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Soliton-modellen introducere at anskue nerve signalet på en thermodynamisk måde, 
i modsætning til den anerkendte Hodgkin-Huxley model. I stedet for et elektrisk sig-
nal der løber ned langs nerve, menes der i Soliton-modellen at dette er en lydbølge. 
Lydbølger tage formen af og opfører sig som solitoner, en lokaliseret bølgepakke. 
Solitoner i en biologiske membran er en lokal ændring i membranens densitet der 
bevæger sig med konstant hastighed. 

Målet med dette speciale er at bygge videre på forståelsen af solitoner i biologiske 
membraner. Der vil blive undersøgt, hvad der kræves af en membran for at kun-
ne indeholde negative solitoner (negativ densitets ændring) og positive solitoner 
(positiv densitets ændring). Det vil blive vist, at sådan et miljø skal kunne vise 
to lokale maksima i kompressibiliteten over en bestemt temperatur vidde, hvor 
ligevægtstilstanden af membranen skal være i det lokale minimum mellem de to 
maksimum. Ydermere findes der, at solitoner af alle arter, negative og positive, kan 
kollidere uden noget nævneværdigt sker. Ved et sammenstød vil de to solitoner gå 
gennem i hinanden med det resultat, at de deres fremtidigt færd vil være forsinket, 
have tabt lidt af deres amplitude, have accelereret, samt at der er udskilt små bølge 
der forplanter sig foran dem. Forsinkelsen afhænger af deres hastighed, men der 
kan findes ved lave hastighed, at i stedet for at være forsinket i deres udbredelse, har 
sprunget længere frem på membranen.
Der findes også at små variationer i stabile solitoner, således at de er ustabile, vil re-
sultere i at de henfalder til stabile solitoner inden for kort tid. Hvis variationen øges, 
vil det resultater i at solitonen deler sig i to soliton. Disse solitoner har ikke samme 
størrelse og vil løbe i hver sin retning. 
Hvis der er en lokal forstyrrelse i membranen, vil dette efter kort tid resulterer i lige 
store solitoner. Der findes, at i en membran, som kan indeholde både negative og 
positive solitoner, at der vil optræde par, bestående af en negativ og positive soliton. 
Disse par optræder første efter et bestemt mønster, når forstyrrelsen har en hvis 
mængde energi fordelt ud over membranen. Det vil blive vist, at det er mest sand-
synligt at have par af solitoner eller ingen solitoner, end kun at have en slags soliton 
i en menbrane, hvor begge type solitoner kan propagere. 

﻿Resume



﻿Abstract

With the emergence of the soliton model, a different way to see nerve signal has 
been introduced. Instead of an electric signal that runs along the nerve, as de-
scribed by the Hodgkin-Huxley model, the soliton model describes the nerve signal 
as a sound wave. These sound waves have the characteristics of and behave like soli-
tons. Solitons in a biological membrane are a local density change of the membrane 
moving at constant speed.

The aim of this thesis is to get a better understanding of solitons in biological 
membranes. It will be investigated what is required of a membrane to sustain both 
negative and positive solitons. It will be shown, that such an medium must have 
two local maximum in the compressibility. In addition, the membrane should be in 
the state where the compressibility has a minimum between the two maximum. In 
such a membrane, collision of two solitons, of any kind, is shown to happen with-
out annihilation. The two solitons will pass right through each other with a small 
amplitude loss, accelerated speed, and a delay in their future process. This delay 
is shown to depend on the velocity, and that the delay will be negative for solitons 
with a velocity near the lower limit velocity.
A small distortion of a soliton will result in a rapid decay from the unstable to a 
stable one. If the distortion exceeds a certain threshold, the soliton will split into 
two solitons, which will propagate in opposite direction. The solitons will not be of 
the same size and not have the same velocity.
It is shown that a local distortion in the membrane will result in solitons of same 
type propagating in opposite direction. The appearance of pairs of solitons (a 
negative and a positive soliton) depend on the energy given to the membrane, and 
over which range it is distributed. It is shown that it is more likely to have pairs of 
solitons or no solitons, than only have one type n a membrane where both types of 
solitons can propagate.
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Chapter 1
Introduction

Looking at the world’s biological diversity, it is easy to believe that the difference 
in the domains, kingdoms and species are enormous. Even knowing that all life 
are just a combination of the same building blocks of life, it is easier to see the 
differences between a house cat and an Escherichia coli, than the similarities. All 
through that all living thing are cells, either living as a single-celled organism or 
a multicellular organism, they all follow the same set of fundamental rules and 
elements. All living things today can be traced back to the first self-replication 
ribonucleic acid (RNA) molecule, which have been an essential role to all life. 
Today, RNA is still in use in the protein synthesis, but the storage function and 
its role as the self-replication molecule are evolved to be DNA. They both follow 
the same specific rules across the whole biological diversity. In the same way, as in 
biology, the different fields of physics have many similarities than what first meets 
the eyes. Mathematics is the common language in physics, and as RNA and DNA 
can be used to describe every living cell, mathematics can be used to describe the 
principles of the nature. The mathematics develop to describe a principle of one 
thing in nature can be used to describe another thing, like the principle of genes 
in DNA can be used to describe the similarity between a house cat and bacteria, 
and their differences. 
In this thesis the concept of solitons is used, this phenomena was first described by 
John Scott Russell in 1834 and he write the following about his first encounter with 
a soliton, which summarise the characteristic of a soliton well:

“I was observing the motion of a boat which was rapidly drawn 
along a narrow channel by a pair of horses, when the boat sud-
denly stopped – not so the mass of water in the channel which it 
had put in motion; it accumulated round the prow of the vessel 
in a state of violent agitation, then suddenly leaving it behind, 
rolled forward with great velocity, assuming the form of a large 
solitary elevation, a rounded, smooth and well-defined heap of 
water, which continued its course along the channel apparently 
without change of form or diminution of speed. I followed it on 
horseback, and overtook it still rolling on at a rate of some eight 
or nine miles an hour, preserving its original figure some thirty 

feet long and a foot to a foot and a half in height. Its height 
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gradually diminished, and after a chase of one or two miles 
I lost it in the windings of the channel. Such, in the month of 

August 1834, was my first chance interview with that singular 
and beautiful phenomenon which I have called the Wave of 

Translation.” [1]

In his work he established some key properties of solitons – the waves where sta-
ble and obtain same shape, and can travel over very large distances. The speed 
depend on the size of the wave and is constant, and they do not merge, like other 
waves. If a wave is too big, compared to the conditions, it will split into a big and 
a small wave. However, what he did see and investigated, was not truly solitons, 
but near-solitons or solitary waves. Near-solitons do not emerge from a collision 
unchanged, but have a small amplitude loss. The loss is mostly insignificant, and 
therefore they is often called solitons. In physics, solitons can be found in a wide 
range of fields, e.g. optic, hydrodynamic, quantum mechanics, and biological 
membranes.

Besides solitons, the phase transition has a present role in this thesis, since it is in 
this phase a biological membrane is giving rise to the needed non-linearity in the 
compressibility. The most recognizable phase transition has it component in com-
mon with the first described soliton, water. The transition from ice to water, and 
from water to steam, is one of the most fascinating phase transition and violent in 
nature, which has been a pivot to science in decades. That all matter can be trans-
form from a solid to a fluid by just raising the temperature, reshaped and back 
to solid again, has resulted in the world. And that fluid turns into gas has lead to 
the civilisations we know today. In the phase transition, different odd properties 
take place when the matter is a mix of the two states. One of these properties is 
compressibility, which turn out not to be the average between the compressibility 
of the two state around the phase transition. The compressibility was used by sci-
entist in the 18th and 19th century, in the discussion about the atomic theory. The 
compressibility is a measure of the relative volume change of a gas, fluid or solid as 
a response to pressure or change in stress.

In the phase transition, a biological membrane has a characteristic change in the 
compressibility. Together with the dispersive nature of the membrane, it give the 
condition for solitons to propagate. This led to the proposal of the soliton model in 
2005 by Heimburg and Jackson, that the nerve signal is a soliton travelling through 
the nerve [2]. However, it was seen as a controversy to the accepted theory, Hod-
gkin and Huxley [3], which describe the primary signal as an action potential trav-
elling through the nerve cells. Where it is in the soliton model is an effect of the 
soliton. The soliton model is of thermodynamic nature, and can therefore explain 
most of the thermodynamic nature of the nerve. The Hodgkin-Huxley model is a 
macroscopic model and use the ion-channel to explain the action potential, which 
is not directly incorporated in the soliton model.  
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1.1	 Motivation
Neurophysiology is a field where a lot of common knowledge is based on few or 
inaccessible literary works. However, the common knowledge has been accepted, 
because it is in agreement with the accepted theory, the Hodgkin-Huxley model. 
But much of this knowledge, like annihilation of colliding pulses, has almost no 
recorded evidence in the literature. And as shown recently by our lab, in Mem-
brane Biophysics Group, that this common knowledge is properly not accurate [4].
In Denmark we learn kids in primary school that the nerve signal is something 
electrical running around in the brain cell and with some “magic” you get a con-
sciousness. The “magic” is still unexplained, but the electrical signal is understood 
in the way Hodgkin and Huxley described it in 1952 [3]. Over the years, different 
variations of the Hodgkin-Huxley model have been presented, but no theories has 
varied from the carrying signal is the electric signal. The soliton model challenged 
the view of the nerve signal, by introducing a new way to look at the nerve signal. 
It is still a new theory, is less developed and have yet to be widely applied. But to 
have the opportunity to be a part of the development of and contribute to this the-
ory, which some day could be the accepted one, and could alter the knowledge of 
entire generations, rewrite the school books, has been a big motivation for me and 
I am respectfully for the opportunity I have been given.

1.2	 Objective
The aim of this thesis is to get a better understanding of solitons in biological 
membranes. This will be done by investigate in which kind of environment it is 
possibility to have solitons with a negative and positive lateral density change. 
Further, what such an environment give of properties in the interaction between 
solitons of different kinds, instability of solitons and how solitons can be initiated 
in such an environment.

The thesis is structure as following: Starting introducing the reader to the Back-
ground Theory in chapter 2, containing introduction to lipids, biological mem-
branes, phase transition for membranes and the two theories of the nerve signal, 
the accepted theory the Hodgkin-Huxley model, and the soliton model. Then the 
numerical methods used to calculate the result is presented and analysed with 
their errors in Methods (chapter 3). The thermodynamic theory of sound profile 
and calculation of the used sound profiles is given in Sound Profile (chapter 4). 
The result of the numerical methods using the sound profiles is given in Results 
(chapter 5) and the findings is discussed in chapter 6 and conclusions in drawn in 
chapter 7. The work in this thesis is set into perspective in chapter 8.
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Study of Brain Physiology, By Leonardo da Vinci, 1508. He made the drawing based on what he was 
told that behind the eyes there were three cavities, where the spirit was housed. Later, after he had 
investigated brains on his own, Leonardo da Vinci draw new drawing without the cavities.



Chapter 2
Background Theory

This chapter will give the introduction needed to fully understand this thesis. First 
the biological membranes is introduced, what they consists of and their character-
istics related to the soliton model. Thereafter, an introduction to the nerve signal, 
its properties and the Hodgkin-Huxley model for the nerve signal. And last a de-
tailed introduction to the soliton model. 

2.1	 Biological Membranes
Many people do not think of the skin as the largest organ in the human body. 
Many just think the skin as a waterproof, flexible, and inert container. Moreover, 
it’s not seen as an organ that support a variety of essential processes, such as tem-
perature regulation. In the same way, the skin that surrounds each of the biologi-
cal cells of the bacteria to the cells in the organs is not just a dynamic and flexible 
container, but is essential to the cell’s inner to function. These dynamic, flexible 
and essential containers called biological membranes or biomembrane, are not 
just a container for the cell organelles, but also provide the surface of these orga-
nelles. Biomembranes have the function of carry different tasks out, like transport 
of ions and molecules across the membrane, communication with other cells and 
shield the inner from the surroundings by obtaining a chemical favourable envi-
ronment. Other biomembranes have a role of separating other biomembranes and 
cells from the external environment, like the myelin cells is separating the axon in 
the neurons from the external environment.

The best way to get an understanding of the biological membrane structure is to 
look on how the understanding of biological membranes has develop throughout 
history. The first encounter of the biomembrane was made by the Swiss botanist 
Carl Wilhelm von Nägeli, in his work Botanische Beiträge from 1955. Carl Nägeli 
noted the different in rates of penetration of pigments into damaged and undam-
aged plants cells and concluded that there must be an outer layer with its own spe-
cial properties. He named it the plasma membrane. In 1899, Ernst Charles Overton 
showed that the view created by Wilhelm Pfeffer, two years before in 1897, needed 
to be modified. Wilhelm Pfeffer [5] demonstrated that the membrane was a barrier 
to the passage of water and solute. Overton [6] demonstrated that non-polar mole-
cules such as alkyl chains and cholesterol have a relatively easy passage though the 
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Figure 2.1.1 – Illustration of a Eukaryotic cell membrane. (“Cell membrane detailed diagram 4” by 
Dhatfield licensed under CC BY-SA 3.0)
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membrane compared to polar molecules, such as water. On that, he concluded that 
the membrane exercises selective control through its differential permeability and 
that it is composed of certain types of liquid crystals known as lipids. 
In 1925, Evert Gorter and F. Grendel [7] measured the surface area of a red 
blood cell and the area of a reconstructed film formed by the lipids extract-
ed from the red blood cell membrane. The ratio was approximately one-to-two. 
They conclude that the membrane may consist of a double layer of lipids mol-
ecules. Later, in the mid-1930s, James Danielli, Hugh Davson [8] and E. New-
ton Harvey [9], [10] made accurate measurements of the surface tension of the 
plasma membrane and found this to be considerably lower than for most li-
pids. They proposed a membrane model (Davson-Danielli model), where the 
lipids made a bilayer, while the proteins, knowing to lower the surface tension 
in an addition to lipids, formed a thin film at the lipid-water interface. The 
membrane itself could be either liquid or solid and considered homogeneous. 
In 1954, Danielli [11] revised the model. The hydrophobic parts of the lipid were 
conjectured to lie in the bilayer interior, while the hydrophilic regions of the lipids 
facing the water at either side, in the gaps between the proteins. J. D. Robertson 
[12], in 1957, confirmed that the bilayer hypothesis, while observing the mem-
brane in an electron microscope. He was able to resolve two dark parallel lines 
and between a lighter area. The dark lines was linked to the two protein layers, and 
the lighter area to the lipid bilayer. The interpretation was that all cell membranes 
must have a universal structure, so-called unit-membrane.

Singer and Nicolson [13] eventually refined this model, in 1972, with the proposal 
of the Fluid Mosaic model for the gross organisation and structure of the proteins 
and lipids of biomembranes. The model proposed that the lipids are arranged in 
the form of a bilayer, like in the Davson-Danielli model, in which the proteins are 
embedded and are free to diffuse laterally. An illustration is shown of an Eukary-
otic membrane in Figure 2.1.1.
In 1984, Mouritsen and Bloom [14] extended Fluid Mosaic model with the Mattress 
model. The Mattress model introduce that the lipids and the proteins may distrib-
ute inhomogeneously, because of the mismatch between the hydrophobic regions 
of the lipids and the proteins. With these models the biomembrane was describe 
as a dynamics system. 

2.1.1	 Lipids	
Lipids are a group of naturally occurring molecules that include fats, waxes, and 
sterols. Chemically the lipids can be divided into eight groups: fatty acids, glyc-
erolipids, glycerophospholipids, sphingolipids, saccharolipids, polyketides, sterol 
lipids and prenol lipids. Lipids are either hydrophobic or amphiphilic.
Glycerophospholipids or phospholipids are the main component of the biomem-
brane, and like the majority of the other lipids in membranes, these have a polar 
and non-polar region, making them amphiphilic molecules. 

This thesis will mainly focus on phospholipids, and therefore an introduction to 
its structure and property is necessary. In Figure 2.1.2 the chemical structure of 
a phospholipids is illustrated. A phospholipid can be divided into two regions, a 
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polar and a non-polar region (Figure 2.1.2: Green: non-polar, Red and blue: polar). 
The non-polar region is composed of two hydrocarbon chains, normally contain-
ing 16 or 18 carbons molecules [15]. The hydrocarbon groups can vary between 12 
to 22 molecules, where the chains can be either saturated (with hydrogen atoms) 
or unsaturated. The most common is that one chain is saturated and the other 
unsaturated. The hydrocarbon chains are linked through to a carbon in a glycerol 
backbone. In the other end of the glycerol backbone, one find, in this case a phos-
pholipid, a negative charged phosphate group. The phosphate group is attach to 
the backbone thought an ester bond. To this phosphate is the head group attached, 
and making up the polar region of the lipid. The head group can make the region 
either a negative charged, with serine glycerol as head group, or a Zwitterionic1 
with choline and ethanolamine as head group.
The lipids are named after the carbons chain and the head group. An example is 
dipalmitoylphosphatidylcholine (DPPC) a lipid with two palmitic acids linked to 
a choline group.

Due to the amphiphilic nature of most lipids, they will self-organize to a structure 
that minimize their unfavourable polar-nonpolar interaction, when they are with 
a polar solvent, e.g. water. The self-organization will mostly result in macroscopic 
structures, such as micelles, planar bilayers or vesicles. Vesicles are especially in of 
general interest in the context of biological membranes. Because the bilayer struc-
ture are energetically favourable and comparable to the cells membrane. 

Figure 2.1.2 – A chemical drawing of a phospholipid with a head group of phosphatidylcholine, and 
the carbon chain starting the two “R”.

2.1.2	 Biological Membranes in Nature	
Biomembranes varies in lipid composition across the nature and organisms. Even 
for the same organisms, the lipid composition can vary when raised in different 
environments. Bacteria grown under different environments, where the change 
could be in temperature, pressure or pH, showed different lipid composition in 
the membrane [16]. The bacteria have different processes to vary the lipid compo-

1   From German zwitter “hybrid”, meaning a neutral molecule with a positive and a negative 
electrical charge within the molecule
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sition, such as changing the length of the carbon chains or make carbon-carbon 
double bonds. These processes is often introduced by enzymes, which expression 
genes is temperature controlled, and become inactive with a protein binding to 
the enzyme at higher temperature. The ability to regulate the composition to the 
environment is known as homeoviscous adaptation [17], [18]. 
Similar response to the environment is found in cells of eukaryotic organisms. 
Where the cells regulate the carbon-carbon double bonds in the carbon chains, 
and the concentration of cholesterol in the membrane to adapt to the environ-
ment. When poikilothermic animals2 are living in a low temperature environ-
ment, compared to them living in a higher temperature, the amount of double 
bonds and the concentration of cholesterol is higher [19].
This form of adaption to the environment is observed in varies types of biomem-
branes. Escherichia coli (E. coli) grown at different temperatures changes their 
lipid composition such that the membrane obtain a similar physical properties at 
their growth conditions (see Figure 2.1.3) [15]. There have also been observed dif-
ferent lipid composition in deep-sea bacteria grown under different pressure [20]. 
Even in homoeothermic animals, this adaption can be observed. Arctic animals, 
such as reindeers has a relative higher concentration of unsaturated lipids, than 
near the thigh. Even in humans such adaption to the environment is found, where 
chronic alcoholics have a relative higher amounts of saturated lipids and choles-
terol in their red blood cells. The higher concentration compensate for the changes 
induced by the alcohol. 

All these findings strongly indicate that the organisms is trying to obtain a  
biomembrane with the same physical properties relative to its environment. The 
state of the membrane is often just after the phase transition, where the membrane 
is in a fluid and soft state.

Figure 2.1.3 – Heat capacities for E.coli grown at 37 °C and 15 °C , show different lipid melting prop-
erties. The lipid melting transition is always found slightly below growth temperature. The peaks at 
higher temperature is protein unfolding peaks. (Taken from T. Heimburg (2007) [15])

2   Cold-blooded animals, which do not obtain a constant internal temperature, e.g. frogs and fish.
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2.1.3	 Biomembrane Phases
Biological membranes have thermodynamic properties, and these properties can 
be studied in detail by using model systems prepared from pure lipids bilayers.
Lipid bilayers will in a system with a temperature decreasing over time, go from 
a gel phase to a fluid phase through different transition and phases. One can find 
similar phases in the transition from ice to water. The phases are a result of the 
lipid carbon chains different conformations and the crystal organisation of the 
head-group. The lipid chains have a trans-gauche isomerization, and can therefore 
be in an all-trans configuration, which results in a lower energy state than a con-
figuration of trans-isomers and gauche-isomers mixed. Trans-gauche isomeriza-
tion is a rotation around a C-C bond, where a rotation of 120° result in a different 
structure in the molecule.
Lipids in water will group together and form structures depending on the concen-
tration. First micells will form. These are groups of lipids arranged in a spherical 
or cylindrical configuration, where the polar heads shield the hydrocarbon tails 
from the water. When the concentration is increased, the lipids can undergo a 
transition to other configuration. E.g. where the micelles are ordered in a cubic or 
hexagonal array, or a sponge phase. Other transition can be a unilamellar vesicle, 
where the lipids group together and form a bilayer. These unilamellar vesicles can 
be compared to bubbles, where air is both inside and outside.
 
