ẼJ1 ĉ

†
2j−1ĉ2j + h.c.

)
−
∑
j

(
ẼJ2 ĉ

†
2j ĉ2j+1 + h.c.

)
(4.3.9)

Then, we take the derivative of the Rice-Mele Hamiltonian with respect to the flux based
on Eq. 4.3.4.

Ĵ =
1

L
iq

[
EJ1

∑
j

(
ĉ†2j−1ĉ2j − h.c.

)
+ EJ2

∑
j

(
ĉ†2j ĉ2j+1 − h.c.

)]
(4.3.10)

4.4 The origins of quantized transport in the RM model

4.4.1 The momentum space formalism

Let us study now the Rice-Mele model with periodic boundary conditions. It feels
natural to us to switch to the momentum space since the relevant Hamiltonian possesses
space translation symmetry. We map to the k-space where k is the crystal momentum, with a
Fourier transformation. Because of the lattice having a two-site unit cell, the initial Hilbert
space maps to a composite space, that of the momentum and two-dimensional sublattice
space {A,B}.

ĤRM(t) =
∑
k

C†
k H(k, t) Ck, Ck =

(
ck,A
ck,B

)
(4.4.1)

where the HamiltonianH(k, t) is a 2×2 matrix and can be written in the following compact
form.

H(k, t) = R⃗(k, t) · σ⃗, R⃗(k, t) =
(
Rx(k, t), Ry(k, t), Rz(k, t)

)
(4.4.2)

where σ⃗ are the Pauli matrices in the sublattice space. H(k, t) resembles a system of a

spin-1/2 particle in a ’magnetic’ field R⃗(k, t). The components of the field R⃗(k, t) are functions
of the time-dependent parameters of the RM Hamiltonian.

3This argument also applies for a true magnetic field.
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(a)

(b)

Figure 4.5: The spectrum of the Rice-Mele model. (a) The two energy bands ε±(k, t) are periodic
functions of k, t. The minimum gap is located at the center of the Brillouin zone, and (b)
along the time direction at t = 0, π/2.

Rx(k, t) = −EJ1(t)− EJ2(t) cos(2k), Ry(k, t) = −EJ2(t) sin(2k), Rz(k, t) = ∆ sinωt
(4.4.3)

The components Ri(k, t) are periodic function of the crystal momentum k and time t.
The spectrum of the Hamiltonian H(k, t), depicted in Figure 4.5a, is symmetric with respect
to zero,

ε±(k, t) = ±
∣∣∣R⃗(k, t)∣∣∣, Eg(k = π/4, t) = 2

∣∣∣R⃗(k = π/4, t)
∣∣∣ (4.4.4)

The minimum gap is at the point 2k = π/2 and t = 0, τ/2 (see Figure 4.5b). The chemical
pontential term vanishes and we retrieve the SSH model, thus we expect the minimum gap to
exist at these time moments. The gap takes the simple form of E

(min)
g = Eg(π/2, τ/2) = 4δE,

thus depends only on the value of the amplitude of the modulation of the hopping parameters
δE. The adiabatic limit is established when the gap E

(min)
g is much larger than the driving

frequency ω.

The eigenstates of the Hamiltonian H(k, t) take the following form,

|u±(k, t)⟩ =
∣∣∣u±(R⃗)〉 = α± |↑⟩+ β± |↓⟩ (4.4.5)

where the states {|↑⟩ =
(
1 0

)T
, |↓⟩ =

(
0 1

)T} correspond to sublattices A and B,
respectively. The coefficients α±, β±, where ± correspond to the upper and lower band, are,

α± = ±e
−iϕ

√
2

√
1± Rz

R
, β± =

1√
2

√
1∓ Rz

R
(4.4.6)

where ϕ = arctan(Ry/Rx) and R =
∣∣∣R⃗∣∣∣.

4.4.2 Berry Picture

As we have demonstrated, the Hamiltonian of the Rice-Mele model in the momentum space
resembles a system of a spin-1/2 in a magnetic field R⃗ , i.e. H = R⃗ · σ⃗. The system evolves
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adiabatically in the parameter space, formed by {Ri}, and returns to itself after the evolution
of one period, but during its journey along some closed curve in the parameter space, it acquires
a phase, the famous Berry phase. In fact, this problem was one of the first applications of his
theory [22].

In Berry theory, one asks to determine the Berry connection and curvature for each
eigenstate of the Hamiltonian,

A±(R⃗) = i
〈
u±(R⃗)

∣∣∣∇R⃗ u±(R⃗)
〉
, B±(R⃗) = ∇R⃗ ×A±(R⃗) (4.4.7)

The resemblance to the spin-1/2 problem is apparent especially if we express the eigenstates
of the k-space Rice-Mele Hamiltonian Eq. 4.4.5 in terms of the polar and azimuthal angles of
the spherical coordinate system,

|u+(θ, ϕ)⟩ =
(
e−iϕ cos θ

2

sin θ
2

)
, |u−(θ, ϕ)⟩ =

(
−e−iϕ sin θ

2

cos θ
2

)
(4.4.8)

where θ = arccos(Rz/R), and thus the eigenstates live on the Bloch sphere. By following
a similar procedure to the spin-1/2 problem and after a few calculations, the Berry curvature
of the eigenstates has the form of a radial magnetic field generated by a monopole of charge
qm = 1/2, located at the origin R⃗ = 0.

B±(R⃗) = ∓1

2

R̂

R2
, where R̂ =

R

R
(4.4.9)

The R⃗ = 0 point is a degeneracy/gapless point, at which the energy bands Eq. 4.4.4 touch.

By examining the explicit form of R⃗(k, t) as a function of k and t Eq. 4.4.3, we find that R⃗ = 0
when EJ1 = EJ2 and ∆ = 0 for all values of (k, t). Therefore, the gapless point is implies the

existence of a Berry monopole in the parameter space of R⃗!

By choosing a set of values for the parameters of the Hamiltonian {EJ0 , δE,∆}, we realize a
closed surface in the parameter space of R⃗. In Figure 4.6a, the resulting closed surface encloses
the monopole. This has a nice analogue with electromagnetism and the hypothetical magnetic
monopole. We can think of the latter as the Berry monopole situated at the origin and the
magnetic field that generates is the Berry curvature. Integrating the magnetic field over a closed
surface yields the flux. Additionally, Gauss’ law says that the closed integral of the magnetic
field is equal to the enclosed charge. Therefore, in exact analogy with electromagnetism, for
our problem we take the surface integral of the Berry curvature,

‹
S

B±(R⃗) · dS = 4πqm = ∓2π (4.4.10)

It is explicitly shown in Ref. [46], using up to first-order in adiabatic perturbation
expansion, that the pumped charge is written in terms of this surface integral 4 and thus it
turns out to be quantized in units of the particle charge, i.e.

Q± = − 1

2π

‹
S

B±(R⃗) · dS = ±1 (4.4.11)

4In Thouless pumping, the surface integral of the Berry curvature is also interpreted as the first Chern
number, defined on the torus (k, t).
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(a)
(b)

Figure 4.6: When a two-dimensional surface in the R⃗ parameter space (a) encloses the Berry monopole
or equivalently the gapless point, the flux passing through the surface is nonzero, and thus
the pumped charge is nonzero, assuming adiabaticity. Otherwise, (b) the flux is zero as
well as the pumped charge. The surface in (a) corresponds to δE = 0.5EJ0 ,∆ = EJ0 , A =
0, while in (b) to δE = 0.5EJ0 ,∆ = EJ0 , A = 2EJ0 .

4.4.3 Floquet Picture

We now change perspective and we tackle pumping in the Rice-Mele model within the
Floquet picture (Chapter 3). In this context, we are concerned with the Floquet operator
which is obtained by the time evolution operator at time τ . Because of space translational
invariance, the original Hilbert space is reduced to a composite space of the sublattice space
and momentum space. The time evolution operator, just like the Hamiltonian in Subsection
4.4.1, is decomposed as follows,

U(t) =
∑
k

Uk(t)⊗ |k⟩ ⟨k| (4.4.12)

At the stroboscopic time t = τ , we obtain the Floquet operator labelled by the momentum
index, Fk(τ) ≡ Uk(τ). Diagonalization of the Floquet operator yields the quasienergies εν,k, or
equivalently the Floquet bands, defined within the first Floquet-Brillouin zone (see Figure 4.7b).
We emphasize that the quasienergies are uniquely determined within the interval εν,k ∈ [0, ω),
and they are folded within this range. This is similar to the Bloch theorem, Figure 4.8, in
which the parabola of the free electron is distorted by the weak periodic potential, is folded
and thus defined within the Brillouin zone. The ’pattern’ is then repeated across the whole
crystal momentum direction (Fig. 4.8c). In fact, the repeated zone is the spectrum obtained
by the extended Hamiltonian in the Floquet-Shirley approach back in Section 3.3 in which the
Floquet-Brillouin zone is repeated across the quasienergy direction.
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(a)
(b)

Figure 4.7: (a) A periodic drive in a 1D band insulator changes the geometry of the spectrum.
Adapted from [48]. (b) The Floquet-Brillouin zone for the Rice-Mele model. The
Floquet bands wind in opposite direction thus generate a current of different sign. The
right-moving and left-moving bands are colored green and yellow respectively. Adapted
from [49].

(a)
(b) (c)

Figure 4.8: An illustration of the folding of bands in the Bloch theorem. (a) The effect of Bragg
planes on the free electron, in the presence of other electron. This is the extended-zone
scheme. (b) The folding of the bands correspond to the reduced-zone scheme. (c) The
’pattern’ is repeated forming the repeated-zone scheme. Figures adapted from [39].

Because of the double periodicity in momentum k ∈ S1 and quasienergy εν ∈ S1, the
Floquet-Brillouin zone has the geometry of a torus, i.e. T 2 = S1×S1. This feature has indirect
impact to the pumped charge, which we now explore.

From solid state physics, the group velocity of the band ν is given by the derivative of
the band with respect to the crystal momentum, i.e. vν,k = ∂kεν,k. If we are interested in the
average group velocity over the Brillouin zone, then all we have to do it take the integral over
the zone,

⟨vg,ν⟩ = a

ˆ
BZ

dk

2π
vν,k = a

ˆ
BZ

dk

2π
∂kεν,k (4.4.13)



CHAPTER 4. RICE-MELE MODEL 38

where a is the size of the unit cell 5. The current is given by ⟨jν⟩ = ρ ⟨vg,ν⟩ where the
particle density ρ is taken to be that of the half-filling, i.e. ρ = 1/a. Therefore the current
adopts the following form,

⟨jν⟩ =
ˆ
BZ

dk

2π
∂kεν,k (4.4.14)

The integral expresses the winding of the quasienergy over the whole Brillouin zone, and
thus it is an integer,

⟨jν⟩ =
Wν

τ
(4.4.15)

where Wν is the winding number of the Floquet band ν 6. This results states that the
average current, and therefore the pumped charge, is quantized in terms of the winding number.
If the quasienergy winds trivially around the Floquet-Brillouin zone as we run along the k
direction, then the average current is zero. However in the case of the Rice-Mele model,
the quasienergies wind non-trivially as it is apparent from Figure 4.7b, and thus the current
is non-zero. In fact, they wind exactly once as K goes from 0 to 2π, one clockwise, the
other counterclockwise and thus the resulting currents have opposite signs. If the system was
initialized in the one of the Floquet bands at half-filling, then the above analysis ensures that
transport will be quantized.

The above discussion is applied when the adiabatic limit has been established, and the
system is in one of the Floquet bands. When we move away from this limit, then the pumped
charge involves contributions from both Floquet bands and thus it is no longer quantized. In
this case, Eq. 4.4.14 generalizes to the following [44],

Q = τ
∑
α

ˆ 2π

0

dk

2π
nα,k∂kεα,k (4.4.16)

where nα,k are the occupations of the Floquet bands. When one of the Floquet states are
occupied, nα,k = δν,α we retrieve Eq. 4.4.14.

We close this discussion with a remark. A non-driven one-dimensional insulator will have
a trivial band topology since the band structure has the geometry of a cylinder. When the
system is driven periodically in time, then the energy direction inherits the time periodicity in
the form of the quasienergies and the band structure now has the geometry of a torus, as seen
in Figure 4.7a. Thus, bands living on this torus may be topologically non-trivial depending on
how they wrap around the torus.

4.5 The impact of perturbations on pumping

Thouless pumping requires the slow modulation of the Hamiltonian in time, and slow
means adiabatically 7. In terms of energy scales this is translated into the driving frequency
being much smaller than the energy gap. such that particle-hole excitations are suppressed.
Furthermore, it assumes an infinite system such that the Chern number is established and
thus pumping is quantized. However, in realistic scenarios we deal with finite systems and also

5In general, the size of the unit cells is set to unity, however here it is reinstated.
6The appearance of τ here comes by redefining the domain of the quasienergy Eν → Eν/ω ∈ S1.
7There is theoretical evidence that one has quantized transport even in finite speeds, through some technique

called shortcuts to adiabaticity (STA) [50].
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nonadiabatic effects may take place due to finite frequency. We address these two factors and
their impact on pumping in the following subsections, starting from finite size effects.

In the following results, we plot the pumped charge in the infinite-time limt, Eq. 3.4.9. We
find the time-evolution operator, and diagonalize it at t = τ to obtain the Floquet states. The
current operator is given by Eq. 4.3.10. The system is initialized in the lower band, therefore
at half-filling. We work in real space representation, in the single-particle basis.

4.5.1 Finite size effects

Topological quantum pump is achieved in a system with space periodicity and of infinite
size (the integral over the Brillouin zone expresses exactly this). Since we are concerned with
the Rice-Mele model as the simplest example of a topological quantum pump, let us view how
the pumped charge is affected by considering a finite lattice. One expects that as L→ ∞, the
pumped charge approaches the value of one.

Figure 4.9: The dependence of the pumped charge on the system size for various values of the
amplitude of the modulation of the hopping parameters δE. This concerns the Rice-Mele
model with periodic boundary conditions. The parameters chosen here are ∆ = 3EJ0 , ω =
0.05EJ0 .

Figure 4.9 presents the behavior of the pumped charge as a function of the system size,
for a few values of the amplitude of modulations of the hopping parameters δE. As the system
size increases, the pumped charge tends to approach the quantized value of one, as predicted
in Thouless pumping. However, deviations from the quantized value are observed in smaller
system size, and these deviations are stronger with decreasing δE.

4.5.2 Nonadiabatic effects

We discuss now about nonadiabatic effects in Thouless pumping. When we violate
adiabaticity, particle-hole excitations appear in the system and the upper band starts being
populated. Then, a particle current moving in the opposite direction is introduced and causes
reduction in the net particle current, and thus deviations from the quantized value. This
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aligns with the fact that in a gapped, topological two-band system, each band is ’assigned’
with an integer Chern value.

