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abstract

In the �eld of food inspection, the implementation of X-ray scanners allows
for a non-destructive analysis of the interior of objects. The scanner is a
part of a larger pipeline that performs automatic classi�cation by sending
objects through the system on a conveyor-belt while doing real-time sorting.
Such systems require a low latency with high precision, that allows for a
high throughput of objects. The precision of such systems is dependent on
the contrast and resolution of the X-ray images, but the various physical
processes in the image formation degrade the �nal representation of the
object and remove important features, that are essential to the classi�cation
task.

This project provides an investigation of applying multi-frame super res-
olution (MFSR) as a preprocessing tool for such a classi�cation pipeline.
MFSR is the concept of using latent information in a sequence of low res-
olution (LR) frames to produce a single high resolution (HR) image. The
iterative re-weighted super resolution (IRWSR) algorithm, developed by [1],
was implemented and applied to sequences of images acquired from an X-ray
system. The resulting output shows no clear signs of feature enhancement.
Furthermore, the runtime seems to be far from what is required for a high
throughput system e. g. a ×2 magni�cation of an image with size 200 × 200
is processed in the order of 1000 s.

In the examination of the di�erent limitations of X-ray setups, the simulation
tool Xsim was created, capable of generating X-ray images of user-de�ned 3D
objects. The versatile Xsim allows the user to simulate images for di�erent
X-ray source spectra, object compositions and geometrical distances. The
generated images are perceptually comparable to real X-ray images, but lack
e�ects such as scattering or beam hardening. The IRWSR algorithm was
applied to a sequence of test images generated with Xsim. The resulting
images contain no perceivable new information compared to the original LR
frames.

This project gives an insight into the di�culties of applying SR in real settings.
Through the analysis and discussion of the various theories needed, a direc-
tion for further use is given. A further investigation should especially address
the point-spread-function (PSF) of the X-ray imaging system in combination
with a conveyor-belt, and the output should be validated with respect to the
larger classi�cation scheme.
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1 I N TRODUCT ION

In the process of imaging a real world scene to a digitalized format, a loss of
information is inevitable. Degradation happens by quantization of a contin-
uous scene, di�raction and the relative motion between the scene and the
camera. This results in a loss of features such as edges, shapes and placement,
important information in any image classi�cation task. Degradation of this
type exists not only in the world of optical light, but also in the �eld of X-ray
imaging, which has important applications in the medical industry, security-
surveillance and food inspection. Here especially automatic classi�cation is
a growing �eld of interest and development.

A common X-ray setup in food inspection starts with an X-ray source emit-
ting X-rays through the desired object moving on a conveyor belt and then
a detector measuring the attenuation of the rays. An X-ray setup is a tool
for examining the interior of an object and is part of a bigger pipeline. This
pipeline is based on hardware like cameras, mechanical hinges and conveyor
belts, with the purpose of doing a real-time sorting of the objects based on
physical quantities such as size, weight and appearance. From an industry
perspective, the speed of the overall pipeline is of great importance, as it
limits the amount of objects to be analyzed in a given time interval. This
leave a high demand of e�ciency in the individual hardware and software
parts. Considering the connection between X-ray imaging and the relative
speed of the objects i. e., the speed of the conveyor belt, there is a trade o�
between the image contrast and the amount of motion blur. A higher contrast
demands a longer exposure time, which will be more a�ected by motion blur.
A lower contrast will give less blur, but show less detail of the given object.
Both at the cost of image features, which are essential for the classi�cation.

A promising approach for overcoming this compromise is that of computa-
tional super resolution (SR), where the goal is to "recover" the unknown high
resolution image from the low resolution image given. A problem of this type
is in an inverse problem sense an ill-posed problem, as no unique higher reso-
lution solutions exist. In the literature there are two main approaches; single
image super resolution (SISR) and multi-frame super resolution (MFSR). In
MFSR the information is gathered over a sequence of low resolution frames
to create a single high resolution image - a process that might be well suited
for the image sequence outputted from the camera in the pipeline.

The progress of SR methods in the last decade has followed the evolution
of computer power and computer vision. It has further divided it into sub-
categories such as Dictionary Learning[2], Bayesian modeling [1] and Deep
learning[3]. The quality of a method is characterized by computational time,

2



complexity, robustness to di�erent kinds of degradation and the �nal high
resolution image. A common way to quantify the quality of a SR output
is the arti�cial degradation of a high resolution image to a low resolution
image mimicking the natural degradation of the "high resolution" real world.
The low resolution image is then upscaled with a given algorithm and com-
pared to the original image using the point signal-to-noise ratio (PSNR). In
the SR community the PSNR is a general optimization benchmark, that is
purely based on simulated data and only works as an approximation to real
images. This gives a performance gap between simulation and real data, and
it has been shown that there is a small correlation between behavior of SR
algorithms on simulated and real data [4].

Only recently, the application of SR in real scenarios have started to become
feasible. Some SR methods have been implemented in image editing software
as a post-processing tool, to enhance the visual perception of natural optical
images[5][6]. In recent research combining SR with medical imaging has
been applied to images of the human eye, enabling mobile low-cost cameras
to obtain comparable quality to that of stationary high-cost cameras [7]. SR
research in Magnetic Resonance Imaging (MRI) makes it possible to shorten
the scan time while keeping the same image quality [8].

In automatic classi�cation, using online X-ray imaging systems, SR methods
could function as powerful preprocessing tools. Here the goal of SR would
not be to upscale the image, but to enhance and highlight important features
inherent in the target objects. The results of an SR algorithm are depending
on a proper analysis of the imaging system, as the underlying structures, such
as the point-spread-function (PSF), can be applied directly to the algorithm.
In this work a developed SR scheme should account for the linear motion of the
online system and be robust to small random rotations, photometric variance
and system noise as it will corrupt the individual frames.

In order to obtain a better intuition and understanding of the imaging system,
an X-ray simulator has been developed in this work. Such a simulator needs
to account for all the physical processes included in the imaging system and
create images comparable to real ones. The simulation tool can furthermore
be used to examine the limitations of a given X-ray imaging system, as it gives
full control over source energy, object composition, conveyor belt speed, ex-
posure time and noise. With a basis in this system one could quickly examine
the possibilities of classifying di�erent anomalies in objects. For example, it
would be easy to interchange a small aluminum fragment in soft tissue with
a small iron fragment. However, such a system is only an approximation to
the physics of the world, the consequence being that it will never replace
the importance of examining real world scenarios. As such it can be viewed
as a playground, giving indications of what is feasible for real setups. It can
be used as a baseline for SR, as the behavior of the individual frames can
be easily isolated. This can help uncover if SR is even feasible and assist in
�nding the optimal con�gurations.
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The primary purpose of this work is to examine and simulate the structure
of X-ray imaging systems in food inspection. We seek to utilize the inher-
ent structures in the system by applying MFSR algorithms on the simulated
and real images and quantifying the performance of the MFSR algorithms by
examination of the image features.

1.1 axis

The work in this thesis is a contribution to the AXIS project, which aims
to develop an automatic classi�cation system for X-ray scanners in food
inspection. AXIS is a collaboration between 4 di�erent facilities; NewTec in
charge of the machinery and integration, Qtechnology developing cameras,
MagnaTek producing the X-ray source and the eScience department at the
Niels Bohr Institute providing the software.

The demands for the softwares developed for this purpose is that it is versatile,
e�cient and precise, because it is intended to be integrated as a real-time
analysis on an online sorting system. In the process of achieving this goal,
the eScience group has developed and examined various image �lters, con-
trast enchantments and classi�cation schemes. The work of this thesis lies
in the extension of the previous and draws parallels to the concept of an
automatic classi�cation scheme. For this, two novel ideas are researched; the
implementing of SR as a preprocessing scheme for the classi�cation pipeline,
and the concept of virtual X-ray machine able to test various X-ray setups
and provide data for an image processing algorithm.

1.2 documentation

The python scripts written as a part of the work in this thesis is divided into
two main sections:

• The implementation of the presented iterative re-weighted super reso-
lution (IRWSR) algorithm by [1] is found at https://github.com/SimonNy/
IRWSR.

• The implementation of the X-ray simulator Xsim is found at https:
//github.com/SimonNy/Xsim.

Within each link, the corresponding documentation is provided with exam-
ples for generating the results showed in this work. A list of hardware and
system speci�cs for the runtimes provided in this thesis is given in §A.1.
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2 S I GNAL AND IMAGE PROCESS ING
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Figure 2.1: A simple discretiza-
tion of a continuous-signal.

Acquiring data from the physical world and applying it to a computational
framework, roughly said, can be accomplished by two components; a sensor
that converts the physical signal to an electrical current or voltage, and an
analog-to-digital converter (ADC), which digitalizes the current or voltage by
sampling. Depending on the desired physical signal one needs a speci�c sen-
sor. A membrane in a microphone can record sound waves, and a thermistor
can be used to measure the temperature. Two common ways to digitize visi-
ble light is by the use of a charge-coupled device (CCD) or a complementary
metal-oxide-semiconductor (CMOS). Both are integrated circuits containing
arrays of coupled capacitors, able to convert optical photons to electrical
charges, creating a discrete-space two-dimensional representation of the
continuous-space physical world, which is commonly known as a digital
image.

Discretization of a continuous signal is bound by degradation through di�er-
ent factors e. g. is the original signal a�ected by background noise, to what
degree is the sensors prone to statistical or systematic errors, is the signal
measured linearly e.t.c. In images such degradations provide blurred, and
noise corrupted representations of the scene. One framework created to
counter such e�ects is that of multi-frame super resolution (MFSR), where
the goal is to reconstruct a high resolution (HR) image i. e., an image with
high informational content, from a sequence of low resolution (LR) images.

The subjects of signal processing and imaging are interwoven, and as such,
the following section iterates between the two. The elaborating of the theoretical
framework is shallowly described, making room for an applied andmore illustra-
tive understanding, with a focus on the convolution operation. In § 2.1.1, a short
introduction to signals and linear shift-invariant (LSI) systems is given, moving
on to how it relates to image processing. In § 2.2 the image formation process
is elaborated with the de�nition of resolution. The whole thing is then related
to sampling and MFSR in § 2.3. At last, in § 2.4, additional image processing
algorithms relevant to the work in this thesis is described.
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2.1 convolution of images

An essential part of image processing is the convolution operation. In the
following section a, short introduction to the theoretical framework is given,
followed by applied examples.

2.1.1 Linear Shift-Invariant Systems

𝑓 (𝑥,𝑦) 𝑔(𝑥,𝑦)
H{𝑓 (𝑥,𝑦)}

Figure 2.2: The input 𝑓 (𝑥,𝑦) con-
verted to the output 𝑔(𝑥,𝑦) through
the system H{·}.

If we represent an image as a 2-dimensional signal 𝑓 (𝑥,𝑦) carrying intensity
information related to a spatial domain (𝑥,𝑦). For now 𝑓 (𝑥,𝑦) denotes a
real-valued continuous input signal and 𝑔(𝑥,𝑦) a real-valued continuous
signal, which is the output from a system described by an abstract operator
H{·}. Illustrated in Fig. 2.2 and described as:

𝑔(𝑥,𝑦) = H{𝑓 (𝑥,𝑦)}.

An important type of system that relates to that of imaging, is the LSI systems.
Linearity allows for superposition of signals e.g. given two signals 𝑓1(𝑥,𝑦)
and 𝑓2(𝑥,𝑦):

H{𝛼 · 𝑓 (𝑥,𝑦)} = 𝛼 · H{𝑓 (𝑥,𝑦)}
H{𝑓1(𝑥,𝑦) + 𝑓2(𝑥,𝑦)} = H{𝑓1(𝑥,𝑦)} + H ({𝑓2(𝑥,𝑦)}

Shift-invariance guarantees that a shift in the input domain will provide a
shift in the output by the same amount:

𝑔(𝑥 − 𝑥0, 𝑦 − 𝑦0) = H{𝑓 (𝑥 − 𝑥0, 𝑦 − 𝑦0)},

where 𝑥0 and 𝑦0 are arbitrary shifts of the domain[9].

A fundamental feature of an LSI system is that the system operator H{¤} can
be described by the impulse response ℎ(𝑥,𝑦) and the output of the system is
described by the convolution of the impulse response with the input signal1

1. The term impulse response comes
from signal theory and goes under
di�erent names such as �lters or
kernels. For imaging it is often called
the point-spread-function (PSF), and
is elaborated in § 2.2

.
Convolution for a continuous signal is described as:

𝑔(𝑡) = (ℎ ∗ 𝑓 ) (𝑥,𝑦) =
∫ ∞

−∞

∫ ∞

−∞
ℎ(𝑥 − 𝑥 ′, 𝑦 − 𝑦 ′) 𝑓 (𝑥 ′, 𝑦 ′)𝑑𝑥 ′𝑑𝑦 ′,

where ∗ denotes the convolution operation. For the integral to be well-
de�ned the functions ℎ and 𝑓 must decay towards in�nity. An interpretation
of the convolution is that the output 𝑔(𝑥,𝑦) is a weighted average of 𝑓 (𝑥,𝑦)
with weighting function ℎ(𝑥,𝑦). The impulse response ℎ(𝑥,𝑦) of the system
describes the response of a system when the input signal is the Dirac delta
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function i.e. 𝑓 (𝑥,𝑦) = 𝛿 (𝑥,𝑦). The Dirac delta function is de�ned as being
in�nitely narrow and in�nitely high:

𝛿 (𝑥,𝑦) :=
{
1 if 𝑥 = 𝑦 = 0
0 otherwise.

The Dirac delta can be used to pick certain points of a given function, as the
Dirac delta function can be shifted by a value (𝑥0, 𝑦0):∫ ∞

−∞

∫ ∞

−∞
𝑔(𝑥,𝑦)𝛿 (𝑥 − 𝑥0, 𝑦 − 𝑦0)𝑑𝑥𝑑𝑦 = 𝑔(𝑥0, 𝑦0) .

As known by the property of superposition, a signal can be represented as a
linear combination of a inde�nite amount of Dirac functions. This implies
that the output 𝑔(𝑥,𝑦) of any system can be described by the convolution of
ℎ(𝑥,𝑦) with the input signal 𝑓 (𝑥,𝑦).[9]

We now apply the concept of convolution to discrete two-dimensional signals
i. e., digital images. Throughout this chapter [] notes a discrete signals and () a
continuous signal.

2.1.2 Images as discrete signals

M-1

N-10
0

M-1

0 0

00

255100

50

150

200

𝑥

𝑦

Figure 2.3: Pixel values and
the corresponding gray map.

A digital image, is a discrete two-dimensional signal 𝑓 [𝑚,𝑛] given on
the integer locations [𝑚,𝑛]. The connection between the discrete and the
continuous signal is given through sampling, which will be elaborated in § 2.3.

For the digital image, the di�erent elements are named pixels which is an
abbreviation of the word picture element. The pixels represent the intensity
value at the speci�c coordinate and are in this thesis given as 8bit values
i. e., the values are in the range of 0 to 255. They are commonly given as
single channel(grayscale image) or three-channel(color image). The size of
the image is the digital resolution and is denoted𝑀 × 𝑁 i. e., the number of
pixels along the rows and columns. A small illustration of a 3 × 3 grayscale
image is given in Fig. 2.3.

The impulse response ℎ[𝑚,𝑛] is in the following used as a �lter. The convo-
lution with such a �lter provides an output 𝑔[𝑚,𝑛], often called the feature
map. The 2D discrete convolution of an image 𝑓 with the given kernel is
ℎ[𝑚,𝑛] is de�ned as:

𝑔[𝑚,𝑛] = (ℎ ∗ 𝑓 ) [𝑚,𝑛] =
𝑎∑︁

𝑚′=−𝑎

𝑏∑︁
𝑛′=−𝑏

ℎ[𝑚′, 𝑛′] 𝑓 [𝑚 −𝑚′, 𝑛 − 𝑛′], (2.1)
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where 𝑎 and 𝑏 is the supported range of the kernel i. e., the area it spans over
the image. The convolution is the process of adding the supported neigh-
borhood of the �lter, where the �lter values functions as weights.

∗

=

1 0 1 1

1 0 0 0
1 1 1 0
1 1 0 1

1
1 1

1 10
0

0
0

ℎ[𝑚,𝑛]

𝑔[𝑚,𝑛]
𝑓 [𝑚,𝑛] 4

3
2
3

Figure 2.4: Convolution of a 4 × 4
binary image with a 3 × 3 ker-

nel. Colors indicate the supported
area of the kernel contributing to
the matching color in the output.

It is often
illustrated as a kernel scanning over the input image producing an output at
its center. An illustration of a 4×4 binary image convolved with a 3×3 kernel
is given in Fig. 2.4. Given an image of size 𝑁 × 𝑁 and a symmetric kernel
of size 𝐾 , for Equation (2.1) each pixel in the image needs 𝐾2 computations,
which gives a runtime of O(𝑁 2𝐾2). The O is known as the big O notation
and states how the runtime grows with the input size[10].

With a foundation in the discrete convolution, we proceed by presenting common
�lters used for image processing.

2.1.3 Image filters

Figure 2.5: The cameraman.

The application of image �lters are essential parts of image processing and
is widely used for altering of desired image qualities. In the following, a
demonstration of some of the typically used image �lters are shown with
reference to the cameraman image, Fig. 2.5.

Mean Filter

The mean �lter is a basic �lter with every element in the kernel carrying the
same value. To prevent changes of overall intensities the �lter is normalized
over all its values.

Figure 2.6: Convolution of camera-
man with a mean �lter of size 𝑁 = 5.

1
9 ·


1 1 1
1 1 1
1 1 1


The cameraman convolved with the mean �lter is given in Fig. 2.6

Gaussian Filter

4 2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

µ= 0, σ2 = 1
µ= 0, σ2 = 5
µ= − 1, σ2 = 5

Figure 2.7: 1D Gaussian for various
values of 𝜇 and 𝜎 .

A common type of �lter is the Gaussian, which is the standard model for
blur. The kernel values are given by an isotropic zero mean 2-D gaussian:

ℎ[𝑚,𝑛] = 1
2𝜋𝜎2 · 𝑒

−(𝑚2+𝑛2 )
2𝜎2 ,

where 𝜎 is the standard deviation and de�nes the total blur of the image. A 1D
Gaussian is shown in Fig. 2.7 for various 𝜎 values. The Gaussian distribution
is not only important as a common blur model but will also be used in the
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later considerations of noise in an image. One simple example of a 3 × 3
kernel is:

Figure 2.8: Convolution of camera-
man with a gauss �lter 𝑁 = 15 and
𝜎 = 1.

𝐺 =
1
16 ·


1 2 1
2 4 2
1 2 1

 ,
The convolution of a 15 × 15 Gaussian kernel with 𝜎 = 1 and the cameraman
is given in Fig. 2.8.

Sobel filter

Figure 2.9: Convolution
of cameraman with 𝑆𝑥

The Sobel �lter is designed to emphasize the edges of an image. The convo-
lution of an image with the Sobel �lter produces a discrete di�erentiation,
providing an approximation to the gradient of the image intensity. These
types of �lters are usually used for edge detection. The Sobel �lter in the 𝑥
direction is:

𝑆𝑥 =


−1 0 1
−2 0 2
−1 0 1

 ,
The convolution with the cameraman is given in Fig. 2.9
The Sobel �lter in the 𝑦-direction is given as:

Figure 2.10: Convolution
of cameraman with 𝑆𝑦

𝑆𝑦 =


−1 −2 −1
0 0 0
1 2 1

 ,
The convolution with the cameraman is given in Fig. 2.10[9].

The above �lters are essential parts of central image processing tasks. The
Gaussian �lter will later be implemented as a critical part of the MFSR algo-
rithm, together with the properties of image gradients, as given by the Sobel
�lters. We then proceed with a short explanation of the frequency of images
and connects it with the Fourier transform.

2.1.4 Fourier transform of images

The Fourier transform of an image is a representation in the frequency
domain. Frequencies in images relate to the rate of intensity changes and
are decomposed to sine and cosine components. A high-frequency part of
an image is characterized by rapid changes in intensity and is shown as
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sharp edges. The features that change gradually over large areas contain
the low frequencies. An example of high and low frequency is shown for
Barbara in Fig. 2.11. For a digital images of size 𝑀 × 𝑁 the discrete Fourier
transform (DFT) is given as.

Figure 2.11: Crop of the Barbara
image. High frequency parts are
the stripes of the clothes. Low
frequency is the background.

F (𝑓 [𝑚,𝑛]) = 𝑓 [𝑢, 𝑣] = 1
𝑀𝑁

𝑀−1∑︁
𝑚=0

𝑁−1∑︁
𝑛=0

𝑓 [𝑚,𝑛] exp(−2𝜋𝑖𝑚𝑢
𝑀

) exp(−2𝜋𝑖𝑛𝑣
𝑁

),

where F (·) denotes the Fourier transform of the given signal and 𝑓 [𝑢, 𝑣]
denotes the Fourier transform of 𝑓 [𝑚,𝑛]. The runtime for the discrete Fourier
transform is O((𝑀𝑁 )2), as there for every index in the output of size𝑀 × 𝑁
will be a sum over 𝑁 and𝑀 .

Each point in the frequency domain [𝑢, 𝑣] corresponds to frequencies con-
tained in the corresponding spatial domain. The Fourier transform of an im-
age is illustrated in Fig. 2.12. For illustrative purposes, the absolute logarithm
is taken, and by convention, the image is shifted such that high-frequency
parts are placed in the center.

Figure 2.12: The absolute log of the
Fourier transform of the Barbara
image in Fig. 2.11.

When working with convolution the Fourier
transform has an important property through the convolution theorem. The
convolution theorem states that the convolution of two signals in space is
identical to the point-wise multiplication in the Fourier domain:

F (𝑓 ∗ 𝑔) = 𝑓 · 𝑔
F (𝑓 · 𝑔) = 𝑓 ∗ 𝑔.

The above provides an alternative to Equation (2.1). As the convolution with
a �lter can be calculated as:

(ℎ ∗ 𝑓 ) [𝑚,𝑛] = F −1(F (ℎ) · F (𝑓 )),

where F −1 denotes the inverse Fourier transform[10]. In combination with
the fast Fourier transform (FFT), the run time for an image of size 𝑁 ×𝑁 con-
volved with a symmetrical �lter of size𝐾 , scales in the order of O(𝑁 2 log(𝑁 )).
This property makes it more e�cient, than common convolution when work-
ing with large �lters.