A lipid bilayer containing the same spies of lipid can be found in four phases (il-
lustrated in Figure 2.1.4): 

•	 Lc: Crystalline, in which the lipids are ordered in three dimen-
sions.

•	 L’
β: Solid-ordered, also called “gel phase”, is crystalline molecular 

order phase, where the chains are “all-trans” and tilted. 
•	 P’

β: Ripple-phase, where the lipids in partially solid and partially 
fluid in a periodic structure in the plane of the lamellae. 

•	 Lα: Liquid-disordered phase, also called “Fluid phase”, is where all 
lipids chains are disordered and the lateral order of lipids is ran-
dom.

The transition between these phases occur at well-defined temperatures, which 
is depending on the chain length, chain saturation, and the head group size and 
charge.

Lc L’ β P’β L’ α 

Figure 2.1.4 – The lipid membrane phases that occur in lipid membranes with increasing temperature 
display a decreasing order of the chains. (Originated from Heimburg [15])
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The focus in this thesis will be on the main lipid melting transition between L’
β 

and Lα, and the ripple-phase (P’
β-phase) will be ignored. It has been shown that the 

presence of various biomolecules in the membrane can result in the ripple-phase 
can be abolished, and the phase is rarely seen in biological membranes [21].

2.1.4	 Biomembrane Phase Transition	
Biomembrane undergo a transition when it transform from one phase to another, 
and is often referred to lipid melting. When the membrane undergo a transition, it 
can display a number of extraordinary properties, such as change in volume, area 
and compressibility.

The phase transition from a solid-ordered phase to a liquid-disordered phase hold 
both in protein-free and natural membranes. While the transition range over a 
very wide range of temperature (from -20° and up to 60°C). The phase transition 
of biological membranes in organisms is slightly below (on the order of 15°C) the 
growth temperature, see Figure 2.1.5. As previously mentioned, organisms have 
been found to adapt their lipid composition such that their membranes conserve 
their physical properties, here the phase transition. The relation between the lipid 
melting transition and growth conditions indicates, that for the organisms, it is an 
importance to have this transition for the function of biological membranes and 
therefore biology in general. This area, of the transition between the gel- and the 
fluid-phase, have been intensive researched by [22]–[24].

Figure 2.1.5 – Heat capacity for a intact Escherichia coli, show two regimes, the first where the lipid 
is melting and the second where the protein is unfolding. Notice that the growth temperature is just 
above the lipid transition. (Taken from T. Heimburg (2007) [15])
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The lipid melting transition is an exothermic transition, which happens over a 
narrow temperature range. The transition is driven by the entropy gain of collec-
tive melting of lipid chains. The melting transition can be measured with many 
methods, such as differential scanning calorimetry and various spectroscopic 
methods. Calorimetry has the advantage that it directly yields important thermo-
dynamic information, such as enthalpy and entropy changes. At the lipid melting 
transition the calorimetry show a spike in the heat capacity. During the transition, 
a number of other susceptibilities likewise display spikes, such as compressibility, 
which have a major importance for this thesis.
In the thermodynamic description, the lipids can be found in two phases, gel- and 
fluid-state. This is of course an oversimplification, since it mean that both the 
head groups and the chains undergo a structural change at the same temperature. 
However, this does not imply that the membrane is well described by only two 
distinct states. During the transition the membrane can be found in a number of 
intermediate states where the two lipid states are mixed.

To describe the phase transition one have to look at the lipid melting. If one as-
sume that a lipid, and the lipid carbon chain, can only be in one of two states, an 
all-trans state (gel-state) or a disordered state (fluid-state). Then will the melting 
point, Tm, be defined as the temperature at which the gel state and the fluid states 
are equally likely:

	 ( )
( ) ( ) 1

G
RTmfluid m

m
gel m

P T
K T e

P T
−∆

= = =


		  (2.1.1)

Where K(T) is the equilibrium constant and Van’t Hoff equation have been used, 
R the molar gas constant and ΔG is the difference in the Gibbs free energy. When 
the ground state and the excited state are equivalently, the difference in Gibbs free 
energy is zero:

	 0fluid gel mG G G H T S∆ = − = ∆ − ∆ =  

,	 (2.1.2)

Where the definition of Gibbs free energy is used. ΔH and ΔS is the change in en-
thalpy and entropy for the transition between fluid and gel.
The melting temperature can then be said as the temperature, where the Gibbs 
free energy of the two states is the same. The melting temperature can be defined 
through the enthalpy and entropy, following from eq. (2.1.2):

	 m
HT
S

∆
≡
∆




	

 	 (2.1.3)

As mentioned the melting temperature for lipids depends on the structure of it. 
From (2.1.3) one can see that a change in enthalpy or entropy give a different 
melting temperature. Entropy has been found to increase linearly with the chain 
length in lipids. In biological membrane other things have influence on the melt-
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ing temperature, such as hydrostatic pressure, pH and any other things that make 
a change in the difference in enthalpy and entropy between the phases.
The equilibrium constant K(T) define the probability that a lipid has enough ther-
mal energy to be in a excited state. When the assumption is that the system is 
characterised by only two states, one can express the probability of a lipid in a 
membrane is in a particular state with the use of the equilibrium constant:

	
( )
( ) ( )

1
1 1fluid gel

K T
P P

K T K T
= =

+ +
 	 (2.1.4)

Pfluid and Pgel can also be seeing as the fraction of the membrane there is in the 
fluid-state and in the gel-state at a given temperature. Lipids melting in a vesicle 
is shown in Figure 2.1.6. The mean enthalpy change per mole of lipid is therefore 
given by

	 ( ) ( )
( )1

K T
H T H

K T
∆ = ∆

+
 . 		  (2.1.5)

For ΔH = 35 kJ/mol one obtains that the transition between gel and fluid happens 
over a temperature range of 100 °C. This is not in agreement with experimental 
data, where the transition can happen in a range of less than 1 °C. The explanation 
for this disagreement is that lipid melting is a cooperative phenomenon. 

Figure 2.1.6 – Lipid vesicle at different temperature show that the lipids melt in cluster. Dark 
area is lipids in fluid state and light is gel solid state. (Taken from C. Leirer (2008) [69] )
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2.1.4.1	 Cooperativity
In the phase transition, the membrane can be found in a number of intermediate 
states; where the two lipid states are mixed. These states with mixed lipid states 
are a result of a cooperation between the lipids. This means that lipid do not melt 
independently from each other but rather form macroscopic domains that melts 
in a cooperative way [15]. The extent of the cooperativity is reflected in the width 
of the transition, which varies from more than 30 K for biological membranes to 
0.1 K for multilamella vesicles. 
The cooperativity between the lipids under the melting transition results in a to-
pography, where the membrane is dominated by the formation of domains of var-
ious sizes and compositions. These domains are more compact, the larger the coo-
peartivity is at the melting point, as the system will seek to minimize the length of 
the domain boundaries, which is energetically unfavourable.

Under the assumption that lipids do not melt independently of each other, but 
rather in clusters of n lipids. One have to consider these lipids as a part of a cooper-
ative unit, with size n, and the enthalpy and entropy will for such a system be nΔH 
and nΔS. The Gibbs free energy is then expressed as nΔG, and the equilibrium 
constant can be expressed as:

	
( ) 1 1exp exp exp

m

n G n H n HK T
RT RT R T

T S
T

     ∆ ∆ ∆
= − = − = − −             

− ∆   

,	(2.1.6)

where the equilibrium constant is a function given by enthalpy and the entropy 
or melting temperature, which can be determinate experimental, e.g. from a heat 
capacity profile. Figure 2.1.7 shows the results of the calculation for the fraction of 
lipid in the excited state.

2.1.4.2	 Susceptibilities and fluctuations
There is different experimental methods to make measurement on a membrane 
with phase transition, and the most suitable method to derive the thermodynam-
ically properties of the membrane is calorimetry. Calorimetric measurement is 
defined as a method to measure the heat capacity of a sample as a function of tem-
perature. Heat capacity is defined as the amount of heat added to a substance of 
a certain amount to change the temperature. Phase transitions are characterised 
by a peak in the heat capacity, since the heat required to change the state of the 
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Figure 2.1.7 – The fraction of melted lipids as a function of temperature for different n, cluster size.
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substance is maximum during the transition. At constant pressure, thermody-
namically it is defined as:

	 P
P

dQc
dT

 =  
 

 		  (2.1.7)

Enthalpy is defines as H U PV≡ + , where U is the internal energy, P the pressure 
and V the volume. The differential become:

	 dH dU PdV VdP dQ VdP= + + = + , 	 (2.1.8)

where dQ dU PdV= − have been used. At constant pressure (2.1.8) will take the 
form:

	 P
P

dHc
dT

 =  
 

		  (2.1.9)

Since dQ = TdS, the heat capacity at constant pressure is also given by:

	 P
P

dSc T
dT

 =  
 

		  (2.1.10)

From this follows that the change in enthalpy and entropy from the gel-phase to 
fluid-phase can be calculated from the heat capacity:

	 fluid fluid

gel gel

T T P
PT T

c
H c dT S dT

T
∆ = ∆ =∫ ∫  	 (2.1.11)

The boundary temperatures, Tgel and Tfluid, is the temperature before and after the 
phase transition. The change in enthalpy and entropy in the range before and after 
the transition can be neglected.

Normally one cannot directly measure the enthalpies of the individual states, but 
rather the thermodynamics averages over all states. When a system is in thermal 
equilibrium, it is in a state around the most likely state. This is because of the 
fluctuations there is in a thermodynamic system. Each states is weighted by its 
Boltzmann probability

	
( )
( )

exp

exp
i

i
ii

H kT
P

H kT

−
=

−∑
, 		  (2.1.12)

where the numerator is the Boltzmann distribution and the denominator is the 
sum over all states. One can then obtain for the mean enthalpy:
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, 	 (2.1.13)

where ⋅  denotes the statistical mean. Similar, calculation can be made for every 
observable, Χ, e.g. specific volume or the area:

	 i i
i

PΧ = Χ∑ 		  (2.1.14)

In an experiment with a high concentration of lipid, e.g. 10 mM, one will have a 
large amount of unilamellar lipid vesicles, 1013 vesicles/cm3. Which will be in a 
macroscopic scale. Each vesicles will display a fixed enthalpy at a given moment. 
The average enthalpy is given by (2.1.13), and therefore one can show that the heat 
capacity is given by 

	
22

2P

H Hd H
c

dT RT

−
= = , 		  (2.1.15)

where the fluctuation theorem have been used, and one can show that the heat 
capacity is proportional with the fluctuation.
Similar relations hold between all the other susceptibilities of the system and 
magnitude of the fluctuation of the related extensive variable. Susceptibilities are 
defined as the derivative of an extensive variable with respect to an intensive var-
iable. The susceptibilities of a system are closely related to the fluctuations of the 
extensive variable, which can be seen considering the isothermal volume com-
pressibility, κT

V, and the isothermal area compressibility, κT
A:

	
22

1 1V
T

T

V Vd V
V dP V RT

κ
−

= − ⋅ = ⋅ 	 (2.1.16)
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T
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A d A RT

κ
−

= − ⋅ = ⋅
Π

 	 (2.1.17)

This means that the isothermal area and volume compressibilities are proportion-
al to the fluctuation in area and volume, respectively.
The heat capacity can be dissected into two part; an intrinsic, cP,0, and an excess 
heat capacity, ΔcP, derived from the enthalpy. Let H0(T) be the intrinsic heat of the 
membrane lipids and ΔH0(T) be the excess heat linked to the chain isomerizations. 
The heat capacity can then be expressed as:  
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Similarly can the volume compressibility be expressed, when letting V0(T) be the 
intrinsic volume of the membrane lipids and ΔV(T) is the excess volume change

( ) ( ) ( )( ) ( ) ( )0
,0

1 1V V V
T T T

T T

d V TdV T
T T T

V dP V dP
κ κ κ

∆
= − − = +∆ , 	(2.1.19)

where κT
V

,0 is the intrinsic volume compressibility of the lipids and ΔκT
V is the ex-

cess volume compressibility linked to the fluctuation in the membrane state. The 
intrinsic change is related to the volume fluctuations at the molecular level, which 
are unrelated to the physical state. The isothermal compressibilities are different 
in the gel- and fluid-phase, and therefore κT

V
,0  may adopt different values below and 

above the transition. Normally the isothermal compressibilities are lower in the 
gel-phase than in the fluid-phase [25].
Similarly, for the area compressibility one obtains

( ) ( ) ( )( ) ( ) ( )0
,0

1 1A A A
T T T

T T

d A TdA T
T T T

A d A d
κ κ κ

∆
= − − = +∆

Π Π
, 	(2.1.20)

where κT
A

,0 as the intrinsic compressibility of a lipid membrane in a given state at 
temperature T, and ΔκT

A as the excess lateral compressibility, linked to the fluctua-
tion in the membrane state. 
In the absence of lateral stress or at constant bulk pressure, one obtains, with use 
of Maxwell relations, respectively for the adiabatic volume compressibility, κS

V, and 
the two-dimensional adiabatic compressibility, κS

A:
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V V
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T dV
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, 		  (2.1.21)

	
2

A A
S T

T dA
A c dT

κ κ
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, 		  (2.1.22)

where cΠ is the heat capacity at constant lateral tension, equal to the bulk heat 
capacity, cP. 

2.1.4.3	 Proportionality relations and compressibilities close to the transition
The membrane undergo in the transition significant changes in both the area and 
volume. This change is mainly related to the change in the lipids chains, and is 
showed through experimental work, that this change is proportional to the change 
in enthalpy. Anthony et al. [26] showed that the enthalpy change, ΔH, and the rel-
ative volume change, ΔV, are proportional in the lipid chains melting transition 
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range:

	 ( ) ( )VV T H Tγ∆ = ∆  		  (2.1.23)

This relation was also found to be true in lipid mixture over a wide temperature 
range, and in lipid membranes and biological membranes [27]. Further has it been 
shown by molecular dynamics simulation that this proportionality relation is 
valid in general [28].
Based on this proportionality relation between enthalpy and volume, Heimburg 
[29] proposed that a similar proportionality relation should hold between change 
in the enthalpy and change of area. It is known that the area of a lipid membrane 
in the transition change considerably. The postulation has been justified indirectly 
by lipid monolayer experiments [30], and yield:

	 AA Hγ∆ = ∆ 		  (2.1.24)

This means that the change in area and volume can be linked directly to the meas-
urable excess heat capacity, ΔcP. From eq. (2.1.23) and (2.1.24) one obtain:
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It can be shown that i V iV Hγ∆ = ∆  holds for every available substrate, and this 
implies that:

	 2 2 2
VV Hγ∆ = ∆  		  (2.1.27)

This can then give an expression for the excess volume compressibility
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where eq. (2.1.15), (2.1.16) and (2.1.19) have been used. 
Similarly, the isothermal lateral compressibility can be expressed:

	
2

A A
T P

T
c

A
γ

κ∆ = ∆ ,		  (2.1.29)

where eq. (2.1.17) and (2.1.20) have been used instead. This is of great interest for 
this thesis since it give an expression for the change in lateral compressibility as a 
function of measurable variables.
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2.1.5	 Lipid Mixture
Biological membranes consist of many different lipids. The melting transition of 
a biological membrane is complex, since the biological membrane show melting 
reactions slightly below body temperature with a broad transition half-width. And 
the various lipids in the membrane have all different melting temperatures and 
different melting enthalpies. The lipid species in mixtures are not likely to melt 
independently, because of the cooperativity.

To get an understanding of a system with two lipid species, one can consider the 
case where the free energy of the interaction between all lipids in a state are the 
same. This means that the free energy is not changing, when one exchange the 
lipids within the gel phase or the fluid phase. The lipids will then randomly dis-
tribute in each of the lipid states. This is called “ideal mixing”.
In this system it only make sense to see what happens between the two lipid spe-
cies, A and B, melting temperatures, since the system either will be fully in the gel- 
or fluid-phase outside the melting temperatures. For such a system, where species 
A have the melting temperature Tm,A and melting enthalpy ΔHA, and species B have 
the melting temperature Tm,B and melting enthalpy ΔHB, it obey:

	 and 1
g

f g fB B
g f
B B

x x
x x x

x x
−

= = −
−

 	 (2.1.30)

Where the equation to the left is the fraction of the lipid in the fluid-state. The 
equation to the right is the lever rule. xf

B and xg
B is the mole fraction of species B 

in the fluid- and gel-state respectively. xB is the fraction of species B in the system. 
Similar, exist xf

A and xg
A as the mole fraction of species A in the two phases. For 

all fractions 0 , , , 1g f g f
A A B Bx x x x≤ ≤  has to be fulfilled. The fractions are found by the 

equilibrium constant for each of the species, and that it must follow that the sum 
of the mole fraction of A and B must be one in the gel- and fluid-state. For the 
derivation see Lee (1977) [31].
From (2.1.30) one can also write:
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−
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−
 		  (2.1.31)

The lever rule allows one to calculate the fractions of lipids in the gel- and flu-
id-state as a function of the fraction of component B and the temperature. One can 
then make a phase diagram, which tells at what temperature the system of varying 
xB will be in the gel- or fluid-phase, or in a mixture of gel and fluid. A phase dia-
gram for a system with two species with ΔHA = ΔHB = 24 kJ/mol, Tm,A =270 K, Tm,B 
=314 K is presented in Figure 2.1.8. In the figure one can see that the lipids melt 
after the melting temperature for species A, and all the lipids are melted before the 
system reach species B melting temperature. 
One can also calculate the enthalpy and the heat capacity as a function of temper-
ature:
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The heat capacity is given by
Pc d H dT= ∆ . For xB = 0.5 and with the same system 

as mention above, one get the enthalpy and heat capacity as shown in Figure 2.1.9. 
The sharp peaks at the upper and lower temperature limits of the heat capacity 
are due to the assumption that the pure components display an infinitely sharp 
transition. 
In general a mixture between two components is not ideal, and the interaction 
between two molecules of species A and B cannot be ignored. The lipids may also 
diffuse, resulting in a change in the free energy. In Figure 2.1.9 the heat capacity 
has sharp peaks, this sharpness is not found in experiments because the mixture 
is not infinitely cooperative, where the peaks are smoother. Experimental heat ca-
pacity profiles and phase diagrams is shown in Figure 2.1.10 with smoother peaks 
at the transitions. 
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To model a real mixture one can use Monte Carlo simulation, where in a two-com-
ponent membrane one have two melting enthalpies, ΔHA and ΔHB, and entropies, 
ΔSA and ΔSB. Furthermore, there are six nearest neighbour interaction parame-
ters: between gel and fluid lipids of species A, between gel and fluid lipids of spe-
cies B, between fluid lipids of species A and B, and between gel lipids of species A 
and B. Totally six parameters. The Gibbs free energy of each configuration of such 
a system is given by:
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Where NfA and NfB are the numbers of lipid of species A and B in a fluid state. The 
NgA,fB is the number of interactions between lipid species A in the gel state and the 
lipid species B in the fluid state. The simulation may also take into account that the 
lipids will diffuse in the mixture [32]–[35]. 

Throughout this thesis the phase transition will be referred to the main transition, 
and be the point at the maxima at a heat capacity profile. In lipid mixture there 
will be referred to two phase transition, even though there only is one. Each phase 
transition correspondent to the maxima at the two peaks in a heat capacity profile, 
if two peaks present. 

Figure 2.1.10 - Phase diagram of DLPC-DPPC mixtures (left) and DMPC-DSPC (right). The solidus 
line (transition from gel to gel-fluid-line) has a smaller slope than the liquids line indicating that 
the interaction between gel- and the coexistent-phase is smaller than the interaction between the 
fluid- and the coexistent-phase. The bottom panels show the heat capacity profiles. (Taken from T. 
Heimburg (2007) [35]).



Chapter 2

22 | Theories of Nerve signal

2.2	 Theories of Nerve signal
Through the years of the western civilisation, humankind has philosophized over 
humans, and thereby animals, ability to control its limbs and sensation. Ancient 
medical practitioners did understand that nerves served two functions, but how 
it operated and under the direction of which principal organ, was the mystery. 
The word “nerve” originate from Greek and mean tendon or sinew. Through time, 
it has been difficult to categorize the nerve system, where it had been a common 
confusion to distinguish between connective tissues and other more subtle types 
of physical connections within the body. Tendon and sinew can be categorize as 
fibrous which bind the muscle to the bones. 
The Greek philosopher Aristotle (384 BC – 322 BC) believed that the nerves were 
controlled by and originated in the heart. Six centuries later Galen (129 AD – circa 
217), a Roman physician, concluded that the brain was there nerves emanating. He 
imagined that the nerves to be hollow tubes, which allow the animal spiritus to 
roam, and control the limbs.
In many centuries after, the concept and understanding of nerves did not change, 
and the mystery of how the head communicated with the body, was still a mystery. 
Even though new findings, it did not change this ancient view of the nervous sys-
tem.  Leonardo da Vinci (1452 -1519) made drawings of nervous system. The first 
drawings of the brain was with three cavities behind the eyes, believed to be the 
house of the spirit. Later, after Leonardo da Vinci had dissected brains on his own, 
he made new drawings without the cavities and much more specific drawings.
Santiago Ramón y Cajal, designated by many as the father of modern neurosci-
ence, discovered that the nervous system consist of millions of cells, called neu-
rons. He also discovered that the nerve signal only travels one way. Santiago was 
awarded the Nobel Prize in Physiology or Medicine in 1906. In the late 19th century 
Emil du Bois-Reymond, Johannes Peter Müller, and Herman von Helmholtz showed 
neurons were electrically excitable and that their activity predictably affected the 
electrical state of adjacent neurons. 
In 1952 Alan Lloyd Hodgkin and Andrew Huxley [3] presented a mathematical 
model for the initiation and propagation of nerve pulses. The model was origi-
nally only intended as an empirical description of the experiments by Kenneth S. 
Cole and Howard J. Curtis [36]. Cole and Curtis found transient voltage change of 
a nerve signal in giant squid axons. The nerve signal was called action potential. 
However, this was in the description not meant to be a universal description of the 
nerve signal, but gained quickly widespread acceptance as the nerve signal theory. 
They were awarded with the Nobel Prize in Physiology or Medicine in 1963. 