In order to study the effect of nonadiabaticity on quantized pumping, one exploits the
adiabatic perturbation theory [28] for small, yet finite driving frequencies. The first-order
correction from the expansion, assuming that we suddenly switch on the driving with an
’infinite’ acceleration, reveals a deviation from the quantized value by an amount that
depends on ω2, i.e.

Q(ω) ≈ 1− Aω2 (4.5.1)

The quadratic dependence of the pumped charge on the frequency for small values of it is
shown in Figure 4.10a for the Rice-Mele model. As the frequency increases, it supplies sufficient
energy to the system, enabling excitations to take place. Consequently, the upper band of the
system begins to fill up, leading to a decrease in current, as we have previously discussed. When
the frequency becomes approximately half of EJ0 , we are well beyond the adiabatic limit, and
the pumped charge behaves in a quite unpredictable way.

(a) (b)

Figure 4.10: Nonadiabatic effects on pumping of the Rice-Mele model. (a) The deviations from the
quantized value are characterized by a quadratic trend (red line) on the frequency, for
small values of it. As we keep increasing the frequency, pumping breakdowns completely.
δE = 1EJ0 ,∆ = 3EJ0 , L = 20. (b) The dependence of the pumped charge on the driving
frequency, for various values of δE. Smaller values of δE leads to earlier breakdown of
pumping because of reduction in the value of the minimum gap. ∆ = 3EJ0 , L = 20.

It is also interesting to study the nonadiabatic breakdown of topological pumping for
various values of δE. In this case, we recall the expression for the minimum gap of the Rice-Mele
model Eg = 4δE. Because of the dependence of the gap on δE, we expect that as we increase
the driving frequency, for smaller values of δE, the breakdown will appear ’earlier’ compared to
values of δE ∼ 1. In other words, as the gap decreases because of decreasing δE, adiabaticity
ceases to hold at smaller values of the driving frequency (see Figure 4.10b).

4.6 Open boundary conditions

We conclude this chapter by considering the Rice-Mele model with open boundary
conditions. In this scenario, because of the finite size and the boundary, it seems that we can
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pump particles towards the right for a while, assuming that we initialize the system in the
lower band. It seems that all particles will pile up to the right edge. The existance of the
zero-energy edge modes however, ensures that that will not occur. The edge modes move
particles between the bands, and in particular the right edge mode moves a particle from a
E < 0 to a E > 0 eigenstate, while the left edge mode does the opposite. This mechanism
ensures the existence of a net particle current, however not quantized in any way. There are
two contributions to the overall current, one coming from the lower band and one from the
upper. Thus, by comparing the number of occupied E < 0 eigenstates and the number of
occupied E > 0 eigenstates, we can deduce the direction of the current.

Figure 4.11: The instantaneous spectrum of the Rice-Mele model with open boundary conditions
for δE = EJ0 ,∆ = 3EJ0 , L = 20. The right (green) edge mode moves a particle from
the lower band to the upper band, which generates a particle current to the opposite
direction. Likewise, the left edge mode moves a particle from the upper to the lower
band.

Even though the physics of the open boundary Rice-Mele model might not be as rich as
those of the periodic counterpart, however it will be the basis for the setup in Chapter 6, when
we include external leads in the JJA setup.



Chapter 5

Disorder and the 1+1D to 2+0D
mapping

A remarkable feature of topological systems is the robustness they display against disorder.
In this Chapter, we examine static disorder in the Rice-Mele model with periodic boundary
conditions by exploiting the Floquet theory. First the pumped charge is evaluated using the
infinite-time limit formula. Then, we use the 1+1D to 2+0D mapping from Section 3.3 in
combination with diagnostic tools of topological phases, namely the local Chern marker and
the strange correlation function, to examine the system in the presence of disorder.

5.1 Pumping with disorder

In this section, we will discuss the Rice-Mele model with periodic boundary conditions, in
which we introduce static, on-site disorder of the following form,

Ĥdis =
∑
i

δµi ĉ
†
i ĉi (5.1.1)

such that Ĥ(t) = ĤRM(t)+ Ĥdis. The parameters δµi are random variables, sampled from
a uniform distribution U = [−w,w], where w is the strength of the disorder. Because of the
nature of this disorder term, the total Hamiltonian does not possess discrete space translational
symmetry, and therefore we cannot work in the momentum space. Our analysis and calculations
are done in real space, in the single particle basis. We want to study the effect of the disorder
on current quantization. When evaluating observables, we have to consider an ensemble of
disorder configurations, and evaluate the pumped charge for each of these configurations. Then,
the pumped charge is the average over these values,

Q̄ =
1

N

N∑
n=1

Qn (5.1.2)

where n labels the configuration index. The pumped charge for each disorder configuration,
is evaluated at the infinite-time limit provided by Eq. 3.4.9. Along the lines of Thouless et al
[25], we also will track the behavior of the (minimum) energy gap Eg as we increase the disorder
strength. The system is at half-filling, therefore the relevant gap is the particle-hole excitation
gap. Evidently (see Figure 5.1a), while increasing disorder in the system, the energy gap
reduces in value until it closes completely. At the same time, in Figure 5.1b, the pumped
charge remains quantized and robust against disorder as long as the gap remains opens. Once
the gap approaches zero, then the charge ceases to be quantized. However, notice that even

42
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(a) (b)

Figure 5.1: The effect of the disorder on pumping in the Rice-Mele model. The pumped charge
remains quantized in the presence of disorder as long as adiabaticity holds and the gap is
open. Otherwise, a disorder-driven phase transition is observed which leads to a trivial
state in which the current is zero. Parameters: δE = EJ0 ,∆ = 3EJ0 , ω = 0.05EJ0 , L =
20, Nconfig = 100

when the gap closes entirely, we still observe a non-zero, yet non-quantized current flowing
through the system.

There is a disorder-driven phase transition occuring here. We can distinguish three regions
in Figure 5.1b; for w < 2.5EJ0 the system is in the topological phase and remains robust against
disorder since the current remains quantized. The non-zero current flow implies that we are in
a delocalized phase. This occurs as long as the energy gap remains open. Between w ≈ 2.5EJ0

and w ≈ 6EJ0 the system is in a transition stage, in which the gap has been closed and the
bands have been mixed but there is still some current flowing, indicating that delocalized states
are still present. In the region w > 6EJ0 , there is no current while the gap remains closed,
an indication that the system has well passed into an insulating phase. In the strong disorder
regime, the Floquet states become localized and thus the current vanishes [44].

Let us summarize and comment on the sequence of events that took place. By increasing
the strength of the disorder, the system undergoes a phase transition from a topological phase
to a trivial phase. This is reflected by the integrated current, which is quantized and robust
against moderate disorder in the topological phase, while it vanishes in the trivial phase. We
can think of this phase transition in terms of localization [44] and the localization length of the
Floquet states. In the weak disorder regime w < wc where wc is the critical disorder strength,
the localization length is equal to the system size 1 which indicates that the Floquet states are
extended. Above the critical value wc, the localization length behaves as ξ ∼ (w − wc)

−2 [44].
In this regime, the localization length is finite therefore the Floquet states are localized.

5.2 Mapping to the 2D static system

We proceed our study on the Rice-Mele model and the effect of disorder by exploiting
two diagnostic tools for topological phases, the local Chern marker and the strange correlation

1Thus, in the thermodynamic limit, the localization length diverges.



CHAPTER 5. DISORDER AND THE 1+1D TO 2+0D MAPPING 44

function. These two techniques are applied to static systems, hence we map our 1D dynamical
Rice-Mele model to a static 2D one by using the Floquet-Shirley approach, as described in
Section 3.3. We start from the clean Rice-Mele model, and then we introduce on-site disorder,
in the same manner as we did in the previous section.

5.2.1 The clean Rice-Mele model

We exploit the Shirley-Floquet approach to map the dynamical 1D Rice-Mele system to
an effective static 2D system. The Rice-Mele Hamiltonian is given in a compact form,

ĤRM(t) = Ĥ(t) = −EJ1(t)T̂1 − EJ2(t)T̂2 + µA(t)ÛA + µB(t)ÛB (5.2.1)

where T̂1, T̂2 are the intra-cell and inter-cell kinetic terms, respectively,

T̂1 =
∑
j

(
ĉ†2j−1ĉ2j + h.c.

)
, T̂2 =

∑
j

(
ĉ†2j ĉ2j+1 + h.c.

)
(5.2.2)

and ÛA, ÛB are the sum of particle number operators for sublattice A and B, respectively,

ÛA =
∑
j

ĉ†2j−1ĉ2j−1, ÛB =
∑
j

ĉ†2j ĉ2j (5.2.3)

We recall the form of the time-dependent coefficients of the Hamiltonian, where we expand
the sinusoidal functions into a sum of complex exponentials.

EJ1/2(t) = EJ0 ± δE cosωt = EJ0 ±
δE

2

(
eiωt + e−iωt

)
(5.2.4)

µA/B(t) = ±∆sinωt = ±∆

2i

(
eiωt − e−iωt

)
(5.2.5)

We start by evaluating the Fourier coefficients of the Hamiltonian,

Ĥ(∆m) =
1

τ

ˆ τ

0

dt Ĥ(t)ei∆m ωt (5.2.6)

The ∆m = 0 coefficient is the time-average Hamiltonian over a pumping cycle,

Ĥ(0) = −EJ0

(
T̂1 + T̂2

)
(5.2.7)

which expresses the fact that the Hamiltonian of each individual chain characterized by
the frequency index m is consisted of hoppings between adjacent sites with unique hopping
parameter EJ0 . Note that there is zero on-site staggered potential. Next, we have the ∆m = ±1
coefficients,

Ĥ(±1) = −δE
2

(
T̂1 − T̂2

)
± ∆

2
ei

π
2

(
ÛA − ÛB

)
(5.2.8)

This Hamiltonian coefficient involves ’cross-talk’ between different frequency indices with
|∆m| = 1, otherwise it resembles the coupling of lattice sites on different m’s. Remarkably,
the on-site staggered potential of the original model has been cast into a complex hopping
in this new picture, between sites of different frequency indices but same real space indices.
This is translated into having some kind of a magnetic flux through the plaquettes. This can
be understood when one follows a loop around a single plaquette, eventually picking up a
phase corresponding to a flux of π (in units of the magnetic flux quantum) - see Figure 5.3a.
Depending on the direction we choose to move on the loop, we also pick up an appropriate sign
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Figure 5.2: A sketch representing the processes described by Eq. 5.2.11.

on the phase/flux. Notice that when we choose a loop that goes around two plaquettes that
involve a unit cell of the original model, then the overall flux is zero. This is a consequence of
having zero magnetic field in the original problem (Figure 5.3c).

(a) (b) (c)

Figure 5.3: By considering a closed path around the plaquette, one can deduce the flux that penetrates
it. The overall flux however between adjacent plaquettes in the horizontal direction (a
unit cell in the x direction) is zero, and complies with the zero magnetic field in the
original system.

The rest of the Fourier coefficients |∆m| > 1 are zero, because all integrals contain
complex exponentials, which when integrated over a driving period, they are zero. The
extended Hamiltonian has the following form, which is technically infinite in dimensions and
each Hamiltonian coefficient is a matrix with dimension equal to that of the original Hilbert
space.

H =


m m+1

. . . H(−1)

m H(+1) H0 −mω H(−1)

m+1 H(+1) H0 − (m+ 1)ω H(−1)

H(+1) . . .

 (5.2.9)
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The driving frequency appears in the diagonal and acts as an electric field shifting the
energy levels (see Figure 3.1). In the adiabatic regime, ω → 0, the contribution of the driving
field is suppressed.

Hadiabatic ≈


m m+1

. . . H(−1)

m H(+1) H0 H(−1)

m+1 H(+1) H0 H(−1)

H(+1) . . .

 (5.2.10)

The frequency index m corresponds to the synthetic dimension, generated by Fourier
transforming the original dynamical system to a static one. The mapping casts the dynamical
dimension t into a synthetic, static one m. We can now write the effective Hamiltonian in
terms of the creation and annihilation operators in the 2D picture,

Ĥeff
0 = −

∑
j,m

mω
(
ĉ†2j−1,mĉ2j−1,m + ĉ†2j,mĉ2j,m

)
− EJ0

∑
j,m

(
ĉ†2j−1,mĉ2j,m + ĉ†2j,mĉ2j+1,m + h.c.

)
− δE

2

∑
j,m

(
ĉ†2j−1,mĉ2j,m+1 + ĉ†2j,mĉ2j−1,m+1 + h.c.

)
+
δE

2

∑
j,m

(
ĉ†2j,mĉ2j+1,m+1 + ĉ†2j,m+1ĉ2j+1,m + h.c.

)
+

∆

2

∑
j,m

(
ei

π
2 ĉ†2j−1,m+1ĉ2j−1,m + ei

π
2 ĉ†2j,mĉ2j,m+1 + h.c.

)
(5.2.11)

where the summation index j runs over the number of unit cells, and the index m runs,
in principal, over the whole set of integers. In practice, one has to truncate at some value M
(let us assume that we truncate symmetrically about m = 0) such that the summation index
m runs from −M to +M . In the adiabatic limit, ω → 0 and the truncation can be taken up
to any arbitrary value of M .

5.2.2 Adding on-site static disorder

Given our previous analysis of the mapping to a static problem, let us introduce disorder
to the original system and see how it acts in the new 2D picture. We consider a static, on-site
disorder,

Ĥdis =
∑
i

δµi ĉ
†
i ĉi (5.2.12)

where the summation index i runs over the number of sites 2N of the real lattice. The total
hamiltonian is Ĥ(t) = ĤRM(t) + Ĥdis. This term is static in time, according to our analysis in
the previous section, we expect it to appear only in the zeroth coefficient H(0),

Ĥ(0) = −EJ0

(
T̂1 + T̂2

)
+
∑
i

δµi ĉ
†
i ĉi (5.2.13)

In the 2D picture, the original disordered Hamiltonian still represents the on-site disorder.
Notice that the disorder is different across the real lattice as we chose in the beginning. However,
for a fixed real lattice index and across the whole frequency space, the disorder is the same (it
only depends on the real index i ). The effective Hamiltonian for the disorder is,



CHAPTER 5. DISORDER AND THE 1+1D TO 2+0D MAPPING 47

Ĥeff
d =

∑
i,m

δµi ĉ
†
i,mĉi,m (5.2.14)

such that the total effective Hamiltonian in the case of disorder becomes Heff = Heff
0 +

Heff
d where Heff

0 is given by Eq. 5.2.11.

5.3 The Local Chern Marker

We now introduce the concept of the local Chern marker as a tool to investigate the
topological phase of the Rice-Mele model in the 2D effective description.

5.3.1 Concept

The first Chern number defined on a two-dimensional Brillouin zone, is given by integrating
the Berry curvature of an occupied band over the Brillouin zone. To be precise, for a system
of N filled bands, the total Chern number will be the sum of Chern numbers of each of these
bands.