The Fourier transform has many properties in imaging, such as �ltering, recon-
struction and compression. As the Fourier transform is not directly applied in
this work, it is mainly mentioned for completion and comparison.
The basic concepts of the LSI and convolution can be used in the de�nition of
imaging formation.
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2.2 the imaging system

We are considering a digital image as a discrete two-dimensional signal,
representing a three-dimensional continuous optical scene. From everyday
use of digital cameras and mobile phones, the image is acquired through the
following schematic; A light source emits light, the light re�ects on an object,
the re�ected light passes through an optical component focusing the light
rays and is �nally converted to a digital image through a CCD or a CMOS.
The individual pieces are essential factors in the �nal quality of the image,
as known by a high-end camera, which produce HR images, with small blur
and noise artefacts. In the following we proceed by elaborating the reason
for blur in an optical system.

2.2.1 Optical system

𝑓 (𝑥 ′) 𝑓 (𝑥 ′′)

𝑥 ′ 𝑥 𝑥 ′′

Figure 2.13: Schematic showing
how a scene in the object plane
is transferred to the image plane
through an optical system. The
optical system de�nes the PSF.

Here the point x, takes an inten-
sity value as a mixture of the two
points 𝑓 (𝑥 ′) and 𝑓 (𝑥 ′′) related to
the PSF, due to the optical system.

There are two main reasons for optical blurring: Di�raction and aberrations.
Di�raction is the spreading of light as it passes through a slit or an aperture.
The amount of di�raction is related to the size of the slit and the wavelength
of the light, which gives a physical lower limit for the possible resolution.
Aberrations are due to manufacturing faults in the optical components, giv-
ing rise to uncertainties of the representation of the object. The blur can
be described mathematically by the point-spread-function (PSF). The PSF
correspond to the impulse response elaborated in § 2.1.1 and is a measure of
how a point source from the object plane is smeared out in the image plane.
In Fig. 2.13, a schematic is given of the smearing of point sources in the image
plane.

An ideal imaging process would have a PSF in the shape of a delta function,
constructing a one-to-one copy of the original image. In real-world scenarios,
the PSF is often approximated to the form of a 2-dimensional Gaussian or an-
other parametric kernel, resulting in the PSF being a low-pass �lter removing
high-frequency components of the image. The consequence is that the PSF
limits the given resolution of the acquired image. An illustration of how a
delta and Gaussian PSF in�uences a simple image is given in Fig. 2.14. Notice
how the four di�erent pixels in the bottom left corner are smeared together
due to the Gaussian PSF, while still being separable in the bottom right corner.

The term resolution is widely used in this thesis, and the exact meaning is
interwoven between two di�erent de�nitions: The optical and digital resolution.
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2.2.2 Resolution

Figure 2.14: (a) An image. (b) A
delta PSF and a Gaussian PSF.
(c) The convolution between
the image and the above PSF

When working with digital images, the resolution of the image has two
separate de�nitions. The optical resolution relates to which degree, di�erent
objects in a scene are separable. A question often answered by a subjective
observer. A more quantitative de�nition is the Rayleigh resolution criterion
which states the following; Two equally bright points are barely resolved if the
�rst zero of the curve for the PSF from the image of the �rst point, coincides
with the central maximum of the image of the second points PSF[11]. A demon-
stration is given in the bottom of (c2) in Fig. 2.14, where pixel values of equal
intensity overlap when convolved with the Gaussian kernel.

The digital resolution refers to the number of pixels in an image. A pixel is a
small square in a 2-dimensional grid, representing the intensity value from
the light in a given scene. The value is in this thesis given in a 8bit format i. e.,
a value between 0 and 255 and either in a single channel(grayscale image) or
three-channel(color image). The resolution is noted as the pixels per rows
times the pixel per column. A LR image is visually experienced as unpleas-
ant, as the discretization of the scene often stands clear, with every pixel
being separable. A HR image is visually pleasing for the viewer, as it seems
continuous and the separate pixels blend together[10]. An demonstration of
a HR/LR pair is given in Fig. 2.15.

The two resolution de�nitions are interwoven for a digital image i. e., a high
pixel resolution is super�uous if the independent objects are inseparable.

2.2.3 Image Detectors

(a) (b)

Figure 2.15: (a) a HR image (b) its LR
counterpart

The digital resolution is referring to the grid size of the pixel array, which
is physically connected to an image sensor like the CCD or the CMOS. The
sensors are constructed as a grid of photodetectors, where the incoming light
hits an active pixel area. The incident photons are converted to electrons
through the photoelectric e�ect, where they accumulate over a time interval.
The amount of electrons gathered in the time interval, known as the exposure
time, is proportional to the pixel intensity[10].

Figure 2.16: An X-ray image of a
homogeneous rabbit under motion.
Image generated with xSim elabo-
rated in § 5.

Large exposure time will generally in low light conditions, provide images
of higher contrast, as more light is gathered. However, high exposure times
are also more likely to induce motion blur in the �nal image, an e�ect due to
the relative motion between the camera and the scene. When the exposure
time is increased the amount of light hitting the same parts of the scene hits
multiple pixels over time, which can be seen as a stretched blur over the
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digital image.
Another property depending on the exposure time is the saturation of pixels,
where the irradiance of the incoming light exceeds the maximum electron
capacity of the photodetector. A saturated pixel in a digital image carries the
maximum intensity value, degrading the �nal quality of an image.

The quality of an image can often be described through the signal-to-noise
ratio (SNR) ratio, which is a metric describing the noise corruption of a
given image22. For now we will only consider

SNR conceptually. We will in § 3.1.1
provide a more formal description.

A high super resolution (SR) corresponds to an image of higher
contrast i. e., the degree to which the separate objects are distinguishable.
The nature of noise in images is based on the various stochastic phenomena
inherent in the di�erent components of the detector. It is viewed as random
�uctuations of the image intensity. In Fig. 2.17, the cameraman is in�uenced by
what is known as Gaussian noise i. e., �uctuations in the intensity, following
a Gaussian distribution, with a given standard deviation[10].

Figure 2.17: The cameraman in�u-
enced by Gaussian noise. The form
of Gaussian noise will later be im-
portant for our implemented IRWSR
scheme.

In image pro-
cessing various tools exist, where the key is to reduce noise while preserving
the inherent features of the image, in § 2.4.3 we will review two such methods.

The two signi�cant parameters de�ning the pixel resolution is the pixel
pitch and the active pixel area, see Fig. 2.18 for an illustration. The pixel pitch
is the distance between the centres of two neighbouring pixels and can be
interpreted as the density of pixels. The pixel pitch de�nes the granularity
of the sampling grid, which can be directly related to the spatial sampling
frequency. The active pixel area also named the �ll factor, is the percentage
of the sensor array pixels, which are occupied by the photodetector i. e., what
area of the incoming light is converted to a digital pixel. This reduced spatial
responsibility of a sensor is due to electrical components occupying space in
the pixel area. In general a large �ll factor desirable, as it provides as higher
SNR[7].

Figure 2.18: Rough schematic showing how a pixel grid gives a lacks in information due to
the active pixel area and the pixel pitch. Image from [7],
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2.3 sampling

The above theory of signals and image formation can now be combined in
that of sampling, where the goal is to form a representation of a continuous
signal by discretization. To avoid confusion between images and frequencies,
we will from now on denote an input signal/image as 𝑥 and output as 𝑦.

2.3.1 The Nyquist-Shannon sampling theorem

Obtaining a discrete representation 𝑦 [𝑛] of a continuous signal 𝑥 (𝑡) requires
sampling. The discrete points 𝑛 is the sampling index and is related to 𝑡 = 𝑇𝑠

𝑛
,

where𝑇𝑠 is the sampling pitch i.e the equidistant steps for sampling. For ideal
sampling the sampling operator is described by a Dirac delta comb;

𝑦 (𝑡) =
∞∑︁

𝑚=−∞
𝑥 (𝑡)𝛿 (𝑡 −𝑚𝑇𝑠), (2.2)

𝑇𝑠

𝑇

Figure 2.19: In blue a continuous-
signal is shown. In red a discrete
version of the signal sampled at
a frequency 𝑓𝑠 = 1/𝑇𝑠 below the
Nyquist-Shannon limit, giving rise to
aliasing.

where 𝑦 (𝑡) is the continuous representation of 𝑦 [𝑛]. In the Fourier domain
the sampling is described by the sampling frequency 𝑓𝑠 = 1

𝑇𝑠
and the sampling

is given as

𝑦 (𝑘) = 𝑓𝑠
∞∑︁

𝑚=−∞
𝑥 (𝑓 −𝑚𝑓𝑠) .

Using this de�nition of sampling the limits of discretization can be de�ned
with relation to a band-limited signal.
A signal 𝑥 (𝑡) is band-limited if the Fourier representation is upper-bounded
by a frequency 𝑓0. In order to get an error-free representation of a signal i. e.,
obtaining 𝑦 [𝑛] from which it is feasible to reconstruct 𝑥 (𝑡), the sampling
frequency 𝑓𝑠 should follow the Nyquist-Shannon sampling theorem. (a) (b)

Figure 2.20: Example of spatial alias-
ing in the form of moiré pattern.
The stripes on the image (a) changes
alignment in the undersampled im-
age (b).

The
theorem states that 𝑓𝑠 should be twice the bandwidth 𝑓0 of 𝑥 (𝑡). If violated,
frequencies higher than 𝑓𝑛 ≡ 𝑓𝑠

2 are sampled as if they were of a lower
frequency by the ADC[12][7]. This is known as undersampling and gives rise
to the aliasing e�ect shown in Fig. 2.19 and the moiré pattern shown in Fig.
2.20.

In general sampling is non-ideal and the Dirac delta function in Eq. 2.2, would
be replaced by the more complex impulse response 𝐻 (·). For imaging 𝐻 (·)
is the blur operator(PSF) which functions as a low-pass �lter with cut-o�
frequency 𝑓ℎ . This further limits how 𝑥 (𝑡) can be reconstructed from𝑦 [𝑛],[7].
The role of blur in imaging is further described in § 2.2.
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2.3.2 Multi-Channel Sampling
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Figure 2.21: A continuous signal sam-
pled by the same sampling frequency
into 3 separate discrete channels by
di�erent o�sets.

The conclusion from the previous section is that the sampling criterion
and the blurring of a signal both limit an error-free sampling of an optical
scene. These quantities are for real setups directly related to the quality of
the measuring equipment. A natural conclusion is that a higher sampling
rate leads to a better quality e. g. a CCD/CMOS with a higher pixel-density
would lead to greater resolution. High-quality equipment often comes at a
higher �nancial cost A natural follow up would then be, what is the highest
possible resolution obtainable by a given system?

Taking an arbitrary system which discretized a one dimensional signal 𝑥 (𝑡),
into 𝐾 multiple channels 𝑦𝑘 [𝑛] by sampling frequency 𝑓𝑠 < 𝑓0, providing an
undersampled representation. If each channel is sampled by 𝑁 instances, the
total amount of sampled points will be 𝐾𝑁 . In Fig. 2.21 this kind of sampling
is shown, where the separate channels are complementary i. e., sampled by
di�erent o�sets smaller than 𝑓𝑠 , such that they carry di�erent information
about the original signal. It is possible to construct a discrete signal 𝑥 ′[𝑛],
with an apparent sampling frequency 𝑓 ′𝑠 consisting of 𝑠𝑁 sampling points.
The magni�cation factor 𝑠 is given as

𝑠 =
𝑓 ′𝑠
𝑓𝑠
.

Extending this to image theory, it forms a foundation for multi-frame super
resolution (MFSR). Here the signal is two-dimensional, and the o�sets are
acquired through subpixel translations between the scene and the camera.
The amount of magni�cation possible is bounded by both the band-limit of
the original signal due to the Nyquist-Shannon sampling theorem and the
cut-o� frequency 𝑓ℎ due to blurring. This gives an e�ective magni�cation:

𝑠∗ =

{
1
𝑓𝑠
min(𝑓𝑠 , 𝑓ℎ) if 𝑓𝑠 ≥ 2𝑓0

1
𝑓𝑠
min(2𝑓0, 𝑓ℎ) otherwise

The �rst criteria state that the signal needs to be under-sampled to enhance
the resolution. If 𝑓ℎ < 𝑓0 the blurring applies anti-aliasing, removing the
essential components for the SR scheme. The lower of the two then de�nes
the e�ective maximum magni�cation[7].

The conclusion from the above is that for digital imaging one needs to ac-
count for the PSF related to the system, as the SR cannot provide reliable results
beyond this limit. Before moving on to SR as a concept, we will elaborate some
of the image processing techniques considered in this thesis.
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2.4 additional image processing

Figure 2.22: Optical image of
the examined circuit board.

Before moving on to the MFSR framework, short reviews of important
computer processing algorithms, used throughout this work is given. The
algorithms are put in context of the later examined X-ray images of a circuit
board, illustrated in Fig. 2.22. All processing techniques are implemented
through the open-source computer vision library openCV[13].

2.4.1 Histogram

An useful alternative to the representation of images in 2D pixel grids is the
histogram. A typical histogram of an 8bit image is divided into the range of
256 bins showing the pixel count for the given intensity. This spectrum gives
a visualization of the dynamic range of the image. Where the high end of the
spectrum indicates an bright image and a low end indicates dark images. A
very narrow region in the intensity range represents poor contrast, carrying
low detail and as such little information. A very broad histogram indicates
that all intensity values are well represented. This carries a lot of information.
The use of histograms to represent images can be a strong tool, as the color
mappings of images tend to misguide the viewer as they provide arbitrary
interpretations of the details.

Histogram Equalization

Figure 2.23: (top) Underexposed X-
ray image of a circuit board. (bottom)
Histogram Equalization

A tool for altering the contrast of images is histogram equalization. This
is the process of changing the dynamic range of the image to be equally
distributed across the whole intensity scale. First we de�ne the probability
density function for the intensity range of a given image i. e., the normaliza-
tion of the histogram counts.

𝑝 (𝑖) = 𝑛𝑖

𝑀 · 𝑁 (2.3)

where𝑛𝑖 is the count of intensities 𝑖 in the image of size𝑀×𝑁 . The cumulative
distribution function (CDF) is then given as:

𝑐𝑑 𝑓 (𝑖) =
𝑖∑︁
𝑗=0

𝑝 ( 𝑗),

which is the cumulative stacking of the counts, as 𝑐𝑑 𝑓 (𝑖) is the sum of all
pixel elements up to the 𝑖’th intensity value. The histogram equalization
process then maps the image to a linear distribution of the 𝑐𝑑 𝑓 .
The process is illustrated in Fig. 2.24 where the histogram of the circuit
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(a) Normal Histogram (b) Histogram Equalization

Figure 2.24: (a) the narrow range histogram of the circuit board in Fig. 2.23. (b) the histogram
after performing histogram equalization. The CDF changes shape to an approximative straight
line.

board shown in Fig. 2.23 is equalized. For the two peaks in Fig. 2.24 the
CDF approximates an linear slope, and as so the intensities of the image are
spread over the total intensity range. The histogram equalization considered
here, works on a global scale which for some situations tend to enhance the
background of images. For these cases adaptive histogram methods exists,
which we will not elaborate[9].

2.4.2 Segmentation

A typical task in computer vision is the segmentation of various objects in
a scene. The process works by dividing the di�erent intensity values to a
new range of intensities, where the levels partition the image to various
regions. The most basic segmentation algorithms work through thresholding.
A simple implementation is the choice of a thresholding value 𝜃 which assign
the image to two classes depending on whether a pixel is larger or smaller
than a chosen threshold value. For an image 𝑓 (𝑥,𝑦) the output image 𝑔(𝑥,𝑦)
is given as

𝑔(𝑥,𝑦) =
{
1 if 𝑓 (𝑥,𝑦) ≥ 𝜃
0 otherwise

The choice of 𝜃 can be picked by hand, with a simple estimation, based on
the corresponding histogram i. e., one can look at the shape of the intensity
curves, and decide where to split them. Another approach, which is in the
spirit of automation, is the use of Otsu’s method, which is based on a statistical
analysis of the image’s histogram. The image is spilt into a foreground and
background class, and the aim is to maximize the inter-class variance 𝜎2

𝑏
. For

a given 𝜃 , the probability of a pixel being in the background or foreground is
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(a) 𝜃 = 49 (b) Segmented Image

Figure 2.25: (a) The histogram of Fig. 2.23 with 𝜃 = 49 found through Otsus method. (b) The
corresponding segmented image.

de�ned as

𝑃1(𝜃 )︸︷︷︸
𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

=

𝜃∑︁
𝑖=0

𝑝𝑥 (𝑖), 𝑃2(𝜃 )︸︷︷︸
𝑓 𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑

= 1 − 𝑃1(𝜃 ) =
255∑︁
𝑖=𝜃

𝑝𝑥 (𝑖),

where 𝑝𝑥 is the probability density function de�ned in Equation (2.3). The
mean values of each class is then de�ned as

𝜇1(𝜃 ) =
1

𝑃1(𝜃 )

𝜃∑︁
𝑖=0

𝑝𝑥 (𝑖)𝑖, 𝜇2(𝜃 ) =
1

𝑃2(𝜃 )

255∑︁
𝑖=𝜃

𝑝𝑥 (𝑖)𝑖

The inter-class variance can then be expressed as

𝜎2
𝑏
(𝜃 ) = 𝑃1(𝜃 )𝑃2(𝜃 ) (𝜇1(𝜃 ) − 𝜇2(𝜃 ))2

As the variance is a indication of the spread of the two probability distri-
butions, the maximization will give the maximum distance between the
means of the two distributions, which is equivalent to minimizing intra-class
variance. The optimal value is then found as

𝜃 ∗ = argmax
𝜃

𝜎2
𝑏
(𝜃 ), 𝜃 ∈ [0, 255],

which can be found by iterating over all possible intensity values of the
spectrum [9]. The Otsu thresholding method is used as a preprocessing
algorithm for the image registration done in § 2.4.4.

2.4.3 Non-linear filters

Some applied �lters in image processing are not LSI and can therefore not
be performed through convolution, which is a linear operation. Here we
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consider two cases of importance for the later developed MFSR scheme.

Figure 2.26: The cameraman cor-
rupted by salt-and-pepper noise

For
demonstration we will see how they remove noise from the noise corrupted
cameraman in Fig. 2.26

Median filter

Applying the median to a set of sorted numbers will return the center value. A
median �lter uses this principle, where the set is small portions of the kernel
size. An simple illustration is give in Fig. 2.27 The median �lter then places
the median value in the center as its output.

10

5 4

5 3

4

59 5

3

4

55 4 3

3

3 4 4 5 5 5 5 9 10
Median

255

255

Figure 2.27: A 3 × 3 median �lter
applied on a 4 × 4 image. The ro-

bustness of the median is illustrated
by the value being constant when
changing one pixel to a saturated

intensity value. In contrary, the av-
erage would change from 5.5 to 32.8.

As with other types of �lters an
odd size is used for a well de�ned center. The median works well for noise
removal as the median value removes outliers without giving a contribution
to the output. Contrary to the average where strong outliers shifts the output.
This makes the median especially good at removing salt-and-pepper noise
(dead or saturated pixels with intensity values of 0 and 255 respectively),
see Fig. 2.28. Furthermore, it preserves edges better than the Gaussian �lter,
which as mentioned blurs the image.

The concept of the median is important for the robustness of the MFSR
elaborated in § 3.

Bilateral filter

Another popular edge-preserving denoising �lter is the bilateral �lter. The
concept is a weighted average of the given neighborhood of a pixel for noise
removal. The process then takes the variation of the intensities into account
to keep the edges. That is only similar intensity values in the neighborhood
should in�uence the output. In some sense it is an extension to the Gaussian
�lter given in § 2.1.3, with the addition of the variation. The �lter is given as

Figure 2.28: (top) noise removal
by median �lter of size 𝑁 = 5.
(bottom) bilateral �lter of size
𝑁 = 9, 𝜎𝑠 = 𝜎𝑟 = 100.

𝐵𝐹 [𝐼 ]𝑝 =
1
𝑊𝑝

∑︁
𝑞∈𝑆

𝐺𝜎𝑠 ( | |𝑝 − 𝑞 | |)︸           ︷︷           ︸
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

𝐺𝜎𝑟 ( |𝐼𝑝 − 𝐼𝑞 |)︸          ︷︷          ︸
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑟𝑎𝑛𝑔𝑒

𝐼𝑞,

where the normalization weight𝑊𝑝 is

𝑊𝑝 =
∑︁
𝑞∈𝑆

𝐺𝜎𝑠 ( | |𝑝 − 𝑞 | |)𝐺𝜎𝑟 ( |𝐼𝑝 − 𝐼𝑞 |) .

Breaking up the equation to smaller parts: 𝐵𝐹 [𝐼 ]𝑝 is the output intensity
of the target pixel 𝑝 , and the sum runs over all 𝑞 pixels in the supported
neighborhood 𝑆 i. e., the kernel size. The 𝐺𝜎𝑠 is a Gaussian with standard
deviation 𝜎𝑠 . The weight of the Gaussian decreases the in�uence of 𝑞 with

20



the distance. 𝐺𝜎𝑟 is a Gaussian with standard deviation 𝜎𝑟 . The weight of the
Gaussian decreases the in�uence of 𝑞 if the intensity value di�er from 𝐼𝑝 .

When 𝜎𝑟 increases it widens and becomes nearly constant over the intensity
range of the image, neglecting its e�ect and approximation the Gaussian
convolution [14].

A concept analogous to that of the bilateral �lter, is implemented as a key
part for the coming MFSR model.

2.4.4 Image Registration

Figure 2.29: Two frames from an
image sequence where the circuit
board is translated. The frames
are cut in half to illustrate their
misalignment.

A part of the coming SR scheme is the translation of a scene to separate
frames in an image sequence. The goal for MFSR is to reverse the image
degradation process and as such the translations should be found. This
is done through image registration, which de�nes how to transform the
separate frames into a single coordinate system. For the model examined
later it is assumed that all frames are linear transformation of each other.
Furthermore, we focus our attention to translations caused by a running
conveyor-belt. A su�cient implementation provided by openCV is that of
optical �ow combined with Shi-Tomasi corner detection. The following
gives a short descriptions of the principles behind these concepts and a
demonstration of the corresponding equations. Throughout this section
examples of the outputs from the implemented image registration scheme,
is given in the margin. The input is two frames from an image sequence of
the circuit board seen in Fig. 2.29.