The neuron, the nerve cell, differ not much from other cells, they have nucleus, mi-
tochondria, cell membrane et cetera. However, they differ from ordinary cell in its 
geometry. The nerve cell is a cell who directly communicates with others. Mean-
ing that the signal from other neurons is received by the dendrites, travel along the 
axon and communicated out of the neuron to other via the axon terminal.
The axon can span from nanometres to meters. Geometrically the axon can be 
forked, but a single cylindric geometry is commonly assumed for simplification. 
The longest neuron in the human body is the sciatic nerve. It begins in the lower 
back and runs down to the toes. Axon can be supported by number of tissues sur-
rounding it. Special interest is the myelin sheaths, which are formed by Schwann 
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cells. Between the myelin sheaths, exist myelin sheath gap or node of Ranvier. My-
elinated neurons have been found to transmit signals with a velocity of order 100 
m/s and non-myelinated neuron in the order of 1-5 m/s [15]. Recently, it just has 
been showed, what has been accepted for years, that the distance between the 
myelin sheath gaps have an influence on the propagation velocity. The longer be-
tween the gaps the faster the signal can travel, meaning that the more the axon is 
myelinated the faster the nerve signal will be [37]. With the velocity and the dura-
tion of the nerve signal, one can calculated the range and size to be in the scale of 
millimetres and centimetres, marking nerve signal a macroscopic phenomenon.

2.2.1	 Hodgkin & Huxley Model
In a typical nerve, the ion concentration of sodium and potassium is very different 
inside and outside. One finds a higher concentration of potassium inside than 
outside. Moreover, for sodium it is just reversed. These concentration differences 
give rise to a voltage difference over the nerve membrane. Hodgkin and Huxley 
assumed that the cell membrane, in a giant squid axon, acts like a barrier with ion 
channels [3]. Ion channels are trans-membrane proteins that open and close in a 
complex time- and voltage-dependent manner and allow for selective conduction 
of different ions. In the Hodgkin-Huxley model (HH-model), the membrane is con-
sidered impermeable to ions and is assumed equivalent to function as a capacitor 
with constant capacitance. The protein channels can be assumed resistors of var-
iable conductance, with the ionic currents (IK, potassium, INa, sodium and Il, leak 
current), where the current flowing through the membrane is the sum of the ionic 
and capacitive contributions.
The idea of nerve pulse propagation is that a local depolarization will lower the 
potential difference over the membrane causing a local flux of ions through the 
channels. This will result in further depolarization of the membrane, which in 
turn will cause additional channels to conduct ions. This depolarization create a 
cascade effect through the nerve, where the nerve signal is propagating. However, 
the equivalent circuit seem quite simple and straightforward. The detailed dy-
namics of the ion channels is rather complicated. The ion channels have a complex 
time and voltage dependence, which have to be empirically fitted for any system.
Hodgkin and Huxley proposed the following differential equation for describing 
the propagation of the voltage pulse in a giant squid axon:

( ) ( ) ( )m K K Na Na l l
a U UC g U E g U E g U E
R t

∂ ∂
= + − + − + −

∂∂
	 (2.2.1)

The voltage, U, is a function of space and time. Ri is the specific intracellular resis-
tivity and a is the radius of the axon, which is assumed to be a perfect cylinder. Cm 
is the capacitance of the membrane. EK and ENa are the respective resting potentials 
associated to potassium and sodium. El being the leak potential. gK and gNa are 
conductance of potassium and sodium, and gl is the leak conductance. All being 
functions of voltage and time. 
With this model Hodgkin and Huxley could be able to describe action potentials in 
a giant squid axon. However, they were quite careful in their original paper from 
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1952 to make this model as a generalization. The empirical aspect of their model 
makes its application to any other systems hard to calculate, because many of the 
parameters cannot be measured in experiments directly. 
The Hodgkin-Huxley model assume that the membrane is a constant structure 
with no drastic changes in geometry or any other physical property. This assump-
tion is in conflict with the dynamic nature of biological membrane. Experimental 
findings indicates occurrence of a phase transition during the nerve pulse, which 
cause, as mention before, a drastic changes in the membrane [38], [39]. Tasaki et 
al. showed that the nerve pulse could still propagate without monovalent cations 
(e.g. Na, K) in the exterior solution. Therefore, the role of ion channels can be 
questioned, and this observation has been attributed to secondary selectivity of 
the ion channels.

2.2.2	 Thermodynamics of the Nerve Pulse
The Hodgkin-Huxley model is based on equivalent circuits and on Kirchhoff’s laws, 
and the model is based on electrophysiology, the discipline of measuring voltage, 
current, and capacitance changes across biological membranes. The model is not 
a thermodynamically model, since it does not explicitly contain temperature, en-
tropy, pressure, etc. Not many thermodynamic properties of the nerve pulse have 
been researched, but some have, such as temperature change, thickness changes 
of the membrane, and forces in the membrane. None of them is described directly 
by the Hodgkin-Huxley model, and some of them are in conflict with the model. 

2.2.2.1	 Heat Changes during the Action Potential
It has been found that during the action potential, the temperature of the nerve 
increases during the first phase, and decreases back. The heat release is entire-
ly reabsorbed in the second phase of the signal [40], shown in Figure 2.2.1. This 
found has been confirmed in great detail for nerves originating from a number of 
different myelinated nerves [41] and non-myelinated nerves [42], [43]. Abbott et 
al. also found that the heat release is most likely proportional to the area of the 
nerve membrane. This indicate that a physical process related to the membrane 
generates the heat [40]. For myelinated nerves, Abbott et al. also found that the 
heat release occurs along the whole nerve, rather than just in the nodes of Ranvier. 
From all this they concluded that the whole nerve is active through the nerve sig-
nal and not just in the nonisolated segments.
A reversible heat change means that the action potential is isentropic (or adia-
batic, and that the entropy is conserved since dQ = TdS). Isentropic processes is 
reversible, therefore must the action potential be reversible. However, this is not 
described in the Hodgkin-Huxley model, which is not reversible. In the equivalent 
circuit terminology, the ion channels is viewed as resistors. When a current is 
running through a resistors it release heat, independent of the currents direction. 
In the Hodgkin-Huxley model, ions flow through the ion channels, making the 
current, and produce the action potential, and thereby generating the heat during 
the action potential. No processes in the model describe reabsorption of the heat 
released. Moreover, since the model is based on equilibration of ion gradients, the 
entropy of the system is increasing.
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2.2.2.2	 Mechanical Changes during the Action Potential
During the action potential other recordings have been made. It was found that a 
dislocation of the membrane surface could be observed (Figure 2.2.2, right) which 
is strictly coupled to the potential changes of the surface. It was also found that 
one can measure force on a piston which is in contact with the nerve (Figure 2.2.2, 
left) [44]. In other words, will the internal pressure in the axon membrane change 
during the nerve signal.
These found and others (changes in fluorescence intensity and anisotropy in the 
membrane) were taken as evidence for the occurrence of a phase transition dur-
ing the nerve signal [38], [39]. As mention in section 2.1.4, one will expect, when 
changing the lipid state from fluid to gel: heat release, increase in membrane 
thickness, and reduction of area. The revers, changing the lipid state from gel to 
fluid, one will expect the opposite. 

Figure 2.2.1 – Heat release in garfish olfactory nerve. Left: During the nerve signal one find that the 
heat release and absorbing is similar to the action potential. Right: The total heat release within error 
is zero, calculated by integrated the heat release. (Taken from T. Heimburg [15])

Figure 2.2.2 – Mechanical changes during the action potential. Left: Force on a piston during the ac-
tion potential in a squid axon. The solid line represent the force, and the dotted the voltage potential. 
Right: Solid line represent the displacement (thickness of the membrane) and the dotted the voltage 
potential. (Taken from T. Heimburg [15])
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2.3	 The Soliton Model
All these founds, mentioned in last section - the adiabatic nature of the nerve sig-
nal and the mechanical changes have many similarities with a sound wave. This 
lead in 2005 to the proposal of the Soliton Model by Thomas Heimburg and Andrew 
D. Jackson [2], which this thesis will investigate further.
Solitons are localized wave packet that propagate without attenuation and without 
changes in shape. One can say that a soliton is a particle-like solitary wave state, 
and are known from area of physics such as plasmas, fluid, mechanics, lasers, op-
tics, solid-state physics, and elementary-particle physics. Solitary waves and sol-
itons are not exactly the same, but throughout this thesis solitary waves will be 
mentioned as solitons.
For the existence of solitary waves, the medium has to display nonlinear elas-
tic constants upon density changes, and dispersion. In other words, the medium 
must have a speed of sound, which has to be a nonlinear function of density, and 
the compressibility must be frequency dependent. 
Biological membranes show these properties near its phase transition, and as 
mention, this phase transition is just below the body or grown temperature. When 
lowering the body temperature one moves the physical state of the membrane 
through the phase transition, and the lipids will be in the gel-state. During this 
transition, the lateral area of the membrane decreases by about 25 %. One could 
also increase the lateral pressure instead of lowering the temperature to move the 
membrane through its phase transition. As mention in section 2.1.4 during the 
phase transition the lateral compressibility increases. This means that the later-
al compressibility can also be expressed as a function of lateral area or density, 
instead as a function of the temperature. One can see the membrane as a spring 
that becomes softer when compressed, until at a point where it becomes rigid. 
When membranes under physiological conditions are compressed and is moved 
towards the phase transition it becomes softer. After the phase transition, it be-
come more rigid. These properties is characterize by nonlinear elastic constants. 
Furthermore, it has been found experimentally that the adiabatic compressibility 
is frequency depend [45]. When the biological membrane both display nonlinear 
elastic constants and dispersion, solitary waves can propagate. 

The Soliton Model is based on the equation of sound. By assuming the nerve axon 
is an infinitely long homogeneous cylinder, the 3-dimensional geometry problem 
of the nerve axon is degenerate into a 1-dimensional problem. In the absence of 
dispersion, sound propagation is governed by the equation

	
2

2
2

A Ac
z z

ρ ρ
τ
∂ ∂ ∂ ∆ = ∆ ∂ ∂∂  

 , 		  (2.3.1)

where 0
A A Aρ ρ ρ∆ = −  is a function of z and τ, and 1 A A

Sc ρ κ=  is the lateral 
sound velocity in the membrane also referred to as the phase velocity. This equa-
tion originates from the Euler equation in fluid hydrodynamics. As illustrated 
in Figure 2.3.1, the phase velocity is a non-linear function of density around the 
phase transition. One can thus expand the phase velocity as a function of the den-
sity change:
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	 ( )22 2
0

1 A A
A A

T

c c p qρ ρ
ρ κ

= = + ⋅∆ + ⋅ ∆ +  ,	 (2.3.2)

where 0
Aρ is the equilibrium lateral density. Heimburg and Jackson neglected high-

er orders than quadratic terms, and obtained the values for p and q by fitting the 
experimental values of c2. They obtain, for the DPPC LUV case c0 = 176.6 m/s, p = 
-16.6 c0

2/ρ0
A , q = 79.5 c0

2/(ρ0
A)2 and ρ0

A = 4.035×10-3 g/m2, assuming a bulk temper-
ature above the melting temperature of T = 45 °C.
Frequency dependence of the phase velocity below kHz region is experimentally 
difficult to probe. Therefore, Heimburg and Jackson assumed that the dispersion 
term took the simplest possible form, resulting in the final formulation of the 
model:

( )( )2 422
02 4

A A A A Ac p q h
z z z

ρ ρ ρ ρ ρ
τ
∂ ∂ ∂ ∂ ∆ = + ⋅∆ + ⋅ ∆ ∆ − ∆ ∂ ∂∂ ∂ 

 	 (2.3.3)

where h > 0 is the dispersion constant. The dispersion constant is independent of 
the density, and have only the effect of setting the linear scale of the soliton. They 
define h = 2 m4/s2 to produce pulses of few centimetres width as found in some 
nerves. Eq. (2.3.3) can be recognized as a generalization of the Boussinesq equa-
tion, and it is known to have exponentially localized soliton-like solutions that 
propagate without distortion for a finite range of sub-sonic velocities.
For periodic low-amplitude solutions of the form ( )0 sinA A kzρ ρ ωτ∆ = − , where k 
= ω/v, and v the velocity of the waves and ω angular frequency. Inserting this in 
eq. (2.3.3), with the assumption that c = c0 for the high frequency case, one obtain 
the dispersion relation:

Figure 2.3.1 – Left: Heat capacity of DPPC LUV (top), the lateral area density, ρA (middle), and the 
corresponding isothermal area compressibility for low frequency case (bottom, solid curve) and adia-
batic area compressibility for a 5 MHz ultrasonic case (bottom, dotted curve). Right: The lateral sound 
velocity for the low frequency and the 5MHz case, as a function of membrane area density at T = 45 
°C. (Figure has been adopted from Heimburg and Jackson (2005) [2].)
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2 2

2 2 2 2
0 02 2

0

hv c hk c
k c
ω ω

= = + ≈ +  		  (2.3.4)

Last term has use the approximation 0v c≈ . The dispersion relation show that the 
sound velocity thus increase with increasing frequency, as required by the exper-
imental observation of decreasing compressibility with increasing frequency (see 
Figure 2.3.1, left, bottom, where the 5 MHz case show less lateral compressibility 
than the 0 MHz case).
One can choose to work with the dimensionless variables u, x and t defined as:

	 2 2
0 0 0 0

1 22 2
00 0 0

, , , , ,
A

A

c c vu x z t B p B q
cc ch h

ρ ρρ τ β
ρ
∆

= = = = = = .	 (2.3.5)

With this choice of variables, eq. (2.3.5) takes the form

	 ( )
2 4

2 4

u u uB u
x xt x

∂ ∂ ∂ ∂ = − ∂ ∂∂ ∂ 
,	  	 (2.3.6)

with 

	 ( ) 2
1 21B u B u B u= + + . 		  (2.3.7)

For the case with DPPC LUV (shown in Figure 2.3.1) and other cases one require 
that B1 < 0 and B2 > 0.
Assuming that the general solution propagates without distortion, one can set u as 
a function of x tξ β= − and rewrite eq. (2.3.6) as:

	 ( )
2 4

2
2 4

u u uB uβ
ξ ξξ ξ
 ∂ ∂ ∂ ∂

= − ∂ ∂∂ ∂ 
 	  	 (2.3.8)

With the assumption that u is localized and vanishes for ξ →∞ , one can inte-
grate eq. (2.3.8) twice to yield:

	 ( )
2

2 2 3 4
1 22

1 11
2 3

u u B u B uβ
ξ
∂

= − + +
∂

		  (2.3.9)

For a localize solutions it is requires that 1β < , since it vanish far away: 

	 ( )2exp 1 foru β ξ ξ− − →∞ 	 (2.3.10)  

Eq. (2.3.9) can be multiplied on both sides by u ξ∂ ∂  and integrate once more to 
yield:



Chapter 2

The Soliton Model | 29

	 ( )
2

2 2 3 4
1 2

1 11
3 6

u u B u B uβ
ξ

 ∂
= − + + ∂ 

	 (2.3.11)

From the equation, one can see that the soliton profile must have a maximum, and 
it must be symmetric about this maximum, when it have to be localize and vanish 
far from it. This relation is only possible when:

	
2
1

0
2

1 1
6
B
B

β β> > = − 		  (2.3.12)

Where β0 is the minimum velocity corresponds to the maximum amplitude soli-
tons. From Heimburg and Jackson [2] this value is about 100 m/s and should corre-
spond to the velocity of the nerve signal above threshold excitation.
Eq. (2.3.11) can be solved numerical as done by Heimburg and Jackson [2], or ana-
lytic done by Lautrup et al. [46].
The analytic solution to eq. (2.3.11) can be found when one expect localized solu-
tions for 0 1β β< < . When this condition is met, the right side of the eq. (2.3.11) 
will have two real roots, u a±= , with:
	

	
2 2

0
2
0

1

2 1
1

B
a

B
β β

β±

−

−

 
 = − ±
 
 

 		  (2.3.13)

Where the relation in eq. (2.3.12) have been used. The solution will then have the 
analytic form:

	 ( )
( ) ( ) ( )2

2

cosh 1

a a
u

a a a a
ξ

ξ β
+ −

+ − + −

=
+ + − ⋅ −

 	 (2.3.14)

Solutions for different velocities is shown in Figure 2.3.2.
Vargas et al. [47], in their work on periodic solution to eq. (2.3.6) introduce a me-
chanical analogy to understand the equation. The equation could be transform 
to a form similar to the equation of motion ( )21

2 mv V x const+ = . From the two 
integration of eq. (2.3.6) to eq. (2.3.8) they introduce two integration constant, the 
first one disappears for reasons of symmetry. From this they multiply with u ξ∂ ∂  
and integrate once more (same method as in eq. (2.3.11)) to yield:

	 ( )
2

2 2 3 4
1 2 0

1 11
3 6

u u B u B u C u Vβ
ξ

 ∂
= − + + + ⋅ + ∂ 

	 (2.3.15)

Where C will depend on experimental constraints and V0 is an integration con-
stant with no influence on the solutions. There is only one term there is propor-
tional to the derivative of u, which can be seen as a “kinetic term” and the second 
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Figure 2.3.2 – Soltion profiles for the velocities, 0.649850817, 0.65, 0.734761, 0.85 and 0.95. The max-
imum height diminishes as a function of β.
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Figure 2.3.3 – The potential V(u) for four different velocities. The soliton correspond to a movement 
in the potential, with start in 0. If the potential do not reach 0 again, the movement will continue 
down the potential, and therefore there will be no solution with a velocity of 0.6. The insert show the 
potentials in a larger density range, showing that for all velocity with a solitary solution possess two 
maxima and one minimum.  
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term depends on u and can be seen as a “potential term”: 

	
( )

( )

( )
2 2

2 2 3 4
1 2 0

"Potential term""Kinetic term"

1 11
3 6

V u

u u B u B u C u u V u Vβ
ξ ξ

≡

   ∂ ∂ − − − − − ⋅ = + =    ∂ ∂    




	(2.3.16)

The potential, V(u), can be plotted as shown in Figure 2.3.3, where one can im-
agine a particle in the potential rolling back and forward. For velocities with no 
solitary solutions, the particle will only roll forward and down the potential.
When a nerve pulses is propagating the nerve length becomes shorter [43], and 
Vargas et al. linked this effect to the integration constant C from eq. (2.3.15). They 
conclude that when the overall nerve length is constant, one obtains periodic solu-
tions, and C > 0. When the nerve length can be shortening it generates a localized 
pulse, C = 0. Meaning that because of mass conservation, the nerve can as an ef-
fect of the propagation of the nerve signal either, shorter itself and have a localize 
pulse, or be at constant length and allow periodic pulses. 

2.3.1	 Conservation laws
It is clear that if u is a smooth solution of (2.3.6) that vanishes, along with its de-
rivatives, as x →∞  , then the quantity

	 ( ) uJ u dx
t

∞

−∞

∂
=

∂∫  		  (2.3.17)

is an invariant of motion, and can been seen as the mass flux into the system. 
Whereas 

	 ( )I u udx
∞

−∞
= ∫  		  (2.3.18)

varies in time as I Jt const= + , and can be seen as the total mass in the system at 
time t. Since the solutions is localize and remain bounded as t increases, the mass 
will not change, and therefore J = 0. One can then introduce a new function v 
defined by

	
x uv dx

t−∞

∂
=

∂∫  		  (2.3.19)

which also vanishes with its derivatives as x →∞ . v can be seen as the velocity 
field. For the soliton described by eq. (2.3.14) v become:

	
x xu uv dx dx u

t x
β β

−∞ −∞

∂ ∂
= = =

∂ ∂∫ ∫  	(2.3.20)
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Where the relation x tξ β= −  have been used. Equation (2.3.8) can then be ex-
pressed with functions v and u:

	 ( )
3

3

v u uB u
t x x
∂ ∂ ∂

= −
∂ ∂ ∂

 		  (2.3.21)

This is a system that conserves the functional I.