C =
i

2π

∑
n∈occ

ˆ
BZ

dkxdky

[ 〈
∂kxunk

∣∣∂kyunk〉− c.c.
]

(5.3.1)

where |un,k(r)⟩ is the periodic part of a Bloch function, normalized in a unit cell of area
Ac. The Chern number given by Eq. 5.3.1 is a non-local quantity of the two-dimensional
translational invariant system, in the thermodynamic limit. The expression for the Chern
number is formulated in k-space, which is inherently linked to periodic boundary conditions. A
local ’version’ of the Chern number is introduced in Ref. [51] or otherwise called the topological
marker, and it is expressed in terms of the local ground-state projector P (r, r′), which decreases
exponentially with the distance in an insulator. Thus, the local Chern marker (LCM), as we
will refer to it from now on, samples the ground state locally.

It is shown in [51], that by exploiting properties of the ground state projector and its
complement, along with some linear-response theory arguments, the Chern number can be
written in terms of the ground-state projector P and the real-space operator r, and it is a local
quantity,

C =
4π

Ac

Im trcell{PxPy} (5.3.2)

and the trace is taken over the unit cell of the lattice-periodical system. Note that the
position operator r is ill-defined in periodic boundary conditions, because it is multi-valued.
Now, if we are given a finite system with open boundary conditions and replace the trace over
the cell with the trace over the whole system, then we find the total Chern number,

C = 4π Im tr{PxPy} = −2πi tr{[PxP, PyP ]} = 0 (5.3.3)

by exploiting the trace property tr{AB} = tr{BA} and the fact that the projection
operator is idempotent P 2 = P . Arguably, the trace must be avoided when we deal with finite
or disordered system. Consequently, we establish the local Chern marker in the following
compact form,
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C = −2πi[PxP, PyP ] (5.3.4)

Projecting to the real-space basis 1 =
´
dr |r⟩ ⟨r|, we obtain

C(x, y) = −2πi

ˆ
dr′

[
X̃(r, r′)Ỹ (r′, r)− c.c.

]
, R̃i =

ˆ
dr′′P (r, r′′)r′′i P (r

′′, r′) (5.3.5)

where P (r, r′) = ⟨r|R|r′⟩ and R̃1 = X̃, R̃2 = Ỹ . When space is discrete, the integration
over space becomes a summation.

5.3.2 LCM of the static system

Initially, we consider the clean case of the Rice-Mele model with periodic boundary
conditions. In such scenario, it is enough to simply calculate the Chern number by integrating
the Berry curvature of occupied bands over the Brillouin zone and this is given by Eq. 5.3.1,
due to space translation symmetry. The evaluation of the LCM requires a two-dimensional
static system, hence we applied the Floquet-Shirley approach in Section 5.2.

The procedure to obtain the local Chern marker involves diagonalizing the truncated
extended Hamiltonian of Eq. 5.2.9 in real space, and from there we construct the ground state
projector P (r, r′). We choose the truncation value such that the resulting 2D grid is
approximately square. In Figure 5.4a, the local Chern marker for the clean system is
displayed. The bulk of the system has a Chern number of −1 as was expected, while the left
and right edges do not have a well-defined Chern number. This is because the system across
the x-direction has periodic boundary conditions, while the definition of the LCM involves the
position operator r which is ill-defined for these boundary conditions. In Figure 5.4b, the
average Chern marker over the frequency index m is shown as a function of the real space
index n, which clearly demonstrates the well-defined Chern number for the bulk, in contrast
to the edges.

We also look into a case in which the system is in the trivial phase. Figure 5.5a shows that
the bulk is characterized by a zero Chern number, hence there is zero transport. The trivial
state is obtained by adding a perturbation to the Josephson energy EJ1 , as in Eq. 4.2.5. Let us
look into another interesting case, that of the Rice-Mele model in the topological phase with
open boundary conditions. As we have discussed in Chapter 4, the current is not quantized,
even though the system is in a topological phase. This is evident by the local Chern marker
depicted in Figure 5.6. The bulk is characterized by a Chern number of −1, as we expected for
a system being in a topological phase.
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(a)

(b)

Figure 5.4: (a) The local Chern marker for a topological state of the 2D static Rice-Mele model. (b)
The frequency-averaged local Chern marker as a function of the real space index. The
average over the frequency is taken within the yellow box. We note that the upper limit
of the LCM colorbar is truncated to give equal emphasis to positive and negative values.
Parameters: δE = EJ0 ,∆ = 3EJ0 , ω = 0.05EJ0 , L = 20

(a)

(b)

Figure 5.5: (a) The local Chern marker for a trivial state of the 2D static Rice-Mele model. (b)
The frequency-averaged (yellow box) local Chern marker as a function of the real space
index n. The Chern marker vanishes in the bulk. Parameters: δE = EJ0 ,∆ = 3EJ0 , ω =
0.05EJ0 , L = 20, A = 6EJ0
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Figure 5.6: The local Chern marker for a topological state of the 2D static Rice-Mele model with open
boundary conditions. We note that the upper limit of the LCM colorbar is truncated
to give equal emphasis (in color) to positive and negative values. Parameters: δE =
EJ0 ,∆ = 3EJ0 , ω = 0.05EJ0 , L = 20

We now explore the Rice-Mele model with on-site disorder in the form of Eq. 5.2.12. In
the presence of random disorder, the local Chern marker is averaged over a number of disorder
configurations. In Figure 5.7a, the bulk averaged Chern marker is displayed as a function of
the disorder strength. Clearly, for moderate disorder w ∼ 2.5EJ0 , the Chern marker displays
remarkable robustness, as witnessed in the previous subsection. For this range of the disorder
strength, the energy gap remains open. However, as adiabaticity breaks down and the gap
approaches the zero value at w ≈ 2.5EJ0 , the Chern marker ’moves’ away from the value of −1.
As the disorder strength increases, the average Chern marker vanishes.

(a) (b)

Figure 5.7: The local Chern marker of the Rice-Mele model in the presence of disorder. (a) The
bulk-averaged local Chern marker as a function of disorder. (b) The frequency-averaged
local Chern marker as a function of the real space index n. As the disorder strength
increases, we transition from a topological state to a trivial one. Parameters: δE =
EJ0 ,∆ = 3EJ0 , ω = 0.05EJ0 , L = 20, Nconfig = 20
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In Figure Eq. 5.7b, the average Chern marker over the frequency index m is shown along
the real space dimension for various disorder strengths. Evidently, the Chern marker becomes
zero in the bulk as the disorder increases.

It is worth mentioning that the Chern marker at the boundaries of the two-dimensional
grid are determined such that the trace of the local Chern marker over the whole sample is
zero.

5.4 The strange correlation function

5.4.1 The concept of the strange correlator

In many realistic scenarios, identifying the topological character of a state of some given
system can be tricky. This is the case with finite-size systems and disorder, effects that can
prevent us from precisely characterizing the phase of the system. The concept of the strange
correlation function [52, 53] is introduced here, as a mean to characterize phases in such
tricky scenarios. A detailed analysis of the strange correlator 2 is beyond the scope of this
thesis because it requires concepts from Conformal Field theory, however we present some key
components of the theory and how it can be utilized as a diagnostic tool for topological
phases.

The strange correlation function is given by,

s[ô, ô′]r,r′ =
⟨Ω|o(r)o′(r′)|Ψ⟩

⟨Ω|Ψ⟩
(5.4.1)

It may look like a typical two-point correlation function, yet it is not, hence the name
’strange’. It requires two different states to evaluate this object; |Ω⟩ is the reference state, and
typically corresponds to a topologically trivial state, and |Ψ⟩ is the target state, or in other
words the state we want to characterize, either being topological or not. In order for this to
be valid, the two states must be defined in the same Hilbert space. The operators o(r), o′(r′)
are chosen according to the symmetries of the system. For instance, the Hamiltonian of the

Rice-Mele model commutes with the particle number operator,
[
ĤRM , N̂

]
= 0, therefore the

particle number is a symmetry of the system. Thus a suitable choice for the operators in the
strange correlator are ô = ĉ† and ô′ = ĉ, since N̂ = ĉ†ĉ. This correlation function is defined in
the bulk of the system, and as a result it does not rely on the presence of physical boundaries.

Consider a lattice of dimension d and size L. We calculate the sum of the strange correlation
function of Eq. 5.4.1,

s̄[ô, ô′]L =
1

Ld

∑
r,r′

|s[ô, ô′]r,r′ | (5.4.2)

which tells us how the strange correlator scales with the system size. This information
is obtained once we determine how Eq. 5.4.1 behaves in space. When the target state is a
short-ranged entangled topological phase, and the reference state is a trivial state, then the
strange correlator decays as a power law in large distances,

2It is similar to the off-diagonal long range order (ODLRO) we encounter in the Bose-Einstein condensates
(and BCS superconductivity), in which the one-body density matrix is expressed to be a two-point correlation
function that decays to a constant in the long distance limit.
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|s[ô, ô′]r,r′| ∝ |r− r′|−2α
, |r− r′| → ∞ (5.4.3)

Then the scaling of Eq. 5.4.2 is resolved as follows,

s̄[ô, ô′]L ∼


Ld−2α α < d/2
lnL α = d/2

const +O(rd−2α) α > d/2
(5.4.4)

where α is the scaling dimension of the boundary in the space-time rotation picture. In
Conformal field theory, we can prepare a setup in which the phase represented by |Ω⟩ precedes
the topological phase |Ψ⟩ in time, and hence they are separated by a boundary in time. Through
a space-time rotation, the time direction becomes spatial and the boundary is described by the
non-interacting, gapless Dirac theory [52]. The Dirac mode has a scaling dimension α =
(d−1)/2. For both one-dimensional and two-dimensional, we get α < d/2, thus from Eq. 5.4.4,
the scaling of the strange correlation follows a linear trend, i.e. s̄[ô, ô′]L ∼ L.

If |Ψ⟩ is trivial, or belongs to the same phase as the reference state, then the strange
correlator s[ô, ô′]r,r′ decays exponentially for large distances. Therefore the sum s̄[ô, ô′]L
converges exponentially to a constant.

5.4.2 Characterization of topological phases in the RM model

We consider the 2D static Rice-Mele model with periodic boundary conditions, with the
goal to characterize certain states. To facilitate this, we must initially establish the trivial state
that will serve as our reference state. We recall from our analysis in Chapter 4, that a trivial
state for the Rice-Mele model is obtained when an energy shift A > 2δE is introduced to one
of the hopping parameters. That will be the trivial state.

We denote a state of the 2D static Rice-Mele model as |ψ(A)⟩ where A is the parameter
that denotes whether the state is topological or not.

|Ω⟩ = |ψ(A1)⟩ , |Ψ⟩ = |ψ(A2)⟩ (5.4.5)

such that the strange correlator is given by

(S̄L)ss′ =
1

L(L+ 1)

∑
j,m,j′,m′

ss,j,m,s′,j′,m′ , ss,j,m,s′,j′,m′ =
⟨ψ(A1)|c†s,j,mcs′,j,m|ψ(A2)⟩

⟨ψ(A1)|ψ(A2)⟩
(5.4.6)

where the operators c†s,j,m, cs,j,m are the creation and annihilation operators of the 2D static
system, and s, j,m are the sublattice, unit cell and frequency indices respectively. The state
|ψ(A)⟩ is obtained by diagonalizing the truncated extended Hamiltonian.

We should note here that since the definition of the strange correlation function of Eq. 5.4.2
assumes a square lattice, our truncation of the frequency direction in the mapping from 1+1D
to 2+0D through the Floquet-Shirley approach is chosen such that it agrees with the size
of real space lattice L. The truncation is performed symmetrically about m = 0 such that
m ∈ {−M,−M +1, ..., 0, ...,M − 1,M}, therefore the truncated size of the frequency direction
is 2M + 1 where M = L/2 = N . For large L, the lattice is effectively a 2D square one. The
strange correlator will be a function of 6 indices ss,j,m,s′,j′,m′ where s, s′ are the sublattice indices,
j, j′ correspond to the unit cell indices and m,m′ correspond to the frequency direction.
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(a)
(b)

Figure 5.8: (a) The scaling of the strange correlator with the system size for a trivial A1 = 6EJ0 and
trivial A2 = 0 states. (b) The strange correlator in space ss,j,m,s′,j′,m′ for fixed (j,m)
(denoted by the black cross) and (s, s′) = (A,A). The horizontal and vertical cuts show
the correlation (SC) along that direction. Note, here n is the real space index and express
(s, j). Parameters: δE = EJ0 ,∆ = 5EJ0 , ω = 0.01EJ0 , A1 = 6EJ0 , A2 = 0

From the results in the previous subsection, and since we consider the two-dimensional
static Rice-Mele model, we expect the strange correlator to scale linearly with the system size
for a topological target state, given that the reference state is trivial. In the forthcoming
analysis, it is important to clarify that the system size refers specifically to the size of the
square lattice. In our case, the system size is determined by the size of the real lattice, denoted
as L = 2N . This size also corresponds to the size of the frequency direction, except for the one
in 2M + 1 = L+ 1, that becomes irrelevant for large L, such that L(L+ 1) ≈ L2.

We take our reference state to be |ψ(A1 = 6EJ0)⟩, and we wish to examine the scaling of the
strange correlation function with the system size for the target state |ψ(A2 = 0)⟩. Figure 5.8a
demonstrates that the strange correlator exhibits linear scaling with the system size for A2 = 0,
implying that the target state is indeed a topological state. This behavior can be attributed to
the smooth behavior of the strange correlator ss,j,m,s′,j′,m′ , as depicted in Figure 5.8b. The decay
of the strange correlator in space follows a power-law at large distances, Eq. 5.4.3 3. We extend
our analysis to include cases where the states involved in the strange correlator are in the same
phase. As an example, we consider both the reference and the target state to be topological
states of the Rice-Mele model with different energy shifts in the hopping parameter, A1 ̸= A2 -
see Figure 5.9a. Another possibility is both the reference and target states to be topologically
trivial states with A1 ̸= A2 (Figure 5.9b). In both occasions, the strange correlator approaches
a constant value as the system size increases, which confirms that the states inolved in the
strange correlator belong to the same phase.

3Due to the finite size of the system, it becomes challenging to observe the power-law decay, even when using
log-log plots.
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(a) (b)

Figure 5.9: The scaling of the strange correlation function with the system size for (a) a set of
topological states A1 = 0.5EJ0 , A2 = 0 and for a set of trivial states (b) A1 = 6EJ0 , A2 =
5EJ0 . Parameters: δE = EJ0 ,∆ = 5EJ0 , ω = 0.01EJ0 , Nconfig = 20.

5.4.3 Disorder and the breakdown of the strange correlation at
strong disorder

We now introduce static disorder to the Rice-Mele model. The mapping to the static
system does not alter the nature of the disorder, as it continues to resemble on-site disorder
in the new description, as shown in Subsection 5.2.2. From Section 5.1, it was found that the
presence of disorder in the system causes a decrease of the excitation gap. While it remains
open, the pumped charge is quantized. As disorder becomes stronger and the gap closes, the
quantization ceases to exist, and the system is in a topologically trivial, insulating phase, and
as a result the current vanishes.