Figure 2.30: Binary images of the
circuit board generated by otsu-
thresholding.

The �rst step is the preprocessing through
Otsu’s thresholding, see Fig. 2.30.

Shi-Tomasi corner detector

As an edge in a image can be viewed as a sudden change in intensity values
i. e., a high frequency area. A corner is then de�ned as the junction between
two edges. The idea of Shi-Tomasi corner detection is to �nd the corners by
looking for large gradients in the image. Mathematically it can be expressed
as:

𝑀 (𝑥,𝑦) =
∑︁
𝑥,𝑦

𝑤 (𝑥,𝑦)︸  ︷︷  ︸
𝑤𝑖𝑛𝑑𝑜𝑤𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛

·
[
𝐼 2𝑥 𝐼𝑥 𝐼𝑦
𝐼𝑥 𝐼𝑦 𝐼 2𝑦

]

where𝑤 (𝑥,𝑦) is a weighting function with respect to the neighborhood. 𝐼𝑥
and 𝐼𝑦 is the image derivatives, which can be found through the Sobel �lters
de�ned in § 2.1.3. The eigenvalues of 𝑀 , 𝜆1 and 𝜆2 can then be given to a
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scoring function.

Figure 2.31: An illustration of the
features detected by Shi-Tomasi
Corner detection

𝑅 = min(𝜆1, 𝜆2)

The value of this score 𝑅 is then set in context of a threshold. If they lie above
the threshold, the given window is a corner. The algorithm is in openCV
implemented as goodFeaturesToTrack.

Shi-Tomasis corner detection algorithm is an expansion of the well known
Harris detection algorithm, following the same approach, but with a di�er-
ent scoring. The Shi-Tomasi corners and edges found for the circuit board
sequence is illustrated in Fig. 2.31.

Optical Flow

Figure 2.32: A visualization of the
optical �ow between the two frames.

Optical �ow is a method to track apparent motion of objects in a video.
The method aims to track objects between consecutive frames. Two main
assumptions lies as the foundation; The intensity level between two con-
sequent frames does not change rapidly. And that groups of pixels move
together.

If a singe pixel with intensity 𝐼 moves between two consecutive frames,
the intensity can be expressed as a function of the spatial and temporal
coordinates and as we assume the intensity is constant

𝐼 (𝑥,𝑦, 𝑡) = 𝐼 (𝑥 + 𝜕𝑥,𝑦 + 𝑦, 𝑡 + 𝜕𝑡)

The above equation can through a Taylor expansion be converted to what is
known as the optical �ow constraint equation:

𝜕𝐼

𝜕𝑥
𝑢 + 𝜕𝐼

𝜕𝑦
𝑣 + 𝜕𝐼

𝜕𝑡
= 0 (2.4)

with 𝑢 = 𝜕𝑥
𝜕𝑡

and 𝑣 = 𝜕𝑥
𝜕𝑡
.

The problem of optical �ow is to solve for the parameters 𝑢 and 𝑣 as they
de�ne the movement of the object over time.

Figure 2.33: The left frame trans-
lated with the motion estimate

found through optical �ow.

The equation for it self is
under-determined, as only one equation is provided for two constraints. This
problem can in connection with the edges found, be converted to a set of
equations. This is named the Lucas-Kanade method. The method takes a
small window of size 𝑁 × 𝑁 and places it around the points found by the
edge detection algorithm. Assuming that all points carries the same motion.
This provides a set of 𝑁 2 equation on the form of Equation (2.4), which is an
over-determined problem. The problem is then converted to two equations
through least squares �tting, which when solved gives the translation vector
between the two frames[15].
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In our work the sparse optical �ow is implemented, focusing on de�ned
features - such as edges or corners. A contrary to this, is dense sparse �ow
which gives the �ow of all pixels in the frames. Giving rise to a higher accu-
racy at higher computational cost . A result from the implemented algorithm
is demonstrated in Fig. 2.32 and the corresponding translation of the left
frame is viewed in Fig. 2.33.

The process of image registration can be done in various ways and depends
on the speci�c situation. When applying image registration to an automatic
online process i. e., processing while data is acquired, the most important
property is that it e�cient and robust. However, in our implementation
this has not been given much thought, as the bottleneck for a su�cient
runtime is the implementation of the MFSR scheme implemented. In regards
to the robustness, the method works well in general, but fails with increased
motion-blur, this will be elaborated in § 6.3.
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3 SUPER RESOLUT ION

Image Registration

LR LR LR

SR

Median

Figure 3.1: Simple
schematic of MFSR.

Super Resolution (SR) is the process of recovering a high resolution (HR)
digital image from either a single or a set of low resolution (LR) digital images.
It can be viewed as complex upscaling aiming to construct HR images with a
higher informational content. Creating more visually pleasing results than
standard upscaling methods such as the bi-cubic interpolation. In general, the
methods are a computational compromise to expensive hardware, enabling
low-cost solutions to high-quality imaging.

The process of super resolution (SR) is itself an inverse problem, where
one seeks to �nd the casual factors that created them observations. The
observations are the provided LR frames constructed from a unknown HR
image. The connection between the two is the image degradation process,
described mathematically through di�erent operations of translation, blur
and downscaling. The blur often works as an low-pass �lter removing es-
sential high-frequency parts of the image. The shape of the degradation is
impossible to identify completely and as such SR is an ill-posed problem. The
ill-posed problem is de�ned through its counterpart, the well-posed problem.
This is a problem carrying three qualities; (1) Its solution exists, (2) it is an
unique solution and (3) the solution is stable under perturbation. A common
way to solve an ill-posed problem is through Bayesian regularization, where
prior information is induced to make the task well-posed.[16]
The iterative re-weighted super resolution (IRWSR) algorithm we will con-
sider is a Bayesian approach to MFSR. A rough graphical outline of the
algorithm is given in Fig. 3.1

This chapter provides an analysis of the SR schemes considered in this thesis,
comparing and contiuning the discussion about the theory of image processing
found in the previous chapter. Furthermore, it elaborates on the implemented
model of IRWSR by [1], as for this reason the next chapter is based on the original
article, which proposed the scheme, and the later published P.hD thesis [7]. In
§ 3.1, an overview of SR is given with a short discussion of considered approaches.
In § 3.2, the image degration process is explained as the foundation for SR. In
§ 3.3, the Baysian framework for the IRWSR is elaborated and at last in § 3.4,
an outline of the IRWSR scheme is given, with examples of the intermediate
outputs.
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3.1 super resolution - an overview

In the last three decades several SR algorithms have been developed. In fact,
the amount of proposed solutions for SR seems as ill-posed as the problem
itself. The SR methods can be divided into two main categories: single image
super resolution (SISR) or multi-frame super resolution (MFSR).

A common approach to SISR is the statistical self-similarity method employed
by the use of small image patches such as in [17]. Here a single image is
downscaled to a set of low-resolution patches constructing a set of HR/LR
pairs, forming a set of linear constraints used to interpolate the SR image
from the original HR image. Another similar HR/LR approach is given in [18],
where a convolutional neural network (CNN) is trained to interpolate the
HR image from the arti�cially degraded LR image. In [2] the LR/HR patches
are decomposed into a sparse framework and used to train a set of dictionar-
ies, which forms the basis of the SR interpolation. A general assumption in
these types of algorithms is that the unknown point-spread-function (PSF)
is a low-pass �lter such as a Gaussian. In [19] this problem is addressed by
developing a scheme for blind estimation of a non-parametric PSF, found by
a maximum a posteriori (MAP)1 1. The MAP will be elaborated in § 3.3of the HR/LR set.

In MFSR the multiple LR frames carrying complementary information due
to subpixel movement are fused together through motion compensation.
The �rst proposed attempt is given in [20] and is iterative analog to the
back-projection schemes used in tomography. The original approach for the
implementation in this thesis, was to use the kernel estimation from [19]
in combination with the sparse representation in [2]. This approach was
abandoned due to the lack of documentation from [19], and that [2] was to
cumbersome to have a realistic implementation on an online system. A short
review of [19] is provided inn §A.1.1.

The MFSR method presented by Köhler in [1] is especially interesting. Here
a MFSR algorithm based on regularization by bilateral total variation, is used
in an IRWSR. The proposed method is evaluated and compared to other SR
algorithms in [4], where it is quantitatively outperforming other methods
in matters of robustness i. e., performing high quality SR across di�erent
scales of degradataion such as poor motion estimates. Showing that it is a
promising candidate for the further developed scheme is this thesis.

For comparison of SR algorithms, di�erent metrics have been implemented,
two of the most popular being the point signal-to-noise ratio (PSNR) and the
structural similarity index (SSIM).
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3.1.1 Quantifying SR algorithms

Super Resolution

Arti�cial Degradation

PSNR
SSIM

𝑥

𝑦

𝑥

𝐻𝑅

𝑆𝑅

𝐿𝑅

Figure 3.2: An HR image arti�-
cially degraded and then upscaled

to a SR image. The two images
are then compared through the
two metrics PSNR and the SSIM.

There exists a vast amount of SR algorithms, based on choices of regulariza-
tion prior, estimation method, optimization and image registration. All these
algorithms di�er in qualities such as computational time, SR image quality
and robustness to variations in noise, radiometric and translation model. A
natural consequence of generating SR images from either a single or multiple
LR images is the lack of a HR reference. The task of quality assessment
is then left with respect to an HR image 𝑥 , which is arti�cially degraded
to its LR counterparts 𝑦 and then upscaled with SR to a new HR image 𝑥 .
Two common quantitative measures used for measuring di�erent features
in the SR literature is the PSNR based on intensities and the SSIM based on
structural information. A simple schematic of the comparison process is
given in Fig. 3.2.

PSNR: The signal-to-noise ratio is the ratio of desired signal over background
noise in terms of power, which due to a wide dynamic range is expressed in
a logarithmic decibel scale:

SNR𝑑𝐵 = 10 log10(
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
) .

the more convenient PSNR is used in digtial imaging, which is pixel based.
The PSNR is based on the mean squared error (MSE), which is the 𝐿2 norm
of the intensity di�erence between the separate pixels in a reference image 𝑥
of size𝑚 × 𝑛 and the noise corrupted image 𝑥 of identical size.

𝑀𝑆𝐸 =
1
𝑚𝑛

𝑚−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

[𝑥 (𝑖, 𝑗) − 𝑥 (𝑖, 𝑗)]2.

The PSNR is then de�ned as:

PSNR = 10 log10(
𝐿

𝑀𝑆𝐸
),

where 𝐿 is the dynamic range of the intensity values for the image - in a 8
bit representation being 255.

SSIM: The Structural Similarity index was developed as a method for quanti-
fying the degradation of human perception when compressing an image. The
de�nition of the SSIM is a weighted combination of the luminance, contrast
and structure between the two samples 𝑥 and 𝑥 . Giving a �nal expression as:

SSIM(𝑥, 𝑥) = (2𝜇𝑥𝜇𝑥 +𝐶1) (2𝜎𝑥𝑥 +𝐶2)
(𝜇2𝑥 + 𝜇2𝑥 +𝐶1) (𝜎2𝑥 + 𝜎2𝑥 +𝐶2)
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where 𝜇 denotes the mean, 𝜎 the standard deviation, 𝜎𝑥𝑥 the

𝑎
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𝑔

𝑒

𝑏 𝑐

𝑓
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𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

ℎ

𝑖
𝑥

#–𝑥

Figure 3.3: Illustration of
the vector representation

of an image, sorted in rows.

covariance
and 𝐶1 = (𝑘1𝐿)2, 𝐶2 = (𝑘2𝐿)2 are stabilizing constants with 𝑘1 = 0.01 and
𝑘2 = 0.03. As a contrast to the PSNR, the SSIM is not estimating absolute
errors, but instead perceived changes in the structural information[21].

The above two metrics will be applied to our SR outputs when feasible i. e., for
real data, where no reference is given. We now proceed with the foundation
for the implemented SR algorithm - the image degradation model.

3.2 image degradation model

Given a sequence of low resolution frames, the MFSR task is to recover the
unknown high resolution image. That is we seek to reverse the degrada-
tion from a high resolution digital image #–𝑥 to a low resolution frame #–𝑦 (𝑘) .
Throughout this chapter the notation of an image is given as a vector #–𝑥 .

Translation

𝜖𝑘

Subsampling

Blur

𝑫

𝑯

𝑴𝑘

+
Noise

𝑥

𝑦𝑘

Figure 3.4: The image degradation
process for the cameraman image.

This
allows an extension of image processing such as convolution, to that of a
dot product between the image and a matrix representation of the desired
kernel. In Fig. 3.3, the representation of an image as a vector is showed. The
degradation process consists of a translation, blurring, down-sampling and
additive noise. Where each frame 𝑘 is acquired through di�erent translations,
giving a total of 𝐾 individual low resolution frames. Mathematically each
component can be expressed as a matrix operator which gives the following
relation:

#–𝑦 (𝑘) = 𝑫𝑯𝑴 (𝒌) #–𝑥 + #–𝜖 (𝑘) (3.1)
=𝑾 (𝑘) #–𝑥 + #–𝜖 (𝑘) ,

where 𝑫 is the decimation(down-sampling) operator, 𝑯 is the blurring oper-
ator, 𝑴 (𝒌) is the translation of the 𝑘’th frame and #–𝜖 𝑘 is the noise in the 𝑘’th
frame[4].

The three operators are gathered together is the degradation matrix𝑾 (𝑘) =
𝑫𝑯𝑴 (𝑘) . In a computational framework𝑾 (𝑘) carries the whole degradation
process except the additive noise #–𝜖 (𝑘) . In Fig. 3.4, an illustration of the image
degradation process is given.

In the following two computationally di�erent approaches for image degra-
dation is presented. The one in focus is𝑾 (𝑘) expressed as a sparse matrix
and the LR frames are found through the dot-product with #–𝑥 . An alterna-
tive approach is the degradation of the HR image through standard image
processing methods, such as �ltering.
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3.2.1 Matrix representation of degradation

Considering a HR frame #–𝑥 of length 𝑁 , the given LR frame #–𝑦 will be of size
𝑀 = 𝑁 /𝑠 , where 𝑠 is the magni�cation factor. The whole degradation system
𝑾 (𝑘) is then a matrix of size 𝑀 × 𝑁 , where each row indicates the pixels
from 𝑥 which contribute to the value of a pixel 𝑢𝑚 in 𝑦. Building𝑾 depends
on the data at hand and is illustrated in Fig. 3.5.

Using a motion estimate for the 𝑘’th frame 𝒕 (𝑘) = (𝑡 (𝑘)
ℎ
, 𝑡

(𝑘)
𝑣 ), where 𝑡 (𝑘)

ℎ
and

𝑡
(𝑘)
𝑣 , is the translation in the horizontal and vertical direction respectively.
The relation between a pixel at position 𝒖𝒎 in the low-resolution frame and
the counterpart 𝒖′

𝒎 in the high-resolution frame is 𝒖′
𝒎 = 𝒖𝒎 + 𝒕 (𝑘)𝑠 .

The blurring ℎ(·) is related to the PSF of the system and is supported within
a radius de�ned by the standard deviation 𝜔𝑃𝑆𝐹 . Assuming that the contribu-
tion from a pixel 𝑣𝑚 in the high resolution frame is only contributing to 𝑢𝑚 ,
if it lies within the area de�ned by 𝜔𝑃𝑆𝐹 (𝒖′

𝒎). The above can be summarized
in the de�nition of each component in𝑾 :

𝑊𝑚𝑛 =

{ 1∑𝑁
𝑖=1 ℎ (𝑢′𝑚−𝑣𝑛)

ℎ(𝑢 ′𝑚 − 𝑣𝑛) 𝑣𝑛 ∈ 𝜔𝑃𝑆𝐹 (𝑢 ′𝑚)
0 otherwise,

where each component is normalized with respect to the supported area. The
bene�t of this is that a continuous version of the PSF can be used in the𝑾
scheme. A common approximation for an unknown systems, is the PSF in
the shape of a zero mean 2-dimensional Gaussian with standard deviation
𝜎𝑃𝑆𝐹 . In combination with the Gaussian a model for the supported area in
the high-resolution frame is created:

ℎ(𝒖) = exp(−12 | |𝒖 | |
2
2/(𝑠2𝜎2𝑃𝑆𝐹 )). (3.2)

Setting 𝜔𝑃𝑆𝐹 = 3𝜎𝑃𝑆𝐹 ensures 99.7% of the Gaussian is within the supported
area. The resulting matrix𝑾 would be best represented by a sparse matrix22. A sparse matrix is, as the name

suggest, a matrix where most of the
elements are zero. Memory wise only

the non-zero elements are stored
in a list referring to their indices.

,
as the amount of non-zero inputs will be O(𝐾𝑀𝑁𝑝𝑠 𝑓 ), where𝐾 is the amount
of LR frames and 𝑁𝑝𝑠 𝑓 is the radius of the supported part of the PSF[7].

In the applied scheme 𝑾 is created by iterating over every pixel in all of
the low resolution frames. An simpli�ed version of the implemented code
is given in Code Listing A.2. The motion estimates are given through the
image registration process described in § 2.4.4.

An alternative to the previous approach is to separate each degradation step
into individual image operations. The motion translation 𝑴 (𝑘) is calculated
through direct translation using the motion estimates. The blur 𝑯 is calcu-
lated through a discrete convolution, see § 2.1.2. The down-sampling can be
implemented through nearest neighbor interpolation.3

3. The degradation through
�ltering is used for generat-

ing arti�cial LR frames for ex-
amination of the HR process.
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Figure 3.5: Illustration of the relation between a pixel in the low-resolution frame and the
pixel values contributing from the high-resolution image. Image from [7]

This approach of �ltering avoids the nuisance of creating and storing a
sparse matrix. However, this approach is not straightforward to implement
in the MAP given in § 3.3 and as such the sparse implementation is preferred.
Another advantage of the matrix representation of𝑾 is that it can be pre-
computed. For a system repeating the same structural degradation, the whole
matrix is only calculated once and then repeatedly used. Furthermore, the
matrix calculation can be evaluated in a parallel manner, as each point is
independent.

Depending of the implementation of the image degradation, several approx-
imations are made. The above motion translations assume a rigid motion
of the overall frame and as so, does not include the independent motion of
individual objects in the scene. The overall scheme should only work for
multiple frames gathered by camera translations on a still object, or possibly
in the case of a conveyor-belt where the entire scope of the frame is moved
simultaneously. The problem of independent movements is also apparent
in the approximation of the PSF being space-invariant. The independent
motion blur will cause a PSF of spatial dependencies.

With a foundation in the degradation model, we proceed with another im-
portant step of our implemented scheme. The Bayesian framework used to
stabilize the problem through the method of regularization.

3.3 bayesian framework for mfsr

Based on conditional probability, the Bayesian theorem forms a foundation
for the examined MFSR model. In this framework, the high resolution image
and low resolution frames are modeled as random variables and related

29



through probability density functions 𝑝 (·). Bayes theorem is given as

𝑝 (𝑥 |𝑦)︸ ︷︷ ︸
posterior

=
𝑝 (𝑦 |𝑥)𝑝 (𝑥)

𝑝 (𝑦) ∝ 𝑝 (𝑦 |𝑥)︸ ︷︷ ︸
conditional probability

𝑝 (𝑥)︸︷︷︸
prior

,

where the denominator is neglected, as the contribution is a positive constant.
The posterior 𝑝 (𝑥 |𝑦) is the condition probability of obtaining 𝑥 given data 𝑦.
𝑝 (𝑦 (𝑘) |𝑥) is the conditional probability of obtaining a low-resolution frame
𝑦 (𝑘) from 𝑥 , through the image degradation process given in Equation (3.1).
The prior 𝑝 (𝑥) describes the statistical properties of 𝑥 . The goal of the SR
process is to estimate the image 𝑥 which best explains the low-resolution
frames. Commonly done through the maximum a posteriori (MAP) method,
�nding the 𝑥 which maximizes the posterior:

𝑥𝑀𝐴𝑃 = argmax
𝑥

𝑝 (𝑦 |𝑥)𝑝 (𝑥), (3.3)

by taking the negative logarithm, the problem is converted to a minimization
problem:

𝑥𝑀𝐴𝑃 = argmin
𝑥

{
− log(𝑝 (𝑦 |𝑥)) − log(𝑝 (𝑥))

}
= argmin

𝑥

{
𝐿(𝑥) + 𝜆𝑅(𝑥)

}
,

where 𝐿(𝑥) is the negative log-likelihood function44. The negative log-likelihood comes
from maximum likelihood (ML) es-
timation, an estimation technique
not accounting the prior. The reg-

ularization by a prior is needed
for a conversion to a stable solu-
tion, for an ill-posed problem[7]

, 𝜆 is the regularization
weight and 𝑅(𝑥) is the chosen prior distribution. The minimization is noted
as an overall minimization of an energy function.

𝑥𝑀𝐴𝑃 = argmin
𝑥

𝐹 (𝒙) (3.4)

The energy function 𝐹 (𝒙) is divided into two essential parts; The Likelihood
term 𝐿(𝑥) and the regularization term 𝑅(𝑥).

The shape of𝐿(𝑥) and𝑅(𝑥) can takemany shapes, depending on the statistical
assumptions made for the problem. In the SR literature various suggestions
with di�erent qualities has been proposed. A complete analysis of all these
methods are out of the scope for this thesis. We proceed by elaborating
the choices of [1], which is based on the image residuals and a Gaussian
assumption of the image noise.