2.3.2	 Energy of the soliton
The Energy of a soliton can be calculated by introducing the displacement s(x,t), 
the compression is then given by:

	 su
x
∂

=
∂

 		  (2.3.22)

Inserting this in eq. (2.3.6) and integrate to yield

	 ( )
2 2 4

2 2 4

s s sB u
t x x
∂ ∂ ∂

= −
∂ ∂ ∂

 		  (2.3.23)

This equation can be seen as a Euler-Lagrange equation with the Lagrangian den-
sity

	 ( )
2 21 1 1

2 2 2
s u A u
t x
∂ ∂   = − −   ∂ ∂   

� , 	(2.3.24)

where 

( ) ( ) ( ) ( )2 21 1
1 23 60 0

1
u u

A u Q u du B u dudu u B u B u= = = + +∫ ∫ . 	 (2.3.25)

Since the Lagrangian may be written as kinetic minus potential energy, the La-
grangian density can be expressed similar as kinetic energy density minus poten-
tial density energy. The dimensionless energy density becomes:

	 ( )
2 21 1 1

2 2 2
s u A u
t x

ε ∂ ∂   
   ∂ ∂ 

= + +
 

		  (2.3.26)

The three dimensionless terms represent respectively the kinetic energy, the ener-
gy of dispersion, and the energy of compression.
Energy for a soliton, where s is only a function of x tξ β= − , e.g. the stable soliton 
shown in this chapter, becomes:
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2

2 21 1 1
2 2 2

uu A uε β
ξ

 ∂
= + + ∂ 

 	(2.3.27)

Using the soliton equation (2.3.9) which may be rewritten to:

	 ( )
2

2 2u A u uβ
ξ

 ∂
= − ∂ 

 		  (2.3.28)

The sum of the kinetic energy density plus the dispersive energy density thus 
equals the compressive energy density, such that the total energy density can be 
expressed as:

	 ( )A uε = 		  (2.3.29)

The total dimensionless energy of the soliton is then the integral of the energy 
density over all space, and is conserved and independent of time. The main con-
tribution to the energy of the soliton is mainly from the compressibility, as shown, 
and from the kinetic. In Figure 2.3.4, the energise are shown as a function of the 
velocity, β. For the limit case when the velocity goes againt the lower limet, β →  
β0 will the energy  goes againt infinity E → ∞. The energy density have a limit, be-
cause u is limited by eq. (2.3.13), meaning that the soliton become wider when β →  
β0 and therefore the energy goes to ∞.
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Figure 2.3.4 – The energy for a soliton as a function of the velocity. When β → β0 the energy → ∞. 
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2.3.3	 Viscous dissipation
One can introduce viscosity in the system the solitons are propagating in, and 
look at the consequences of dissipation. The solitons will lose energy and ampli-
tude while they accelerate [46]. It can be seen as the soliton, while it lose energy 
and amplitude, try to remain stable, and therefore accelerate as a consequence of 
eq. (2.3.14). 
The dissipation term can be introduce by first consider the one dimension Navi-
er-Stokes equations for compressible fluids are:

	
( )2

2 ,
vpv v v

z z xz
ρρρ η

τ τ
∂∂∂ ∂ ∂ ∂ ⋅ + = − + = − ∂ ∂ ∂ ∂ ∂∂ 

	 (2.3.30)

Where v(z,τ) is the velocity field, and ρ(z,τ) the density field. The pressure field p 
is assumed to obey a barotropic constitutive equation, p = p(ρ), and depends indi-
rectly on z and τ through ρ. The viscosity η is assumed constant. Using that

	
( ) ( )2vv v vv

z x

ρρ
ρ

τ τ

∂∂ ∂ ∂ + = + ∂ ∂ ∂ ∂ 
 		  (2.3.31)

one can rewrite these equations as mass and momentum balance:

	
( ) ( )

,
v v M

z t z
ρ ρρ

τ
∂ ∂∂ ∂

= = −
∂ ∂ ∂ ∂

 		  (2.3.32)

where

	 2 vM p v
z

ρ η ∂
= + −

∂
 		  (2.3.33)

Combining the balance equations one get an equation, that has the basic form of 
a standard wave equation: 

	
2 2

2 2

M
z

ρ
τ
∂ ∂

=
∂ ∂

		  (2.3.34)

By assuming that the second term in M is negligible, and that the last term is 
small, one get

	
2 2

2
2 2c

z z tz
ρ ρ ρν
τ
∂ ∂ ∂ ∂ ∂ = + ∂ ∂ ∂∂ ∂ 

 		  (2.3.35)

where ν = η/ρ and c2 = ∂p/∂ρ, and used the equation of continuity to eliminate v. 
This equation is similar to equation (2.3.1) and introduce a dispersive term and 
dimensionless variables, one have eq. (2.3.6):
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	 ( )
2 4 2

2 4 2

u u uB u
x x tt x x

ρκ∂ ∂ ∂ ∂ ∂ ∂ = − + ∂ ∂ ∂∂ ∂ ∂ 
 	 (2.3.36)

where hκ ν= . Lautrup et al. [46] did a numerical study on the soliton with a κ = 
0.05 (water; κ = 10-7), and found out that the solitons have lost 70 % of theirs height 
at t = 990 and has travelled more than 100 times theirs initial width.
The nerve pulse change only little over distances, and the small dissipation of heat 
in experiments of nerves [42] imply that the magnitude of dissipation is small-
er than the one considered by Lautrup et al.. Further, was solitons not found to 
breakdown into small-amplitude waves noticed, which one could have expected 
by a high dissipation.

2.3.4	 Collision of pulses and disturbances 
It is a common belief in neuroscience that nerve pulse collision are blocked 
upon collision [48]. However, very little literature is written on this subject. The 
FitzHugh-Nagumo model [49], [50], which is a simplified mathematical representa-
tion of the Hodgkin-Huxley model, allows for both the cancellation and penetra-
tion of pulses depending on parameters [51].
Lautrup et al. studied head-on collision of solitons and showed that it seems like 
they passed through each other [46]. Figure 2.3.5 show results for collision of sol-
itons. The only effect of the collision is small-amplitude noise travelling ahead of 
the post-collision solitons. When two solitons with a velocity close to the min-
imum velocity and therefore maximum possible amplitude collide, the density 
change exceed the density of the solid phase. Therefore, they introduce a “soft 
barrier” at the density of the solid phase: 

	 ( ) ( ) ( )( )max2
1 21 1 u uB u B u B u eα −= + + +  	 (2.3.37)

With this condition a collision of two solitons close to the minimum velocity, 
result post-collision in several solitary peaks with different amplitude and veloc-
ity. This effect is also present in the situation without the soft barrier, but not as 
prominent, and not with the same amount of solitary peaks and small-amplitude 
waves. The energy loss from the solitons, and the energy in the small-amplitude 
waves, are for extreme cases under 4 %. For collision of soliton with velocity larger 
and not close to minimum velocity, have energy loss very under 1 %. 
For solitons, one have to notice that they are not normal linear waves that obey 
the principle of superposition. The principle of superposition means that the am-
plitudes of two waves traveling through the same medium at the same time simply 
add together and interfere with each other. Solitary waves, instead of interacting 
through interference and simple addition, they collide in a nonlinear and com-
plicate manner [52]. When soliton collide it appears that they jump through each 
other or just exchange the properties of velocity, energy, size and shape. After the 
collision they are not in their relative locations one would have expected them to 
be in, if they simply passed through each other, but are delayed. These soliton de-
lays are found in many research field [53], [54].
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Further, Lautrup et at., investigate solitons with an initial velocity lower than the 
corresponding analytic value, given that

	 ( ) ( ),0 ,0v x p u xβ=  		  (2.3.38)

where 0 < p < 1. Thus the initial field is not solitonic, this will be referred to un-
stable solitons, given that they over time will decay to a stable solitons. This is 
resulting in, that just after initiation the unstable soliton divided into two solitons 
of different sizes, which propagate in opposite directions. The soliton, which decay 
to a velocity in the same direction as the initial soliton, is larger than the one in the 
opposite directions, and can be seen as the initial soliton. Theirs amplitude and 
shape corresponds to theirs analytic amplitude and shape given by the velocity. A 
head of the two solitons travels small-amplitude noise. The small-amplitude waves 
travels with velocities over β > 1 and carry about 0.3 % of the system’s total energy. 
The area between the two solitons has no change in the density. 
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Figure 2.3.5 –Collision of two solitons before (left) and after (right) shown for β = 0.8 (top) and β = 
0.649851 (bottom). One obtains small-amplitude noise traveling ahead of the post-collision pulse.



Chapter 3
Methods

The Soliton Model is based on the density change in a lipid membrane which is 
described by a partial differential equation – sound equation for lipid membranes. 
This equation can be transform into an ordinary differential equation to find stable 
solitons. To solve the ordinary differential equation, the Eurler method is used. To 
solve the partial differential equation the two-step Lax Wendroff method is used. In 
this chapter the two numerical methods will be presented and the solution to the 
the sound equation for lipid membranes will be analysed. 

3.1	 Euler method
The sound equation presented as eq. (2.3.6) and later as eq. (5.1.1) and (5.2.1) can 
be numerically solved by introducing the variable x tξ β= −  (will in this section 
be referred to as time for simplicity, even though it also denotes place), which 
turns the partial differential equation into an ordinary differential equation. After 
integrations, one arrives at eq. (2.3.11):

	 ( )2 2 3 4
1 2

1 11
3 6

u u B u B uβ
ξ
∂

= − + +
∂

 	 (3.1.1)

Which can be solved using a numerical method, such as Euler Method. Using nu-
merical methods to solve a differential equation have the advantage that they are 
easier than finding the analytic solution and the result is a good approximation of 
the real solution to the equation.
The Euler method can be used when one wants to approximate the solution of the 
initial value problem:
	

	
( ) ( ) ( )( ) ( )0 0,

dy
y f y y y

d
ξ

ξ ξ ξ ξ
ξ

′= = = 	 (3.1.2)

Choosing a value h for the size of every step and setting ξn = ξ0+nh, then one step 
of the Euler method from ξn to ξn+1 = ξn+h is
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	 ( )1 ,n n n ny y hf yξ+ = + 		  (3.1.3)

With the assumption that one seek negative solitons, where

	 ( )exp 1u β ξ ξ − − − →∞  , 	 (3.1.4)

equation (3.1.1) is negative until the solution reaches its minimum, and the solu-
tion is symmetric around its minimum. One can then determinate a value for y0 
and step by step calculate the solution. 

3.1.1	 Error in Numerical Solution
When using a numerical approximation to solve a differential equation, one has 
to expect a difference between the solution and the real solution; the error in the 
numerical method. The local truncation error (LTE) is the difference made in a 
single step, where the global truncation error (GTE) is the cumulative effect of the 
local truncation errors committed in each step.

3.1.1.1	 Local Truncation Error
The local truncation error of the Euler method is the difference between the nu-
merical solution after one step, yn+1, and the exact solution at time ξn+1 = ξn+ h. The 
numerical solution is given by eq. (3.1.3), and the exact solution can be given by a 
Taylor expansion around ξn:

	 ( ) ( ) ( ) ( ) ( )2 31
2n n n ny h y hy h y O hξ ξ ξ ξ′ ′′+ = + + + 	 (3.1.5)

The local truncation error is given by the difference between these equations:

	 ( ) ( )2
1

1
2n n n ny h y h yτ ξ ξ+ ′′= + − = 		  (3.1.6)

This shows that for small h, the local truncation error is approximately propor-
tional to h2. In Figure 3.1.1 the relative error taken in each step is shown for differ-
ent step sizes. It is clear to see that the error is proportional to h2 and the error is 
smallest near the peak of the soliton.
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3.1.1.2	 Global Truncation error
The global truncation error is the error at time ξn = nh and is the cumulative effect 
of the local truncation error committed in each step. The steps between time ξ0 
and ξn is proportional to 1/h, and the error committed in each step is proportional 
to h2. Therefore, it is expected that the global truncation error is proportional to h.  
The error is the different between the exact solution at ξn and the numerical solu-
tion after nh step:

( ) ( ) ( ) ( ) ( )0 0 1 1n n n n ne y y y y hy hy hyξ ξ ξ ξ ξ −′ ′ ′= − = − + + + + 	 (3.1.7)

The error is shown in Figure 3.1.2 for different step size, h, for all ξ. One can notice 
that the error is not exactly proportional to h, which can be lead to be an effect 
of the width (i.e. full width of half-maximum) of the solution (in Figure 3.1.2 the 
width is shown for each step size). The exact solution has a width of roughly 6.24. 
At its minimum, equation (3.1.1) is developing slower for each step, and therefore 
the larger step size is reaching the minimum in less time than the smaller step size, 
therefore the solution has a smaller width for larger step. One of the assumption 
was that the solution was symmetric around its minimum, and force the width to 
be equal to the exact width, by making the area around the minimum wider, the 
error will be almost perfectly proportional to h. In Figure 3.1.3 the relative error 
for different velocities, β, is shown, one can see that the numerical solution has the 
same amplitude as the analytic, and the relative error is in the same scale for all 
solutions. The largest error occurs when the derivative of the solution is largest, 
which has the effect that the solution from the numerical methods differ a little 
from the solution calculated by the analytic method. However, these errors are 
small for small step size and justifies the use of Euler method for solving equations 
where the result takes the form of a soliton.
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Figure 3.1.1 – (a) The relative and (b) the absolute local truncation error given for different step size (h 
= 0.1, 0.01, 0.001) for a soliton with velocity β = 0.735, the unit on the x-axis is the step, n, times step 
size, h, ξ = nh. The dashed line show the solution shape for each step size, its amplitude is approxi-
mately u = -0.114. It is shown that the smallest relative error is near the peak of the soliton. The size 
of the error in each step size clearly follow h2. 
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Figure 3.1.2 – (a) the relative and (b) the absolute global truncation error for all ξ at different step size, 
h, shown that the error is almost approximately to h. Dashed line illustrate the shape of the solution.
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Figure 3.1.3 – The relative error for solutions with different velocities, β, with step size h = 0.001, show 
that the error is biggest for high amplitude, low velocities solitons. The error is low for all solitons
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3.2	 Two-Step Lax Wendroff
The thesis has the aim to investigate a number of questions associated with the 
stability of negative and positive solitons. However, solving the equation analyti-
cally in time and space has shown to be too difficult, if not impossible. Therefore, 
it has been chosen to consider this problem numerically. A well suited method to 
solve the soliton model for the expanded sound profile (eq. (5.2.1)) when the initial 
state u(x,0) is known, is the Two-Step Lax Wendroff method [55]. The method is 
second-order accurate in both space and time, and it avoids large numerical dissi-
pation and mesh drifting.
By defining the operator for the half-interval average of a function:

	 ( ) ( ) ( )1 1
2 2ˆ

2x

F x x F x x
F x

+ ∆ − − ∆
Σ ≡ 	 (3.2.1)

The operator for the spatial derivatives are likewise of the central form, implying 
that corrections to an arbitrary function f(x) are of second order in ∆x:

	 ( ) ( ) ( )1 1
2 2ˆ

x

F x x F x x
F x

x
+ ∆ − − ∆

∇ ≡
∆

	 (3.2.2)

In section 2.3.1 the flux conservation law was introduced. These can be rewritten 
as

	 , fu v v
t x t x

∂∂ ∂ ∂
= =

∂ ∂ ∂ ∂
, 		  (3.2.3)

where

	 ( ) ,w uf Q u w v
x x

κ∂ ∂
= − = −

∂ ∂
, 	 (3.2.4)

with Q(u) from eq. (2.3.25) and κ is the dimensionless viscosity constant intro-
duced in section 2.3.3. Using this rewrite, one can define the discrete functions:

	 ( ) ( )( ) ( )ˆ, , ,xf x t Q u x t w x t= −∇ 		  (3.2.5)

	 ( ) ( ) ( )ˆ ˆ, , ,x xw x t u x t v x tκ= ∇ − Σ 		  (3.2.6)

Where w(x,t) can be seen as the mass flow through a point between two grids at 
the same time, t, and f(x,t) as the force. The discretized equation of motion then 
take the form:

	 ( ) ( ) ( )1 1
2 2

ˆˆ, , ,x xu x t t u x t t v x t+ ∆ = Σ + ∆ ∇ 	 (3.2.7)
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	 ( ) ( ) ( )1 1
2 2

ˆˆ, , ,x xv x t t v x t t f x t+ ∆ = Σ + ∆ ∇ 	 (3.2.8)

Where u is the density change, and v the velocity field. Finally, the values after one 
time step, ∆t, can be calculated:

	 ( ) ( ) ( )1
2

ˆ, , ,xu x t t u x t t v x t t+∆ = +∆ ∇ + ∆ 	 (3.2.9)

	 ( ) ( ) ( )1
2

ˆ, , ,xv x t t v x t t f x t t+∆ = +∆ ∇ + ∆ 	 (3.2.10)

The order of errors can be found just by expanding eq. (3.2.1) and eq. (3.2.2) in ∆x 
to smooth function:

	 ( ) ( ) ( )21ˆ
8x F x F x x F x′′Σ = + ∆ + 		  (3.2.11)

	 ( ) ( ) ( )21ˆ
24x F x F x x F x′ ′′′∇ = + ∆ + 	 (3.2.12)

Since the operators give F and it derivative F´ at x, it can be seen that both smooth 
functions have the errors of second order.
Figure 3.2.1 show a scheme of the calculation, the method from t+∆t/2 to t+∆t 
is called staggered leapfrog method. To calculate x at t+∆t, one has to calculated 
the temporary values u, v and f at x-∆x/2 and x+∆x/2 for time t+∆t/2 from the 
values for x-1, x and x+1 at time t. And w at x for time t+∆t/2 from w for x-∆x/2 
and x+∆x/2 at time t. When these three temporary grid values in the t+∆t/2 layer 
are calculated, u and v for x at time t+∆t can be calculated with the values for x at 
time t. 

3.2.1	 Algorithm
Consider a lattice of the size N over the periodic interval L = N∆x, with u and v 
represented by the arrays U[N + 1] and V[N + 1] at integer coordinates xi = i∆x 
and integer times tn = n∆t. The array elements [0] and [N] takes the same values. 
Further more the temporary values are identified with N + 1 arrays W[N + 1], F[N 
+ 1], U [́N + 1] and V [́N + 1]. 
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Figure 3.2.1 – Scheme of the Two-Step Lax Wendroff method, the solid dots on the grid have the values 
for u, v and f, where the open dots have the values for w. The values at the layer at time t+∆t, can be 
calculated from the layer with temporary values, t+∆t/2, and the values at the layer at time t.
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The fundamental time-cycle consists of the following steps. The periodicity con-
dition is imposed in each algorithmic step ([0] = [N]). For each time step, ∆t, the 
algorithm starts at step 1.

1.	 Calculate the flow between Ui and Ui+1 for i = 0,…, N–1, which 
represents the function w at the spatial half-way point xi+∆x/2 at 
time tn: 

	 ( )1, ,
1, ,

1
2

i n i n
i i n i n

U U
W V V

x
κ+

+

−
= − +

∆
 	 (3.2.13)

2.	 Calculate the force for i = 1,…, N, which represents the function f 
at xi at time tn:

	 ( ) 1
,

i i
i i n

W W
F Q U

x
−−

= −
∆

 		  (3.2.14) 

3.	 Advance ∆t/2 and calculated the temporary values U´ and V ,́ 
which represents u and v for xi+∆x/2 at time tn+∆t/2:

	 ( ) 1, ,
1, ,

1 1
2 2

i n i n
i i n i n

V V
U U U t

x
+

+

−
′ = + + ∆

∆
	 (3.2.15)

	

	 ( ) 1
1, ,

1 1
2 2

i i
i i n i n

F F
V V V t

x
+

+

−′= + + ∆
∆

	 (3.2.16)

4.	 Calculate the flow with periodic boundary conditions, w for xi at 
time tn+∆t/2: 

	 ( )1
1

1
2

i i
i i i

U U
W V V

x
κ−

−

′ ′− ′ ′= − −
∆

 	 (3.2.17) 

5.	 Calculate the force with boundary conditions, f for xi+∆x/2  at 
time tn+∆t/2:

	 ( ) 1i i
i i

W W
F Q U

x
+ −′= −
∆

 		  (3.2.18) 

6.	 Advance by ∆t and calculate U and V, u and v for xi at time tn+1 = tn+∆t: 

	 1
, 1 ,

i i
i n i n

V V
U U t

x
−

+

′ ′−
= + ∆

∆
		  (3.2.19) 
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	 1
, 1 ,

i i
i n i n

F F
V V t

x
−

+

−
= + ∆

∆
		  (3.2.20) 

7.	 	The algorithm now resumes from step 1.

3.2.2	 Error
When using a numerical method leads to numerical errors, for any solutions of 
problems on an artificial grid will necessarily lead to grid noise, which take the 
form of grid-spacing dependent corrections to the continuum equation.