We use the strange correlation function to study these disordered states of the Rice-Mele
model, which are averaged over a number of disorder configurations. The reference state of the
correlator is a trivial state with A1 = 6EJ0 , while the target state corresponds to A2 = 0 which
is a topological state in the clean case. For the purpose of comparison, the parameters of the
topological state are the same as those discussed in Section 5.1. Figure 5.10a demonstrates
the linear scaling of the correlator with the system size for a few values of disorder strength.
Evidently, these states are topological, hence the system is in a topological state in the presence
of disorder and the pumped charge is quantized. Nevertheless, as the disorder is progressively
increased, we expect that the excitation gap will eventually close. We observe that the strange
correlation function breaks down in strong disorder. This is evident in both Figures 5.10b and
5.10c, in which the strange correlator admits large values as the system size increases. We note
that this issue is not addressed in the literature.
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(a) (b) (c)

Figure 5.10: The scaling of the strange correlator (SL)AB with the system size in the presence of
disorder. For weak disorder, (a) the correlator scales linearly and thus the target state
is in the topological phase. As the disorder strength gets large, the correlator breaks
down as shown in (b) and (c). Parameters: δE = EJ0 ,∆ = 5EJ0 , ω = 0.01EJ0 , Nconfig =
20, A1 = 6EJ0 , A2 = 0.

To better understand this behavior, we examine the distribution of values of the strange
correlator across multiple realizations of disorder. Figure 5.11a shows a typical linear scaling
of the strange correlator for a topological target state with disorder. The box distribution
illustrates the range within which the calculated values of the strange correlator extend. Instead,
Figure 5.11b shows an example of the strange correlator collapsing in strong disorder. At large
L, the values of the correlator exhibit a wide range of spread. The wide spread and presence
of outliers in the box distribution suggest that the behavior of the calculated correlator is
unpredictable across different disorder configurations.

(a) (b)

Figure 5.11: Box plots of the calculated values of the strange correlator for a number of disorder
configurations for (a) a regular linear scaling and a (b) irregular scaling of the correlator
with the system size. In (b), the values are spread over a wide range, indicating the
collapse of the correlator. Parameters: δE = EJ0 ,∆ = 5EJ0 , ω = 0.01EJ0 , Nconfig =
20, A1 = 6EJ0 , A2 = 0, (s, s′) = (A,B).

To further support our argument, we look at the medians of the set of correlator values,
calculated for a number of disorder configurations. We do this by examining the denominator,
the numerator of the strange correlator and the correlator itself SL separately,
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(S
(numerator)
L )s,s′ =

∑
r,r′

⟨Ω|os(r)o′s′(r′)|Ψ⟩ , (S
(denominator)
L )s,s′ = L(L+ 1) ⟨Ω|Ψ⟩ (5.4.7)

First, from Figure 5.12, it is evident that the breakdown due to strong disorder becomes
increasingly pronounced as the system size increases. Looking at the median values of the
correlator distributions, it appears that the large values in the strange correlator are primarily
attributed to the decreasing denominator. We further examine the behavior of the correlator in
space ss,j,m,s′,j′,m′ . Figure 5.13 shows the correlation function for a given (n,m) where n = (s, j),
for a strong disorder configuration. We understand that the strange correlator indeed breaks
down completely since it behaves in a very irregular way, compared to Figure 5.8b.

(a) (b) (c)

Figure 5.12: The median of the distributions of values for the (a) strange correlator, (b) the numerator
and (c) the denominator of the strange correlator, as a function of disorder. Parameters:
δE = EJ0 ,∆ = 5EJ0 , ω = 0.01EJ0 , Nconfig = 20, A1 = 6EJ0 , A2 = 0, (s, s′) = (A,B).

Figure 5.13: The strange correlator ss,j,m,s′,j′,m′ for fixed (s, j,m, s′) (denoted by the black cross) for
a strong disorder configuration Note, here n is the real space index and express (s, j).
δE = EJ0 ,∆ = 5EJ0 , w = 4EJ0 , ω = 0.01EJ0 , Nconfig = 20, A1 = 6EJ0 , A2 = 0, (s, s′) =
(A,B), L = 20

In summary, the behavior of the strange correlation function under strong disorder in the
Rice-Mele model requires further investigation to comprehend the reasons behind its collapse.
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Additionally, the observed collapse of the strange correlator in the presence of disorder, as
demonstrated in Appendix A for the 1D SSH model, emphasizes the need of studying this
behavior, which appears to be prevalent in systems with strong disorder.



Chapter 6

Pumping with external leads

So far, we have considered a scenario in which the JJA Hamiltonian reduces to the
Rice-Mele model which we have extensively studied throughout the last two chapters.
However, we take a step back, and consider the Josephson junctions array setup of Chapter 2,
with open boundary conditions. The system is connected to external superconducting leads at
the boundaries [50]. Our target in this work is to demonstrate whether we can still observe
induced quantized transport in the array, and examine its robustness.

6.1 Modeling of the leads

We consider a one dimensional Josephson junctions array in which only Cooper pairs take
part in the dynamics. We connect two superconducting leads at the boundaries of the array, as
depicted in Figure 6.1. Cooper pairs are allowed to tunnel between the leads and the system,
through an ordinary Josephson junction,

Ĥb(t) = −Eℓ
J(t) cos(φ̂L − φ̂1)− Eℓ

J(t) cos(φ̂2N − φ̂R) (6.1.1)

where φ̂L, φ̂R are the superconducting phase operators of the left and right lead respectively,
and φ̂1, φ̂2N the phase operators of the first and last island of the chain. The parameter Eℓ

J(t)
is the Josephson energy of the junctions of the system with the leads, and generally it is
time-dependent. The total Hamiltonian of the system is,

Ĥtot(t) = Ĥ0(t) + Ĥb(t) (6.1.2)

where Ĥ0(t) is the JJA Hamiltonian of the array. We apply the hardcore boson
approximation that we developed in Chapter 2 to the Hamiltonian given by Eq. 6.1.2. First
the boundary term becomes,

Ĥb(t) = −Eℓ
J(t)

(
e−iφ̂L â1 + h.c.

)
− Eℓ

J(t)
(
e−iφ̂R â2N + h.c.

)
(6.1.3)

where â1/2N are the hardcore bosonic annihilation operators of the first and last island in
the array. The operators e−iφ̂L/R are the Cooper pair creation operators of the left and right
leads. The JJA Hamiltonian Ĥ0(t) reduces to the hardcore boson version of it, and by applying
the appropriate driving protocol, it becomes the Rice-Mele Hamiltonian of Eq. 2.4.8, with open
boundary conditions. Consequently, the total Hamiltonian is expressed in terms of the hardcore
bosonic operators for the system, and the Cooper pair operators for the leads. We will now
show why including superconducting leads is preferred rather than ordinary normal leads.

58
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Figure 6.1: A sketch of the Josephson junctions array, connected to external superconducting leads.

Since the temperature is much lower than the critical BCS temperature, the leads are
described by the BCS coherent state, characterized by a well-defined phase and a macroscopic
particle number. Because of that, the state of the overall system is a product state of the
Josephson junctions array state and the coherent state of the leads,

|Ψtot(t)⟩ = |BCS⟩L ⊗ |ψsys(t)⟩ ⊗ |BCS⟩R , ∀t ≥ 0 (6.1.4)

and is a solution to the time-dependent Schrödinger equation

i
d

dt
|Ψtot(t)⟩ = Ĥtot(t) |Ψtot(t)⟩ (6.1.5)

with Ĥtot(t) being the total Hamiltonian in the hardcore boson limit. The BCS coherent
state is an eigenstate of the operators e−iφ̂L/R which appear in the overall Hamiltonian, with
eigenvalue the superconducting phase,

e−iφ̂L/R |BCS⟩L/R = e−iϕL/R |BCS⟩L/R (6.1.6)

Because of this nice property of the BCS superconductor, the Schrödinger equation of
Eq. 6.1.5 reduces to,

i
d

dt
|ψsys(t)⟩ = Ĥ(t) |ψsys(t)⟩ (6.1.7)

where the Hamiltonian Ĥ(t) describes the Josephson junctions array,

Ĥ(t) = ĤRM(t)− Eℓ
J(t)

(
e−iϕL â1 + h.c.

)
− Eℓ

J(t)
(
e−iϕR â2N + h.c.

)
(6.1.8)

The effect of the boundary, the tunneling between the array and the leads, appears in
the form of the superconducting phases of the two leads. The dynamics of the overall system
remains coherent, and unitarity is preserved. Thus, we can still solve the Schrödinger equation,
or equivalently the von Neumann equation, to study the dynamics of the system.

Notice however that the Hamiltonian does not commute with the particle number. The
introduction of the boundary term breaks this symmetry because the Hamiltonian is not
quadratic anymore . Thus we have to work in the full Hilbert space to study the dynamics,
and this requires a many-body treatment. This makes our work challenging since we cannot
explore systems of arbitrary size, because of the exponential scaling of the Hilbert space with
the system size.

The breaking of the particle number symmetry has implications on the many-body
spectrum. The degeneracy that appears originally appears due to particle number symmetry
and the zero-energy edge modes is lifted by the boundary term. We will examine this effect
later in this chapter.
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As discussed in Chapter 2, the hardcore bosonic Hamiltonian is tricky to handle, especially
if we attempt to diagonalize it by some unitary transformation in a single particle basis. Recall
that hardcore bosons are actually strongly interacting bosons with a mixed particle algebra.
There, we exploited the Jordan-Wigner transformation which allowed us to map from hardcore
bosons to free fermions and we carry out our study in that description. In the case of Eq. 6.1.8
though we cannot apply this transformation. The resulting Hamiltonian becomes non-local
because the Jordan-Wigner string operator appears in the boundary term. We want to avoid
this complication, and therefore we preserve the hardcore bosonic description.

Equivalently, we re-write the Hamiltonian of Eq. 6.1.8 in terms of spins, since the hardcore
bosonic operator obey a similar algebra to spin-1/2 operators,

Ĥ(t) = −EJ1(t)
∑
j

(
σ−
2j−1σ

+
2j + h.c.

)
− EJ2(t)

∑
j

(
σ−
2jσ

+
2j+1 + h.c.

)
+
∑
j

µA(t)
1− σz

2j−1

2
+
∑
j

µB(t)
1− σz

2j

2

− Eℓ
J(t)(e

−iϕLσ+
1 + h.c.)− Eℓ

J(t)(e
−iϕRσ+

2N + h.c.) (6.1.9)

where we have identified a†j ↔ σ−
j , aj ↔ σ+

j , a
†
jaj ↔

1−σz
j

2
and the basis |0⟩ ↔ |↑⟩ , |1⟩ ↔

|↓⟩. In the spin description, the boundary term is mapped to a transverse field, and the
magnetization is not conserved. However, this approach still constrains us to work in the full
Hilbert space.

Another important feature of the approach presented in this section is that since the
Hamiltonian is an observable quantity, it is gauge invariant, and it depends only on the phase
difference of the superconducting leads, i.e. ϕ = ϕL − ϕR. The Hamiltonian is now
parametrized by Ĥ(ϕ). This parameter ϕ appears as a magnetic flux in the system. By
applying a gauge transformation, we can distribute the phase to the tunneling terms, casting
the hopping parameters into complex numbers. This resembles the appearance of a magnetic
flux. We can think of the system as a ring with twisted boundary conditions ci+L = eiϕci, the
generalization of periodic boundary conditions. In such case, the Hamiltonian is parametrized
by ϕ, and ϕ plays the role of a supercell pseudomomentum 1, where the supercell is the whole
system [54]. A consequence of the dependence of the Hamiltonian on ϕ is that the bulk
properties for instance correlation functions and expectation values will depend on ϕ. In the
case of gapped, local Hamiltonians with exponentially localized ground state projectors, the
expectation values of the system do not depend on ϕ in the limit of large system size 2 [54].
We will test this argument in our case later on.

The appearance of ϕ in the Hamiltonian will play a crucial role in transport. In the original
Rice-Mele model, the pumped charge is expressed in terms of the first Chern number, defined
on the parameter space formed by (k, t). In the present case, k is no longer a good quantum
number. Merely having periodicity in time is insufficient to observe the effects associated
with non-trivial topology. The role of ϕ becomes apparent here. As a parameter, ϕ is indeed
periodic since ϕ ∈ S1. Notice though that different values of ϕ correspond to a set of different
Hamiltonians {H(ϕ)}. A many-body topological invariant in this occasion will require the
integration over ϕ ∈ S1 [25].

1We can think of ϕ as the many-body generalization of the single-particle momentum [54, 25].
2In the case of correlation functions, if the equal-time correlation functions decay exponentially, then the

correlation functions will not depend on the phase ϕ for large system sizes.
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6.2 The many-body gap

As emphasized consistently throughout this thesis, the gap along with the driving frequncy
are the relevant energy scales one looks at when considering adiabaticity. In this scenario,
the gap corresponds to the instantaneous many-body gap. Typically, we prepare the system
in the ground state. Then, the many-body gap will be the energy difference between the
instantaneous ground state and the first excited state. In the time-periodic Rice-Mele model,
the gap corresponds to the minimum gap,

Eg = min
0≤t≤τ

[
E1(t)− E0(t)

]
(6.2.1)

where E0/1(t) are the instantaneous many-body energies of the ground state and first
excited state, respectively. As in the case with Rice-Mele in Chapter 4, the minimum gap is
expected to found at t = τ/2. At this time instance, the system adopts the topological SSH
model form. The following discussion is restricted to the δE = EJ0 case which is the simplest
to obtain an analytical form because the system is in a product state at half-period. Similar
considerations could be applied to the general case of δE < EJ0 . From this point onwards, we
consider a constant hopping with the leads, i.e. Eℓ

J(t) = Eℓ
0.

At t = τ/2, the system takes the form of the topological SSH model. The ground state of
the system is a product state of the dimers of the inter-type and the edges states. The intra-cell
hopping is completely switched off, i.e. EJ1 = 0, EJ2 = 2EJ0 .

|ψ⟩ = |1⟩ ⊗ |D−⟩23 ⊗ · · · ⊗ |D−⟩N−2,N−1 ⊗ |2N⟩ (6.2.2)

where |D−⟩ = 1√
2

(
1 1

)T
is the state of the dimer of lowest energy, E− = −EJ2 and |1/2N⟩

are the two edges states of zero energy. The ground state energy is E0 = −(N − 1)EJ2 and it
is degenerate because of the zero-energy modes. The energy gap is the difference between the
ground state energy and the first excited state energy. For a conserved particle number, as it is
the case for the Rice-Mele model with open boundary conditions and no leads, the first excited
state is degenerate, and corresponds to states in which one of the dimers has been excited to
|D+⟩ state with energy +EJ2 . The first excited state energy is E1 = −(N − 3)EJ2 , and the gap
is Eg = 2EJ2 (this gap corresponds exactly to the particle-hole excitation gap). The many-body
gap without considering particle number conservation is Eg = EJ2 .