3.3.1 The Likelihood term

The �rst term of the energy function is the negative log-likelihood term 𝐿(𝑥),
which is described through a observation model. Giving the probability of
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obtaining a low-resolution frame 𝑦 (𝑘) as a conditioned probability 𝑝 (𝑦 (𝑘) |𝑥).
The distribution 𝑝 (𝑦 (𝑘) ) follows the image degradation process in equation
3.1, and is dependent of the image noise 𝜖 (𝑘) . As such the whole structure
of 𝑝 (𝑦 (𝑘) |𝑥) is dependent on an assumption of the noise distribution. The
authors of the IRWSR proposes a model with a spatial weighted Gaussian.
This allows the standard deviation of the noise distribution to change with
the spatial location. Giving:

𝑝 (𝒚 |𝒙, 𝜷) ∝ exp
{
− (𝑦 −𝑾𝑥)𝑇𝑩(𝑦 −𝑾𝑥)

2𝜎2
𝑛𝑜𝑖𝑠𝑒

}
. (3.5)

Providing a negative log-likelihood function as

𝐿(𝑥) = 1
2𝜎2
𝑛𝑜𝑖𝑠𝑒

(𝑦 −𝑾𝑥)𝑇𝑩(𝑦 −𝑾𝑥), (3.6)

where 𝜎𝑛𝑜𝑖𝑠𝑒 is a scale parameter and 𝑩 is a diagonal matrix containing the
con�dence weights 𝛽1, . . . , 𝛽𝐾𝑀 . The con�dence weights 𝛽𝑚 is de�ned in the
interval [0, 1]. A value of 0 indicates an outlier regarding the distribution
and 1 indicates an inlier. The estimation of 𝑩 is given in § 3.4.2. The part
𝑦 −𝑾𝑥 is later denoted as the residual between the given LR frames and the
estimated guess for an SR image 𝑥 .

With the �rst part of the MAP de�ned, we proceed with the elaboration of
the chosen prior.

3.3.2 The Regularization term

The second part of the energy function relates to the prior. The prior 𝑝 (𝑥)
carries statistical properties of the HR image 𝑥 , and is dependent on the
regularization term 𝑅(𝑥). The 𝑅(𝑥) can be chosen to best solve the task at
hand, and di�erent choices will suppress and enhance various qualities in the
image. A common choice is the Gaussian prior, which considers 𝑥 to be spatial
smooth. The authors of the IRWSR argues that the use of a bilateral total
variation (BTV) prior. A generalization of the total variation prior, which is
common for denoising of images. The total variation prior seeks to minimize
the absolute gradients in the vertical and horizontal directions of the image.
The bilateral part is an extension to gradients in multiple directions, and
is inspired by bilateral �ltering, see § 2.4.3. This is done through di�erent
combinations of shifts in the horizontal and vertical direction:

𝑅𝐵𝑇𝑉 (𝑥) =
𝑃∑︁

𝑚=−𝑃

𝑃∑︁
𝑛=−𝑃

𝛼
|𝑚 |+ |𝑛 |
𝐵𝑇𝑉

| |𝑆𝑚,𝑛x| |1,
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𝑆𝑚,𝑛 = | |I𝑁×𝑁 − S𝑚𝑣 S
𝑛
ℎ
| |1,

𝑆𝑚𝑣 and 𝑆𝑛
ℎ
denotes shifts of 𝑥 by𝑚 and 𝑛 pixels in the vertical and horizontal

direction respectively. 𝑃 de�nes the window size and 𝛼𝐵𝑇𝑉 weights the
di�erence. The regularization can be interpreted as a multi-scale analysis of
the image gradients. A matrix 𝑆 assembling the di�erent components of the
operator is de�ned as:

𝑆 = (𝑺−𝑃,−𝑃𝑺−𝑃+1,−𝑃 . . . 𝑺𝑃,𝑃 ) . (3.7)

For implementation this is created as a diagonal block matrix, where each
block in the diagonal is the gradient in the given direction. The value of 𝑃
de�nes the amount of di�erent combinations of the horizontal and vertical
shift. The implementation of 𝑆 as a matrix is given in Code Listing A.1.

The authors of the IRWSR argues that the edge preserving of the above prior
is limited as it is not spatial adaptive. They proceed by proposing a spatial
weighted version, given as a zero-mean weighted Laplacian distribution55. The argument of the Laplacian

is motivated through the �eld of
natural image statistics, which
is out of the scope of this thesis.

We refer to a analysis made in[7].

:

𝑝 (𝑥 |𝛼) := 1
𝑍 (𝜎𝑝𝑟𝑖𝑜𝑟 , 𝛼)

𝑒𝑥𝑝{− ||𝑨𝑺 | |1
𝜎𝑝𝑟𝑖𝑜𝑟

},

where𝜎𝑝𝑟𝑖𝑜𝑟 is the distribution scale parameter, 𝛼 is the con�denceweights set
in a diagonal matrix A = 𝑑𝑖𝑎𝑔(𝛼𝑖 , ..., 𝛼𝑁 ′) and 𝑍 (𝜎𝑝𝑟𝑖𝑜𝑟 , 𝛼) is a normalization
constant. In combination with the above we get the weighted bilateral total
variation prior:

𝑅(𝑥 |𝛼) = | |𝑨𝑺𝑥 | |1,

where the weight ensures that the regularization of discontinuities are re-
duced when 𝛼𝑛 = 0 and performs smoothing in homogeneous regions where
𝛼𝑛 = 1. The estimation of 𝑨 is given in § 3.4.2.

The goal of the SR algorithm is to estimate the unknown HR image 𝑥 , which
is calculated trough the minimization of the MAP given in Equation 3.3. As
both the prior term and the negative log-likelihood is spatially weighted the
equation takes the form:

𝑥 = argmax
𝑥

{𝑝 (𝑥 |𝛼) ¤∏𝐾

𝑘=1
𝑝 (𝑦 (𝑘) |𝑥, 𝛽 (𝑘) )}, (3.8)

where it is assumed that each frame is drawn independently from its probabil-
ity distribution. In the above equation both 𝛼 and 𝛽 works as latent variables
i. e., they are random variables we do not know a priori. The authors of
the IRWSR suggests the estimation of the weights through a majorization-
minimization (MM) scheme, as the distribution of 𝑝 (𝛼) and 𝑝 (𝛽) is di�cult to
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model for real-world problems. The (MM) scheme is a way to iterate between
the process of estimating 𝛼 and 𝛽 and the estimation of 𝑥 .

Combining the above with the degradation model𝑾 , the following section
provides an outline of the IRWSR scheme.

3.4 iteratively re-weighted super resolution

Figure 3.6: Reference image of Bar-
bara.

The method developed by [1] is based on a vast amount of statistics and
inverse problem theory. As we are mainly focusing on a reliable implemen-
tation, main parts of the analysis is left out with references to the authors
original work. The MAP estimate in Equation 3.8 forms the starting point
for the iterative re-weighted super resolution (IRWSR). The whole scheme
alters between estimating 𝑥 and the latent weights 𝛼 , 𝛽 and 𝜆. As a whole
the iterations 𝑡 is set in a coarse-to-�ne scheme, which gradually increases
the magni�cation of the image by steps Δ𝑠 . To follow the progress, we will
in the margin provide examples of a LR sequence being super-resolved. In
Fig. 3.6 a reference image of Barbara is shown and in Fig. 3.7 its arti�cially
degraded counterparts. The choice of Barbara is based on the high-frequency
stripes disappearing in the degradation process, as such a reconstruction of
those features is a good indication for whether or not our implementation
works. The degradation is done through the �ltering process described in
§ 3.2.

3.4.1 Outline of the algorithm

The overall process is the following for the 𝑡 ’th iteration:

Figure 3.7: Two frames from a se-
quence of arti�cially degraded im-
ages of Barbara.

1. The reconstructed image 𝑥𝑡−1 found at the previous step is magni�ed
by Δ𝑠 , through bi-cubic interpolation. The weights are estimated as:
𝛼𝑡 := 𝛼 (𝑥𝑡−1 |𝜎𝑡𝑝𝑟𝑖𝑜𝑟 ),
𝛽𝑡 := 𝛽 (𝑥𝑡−1 |𝒚 (1) , . . . ,𝒚 (𝐾) , 𝜎𝑡𝑛𝑜𝑖𝑠𝑒).

2. The scale parameters 𝜎𝑡𝑛𝑜𝑖𝑠𝑒 and 𝜎𝑡𝑝𝑟𝑖𝑜𝑟 together with the regularization
weight 𝜆 is estimated.

3. Using the previous estimated weights 𝑥𝑡 is gathered through a MAP
estimation.

For an initialization of the scheme the initial weights 𝛼0 and 𝛽0 is set to
all one vectors of their respective lengths. The �rst estimate of 𝑥0 is set
to the motion-compensated median of the low-resolution frames i. e., the
LR frames are aligned and the median value taken over all 𝐾 frames. The
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motion-compensated median for the Barbara image sequence is shown in Fig.
3.8.

Figure 3.8: The motion-compensated
temporal median of the Barbara
image sequence.

The estimation of 𝑥𝑡 is based on the energy function found in Equation
3.4, which with our choice of prior and observation model takes the shape:

𝐹 𝑡 (𝒙) = (𝒚 −𝑾𝒙)𝑇𝑩𝑡 (𝒚 −𝑾𝒙) + 𝜆𝑡 | |𝑨𝑡𝑺𝒙 | |1.

With the corresponding gradient:

∇𝑥𝐹 𝑡 (𝒙) = −2𝑾𝑇𝑩𝑡 (𝒚 −𝑾𝑥) + 𝜆𝑡𝑺𝑇𝑨𝑡 sign(𝑨𝑡𝑺𝑥) (3.9)

Where the regularization term is approximated through a smooth and di�er-
entiable function66. The proof can be found in [7]. :

𝑅(𝑥 |𝛼) = | |𝑨𝑺𝒙 | |1 ≈
𝑁 ′∑︁
𝑖=1

𝛼𝑖

√︃
[𝑺𝒙]2𝒊 + 𝜏,

which for 𝜏 = 10−4 is a reliable approximation[1].

For our implementation 𝑥𝑡 is estimated through the conjugate gradients (CG)
method[22] through the scipy library[23].

3.4.2 Estimating weights

The observation weights 𝛽 are determined through the residuals 𝑟 (𝒙 |𝒚) =
𝒚 −𝑾𝒙 , where 𝑦 is a vector of all the given low-resolution frames of length
𝐾𝑀 and 𝑥 is the estimated super resolved image. Large residuals will then
be downweighted, lowering the contribution to the MAP estimate. In the
proposed scheme there will be a 𝛽 value for each point. The 𝛽 weights are
decomposed into two weights. One which accounts for frame-wise outliers
and one which accounts for pixel-wise outliers:

Figure 3.9: Example of the 𝛽
map. Calculated from the resid-
ual between the temporal me-

dian and a single LR frame from
the degraded Barbara sequence.

𝛽𝑖 (𝒓 |𝜎𝑛𝑜𝑖𝑠𝑒) := 𝛽𝑖,𝑏𝑖𝑎𝑠 (𝒓) ¤𝛽𝑖,𝑙𝑜𝑐𝑎𝑙 (𝒓 |𝜎𝑛𝑜𝑖𝑠𝑒).

The bias estimations goal is to �nd global outliers and suppress them i.e.
frames with wrong motion estimations and degraded by motion blur. Using
the assumption given in Equation (3.5), that is the noise is given as a zero-
mean Gaussian, the residual for an individual frame should have zero-mean.
The bias weight for a single frame is set as the overall median being below a
given threshold:

𝛽𝑖,𝑏𝑖𝑎𝑠 =

{
1 if |MED(𝑟 (𝑘 )) | ≤ 𝑟𝑚𝑎𝑥
0 otherwise,

,
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where MED denotes the median, 𝑟 (𝑘) is the residual related to the 𝑘’th frame
and 𝑟𝑚𝑎𝑥 is chosen to be 2% of the maximum intensity7 7. The value originally

used by the author
. The weighting for

local outliers is performed on a per-pixel basis and is de�ned as:

𝛽𝑖,𝑙𝑜𝑐𝑎𝑙 =

{
1 if |𝑟𝑖 | ≤ 𝑐𝜎𝑛𝑜𝑖𝑠𝑒
𝑐𝜎𝑛𝑜𝑖𝑠𝑒
|𝑟𝑖 | otherwise,

,

where 𝜎𝑛𝑜𝑖𝑠𝑒 is the estimate of the standard deviation for the weighted normal
distribution and 𝑐 = 2 is a tuning constant. The inverse weighting of outliers
gradually down weights pixels, which are related to non-Gaussian noise. An
example of the 𝛽 map for the residual between a single LR frame and the
temporal median is given in Fig. 3.9

Figure 3.10: Example of the 𝛼 map,
represented by the sum of the gra-
dients found in all directions for the
temporal median of the degraded
Barbara sequence

Determining the prior weights is related to a value de�ned as 𝑧 = 𝑆𝑥 , where
𝑆 is the matrix de�ned in Equation (3.7). The weights are then de�ned as:

𝛼𝑖 (𝒛 |𝜎𝑝𝑟𝑖𝑜𝑟 ) =
{
1 if | [𝑄 (𝑧)]𝑖 | ≤ 𝑐𝑝𝑟𝑖𝑜𝑟𝜎𝑝𝑟𝑖𝑜𝑟
𝑝
(𝑐𝑝𝑟𝑖𝑜𝑟𝜎𝑝𝑟𝑖𝑜𝑟 )1−𝑝

| [𝑄 (𝑧) ]𝑖 |1−𝑝 otherwise,
,

where 𝑝 ∈ [0, 1] is the sparsity parameter and 𝜎𝑝𝑟𝑖𝑜𝑟 is a scaling parameter.
The �lter 𝑸 reduces noise and is implemented as a median �lter, elaborated in
§ 2.4.3. As 𝑆 is promoting edges in the image, discontinuities in the image will
be down weighted accordingly. An example of the 𝛼 map for the temporal
median is given in Fig. 3.10.

3.4.3 Estimating parameters

The two scale parameters 𝜎𝑡𝑛𝑜𝑖𝑠𝑒 and 𝜎𝑡𝑝𝑟𝑖𝑜𝑟 are estimated at each iteration
through a maximum likelihood (ML) estimation. Here the conditional proba-
bilities are based on previous estimated values for 𝛽𝑡−1, 𝛼𝑡−1 and 𝑥𝑡−1. For
𝜎𝑡𝑛𝑜𝑖𝑠𝑒 giving:

𝜎𝑡𝑛𝑜𝑖𝑠𝑒 = argmax
𝜎𝑛𝑜𝑖𝑠𝑒

𝑝 (𝒚 |𝒙𝑡−1, 𝛽𝑡−1, 𝜎𝑛𝑜𝑖𝑠𝑒) .

For a robustML estimation the authors propose themedian absolute deviation
(MAD) of the residual. Using the estimated 𝛽𝑡−1 as weights, 𝜎𝑛𝑜𝑖𝑠𝑒 is found as

𝜎𝑛𝑜𝑖𝑠𝑒 = 𝜎0 ·MAD(𝒓𝑡−1 |𝛽𝑡−1)
= 𝜎0 · MED

𝑖=1,...,𝐾𝑀
( |𝑟 𝑡−1𝑖 −MED(𝑟 𝑡−1 |𝛽𝑡−1) |𝛽𝑡−1),

where 𝜎0 = 1.4826 is based on the Gaussian assumption for inliers[24].
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Following the same procedure for 𝜎𝑝𝑟𝑖𝑜𝑟 , a robust estimate is given as

𝜎𝑡𝑝𝑟𝑖𝑜𝑟 = 𝜎0 ·MAD(𝑺𝒙𝑡−1 |𝜶 𝑡−1),

where 𝜎0 = 1 is relating it to a n Laplacian[7].

A correct estimation of the regularization weight 𝜆 is key in obtaining a well
reconstructed image. Essentially. it works as a balance between the residual
based object model and the gradient based prior model. When 𝜆 is close
to 0 the likelihood term will dominate the reconstruction and the solution
will be ill-posed. If 𝜆 is large the prior term will dominate, and provide an
over smoothed and blurred image. Instead of relying on methods such as the
"Grad student descent"8

8. A common phrasing in the ma-
chine learning community for man-
ual tunning of the parameter space.

the 𝜆𝑡 should be estimated at each iteration through
a method analogue to two-fold cross-validation99. A method where the data is split

into training and test sets. The pa-
rameters for the given model is

then estimated on the training sets
and validated on the test sets. This
prevents the model for over �tting.

.

The authors of the IRWSR propose to split the data of the low-resolution
frames and the temporary high-resolution image in two sets 𝑰 𝛿 and 𝑰 𝛿 , where
the �rst is used to estimate 𝑥 (𝜆) as proposed earlier. The estimated 𝑥 is then
validated through a score given by the likelihood function in Equation 3.6.
To ensure that 𝜆𝑡 avoids local minima, the scheme is set in an adaptive grid
search. In the range from [log(𝜆𝑙 ), log(𝜆𝑢)], split into steps of 𝑇𝑐 , where the
values 𝜆𝑙 and 𝜆𝑢 is the lower and upper initial regularization weights. For
every iteration a new range is set with 𝜆𝑢,𝑙 = log(𝜆𝑡−1) ± 1/𝑡 and the amount
of steps divided by 2. In our implementation starting values 𝜆𝑙 = −5, 𝜆𝑢 = 0
and 𝑇𝑐𝑣 = 10 was su�cient, as 𝜆 seemed to always land is this range. The
choice of cross-validation greatly enhances the runtime of the overall scheme,
as the minimization of the energy function is done multiple times. For a well
known system one could propose the use of a constant 𝜆, as a way to achieve
a lower runtime at the cost of lower precision.

3.4.4 Intermediate results

With the above outline of the SR scheme the degraded images sequence in
Fig. 3.7 is upscaled in Fig. 3.11. One should notice how some of the high
frequency information stands sharper than in the LR counterpart, and the
images is perceptually more pleasing. The PSNR is best for the median, which
is due to the reduced noise and that the intensity levels are more true to the
original. The values of the SSIM is highest for the SR image, indicating that
the enhanced features are close to the original.

Further results for the implementation of the IRWSR scheme is shown in § 6,
where it is applied to X-ray images. In connection with that, a discussion of
the possibilities of the IRWSR scheme is given. In the coming chapters, an
introduction to X-ray physics and our simulator, de�nes the foundation for the
data we will use the IRWSR on.
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(a) Reference (b) SR (24.54 dB, 0.77)

(c) Degraded LR frame (11.37 dB, 0.73) (d) Median (32.19 dB, 0.65)

Figure 3.11: MFSR image of Barbara. Magni�ed by a factor of 𝑠 = 2 in steps of Δ𝑠 = 0.1, from
a size of 60 × 50 to 120 × 100. The LR frames were created by random subpixel translations
in the range of 5 pixels, blurred by a Gaussian blur of 𝜎 = 0.5 and downscaled to half the
original size by nearest-neighbour interpolation. The regularization parameter 𝜆 = 0.0008
was found through cross-validation and the total runtime was 212 s. The median and one of
the degraded LR frames upscaled by bicubic interpolation to that of the original image. The
�rst measure is the PSNR and the second measure is the SSIM.
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Part III

X-RAY S IMULATOR



4 X-RAY IMAG ING

(1)

(2)
(3)

(4)

Figure 4.1: X-rays interacting with
matter and hitting a detector. (1)

direct transmission of a photon to
the detector. (2) scattered photon
adding noise to the image. (3) and

(4) absorption of photons in matter.

For electromagnetic radiation, the de�ning quantum is the photon. A mass-
less particle, holding an energy of 𝐸 = ℎ𝜈 = ℎ𝑐

𝜆
, where ℎ is Planck’s constant,

𝜈 is the frequency, 𝑐 is the speed of light and 𝜆 is the wavelength. X-rays are
essentially photons with wavelengths shorter than 10−9m corresponding to
energies greater than 1 eV and frequencies larger than 108Hz. The photon
interacts with matter either by absorption or ionization, with the probability
of absorption increasing with the atomic number 𝑍 . X-ray allows for a non-
destructive examination of the internal structure of objects, such as organic
materials, as the penetration rate will be larger in soft tissue than that of
metals or bones. A typical X-ray imaging setup consists of the following; an
X-ray source, a target object and a detector [25]. This type of X-ray imaging is
widely used in the �elds such as medical imaging for diagnostic purposes[9],
security for luggage examination and in our case food inspection for quality
assessments.

In the understanding of the X-ray imaging concept for food inspection, we
need to form a basis in the di�erent physical theories relevant for the image
formation. In § 2, we described the origin of optical imaging, and on a de-
tector level, there are many parallels to be drawn. In the following, we seek
to explain the di�erent physical processes relevant to make this connection,
providing us with a two-dimensional image representation of the interior of
a target object.

The �eld of X-ray physics is vast, and the full derivations of the di�erent
physical processes are quite complicated - whole books are dedicated to all the
theory behind this chapter. This section goes through the basic theory behind
X-ray imaging, dividing it into its main components. In § 4.1, the X-ray source is
elaborated with the X-ray emission spectrum. In § 4.2, di�erent types of interac-
tions with matter is elaborated, forming the attenuation spectrum. In § 4.3, the
detection of X-rays is described together with an analysis of the noise. Finally,
in § 4.4, the theory is put in the context of a real-world setup to provide an
understanding of the possibilities and limitations of X-rays in food inspection.

4.1 x-ray emission spectrum

Arti�cially X-rays can be produced by particle accelerators, where charged
particles are accelerated to considerable kinetic energies and thereby emit
radiation. Particle accelerators can be divided into two main categories;
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Electrostatic and Cyclic. In an electrostatic accelerator, a static electric �eld
accelerates the charged particles, limiting the maximum kinetic energy to
the voltage di�erence. The cyclic accelerator, on the other hand, carries a
non-static electric �eld, allowing the kinetic energy of the particles to exceed
the voltage di�erence of the system. Possible by the fact that the �eld is non-
conservative and the particle passes it in a cyclic system. A cyclic accelerator
typically allows for a narrow energy spectrum, but at a higher �nancial cost
and use of space. In this work, the focus is on the electrostatic X-ray tube
typically used in medical imaging and food inspection[26].

X-ray tube

Figure 4.2: Schematic drawing of an
X-ray tube. Image from [25]

The X-ray tube, as illustrated in Fig. 4.2 is a vacuum tube consisting of
a negatively charged cathode made of tungsten wire. The wire is heated
to approximately 2200 C◦ providing the electrons with enough energy to
escape the surface. The cathode is surrounded by a negatively charged
focusing cup, which focuses the beam unto an anode. The anode is a large
metal target(typically made of tungsten) applied with a positive voltage
accelerating the electrons. The potential di�erence between the anode and
the cathode is between 25 kV and 140 kV and is known as the accelerating
voltage. The accelerated electrons interact with the atoms in the target,
and most of these interactions are collisions, where the kinetic energy of
the electrons are converted to heat. The X-ray radiation is a result of two
processes; Bremsstrahlung and X-ray �uorescence[27].