3.2.2.1	 Spatial noise
Spatial noise is the error that the lattice produce to the exact solution. Expanding 
the discrete derivatives (eq. (3.2.11) and eq. (3.2.12)) to second order in ∆x, and 
assume time to be continuous, one find the equations of motion:

	
3

2
3

1
24

u v vx
t x x

∂ ∂ ∂
= + ∆

∂ ∂ ∂
		  (3.2.21)

	
3

2
3

1
24

f fv x
t x x

∂ ∂∂
= + ∆

∂ ∂ ∂

3
2

3

1
24

f fv x
t x x

∂ ∂∂
= + ∆

∂ ∂ ∂
 	 (3.2.22)

	 ( )
3

2
3

1
24

w wf Q u x
x x

∂ ∂
= − − ∆

∂ ∂
 		  (3.2.23)

	
3 2

2 2
3 2

1 1
24 8

u u vw v x x
x x x

κ κ∂ ∂ ∂
= − + ∆ − ∆
∂ ∂ ∂

 	 (3.2.24)

These corrections will all contribute to a derivation between the analytic solution 
and the solution on the lattice. These corrections will also introduce grid-generat-
ed dispersion and dissipation. Differentiate eq. (3.2.21) with respect to time t, and 
substitute with eq. (3.2.22)-(3.2.24) to obtain a single differential equation for u:

	

( )

( )

22 4 3

2 2 4 2

4 5 6
2

4 5 6

1 4 3
24

Q uu u u
t x x x t

Q u u ux
x x x

κ

κ

∂∂ ∂ ∂
= − +

∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂

+ ∆ + −  ∂ ∂ ∂ 

 	 (3.2.25)

The first line is the basic area density change equation and the last line shows that 
the lattice produces extra terms proportional to ∆x2. This show that this method is 
second order accurate in space x.

3.2.2.2	 Temporal noise
In the two-step method, with half-step integers, will the temporal discretization 
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will also generate grid noise. This noise can be consider by looking at a simple 
differential equation: 
	
	

( ) ( )dy t
F t

dt
=  		  (3.2.26)

Where F is a known function of time. The half-time solution is then defined to be:

	 ( ) ( ) ( )12
2

y t t y t tF t+∆ = + ∆  		  (3.2.27)

This is a temporary result from which the full time-step can be calculated:

	 ( ) ( ) ( )2y t t y t tF t t+∆ = +∆ +∆  		  (3.2.28)

Using equation (3.2.27) the full time-step can be calculated to:

	
( ) ( ) ( ) ( ) ( ) ( )

2 1
2

dy t t
y t t y t t y t t F t tF t

dt
+∆  ′+ ∆ = +∆ = +∆ + ∆ 

 
 	 (3.2.29)

Expanding the right hand side of (3.2.28) in ∆t to second order to get:

	 ( ) ( ) ( ) ( ) ( )1 1
2 8

y t t y t t F t tF t t F t ′ ′′+ ∆ = + ∆ + ∆ + ∆ 
 

 	 (3.2.30)

This is similar to the midpoint method, and it shows that the two-step approxima-
tion is second order accurate in time t, and that the error is of third order in the 
time interval.

3.2.2.3	 Method stability and Small-amplitude perturbations
The primary concern using numerical methods is the stability of the solutions 
when it is evolved in time. Lautrup et al. [46] made a study on small-amplitude 
perturbations and stability of solitons in the two-step Lax-Wendroff method for the 
basic density change equation of the form of equation (2.3.6). This study conclu-
sions can be transfer to the time evolved solutions, where only negative solitons 
can exist, in section 5.1.2, because the basic equation is in the exact same form. 
However, the conclusions cannot be directly transferred to the study of coexistent 
negative and positive solitons, since the basic density change equation is being ex-
panded to equation (5.2.1), and the initial values of u and v is not established from 
an analytic and exact solution, but a numerical solution.
As shown the use of the numerical methods introduced an inevitably small-ampli-
tude perturbation (eq. (3.2.25)) proportional to ∆x2 to the exact solution into the 
numerical system. When the initial values only can be found by using a numerical 
method, e.g. the Euler method, a bigger perturbation is expected compared to 
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the initial values established from an analytic solution. If the perturbation grows 
exponentially over time, then the initial solitonic solution will be locally unstable. 
Also the finite size of ∆x means that there is a smallest wavelength perturbation 
which can be studied on the lattice. Such potential instabilities involving such 
wavelengths, is not impossible but is unlikely.
The small-amplitude perturbations will be investigated with ∆x = 0.1 and ∆t = 
0.001 on a spatial lattice, which was chosen to be periodic with length 100. From 
Lautrup et al. it is known that the energy is not strictly conserved by the algo-
rithm, but rather decreases linearly with a rate of 1.9 × 10-7 of the initial energy 
with time over the time intervals considered. Further more they follow solitons 
for times as long as 1000 units, where the energy loss is negligible, and there is no 
indication of instability. Other things found in the transition from analytic to nu-
merical was that the initial energy was a bit lower, the velocity was found stable but 
a bit lower, fluctuation in the location of the maximum was 25 times smaller than 
the spatial size, ∆x, and the shape of the soliton was slightly higher and narrower. 
Another thing was that the soliton was not found unstable under large-amplitude 
noise. These things is also found to be valid for the basic equation for the negative 
soliton and the expanded density change equation. 
One can illustrate soliton stability by first determining the location of the maxi-
mum3 of the soliton as a function of time. If the velocity of this point is constant, 
and the density change too, it is an initial indication of the stability of the soliton. 
However, there are small fluctuations in the location of both the maximum den-
sity and the velocity due to the perturbations. When the position of the soliton is 
defined, it can be used to shift every time frame, so the soliton is kept at a fixed po-
sition. From this a time-averaged soliton can be constructed in order to minimize 
the effects of the perturbations. The difference between the time-averaged soliton 
and the initial soliton or analytic, if exist, can be seen as an indication of the error 
introduce by the numerical methods. The difference for the basic equation for a 
negative soliton with velocity β = 0.735 is shown in Figure 3.2.2(a), the difference is 
of the same order as in Lautrup et al., and the only different in the shape is that it is 
mirrored in the x-axis. The figure show that the analytic solitons are not identical 
to solitons on a finite mesh.
The noise is an effect of the perturbation, and can give an indication of the level of 
fluctuation in the numerical method. This can be considered as a function of time 
by subtracting the time-average soliton from u(x,t) each time frame and construct 
the root mean square (r.m.s.) of the resulting difference as a function of time. This 
is shown in Figure 3.2.2(b) for a soliton with velocity β = 0.735 from the basic 
equation for a negative soliton. If the soliton is stable, the resulting r.m.s. is bound-
ed as a function of time. Otherwise, if the soliton is unstable, the resulting r.m.s. 
is not bounded and one would expect to find a systematic difference. Because the 
soliton’s maximum will grow exponentially over time, and the difference in the 
vicinity of this maximum will be the main contributor to this growth. As shown 
in Figure 3.2.2(b) no sign of instability is present, since the r.m.s. over time do not 
grow, and that the magnitude of the spatial distribution of the r.m.s. is the same 
all over time.

3   “Maximum” is referenced to the point in the soliton where the derivative of the density change 
is zero, for a positive soliton the maximum, for a negative soliton the minimum. 
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When the analytic solution is not known, one has to use other methods to estab-
lish the initial state. Two methods have been developed in this thesis to make the 
initial state in the two-step Lax-Wendroff method. These two methods will be ana-
lyzed, where one has been exclusively used to set the initial state.
In section 5.2.1 stable soliton is calculated with the Euler method, these was calcu-
lated with a step size much smaller than the spatial size in the two-step Lax-Wen-
droff method. By choosing the values correspond to the same x value, the result 
from the Euler method can be transformed to the mesh:

	 ( ) ( ),0 ,0Lax Wendroff i Euler ju x u x− =  		  (3.2.31)

Where step xj in the Euler method corresponds to the x value for xi from the Two-
step Lax-Wendroff method, and j can be expressed as: 

	 Lax Wendroff

Euler

x
j i

x
−∆

=
∆

 		  (3.2.32)

Where ∆x is the step size for one of the methods. One could also take the average 
value between the step j - ½ and j + ½. This average has no significant influence on 
the error in the method. In Figure 3.2.3 the difference between the time-average 
soliton and an initial negative soliton is shown. It is clear that the soliton has a 
larger amplitude and is narrower compared to the initial soliton. The difference 
is almost a factor 1000 bigger than the previous difference for an analytic soliton. 
The initial soliton had a velocity of β = 0.88, but the time evolved soliton had a 
velocity of β = 0.87 average over all time, which is below the calculated minimum 
velocity of β0 = 0.875681. When this soliton starts to propagate in the simulation it 
emits small-amplitude waves and a larger small-amplitude wave, with a shape of a 
soliton with an amplitude of 13% of the initial soliton and a velocity approximate-
ly below β > 1 in front of it. This is also seen in the case for the basic equation for 
negative solitons, where the amplitude was greater than the analytic soliton with 
the same velocity. The solitons was consider unstable until it emit small-amplitude 
waves and become stable. As seen in Figure 3.2.3(b) the r.m.s. noise seems to be 
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Figure 3.2.2 – (a) The difference between the time-averaged numerical soliton and the analytic soliton 
for a soliton with velocity β = 0.735. The average has been performed over 1000 units of time, during 
which the soliton travels more than 100 times its own width. (b) Time evolution of r.m.s. noise level σ 
for the soliton with velocity β = 0.735 over 1000 units of time.
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periodic over time. This is a result of the two waves, the soliton and the large wave, 
overlapping the time between t = 0 and ~350 and between ~700 and ~1000. The 
noise is calculated by subtracting the initial soliton from every time frame, and 
therefore when the two waves are overlapping the noise becomes smaller, hence 
they both originate from the initial soliton and mass is conserved, and when they 
are not overlapping it become larger. When they are not overlapping the soliton’s 
velocity is above the minimum velocity. As mentioned before, a similar energy loss 
is found with this method, however, where the situation before had an almost per-
fect linear loss over time, this fluctuates in the loss, due the small-amplitude waves, 
however, the energy decay is averagely linear over time. The maximum fluctuates 
about x = 1 (10 times larger than ∆x), which is a result of the larger small-ampli-
tude wave. If the length of the lattice was infinity, the fluctuation would be less. 
This method introduces a lot of noise into the simulation, and another method 
with reduced noise will be preferable.
In section 5.1.3 it is shown that a small increase in the amplitude of the soliton 
leads to a velocity change, such that the velocity corresponds to the amplitude. In 
this situation small-amplitude waves was created, however the energy and amount 
was determinated by the size of the perturbation. In section 3.1 it was shown that 
the error in the maximum of the solution calculated numerically from the Euler 
method was approximately zero. Meaning that the Euler method gets the right 
amplitude of the solution, and that the error in the Euler method was in the shape 
of the soliton. 
Using these properties one can construct a soliton on the form of an analytic 
soliton, and by having the right amplitude and shape. The main contributor to the 
error should be the velocity. This was made by first finding suitable values for the 
sound velocity on the form of the basic density change equation to both sides of 
the sound profile. The values were found by fitting the sound profile to one of the 
sides, and then tweak the value to obtain values where the difference between the 
solution of the expanded and the basic equation was within a small range for a 
large range of soliton velocities, and at all-time below the right velocity. Meaning 
that, if one wants a soliton in the two-step Lax-Wendroff method with velocity β 
= 0.88, the analytic soliton used to establish the initial state, must be below this 
velocity, but have the same amplitude. The analytic solution to the basic density 
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Figure 3.2.3 – (a) The difference between the time-averaged numerical soliton and the numerical ini-
tial soliton calculated with Euler method for a velocity β = 0.88. The average has been performed over 
1000 units of time, during which the soliton travels more than 100 times its own width and decay to 
the velocity β = 0.87. (b) Time evolution of r.m.s. noise level σ for the soliton over 1000 units of time, 
show a periodic pattern, because of the small-amplitude emits a wave which overleap the soliton.
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change equation is known, and from the Euler method the right amplitude can be 
calculated. The velocity of the analytic solution can then be found. The initial state 
can now be established, with a soliton of the right amplitude and shape, but with 
a lower velocity than the exact soliton.
In Figure 3.2.5(a) the difference between the time-average soliton with a velocity 
of β = 0.88 and the initial soliton with a velocity of β = 0.85. Compared to the other 
method, where the initial state was established with the Euler Method, the differ-
ence is 10 times lower. The noise is 30 times bigger than the case where the exact 
solution was known. The soliton is over all-space smaller than the initial soliton, 
where the other methods have been narrower, but with a larger amplitude. In (b) 
one can see that also the r.m.s. noise is 10 times smaller than the other method 
and 40 times bigger than when the exact solution is known, and have no sign of 
systematic errors in it. When the soliton starts to propagate in the simulation, it 
emits small-amplitude waves. These waves are small and carry less than 0.02 % of 
the initial energy. By establishing the initial state this way, one have reduces the 
noise and one still obtain stable solitons over time. 
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Figure 3.2.4 – The sound profiles, where the sound velocity from the basic density change equation is 
fitted to both side. Blue – the expanded sound velocity. Purple – the sound velocity for negative den-
sity change. Yellow – the sound velocity for positive density change. 
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3.2.2.4	 Small-amplitude waves
Small-amplitude waves is a common phenomena in this study, and it is therefore 
interesting to know how these small-amplitude waves are handled by the two-step 
Lax Wendroff method. As mentioned, the method has problems with waves where 
the wave length is shorter than ∆x, because these waves cannot be expressed in the 
lattice. Waves with wave length larger than ∆x tend to disappear in the method 
too. The small-amplitude waves carry energy, and when the waves disappear the 
energy disappears too. This is demonstrated in Figure 3.2.6 for the relative energy 
loss as a function of the wavenumber for different times t, on a periodic lattice N 
= 100, with ∆x = 0.1 and ∆t = 0.001. The initial state was set by a sinusoidal wave 
with the amplitude as a function of the wavenumber, k:

	 ( ) ( ) ( )0, sinu x A k kx=  		  (3.2.33)

It is found that the amplitude depend on the wavenumber (see appendix B). The 
velocity is also found to be a function of wavenumber, k, and the velocity field is 
then:

	 ( ) ( ) ( )0, 0,v x k u xβ=  		  (3.2.34)

The periodic lattice gives rise to discontinuities in the initial state (where U[0] = 
U[1000]), but this is found to be insignificant, and the one discontinuities wave 
will only contribute with a small error, since the wave length is much smaller than 
the lattice size. As seen in Figure 3.2.6, at high wave lengths the relative energy 
loss is high, even after few iterations. 
For example for waves with wavenumber k = 5 (wave length λ = 1.26) after t = 30 
more than 30 % of the initial energy is gone, and at time t = 100 almost all of the 
initial energy has disappeared from the system, where waves with small wave-
number is unaffected by the method and have almost none energy loss over time. 
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Figure 3.2.6 – Energy loss as a function of wavenumber, for different time t. For larger wavenumber 
the energy loss is high.
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It is therefore expected that situations with small-amplitude waves with large wav-
enumber, energy will disappear from the system over time, due to the method’s 
handling of small-amplitude waves.
When introduction a viscosity in the systems, it is seen that the energy in the 
small-amplitude waves decay quickly. Even for small-amplitude waves where the 
wavenumber is low and could propagate in a viscosity-less system without any 
energy loss, they disappear in a small amount of time, as seen in Figure 3.2.7.
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Portrait of Hans Christian Ørsted, 1851 (© Den Store Danske, og Frederiksborgmuseet), af Wilhelm 
Marstrand. Was Danish physicist and chemist, and was one of the a leader of the Danish Golden Age. 
Beside discovering that electric currents create magnetic fields, he invented a piezometer (seen behind 
him) to measure waters compressibility.



Chapter 4
Sound Profiles

This chapter will treat and explain the sound profiles used in chapter 5. It will be 
shown how to calculate a membranes sound profile from its thermodynamic prop-
erties, and it will be done for a membrane where positive and negative solitons can 
propagate simultaneously.

4.1	 Sound profile for DPPC membrane
In section 2.3 it was shown that solitons could propagate in a DPPC membrane at 
a bulk temperature of T = 45°C with a lateral density of ρ = 4.035 × 10-3 g/m2. The 
positive soliton force the membrane through the phase transition. 
For a membrane in a state on the other side of the phase transition, with a later-
al density of ρ = 4.877 × 10-3 g/m2, with the correspond bulk temperature at T = 
39.6°C, will the membrane be in the gel state and just below the melting tempera-
ture. With this assumption, the sound profile can be expanded and the variables 
for unilamellar DPPC vesicles shown in Figure 2.3.1 can be obtained. The sound 
profile take the form 

	 ( )22 2
0

1 A A
A A

S

c c p qρ ρ
ρ κ

= = + ∆ + ⋅ ∆  , 	 (4.1.1)

with variables c0 = 176.6 m/s, p = 16.6 c0
2/ρ0

A , q = 79.5 c0
2/(ρ0

A)2 and ρ0
A = 4.877 

× 10-3 g/m2 and the expanded sound profile as a function of density is shown in 
Figure 4.1.1 . 
If one chooses a bulk density larger than ρ0

A = 4.877 × 10-3 g/m2, one will obtain 
solitons which will pass the density ρ = 4.035 × 10-3 g/m2. When the membrane 
density is ρ = 4.035 × 10-3 g/m2 and the corresponded temperature is T = 45 °C (the 
bulk temperature from [2]) the membrane is in the fluid state. When the mem-
brane is in the fluid phase, the sound velocity as a function of density is not de-
scribed by equation (4.1.1). The sound velocity before this point is taking a more 
linear and not nearly as steep slope relative to the equation (4.1.1), as illustrated 
in Figure 2.1.5. However, in this thesis the sound profile in the region before ρ = 
4.035 × 10-3 g/m2 is described by eq. (4.1.1), as after the point. In Lautrup et al. [46] 
a soft barrier was introduced when the density exceed the phase transition. Oppo-
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site, when the density exceeds the phase transition and is fully in the fluid phase, 
there is no soft barrier, but more the opposite of it. This assumption has no effect 
on the lower limit velocity,  since this is dependent on the difference between the 
sound speed at the bulk density and minimum in the profile, from eq. (2.3.12):

	
( )

2 2
2 2 2 2
0 0 min min 0 0

2
2 2 3 6

p p pc c c p q c c p q
q q q

ρ ρ
  − ∆ = − + ∆ + ∆ = − + + =    

	 (4.1.2)

	
2

2 2 2
limit 0 0

2
6 3
pv c c c
q

= − = − ∆  		  (4.1.3)
	

Where Δρmin is the value of Δρ where c2 has a minimum. This assumption will 
influence the amplitude of the solitons. The maximum amplitude for the lowest 
velocity depends on the difference in the density between the two points that take 
the value of c0. A generalization of this is that the minimum velocity depends on 
the shape of the sound profile and the depth, where the amplitude depends on the 
wideness of the sound profile.
The result for colliding solitons presented in section 5.1.2 will in some cases have a 
density lower than ρ = 4.035 × 10-3 g/m2 and no significant difference was noticed. 
Therefore for this study, with a bulk temperature of T = 39.6 °C, the assumption 
is valid.
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Figure 4.1.1 – The expanded lateral sound velocity for low-frequency as a function of density. The 
dashed line is the sound velocity of small amplitude sound c0. Dotted line is an illustration of the 
sound velocity in the fluid phase.
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4.2	 Sound profile for a 50:50 DMPC:DSPC membrane
From the heat capacity, the total enthalpy change can be calculated by integrating 
the heat capacity from a temperature in gel phase to the fluid phase: 

	 fluid

gel

T

pT
H c dT∆ = ∫  		  (4.2.1)

The ratio of lipids in the fluid state at temperature T is then the ratio between en-
thalpy change at temperature T and the total enthalpy change: 

	 ( ) g

f

g

T

pTT
T

pT

c dTH
f T

H c dT

∆
= =
∆

∫
∫

 		  (4.2.2)
	

The lipid fraction in the solid state is then g = 1 – f. From [29] one knows that the 
specific volume, specific area and compressibilities of a membrane to a given tem-
perature is given by: 

( ) ( ) ( ) ( ) ( ) ( )01 gel fluidT f T f T T f TΧ = − Χ + ⋅Χ = Χ + ⋅∆Χ 	 (4.2.3)

Хgel denote the property as a function of temperature, under the assumption that 
the membrane only can be in the gel phase. The specific volume is the sum of the 
volume in the gel phase and the volume change of the membrane through the 
phase transition: 

	 ( ) ( ) ( )0
gelV T V T f V T= + ∆  		  (4.2.4)

A membrane that does not undergo a phase transition and is in all temperatures 
in the gel phase has the following specific volume expansion

	 ( )0
11

gel

gelgel gel
T gel

dV
V T V T

V dT
 

= + ∆  
 

, 		  (4.2.5)

where (dV/dT)/V is the intrinsic thermal volume expansion coefficient for the gel 
phase, and 

gel

gel
TV  is the volume of the membrane in the gel phase with temperature 

Tgel, all values can be measured experimentally, and the temperature change is 
defined as
	 gel gelT T T∆ ≡ − . 		  (4.2.6)

The specific volume change through the phase transition is the difference between 
the specific volume in the fluid and gel phase

( ) ( ) ( )0 0 0
11

fluid

fluidfluid gel fluid gel
T

dV
V T V T V T V T V

V dT
 

∆ = − = + ∆ −  
 

, 	 (4.2.7)
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where (dV/dT)/V is the intrinsic thermal volume expansion coefficient for the fluid 
phase, and 

fluid

fluid
TV  is the volume of the membrane in the fluid phase with tempera-

ture Tfluid, the temperature change is the difference between the temperature and 
the fluid phase temperature.
Similar, the specific area change for a membrane can be calculated as

	 ( ) ( ) ( )0
gelA T A T f A T= + ∆ , 		  (4.2.8)

with the specific area change for the gel phase

	 ( )0
11

gel

gelgel gel
T gel

dA
A T A T

A dT
 

= + ∆  
 

, 		  (4.2.9)

where (dA/dT)/A is the intrinsic thermal area expansion coefficient for the gel 
phase and 

gel

gel
TA  the specific area at temperature Tgel. The specific area change is 

then:
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dA
A T A T A

A dT
 

∆ = + ∆ −  
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 	 (4.2.10)

When the specific area and volume is known, one can calculate the lateral density 
and the thickness of the membrane

	 ( ) ( ) ( ) ( ) ( )1/ /T A T D T V T A Tρ = = 	 (4.2.11)

The lateral density is choose, since the 2D case of the membrane is considered in 
the soliton model.
From equation (2.1.20) the area compressibility as the sum of the intrinsic com-
pressibility and the lateral excess compressibility:

	 ( ) ( ) ( ),0
A A A

T T TT T Tκ κ κ= +∆ 		  (4.2.12)

The intrinsic compressibility is due to eq. (4.2.3) a function of the intrinsic com-
pressibility for the gel and fluid phase:

	 ( ) ( ) ( ) ( ), ,
,0 ,0 ,01A A gel A fluid

T T TT f T f Tκ κ κ= − +  	 (4.2.13)

The lateral excess compressibility is given by:

	 ( ) ( )
2

A A
T p

T
T c

A T
γ

κ∆ = ∆  		  (4.2.14)

Notice that lateral excess compressibility only takes values above zero in the phase 
transition, since the different in heat capacity between the gel and fluid phase is 
zero.
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When the adiabatic compressibility from eq. (2.1.22) is considered, one has to con-
sider the whole system that contains the lipid membrane, e.g. an aqueous media. 
The adiabatic compressibility for the lipids can be expressed as

	 ( ) ( ) ( )
2

,0
A A A
S T T

pp

T dAT T T
Ac dT

κ κ κ  = + ∆ −  
 

 , 	 (4.2.15)

where cp is the heat capacity of the whole system. Heat capacities, there describe 
a heat sink, depending on the time scale of the compression so that cp = cp(ω). On 
a time scale much longer than that of relaxation processes in the membrane, the 
environment of the membrane serves as a heat reservoir. As a result, cp is large and 
κs ≈ κT.
If the volume expansion coefficient of the lipid chains is neglected, dV/dT = γ∆cp:

	 ( ) ( ) ( ),0 1 pA A A
S T T

p

c
T T T

c
κ κ κ

 ∆
≈ +∆ −  

 
	 (4.2.16)

Ultrasonic velocity measurements at a frequency of 5 MHz show that ultrasonic 
velocities as a function of temperature can be calculated accurately from the heat 
capacity if it is assumed that there is no heat transfer between the membrane and 
the surrounding [2]. This means at high frequencies cp = ∆cp and the related term 
to the lipid state in adiabatic compressibility is zero.