In the presence of the boundary terms, the edge states of the SSH model are no longer
of zero energy, and we will explain why. Because the intra-cell hopping vanishes at t = τ/2,
the Hamiltonian becomes a tensor product of boundary Hamiltonians and dimer Hamiltonians.
The boundary Hamiltonian, in the Fock basis {|0⟩ , |1⟩}, is,

HbL/R
=

(
0 −Eℓ

0e
−iϕL/R

−Eℓ
0e

iϕL/R 0

)
(6.2.3)
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(a) (b)

(c)

Figure 6.2: An example of degeneracy breaking by the boundary term for L = 4. The instantaneous
many-body spectrum for (a) Eℓ

0 = 0 and (b) Eℓ
0 = 0.2. The appearance of a nonzero Eℓ

0

breaks the degeneracy of the energy levels at t = τ/2 where the minimum gap is located.
A simple sketch in (c) shows closely the effect of the boundary term at t = τ/2. Before
the introduction of the leads, each of the three energy levels are degenerate because of
particle number conservation and of the zero-energy edge modes. But when Eℓ

0 ̸= 0, the
particle number is not conserved anymore and the isolated sites at the ends of the chain
are coupled to the leads. As a result, the degeneracy due to these factors breaks.

When Eℓ
0 = 0, we obtain the usual Hamiltonian for the edges and the corresponding

zero-energy edge states in the topological SSH model. Diagonalization of Eq. 6.2.3 yields,

|ψ±⟩ =
1√
2

[
eiϕL/R |0⟩ ∓ e−iϕL/R |1⟩

]
(6.2.4)

with energies E = ±Eℓ
0. The combined states for the boundary terms are given by

Eq. 6.2.5-6.2.8.
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Figure 6.3: The many-body gap as a function of Eℓ
0 for various values of δE. At values Eℓ

0 > EJ0 ,
the gap saturates to a final value. This value decreases with decreasing δE. Parameters:
∆ = 3EJ0 , ϕ = π/3.

∣∣ψ1(E = −2Eℓ
0)
〉
= |ψ−⟩1 ⊗ |ψ−⟩2N (6.2.5)

|ψ2(E = 0)⟩ = |ψ−⟩1 ⊗ |ψ+⟩2N (6.2.6)

|ψ3(E = 0)⟩ = |ψ+⟩1 ⊗ |ψ−⟩2N (6.2.7)∣∣ψ4(E = +2Eℓ
0)
〉
= |ψ+⟩1 ⊗ |ψ+⟩2N (6.2.8)

The relevant states in the topological SSH model all have zero energy. Therefore, Eℓ
0 breaks

the degeneracy because of the edge states. At the same time, since it appears as a non-quadratic
term, it breaks the degeneracy because of the particle number is not conserved. An illustrative
example for L = 4 is demonstrated in Figure 6.2.

The overall ground state energy of the system (including the leads) at time t = τ/2 is
E0 = −(N − 1)EJ2 − 2Eℓ

0 and it is non-degenerate. The energy of the first excited state now
can varied depending on the value of Eℓ

0.

E1 =

{
−(N − 1)EJ2 Eℓ

0 < EJ0

−(N − 3)EJ2 − 2Eℓ
0 Eℓ

0 > EJ0

(6.2.9)

Therefore, the energy gap takes the following form,

Eg =

{
2Eℓ

0 Eℓ
0 < EJ0

EJ2 Eℓ
0 > EJ0

(6.2.10)

and EJ2 = 2EJ0 at time t = τ/2. This agrees with the numerical result of Figure 6.3 for
δE = EJ0 . The same procedure applies to δE ̸= EJ0 however these cases are quite tricky to
tackle analytically since they do not form product states but rather entangled states, due to
the fact that neither of the two hopping parameters are completely switched off.
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6.3 The quantization of the pumped charge

We now discuss about pumping following [26], in which we show the connection of the
pumped charge to the Berry phase 3. Assume we initialize the system in the many-body
ground state |Ψ0(0)⟩ of Eq. 6.1.8. If the evolution is adiabatic then after time τ the system
returns to the initial state and has acquired a phase factor,

|Ψ0(τ)⟩ ≈ eiα0 |Ψ0(0)⟩ (6.3.1)

by virtue of the adiabatic theorem. The accumulating phase α0 is the sum of the
geometrical γ0 and dynamical δ0 phase associated with the ground state,

α0 = γ0 + δ0, γ0 =

ˆ τ

0

dt ⟨Ψ0(t)|∂tΨ0(t)⟩ , δ0 = −
ˆ τ

0

dt E0(t) (6.3.2)

The transferred charge over this period of time is, as usual, the time integral of the
expectation value of the current operator,

Q =
1

τ

ˆ τ

0

dt ⟨J ⟩ , ⟨J ⟩ = ⟨Ψ0(t)|J |Ψ0(t)⟩ (6.3.3)

Given the discussion in Section 4.3 on the current operator, the insertion of the flux through
the system is equivalent to twisted boundary conditions, therefore the current operator is simply
given as the derivative of the Hamiltonian with respect to ϕ, the phase associated with the flux,

Ĵ = ∂ϕĤ (6.3.4)

Eq. 6.3.3 is expressed as the sum of two contributions using the product rule for derivatives,

⟨Ψ0(t)|∂ϕH|Ψ0(t)⟩ = ∂ϕ ⟨Ψ0(t)|H(t)|Ψ0(t)⟩ −
[
⟨Ψ0(t)|H|∂ϕΨ0(t)⟩+ c.c.

]
(6.3.5)

and we have Q(ϕ) = Qd(ϕ) + Qg(ϕ), where Qd(ϕ) is the transferred charge due to the
supercurrent and is associated with the dynamical phase,

Qd(ϕ) = −
ˆ τ

0

dt ∂ϕE0(t) (6.3.6)

and Qg(ϕ) is the pumped charge which is associated with the geometrical phase γ0,

Qg(ϕ) = −
ˆ τ

0

dt
[
⟨Ψ0(t)|H|∂ϕΨ0(t)⟩+ c.c.

]
(6.3.7)

Admittedly, it is not obvious how this contribution is linked to the geometrical phase.
After some manipulations shown in Appendix C, shows that indeed Qg = −∂ϕγ0. Therefore
the total transferred charge is given by,

Q(ϕ) = Qd(ϕ) +Qg(ϕ) = −∂ϕδ0 − ∂ϕγ0 (6.3.8)

The transferred charge obviously depends on ϕ. Throughout the thesis, quantized transport
was translated into quantized pumped charge, the transferred charge due to the slow modulation
of the parameters of the Hamiltonian. This is linked to the geometric phase, which leads

3The Berry phase was experimentally measured in a Cooper pair pump by establishing a direct connection
between the pumped charge and the Berry phase. This experiment became the first observation of the Berry
phase in a superconducting circuit [55]
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to the quantization of the pumped charge by integrating the relevant Berry curvature over
time and momentum. In the present case, the total transferred charge is due to both the
dynamical and geometrical phases, hence we do not expect any quantization. However, recall
that the dependence of expectation values on ϕ is neglected in the limit of large system size,
in accordance with [54]. Therefore, the charge due to the supercurrent vanishes because the
ground state energy no longer depends on ϕ, and the derivative of it is zero. This is not the
case with the geometrical phase, and thus the total transferred charge is equal to the pumped
charge Q ≈ −∂ϕγ0 as L→ ∞.

In the general case of arbitrary L, to demonstrate the quantization of the overall transferred
charge we integrate over all values of ϕ ∈ S1 [25].

Q = Qd +Qg =

ˆ 2π

0

dϕ

2π
Q(ϕ) (6.3.9)

The charge due to the supercurrent is trivially zero,

Qd = −
ˆ 2π

0

dϕ

2π
∂ϕδ0 = −δ0(2π)− δ0(0)

2π
= 0 (6.3.10)

while this is not the case with the pumped charge,

Qg = −
ˆ 2π

0

dϕ

2π
∂ϕγ0 ̸= 0 (6.3.11)

After some manipulations, the pumped charge is expressed as the Chern number defined
by the double periodicity of (ϕ, t)

Qg = −i
ˆ 2π

0

dϕ

2π

ˆ τ

0

dt
[
⟨∂ϕΨ0(t)|∂tΨ0(t)⟩ − c.c.

]
= −
ˆ 2π

0

dϕ

2π

ˆ τ

0

dt B(0)
ϕt = −C (6.3.12)

The pseudomomentum ϕ has replaced the crystal momentum in the corresponding
expression for the pumped charge in the Rice-Mele model, for periodic boundary conditions.
The resulting quantization applies to any system size, as long as we can average over the
parameter ϕ. In the opposite case, deviations from the quantized value due to the
supercurrent contribution appear.

We have shown the Berry approach towards the quantization of the transferred charge.
We now view our problem in the Floquet picture by considering the arguments of Subsection
3.4.2. In the adiabatic limit, the dynamical and geometrical phases are linked with the Floquet
many-body quasienergies En,

En = −1

τ

(
γ0 + δ0

)
(6.3.13)

Combining Eq. 6.3.8 and Eq. 6.3.13, we express the transferred charge as the derivative of
the quasienergies with respect to ϕ.

Q(ϕ) = τ∂ϕEn (6.3.14)

Averaging out ϕ, this becomes,

Q =

ˆ 2π

0

dϕ

2π
Q(ϕ) = τ

ˆ 2π

0

dϕ

2π
∂ϕEn (6.3.15)
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When we average over ϕ, the contribution from the dynamical phase is zero, thus the
quasienergies are linked to the geometrical phase only. Thus, the pumped charge corresponds
to the winding of the many-body quasienergies as ϕ runs from 0 to 2π,

Q = τ

ˆ 2π

0

dϕ

2π
∂ϕEn = W, W ∈ Z (6.3.16)

The integer number W is called the winding number of the many-body quasienergy and
counts how many times En wraps up about the Floquet zone as ϕ runs over its domain. The
winding of En relies solidly on the multivaluedness of the quasienergy. Recall that the
quasienergy is uniquely defined, or single-valued, within a Floquet-Brillouin zone of width ω,
but it is multivalued outside of it, since En,m = En +mω, m ∈ Z.

Eq. 6.3.16 assumes that the system is initialized in the ground state of the Hamiltonian
and that this corresponds to a many-body Floquet state. In other words, there is an exact
overlap of the ground state to one of the Floquet states, such that the overlaps with the rest of
the Floquet states are exactly zero. It is a rephrasing of the statement provided in Subsection
3.4.2, in which the Floquet states and the Hamiltonian eigenstates coincide in the adiabatic
limit.

The result of Eq. 6.3.16 can be generalized by including the occupations of all Floquet
states and the contributions thereof to the current. We recall the result of Eq. 3.4.10. The
result is generalized to that of twisted boundary conditions by simply omitting setting the
phase to zero. Thus, the charge is expressed in terms of ϕ,

Q(ϕ) = τ
∑
ν

Nν(ϕ) ∂ϕEν(ϕ) (6.3.17)

where the overlaps where Nν(ϕ) = |⟨Ψ0(0)|Φν(τ)⟩|2 represent the occupations of the
Floquet states |Φν(τ)⟩, given that the initial state of the system is the Hamiltonian ground
state |Ψ0(0)⟩. Integrating out ϕ, Eq. 6.3.17 becomes,

Q = τ
∑
ν

ˆ 2π

0

dϕ

2π
Nν(ϕ) ∂ϕEν (6.3.18)

We retrieve Eq. 6.3.15 when the ground state coincides exactly with one of the Floquet
states, i.e. Nν = δν,n where n is the index of the corresponding Floquet state of exact overlap.

6.4 Short-time dynamics

Let us first study the short-time dynamics to examine what happens to the system as it
evolves in time. Later on, we will mostly focus on the pumped charge at the infinite-time limit.

We study the pumped charge for a few periods of the drive to examine its behavior.

Q(t) =

ˆ t

0

dt′ tr{ρ(t′)J (t′)} (6.4.1)

where the ρ(t) = U(t)ρ0U
†(t) is the time-evolved density matrix in the Schrödinger picture.

One can solve the von Neumann equation ρ̇ = −i[H, ρ] to determine how the density matrix of
the system evolves in time. However, we can tackle the problem from a time evolution operator
perspective by determining U(t) and then finding ρ(t). Since the system is under the influence
of a periodic drive, then we can simply use the Floquet theorem,
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(a)
(b)

Figure 6.4: The time evolution of the pumped charge of Eq. 6.4.1 and the occupation numbers of the
real lattice for 3 periods. (a) The pumped charge associated with the intra-cell (blue)
and inter-cell (orange) currents are shown. After the completion of a driving period, the
average pumped charge is quantized. (b) The occupations (colorbar) of each island are
shown. After half a period, either an intra- or inter-cell current flows depending on which
sublattice is occupied, either A or B. Parameters chosen: δE = EJ0 ,∆ = 3EJ0 , E

ℓ
0 =

EJ0 , ω = 0.1EJ0 , ϕ = π/3, L = 6

U(t+mτ) = U(t)[F (τ)]m, m ∈ N (6.4.2)

which requires knowledge of the time evolution operator within a period of the driving and
the Floquet operator.

In Figure 6.4a, the pumped charge of Eq. 6.4.1 as a function of time is displayed. We
consider separately the current generated across sites within a unit cell (intra-cell current) and
sites of adjacent unit cells (inter-cell current). Evidently, at stroboscopic times t = mτ where m
is an integer, the charge of Eq. 6.4.1 is quantized. Throughout the evolution, only one type of
current is non-zero. This is a consequence of the choice δE = EJ0 , a choice that corresponds to
states of isolated dimers at some time moments, when current flows. This is also evident from
the occupations of the sites of the array, as seen in Figure 6.4b. During the first half period,
particles occupy the sites of sublattice B. Then, at the second half, there is a inter-cell current
and particles move to sites the sites of sublattice A. This current is generated at t ≈ τ/2 at
which the sytem is in a state of isolated dimers of the inter type, the intra-cell hopping is zero.
Notice that at the same time, particles can hop in or out of the system to the leads. Likewise,
intra-cell current is generated at times t = 0 and t = τ such that the average intra-cell current
over a period is quantized to one.

We now take a different approach and perform a detailed study of the quantization of the
pumped charge.
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Figure 6.5: The pumped charge (at the infinite-time limit) and the energy gap as a function of Eℓ
0.

As we increase Eℓ
0, pumped charge becomes quantized once adiabaticity is established,

while at Eℓ
0 = EJ0 the gap adopts its final value of Eg = 2EJ0 . Parameters chosen:

δE = EJ0 ,∆ = 3EJ0 , ω = 0.1EJ0 , ϕ = π/3, L = 6

6.5 Pumping in the presence of the leads

We have discussed several aspects of the new problem at hand. We considered the typical
Josephson junctions array and introduced external superconducting leads at the edges of the
array. Cooper pairs are allowed to move in or move out of the array. The phase bias induced
by the superconducting leads, along with time, are the two relevant periodic parameters which
in principal can generate quantized current.