4.1.1 Bremsstrahlung

When a negatively charged electron is within the proximity of the nucleus of
an absorber, it will interact with the positive electric �eld through Coulomb
interactions. The interactions result in a loss in kinetic energy for the elec-
tron, therefore, decelerating it. It is quanti�ed by combining Newtons and
Coulombs laws.

𝑚𝑒𝑎 =
𝑒𝑍𝑒

4𝜋𝜖0𝑟 2

giving,

𝑎 ∝ 𝑍𝑒2

𝑚𝑒𝑟
2 ,

where𝑚𝑒 is the mass, 𝑒 the charge and 𝑎 acceleration of an electron, 𝑍 is the
atomic number of the absorber, 𝑟 is the distance between the particle and the
nuclei and 𝜖0 is the vacuum permittivity. This shows that the deceleration is
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proportional to the size of the absorber and decreases as the inverse square
with the distance. An accelerated or decelerated charged particle, emits
parts of its kinetic energy as photons. An e�ect is known as bremsstrahlung
radiation and is described by the Larmor relationship

𝑃 =
1

6𝜋𝜖0
𝑒2𝑎2

𝑐3
,

where 𝑐 is the speed of light. The Larmor relationship shows the power of
radiation is proportional to the square of both the charge and the acceleration,
indicating that the energy of the emitted X-rays increases with atom size
and decreases with the distance to the nuclei. The range of bremsstrahlung
photon energies goes from zero to the kinetic energy of the electron. The
probability of production decreases almost linearly with photon energyℎ𝜈 . At
low photon energies, there is a greater absorption of photons in the housing
of the X-ray tube, making up the broad part of the spectrum shown in Fig.
4.3 [26][28].

Radiation Fluorescence

When an atom interacts with a photon or a particle, there is a probability of
creating a vacancy in one of its atomic shells, creating an excited state. The
excited state decays when an electron from an outer shell, transits into the
vacancy, emitting a photon with an energy ℎ𝜈 corresponding to the di�erence
in binding energy between the shells. The number of possible photons, a
given atom can emit, is based on its atomic number 𝑍 and the quantum
numbers of the shells involved in the transition. The radiated photons are
characteristic for a given element, and the energies are known as the line
spectrum.
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Figure 4.3: Simulated data showing
the distribution of photon energies
emitted by a tungsten X-ray. Volt-
ages are set to 80, 90 and 100 KeV.

Data generated with SpekCalc [29]

X-rays are mainly generated in inner shell transitions of elements
with large Z. As an example, a K-shell(the innermost shell) electron of tung-
sten carries a binding energy of about 70 keV. A transition from the L-shell
to the K-shell(A transition between the two inner shells) generates photons
with energies 57.98 and 59.32 keV. In Fig. 4.3 the characteristic X-rays can
be seen as sharp peaks in the spectrum[26].

With a baseline in the processes behind the generation of X-rays, we can proceed
with the emission spectrum.

4.1.2 X-ray Emission Spectrum

A type of X-ray tube used in food inspection is based on the element tung-
sten, having a high atomic number of 𝑍 = 73, melting point at 3370◦ C, high
thermal conductivity and low vapor pressure. This makes it ideal for the high
temperatures in the tube and allows a high vacuum to be obtained. In Fig.
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4.3, the energy spectrum of a tungsten X-ray tube is simulated at di�erent
voltages. The spectrum is polychromatic and broad, which complicates the
analysis of target objects, as we will discuss in the following section. By the
use of �lters absorbing undesired energy levels, one could be tempted to try
and narrow the bandwidth of the source. However, this is often not feasible
in a real setup as less than 1% of the electron energy is converted to X-rays,
the rest is converted to heat or UV rays[27].

When the photons are emitted from the source, they will in an imaging system
proceed to interact with the objects, of which interior we seek to examine. This
is done through photon-matter interactions.

4.2 photon-matter interactions

Nuclear physics describe several processes of photon-matter interactions,
which generally are dependent on the incident photon energy ℎ𝜈 and the
atomic number 𝑍 of the absorber. In X-ray imaging, the most critical aspect
of these interactions is how the matter attenuates and scatters the incoming
X-ray photons.1

1. In medical physics, radiation
dosimetry is another essential as-
pect of the interactions, which is
the energy transfer from photons
to charged particles and the absorp-
tions of the energy in the irradiated
tissues.[26]

The most critical parameter here is the linear attenuation
coe�cient 𝜇, which describes the probability, per unit path length, that
an incident photon will interact with the matter. For a narrow collimated
beam of mono-energetic photons the exponential attenuation is described by
Beer-Lamberts law:

𝐼 (𝑥) = 𝐼0𝑒−
∫
𝜇 (𝑧)𝑑𝑧 (4.1)

where 𝐼 is the intensity of the emerging beam, 𝐼0 is the original intensity of
the beam and 𝑧 notes the penetration distance. Accounting for the object
density 𝜌 the mass attenuation coe�cients can be de�ned 𝜇𝑚 =

𝜇

𝜌
. The values

of 𝜇𝑚 are based on the theoretical values of the entire atomic cross section
𝜎𝑡𝑜𝑡 , which describes the probability of a speci�c interaction taking place.
The relation is given as:

𝜇𝑚 =
𝜇

𝜌
=
𝜎𝑡𝑜𝑡

𝑢𝐴
, (4.2)

where 𝑢 is the atomic mass unit and A is the relative atomic mass of the
absorber. The total atomic cross section is dependent on the photon energy
and the atomic number 𝑍 and is governed by the following contributions:

𝜎𝑡𝑜𝑡 = 𝜎𝑝𝑒 + 𝜎𝑟 + 𝜎𝐶 + 𝜎𝑝𝑎𝑖𝑟 ,
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where 𝜎𝑝𝑒 , 𝜎𝑟 , 𝜎𝐶 and 𝜎𝑝𝑎𝑖𝑟 are the atomic cross section for the photoelectric
e�ect, Rayleigh scattering, Compton scattering and Pair production, respec-
tively[30].

In the coming, we will go through the di�erent photon-matter interactions one
by one, and then combine them in the total mass attenuation spectrum.

Photoelectric E�ect

The photoelectric e�ect is the interaction between a photon of energy ℎ𝜈
and a tightly bound electron in the orbital of the absorber atom2

2. A tightly bound electron has
a binding energy comparable
to the photon energy ℎ𝜈 . In-
teractions only occur when

the binding energy is slightly
smaller than the photon energy.

, where
the incident photon will be fully absorbed and the electron known as the
photoelectron, ejected from the orbital. The process is illustrated in Fig. 4.4.
The photoelectron carries a kinetic energy of 𝐸𝑘 = ℎ𝜈 − 𝐸𝐵 , where 𝐸𝐵 is the
binding energy of the electron in the given orbital shell. Due to the emission
of the photoelectron, there will be a vacancy in the given shell. An electron
will �ll this vacancy from a higher shell, and the transmitting energy will
be emitted as a characteristic photon.

Figure 4.4: Image from [25]

The attenuation spectrum takes a
sawtooth shape at the absorption edges due to the binding energy of the
di�erent orbital shells of the element[26]. Here the K-edge exists for all atoms
but lies below the energy levels emitted from a common source for low 𝑍

materials. For high 𝑍 values, the 𝐿 and𝑀 absorption edges become apparent.
In general, contribution to the attenuation from the photoelectric absorption
is in the range below 100KeV and grows approximately as ∝ 𝑍 4 [11].

Rayleigh Scattering

Figure 4.5: Image from [25]

Rayleigh scattering occurs when an incident photon of energy ℎ𝜈 interacts
with a bound electron of the absorber with a binding energy greater than
the photons. This energy di�erence prevents the photon of ionizing the
absorber, leaving a negligible change in energy and only changes the angle
of the exciting photon. The atomic cross section for Rayleigh Scattering 𝜎𝑅 is
largest at low energies, but negligible compared to that of the photoelectric
e�ect. In all energy ranges 𝜎𝑅 is secondary to the other main contributions
of the cross section.

The Compton E�ect

The Compton E�ect describes the interaction between a photon of energy
ℎ𝜈 and a loosely bound electron in the outer shell of the absorber. A loosely
bound electron has a binding energy 𝐸𝐵 smaller than the photon energy ℎ𝜈
that is 𝐸𝐵 � ℎ𝜈 . In the process, a photon known as the scattering photon
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is produced with an energy ℎ𝜈 ′ smaller than the incident photon, which is

Figure 4.6: Image from [25]

annihilated. The electron is ejected from the atom with a kinetic energy 𝐸𝑘 .
As a consequence of energy and momentum conversation, the scattering
photon changes angle with respect to the incident photon. The scattered
photons proceed to hit di�erent pixels in the detector, adding noise to the
�nal images and reduces the overall contrast.

Pair Production

Figure 4.7: Image from [25]

When a high energy photon (ℎ𝜈) > 2𝑚𝑒𝑐
2 interacts with the Coulomb

�eld of an absorber, it can lead to the annihilation of the incident photon
and the creation of an electron and positron pair, which is known as the
pair production. In this process, the total momentum cannot be transferred
to the electron-positron pair, and the leftover momentum is transferred
to the absorber. The atomic cross section for the pair production has a
lower limit given by the threshold energy needed for producing the pair
2𝑚𝑒𝑐

2 = 1.022MeV. Above the threshold the atomic cross section is propor-
tional to 𝑍 2.inspection.[26].

The di�erent processes can then be combined in the total mass attenuation
coe�cients.

4.2.1 Total mass attenuation coe�cient

As shown in Equation (4.2), the total mass attenuation coe�cient is propor-
tional to the total atomic cross section. In Fig. 4.8 𝜇 is plotted as a function
of photon energy for carbon and lead. At low photon energies ℎ𝜈 < 100𝑘 eV
and high atomic number 𝑍 the photoelectric e�ect has the biggest contri-
bution. The contribution from the pair production dominates in the region
ℎ𝜈 > 10𝑀 eV and for high atomic numbers 𝑍 , which makes it unimportant in
food inspection, where the typical energy range is ℎ𝜈 < 100. The Compton
Scattering contribution is most apparent in the intermediate region and dom-
inates wider at low atomic numbers 𝑍 . The Rayleigh scattering contribution
is secondary to the other interactions and largest in the lower photon energy
region[26].

The total mass attenuation describes how the X-ray beam attenuates when
passing through the object of interest. The object interior can then be imaged,
through the means of a detector in combination with a scintillator.
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Figure 4.8: The total mass attenuation coe�cients 𝜇𝑚 as a function of photon energy. The
mass attenuation coe�cients related to the various interactions described in the main text,
together with a total. The data is shown for (a) carbon and (b) lead. Data from [31]

4.3 detector and noise

From above, we know that when matter is exposed to X-rays, the photons
will either penetrate the target object or be attenuated. This process leaves an
X-ray beam, where the reduced intensity is related to the interior structure
of the target object. Detection of the attenuated X-rays on a two-dimensional
grid can then provide what we know as an X-ray image.

4.3.1 Scintillator and detetor

As the high energy X-ray photons have a low probability of interaction di-
rectly with detectors such as charge-coupled device (CCD) or complementary
metal-oxide-semiconductor (CMOS) chips33. In this thesis, we only consider

digital cameras in combination with
scintillators as a detector. Other
systems exist like phosphor stor-
age system, digital �at-panel de-
tectors and �lm-based methods

. The indirect detection method of
converting the X-ray photons to optical light by placing a scintillator between
object and sensor can be utilized. The scintillator absorbs the incident X-rays,
exciting the electron states, which relaxes by emitting optical light. When a
photon interacts with the interior of the scintillator, it emits photon isotropi-
cally, sending half of the photons in the detector direction. The spreading of
the light induces blur in the �nal image, which increases with the thickness
of the scintillator. The overall e�ciency of the scintillator can be described by
the variable 𝜂𝑠𝑐𝑖𝑛 i. e., the percentage of X-rays converted to optical photons
registered by the corresponding pixel[11]. The scintillator is popular in an
industry setting as it is a cheap, non-toxic material with a high conversion
rate from X-rays to light.

The optical light from the scintillator can then be registered in a detector.
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In an X-ray setting, the �nal image quality is dependent on the stochastic
processes inherent in all of the above.

4.3.2 Noise as a statistical distribution

In an X-ray imaging setup there is an accumulation of the following di�erent
stochastic processes.

• The sources emitting photons as a Poisson process.

• The number of photons passing through the object is a Binomial pro-
cess.

• The number of X-rays converted to light photons in the scintillator is
a Binomial process

• The number of light photons captured by the detector is a Binomial
process

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4
λ= 1

λ= 4

λ= 10

Figure 4.9: Example of the Poisson
distribution for di�erent Poisson
variables 𝜆.

The noise in the system can be analyzed by going through the processes
systematically. As seen in the following it leads to the thinning of a Poisson
process by a Binomial process.
We start by considering a single ray path between the source and the detector,
where the X-ray penetrates a homogeneous object. In a given exposure
interval there will be emitted N X-ray photons of a given energy, following
a Poisson distribution with a mean of 𝐸 [𝑁 ] = 𝑁0. 𝑁0 is dependent of source
energy and exposure time. The distribution is then

Poisson(𝑁0) = 𝑃{N = 𝑛} =
𝑁𝑛0
𝑛! 𝑒

−𝑁0,

assumingM photons will pass una�ected through the object. This process
can be viewed as a Bernoulli trial, where the success probability 𝑝 is the
probability of leaving the target object una�ected.

𝑃{M =𝑚 |N = 𝑛} =
(
𝑛

𝑚

)
𝑝𝑚 (1 − 𝑝)𝑛−𝑚 =

𝑛!
𝑚!(𝑛 −𝑚)!𝑝

𝑛 (1 − 𝑝)𝑛−𝑚,
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where 𝑝 = 𝑒−
∫
𝜇 (𝑧)𝑑𝑧 is from the Beer-Lambert law given in Equation (4.1).

Using the total probability theorem44. Given as 𝑃 (𝐴) =∑
𝑛 𝑃 (𝐴|𝐵𝑛)𝑃 (𝐵𝑛), where 𝑛 denotes

the independent events.

M can be determined

𝑃{M =𝑚} =
∞∑︁
𝑛=𝑚

𝑃{M =𝑚 |N = 𝑛}𝑃{N = 𝑛}

=

∞∑︁
𝑛=𝑚

(
𝑛

𝑚

)
𝑝𝑚 (1 − 𝑝)𝑛−𝑚 1

𝑛!𝑒
−𝑁0 (𝑁0)𝑛

=
(𝑁0𝑝)𝑚
𝑚! 𝑒𝑁0𝑝 .

As this yields a new Poisson distribution55. A full proof can be found in [32]. , the result for the expected value6
6. The expected value and vari-

ance of a Poisson-distribution are
both equal to the Poisson number

.
of photons passing through the object is the Beer-Lambert law

𝐸 [M] = 𝑁0𝑝 = 𝑁0𝑒
−
∫
𝜇 (𝑧)𝑑𝑧 .

As all other following processes are viewed as Binomial, the resulting photon
count distribution can be estimated as a Poisson thinned by several Binomial
distributions. Giving the quantum e�ciency of the detector 𝜂 i. e., the per-
centage of incoming photons contributing to the �nal output of the detector,
the resulting distribution is then

𝑃{Y = 𝑘} = 1
𝑛!𝑒

−𝑁0𝜂𝑝 (𝑁0𝜂𝑝)𝑘 ,

where Y is the amount of photons represented in the �nal image. The
e�ciency of the scintillator 𝜂𝑠𝑐𝑖𝑛 is included in 𝜂[11].

4.3.3 Signal-to-Noise Ratio

For measuring the quality of the �nal image, the signal-to-noise ratio (SNR) is
used. Contrary to the prior de�nition of the point signal-to-noise ratio (PSNR),
we use a statistically based de�nition, de�ned as the mean over the standard
deviation

𝑆𝑁𝑅(Y) = 〈𝑘〉
𝜎

=
𝐸 (Y)√︁

𝐸 ((Y − 〈𝑘〉)2)
.

We can then use the general result, that the expected value and variance of a
Poisson distribution is the Poisson number 𝐸 [Y] = 𝜎2 = 𝑁0𝑝𝜂.

𝑆𝑁𝑅(N) = 𝑁0𝑝𝜂√︁
𝑁0𝑝𝜂

=
√︁
𝑁0𝑝𝜂

=
√︁
𝑁0𝜂𝑒

− 1
2
∫
𝜇 (𝑧)𝑑𝑧 .
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Figure 4.10: X-ray imaging system
located at NewTec (top) full view

(bottom) close-up. The setup consist-
ing of an X-ray generator, object of

interest(potato) lying on a scintillator
sheet and a camera. Image from the
master thesis by Aleksandar Topic

The above shows that the relative noise can be reduced by a higher input
of photons. A higher SNR provides an increased image contrast as the noise
has a relatively smaller in�uence on the image. In an X-ray generator, the
amount of photons emitted in the system is proportional to the current i. e.,
the signal. From the above expression, it can be stated that by doubling the
signal, the 𝑆𝑁𝑅(Y) is only increased by a factor of

√
2,[9].

4.4 applied x-ray imaging

Following the previous introduction to the physics behind X-ray imaging, we
proceed by explaining some of the technical details relevant for taking X-ray
images. In Fig. 4.4, a test setup for examining X-ray scanning procedures is
shown. The machine is located at NewTec, and the speci�cations are given
in Table 4.1.

The X-ray generator is mounted at the top of a lead shielded cage protecting
the users of unwanted radiation. The X-ray is sent in the direction of an
object(in this case a potato) placed on a sheet of the scintillator. The optical
photons from the scintillator are re�ected on a mirror towards a CMOS de-
tector.

When working with this X-ray source, two parameters are controllable: The
accelerating voltage controlling the upper energy limit of the X-ray spectrum
and the current controlling the intensity(photon count) changing the SNR.
An optimal setting for these parameters varies with the object and should be
set to maximize the contrast of the internal structure i. e., maximizing the
intensity variance providing higher structural information.

NewTec Scanner parameters
X-ray generator Spellman XRBHR100
Voltage range (35-105) kV
Current range
(35-70) kV (0.35 -7.5) mA

Current range
(71-105) kV (0.35 - 5) mA

Maximum power 525W
Camera CMV8000
Resolution 8.4 MP
Pixel Size 5.5 𝜇𝑚
Frame Rate 103 fps
Conveyor-belt speed 15.5 cm/s

Table 4.1: The speci�cations of the NewTec scanner.
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In the setup Fig. A.1, an area detector(CMOS camera) is used for taking
high resolution (HR) images of still objects, allowing an optimal setting for
investigating the possibilities of detection of various anomalies e. g. what are
the limits for �nding holes in various pieces of food, or how small foreign
objects can we detect.

Figure 4.11: X-ray image of a potato
taken by the NewTec scanner.

However, this scenario of still images is not realistic in the context of
a food inspection system. In real-time sorters, high throughput of objects
is desired, which, as a consequence, demands the objects to be in constant
motion. In the NewTec scanner, a conveyor belt can be placed above the
scintillator, allowing the test of images under movement. In combination
with an area scanner, there is a �ne balance between the exposure time and
the induced motion blur. A low exposure time gives a higher frame rate,
which means less motion per frame. A high exposure time gives a low frame
rate, which increases the motion blur.

An alternative to this, andmore common in online systems, is the line scanner.
A line scanner captures single rows of pixels and interpolates them to form
the full image. The line rate (analogous to the frame rate), is synchronized
with the speed of the conveyor belt, providing HR images without motion
blur. In this work, we have not considered the in�uence of line-scanners, as
we had no easy access to raw data.

The focus on resolution enhancement in this work is based on the Area
Detector, as a possible way to counter the motion blur induced. An imple-
mented super resolution (SR) algorithm would provide an alternative to the
line detectors, allowing real-time output frames containing whole objects,
giving new possibilities in regards to the segmentation and classi�cation
algorithms developed for the AXIS project.

In § 6.3, we examine the e�ect of the iterative re-weighted super resolution
(IRWSR) algorithm on di�erent image sequences from the NewTec scanner. Be-
fore this, a demonstration of a simulated alternative to setups like the NewTec
scanner is given.
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Figure 5.1: X-ray image of a virtual
homogeneous bunny in motion.

The X-ray simulator Xsim developed in this thesis is a computational tool
for generating X-ray planar radiography images. The target objects are vir-
tual and in movement. Xsim consists of the same essential elements as a
traditional X-ray imaging system; A source, an object and a camera, as shown
in Fig. 5.1. The di�erent components are related through a geometrical analy-
sis of the individual ray paths emitted from the source and hitting the camera
pixels. The �nal image is generated by using the physical properties assigned
to the virtual object in combination with Beer-Lambert Law. Xsim provides
an easy and e�cient way of testing di�erent combinations of materials and
setup con�gurations. This allows analysis of both realistic and unrealistic
setups, given the assumptions made in constructing the system. The code for
Xsim is publicly available at [33], together with examples generating some
of the images showcased in this work.

In § 5.1, the geometric description of the rays between the di�erent system
components is described, providing a framework for the simulator. Afterwards,
the di�erent components are related to the previous X-ray physics section in § 5.2.
Di�erent approaches to optimization are discussed in § 5.3. The § 5.4 system is
showcased with di�erent examples of generated images and descriptions of the
user-de�ned variables. At last in § 5.5.1 Xsim is put in the context of related
work with a discussion of its limitations.

ℎ
𝑧 𝑦

𝑥

𝑤𝑙

𝑁𝐶𝐶𝐷𝑦 = 5 𝑁𝐶𝐶𝐷𝑥 = 5

Figure 5.2: The reference system with
respect to the camera object.

In the following a right-handed coordinate system is used as a reference
system, see Fig. 5.2. In general the analysis is done in the 𝑥 direction, but is
completely analogues in the 𝑦 direction as the the system is symmetric to
the 𝑥 and 𝑦-axis. The notation is as:

• The 𝑥𝑦 plane is parallel with the camera object.

• The 𝑧 is going from the source to the center of the camera plane.

• The notation 𝑁𝐶𝐶𝐷𝑥 and 𝑁𝐶𝐶𝐷𝑦 refers to the grid size of the charge-
coupled device (CCD) object in the 𝑥 and 𝑦 direction respectively.

• The 𝑛’th element refers to the di�erent elements in the de�ned camera
object and the corresponding ray path.