To investigate the possibility of coexistence, behaviour and interactions of neg-
ative and positive solitons, one needs a reference media where they can coexist-
ent at same temperature. The chosen media was a membrane with a 50:50 lipid 
mixture of 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-Dis-
tearoyl-sn-glycero-3-phosphocholine (DSPC), with a chain length of 14 and 18, 
and a melting point at 23.6 °C and 54.7 °C receptively. The heat capacity profile 
for 50:50 DMPC:DSPC is shown in Figure 4.2.1, where the two maxima are ap-
proximately at 30 °C and 44 °C, and a local minimum at 35 °C. This can be com-
pared to Figure 4.2.2, where the heat capacity for an ideal mixture is calculated 
from the enthalpy changes and the melting temperatures for DMPC and DSPC, 
which gives that the ideal mixture method is not suitable in use to calculate each 
of the individual lipid species contributions to the physiological change through 
the phase transition. However, with the assumption that the two lipid species will 
have the same properties through the phase transition, as characterized by Figure 
4.2.1, one can calculate the volume, area and compressibility change. 1,2-Dipal-
mitoyl-sn-glycero-3-phosphocholine (DPPC) is a suitable lipid to assume that the 
lipids in a 50:50 DMPC:DSPC mixture will act like, because taking the average 
between DMPC and DSPC physiological properties, one gets properties very near 
to the ones DPPC has. DPPC has a chain length at 16, a melting temperature at 
Tm = 41.3 °C and enthalpy change of ∆H = 38.1 kJ/mol. DPPC’s specific volume, 
intrinsic thermal volume expansion coefficient, volume compressibility is in the 
gel phase approximately below 0.5 % and in the fluid phase approximately below 
1.5% from DMPC and DSPC values, and very close ( below 0.1 %), to the average 
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Figure 4.2.1 – Experimental heat capacity profile of a 50:50 DMPC:DSPC mixture adapted from 
Seeger et al. (2005) [35]. The heat capacity profile has two maxima approximately at 30 °C and 44 °C, 
and a local minimum at 35 °C. 
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Figure 4.2.2 – Heat capacity calculated as an ideal mixture for DMPC and DSPC, with the values  
∆H = 23.9 kJ/mol and Tm = 23.6 °C for DMPC, and ∆H = 50.7 kJ/mol and Tm = 54.7 °C for DSPC.

Table 4.2.1 – Literature data of membrane parameters and elastic constants of DPPC (the parentheses 
have the phase and temperature the properties is measured in).

Gel Fluid

Molar mass [g/mol] 734.039 

Calorimetric Heat capacity cp,0 [J/molK] 1600 (21.5 °C) [57] 1650 (51.5 °C) [57]

Melting point main transition [°C] 41.6 [29]

Volume V Specific volume [cm3/g] 0.947 (L’β, 33°C) [56] 0.999 (Lα, 41.5°C) 
[56]

γvol [cm3/g] 8.599×10-4 [29]

Intrinsic thermal volume expansion coefficient
(dV/dT)/V [K-1]

0.00088 [56] 0.001 [56]

Volume compressibility κT [m3/J] 5.2×10-10 [58] 7.8×10-10 [58]

Area A Specific area [cm3/g] 1.90×106  (L’β, 25 °C) 
[29]

2.52×106  (Lα, 50 °C) 
[29]

γarea [cm3/g] 8.93×103 [29]

Intrinsic thermal area expansion coefficient
(dA/dT)/A [K-1]

0.0026 (25 °C) [59] 0.0042 a(Lα, 34 °C)  
[60]

Area compressibility κT [m3/J] 1.0 (L’β, 25 °C) [61] 6.9 (Lα, 50 °C) [61]
avalue for DMPC
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of DMPC and DSPC values [56]. Using the value for DPPC listed in Table 4.2.1 and 
the equations above, one can calculate the fractional degree of melting, membrane 
volume, membrane area, density and thickness shown in Figure 4.2.3(a-f). Here 
an assumption has been made, that the intrinsic thermal area expansion coeffi-
cient in the fluid phase is approximated to DMPC value [29]. The area compress-
ibility can be calculate from eq. (4.2.12) and adiabatic area compressibility from 
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Figure 4.2.3 – Membrane dimensions of 50:50 DMPC:DSPC, calculated from the excess heat capac-
ity. (a) Calorimetric excess heat capacity. (b) Fractional degree of melting, f, and excess enthalpy, 
∆H, obtained from integrating the experimental heat capacity profile. (c) Calculated temperature 
dependence of the membrane specific volume, V. (d) Calculated temperature dependence of the mem-
brane specific area, A. (e) Calculated temperature dependence of the membrane lateral density, ρ. (f) 
Calculated temperature dependence of the membrane thickness, D. (g) Calculated isothermal area 
compressibility and calculated adiabatic area compressibility, corresponding to a 5-MHz ultrasonic 
experiment. 
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(4.2.16), these are shown in Figure 4.2.3(g), for a low-frequency case (κs ≈ κT) and 
a 5MHz case (cp = ∆cp). 
The sound velocity can be calculated from the lateral density and adiabatic area 
compressibility: 

	 2 1
A
S

c
ρκ

= .		  (4.2.17)

For the 50:50 DMPC:DSPC membrane the sound velocity profile as a function of 
density is shown in Figure 4.2.4(a). For small amplitude sound the equation takes 
the form 0 01 A

Sc ρ κ= . As shown, the area compressibility depends strongly on 
the density through the phase transition, one can then expand

	 2 2 2 3
0

1
A
S

c c p q rρ ρ ρ
ρκ

= = + ∆ + ∆ + ∆ +  	 (4.2.18)

where ∆ρ = ρ + ρ0 with ρ0 as the equilibrium density. For the data from 50:50 
DMPC:DPPC one can choose to work with the dimensionless sound velocity
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with the dimensionless variables (similar to section 2.3), u, x and t defined as:
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By fitting the function to the sound profile one can obtain4 the values;  
c0 = 2.24988 × 102 and ρ0 = 4.85059 × 10-3, and the dimensionless values  
B1 = 2.14164 × 10-4, B2 = -1.30063 × 102, B3 = -2.41919 × 102, B4 = 2.42545 × 104,  
B5 = 2.45451 × 105 and B6 = 6.97352 × 105, assuming a bulk temperature of  
T = 33 °C.  The fit is shown in Figure 4.2.4(b). 
As seen in Figure 4.2.4(a) the sound velocity in the fluid phase (ρ < 0.0405) is 
al-most constant, and below the sound velocity for the equilibrium density  
(ρ0 = 0.0485). It can be assumed that the sound velocity in the fluid phase follow 
the expansion. As mentioned in section 4.1, it can be shown that this approxima-
tion only effect the size of the amplitude when the velocity is near the minimum 
velocity, since the minimum sound velocity occurs just before the fluid phase. 

4   These are not the values from the best fit, but these are the values that will be used. The dimen-
sionless function differ less than 5 % from the function for the best fit. The two minimal has a small 
shift to the right, but the shape of the two functions is similar. This choice will have no effect on the 
results presented, more than a small variation and no influence on the phenomena presented and 
described. However, the membrane’s sound velocity profile and the properties are all assumptions, 
and therefore, can these values be assume to be the ones for 50:50 DMPC:DSPC. The difference 
between this fit and the best fit is shown in Appendix E.
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Drawing of a neuron, human retinaal cell, by Santiago Ramón y Cajal, 1899. This drawing is amoing 
the first drawing of a neuron. Ramón y Cajal was the Spanish physician and early neuroscientist who 
first discovered that the nervous system was not continuous but was comprised of interconnected 
individual cells.



Chapter 5
Results

One of the aims in this thesis is to investigate the possibility of negative solitons, 
their propagation and behaviour. Solitons in membranes have been investigated 
and described by Heimburg and Jackson [2] and Lautrup et al. [46], for different 
lipid compositions, DPPC LUV and bovine lung surfactant. They choose to as-
sume that the membrane is slightly above the melting temperature, in the fluid 
state, and obtain that density waves, the solitons, are through the transition and 
therefore a positive change in the density. These soliton will be referred to as pos-
itive solitons, due to the positive density change. In literature these solitons are 
also called bright solitons. Similar, a soliton with negative density change will be 
referred to as negative soliton (dark solitons).
The first part of this chapter is the result for an DPPC LUV membrane, similar to 
the one investigated in [2], [46], [47], will be presented. But the result will be for 
the membrane in the state before the melting temperature, the gel state, which 
should allow negative solitons. Thereafter the results for a membrane of mixed 
lipids with two melting temperatures is presented. A membrane with two melting 
temperatures and thereby two phase transitions is a suitable membrane for allow-
ing both negative and positive solitons.

5.1	 Solitons in DPPC LUV Membranes
In the paper “On soliton propagation in biomembranes and nerves” by Heimburg 
and Jackson [2], they used DPPC vesicles as a reference. DPPC is a well-studied 
lipid and is a major component of biological membranes [15]. The thermodynamic 
data for DPPC vesicles is shown in Figure 2.3.1 and they assume a bulk tempera-
ture at T = 45°C and expand the sound profile to eq. (2.3.2) and got solitons that 
move the membrane through the melting transition and obey eq. (2.3.3).

5.1.1	 Analytic Solution
Using the same procedures as presented in section 2.3 one can obtain analytic 
solutions for solitons with the sound profile, presented in section 2.3. Propagation 
of sound in membrane is described by eq. (2.3.3) and introduce the dimensionless 
variables from eq. (2.3.5) we have the dimensionless sound equation for mem-
branes:
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Where B1 = 16.6 and B2 = 79.5. In [2] they required, because of the qualitative fea-
tures of the empirical compression modulus, B1 < 0 and B2 > 0. However, in this 
situation, with the sound profile for the membrane in the gel state, it requires that 
B1 > 0 and B2 > 0. 
From eq. (2.3.11) one has the relation that two real roots exist only when 
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When B1 > 0 and B2 > 0 both roots are negative and the absolute smallest root is 
the amplitude of the soliton described by eq. (2.3.14). 
All the properties described in section 2.3, such as conservation laws and energy, 
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Figure 5.1.1 – Soliton profiles with different velocity, β.
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for the positive solitons holds also for these negative solitons. E.g. the energy den-
sity is described by:

	 ( )2 21 1
1 23 61u B u B uε = + +  		  (5.1.4)

For the positive solitons u will be positive for all ξ, and B1 negative, meaning that 
the second term, in the parentheses is negative, and the rest positive. For the neg-
ative solitons u will be negative for all ξ, and B1 positive, meaning that the second 
term is also negative. This shows that the only difference between the stable posi-
tive solitons, and negative is the sign of the density change. Negative solitons are 
shown in Figure 5.1.1 for various velocities, β, compared to Figure 2.3.2 (positive 
solitons), which shows that the negative solitons have the same amplitude for the 
same velocity as the positive ones.

5.1.2	 Collision of negative solitons
One of this thesis’ aims is to see how these negative solitons differ from the pos-
itive, described in section 2.3.4 and by Lautrup et al. [46], when they collide or 
decay. By using the two-step Lax-Wendroff method the solution to a given time can 
be numerical calculated. Lautrup et al. made an analysis of small-amplitude per-
turbations and stability of the soliton in the two-step Lax-Wendroff method. The 
analysis can be transferred to this study, because the basic density change equa-
tion is one the same form. The negative solitons behave like the positive solitons. 
Figure 5.1.2 show collision of two solitons before and after collision (in Appendix 
C.1 a time series of two soliton colliding is shown) . The solitons with a velocity of  
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Figure 5.1.2 – Collision of negative solitons, show that they emerge from the collision almost un-
changed, with small-amplitude waves ahead of them. The emission of the small-amplitudes waves 
make them solitary waves and not solitons, since they will emerge unchanged.
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β = 0.8 have after the collision small-amplitude waves traveling ahead of them. 
For the β = 0.649851 solitons they have more small-amplitude waves ahead of it, 
and just in front of them appear a solitary wave, the solitons are falling apart into 
smaller solitary waves. Comparing the figure to Figure 2.3.5 (collision of positive 
solitons), the only difference between the collision of the negative and positive 
solitons with velocity β = 0.8 is the sign of the density change, the result is the 
same; penetration and small-amplitude waves. For the solitons with velocity β 
= 0.649851 the difference is bigger. The collision of the positive solitons result in 
several solitary waves ahead of them, where the collision of negative solitons only 
have one visible after the same time. This difference is because the collision of pos-
itive solitons reach the soft barrier introduced by Lautrup et al.. Without this bar-
rier the result will be the same, only with different direction of the density change. 

5.1.2.1	 Delay of the solitons
As mentioned, the normal behaviour of two solitons colliding (in any field of phys-
ics) is that they will be delayed in their further propagation, compared to if they 
just pass through each other without any interaction. As shown, the collision in a 
biological membrane leads to a small energy loss, which result in an acceleration 
of the solitons. These two things combined give a complex system for the delay of 
solitons, because the solitons will be delayed in the collision, and right thereafter 
accelerate to a larger velocity. This means that depend in which point the measure-
ment is in, the arrival of the solitons both can be before or after what is expected, 
if they just pass through each other. This delay as a function of velocity is shown in 
Figure 5.1.3. The delay is calculated from collisions of two identical solitons start-
ed with a distance of ξ = 100 (at ξ = ±50), where the equation of motion was found 
before and after the collision. The solitons have no tend to accelerate or decelerate 
before and after the collision, and therefore the velocity is constant. When the 
equation of motion of the solitons before the collision is known, one can calculate 
the delay after the collision by subtraction the actual time the soliton arrive at a 
point from the expected time from equation of motion. In Figure 5.1.3 the “After 
collision”-curve is calculated at a point between the two solitons initial state, at ξ 
= 25 (the collision happens at ξ = 0), and since the solitons is symmetric, the same 
absolute equation of motion can be obtain for both side. From the equation of mo-
tion of the solitons after the collision, the maximum delay can be approximated 
(“At collision”-curve), by the different between the collision time from the motion 
before and after the collision. 
It can seems strange, that for velocity near the minimum limit, the delay is nega-
tive. The reason is that the acceleration of the solitons start already in the first part 
of the solitons in the collision, before the actual collision between the points of 
the theoretical maximum of the two solitons. Therefore, the movement has been 
accelerated and have caused to make up for the delay before the actual collision 
(when they are fully overlapping).
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5.1.3	 Disturbance in the soliton
In section 2.3.4, was disturbance in a positive soliton described. A distortion in 
the second initial condition, the velocity depended,

	 ( ) ( ),0 ,0v x p u xβ= ,	  	 (5.1.5)

results in two solitons traveling in the opposite direction, and small-amplitude 
waves ahead of them. In Figure 5.1.4 the same is done for a negative soliton, with 
β = 0.735 and p = 0.5. The same happens as for the positive soliton with the same 
conditions. The negative is divided into two solitons, the big one travel in the same 
direction as a soliton without disturbance, and therefore is the initial soliton, 
where the small one travels in the opposite direction. Ahead of the solitons travels 
small-amplitude waves, which carry approximately 0.3 % of the initial energy. The 
rest of the energy is in the solitons. The two solitons quickly reach a velocity where 
it matches the amplitude. Subtracting the soliton, as shown in Figure 5.1.4 (c), only 
the small-amplitude waves is left.
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Figure 5.1.3 – (a) The delay of the soliton as a function of the velocity. The curves is the result of 25 
simulations of collision of solitons at different velocities. “At collision” show the calculated delay at 
the collision, and “after collision” show the actual delay down of the collision. (b) Soliton with start 
velocity β = 0.79 after the collision (solid line), dashed is the projected solitons and represent the 
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which moves in the opposite direction. Small-amplitude waves run ahead of them. (b) Velocity of the 
initial soliton show that it quickly reach a stable velocity, and within the first space, ξ < 8. (c) The two 
solitons subtracted from (a) and only leave the small-amplitude waves.
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By making a distortion in the first initial condition, the amplitude, the initial 
condition become

	 ( ) ( ),0u x pu ξ′=  		  (5.1.6)

	 ( ) ( ),0 ,0v x u xβ=  		  (5.1.7)

where ú  is the soliton described by equation (2.3.14) with velocity β. For p > 1 
gives a initial soliton with a faster velocity than the stable soliton with same am-
plitude. The result for p = 1.5 and β = 0.735 is shown in Figure 5.1.5. The soliton 
decay to the velocity correspond to the amplitude. From the soliton, propagate 
small-amplitude waves in both direction. The energy carried by the small-am-
plitude waves is less than 1 % of the initial energy. The velocity quickly drop to a 
velocity near the ideal velocity, and after that slowly decay towards it. The reason 
that the velocity change, and not the amplitude,  is that the energy released when 
the velocity drops is less than a change in amplitude will result in (see eq. (2.3.26)). 
When p takes values where the amplitude do not excess the maximum amplitude, 
the soliton will adjust to a velocity where it is stable, and there will be emitted 
small-amplitude waves. It can be shown that a small change in the velocity, both 
faster and slower, will result in a stable soliton that will keep the amplitude but 
changes to a velocity where it is stable, and in the process emits small-amplitude 
waves which will carry a small amount of the initial energy. 
When p is increasing, the initial soliton will emit a soliton in the opposite direc-
tion as seen in Figure 5.1.6. The two solitons have a mismatch between theirs am-
plitude and velocity, the initial one is subsonic (β < β0) but near the limit and the 
emitted soliton is faster than it should be, compared to the analytic soliton with 
same amplitude. The two solitons can be categorized as unstable solitons, but they 
will over many iterations decay to stable solitons, where the velocity match the 
amplitude.  For higher p the energy ratio bound in the soliton is smaller, and the 
amount of small-amplitude waves is higher. Ahead of the initial soliton, there is a 
compressible plateau or field, which can be seen as a wide small-amplitude wave. 
In the opposite direction a similar plateau is found, where the emitted soliton is 
overlapping. The plateaus has a supersonic velocity, and it will over time become 
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Figure 5.1.5 – (a) Soliton shown at t = 40, with an initial amplitude 1.5 the size of the corresponded 
velocity dictate, β = 0.735, the shape remain the same and small-amplitude waves is running away, 
in both direction. (b) the velocity of the soliton decay to the velocity that corresponds the amplitude. 
The small fluctuations in the velocity between t = 45 and 50, is collision with the small-amplitudes 
waves travelling the opposite direction and collide with the soliton because of the periodic boundary 
condition. (c) the soliton subtracted and only small-amplitude waves is left.   
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wider, because the velocity in the front is bigger than in the end. When the soliton 
is overlapping, it is speeding up and when it is just behind it, in the plateau tails, 
it is slowing down. When no overlapping the soliton will speed up to a constant 
sonic velocity and be stable. For p = 3.5 it will take t = 250 for initial soliton to get 
free of the plateau, where the emitted still overlap after t = 1000.
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Figure 5.1.6 – Soliton shown at t = 100 with p = 3.5, show that the initial soliton emits a soliton in 
the opposite direction. (b) the emitted soliton have a mismatch between amplitude and velocity, the 
velocity is β = 0.956 (u = -0.016) and should have β = 0.870 (dashed line) to be stable with this ampli-
tude (-0.05). The emitted soliton seems to be in a density compression field, which is speeding up the 
soliton, a similar field is between the initial soliton and the small-amplitude waves ahead of it. (c) the 
initial soliton decay to a soliton with a miss match between the amplitude and velocity. The velocity is 
subsonic β = 0.635 and should be 0.649852 (dashed line).  The amount of the small-amplitude waves 
increases with bigger p, and thereby less initial energy bound in the solitons, here 65 % is bound in 
the solitons.
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5.2	 Solitons in a mixed lipid membrane 
As shown in the previous section a system with negative soliton is a system where 
a negative density change forces the system into the phase transition. From Heim-
burg and Jackson [2] it was shown that a system with positive solitons, is when a 
positive density change force the system into the phase transition. For both sys-
tems the sound profile has to be non-linear. Therefore it is expected that a system 
where both a negative and positive density change forces the system into a phase 
transition at a certain bulk temperature. Such a system needs to have a heat ca-
pacity with two peaks. Such an environment could be a 50:50 DMPC:DSPC mem-
brane, as mentioned before. As shown in its heat capacity it has a wide melting 
transition with two peaks. By choosing a bulk temperature between the peaks, 
it seems like it has two phase transitions, one in both direction. It is interesting 
to investigate this kind of heat capacity, because it looks like that of a biological 
membrane.