As we have emphasized earlier, unitarity is still preserved. We can still diagonalize the
Hamiltonian directly, but we do that considering the full Hilbert space since particle number
is no longer conserved. This prevents us from studying arrays with a large number of islands,
as in the case of the periodic Rice-Mele model. We primarily focus on the δE = EJ0 case to
get an insight of how the system behaves. However, as we find out, δE = EJ0 exhibits some
interesting features that cannot be seen for δE ̸= EJ0 . Furthermore, the Josephson energy of
the junctions between the array and the leads is taken to be constant in time.

We first want to examine whether quantized pumping can be achieved in the scenario where
we have attached superconducting leads to the system. For this cause, we are concerned with the
pumped charge at the infinite-time limit, given by Eq. 3.4.9 and was derived within the Floquet
representation. Clearly, we want to see whether quantization of the particle current persists
for long times and it is not a feature observed merely in short time scales. Figure 6.5 shows
the pumped charge as a function of the Josephson energy associated with the hopping between
leads and the system, Eℓ

0. The many-body gap is also displayed to view the correspondence
between the two. While Eℓ

0 is much smaller than EJ0 , the pumped charge is not quantized.
One could say that within this range of values of Eℓ

0, the gap is such that nonadiabatic effects
take place and prevents the quantization of the pumped charge. As Eℓ

0 approaches EJ0 , i.e
Eℓ

0 > 0.8EJ0 , the pumped charge becomes quantized. The developed gap is much larger than
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(a) (b)

Figure 6.6: The nontrivial winding of the quasienergies over the Floquet-Brillouin zone as a function
of ϕ, for (a) δE = EJ0 and (b) δE = 0.5EJ0 . The colorbar shows the occupation number
of the Floquet states. Parameters: ∆ = 3EJ0 , E

ℓ
0 = EJ0 , ω = 0.05EJ0 , L = 6.

the driving frequency and adiabaticity is established, thus the pumped charge is quantized.
At Eℓ

0 = EJ0 , the many-body gap admits its final value of 2EJ0 , as discussed in Section 6.2,
and the quantization of the pumped charge persists. As Eℓ

0 exceeds EJ0 , the quantization is
preserved and the gap is mantained at 2EJ0 . For a very large coupling with the leads, the first
and last sites are effectively ”swallowed” by the superconducting leads, thus making the system
two sites shorter.

It should be stated that the pumped charge in Figure 6.5 is evaluated on a single value of ϕ
and a relatively small system size is considered L = 6. Yet the pumped charge is quantized, even
though in the latter section we emphasized that quantization is achieved when ϕ is averaged
out. To examine this situation, we look at the quasienergies as a function of ϕ. For each value of
ϕ, we diagonalize the Floquet operator obtaining the many-body quasienergies and the Floquet
states. By constructing the corresponding resolution of identity, we can project the Hamiltonian
ground state and calculate the occupations of the Floquet states. The quasienergies and the
occupations of the Floquet states are the relevant quantities to determine if the pumped charge
comes out to be quantized or not based on Eq. 6.3.18. Figure 6.6a shows the winding of the
quasienergies as ϕ runs over its domain, which occurs once and thus the pumped charge is
quantized. There is a remarkable feature; this winding happens in a linear fashion, the slope is
constant across ϕ. This automatically means that whatever value of ϕ we choose to calculate
the charge, as in the case with Figure 6.5, the pumped charge will be quantized. This is evident
if we look into Eq. 6.3.18. Because of periodicity across both directions, the slope of the line
comes out to be ∂ϕEν = ω/2π = 1/τ . At the same time, for every value of ϕ, the Hamiltonian
ground state coincides with a Floquet state, i.e. Nν = δν,µ(ϕ)

4 . Therefore, the pumped charge
(in units of the particle charge Q = −2e) is,

Q = τ

ˆ 2π

0

dϕ

2π
∂ϕEµ(ϕ)(ϕ) = τ

ˆ 2π

0

dϕ

2π

1

τ
= 1 (6.5.1)

This we already know. It does not justify the fact that the charge is quantized for a single
value of ϕ. From the previous section recall that,

Q =

ˆ 2π

0

dϕ

2π
Q(ϕ), Q(ϕ) = τ∂ϕEν (6.5.2)

4For each value of ϕ, the ground state can coincide with a different Floquet state.
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(a)

(b)

Figure 6.7: (a) The pumped charge as a function of δE for various values of ϕ. As δE → EJ0 , the
pumped charge becomes less dependent on ϕ. (b) The quasienergy spectra as a function
of ϕ for δ = 0.25EJ0 . The gaps appear due to nonadiabatic effects described in the
text. The colorbar shows the occupation number of the Floquet states. Parameters:
∆ = 3EJ0 , E

ℓ
0 = EJ0 , ω = 0.05EJ0 , L = 6

and since ∂ϕEν = 1/τ , then Q(ϕ) = 1, ∀ϕ ∈ S1 5 . This independence of the pumped
charge on ϕ for δE = EJ0 may be attributed to the fact that the sites are weakly connected
because one of the two hopping parameters is small or zero, throughout a driving period. The
ground state projector is essentially localized at all times, therefore the expectation value of the
pumped charge will be independent of ϕ, irrespective of the other parameters and the system
size.

As emphasized, this observation is a consequence of the choice δE = EJ0 . For instance
this does not occur for δE = 0.5EJ0 , see Figure 6.6b. Even though the quasienergies still winds
about the Floquet zone in a non-trivial way, the formed curve across ϕ is not linear, hence
the derivative of the quasienergy with respect to ϕ is not constant and the argument does not
hold for this case. In general, for δE ≲ EJ0 we expect the derivative of the quasienergy across
ϕ to be approximately constant. In this occasions, the evaluation of the pumped charge for
a single value ϕ would deviate slightly from the quantized value. Figure 6.7a supports this
statement, in which the pumped charge as a function of δE is displayed for various values of ϕ.
As δE approaches EJ0 , all ϕ curves tend asymptotically towards the quantized value. In this
regime, the pumped charge becomes independent of ϕ. For values of δE away from EJ0 we start
seeing a strong dependence on ϕ as we expected. As we move towards smaller values of δE,
the integral over ϕ becomes a necessary step. At the same time however, we need to consider
how the many-body gap is affected by the change in δE, see Figure 6.3 for Eℓ

0 = EJ0 . The
reduction in the gap value can lead to breakdown of adiabaticity for a fixed driving frequency.
This is reflected in Figure 6.7b for δE = 0.25EJ0 . At some values of ϕ the quasienergy curve
is discontinuous. This is attributed to the fact that more than one Floquet state become
populated, because the evolution is not strictly adiabatic anymore and this induces gaps in the
quasienergy spectrum [28].

5Note that Q(ϕ) is the pumped charge at the infinite-time limit.
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(a)

(b)

Figure 6.8: (a) The pumped charge as a function of the phase ϕ for several values of the system size
L. As the system size increases, the dependence of the pumped charge on ϕ diminishes.
(b) An instance of a trivial winding of the quasienergies over the Floquet-Brillouin zone as
a function of ϕ, for δE = EJ0 and A = 4EJ0 where A is the energy shift in the Josephson
energy EJ1(t) of Eq. 4.2.5. The colorbar shows the occupation number of the Floquet
states. Parameters: ∆ = 3EJ0 , E

ℓ
0 = EJ0 , E

ℓ
0 = EJ0 , ω = 0.05EJ0 , L = 6

We showed that for δE ∼ EJ0 , the dependence on ϕ becomes irrelevant. For a general
δE, one has to integrate over all values of ϕ. However, we can still overcome this procedure by
varying the system size. In the beginning of the chapter, we argued that the expectation values
of the system 6 do not depend on ϕ in the limit of large system size, given that the ground state
projector is exponentially localized. Figure 6.8a shows the dependence of the pumped charge
on ϕ for increasing system size, for δE = 0.5EJ0 . Evidently, as the system size increases, the
fluctuations in ϕ around the quantized value decrease, thus the reliance of the observable on ϕ
gradually diminishes, in accordance with our previous statement.

For completness, let us show how the pumped charge is zero in the trivial phase. Recall
from Chapter 4 of the Rice-Mele model, when adding a constant energy shift A in one of the
hopping parameters, we exit the topological phase, as long as A > 2δE. In such instance,
the quasienergy spectrum becomes that of Figure Eq. 6.8b. The quasienergy winds once in
the clockwise but then winds in the opposite direction as ϕ runs from 0 to 2π, thus cancelling
the first contribution and the overall winding is zero. Thus the pumped charge is zero, as
expected since by adding A > 2δE to one of the hopping parameters, the system is admitted
to a topologically trivial phase.

6.6 On-site disorder

We now study the effect of disorder in our problem. We have discussed disorder in Chapter
5, where we showed that the quantization of the pumped charge persists as long as the disorder
does not close the excitation gap. When the latter occurs, then the quantization breaks down
and as the disorder keeps increasing, the system is admitted to an insulating phase in which

6This statement applies for a gapped, local Hamiltonian which is the case for our system.
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(a)
(b)

Figure 6.9: Introduction of on-site disorder. (a) The saturation of the gap due to increasing disorder,
and how the value of saturation depends on the system size. (b) The insensitivity of the
pumped charge against disorder and the breakdown of it at strong disorder. Parameters
chosen: δE = EJ0 ,∆ = 3EJ0 , E

ℓ
0 = EJ0 , L = 6.

the Floquet states are completely localized. In the current problem, the relevant gap is the
many-body gap.

We consider on-site disorder of the form,

Ĥdis =
∑
i

δµi â
†
i âi (6.6.1)

where δµi are random variables, sampled from a uniform distribution U = [−w,w], where
w is the strength of the disorder. The case of δE = EJ0 is discussed here, and the many-body
gap at zero disorder is Eg = 2EJ0 . Because disorder is represented by random variables, we
ought to take the average over a number of disorder configurations for the pumped charge and
the many-body gap.

We turn to disorder and we study the behavior of the pumped charge and at the same time
the many-body gap. As disorder increases, the many-body gap decreases while the transport
is still quantized, see Figure 6.9. As the many-body gap keeps decreasing with increasing
disorder for a fixed driving frequency, adiabaticity breaks down and thus the quantization
ceases. This is evident by looking at Figure 6.9b when we compare data between different
driving frequencies. It is apparent that the smaller the frequency, the more the quantization
persists. For ω = 0.05EJ0 , the quantization is robust up to w ∼ EJ0 , the energy scale associated
with Cooper pair tunneling. For larger disorder strength, quantization breaks down and the
system is directed towards a trivial, insulating phase. Once again, disorder generates a phase
transition from a topological to trivial state. In this topologically trivial state, the Floquet
states become localized due to disorder and thus the particle current vanishes.

It is worth mentioning that the gap does not actually close for small system sizes, but rather
approaches a finite value. This is related to the finite size of the system and subsequently the
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Figure 6.10: A sketch of the Josephson junctions array with nearest neighbour interactions.

finite number of many-body states. As the system size increases, the gap tends to the value of
zero.

6.7 Nearest-neighbour interactions

Finally, we consider the effect of interactions and how the observables, in particular the
pumped charge, is affected by them. This discussion is focus on δE = EJ0 . The discussion on
interactions go back to Chapter 2, where we have assumed that interaction between Cooper pairs
on different islands are negligible and focus entirely on the charging Hamiltonian of each island
as the main contribution from Coulomb interactions. Then, the hardcore boson approximation
focused on assuming that the charging energy is the dominant energy scale in the system, apart
from the superconducting gap. We want to preserve this energy hierarchy and include the energy
associated with nearest neighbour interaction, ECX

. Therefore, for the setup we consider in
this chapter to hold as it is, in the description we have adopted, we consider EJ0 , ECX

≪ EC0 .
The interaction term arises from the charging Hamiltonian of Eq. 2.1.8.

Ĥint = ECX

∑
i

(
N̂i − ng,i

)
·
(
N̂i+1 − ng,i+1

)
(6.7.1)

where we assume a unique interaction energy ECX
. The lattice index i runs over the number

of islands minus one. Depending on the parity of the lattice index i, the induced charge adopts
the form of driving of either sublattice A or B, based on Eq. 2.4.5, with QδV

Eg0
= ∆

EC0
≪ 1. So

far, we did not explicitly set a value for the charging energy EC0 , but rather assumed to be
much larger than the Josephson energy EJ0 through the approximation scheme we adopted. In
the case of interactions we need to assign a value in the numerical simulations.

Figure 6.10 shows a sketch of the Josephson junctions array with interacting islands. We
want to examine how nearest neighbour interactions impact the quantization of the pumped
charge. We follow exactly the same recipe as we have done during this chapter for the evaluation
of the pumped charge.

Let us look at the phase diagram of ECX
vs Eℓ

0, in Figure 6.11a, for EC0 = 8EJ0 . There
are clearly two distinct regions: one where the pumped charge is zero and another where the
charge is quantized, in the presence of interactions. Let us carefully examine a cut along the
ECX

direction at Eℓ
0 (Figure 6.11b). Evidently, the pumped charge is remarkably robust against
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the interaction strength. The quantization persists until ECX
≈ 3EJ0 and then it breaks down.

However, we already reached a high enough value of the interaction strength at ECX
≈ 3EJ0 , at

which we begin to violate the energy hierarchy we assumed since ECX
starts being comparable

with the charging energy.

(a)

(b)

Figure 6.11: Nearest neighbour interactions in a 1D Josephson junctions array with leads. (a) A phase
diagram of ECX

and Eℓ
0. The colorbar corresponds to the pumped charge (in units of the

particle charge). (b) The system is robust against interactions for δE = EJ0 as explained
in the text. Parameters chosen: δE = EJ0 ,∆ = 3EJ0 , EC0 = 8EJ0 , ω = 0.05EJ0 , L = 6.
Additionally for (b) we have Eℓ

0 = EJ0 .

How do we account for such robustness? We recall from Section 6.4 and Figure 6.4b, that
during the time evolution, the particles occupy either the sites of sublattice A or B, and when
tunneling between the two, a particle current is generated and ends up being quantized over a
full driving cycle. Considering only nearest neighbour interactions simply does not affect the
system, because when the particles ”sit” at the sites of either of the two sublattices, there is no
interaction going on between them. The nearest islands of a given island j are not occupied, thus
the Cooper pair on the island does not interact with any particle. This is solidly a consequence
of choice of the parameters associated with the Josephson tunneling, in particular δE = EJ0 .
Therefore, for this choice δE, the nearest neighbour interaction does not affect the quantization
of the pumped charge, if the parameters of the system are chosen such that quantized current
is indeed induced. It should be emphasized that the pumped charge in Figures 6.11a and 6.11b
is evaluated for a single value of ϕ, and this is justified by the arguments we provided in Section
6.5.