• The width𝑤𝐶𝐶𝐷 and 𝑙𝐶𝐶𝐷 are measures related to the physical size of
the CCD object and is aligned with aligned with 𝑥 and 𝑦 respectively.

• The height ℎ is the physical height of the system aligned with 𝑧
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• The physical sizes of the components is used in the geometrical con-
siderations.

• The grid size of the di�erent components is used in describing how
quantized the system is. A �ner grid gives less pixelated images.

5.1 geometrics

ℎ𝑡𝑜𝑡

𝑤𝐶𝐶𝐷

𝑥

𝑧

𝑥𝑐0

𝛼𝑥0

(𝑎)

𝑥

𝑦

𝑙𝐶𝐶𝐷

𝑤𝐶𝐶𝐷

(𝑏)

Figure 5.3: X-rays emitted from
a point source through an ob-
ject towards a camera. In (a)
side view and in (b) top view.

The framework for Xsim is the geometrical considerations of the ray paths
between a point source and a camera. Each ray path is connected to a pixel
in the camera object, and the attenuation for the path through the object is
used in generating the �nal image.

In Fig. 5.3, a simple side and top view illustration of the system is given. The
X-ray source is de�ned as an isotropic point source at a height ℎ𝑡𝑜𝑡 above a
camera object. The camera object denoted CCD is a 2-dimensional grid of
size 𝑁𝐶𝐶𝐷𝑥 × 𝑁𝐶𝐶𝐷𝑦 having a physical size of width 𝑤𝐶𝐶𝐷 and length 𝑙𝐶𝐶𝐷 .
The angle in the 𝑥 and 𝑦 direction for each ray hitting the 𝑛’th pixel is given
by

𝛼𝑥𝑛 = arctan( 𝑥𝑐𝑛
ℎ𝑡𝑜𝑡

), 𝛼𝑦𝑛 = arctan( 𝑦𝑐𝑛
ℎ𝑡𝑜𝑡

), (5.1)

where 𝑥𝑐𝑛 and 𝑦𝑐𝑛 is the distance in the 𝑥 and 𝑦 direction to the center of the
𝑛’th CCD element. The direction of the 𝑛’th ray going from the source to the
CCD, is then fully described by the angles 𝛼𝑥𝑛 and 𝛼𝑦𝑛 .

5.1.1 Field of View

ℎ𝐹𝑂𝑉

𝑥𝑒𝑥𝑖𝑡

𝑥𝑒𝑛𝑡𝑟𝑦

𝑑1

𝑥

𝑧𝛼𝑥

Figure 5.4: Example of an ap-
proximated line in a 2D FOV

The next step is to relate the rays to an object, done through a reference �eld
of view (FOV), where the objects can be projected onto. The objects are based
on volume elements and as such the FOV is quantized to a 3-dimensional
grid. A side view of the system with the FOV is given in Fig. 5.4. The FOV
is a volume describing the connection between the emitted rays and the
object of interest. It is de�ned as having a physical size ℎ𝐹𝑂𝑉 × 𝑙𝐹𝑂𝑉 ×𝑤𝐹𝑂𝑉

containing volume elements of size 𝑣𝑥 × 𝑣𝑦 × 𝑣𝑧 . Furthermore, the distance
𝑑1 between the point source and the bottom of the FOV is user-de�ned. The
combination of the given information is used in calculating the entry and
output coordinates, for each of the paths.
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1 def FOV(grid_D, N_ccd, voxelSizeD, d1, FOV_size, alpha):
2 # Finds the x and y entry/exit coordinates
3 entry_x, exit_x, entry_y, exit_y =
4 findIO(voxelSizeD, d1, FOV_size, alpha)
5

6 for n in range(N_ccd):
7 ray_index_list[i,:,:] = Bresenham3D(
8 entry_x, entry_y,
9 exit_x, exit_y, grid_D[0])
10

11 return ray_index_list

Code Listing 5.1: Use of Bresenham algorithm through the FOV.

𝑥
entry
𝑛 = (𝑑1 − ℎ𝐹𝑂𝑉 ) · tan(𝛼𝑥𝑛 ),
𝑥exit𝑛 = 𝑑1 · tan(𝛼𝑥𝑛 ) .

Combining this with the expressions given in Equation (5.1)

𝑥entry = (𝑑1 − ℎ𝐹𝑂𝑉 ) ·
𝑥𝑐𝑛

ℎ
,

𝑥exit = 𝑑1 ·
𝑥𝑐𝑛

ℎ
.

Since a straight line is ambiguous to de�ne in a quantized 3D-grid, Bresen-
ham’s line algorithm is used in estimating a line from the entry to the exit
point1

1. Bresenham’s line algorithm �nds
a close approximation to a straight
line, between two points in a 𝑁 -
dimensional grid. The algorithm is
explained in § B.2

. The algorithm returns the indices for each volume element that the
ray passes and is implemented to iterate over every index 𝑛. The indices are
then stored in a list for each of the 𝑁𝐶𝐶𝐷 paths. A simpli�ed python snippet
is given in Code Listing 5.1.

An important property for the later calculations is the path traveled within
each volume element for the 𝑛th ray. This distance is approximated to be the
same for each layer in the FOV and is given by the euclidean norm

𝑑𝑛 =

√︃
(tan(𝛼𝑥𝑛 ) · 𝑣𝑥 )2 + (tan(𝛼𝑦𝑛 ) · 𝑣𝑦)2 + 𝑣2𝑧 , (5.2)

5.1.2 Projection of the Object

Having the indices relating the volume elements in the FOV with the traces
between the point source and the CCD array. The object2

2. The object is described further in
§ 5.2.2of interest is

53



projected onto the FOV. The object in the framework called the density
tensor 𝐷 and has a size of 𝑁𝐷

𝑥 × 𝑁𝐷
𝑦 × 𝑁𝐷

𝑧 . An example for the geometrical
considerations in the 𝑥 direction is shown in Fig. 5.5. Here the centre of the
two systems is shown as a thick line and the relative translation de�ned
between the centres as 𝑥𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 . For optimization, only the relevant part of
the object is projected i. e., the part which will contribute to the �nal image.
The width of the relevant part of D is called the broadcasting width 𝐵𝑥 and
is de�ned as the overlapping parts of the 𝐷 and the FOV. The reasoning for
this division between an object grid 𝐷 and the FOV, is that the whole system
with the FOV can be preprocessed once. The di�erent objects of interest can
then be projected onto the system multiple times under di�erent translations.
A simpli�ed version of the python code used for projection is showed in
Code Listing 5.2 and the method is further elaborated in § B.4.

D

𝑁𝐷
𝑦

𝑁𝐷
𝑥 /2 𝑁 𝐹𝑂𝑉

𝑥 /2

𝑁 𝐹𝑂𝑉
𝑦

𝑦

𝑥

Δ = 𝑁𝐷
𝑥 /2 − 𝑁 𝐹𝑂𝑉

𝑥 /2

𝑥𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝑥𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛

𝐵𝑥 𝐵𝑥

FOV (a)

(b) (c)

𝐵𝑥

Figure 5.5: Top view showing the projections of the object(Density tensor D) onto the FOV for
di�erent translations. The 𝐵𝑥 denotes the overlapping parts of the object and the FOV. In (a)
the centres of the two are aligned. In (b) there is a relative movement between the two, still
with the whole of the FOV being within the scope of 𝐷 . In (c) there is a relative translation
between the two making the area of interest smaller than the area of the FOV.
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1 def projectDtoFOV(grid_FOV, grid_D, D, move):
2 # Finds the smallest/largest axis in each direction
3 min_axis = np.min([grid_FOV, grid_D], axis=0)
4 max_axis = np.max([grid_FOV, grid_D], axis=0)
5

6 # length and width of broadcasting b_l
7 # Set to be either the minimum axis size
8 # or as the difference between the minimum
9 # and maximum axis
10 b_l = np.min([min_axis[1:], min_axis[1:]//2 -
11 (np.abs(move)-max_axis[1:]//2)], axis=0)
12

13 # Finds the difference in grid size between
14 # object and FOV
15 delta_fov = np.subtract(grid_FOV, grid_D)//2
16

17 # Use the defined constants to find the index
18 # range in x and y
19 ind_x = FindIndexX(b_l, delta_FOV, grid_FOV, grid_D)
20 ind_y = FindIndexY(b_l, delta_FOV, grid_FOV, grid_D)
21

22 # Defines an empty field of view
23 ref_fov = np.zeros(grid_fov)
24 # Broadcast D to FOV
25 ref_fov[0:D.shape[0], ind_x[0]:ind_x[1],
26 ind_y[0]:ind_y[1]]
27 = D[:, ind_x[2]:ind_x[3], ind_y[2]:ind_y[3]]
28

29 return ref_fov.astype(int)

Code Listing 5.2: Projecting the object D onto the FOV. The projection
accounts for the scenarios of either FOV or D being largest in the x and
y direction. The variables are 𝑔𝑟𝑖𝑑𝐹𝑂𝑉 = (𝑁 𝐹𝑂𝑉

𝑧 , 𝑁 𝐹𝑂𝑉
𝑥 , 𝑁 𝐹𝑂𝑉

𝑦 ), 𝑔𝑟𝑖𝑑𝐷 =

(𝑁𝐷
𝑧 , 𝑁

𝐷
𝑥 , 𝑁

𝐷
𝑦 ) and 𝑚𝑜𝑣𝑒 = (𝑡𝑟𝑎𝑛𝑠𝑎𝑙𝑡𝑖𝑜𝑛𝑥 , 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑦). The projection is

explained more throughly for one direction in § B.4
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5.2 simulating physics

As explained in § 2, a digital image is an array whose values represent the
brightness of each pixel. In Xsim this is noted as 𝐼𝑛 , referring to the intensity
of the 𝑛’th pixel. The �nal values for 𝐼𝑛 are computed using Beer-Lambert law.
The equation connects the input and output intensity of X-rays penetrating
an object and is previously described in § 4.2 and found in Equation (4.1). In
order to make the law computationally feasible a discretization is needed, the
discretization is done with respect to 1) the sampled photon energies from
the source explained in § 5.2.1 and 2) the grid de�nition of the object de�ned
in § 5.2.2.

5.2.1 Simulating Source

Figure 5.6: Sampled energy spectrum
with a histogram showing counts.

Sampled in the range [10 keV :
1 keV : 80 keV] for 𝑁𝑝ℎ𝑜𝑡𝑜𝑛𝑠 = 5000.

To simplify the system, the X-ray source is assumed to be an isotropic
point source. As described in § 4.1, a common X-ray source emits photons
as a spectrum of energies, dependent on target material and acceleration
voltage. To make a su�ciently accurate simulation of the energy distribution,
a spectrum like the one shown in Fig. 4.3 is used as a probability distribution.
The distribution is sampled in a user-set energy range [𝐸𝑚𝑖𝑛 : 𝐸𝑠𝑡𝑒𝑝 : 𝐸𝑚𝑎𝑥 ]
to a user-set number of photons 𝑁 (𝑝ℎ𝑜𝑡𝑜𝑛𝑠) . For sampling, the hit-and-miss
method is used, drawing points uniformly in the desired interval. The points
are counted as a hit if their positions lie under the desired curve and a miss
otherwise. An example of the sampling is showed as a histogram in Fig. 5.6.
The python code for making the sampling is given in Code Listing 5.3.
The number of photons in the system is an indirect measure of the intensity
of the rays, as the �nal intensity measure in the CCD is dependent of the
count of photons and not the photon energy as explained in § 2.2.3. In a real
setup, the number of photons emitted would be directly related to the power
of the source. This sampling scheme allows the system to be �exible enough
to implement various x-ray sources by specifying the relevant spectrum.

5.2.2 Simulating Object
Value Elemental/Compound

0 Unde�ned/Vacuum
1 Carbon
2 Aluminum
3 Iron
4 Air
5 Water
6 Soft Tissue

Table 5.1: Example of a dictio-
nary for referencing voxel val-

ues with di�erent elements.

In Xsim the object of interest, is de�ned in a three dimensional tensor object
𝐷 of size𝑁𝐷

𝑥 ×𝑁𝐷
𝑦 ×𝑁𝐷

𝑧 , where each index is referred to as a voxel. Each voxel
carries a string of the element or compound it represents. When running
the system, each string in converted to a value referring to a dictionary
of all the elements. See Table 5.1 for an example of the correspondence
between di�erent voxel values and compounds. For each element/compound
a corresponding array of the attenuation coe�cients
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𝜇𝑖 as a function of photons energy denoted by 𝑖 is given.

10 100
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1 1

1

1
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0

0 0

0

(𝑏)

Figure 5.7: (a) Example of the val-
ues of𝑚𝑢𝑖 for lead sampled in the
interval [10 keV : 1 keV : 80 keV].
(b) A simple 2D object with val-
ues referring to Table 5.1. This

object would be interpreted as a
piece of carbon with an iron core.

The spectrum’s
are based on data from [31] and are as shown in Fig. 5.6. The attenuation
interpolated to the energy range given in the initial de�nition

of the source distribution. This gives a direct relation between each voxel
element in the object tensor and the attenuation. In Fig. 5.7(b) a simple 2D
object is shown with values related to the dictionary in table Table 5.1. For
the geometrical considerations of the system, the object is also assigned a
physical size by de�ning height ℎ𝐷 , length 𝑙𝐷 and width𝑤𝐷 . These physical
considerations are used to automatically de�ne the physical size of the voxel
representations of the FOV. Guaranteeing that the desired size of the object
holds when projected onto the FOV. The physical size of the object and
FOV is used relative to the physical size of the CCD array and the distances
de�ned from the source to the camera. All physical distances are de�ned in
units of cm as 𝜇 : [ cm2/𝑔], providing a proper attenuation in every voxel.

1 def produceXray(spectrum, photonsRay, Emin, Emax, Estep):
2 # normalize
3 spec = spec / np.sum(spec)
4 # defines the bins for the histogram
5 N_bins = len(np.arange(Emin, Emax, Estep))+1
6 # Empty arrays to be filled with values
7 xhit = np.zeros(photonsRay)
8 for i in range(photonsRay):
9 while True:
10 # Sample an x and y value from the spectrum
11 x = np.random.uniform(Emin, Emax)
12 y = np.random.uniform(0, np.max(spec))
13 # if the values lies within the spectrum save
14 if (y < spec[x]):
15 break
16 xhit[i] = x
17 # counts the number of photons at each energy level
18 counts, bin_edges = np.histogram(xhit)
19 return counts

Code Listing 5.3: The method draws X-ray photons related to the given
energy spectrum, de�ned in the variable spec. The photon are drawn in the
range [𝐸𝑚𝑖𝑛 : 𝐸𝑠𝑡𝑒𝑝 : 𝐸𝑚𝑎𝑥 ].
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5.2.3 Simulating Camera

The geometrical framework, the emission of the source and attenuation of
the object can now be combined. The connection is established through a
discrete version of the Beer-Lambert law introduced in Equation (4.1).

𝐼𝑛︸︷︷︸
𝑐𝑎𝑚𝑒𝑟𝑎

=

𝐸𝑚𝑎𝑥∑︁
𝑖=𝐸𝑚𝑖𝑛

𝑁
(𝑝ℎ𝑜𝑡𝑜𝑛𝑠)
𝑖︸              ︷︷              ︸

𝑠𝑜𝑢𝑟𝑐𝑒

𝑒−𝜇
𝑛
𝑖
𝑑𝑛︸ ︷︷ ︸

𝑜𝑏 𝑗𝑒𝑐𝑡

. (5.3)

𝜇𝑛𝑖 =

𝑁 𝐹𝑂𝑉
𝑧∑︁
𝑘

−𝜇𝑛{𝑘 }
𝑖︸         ︷︷         ︸

𝑜𝑏 𝑗𝑒𝑐𝑡

,

where 𝑘 refers to the layers of the FOV in the 𝑧-direction, 𝑖 refers to the
di�erent energy levels of the photons and 𝑛 refers to the di�erent pixels/ray
paths. The 𝑁 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

𝑖
is the amount of photons at the 𝑖’th energy level, 𝜇𝑛𝑖 is

the total attenuation for the 𝑛′𝑡ℎ path at the 𝑖 ′𝑡ℎ energy level and 𝑑𝑛 is the
path length of the ray through the FOV. At last the 𝜇𝑛{𝑘 }

𝑖
is the attenuation

coe�cient related to the 𝑘’th layer in the path of the 𝑛’th ray.

With Equation (5.3), each intensity value of a pixel, is the sum of the at-
tenuation of all the photons emitted from the source. It is assumed that the
point source is an isotropic emitter i. e., photons are emitted in equal amounts
uniformly through all angles. The algorithm has to iterate through the sum
for each pixel for both the energies and all the layers in the FOV. The most
cumbersome calculation is the 𝜇𝑛𝑖 , scaling with the height of the FOV grid33. The calculation is scaling with

the height as the driving axis of
Bresenham’s line algorithm is de-
�ned in the z-direction, see § B.2.

.
To simplify the sum over the layers in the FOV, the path lengths 𝑑 (𝑘)

𝑛 is set to
𝑑𝑛 . That is the path length through each layer is approximated to be the same
for every voxel for the𝑛th ray as given in Equation (5.2). The �nal run time for
producing a single frame is then in the order of O(𝑁𝐶𝐶𝐷𝑥 𝑁𝐶𝐶𝐷𝑦 𝑁 𝐹𝑂𝑉

𝑧 𝐸 (𝑠𝑡𝑒𝑝𝑠) ).

For an intuitive understanding of the algorithm. We imagine the object
de�ned in Fig. 5.7(b) projected onto the FOV showed in Fig. 5.4. For an in-
dependent ray, there will, for each layer in the FOV, be a reference to the
dictionary of elements showed in Table 5.1, which in the �rst layer would
be carbon. The absorption coe�cients of the carbon spectrum will then be
interpolated to the energies of interest as seen in Fig. 5.6 and be placed in
an array. For the next layer, the corresponding values of iron will then be
added. The above procedure is then repeated for every single ray de�ned in
the system.

As stated in § 4.3.2 the �nal intensity values of the system should be pulled
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from a Poisson distribution4 4. It holds that the sum of indepen-
dent Poisson random variables is
a Poisson random variable with
a parameter being the sum of

the independent parameters[34]

.:

𝐼𝑛︸︷︷︸
𝑐𝑎𝑚𝑒𝑟𝑎

= Possion(
𝐸𝑚𝑎𝑥∑︁
𝑖=𝐸𝑚𝑖𝑛

𝑁
(𝑝ℎ𝑜𝑡𝑜𝑛𝑠)
𝑖︸              ︷︷              ︸

𝑠𝑜𝑢𝑟𝑐𝑒

𝑒−𝜇
𝑛
𝑖
𝑑𝑛︸ ︷︷ ︸

𝑜𝑏 𝑗𝑒𝑐𝑡

), (5.4)

where the quantum e�ciency is de�ned 0 ≤ 𝜂 ≤ 1, which is a measure of the
percentage of recorded photons in the pixels.

1

22

32

Figure 5.8: Illustration of the Nsub-
pixel variable related to a single pixel.
The variable is set to 1, 2 and 3.

A �nal notion of the simulating
of the camera is the variable Nsubpixel. The variable determines how many
subpixels a single pixel in the CCD array consist of and is illustrated in Fig.
5.8. The photons per ray decrease with an inverse square giving a constant
intensity with changes of the variable. The di�erent photon counts per
subpixel is then added before setting the saturation value. The reasoning for
this implementation is the probability of missing small objects in the FOV,
when doing the Bresenham line algorithm. An alternative to this, could be
objects de�ned in a �ner spatial grid.

5.2.4 Simulating movement

With the possibility of creating single frames using Equation (5.4) the move-
ment of a conveyor belt can be simulated. The user-de�ned variable𝑚𝑜𝑣𝑒𝑠𝑡𝑒𝑝 =

(𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑥 ,𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑦) decides the stepwise translation of the object be-
tween subframes. The subframes are temporary frames in the system, added
together to form a single frame. The reasoning is to simulate the exposure
time of a camera as discussed in § 2.2.3. With this approach the object is
able to move under a user-de�ned number of subsamples. A low number
of subframes gives a �nal frame carrying little motion blur and vice versa.
The object is projected onto the FOV at every iteration through the method
described in § 5.1.2.

A common phenomena happening in imaging, is the saturation of pixels i. e.,
a pixel all white as it photon threshold is exceeded. In order to make the
exposure time better re�ect physical real-world limitations the pixel carries
the possibility of saturation. In the system this is de�ned as an user-de�ned
intensity threshold, setting all values above to max intensity.

Putting all this together the main loop of Xsim is given in Code Listing 5.4.
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1 ray_index_list = FOV(grid_D, N_ccd, voxSizeD, d1,
2 FOV_size, alpha):
3

4 for i in range(N_frames):
5 for j in range(N_sub):
6 # pulls photons from energy distribution
7 ray_energy, ray_counts = produceXray(
8 spectrum, photonsRay,
9 Emin, Emax, Estep)
10

11 # Projects the object to the desired position
12 # in the FOV
13 ref_FOV = projectDtoFOV(grid_FOV, grid_D,
14 D, move)
15

16 for n in range(N_CCD)
17 mu_d[n] = calc_mu(mu_dict, ref_FOV, v_d)
18

19 I_photon_temp = np.sum(np.random.poisson(
20 ray_counts * np.exp(-mu_d)), axis=2)
21 I_photon += I_photon_temp
22 I_photon[I_photon] > saturation] = saturation
23 # normalize to make 8bit grayscale
24 I_ccd = int(normalize(I_photon)*255)

Code Listing 5.4: The main loop of Xsim, where all the above mentioned
processes have been implemented. ray_index_list is the list of paths through
the FOV. The ray_counts are the amount of photons corresponding to the
di�erent energies. The variable ref_FOV carries the object projected onto
the FOV. The array mu_d carries the complete value of linear attenuation
coe�cients multiplied by the path length. I_ccd is then the �nal intensity
values converted to an image.
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5.3 optimization
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Figure 5.9: Top view of the X-ray
simulation system showing the
traces from the point source to the
CDD array. The indices in the CCD
array indicates unique paths for
the rays. The path to all the entities
labelled 7 is a transformation of each
other, and therefore Bresenham’s
line algorithm only needs to run for
all the numbers in black. The two
indices labelled 7 in the left quadrant
are interchangeable by switching
the 𝑥 and the 𝑦 coordinates. The
indices mirrored over the 𝑦 axis are
interchangeable by adding the width
to the indices.