5.2.1	 Stable Soliton
Using the same procedure as in the previous section and described in section 2.3, 
one arrives at an equation that can be numerically solved using the Euler Method. 
Starting with the modified dimensionless sound equation from eq. (2.3.6):

	 ( )
2 4

2 4

u u uB u
x xt x

∂ ∂ ∂ ∂ = − ∂ ∂∂ ∂ 
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By integrating twice, then multiplying with ∂u/∂ξ and integrating once more to 
yield:
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  	(5.2.2)

It is seen that this equation (from left hand side) has a maxima or minima and it is 
symmetric around it. Solutions to this equation can both be negative and positive 
solitons, with a limit minimum velocity when the right hand side of the equation 
only has one real solution, these velocities were found to be β0 ≈ 0.875681 and β0 ≈ 
0.972626, respectively for the negative and positive soliton. There exist no positive 
solitons with velocity below β < 0.972626. No solution that was a combination of 
a negative and positive density change was found. The sound profile can be split 
in two, and be treated as a system with only negative solitons, left hand side of the 
sound profile (section 5.1) and a system with only positive solitons, right hand 
side, (Heimburg and Jackson [2], Lautrup et al. [46]). This can be compared to the 
systems mentioned. Different solutions for various velocities are shown in Figure 
5.2.1, and they are similar in shape to those already presented in previous sec-
tions. The amplitude is approximately inversely proportional to the velocity, and 
the width of half maximum goes towards infinity when the velocity goes towards 
the limits, minimum (β = β0) and maximum velocity (β = 1). In between the limits 
there is one minimum, this is shown in Figure 5.2.2. This is in accordance to the 
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two system for DPPC with different bulk temperatures, previous described. 
It can be shown, that the minimum velocity depends on the difference between 
the sound profiles minimum and the sound velocity for the equilibrium density. 
And that the amplitude for solutions with the minimal velocity depends on the 
distance between the equilibrium density and the density where it again reaches 
the sound velocity equal to the one for the equilibrium density. 
No analytic solution to equation (5.2.2) could be found, and therefore the differen-
tial equation could only be solved using numerical methods. As shown in section 
3.1 the error is low using the Euler Method when the step size is small, and it is 
therefore a good approximation to the exact solutions.

5.2.2	 Collision of Solitons
Figure 5.2.3 shows the result of collisions of positive and negative solitons for dif-
ferent velocities. For all collisions of solitons, the result is them passing through 
each other and the emission of small-amplitude waves  traveling in front of them. 
The amount of small-amplitude waves depend on how close the solitons are to the 
minimum velocity, and thereby near the maximum amplitude before the collision. 
After the collision the solitons have a loss in their amplitude, but no more than 
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Figure 5.2.1 – Negative and positive solitons for various velocities. They have same characteristics as 
the soliton described in previous sections. When the velocity is near the minimal velocity the soliton 
become wider, and a plateau is formed in the top. 
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Figure 5.2.2 – Width of the solitons as a function of velocity. It is clear that the limit where the velocity 
goes toward the minimum velocity the width goes toward infinity, and same when the velocity goes 
toward 1 and amplitude towards 0.  (a) Width of negative solitons as a function of velocity (b) width 
of positive solitons as a function of velocity.
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6.5 % (for the minimum velocity case). This is similar to the collision for the basic 
density change equation. 
When the solitons loose amplitude they speed up, this effect is found in most of 
the results. In those result where the velocity was not exactly found to speed up, 
the velocity was within a small margin near the velocity before the collision. The 
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Figure 5.2.3 – Collision of negative and positive solitons with different velocities. It is clearly seen that 
they pass through each other. When the velocities are near the lower limits, the collision generates 
small-amplitude waves. (a) two solitons with a velocity near the minimum velocity for negative sol-
itons. (b) two solitons with a velocity near the minimum velocity for a negative and positive solitons 
respectively. (c) two solitons with a velocity near the minimum velocity for positive solitons. (d) two 
solitons of approximately same absolute amplitude and shape.
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solitons in these results have a large fluctuation in the maximum and there could 
not be obtained a precise measurement of the velocity, due to small-amplitude 
waves interfering and the error in the numerical method. One notable thing is, 
that most of the results, where the velocities could not be found, was the colli-
sions between a negative and positive soliton. They was, of cause, different from 
each other and there shape was not exactly the same (if they has the same am-
plitude, then the velocity, absolute mass change and energy is different). In other 
collisions, was the solitons of same type, amplitude and shape. As seen in Figure 
5.2.3(c) right side, the maximum of the solitons is in its front. Just after the col-
lision this maximum is in the back of the solitons. This maximum has over time 
moved up to the front, and can be linked to a small-amplitude wave with almost 
the same velocity overlapping the soliton and slow it down, as explained in section 
5.1.3 (overleaping density changes).
When the two solitons are colliding they get delayed, but because of the large fluc-
tuation and error, the exact time delay and function for time delay as a function 
of velocity cannot be calculated. However, in the result where the delay could be 
estimated, it supported the principle described in section 5.1.2.1.
For some of the collisions, the results have been calculated to a time after they 
collide again because of the periodic lattice. These results show no difference from 
the first collision. Therefore solitons can collide several times without being un-
stable. There has also been calculated result for collision of soliton pairs. Such a 
pair could be a negative and positive soliton with a small separation. The result 
here also does not differ from single soliton collision, and the solitons propagate 
further as stable.

5.2.3	 Disturbance in solitons
Finite-amplitude disturbances for negative solitons in the basic density change 
equation was considered in section 5.1.3. Disturbances in the expanded density 
change equation show similar results. However, the results differ a little because 
both negative and positive solitons can propagate and the relative velocity range 
they can have is smaller compared to those from the basic equation. 
First ting to consider, is the distortion in the second initial condition (eq. (5.1.5)) 
and as shown in Figure 5.2.4, it look a lot like Figure 5.1.4 where it results in two 
solitons propagating in opposite directions. With the first initial state as a stable 
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Figure 5.2.4 – Distort in velocity field, v, with p = 0.5. (a) shows a similar result than with the basic 
density change equation, where initial soliton split into two solitons propagation in opposite direc-
tion. However, in (a) it is only the wave in the right side is a stable soliton. (b) velocity for the initial 
soliton shows that it quickly reach a constant velocity. (c) the right side subtracted a soliton with same 
velocity, show that it is indeed a soliton.
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soliton and the second initial condition with p = 0.5. Results in a stable soliton 
propagation in the same direction as the second initial dictate, and wit h a soliton-
like wave propagating in the opposite direction. The waves in the opposite direc-
tion have a shape what could be mistaken as a soliton, but it has a velocity above 
β > 1, supersonic, and is too narrow compared to the numerical soliton calculated 
with same amplitude. The numerical method has an overshoot in the width of the 
solitons, and even when taking this into account, it is too narrow.  
For different stable solitons, the first initial condition with a distortion in the sec-
ond initial condition (p < 1), no of the results have two stable solitons propagating 
in opposite directions. Some waves in the opposite direction of the soliton could 
have sonic velocities but were too narrow to be solitons. This phenomena is not a 
result of an equation where negative and positive solitons can propagate, but of 
the small range of velocities for stable solitons. Especially the stable positive sol-
itons have a small velocity span. The maximum density change in the basic and 
expanded equation is approximately the same, but the lowest velocity is not (basic: 
0.649851, expanded: 0.875681). The wave propagation in the opposite direction of 
the soliton in Figure 5.2.4(a) has an amplitude of approximately -0.02. To have a 
stable soliton with this amplitude in the basic and expanded equation it must have 
a velocity of approximately β = 0.95 and β = 0.995 receptively. As seen in Figure 
5.2.4(b) the initial soliton reaches a constant velocity shortly after the emission of 
small-amplitude waves. In Figure 5.2.4(c) solitons calculated with Euler method 
with the same velocity are subtracted from the result. As expected, the soliton 
from the Euler Method is wider and the soliton on a lattice becomes higher and 
narrower. The difference is in the same order as the error in Figure 3.2.3, and 
shows that it is a stable soliton taking the error into account.
If one of the initial differ a little from a stable soliton, the soliton will in short time 
decay to a stable soliton. The velocity will decay to a velocity corresponding to the 
amplitude, and small-amplitude waves are created in the process, this is seen in 
Figure 5.2.5.

From the basic equation it was shown that when the first initial state is an unsta-
ble soliton with a larger amplitude than any stable solitons, it will result in two 
solitons propagation in opposite directions and small-amplitude waves in front of 
them. The same is found for the expanded density change equation, but instead 
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Figure 5.2.5 –Distort in first initial state, u, with p = 1.5 resulting in a bigger soliton. (a) the solitons 
emits small-amplitude waves in both directions where some is overleaping in front of it. Over time 
the wave is get free of the soliton. (b) the velocity of the soliton, shows it quickly slowdown to be sta-
ble, after that the velocity is increasing over time to a constant velocity. This increasing in velocity is 
because of the overleaping of a small-amplitude wave. (c) Difference from a soliton with same velocity 
calculated with Euler Method, where the overleaping small-amplitude wave is seen. 
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of two solitons, it results in four solitons. Two pairs consist of a negative and a 
positive soliton. As seen in Figure 5.2.6 the positive solitons are traveling in front 
of the negative, and a lot of small-amplitude waves are emitted from the decay. 
The solitons in each pair do not have the same velocity. The positive is faster than 
the negative, but the velocities are in the range of stable solitons. The numerical 
soliton calculated from the velocity, fits the negative solitons, and the positive sol-
itons differ both in their amplitude. An explanation is that the small-amplitude 
waves are overleaping and speed up the solitons, as mentioned in 5.1.3. On an 
infinity lattice and after an amount of time where the solitons are not overleaping 
, results with all four solitons having a velocity which matches the amplitude. In 
Figure 5.2.6 the solitons are overlapping, which both affects the amplitude and the 
velocity of the positive soliton. In Figure 5.2.6(c) the positive is not overleaping 
the negative, and therefore the negative is not under the effect of other solitons 
or small-amplitude waves, and fit to the numerical soliton shown. The positive is 
under the effect of small-amplitude waves, and has a mismatch between amplitude 
and velocity. Over time this effect can be neglected, but since both the small-am-
plitude waves are traveling with β ≈ 1 and the soliton is travelling with a velocity 
of β = 0.975, it results in the waves not overlapping until after t = 2000.
The same effect is found with a positive density change instead of a negative. How-
ever, due to the smaller velocity range and a small maximum density change, the 
result of a distortion in the second initial state is a soliton with small-amplitude 
waves travelling away from it. The distortion in the first initial condition is the 
same, but the negative is in front of the positive, when the initial amplitude is 
above the maximum amplitude of a positive soliton.

5.2.4	 Initiation
In neurophysiology an excitation of the neuron can be made by applying a voltage 
pulse between two electrodes on the membrane surface, which results in two sym-
metrical pulses travelling in opposite direction.  However, the physiology behind 
the excitation is not fully known, but the voltage pulse has to be above a specific 
threshold to initiate the pulses, meaning a certain amount of energy has to be 
added to the membrane. 
As seen in the previous section a similar situation can be made in the soliton 
model. A disturbance in the initial states results in two pairs of solitons travelling 
in opposite direction. As seen in Figure 5.2.6 when the second initial state takes 
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Figure 5.2.6 – When p = 3.0 in the first initial condition, u, give an initial state with a soliton with an 
amplitude higher than any stable, then initial soliton will split in two pairs of negative and positive 
solitons. The negative solitons fit approximately to calculated solitons with same velocity. However, 
the positive solitons seen to propagate faster than they should, since the calculated ones is smaller. 
Dashed lines is numerical calculated solitons with same velocity. 
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a value different than null, the pairs propagating in opposite direction are not 
symmetrical. With a second initial state with the value zero, results in two sym-
metrical pairs of solitons travelling in opposite direction. To investigate this, the 
first initial state is a Gaussian function

	 ( )
2
20,

x

u x Ae σ
−

= −  ,		  (5.2.3)

where A is the amplitude and σ is related to the width. As shown in Figure 5.2.7 
the initial state(a) will over time result in two symmetrical pairs of solitons trav-
elling in opposite directions with small-amplitude waves in front of them (b). Be-
cause of the symmetry around the origin, only one side of the system is necessary 
in order to calculate properties of the whole system. The results were quantified 
by identifying the two waves nearest to the origin as solitons or small-amplitude 
waves. This is done by calculating the velocity of the negative and positive wave, 
as illustrated in Figure 5.2.7(c) (in Appendix C.2 a time series is shown for these 
kind of initiation of solitons). If the velocity is sonic, β < 1, the wave is quantified 
as a soliton.  The system can then have 2 negative solitons, if the negative wave 
nearest to the origin is sonic, 2 positives, if the second nearest wave or nearest 
positive wave is sonic, two pairs of a negative and positive soliton when both of 
the nearest two waves is sonic. The results show that 2 negative solitons could exist 
without any positive solitons, and vice versa. This was only found in a small range 
of situations. No results show more than 4 solitons total, and when the initial state 
is negative, the nearest wave to the origin is negative wave. In extreme high energy 
cases there was a small positive density change right after the negative soliton. 
This can be explained by the positive soliton being extremely wide compared to 
the negative soliton, and it is therefore overlapping totally the negative soliton.
All the quantities presented in this section are found at time t = 360, which was 
chosen since the positive and negative have the time to move away from each other 
and therefore the effect of the interaction between them is minimize. All the re-
sults were calculated on a lattice with size  N = 40,000 with ∆x = 0.1 and ∆t = 0.001.
The velocities of the nearest two wave as a function of the initial energy for dif-
ferent width, σ, of the Gaussian function are shown in Figure 5.2.8. As seen, the 
higher the initial energy is, the lower the velocity of the solitons is, until the veloc-
ity reaches the minimum velocity. For widths bigger than σ > 0.85, the velocity as 
a function of the width has the same form, where the negative waves become sonic 
first and thereafter the positive. The more energy in the initial state, the slower 

Figure 5.2.7 – (a) the initial state is a Gaussian function with σ = 1.25, A = 0.433 and E = 2.88. (b) The 
result for t = 360, show a lot of small-amplitude waves in front of two pairs of solitons. (c) A pair of a 
negative and positive soliton where the velocity is noted above and under them. Red dots indicate the 
minimum, maximum and roots. The filled is the area which is quantified to be the pair.
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the solitons become. The transformation from small-amplitude waves to solitons 
happen in the same energy range approximately between initial energy 0.1 and 1. 
The energy needed to have solitons is decreasing as the width increase. In cases 
where the width is below σ < 0.85 the positive soliton is sonic before the negative, 
but the positive soliton is like the other cases in front of the negative soliton. But 
at some time the negative soliton will overtake the positive. The energy needed 
to get a pair of solitons as a function of the width σ follow a power law function. 
Cases where the width is below σ < 0.85 have many properties in common with 
cases where the width is above σ > 0.85, but the energy needed to get solitons is 
much higher. When the energy is increasing, and width constant, , the function of 
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Figure 5.2.8 – Velocity for the negative and positive waves nearest the origin of the initial disturbance 
as a function of initial energy. Each graph is for different widths, σ. The velocity is measured at time  
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ergy.  The colour indicate the quantification of the result, whenever it have no solitons, positive or 
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energy carried by the two waves nearest to the origin follow a different path than 
those above σ > 0.85.
As mentioned before, overlapping of waves influences the speed of the solitons, 
and it is therefore expected that, because of the large amount of small-amplitude 
waves, some of the results will be quantified wrong. It is expected that this error is 
the same for all widths, and the result will not change noticeably.

The energy carried in the nearest waves to the origin can be calculated by the in-
tegral over the energy density as a function of the two states, v and u, defined as:

( ) ( ) ( ) ( )( )
2

2 ,1 1 1, , ,
2 2 2

u t x
t x v t x A u t x

x
ε

 ∂
= + +  ∂ 

	  � (5.2.4)

Where A(u) is eq. (4.2.19) integrated twice, and is the compressive energy density. 
In Figure 5.2.9 the ratio of the initial energy carried in the two waves as a function 
of the initial energy shown. Again, it is seen that widths below and above σ > 0.85 
show different tendencies. Where the widths below σ < 0.85 show that the ratio of 
the initial energy carried in the two waves increases with the initial energy. The 
amount of the initial energy that ends up in the two waves is very low. The widths 
above σ > 0.85, where negative solitons appear first and thereafter pairs, show all 
the same similarity in the ratio of the initial energy as the energy increasing. As 
seen the functions start rising from low energies until a point where they fall. In 
this fall the first soliton appear. For larger widths the first solitons appear just be-
fore the fall in ratio. When the energy is increasing the function has a bump. At 
the start of this bump, when it start to raise, is where the pairs of solitons appear 
in the results. When the slope for the fall is fitted to a power law function, it is 
seen that this bump has the same height above for all widths above σ > 0.85 of ap-
proximately 0.04 points. It therefore shows, that when the pairs of solitons appear, 
the system becomes more efficient by using the solitons to carry the initial energy 
instead of the small-amplitude waves.
The initial state is a disturbance in the mass, which is like the energy carried away 
with the waves. The mass change can be calculated by integrating u(t,x) over the 
waves. The ratio of initial mass change carried away by the two nearest waves to 
the origin starting with approximately 0.8 and fall to a minimum (the fall become 
smaller when the widths is increasing) where it raises again in the pairs domain. 
However, most of the mass change is in the two waves. The mass change in the 
negative solitons are bigger than the initial mass change. For example in Figure 
5.2.7 the initial disturbance is a mass change of -0.96 and the mass change in the 
negative solitons at time t = 360 is -2.37 and in the positive solitons it is 1.83. The 
larger mass change found in the solitons than found in the initial state, is an effect 
of energy and mass conservation. This means that to conserve the energy and 
mass it has to link the positive and negative solitons together to make a pair where 
the negative soliton borrows mass to the positive solitons, so the total mass change 
is below the initial state. The soliton pairs are carrying most of the mass from the 
initial state and a lot of the energy, the rest of the energy and mass change is then 
carried in the small-amplitude waves.
As seen in Figure 5.2.9, the larger the width, or distribution of the initial energy 
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Figure 5.2.9 – The ratio of the initial energy in the two nearest waves to the origin of the initial state 
disturbance as a function of the initial energy for different widths, σ. Each point is a result and the 
ratio is calculated at time t = 360. The black line is a fitted power law function to the slope decreasing 
from the top point. 
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is, the less energy is needed to have a result with pairs of solitons. In Figure 5.2.10 
the initial energy from the results as a function of the width of the initial distur-
bance is seen. With the quantification of the result, it is seen that the result falls 
into domains – a domain where no solitons exist, a domain where only negative 
solitons exist, a domain where only positive solitons, and a domain where pairs of 
solitons exist. The domains was found by fitting the first points at a certain width 
where the result first shows that domain. E.g. the pair domain was found by fitting 
the points, representing a result, at a certain width and energy, where the point 
just below with same width and less energy do not contain pairs. The pair domain 
follows, with a very small standard error a power law function

	 2.201.40E σ −=  		  (5.2.5)

And the other domains have a small standard error when fitted to a power law 
function. All three function approximately cross each other at a point at σ = 0.77 
and E = 2.5. See Appendix B for the fits and error.
No widths above σ > 2.5 was investigated fully, and one can imagine that this 
symmetry will break when the width become too big (E.g. should an initial state 
u(0,x) = const. use little energy to have pairs, but this is the same as moving the 
bulk temperature, and no waves will propagate). The predicted initial energy with 
a width of σ = 5 (E = 0.04) is five times smaller than needed (E = 0.2), leading to the 
symmetry only holding for a finite range of widths and thereby a certain distribu-
tion of the initial energy. Other patterns from the result is shown in Appendix D.
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Figure 5.2.10 – When the initial energy as a function of the width, σ, is plotted with the quantifica-
tion of the result, one get a phase diagram of when different solitons exist. Each point is a result with 
width, σ, and initial energy. Total 421 results. 
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5.2.4.1	 Initiation in a system with viscosity
In the process of initiation of solitons a lot of small-amplitude waves are emitted. 
Introducing viscosity into the system the amount of small-amplitude waves is re-
duced, as seen in Figure 5.2.11. The solitons can propagate over a great distance 
with a very little decay per time, shown by Lautrup et al. [46]. An example is 
shown in Figure 5.2.11, the solitons in the system with viscosity is smaller than 
them in the system without, and only carrying half the amount of energy than the 
solitons from the viscosity-less system at time t = 360. The system has only less 
than one-tenth of the initial energy at time t = 360, where 96.4% is in the solitons. 
The viscosity term does not prevent the emission of the small-amplitude waves, 
but only prevents them from propagate very far.