A way to extend and perhaps witness the effect of interactions will be to consider δE ̸= EJ0

such that the occupation of a single sublattice is avoided. Furthermore, for the case of δE = EJ0

one can consider including next nearest neighbour interactions, which will have an impact
because at this scenario, particles on the same sublattice will ’feel’ each other.



Chapter 7

Conclusions and Outlook

Feynman’s aspiration of simulating Nature using quantum computers has transitioned
from a mere vision to a tangible reality. Thanks to technological progress, we now have the
capability to simulate many-body phenomena on mesoscopic platforms. Our aspiration is to
realize Thouless pumping on an array of Josephson junctions, a versatile and highly tunable
device that has been in use for simulating many-body physics for several decades. The main
challenge lies in achieving topological pumping in the presence of external leads. Introducing
leads into the overall system can be relatively straightforward in these devices compared to
other experimental setups. Hence, the primary objective of this thesis is to investigate and
understand this particular scenario.

In conventional analog simulations, it is necessary to map the Hamiltonian of the setup
to that of the original model, often by exploring different energy regimes. In this thesis, we
chose to implement the pumping protocol of the Rice-Mele model, arguably one of the simplest
examples of Thouless pumping. The foundation for implementing the Rice-Mele model on an
array of Josephson junctions relied on the hardcore boson approximation, which was established
under the condition of a large charging energy EC0 ≫ EJ0 . This approximation scheme reduces
the original Hilbert space to a manageable size and eventually leads to the Rice-Mele model.
By investigating the Rice-Mele model with periodic boundary conditions, the study showcased
the underlying mechanisms of quantized pumping through two distinct approaches: Berryology
and Floquet theory. The quantization of particle transport is expressed in terms of the Chern
number defined on (k, t) or the nontrivial winding of the Floquet band over the Floquet-Brillouin
zone. Furthemore, we explore disorder in the Rice-Mele model through different diagnostic tools
such as the local Chern marker and the strange correlation function. The quantization is robust
against disorder as long as the gap remains open. However, as disorder gets stronger the Floquet
states become localized and the current vanishes. It is noteworthy that in the case of strong
disorder, the strange correlation function breaks down. This happens in both the Rice-Mele
model in Chapter 5 and the SSH model in the Appendix A. A comprehensive exploration of
this issue could serve as an avenue for future research.

Chapters 4 and 5 provide valuable insights into the mechanism of topological pumping
in the Rice-Mele model, shedding light on the influence of various factors such as finite size
effects, nonadiabaticity and disorder. Building upon these insights, our investigation focuses on
studying pumping in the presence of external superconducting leads, employing the pumping
protocol of the Rice-Mele model. It is worth noting that due to the macroscopic description
we adopt for the leads, the evolution of the system remains unitary. To properly account for
the presence of the superconducting phase difference ϕ = ϕL − ϕR, we establish a connection
to twisted boundary conditions. As a result, the Hamiltonian and subsequently all the relevant
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observables, depend on this ϕ. We demonstrate that the dependence on the superconducting
phase difference disappears in the limit of a large system size and when δE approaches EJ0 ,
provided that the ground state projector is exponentially localized. The latter condition, i.e.
δE → EJ0 is an essential feature observed even in systems of small size, like the ones we
studied. For this choice of parameters, there is no longer a need to average out the phase ϕ.
Additionally, our findings demonstrate that transport is quantized when the winding of the
many-body quasienergy over the Floquet-Brillouin zone, as ϕ varies from 0 to 2π, is nontrivial.
This quantization seems to be robust for disorder up to EJ0 and against nearest-neighbour
interactions for the case of δE = EJ0 . Significantly, the consideration of this type of interaction
becomes irrelevant for this specific parameter choice. However, future research can explore the
inclusion of next-nearest-neighbor interactions, as it is anticipated to have an impact on the
system dynamics and therefore pumping.

Our study is mainly focused on small arrays of Josephson junctions, where deviations from
quantization can be observed. In our approach, the choice δE = EJ0 seems like an excellent one
to observe pumping in a straighforward manner. Even for δE ̸= EJ0 , quantization of particle
transport is still observed either by averaging out ϕ or choosing a larger system size, and as
long as δE is not that small as to violate adiabaticity. Naturally, we aim to apply this approach
to other models to investigate whether quantized pumping is observed in those cases as well.
The Hofstadter-Harper model, with three sites per unit cell, appears to be a promising choice
for such investigations, especially in the presence of interactions.

Possible routes for future research will be the relaxation of several of the assumptions we
took. Indeed, relaxing the assumption of EC0 ≫ EJ0 allows us to explore beyond the hardcore
boson limit and investigate whether quantized pumping is still observed in the regime where
multiple bosons can occupy a single island. This extension of the study can provide valuable
insights into the robustness of the quantized pumping phenomenon under different system
conditions.

In typical open systems, the presence of external baths introduces coupling to the
system, resulting in dynamics that are no longer described by the von Neumann equation. In
such instances, the Lindblad master equation is commonly employed to account for relaxation
and decoherence processes, leading to a non-unitary evolution. However, our approach
considers the external leads in a macroscopic and classical manner, where the state of the
system is represented by a coherent state. An important direction for future research would
be to investigate the validity of the approach and approximations we used for the leads.



Appendix A

The SSH model

The Rice-Mele model is built upon the widely recognized Su-Schrieffer-Heeger (SSH) model
[56], and it is one of the simplest examples of quantum systems that exhibits topological features.
In this Appendix, we briefly discuss the topological nature of the SSH model and we characterize
phases with the strange correlation function [52, 53]. A peculiar feature arises in the overlap
between a trivial and a topological SSH state, which we analyze in this Appendix.

A.1 The model

We consider a one-dimensional chain with two sites per unit cell, and a total number of
unit cells N . Fermions are allowed to hop between adjacent sites. There are two types of
hoppings, the intra-cell hopping which occurs between sites of the same unit cell J1 and the
inter-cell hopping which occurs between sites of adjacent unit cells J2. The Hamiltonian is,

ĤSSH = −J1
∑
j

(
ĉ†2j−1ĉ2j + h.c.

)
− J2

∑
j

(
ĉ†2j ĉ2j+1 + h.c.

)
(A.1.1)

and the summation index j runs over the number of unit cells in the case of periodic
boundary conditions. When open boundary conditions is conserved, we omit the contribution
coming from hopping on the link between sites 1 and 2N . Let us for now restrict to periodic
boundary conditions. Because of space translation invariance, a map to momentum space can
be realized through a Fourier transformation,

c†2j =
1√
L

∑
k∈BZ

e−ikrc†A,k, c2j =
1√
L

∑
k∈BZ

eikrcA,k (A.1.2)

c†2j+1 =
1√
L

∑
k∈BZ

e−ikrc†B,k, c2j+1 =
1√
L

∑
k∈BZ

eikrcB,k (A.1.3)

Then, the Hamiltonian takes the compact form of,

Ĥ =
∑
k

Ĉ†
kH(k)Ĉk, Ĉk =

(
ĉk/A
ĉk/B

)
, H(k) = h⃗(k) · σ⃗ (A.1.4)

and H(k) takes the form of a spin-1/2 particle in magnetic field h⃗(k) = (hx, hy, hz) =
(−t1 − t2 cos 2k,−t2 sin 2k, 0), The matrices σ⃗ are the Pauli matrices in the sublattice space,
{|A⟩ , |B⟩}.
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Topological features are manifested in the plane hx vs hy. We express the field components
in terms of each other by eliminating the parameter k.

(hx + J1)
2 + h2y = J2

2 (A.1.5)

This is the equation of a circle with center (−J1, 0) and radius J2. The point of interest
is the gapless point at (J1, J2) = (0, 0) where the system admits a metallic phase. In order
to characterize the topological phases in the SSH model, we employ concepts from Berryology
[22]. Our parameter space is the one formed by hx, hy and we evaluate the Berry phase through

the Berry connection γn =
¸
dh⃗ · A⃗(⃗h), and expresses the winding number about the gapless

point. The Berry phase is non-zero when the circle of Eq. A.1.5 encloses the gapless point. A
non-trivial winding number corresponds to the nontrivial topological state of the SSH model.
This happens when t1 < t2. On the other hand, the circle does not enclose the gapless point
when t1 > t2, which corresponds to the topologically trivial state. Therefore, the winding about
the gapless point in the hx-hy plane represents the topological invariant of the system.

In the case of open boundary conditions, the distinction between topological and trivial
phases remain the same. However, in the topological phase, zero-energy modes appear at the
edges.

A.2 Overlap of states in the SSH model

In this section we examine the overlap between a trivial and a topological SSH state. The
analysis will be of great importance when we implement the strange correlation function to the
SSH model.

Let us define the state |ψ⟩ as the state of the SSH model for any J1, J2, therefore we can
write it as |ψ(J1, J2)⟩. For simplicity, we express all energy quantities in terms of J1, i.e. J1 = 1,
such that the inter-cell hopping is now denoted by Λ = J2/J1. Then, the state of the SSH model
is thus reduced to |ψ(Λ)⟩, and is topological when Λ > 1, while it becomes trivial when Λ < 1.
Then the overlap of the reference state and the target state for the SSH model is,

⟨Ω|Ψ⟩ = ⟨ψ(Λ1)|ψ(Λ2)⟩ (A.2.1)

where Λ1/2 are some choices of the inter-cell hopping parameter in units of J1. The phase
transition occurs at Λ = 1 when the two hopping parameters are equal.

We focus entirely on the SSH model with periodic boundary conditions. The Hamiltonian
in the momentum space is given by A.1.4. The diagonalization of H(k) yields,

|ψ±(k)⟩ =
1√
2

[
e−iθ(k) |A⟩ ± |B⟩

]
, ε± = ±|h(k)| (A.2.2)

where

e−iθ(k) = cos θ(k)− i sin θ(k) =
hx
|h|

− i
hy
|h|

(A.2.3)

At half-filling, the ground state of the system is given by acting on the vacuum state |0⟩
with the the creation operator of the lower band,
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Figure A.1: THe overlap of SSH states with periodic boundary conditions for Λ1 = 0.5 and varying
Λ2. When Λ2 becomes greater than unity, the SSH model enters the topological phase.
The overlap vanishes once Λ2 = 1 for an even unit cell number while it behaves smoothly
for an odd number.

|ψ(Λ)⟩ =
∏
k

γ†k |0⟩ , γ†k = α∗
kc

†
k/A + β∗

kc
†
k/B (A.2.4)

αk =
1√
2
e−iθ(k), βk = − 1√

2
The overlap of states of the SSH model of different Λ is given as,

⟨ψ(Λ1)|ψ(Λ2)⟩ =
∏
k

(
α1,kα

∗
2,k + β1,kβ

∗
2,k

)
=

∏
k

1

2

(
e−iθ1(k)eiθ2(k) + 1

)
(A.2.5)

Now, let’s analyze this overlap considering the nature of periodic boundary conditions.
With cj+L = cj, we find that eikL = 1, which leads to the quantization condition for the crystal
momentum: kL = 2nπ ⇒ k = nπ/N , where n ∈ 0, 1, ..., N − 1. We consider separately the
the even and odd unit cell number. For an even number of unit cells, the point k = π/2 is
included in the set of quantized values of k while for an odd unit cell number this is not true.
This is evident when we consider the quantization condition for the crystal momentum. The
point k = π/2 is included in the set when n = N/2. But since n is an integer, N must be even,
thus for even unit cell number, we have,

k = n
π

N
=
N

2

π

N
=
π

2
(A.2.6)

When k = π/2, hy = 0 and for any Λ we have,

e−iθ =
hx
|h|

=
J2 − J1
|J2 − J1|

=

{
−1, Λ < 1 trivial
+1, Λ > 1 topological

(A.2.7)

Then, the product over k in Eq. A.2.5 includes the point k = π/2 for an even unit cell
number. The relevant contribution to the product from the point k = π/2 is,

1

2

(
e−iθ1(π/2)eiθ2(π/2) + 1

)
=

{
0 Λ1 < 1,Λ2 > 1 or Λ1 > 1,Λ2 < 1
1, Λ1,Λ2 > 1 or Λ1,Λ2 > 1

(A.2.8)

Therefore, the overlap Eq. A.2.5 of a trivial Λ < 1 and a topological state Λ > 1 of the SSH
model is zero for an even unit cell number hence we expect the strange correlation function to
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diverge in this case. When the parity of the unit cell number is odd, then the overlap does not
vanishes.

We also consider the case of antiperiodic boundary conditions i.e. cj+2N = −cj, which
implies eikL = −1. The resulting quantization condition is,

k = (2n+ 1)
π

2N
= n

π

N
+

π

2N
, n ∈ 0, 1, ..., N − 1 (A.2.9)

The antiperiodic conditions corresponds to a shift in the Brillouzin zone by π/2N .
Evidently, the point k = π/2 appears in the set of momenta comprising the Brillouin zone
when the parity of the unit cell number is odd. In particular, when
n = (N − 1)/2 ⇒ k = π/2, and this happens only when N is odd such that n is an integer.
Applying similar reasoning as in the case of periodic boundary conditions, we find that the
overlap between a trivial state and a topological state in the SSH model becomes zero for an
odd number of unit cells when considering antiperiodic boundary conditions.

Periodic and antiperiodic boundary conditions can be seen as special cases of twisted
boundary conditions We imagine that we insert a fictitious flux through the ring such that

cj+L = eiϕcj (A.2.10)

Here, ϕ is the phase associated with the flux. Note that ϕ = 0 corresponds the usual
periodic BC while ϕ = π corresponds to the antiperiodic BC. The resulting quantization
condition for momenta is,

eikL = ei2πneiϕ ⇒ k =
1

L

(
2nπ + ϕ

)
, n ∈ {0, 1, 2, ..., N − 1} (A.2.11)

The introduction of the flux results in a momentum shift in the Brillouin zone by ϕ/L.
When the flux does not acquire the values of 0 or π, the overlap between the trivial and
topological phases does not vanish for both even and odd unit cell numbers. However, the
overlap behaves smoothly with the unit cell number when ϕ = π/2. This becomes apparent
when we look at the strange correlation function.

A.3 Characterization of topological phases using the

strange correlator

We consider the strange correlation function for the SSH model. The strange correlator
was introduced in the main text on Chapter 5 and implemented for the 2D static Rice-Mele
model. The concept of the strange correlation function is to characterize a target state given a
reference, typically trivial, state. We note that the Hilbert space of the two states must be the
same.