In order to improve the run time and memory footprint used by the system,
di�erent optimization approaches are used. An optimized system allows for
a faster examination of di�erent system setups and can generate a large set
of data more e�cient.

In general, the run time of the whole system is dependent on the amount
of traces going through the FOV i. e., it scales with the size of the CCD
array 𝑁𝐶𝐶𝐷𝑥 × 𝑁𝐶𝐶𝐷𝑦 . In a simple evaluation, the system would run through
the Bresenham line algorithm, Beer-Lambert law and all other individual
components of the system for each index in the CCD array. Giving a system
that scales as O(𝑁𝐶𝐶𝐷𝑥 𝑁𝐶𝐶𝐷𝑦 ). Using that the FOV is de�ned symmetrical
at the 𝑥 and 𝑦 axis with the source in the centre, the amount of iterations
used for Bresenham’s line algorithm can approximately be reduced by a
factor of 8. Dividing the CCD array into 4 quadrants as in Fig. 5.9, it can be
seen that all the paths in 𝑄1 are a mirror of the paths in 𝑄2. This indicates
that the number of iterations can be reduced by a fourth, as calculating all
paths in one quadrant should be su�cient. Furthermore, some of the paths
in one quadrant can be interchanged by switching the 𝑥 and 𝑦 coordinates.
Reducing the number of iterations in one quadrant from 𝑁𝐶𝐶𝐷𝑥 𝑁𝐶𝐶𝐷𝑦 /4 to

𝑁𝐶𝐶𝐷𝑥 𝑁𝐶𝐶𝐷𝑦

4 − ((𝑁𝐶𝐶𝐷𝑦 )2/8 − 𝑁𝐶𝐶𝐷𝑦 /4), 𝑁𝐶𝐶𝐷𝑥 ≤ 𝑁𝐶𝐶𝐷𝑦 .

If the array is symmetrical i. e., 𝑁 = 𝑁𝐶𝐶𝐷𝑥 = 𝑁𝐶𝐶𝐷𝑦 the amount of unique
paths simpli�es to ( (𝑁 )2

8 + 𝑁
4 ). Taking the relation between the simple and

the symmetrical approach

(𝑁 )2
8 + 𝑁

4
𝑁 2 =

1
8 − 1

4𝑁 ,

which for big 𝑁 gives 1/8. It should be noted that the expression only makes
sense for 𝑁 > 2, as the quadrant split would not be de�ned. Furthermore,
this optimization only directly reduces the number of paths calculated by
Bresenham’s line algorithm. Beer-Lambert law for the object in the path still
needs to be evaluated for the separate traces. An example of the optimized
iteration scheme is given in Code Listing 5.5
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1 delta_qc = grid_qc[0] - grid_qc[1]
2 count_start = np.arange(0, grid_qc[1]*(delta_qc+1),
3 grid_qc[1])
4 count_end = np.cumsum(np.arange(grid_qc[1], 1, -1))+
5 grid_qc[1]*delta_qc
6 counter = np.insert(count_end, 0, count_start)
7 #Loops over nonreversible part
8 for i in range(delta_qc):
9 for j in range(grid_qc[1]):
10 ind = counter[i]+j
11 #Loops over the reversible part
12 for i in range(delta_qc, grid_qc[0]):
13 for j in range(i-delta_qc, grid_qc[1]):
14 ind = counter[i]+j-i+delta_qc

Code Listing 5.5: Optimization of iterations through symmetry. grid_qc is
the quadrant of grid_C i. e., half the size of grid_C in each direction.

5.4 showcase of xsim

Figure 5.10: Example of a
sphere consisting of voxels

With a description of the system, we can now proceed with a showcase of
some of the possible outputs. A list of all variables controllable in the system
is given in § B.1

5.4.1 3D graphics figures

The object of interest can be user-de�ned by creating a 3D array as purposed
in § 5.2.2. An example of such an object is shown in Fig. 5.10, where a
homogeneous approximation to a sphere is represented with voxels. More
complex structures can also be created as long as they �t in a 3D voxel
grid structure. Another approach for �nding objects is to use a 3D object
de�ned in a meshgrid, such as shown in Fig. 5.11. As such a �le is not directly
applicable by xSim, the tool binvox[35] is used.

Figure 5.11: Example of a 3D potato
used as an object in the simulator.

Binvox slices the mesh into
voxels at a user de�ned size. Converting the 3D potato to the the same format
as given in Fig. 5.10.

5.4.2 A sphere embedded in a sphere

As an example of generated objects, we show a sphere embedded in a sphere.
The sphere is de�ned in a 200 × 200 × 200 grid and is de�ned to be made of
aluminium carrying a smaller sphere of copper inside of it. The sphere is set
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to have a physical size of 1 cm in radius. For all images the distances are set
to 𝑑1 = 1m and 𝑑2 = 1m. In Fig. 5.12, all images only carry one subframe
and as so no movement. In (a) and (b) the images have the same camera
settings. Set to 200 × 200 pixels with a pixel size of 10 𝜇m. The camera is set
to saturation of maximum 4000 photons, normalizing the pixels from 0 to 255
in this range. In (a) there are 3500 sampled photons for every pixel and for (b)
there are 2000 photons. This illustrates how the system can simulate di�erent
exposure times, as the image (b) is much darker and carry less contrast than
(a). In (c) the photon count is 3500, and the camera grid is set to be 400𝑥400
pixels at a size of 5 𝜇m, giving what corresponds to twice the resolution of
(a).

In Fig. 5.13 multiple subframes are used in creating the frames. The camera
settings are the same as in Fig. 5.12 (a). To make the photon counts equivalent
the 3500 photons are divided by the number of subframes used in the creation
of the frames. That is the "exposure time" is equivalent to that of (a), but

(a) High exposure, low reso-
lution

(b) Low exposure, low reso-
lution

(c) High exposure, High reso-
lution

Figure 5.12: Simulated X-ray images of a iron sphere embedded in a carbon sphere. The
images di�er in camera options described in the main text. (c) is rescaled for comparison.
Runtime: (a) FOV: 34.8 s, Frame 39.34 s (b) FOV: 26.98 s, Frame 25.13 s (c) FOV 106.39 s,
Frame 101.04 s.

(a) 0.1 cm speed (b) 0.3 cm speed

Figure 5.13: Simulated X-ray images of a iron sphere embedded in a carbon sphere. The
images di�er in movement options described in the main text. Runtime: (a) FOV: 35.22 s,
frame 746.61 s (b) FOV: 34.26 s, Frame: 747.37 s
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the sphere is under movement inducing motion blur.
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Figure 5.14: Attenuaction coe�cents
as a function of energy for a potato
consisting of 80 % water and 20%
starh. Data from XCOM[30], it can
calculate the total attenuation coef-
�cients for any mixture of elements
(𝑍 ≤ 100).

For both images, 20
subframes are used per frame i. e., the object is translated 20 times and added
together. In Fig. 5.13 (a) the change in movement is one voxel in the FOV
per subframe and in (b) it is three voxels. Corresponding to a movement of
0.1mm and 0.3mm in the image capturing time.

5.4.3 A potato containing anomalies

In the above we use standard chemical components is Xsim. Xsim can be
extended to the speci�c knowledge of chemical objects with the help of the
tool XCOM[31]. If one where to generate an X-ray image of a common
German White potato[36] one could use the chemical composition of it is
roughly 80% water and 20% starch.

Figure 5.15: Example of di�er-
ent 3D objects applicable for
the simulator. Files from [37].

White potato starch is on average
consisting of approximately 24% phosphorus, P, 26% magnesium, Mg and
50% carbon, C[36]. This would give the attenuation spectrum as showed
in Fig. 5.14, which in combination with Fig. 5.11 can generate realistic X-ray
images of a potato.
In Fig. 5.16, twoX-ray images of di�erent potatoes containingwater and starch
are showed, generated under the same conditions: 𝑑1 = 𝑑2 = 1m, camera
resolution is 400 × 400 with a pixel area of size 15𝜇m. In (a) the length of
the potato is 1.3mm and in (b) it is 2.0mm. In Fig. 5.16 (b) an iron needle,
a aluminum paperclip and a heart shaped hole is added, to demonstrate
di�erent types of anomalies. The image is perceptual comparable to the
potato X-rayed in Fig. 4.11.

(a) Created in 94.9 s (b) Created in 104.1 s

Figure 5.16: Example of two di�erent potatoes X-rayed under the same conditions. In (b)
di�erent anomalies has been inserted. Runtime: (a) FOV: 34.69 s Frame: 30.16 s (b) 𝐹𝑂𝑉 :
39.04 s, Frame: 30.45 s.
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5.5 discussion

With an outline of the possibilities of Xsim, we will now put it in the context
of other simulators and discuss Xsims limitations.

5.5.1 Related Work

The idea of an X-ray simulator has in the literature been examined widely,
especially with a focus on medical imaging and synchrotrons. The work in
[38] provides an excellent overview of di�erent approaches, dividing the
methods into two main categories: The Monte Carlo simulations such as
GATE[39] and the Ray tracing approach such as gVirtualXRay [40]. These
two approaches di�er with the Monte Carlo simulations being more truthful
concerning scattering, refraction and noise, but at the cost of high compu-
tational complexity, in some scenarios taking days for creation of images.
The ray tracing method is optimized through a GPU framework making it
e�cient and able to produce images in a matter of seconds. However, it as-
sumes e�ects such as scattering is an added noise applied as post-processing.
Xsim, in this thesis, relates to the method of ray tracing and are in someways
analogues to the work of gVirtualXRay. The two methods di�er mainly in
the de�nition of objects, as gVirtualXRay uses a mesh-based approach in
contrast to the voxel approach in Xsim. Furthermore, Xsim allows for image
capturing of objects under motion, which is of more interest when relating
X-ray imaging to inspection on a conveyor belt.

The concept of a precomputed FOV in combination with Bresenhams line
algorithm is, to the best of our knowledge, an unique approach to the X-ray
imaging scheme.

5.5.2 Limitations and further work

In application, Xsim was created as a tool to examine the properties of X-ray
images generated under motion. For further analysis of these images, the
synthetic images must be as truthful as possible. In the following, we will
consider the di�erent approximations made and elaborate on their limits.

Ray Tracing: A direct re�ection for how well Xsim represents the natural
world lies in the created framework. In the considerations of the individ-
ual ray paths from the source to camera pixels, optical phenomena such as
scattering are completely neglected i. e., it is indirectly assumed to have no
contribution to the �nal images. This approximation may seem harsh and
does limit the system. Scattering is of importance, as it commonly degrades
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image quality.

(1)

(2)
(3)

(4)

Figure 5.17: Di�erent photon/matter
interactions. (1) direct transmission
as simulated in Xsim. (2) scattered
photon adding noise to image. (3)
and (4) absorption of photons in
matter.

An e�ect, seen when considering high-contrast interfaces such
as metal versus organic materials the refraction becomes essential. When
there is low-contrast between materials, the scattering will mostly contribute
as additional noise in the �nal images. One way to overcome this problem
with scattering could be to implement a path-tracing framework[41], which
is a Monte Carlo expansion of ray tracing. The e�ects of absorption and
re�ection should be modelled su�ciently by the Poisson distribution of Equa-
tion (5.4), as they are not registered in the �nal image and only contribute
through there stochastic behaviour.

Point source: In Xsim the source has been modeled as a single point, which
is a su�cient approximation at large distances as the pixel sizes would be
bigger than the geometric unsharpness[42]. However, this is quite rare in
real scenarios and should be taken into account, as it leads to degradations
such as added blur. To make a more adjustable and realistic implementation
[40] implements a source consisting of multiple point sources. The points
sources are spread out in a 2D area, where di�erent shapes can be chosen, to
simulate di�erent kinds of real emitters.

Representation of objects:
(1)

(2)

𝑑𝑛

𝑑𝑛

Figure 5.18: Comparison between a
sparse and a dense object representa-
tion. (1) Dense voxel representation,
distance constant per voxel in path
length, but iterates over every voxel
in the object. (2) Sparse voxel rep-

resentation �nding distances in ho-
mogeneous chuncks of the material.

The voxel representations of objects in Xsim
gives an intuitive way of constructing complex objects, as they are build of
small bricks representing di�erent materials. Furthermore, the voxel rep-
resentation works well with the idea of a preprocessed FOV, as the objects
can be projected directly into the desired position. Computationally this
representation is more ine�cient than that of triangular meshes such as used
in [40], having a sparse representation of the objects. Here only the surface of
the objects is considered, making it su�cient to only iterate over the number
of material changes in the ray path, in contrast to the iterations over every
layer in the FOV. Xsim might overcome this ine�ciency by segmenting out
homogeneous parts of the desired object i. e., changing object representations
from dense voxels to a sparse surface representation of voxels. However, this
is not a guaranteed optimization as the system would need to keep track of
the di�erent path lengths in every part of the object. The quantization of
mesh 3D objects to voxels provides a challenge for the overall representation,
as some object details need to be represented by a �ne grid. For the 3D
models considered in this work, a quantization of 200 voxels on the longest
axis seems su�cient.

Beam Hardening: A general problem in X-ray imaging systems is that
of Beam hardening. The phenomena describe how the low energy photons
from the polychromatic X-ray beam has a higher absorption rate, changing
the spectrum with penetration distance of the object. Essentially it works as
a high pass �lter and changes the mean energy of the beam to a higher level.
This is especially a problem in computed tomography (CT) as it leaves image
artefacts such as streaks and cupping[9]. The inclusion of beam hardening
in Xsim could be done in two ways. Firstly �lters could be put after the
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source which changes the initial spectrum used for generating photons i. e.,
high-pass the initial spectrum. Secondly, the photon energy counts could
be changed for the di�erent absorption coe�cients associated with the dif-
ferent elements. The last contribution would increase the complexity of the
system as there for each individual ray pathwould be a separate photon count.

Rotations: A valuable feature lacking in Xsim is the possibility of rotat-
ing the objects. This would allow the simulation of objects under a motion to
be more realistic, as rotating for some object shapes would be unavoidable.
Furthermore, it could be extended to CT scans of the object. Rotations could
be implemented by either changing the position of the source with respect to
the FOV, which would make the system more general, but also cumbersome
to implement as the main framework should be rede�ned. Another possibility
would be to rotate the object inside the 𝐷 grid, this will however be limited
by the quantization of 𝐷 and a interpolation scheme should be made to allow
angles which would interfere with the de�ned grid.

Detector: When considering the detector properties of Xsim, we assume
that the photons are directly converted to pixel values. This is done by
a normalization over the resulting photon counts with relation to a given
saturation value. In doing this, we omit the physical properties of the scin-
tillator, optics of the camera, and the analog-to-digital converter (ADC) in
the CCDs. The work of [43] provides detailed modelling of these, designed
to be implemented in existing X-ray imaging schemes. Here they model the
contributions to the point-spread-function (PSF) when considering the scat-
tering in the scintillator, Compton scattering and electron scattering inside
the detector. Inclusion of the above should be one of the �rst steps taken in
creating more realistic images. Furthermore, it is essential for proper eval-
uations of SR algorithms on simulated data, as they are designed to counter it.

Validation of images:

Figure 5.19: Simulated X-ray im-
age of a phantom object con-
taining well de�ned marks.

A key feature of a good simulator is that it is a
valid model. As mentioned, there are several limitations in the implemen-
tation of Xsim as the model is limited to quantization, and some physical
properties have been omitted. If one were to go further with the work of
Xsim, the output should be validated in comparison with real data. An ap-
proach could be the creation of a physical phantom object, where all shapes,
sizes and materials are well described with high precision. Such a phantom
could then be implemented in the Xsim framework, and arti�cial images
can then be compared to X-ray images of the physical phantom. Another
approach would be a comparison between di�erent simulators, such as the
high complexity images generated from methods such as [39].

Parallelization and GPU: The framework of Xsim is constructed such that
each pixel carries an individual calculation of its intensity representation.
Furthermore, each frame is computed independently of each other. These
two features indicate that parts of Xsim could be parallelized, increasing its
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general runtime by running on multiple cores. Another approach for opti-
mization of Xsim could be the conversion to a graphical processing unit (GPU)
framework, which as it names suggest is optimized for 3D rendering. The
GPU is specially optimized for the process of running the same instruction
on multiple data, and new types of ray tracing dedicated hardware could
especially be of interest.

5.5.3 The Ideal Xsim

With a basis in the problem of validation, we propose a scheme for further
work on Xsim. Inspired by the work of [44]. Several of the above mentioned
lacking features would greatly increase the computational complexity of the
system. In Fig. 5.20 we propose a validation model. In this setting Xsim,
would be a �exible system, where one can implement the desired components
related to the problem at hand i. e., should beam hardening be implemented if
no high contrast materials, or is the point source valid at long distances. The
system speci�cations can then be de�ned in a simulator of higher complexity,
giving the same 3𝐷 phantom as input, the two outputs can be compared with
a measure such as cross-correlation. If deemed signi�cant, a justi�cation to
the various approximations could be given. Furthermore, the 3D phantom
could represent a real phantom with respect to physical properties, allowing
Xsim to be validated against a real X-ray imaging setup. If the di�erent out-
puts are deemed su�cient, Xsim can be used as a �exible tool for changing
small attributes of the system, such as exposure time or movement speed
or examinations of new types of setups in X-ray imaging. The process of
comparing with an existing simulator, as the 3D models already exist, should
be the �rst step in the validation of Xsim.

An exciting possibility could be to make statistical representations of the

3D phatom

Xsim

Output

Real phatom

High complexity
Simulator

Output

X-ray imager

Output

Matching properties

Comparison Comparison

System speci�cs System speci�cs

Figure 5.20: Validation scheme for Xsim. An 3D phantom with well described properties is a
input in Xsim and a high complexity simulator. The two system variable should be the same.
The two outputs can then be compared with respect to there energy maps
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desired objects i. e., analyze a small sample and create mathematical models
for shape and compositions. If feasible, this would enable the production of
a vast amount of 3D models which in combination with Xsim would give
a database of X-ray images, usable for testing a classi�cation scheme. This
idea is further elaborated in § 6.4.3 along with a discussion of applying the
given super resolution (SR).

Xsim is a �exible simulator, allowing the X-ray imaging of various objects
under motion. The e�ciency of the algorithm in the CPU format allows quick
examination of small and coarse objects - images created in a matter of seconds,
to �ner detailed images generated in a couple of minutes. The voxel description
of the objects gives an intuitive way of creating a test object and allows even
small details to be tested. However, Xsim has some major and minor �aws
and should be properly validated. Especially the lack of scattering and detector
properties might be problematic in testing schemes like SR - elaborated in § 6.2.
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Part IV

COMB IN ING THE TWO



6 APPL I C AT ION OF SUPER
RESOLUT ION

In § 3 we demonstrated the iterative re-weighted super resolution (IRWSR)
algorithm developed by [1]. In § 4 the process of acquiring X-ray image
was described and in § 5 an X-ray simulator was given. The previous work
allows three types of test images of the SR scheme. Arti�cial degradation of
known images, simulated and real X-ray images. As mentioned, the arti�-
cial degraded image is a common procedure for comparing di�erent super
resolution (SR) schemes in the literature. A standing problem is a gap in
performance between the arti�cially degraded images and real low resolu-
tion (LR) images. That is algorithms providing the best results in regards
to point signal-to-noise ratio (PSNR) and structural similarity index (SSIM)
are not guaranteed to give the most visually pleasing images on real data.
This gap is somewhat due to the missing references for quantifying the real
images[4]. With Xsim, a possible middle step is given, as one can take control
of the imaging process and produce both the multiple LR images and the
desired ideal high resolution (HR) images, providing access to a reference
image. In Fig. 6.1 we illustrate the three types of images available for the
multi-frame super resolution (MFSR) and indicate how they di�er.

In the following section, di�erent results of the IRWSR algorithm explained
in § 3.4 are showcased. Firstly, in § 6.1, other results for the arti�cial degradation
of test images are shown, indicating the drawbacks of SR. Secondly, in § 6.2,
SR images are created from a series of images generated by Xsim. Thirdly, in
§ 6.3, the motion estimates and SR results are shown for sequences of real X-ray
images of a circuit board. At last, in § 6.4, the process is evaluated, and the
possibilities of applying SR to a real-time X-ray imaging classi�cation setup is
discussed.
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Arti�cal degration
Xsim

Real case

WHR

Camera ×2

T

HR

LR

LR

LR

Median

SR

MFSR

Image Registration

Reference Metric

Figure 6.1: The three di�erent data inputs for the MFSR scheme and how they di�er. The
arti�cial degradation scheme using a reference high resolution image degraded by𝑊 as
an input to the MFSR. The translations 𝑇 for image registration are given by the chosen
degradation process. The simulated and real images follow the same process of image image
registration in the MFSR scheme, but only the simulated images are given a reference. This is
due to the possibility of changing camera resolution with Xsim.

6.1 artificial degradation

In Fig. 6.2 the upscaling of an arti�cially degraded image is demonstrated. The
SR shows clear signs of a perceptually increased experience compared to the
shown LR frame, easing the readability of the numbers. The LR and median
are upscaled for comparison. The algorithm introduces artifacts not inherent
in the original image. Because the SR is intended for image classi�cation,
this could lead to erroneous results and could problematize the classi�cation
task. This is not a guaranteed problem, but should be investigated further.
The LR frame has a low PSNR compared to the other two. This is due to the
noise in the image, as it is a 𝐿2 norm of the distance between the seperate
pixels. The SSIM is highest for the LR image, which could be due to it being
a measurement created for validation of compression.
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(a) Reference (b) SR (16.91 dB, 0.49)

(c) Degraded LR frame (8.81 dB, 0.74) (d) Median (20.14 dB, 0.40)

Figure 6.2: MFSR image showing clear signs of artifacts. The image is magni�ed by 𝑠 = 2 from
80 × 75 to 160 × 150 in steps of Δ𝑠 = 0.1. The LR frames were created by random subpixel
translations in the range of 5 pixels, blurred by a Gaussian blur of 𝜎 = 0.5 and downscaled
to half the original size by nearest-neighbour interpolation. The regularization parameter
𝜆 = 0.0028 was found through cross-validation and the total runtime was 508 s. The �rst
measure is the PSNR and the second the SSIM. The median and one of the degraded LR frames
upscaled by bicubic interpolation for comparison.