5.2.5	 Thickness change and heat release
From the density change the thickness can be calculated and found to be in the 
order of 6 Å to -10 Å, Figure 5.2.12 shows the displacement of a cylinder mem-

brane when a pair of solitons pass, and follow the density change. The density and 
displacement is biphasic.
The heat release through a passage of a pair of solitons can be calculated from the 
density change, when the heat capacity as a function of lateral density, and the 
temperature for any densities is known (see Figure 4.2.3). The heat change can be 
calculated by integrating the heat release over time. In Figure 5.2.13 it is shown 
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Figure 5.2.11 – With and without viscosity for solitons from an initial state with width σ = 2.5, ampli-
tude A = -0.402382 and initial energy E = 2.81. Left, show a pair of solitons at time t = 360 in a system 
without viscosity. Right, show a pair of solitons at the same time in a system with viscosity. It is clear 
that the small-amplitude waves propagating is reduce, and the solitons is smaller due to the viscosity. 
There is twice the energy in the solitons without viscosity than in them with.
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that the heat is reversible and it is biphasic, whereas the heat release is triphasic. 
The absolute maximum of heat release does not exceed the maximum energy den-
sity in the soliton. 
The heat change is a factor 1000 bigger than any recorded heat change in the litera-
ture. However, it cannot be compared, since it is here shown as heat per gram lipid 
membrane, where literature values show it as heat per gram nerve, which includes, 
beside the lipids, proteins, water and cell material, which make up for most of the 
neuron mass. 
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The results presented in the previous chapter have many similarities with what 
is known of the nerve pulses mechanical behaviour. However, it also raises the 
question of how the biomembrane obtains these thermodynamic and mechanic 
properties, which will be discussed in this chapter.

It was shown by Iwasa and Tasaki [44] that during the passage of an action poten-
tial the thickness of the membrane follows the action potentials phases (see Figure 
2.2.2). The membrane becomes thicker under the positive part of the action poten-
tial, and thinner under the negative, before it gets back to equilibrium. As shown 
in Figure 4.2.3 the lateral density and thickness are both a function of the temper-
ature. The thickness can be expressed as a function of the lateral density, where it 
can be found to be proportional to the density, Figure 5.2.12. In section 5.2 it was 
shown that pairs of negative and positive solitons are a common phenomenon, 
where the density change was first positive and then negative. Depending on the 
sound profile and the initial state, it could be opposite. The membrane will there-
fore, first be thicker with the positive density change and thereafter thinner with 
the negative density change. Both the experimental findings and the results shown 
are biphasic.
The heat change during an action potential was found to be experimentally re-
versible and biphasic [40], [42], [43], [62]. It was shown to first release heat, and 
thereafter absorbs the same amount of heat. This process follows the action poten-
tial, where it releases under the positive part of the action potential and absorbs 
under the last part, the negative path, and is biphasic. The integrated heat release, 
the heat change, is monophasic. In Figure 5.2.13 the calculated heat release for a 
pair of solitons was found to be triphasic, and the heat change biphasic, and that 
is not in consensus with the experimental findings. This means that a pure lipid 
membrane cannot have a biphasic heat release and a biphasic displacement in the 
soliton model.

The heat profile used for the expanded basic density change equation has many 
similarities with the ones found in living cells. The difference is that the used 
heat capacity seems to have two melting transition, when the bulk temperature is 
between the two peaks, see Figure 4.2.1. The same is found for biomembranes, see 
Figure 2.1.5. But where the two melting transitions in the expanded basic density 
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change equation were an effect of mixed lipids, the peaks found in biomembranes 
are an effect of lipids and proteins. The first peak is when the lipids melt and the 
second where the protein unfolds. A second scan of a biomembrane does not give 
the same heat capacity as the first scan, because after the protein unfolds in the 
first scan, it does not fold back again, meaning it is an irreversible process. How-
ever, no evidence is recorded that a nerve signal unfolds its propagation media’s 
proteins, due to the temperaute changes during the nerve signal, which would re-
sult in a damaged neuron for every signal. The length the nerve signal spans over 
is approximately 2 ms, and the heat change corresponds to a temperature change 
of 10 °C. No recording has been found on, that a short heat influence has been 
should be enough to unfold the proteins. This means that the speed of sound in the 
biomembrane as a function of lateral density in this range cannot alone be found 
from the heat capacity of a biomembrane.  
The soliton model does not include proteins as an active part of the solitons prop-
agation, where the Hodgkin-Huxley model describes proteins role as essential. The 
sound profile used here was calculated from area compressibility, where for a bio-
logical membrane it was assumed that the protein was solid particles, and do not 
alter the area compressibility on stress. The neurons have a large population of 
mechanosensitive proteins which can alter the compressibility under stress [63]–
[65]. Mechanosensitive proteins are channels in the membrane, which can change 
from an open state to an closed and visa versa due to a mechanical change in the 
environment. Some of the best known mechanosensitive proteins is TREK-1 and 
TRAAK, both of which are found in mammalian neurons [66], [67]. TREK-1 and 
TRAAK are both member of the potassium channel subfamily K, and are respon-
sible for the potassium transport through the membrane. It is known that these 
proteins open when one stretches the membrane, and can be seen as a damper of 
the lateral stress under stretching. One can therefore speculate of these proteins 
role under soliton propagation. To have a pair of negative and positive soliton to 
propagate, the area compressibility has to have a peak on both sides of the bulk 
density. If one is from the area compressibility of lipids and the other one from the 
mechanosensitive proteins, it could explain the biphasic displacement and mono-
phasic heat change. The following will then happen under propagation of a pair 
of solitons – first the positive soliton will change the lipids lateral density of the 
membrane and the membrane becomes thicker and heat will be released and then 
absorbed. It is assume that the mechanosensitive proteins are closed. When the 
negative solitons pass, the mechanosensitive proteins will open and the density 
of the lipid areas will be constant, but the total density will change, resulting in 
no heat release and the membrane will overall become thinner, which results in 
a biphasic displacement and a monophasic heat change. No evidence of such a 
mechanism and cooperation between lipids and solitons in a short time scale has 
been observe. It is also questionable, since the heat change and displacement was 
found to be over the whole action potential. And the mechanosensitive proteins 
effect on the thickness of the membrane is also unclear, since the thickness change 
then should only be on the difference between the protein open and close state, 
and with no contribution from the lipids. But the mattress-model could be used 
to explain this effect, because the lipids may be distributed inhomogeneously and 
thickness of membrane near the protein will therefore be affected.
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In section 5.1.2 and 5.2.2 it was shown that collision of solitons did not result in in-
stability or annihilation. Which is a controversy with what is common knowledge 
of nerve signals, but in agreement with common knowledge of solitons and the 
results from our lab [4]. It has been shown that collisions only result in small-am-
plitude waves, and that several solitons could collide without any instability oc-
curring. When solitons collide they become delayed, but as shown in Figure 5.1.3, 
the solitons in a membrane could be either earlier or later than expected compared 
to the situation where no interaction happens. After the collision the solitons have 
lost a small amount of energy, and is therefore accelerated. The acceleration and 
energy loss depends on how near the velocity is to the minimum velocity before 
the collision. This delay was found to be in the order of one tenth of a single soliton 
width, and is therefore possible to experimental measure it.

In neurophysiological experiments the nerve signal is initiated by a disturbance 
in the axon, made by a voltage pulse. The voltage pulse has to be above a threshold 
before a nerve pulse will propagate. When the voltage pulse is above the threshold, 
an action potential starts to propagate. A similar thing is seen in section 5.2.4, 
where a certain amount of energy distributed over a finite and small area com-
pared to the solitons width results in two pairs of solitons travelling in opposite 
direction. If the system has viscosity, the small-amplitude waves will not travel 
very far from its origin, but the soliton could travel a great distance without any 
sign of instability. However, a soliton, with the values presented, have a width 
of approximately 10 cm and travel with a speed of up to 200 m/s. These solitons 
correspond to the one in myelinated neurons [2], which nerve pulses travels with 
a speed of 100 m/s. The solitons travel faster because of the membrane and choice 
of bulk temperature. The small-amplitude waves in a system with viscosity can 
propagate more than one soliton width, and would therefore be seen in recordings 
of membrane potential, if the density change is proportional to the membrane 
potential.  This connection between density and membrane potential is not fully 
understood, and no clear evidence is found on small waves propagating in front 
of an action potential.  
It was also shown that the two solitons in the pairs have different velocities, which 
would over time result in a separation of the solitons. The solitons was found to 
be overleaping slightly, at time t = 360 or after 10 ms and after travelling over two 
meters. Most neurophysiological experiments are not made in meters scale, but in 
a centimetres or millimetres. The velocity was found to be a factor two higher than 
any recorded velocities, this because of the choice of reference. In neurons larger 
than 2 meters it could be expected that the nerve pulse would arrived as a broader 
signal than at the start. This is seen in recorded nerve signal of few centrimetres, 
but both the Hodgkin-Huxley model and the soliton model describe it as an effect 
of the change in the axon’s diameter. It was also shown that the velocity of the sol-
itons depend on the initial energy. And in the situations, where the result contains 
only one type of solitons, was found unlikely, becuase this domain was narrow.
In a system where the initial energy was varied, but distributed over a constant 
width, the different systems have the same pattern of energy effeciency as function 
of initial energy. The system becomes more energy effective when the pairs of sol-
itons appears. This effectiveness was of the relative same size for all systems, and 
could be predicted, since the domains of solitons follow a power law. If the width 
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of the area becomes too narrow a different kind of similarity appears. The domain 
where the pairs appeared, followed the same power law function and could be 
likewise predicted. But the system was much less energy effective, and positive 
solitons, instead of negative, appeared just before the pair did. 
One of the largest width of distribution of energy investigated was 2.5, which cor-
responds to 1.5 cm, and results in solitons with a width of 10 - 20 cm. In neu-
rophysiological experiments on non-myelinated neurons, which have typically a 
velocity of 5 m/s, the distance the voltage pulse is applied over is typically about 3 
mm where the pulse is approximately 4 - 17 mm in width [4].



Chapter 7
Conclusion

It was the aim for this thesis to find a suitable environment for propagation of 
negative and positive solitons, and investigate such a medium and the medium’s 
properties of the solitons propagating. Such an environment was found, it has 
been discussed, and it was found that such an environment could be neurons, but 
because of the complexity and the amount of things there should be involve in the 
signal. It is more likely that the nerve signal is one soliton, instead of pairs, since 
it is shown that a soliton can propagate in a pure lipid membrane, and therefore 
also in other biological membranes. The soliton model only explains a part of the 
mechanic properties seen in the nerve signal, and the heat and displacement, and 
could not at the same time be explain by the theory. The properties for solitons in 
such an environment was presented, and it was found that unstable solitons decay 
to stable solitons, and collision between solitons does not lead to annihilation. 
Further, initiations of solitons was discussed, and it was shown that the energy 
needed to make a distortion in the membrane, and to initiate solitons, versus the 
distribution of the energy (or width of the distortion) followed a power law func-
tion. The system becomes slightly more efficient when pairs of the solitons appear. 
This is in agreement with what there is expected of the nerve signal, where the 
initiation voltage pulse have to be above a threshold, before the signal propagate. 
All pulses energy under the threshold is lost in the membrane.

In general not much work has been made on solitons in such an environment, 
which at the same time allows propagation of negative and positive solitons. And 
no one has looked at it in combination with the biological membrane and the 
nerve signal. Results from this thesis can be used in other fields of physic, where 
the same characteristic is present.
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Perspectives

One of the key features in the soliton model is that it can explain how anaesthe-
sia works. When a membrane is exposed to anaesthesia, the melting temperature 
becomes lower, and the membrane will be fully in the fluid phase. It is therefore 
difficult for solitons to propagate, since the phase transition is moved away. When 
the solitons have difficulty propagating, no nerve signal is transmitted between 
the neurons, and then one does not feel pain [68]. Moving the bulk temperature 
in the present work will give the same effect as anaesthesia. By moving the phase 
transition it will still allow one of the solitons to propagate. It is therefore interest-
ing to explore what is happening in these situations, if there are still seen pairs of 
solitons or waves that look like solitons, and what initiation result in and do they 
show the same pattern as shown. In Appendix F it is demostrated that it can result 
in waves that could look like solitons.

In the discussion, mechanosensitive proteins were mentioned, which could ex-
plain the heat release and displacement, but not much and not enough is known of 
these proteins and their role under stress in the membrane and their contribution 
to the compressibility. These kind of proteins are rich presented in the neuron, and 
an investigation and formulation of their role on the compressibility is needed.

It was shown that when two solitons collide, the soliton could either be earlier than 
expected or delayed. The time was dependent on the velocity of the solitons. This 
is a prediction, which can be investigated experimentally. Further it was shown 
that the more energy there is used to initiate the pulses, the slower the solitons will 
propagate. This is also a thing that can be investigated experimentally.

In neurophysiology the recorded action potential is recorded near the excitation 
point, and no research has been found where the signal has been recorded far 
away. Most recording of the action potential is done by measuring with a two 
point electrode that does not record the shape of the signal, but measures the 
voltage difference between two points. One of the main things in the thesis is that 
the two solitons in the pairs after an initiation have different velocities. This gives 
the prediction that far away from the signals starting point, the signal will arrive 
separated. This distance is in a myelinated-nerve greater than 2 meters. Myelinat-
ed nerves are mostly long nerves, where the signal has to travel fast over a long 
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distance, e.g. toe to hip, where non-myelinated nerves are short and present in the 
brain, where the signal travels over a short distance and not necessarily fast. This 
give rise to the question, what is then the nerve signal, the first part or last part. Or 
is the length of the longest nerves in the nervous system in time evolved to a length 
where this separation is prevented. 
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Appendix
A.	 Small-amplitude waves
The small-amplitude waves were found to depend on the wavenumber, but not 
linearly. The amplitude of the waves and velocity depend on the wavenumber. The 
dependency of the wavenumber was approximately the same for the small-ampli-
tude waves created from distortions in the solitons, initiation and collisions. How-
ever, the size of a wave with same wavenumber is not the same across the different 
ways of creation. It was chosen to use the small-amplitude waves created from the 
collision of two negative solitons with velocity β = 0.649851. The waves have been 
propagating for t = 200 and the smallest of the waves have vanish due to the error 
in the numerical method. The small-amplitude waves is shown in Figure A.1. The 
smallest waves have no interest, but the waves between them and the solitons has. 
Because it is them,  there could interfere with the solitons. For the small-ampli-
tude waves from the collision, was the following dependency of the amplitude and 
wavenumber found:

	
( ) ( ) ( )10, 0.0107 sin

95.6 exp 12.9 6.97
u x xk

k
= −

+ −
 	 (A.1)	

Where the velocity field was found to be:

	 ( ) ( ) ( )0, 0.801 0.625 0,v x k u x= + ⋅ 	 (A.2)

The fit can be seen in Figure A.2. The structure of the wave’s dependency were 
found in numerous situations (collision, initiation and distortion). However, when 
the waves got larger in amplitude, the amplitude as a function of wavenumber 
become more a decaying exponential function, than a combination of exponen-
tial functions. The velocity field was found to be linear for all way of creation of 
small-amplitude waves.

Figure A.1 – The small-amplitude wave created from a collision of two negative soliton with velocity 
β = 0.649851.
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B.	 The initiations domains
The three domains, mentioned in section 5.2.4, was found by fitting the points 
where the effect of increased energy, on the previous state energy over a finite 
width of the distortion result in the system entered the domain. The fits is shown 
in Figure B.2, and it is seen that the fit for the pair domain has a very small error, 
where the one for the domain of only negative solitons has a larger one. The fit for 
the domain of only positive solitons, has also a small error, however the fit con-
tains of only 3 points. The three fits has almost the same crossing point, as seen in 

Figure B.1.
 

 

Figure A.2 – The function for velocity (left) and amplitude(right) as a function of wavenumber, k. 
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Figure B.1 – All three fits together, show that they all meets in the same point.
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Figure B.2 – The fits for different domains with the estimate and standard error listed.. (a) domain 
with pairs of solitons. (b) only negative solitons. (c) only positive solitons.
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C.	 Time series

C.1	 Collision of two solitons
Time series of the collision of two negative solitons with velocity β = 0.649851 in 
the basic equation.
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C.2	 Initiation of solitons
Time series of initiation of two pairs of solitons in the expanded basic equation. 
The initial state is a Gaussian function described in section 5.2.4 with the values 
σ = 5 and A = 0.386441.
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D.	 Initiation (other similarities)
As shown in section 5.2.4, the systems follow the same pattern for energy over a 
finite width is increased. Beside what is shown (energy in the soliton as a function 
of initial energy and velocity of the waves as a function of initial energy) other 
things follow the same pattern across different widths. 
In Figure D.1 the ratio of initial mass change, in the two nearest waves as a func-
tion of the initial energy is shown. As seen for the widths over σ = 0.85 have the 
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Figure D.1 – The ratio of initial mass in the nearest two waves as a function of initial energy for dif-
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same pattern, however increasing the width results in a smaller fluctuation and a 
more stable ratio of mass in the two nearest waves. E.g. the width σ = 0.85 fluctuate 
between 0.8 and 0.4, where σ = 2.5 fluctuate between 0.86 and 0.78. All patterns 
show a local minimum in the function, this local minimum follow a power law 
function of the width (see Figure D.2).
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Figure D.2 – The minimum mass ration for each width follow a power law function.
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E.	 Best fit to 50:50 DMPC:DSPC sound profile
As mentioned in section 4.2 was the best fit to the sound profile for 50:50 DMP-
C:DSPC not used, because of an early mistake, which was noticed until too late. 
However, the different between the best fit and the used fit is not big, as shown in 
Table E.1 and Figure E.1. Therefore was it assumed that this difference, and taken 
all the others assumptions into account, can be neglected.

Table E.1 - The difference between the best fit and the used on
  Used fit  Best fit

 c [m/s]  224.988  212.621

 ρ0 [g/m2]  0.0696462  0.069568

β-  0.875679  0.878868

β+  0.972625  0.957121

Used fit Best fit
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Figure E.1 - The difference between the best fit and the used fit. Upper left, the sound profile. Bottom 
left, the dimensionless sound profile. Right, positive and negative solitons for various velocities for 
both fits. Solid and (B) as the best fit, and dashed and (U) the used fit.
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F.	 Soliton propagation in a shifted sound profile
It is unlikely that a membrane constantly stay at the same temperature, to be at 
the local minimum in the compressibility. Therefore it is interesting to know what 
happens to soliton propagation, when the bulk temperature change and stay with-
in the two compressibility maximum. Such a shift in the temperature is shown in 
Figure F.1, where the bulk temperature is 37.6 °C, raised from a bulk temperature 
of 33 °C, the sound profile used in this thesis. When the bulk temperature is shift-
ed, can only one type of stable solitons exist. When the temperature is raised, only 
stable negative solitons can propagate. However, using an initial state, as the Gauss-
ian function described in the Initiation (section 5.2.4), one obtain a result their 
have similarities with the result with same initial values and with the non-shifted 
sound profile. In Figure F.2, it is shown the difference between a system with a 
shift and not. The system has viscosity, and in the result for the non-shifted sound 
profile it is clear to see four solitons. Where the one with the shifted sound profile 
clearly have two solitons, and two waves that could look like solitons. One should 
notice when shifting the sound profile, the same initial distortion have only the 
same mass change, and not the same energy. A study of this effect, when shifting 
the sound profile was not further made, due to other priorities.  
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Figure F.1 – The shifted sound profile and the used sound profile in the thesis.
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Figure F.2 – Top: the result with a shifted sound profile for time t = 50 and t = 100, where the initial 
state was described by a Gaussian function with σ = 5 and A = 0.386441, the system have viscosity 
of κ = 0.05. Bottom: the result for the non-shifted sound profile at the same time for the same initial 
state, and with same viscosity.
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