We express the correlation in terms of the SSH state |ψ(Λ)⟩, parametrized by Λ = J2/J1.

s[c†s,j, cs′,j′ ] =
⟨ψ(Λ1)|c†s,j, cs′,j′|ψ(Λ2)⟩

⟨ψ(Λ1)|ψ(Λ2)⟩
(A.3.1)

Here, we use cs,j where s ∈ {A,B} is the sublattice index and j is the unit cell index. The
choice of operators is supported by the fact that the SSH Hamiltonian and the particle number
operator commutes, thus the particle number is a symmetry. We are interested in the scaling
of the strange correlation function with the system size.
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(a) (b) (c)

Figure A.2: The scaling of the strange correlator with the system size for the SSH model with twisted
boundary conditions, for Λ1 = 0.5,Λ2 = 2 and (a) ϕ = π/4, (b) ϕ = π/2 and (c)
ϕ = 3π/4. The deviation between the trends of the odd and even unit cells number
vanishes for ϕ = π/2.

s̄[c†, c]s,s′ = (S̄L)s,s′ =
1

L

∑
j,j′

∣∣∣s[c†s,j, cs′,j′ ]∣∣∣ (A.3.2)

The behavior of this correlation function indicates whether the target state is topological
or not, with the reference state being in the trivial phase. In the case of the SSH model, we
choose Λ1 < 1. According to our discussion in Chapter 5, for a one-dimensional system we
expect that the strange correlation function scales linearly with the system size if the target
state is topological. Instead, when the target state is trivial, the strange correlator tends to a
constant.

We first study how the parity of the number of unit cells in combination with the
boundary conditions, affect the strange correlation. The discussion involves the twisted
boundary conditions, characterized by ϕ - see Eq. A.2.10. Evidently, we explicitly showed in
the previous section that the overlap between a trivial and a topological state in the SSH
model vanishes when the parity of the unit cell number is even and ϕ = 0. This has a direct
consequence for the strange correlation function described in Eq. A.3.1, causing it to diverge.
The same occurs when we consider ϕ = π and the unit cell number has odd parity. By
employing twisted boundary conditions, we can investigate the impact on the overlap and,
consequently, on the strange correlator by testing various values of ϕ.

When ϕ ̸= 0, π, the overlap takes a non-zero value, resulting in a finite value for the strange
correlator. However, there will be two distinct trends observed: one for even parity and another
for odd parity. Initially, when ϕ = 0, the two trends diverge completely, with the even parity
trend becoming infinite. However, as we increase ϕ, the two trends gradually converge to each
other, as illustrated in Figure A.2a. Eventually, when ϕ = π/2, the two trends coincide and
effectively merge into a single curve for the unit cell number as shown in Figure A.2b. The
similar behavior occurs when we start from ϕ = π and move backwards to ϕ = π/2, but instead
the odd parity trend ”starts” from infinity (Figure A.2c).

Given this unique feature, in order to use the strange correlator as a diagnostic tool in the
SSH model, we adopt ϕ = π/2. As already demonstrated in Figures A.2, the strange correlator
scales linearly with the system size, an indication that the target state belongs to a different
topological phase. Since the reference state is trivial, i.e. Λ2 = ..., then the target state is
a nontrivial topological state. The same linear trend appears for both (s, s′) = (A,A) and
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(s, s′) = (A,B) 1, as shown in Figure A.3a. If instead the strange correlation function tends
to a constant with increasing system size as in Figure A.3b, then we conclude that the target
state belongs to the same phase as the reference state. Since the reference state is trivial, we
can infer that the target state is also trivial.

(a) (b)

Figure A.3: The scaling of the strange correlation function with the system size for the SSH model
with twisted boundary conditions for ϕ = π/2. The states involved in the strange
correlator in (a) correspond to Λ1 = 0.5,Λ2 = 2.0 while in (b) correspond to Λ1 =
0.5,Λ2 = 0.6. The two curves in each plot correspond to the correlator with sublattice
indices s, s′.

Finally, we study the presence of static, on-site disorder in the SSH model,

Ĥdis =
∑
i

δµiĉ
†
i ĉi (A.3.3)

where δµi is a random variable, sampled from a uniform distribution δµi ∼ [−w,w] and w is
the strength of the disorder. The topological SSH model is known to be robust against disorder
and once the gap closes. Thus, the target state in the strange correlator will be a topological
SSH state with disorder. For weak disorder, the strange correlation function still scales linearly
with the system size (Figure A.4a, an indication that indeed even in the presence of disorder
the SSH model is in the topological phase. This verifies the robustness against it. However,
one expects that when disorder is strong, a phase transition occurs from the topological phase
to a trivial state, thus the correlation function should tend to a constant value. This is not the
case, as we see in Figure A.4b. The strange correlator breaks down for strong disorder. A brief
discussion on the breakdown of the strange correlator in strong disorder is done in Chapter 5.

1The strange correlator of (B,B) is equivalent to (A,A), as well as (B,A) to (A,B) because of symmetry
arguments.
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(a) (b)

Figure A.4: The scaling of the strange correlator with the system for the SSH model with twisted BCs
in the presence of disorder. (a) For weak disorder the correlator scales linearly indicating
that the target state is still topological. (b) For strong disorder, the correlator breaks
down with unpredictable consequences. Parameters chosen: Λ1 = 0.5,Λ2 = 2.0, ϕ = π/2.



Appendix B

Supplementary material for Chapter 3

In this appendix, we present the calculations regarding the pumped charge in the
infinite-time limit of Subsection 3.4.1 in Chapter 3.

B.1 Pumped charge in the infinite-time limit

We want to show that the calculation of the pumped charge in the infinite time limit
depends only on quantities defined within a single driving period. Our starting point is Eq. 3.4.8,
but let us absorb the exponentials of the quasienergies in the time evolution operator using
the statement of the Floquet theorem U(t + mτ, t0) = U(t, t0)[F (τ)]

m and F (τ) |Φν(τ)⟩ =
e−iEν(τ) |Φν(τ)⟩.

Q∞ = lim
m→∞

1

m

∑
µ,ν

Cµν
ˆ mτ

0

dt ⟨Φν |U †(t, t0)J (t)U(t, t0) |Φµ⟩ (B.1.1)

We define the coefficients A(m)
µν as follows,

Q∞ = lim
m→∞

1

m

∑
µ,ν

CµνA(m)
µν , A(m)

µν =

ˆ mτ

0

dt ⟨ϕν |U †(t, t0)J (t)U(t, t0) |ϕµ⟩ (B.1.2)

and we focus on these for now. We write the integral over m periods as a sum of integrals
over one period, starting from time 0 all the way up to time mτ .

A(m)
µν =

ˆ τ

0

dt ⟨Φν |U †(t, t0)J (t)U(t, t0) |Φµ⟩+
ˆ 2τ

τ

dt ⟨Φν |U †(t, t0)J (t)U(t, t0) |Φµ⟩+
ˆ 3τ

2τ

dt ⟨Φν |U †(t, t0)J (t)U(t, t0) |Φµ⟩+ ... (B.1.3)

We use the statement of the Floquet theorem U(t+mτ, t0) = U(t, t0)[F (τ)]
m to decompose

the time evolution operator into the time evolution operator of one driving period and the
Floquet operator. At the same time, because of the time periodicity of the current operator,
we can change the limits of all integrals to that of the first period,
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A(m)
µν =

ˆ τ

0

dt ⟨Φν |U †(t, t0)J (t)U(t, t0) |ϕµ⟩+ˆ τ

0

dt ⟨Φν |F (τ)U †(t, t0)J (t)U(t, t0)F (τ) |Φµ⟩+ˆ τ

0

dt ⟨Φν | [F (τ)]2U †(t, t0)J (t)U(t, t0)[F (τ)]
2 |Φµ⟩+ ... (B.1.4)

We now can use the action of the Floquet operator onto the Floquet states, which yields
the exponentials of the quasienergies,

A(m)
µν =

ˆ τ

0

dt ⟨Φν(t)| J (t) |Φµ(t)⟩+ˆ τ

0

dt e−iΩµντ ⟨Φν(t)| J (t) |Φµ(t)⟩+ˆ τ

0

dt e−iΩµν2τ ⟨Φν(t)| J (t) |Φµ(t)⟩+ ... (B.1.5)

where Ωµν = Eµ − Eν and |Φν(t)⟩ = U(t, t0) |Φν(τ)⟩. We now write the Eq. B.1.5 in a
compact form,

A(m)
µν =

m−1∑
l=0

e−iΩµν lτ

ˆ τ

0

dt ⟨Φν(t)| J (t) |Φµ(t)⟩ (B.1.6)

and the pumped charge thus becomes,

Q∞ = lim
m→∞

1

m

∑
µ,ν

Cµν
m−1∑
l=0

e−iΩµν lτ

ˆ τ

0

dt ⟨Φν(t)| J (t) |Φµ(t)⟩ (B.1.7)

We now deal with the sum over complex exponentials. We define χ ≡ Ωµντ , and it is
uniquely defined on the unit circle. The sum corresponds to a geometric series,

S ≡
m−1∑
l=0

e−iχl =
1− e−iχm

1− e−iχ
(B.1.8)

If χ = 0, 2π, ..., then the sum yields S = m 1, therefore the pumped charge is non-zero for
µ = ν. On the other hand, when µ ̸= ν and thus χ ̸= 0, 2π, ..., the pumped charge comes out
to be zero when we take the limit over an infinite number of periods. Using these two facts, the
summation over the Floquet indices µ, ν reduces to a summation over a single Floquet index,

Q∞ =
∑
µ

Nµ

ˆ τ

0

dt ⟨Φµ(t)| J (t) |Φµ(t)⟩ (B.1.9)

where Nµ ≡ Cµµ are the occupations of the Floquet states, obtained by projecting the
initial state to the Floquet basis.

1Note that the order of limits matters, first we take the limit of χ→ 0, and then the limit m→ ∞.
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B.2 The pumped charge as a function of the quasienergy

We want to take advantage of the properties of the time evolution operator and the Floquet
operator to go even further from Eq. B.1.9. We start by isolating the integral of the expectation
value of the current operator over a period,

Q∞ =
∑
µ

NµI, I ≡
ˆ τ

0

dt ⟨Φµ(t)| J (t) |Φµ(t)⟩ (B.2.1)

In Chapter 4, we show that the current operator is expressed as the derivative of the
Hamiltonian with respect to a fictitious flux φ and then setting this flux to zero,

J = ∂φH
∣∣
φ=0

(B.2.2)

Thus the integral I admits the following form,

I =

ˆ τ

0

dt ⟨Φµ(t)| ∂φH
∣∣
φ=0

|Φµ(t)⟩ = ⟨Φµ(τ)|
ˆ τ

0

dt U †(t)∂φH
∣∣
φ=0

U(t) |Φµ(τ)⟩ (B.2.3)

and we have used |Φµ(t)⟩ = U(t) |Φµ(τ)⟩. Let us deal with this new integral separately
(for brevity, we omit the setting the flux to zero notation, which we reinstate later),

ˆ τ

0

dt U †(t)∂φH U(t) (B.2.4)

With some manipulations, we show that the above integral can be written in terms of the
Floquet operator.

ˆ τ

0

dt U †(t)∂φH U(t) = i

ˆ τ

0

dt U †(t)∂t∂φU(t)−
ˆ τ

0

dt U †(t)H(t)∂φU(t) =

= i

ˆ τ

0

dt U †(t)∂t∂φU(t) + i

ˆ τ

0

dt ∂tU
†(t)∂φU(t) =

= i

ˆ τ

0

dt ∂t

[
U †(t)∂φU(t)

]
=

= iU †(τ)∂φU(τ) (B.2.5)

where we have used ∂φU(0) = 0 while in the first line we used the Schrödinger equation
for the time evolution operator.

i∂tU(t) = H(t)U(t) ⇒ i∂t∂φU(t) = ∂φH(t)U(t) +H(t)∂φU(t) (B.2.6)

Then, we insert the result of Eq. B.2.5 to Eq. B.2.3, and subsequently to Eq. B.2.1, resulting
in the following,

Q∞ =
∑
µ

Nµ ⟨Φµ(τ)| iU †(τ)∂φU(τ) |Φµ(τ)⟩ |φ=0 (B.2.7)

Notice that the pumped charge now depends on quantities related to the Floquet operator!
We can take it a step further and use the action of the Floquet operator on Floquet states,
thus obtaining the pumped charge in terms of the many-body quasienergy.

Q∞ = τ
∑
µ

Nµ∂ϕEµ|φ=0 (B.2.8)



Appendix C

Supplementary material to Chapter 6

We consider the contribution of the geometrical phase to the transferred charge. Our
starting point is Eq. 6.3.7.

Qg = −
ˆ τ

0

dt
[
⟨ψ0(t)|H|∂ϕψ0(t)⟩+ c.c.

]
(C.0.1)

The time-evolved state of the system is obtained by applying the time evolution operator
to the initial state |ψ0(t)⟩ = U(t, t0) |ψ0⟩. We use this fact in the integral of Eq. C.0.1.

Qg = −
ˆ τ

0

dt
[
⟨ψ0|U †(t)H|∂ϕψ0(t)⟩+ c.c.

]
=

= i

ˆ τ

0

dt
[
⟨ψ0|∂tU †(t)|∂ϕψ0(t)⟩ − c.c.

]
=

= i

ˆ τ

0

dt
[
⟨∂tψ0(t)|∂ϕψ0(t)⟩ − c.c.

]
(C.0.2)

From the first to second line we used the Schrödinger equation for the time evolution
operator,

i∂tÛ(t) = Ĥ(t)Û(t) → −i∂tÛ †(t) = Û †(t)Ĥ(t) (C.0.3)

and from the second to third line we used the time derivative of the time-evolved state,

∂t |ψ0(t)⟩ = |∂tψ0(t)⟩ = ∂tU(t) |ψ0⟩ → ⟨∂tψ0(t)| = ⟨ψ0| ∂tU †(t) (C.0.4)

Now, we proceed as follows,

Qg = i

ˆ τ

0

dt
[
⟨∂tψ0(t)|∂ϕψ0(t)⟩ − ⟨∂tψ0(t)|∂ϕψ0(t)⟩

]
=

= i∂ϕ

ˆ τ

0

dt ⟨∂tψ0(t)|ψ0(t)⟩ =

= −i∂ϕ
ˆ τ

0

dt ⟨ψ0(t)|∂tψ0(t)⟩ = −∂ϕγ0(ϕ) (C.0.5)

where in the first to second line we used the product rule of derivatives twice,

∂ϕ ⟨∂tψ0(t)|ψ0(t)⟩ = ⟨∂ϕ∂tψ0(t)|ψ0(t)⟩+ ⟨∂tψ0(t)|∂ϕψ0(t)⟩ (C.0.6)

∂t ⟨∂ϕψ0(t)|ψ0(t)⟩ = ⟨∂t∂ϕψ0(t)|ψ0(t)⟩+ ⟨∂ϕψ0(t)|∂tψ0(t)⟩ (C.0.7)
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and in the second to third line we used
´ τ
0
dt ∂t ⟨∂ϕψ0(t)|ψ0(t)⟩ = 0.

Finally we obtain the pumped charge as the derivative of the geometric phase acquired by
a evolving the ground state, with respect to the superconducting phase bias.
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