6.2 super resolution on simulations

In Fig. 6.3 SR is demonstrated for the potato containing anomalies. The LR
frame belongs to a sequence of 7 images with a speed of 0.3mm per frame.
In the LR image the needle characteristics are converted to a line, the heart
barely visible and the paper clip gone. Neither the median or the SR image
provides any assistance in recovering the objects, and mostly function as a
computationally expensive noise removal �lter.
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(a) Reference X2 (b) SR (33.76 dB, 0.16)

(c) Original LR frame (0.06 dB, 0.91) (d) Median (22.68 dB, 0.15)

Figure 6.3: MFSR image of the potato containing anomalies given in § 5.4.3. The potato is set
in a bounding box of 2.5 × 2 × 3mm, 𝑑1 = 2 cm and 𝑑2 = 1 cm The camera is of size 200 × 200
with a pixel size of 0.03mm. The reference image is generated with a camera of size 400× 400
and pixel size 0.015mm. In the IRWSR the image is magni�ed by 𝑠 = 2 with steps of 𝛿𝑠 = 0.25.
The regularization parameter 𝜆 = 0.056 found through cross-validation. Process took 1909.7 s.

In Fig. 6.4 an X-rayed board with marks of di�erent shapes, sizes and align-
ments is demonstrated. The images are generated for di�erent movements
and are a part of a sequence of 7 images used for MFSR illustrated in Fig. 6.5.
For the LR frame there is increasing loss of detail with increasing speeds.
However, it would not seem that the SR scheme is able to reconstruct the
details for any speed.
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(a) No motion (b) Low motion (c) High motion

Figure 6.4: Generated LR images of a carbon board with marks at di�erent speeds. The
height of the carbon object is 5 cm with a width of 45 cm. The iron engraving is 0.5 cm thick.
Distances are 𝑑1 = 1𝑚 and 𝑑2 = 1𝑚. All frames belong to a sequence of 7 images. In (a) the
object is translated such there is no motion blur. In (b) and (c) the board carries a speed of
0.1mm per frame and 0.2mm per frame. The camera size is 150 × 150 with a pixel area of
30 𝜇m

(a) Reference X2 (b) No motion SR (41.89 dB, 0.08).

(c) Low speed SR (34.92 dB, 0.06). (d) High speed SR (35.43 dB, 0.04).

Figure 6.5: MFSR image of an carbon board with iron marks sequences given in Fig. 6.4. The LR
frames where magni�ed by 𝑠 = 2 in steps of Δ𝑠 = 0.25. To reduce runtime the regularization
parameter 𝜆 = 0.038 was constant. The reference image is generated with a camera set to
300 × 300 and pixel size 15 𝜇m. The run times are (b) 637.29 s, (c) 717.86 s and (d) 2121.8 s
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6.3 an x-rayed circuit board

Figure 6.6: Optical image of the
examined circuit board.

In the following the IRWSR algorithm is applied to real X-ray data. We
provide two types of datasets: One where there is a manual translation of the
object in the individual frames i. e., no motion in the frames and one where
the object is placed on a running conveyor-belt. The X-ray images are taken
at di�erent exposure times, providing a dataset where we can test the various
e�ects of motion blur and contrast. The object of interest is the circuit board
shown in Fig. 6.6.

The images are all taken with the setup given in Fig. A.1, with the X-ray
generator set to a voltage of 50 kV and a current of 8mA. All images are
manually cropped to �t the object, with as little background as possible and
all images has been passed raw to the IRWSR scheme. The motion estimates
were found through sparse optical �ow explained in § 2.4.4. For illustrative
purpose the SR images are normalized to the whole 8bit range. In this series of
images the metrics of PSNR and SSIM cannot be applied as no HR reference
exist. In the following a constant regularization parameter 𝜆 = 0.038 is used
for all runs of the IRWSR. The choice of a constant value is based on the
cross-validation not converging to an image representing the LR frame. The
regularization value is chosen based on a manual scan of various lambda
values.

Manual Translation

First, we look at the manually translated image sequence. The frames has
been gathered through the process of placing the circuit board in the X-ray
scanner. An image was the taken for the three di�erent exposure times 10ms,
50ms and 200ms. The circuit board was then moved approximately 1mm
and three new images where taken for each exposure time. In Fig. 6.7 a single
frame from the 50ms and 200ms is shown.

(a) 50ms frame (b) 200ms frame

Figure 6.7: Raw image from the 50ms and 200ms exposure time for the translation series.

In Fig. 6.8 and Fig. 6.9 examples of the IRWSR algorithm applied to the 10ms
and the 200ms sequence is shown. The images has been cropped to a size
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of 200 × 200, due to the large run time of the algorithm. The frames are
magni�ed by 𝑠 = 1.3 to 260 × 260 with coarse-to-�ne steps of Δ𝑠 = 0.1.
The regularization parameter is set to the constant 𝜆 = 0.038. All images
normalized to a range of 255 to optimize visual perception. The LR frame
and median is interpolated through bicubic interpolation to the size of the
SR.

The speci�c features of interest are the holes of three di�erent sizes and
the lines. Especially the small holes in the top left corner are unclear for
the unprocessed image in (a). The application of the SR algorithm does not
perceptually enhance the features of the unprocessed image and the amount
of variance seems to be insigni�cant in connection with classi�cation.

(a) Original LR frame (b) Median (c) SR

Figure 6.8: SR for 10ms of a 200×200 crop of the original frames. The frames where magni�ed
by 𝑠 = 2 in steps of Δ𝑠 = 0.25. To reduce runtime the regularization parameter 𝜆 = 0.038 was
constant. Processing time 1033.2 s. All images normalized to a range of 255 to optimize visual
perception.

(a) Original LR frame (b) Median (c) SR

Figure 6.9: SR for 50ms of a 200×200 crop of the original frames. The frames where magni�ed
by 𝑠 = 2 in steps of Δ𝑠 = 0.25. To reduce runtime the regularization parameter 𝜆 = 0.038 was
constant. Processing time 1718.5 s. All images normalized to a range of 255 to optimize visual
perception.

Conveyor translation

A series of frames of the circuit board under movement has been generated.
The movement is induced by a conveyor-belt moving at 15.5 cm/s and the
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di�erent exposure times are 13.6ms, 16ms, 25ms, 50ms and 100ms. As a
natural consequence of di�erent exposure times, the sampling rate varies
from 10 fps for the highest exposure time to 70 fps for the shortest. In Fig.
6.10 and Fig. 6.11 two sequential frames are shown for the exposure times of
50ms and 100ms. There is a notable di�erence in distances and motion blur
as the speed exposure time increases.

(a) 2nd frame (b) 8th frame

Figure 6.10: Two sequential frames for the conveyor series. Exposure time is 50ms
corresponding to a frame rate of 20 fps.

(a) 2nd frame (b) 8th frame

Figure 6.11: Two sequential frames for the conveyor series. Exposure time is 100ms
corresponding to a frame rate of 10 fps.

In Fig. 6.12 and Fig. 6.13 examples of the IRWSR algorithm applied to the
13ms and the 25ms sequence is shown. Like with the manual translation a
cropping has been made of 250 × 200 to increase the runtime. The frames
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are magni�ed by 𝑠 = 1.3 to 325 × 260 in steps of Δ𝑠 = 0.1. The regularization
where for both sequences set to the constant 𝜆 = 0.038. The LR frame and
median is interpolated through bicubic interpolation to the size of the SR.
The features of interest are the same holes and stripes described before. No
notable enchantment other than noise removal is noticed.

(a) First frame (b) Median (c) SR

Figure 6.12: SR for 13ms of a 250×200 crop of the original frames. The frames where magni�ed
by 𝑠 = 2 in steps of Δ𝑠 = 0.25. To reduce runtime the regularization parameter 𝜆 = 0.038 was
constant. Processing time 360.7 s. All images normalized to a range of 255 to optimize visual
perception.

(a) First frame (b) Median (c) SR

Figure 6.13: SR for 25ms of a 250×200 crop of the original frames. The frames where magni�ed
by 𝑠 = 2 in steps of Δ𝑠 = 0.25. To reduce runtime the regularization parameter 𝜆 = 0.038 was
constant. Processing time 434.0 s. All images normalized to a range of 255 to optimize visual
perception.

6.3.1 Motion estimates

A vital part of the IRWSR scheme is the motion estimates used in the degra-
dation model𝑊 and the median giving the initial guess for the MFSR method.
The algorithm is intended to be robust at subpixel misalignment, guaranteed
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by the median of the residuals in the calculations of the 𝛽 maps. However,
when the misalignment is at pixel level and above, the scheme seems to
fall apart, which is apparent when applying the segmentation/optical �ow
scheme described in § 2.4.4 to the motion blurred images of the conveyor-belt.
With an increased blur, the motion estimates seem to misalign the frames
as shown in Fig. 6.14, where a poor motion estimate apparent in the median
severely decreases the output of the SR scheme. However, as the implemented
SR does not enhance the images with less motion blur, the optimization of
the image registration for high motion blur is not our biggest concern.

(a) 16ms, median (b) 50ms, median

Figure 6.14: (a) well aligned frames in median and (b) misaligned frames in median.

6.4 limits for application of sr

In the following we discuss our �ndings of the implemented IRWSR schemes.
The Algorithm is put in context of machine learning algorithms, such as
neural networks, dominating the present evolution in the �eld, as an elabo-
ration of neural networks is out of the scope of this thesis. They are mainly
considered on a conceptual level, as a method to analyze large amounts of
data and �nding inherent patterns in the images.

6.4.1 Baysian vs. ML

To the author’s knowledge there are no widely applied SR algorithm based on
the Bayesian framework presented in § 3. In the applied SR review [45] from
20161 1. The same year as the IRWSR was

published[1].
the SR advancements are divided into three stages. Frequency based

methods, regularized MFSR and single image super resolution (SISR) based
on example patches. The analysis from [45] seems to �t with the present
overload of SISR machine learning algorithms, as seen in this list of 88 open
source projects algorithms[3]. At the time of writing this trend seems to
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continue with new network architectures being developed, surpassing its
priors in terms of PSNR, SSIM and other quality measures. The work of
[4] from 2019 sought to make a publicly available benchmarking system for
evaluation of SR algorithms. Here, the robustness of the IRWSR scheme
seemed to outperform the compared machine learning methods on several
quantities such as PSNR and SSIM. These evaluations were performed on
scales of di�erent image degradation, i. e., a range of varying PSFs and motion
translations. Sadly, it seems that the newer algorithms has not been compared
to this dataset. Thus, with the lack of a common benchmark it is di�cult to
quantify the robustness of the machine learning algorithms with respect to
the IRWSR.

Another problem stated in [4] is the gap in performance between SR al-
gorithms on test data and real data. Since the beginning of this project a
growing amount of cases of commercial available implementations of SR
based on machine learning[5][6]. However, these are made for increasing
visual perceptions, where the goal of an SR algorithm in this thesis is the
enhancement of edges and features as a preprocessing tool for a classi�cation
algorithm. A phenomena with mixed results and not widely researched in
the literature. In [46] SR is used as a preprocessing tool for a classifying
convolutional neural network (CNN) but concluded it unnecessary. In [47]
the architecture of an SR is combined with a CNN, reporting an increased
performance in classi�cation.

6.4.2 Optimization of IRWSR

In our opinion it seems that the choices of a SR implementation lies between
a Bayesian multi-frame model and a neural network performing on single
frames. As demonstrated above, the IRWSR lacks the computational e�ciency
to perform in a online system; Even the ×2 magni�cation of a 200 × 200
sequence of frames takesmore than 1000 s on a single core CPU. Especially the
computation of the𝑊 matrix and the conjugate gradient (CG) are limiting the
performance of the system. Some approaches can be taken to the optimization
of the computation of𝑊 . A precomputation of𝑊 can be done if the system
in mind is well described, i. e., the translation are known without image
registration methods. Another more robust approach based on the discussion
in § 3.2 would be to change the degradation model to conventional �lters
𝑊 . This would skip the computation of𝑊 as a matrix and only leave an
evaluation. However, in the CGmethod the gradient calculations are essential
and the translation of𝑊 in Equation (3.9) would be di�cult to de�ne22. A quick implementation of this

method provided no real results.
. A

third approach could be a method taken from the CNN community; the
im2col representation[48]. Here, the image is changed to a column matrix
representation and the convolution is a simple dot product with the �attened
kernel. This seems like a promising approach to decreasing the runtime and
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keeping the properties of the dot product in the equations. Furthermore,
the blurring part of the degradation kernel is assumed Gaussian and lacks
the features of motion blur. This would demand a throughout analysis of
the point-spread-function (PSF) for the given system, as this might cause a
nonlinear PSF dependent on spatial properties. The estimated PSF should be
implemented in Equation (3.2), as an alternative to the Gaussian approach.

6.4.3 Validation of SR

The IRWSR has slow computational performance and the possibility of in-
duced artifacts, as shown in Fig. 6.2. Furthermore, it showed no clear visual
signs of �nding latent information in the LR frames of the simulator or the
real images of the circuit board. This indicates that the IRWSR would be a
poor choice for preprocessing images for a real-time classi�cation algorithm.
If the runtime of the classi�cation pipeline were unimportant, it would be
valid to test if IRWSR increased the performance. This could be done with a
greater dataset of simulated or real images, with a well de�ned classi�cation
task. Such as detection anomalies in a potato or the like.
Another promising approach to SR in this setting, would be the implementa-
tion of newer SR machine learning algorithms. As some trained networks can
process a SR image in a matter of seconds[5], indicating that they possess the
speed needed in a pipeline. However, as networks are trained for a speci�c
setting, they are not guaranteed robust. Summing up, a validation of a SR

Online software

3D objects

Real objects X-ray imager

Xsim

Preprocessing Classi�cation

Prediction

Comparison
Statistical
Distribution

Properties Specs.

Figure 6.15: Suggested �owchart for validation of di�erent preprocessing algorithms in a
classi�cation pipeline. Objects are send through an X-rap image an preprocessed in a online
system. The prediction of the classi�cation should then be related to the statistical distribution
of the given input. Furthermore, we suggest that Xsim can be an addition to this pipeline,
providing simulated data based on the real input.

algorithm(or any preprocessing algorithm) in a classi�cation scheme needs
to be related through the input and output of the larger pipeline, a process
outlined in Fig. 6.15. The objects of interest are imaged in an X-ray setup.
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The images are then processed before being classi�ed. The predictions of the
classi�er are hereafter related to the input object, i. e., assessment of whether
the known anomalies are found. The preprocessing can in this case be ad-
vanced �lters, such as super resolution, or more common, such as gamma
correction and histogram equalization. This provides a �exible method of
trying out di�erent combinations of �lters analogous to the cross validation
used in § 3 and common for parameter optimization in machine learning.

Furthermore, we suggest the addition of Xsim to the data acquisition. If
possible, the real objects can be converted to statistical 3D models, used in
the generation of various realistic objects. The 3D objects can then be in-
duced di�erent anomalies pulled from a distribution, such as holes or foreign
objects. This would be analogous to that of data argumentation used for
increased robustness in machine learning models. If followed by validation
checks of the simulator, as suggested in § 5.5.3, it would become a powerful
tool in optimization of classi�cation algorithms in X-ray imaging.
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7CONCLUS ION

In this thesis we have proposed the application of super resolution (SR) in
the context of X-ray scanners for food inspection. The goal were to enhance
image features, such that it could support the classi�cation task in the overall
pipeline. As SR can be viewed as high-level computer processing algorithms,
we started by providing a short theoretical and applied foundation for the
subject. Demonstrating the �lters and computer vision algorithms necessary
for implementation of the desired scheme.

The applied iterative re-weighted super resolution (IRWSR) was chosen on
the basis of a review of several SR algorithms given in the literature, because
it showed promising results in with regards to robustness and output, in
comparisonwith its competitors. The content of the algorithmwas elaborated
and results from our implementation were shown for arti�cial degraded
data. These results indicated that the implementation were able to convert a
sequence of low resolution images to a single high resolution image, showing
the reappearance and sharping of features lost in the image degradation
process.

Regarding X-ray scanners, the physical theories behind X-ray images were
elaborated. Relating the theories of X-ray sources, object attenuation and
detectors to the practical considerations behind using such a setup. A short
demonstration of a real X-ray scanner used for generating the images ana-
lyzed in the context of SR were given.

For examination of the possibilities of X-ray scanners in general, we created
the tool Xsim. Xsim allows simulation of the imaging process of objects
X-rayed under motion. The creation of the algorithm were explained with
regards to the geometrical and physical considerations. The algorithm out-
puts were showcased providing perceivably realistic results of an X-rayed
potato. Xsim was then put in the context of related work, together with an
examination of its limitations. However, a validation by comparison to a
more complex simulator could specify the range of these limits.

At last, we applied the implemented SR scheme on the di�erent types of
data acquired. For arti�cial data degradation a positive perceptual result is
given, however, the inducement of image artifacts could indicate problematic
behavior in a larger pipeline. With the simulator, images were generated
on two di�erent magni�cation levels for the camera, providing a reference
for the SR output. The SR algorithm was then applied to sequences of data
with and without induced motion, providing no signs of positive results in
regards to the perception. A possible reason could be the lack of a proper
implementation of the point-spread-function (PSF) for Xsim, as it is the low-
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pass behavior of such a �lter, multi-frame super resolution (MFSR) seeks to
overcome. In the examination of the application for real world data, di�erent
sequences of exposure time and motion blur were provided. No perceivable,
positive result were present with the application of SR, and the algorithm
functioned as a noise removal �lter. Furthermore, the overall computational
time of the IRWSR scheme seems insu�cient for a real-time application. As
an example the magni�cation of an image of size 200 × 200 by ×2 is done at
the scale of 1000 s. Because the data quantitiy is small, and no standardized
validation scheme exists, the work of this thesis lays the foundation on how
to proceed with the application of SR in the context of an X-ray scanner. For
signi�cant results the implemented tools should be validated through the
two proposed schemes.

7.0.1 Future work

The process of applied SR is still a widely researched area for which there
are little signi�cant results in the context of a classi�cation pipeline. As the
amount of available algorithms only grows, one could try the application of
newer models which seem to outperform the others. Before doing so, one
should however have a clear idea of the performance benchmark. For applied
SR with classi�cation algorithms, the benchmark could be the prediction rate
from a known input distribution.

Related to the IRWSR, di�erent improvements could be made. First of all,
an optimization of the run time for the degradation process should be made.
This could be achieved by implementations of convolutions by �lters, instead
of the cumbersome creation of𝑊 as a sparse matrix. Trial implementations
indicated an increased run time for the degradation process, which could
be feasible for proper online implementations. However, the output images
were not representative of the input. A reason could be the gradient of the
energy function for the IRWSR not being well de�ned in this matter. As
such, this minimization with the conjugate gradient (CG) was not evaluated
properly, and a more throughout investigation should be made.

A main topic of this work is the motion blur induced by a moving conveyor-
belt. However, a �aw is the lacking analysis of the contributions to the PSF.
Such a PSF could be implemented as a part of the degradation process, which
should provide more truthful residuals between the degraded image and
the given low resolution image, and as such provide a better estimate for a
non-blurred image.

The implemented IRWSR algorithm could further be used as the backbone for
a vast type of image reconstruction processes. A versatile reimplementation
could allow for easy changes of di�erent parts of the algorithm. That could
be the trial of di�erent priors or the steps in the degradation process e. g.
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a reconstruction could be to omit the downscaling. The examination of
di�erent minimization methods could also be examined.

Regarding the future of Xsim, it is the foundation for a powerful simulation
tool. There is a prominent lack of considerations to a range of physical pro-
cesses, such as scattering, the spatial extension of the source, beam hardening
and the PSF contribution from the scintillator-detector combination. The
degree of error from these approximations should be examined through a
combination of mathematical estimates and the proposed validation scheme.
The validation scheme relates the X-ray image of an input phantom to the
output of a real-setup or a more complex simulation. As some physical e�ects
are more prominent than others for a given setup, this validation should
be done at di�erent setup limits, e. g. investigating what is the e�ect of an
spatially extended source related to the distances, how does di�erent material
compositions in�uence the scattering, etc.

Furthermore, the di�erent physics should be implemented. In comparison
with the SR scheme, the inclusion of the PSF is an important �rst step, as it
is the degradation from these low-pass e�ects it is designed to counter. The
acquired PSF could also be implemented as a part of the IRWSR degradation,
analogous to the proposed implementation of a motion-blur kernel.

For a runtime optimization, the inherently separable structure of the frame-
work could be utilized by parallelization. An implementation on a GPUwould
also be a low-hanging fruit, as they are optimized for 3d processing. Newer
models even feature dedicated ray-tracing hardware, which sounds like a
perfect �t for the simulator.

Using Xsim in relation to the AXIS-project, whose �nal goal is a fully au-
tomatic classi�cation system for X-ray scanners, the examination of the
statistical properties of shape, density and anomalies of target objects could
be utilized to produce 3D-graphical representations, allowing tests on a large,
and vast, amount of generated data. Such an investigation should start of
by looking into simple and approximately homogeneous objects, such as
potatoes, and can then be expanded to more complex elements.
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APPEND I C ES



A ADD I T IONAL SR

a.1 system specifics

All software and runtimes in this thesis are run on the following system.
ERDA - DAG hardware:

• CPU: 1st Generation AMD EPYC @ 2 GHz, 8 threads time sliced.

• RAM: 8 GB DDR4 2666 MHz

The following packages with corresponding versions has been used:

• Phyton 3.7.6

• numpy 1.18.0

• openCV 4.2.0

• scipy 1.4.6

A.1.1 Nonparametric Blind Super-Resolution

The following provides a short review of two additional super resolution (SR)
algorithms examined in this work.

Figure A.1: The exploiting of
patches recurring across di�er-

ent image scales. Image from [19]

The idea behind the nonparametric blind
SR[19] is to address the blur kernel used in the image degradation process.
Addressing that the use of low-pass �lter such as the gaussian in § 3.2, leads
to low quality SR as it neglects e�ects such as zoom, focus and camera
shake. They propose a blind estimation method based on the maximum
a posteriori (MAP) for automatically estimating the kernel between high
resolution (HR) and low resolution (LR) patches of the desired image. Using
a property from natural image statistic that di�erent patterns of images recur
across resolution scales of the same scene. The nonparametric part of the
kernel is that it follows no known distribution and allows it to take negative
values.

The kernel estimation is independent of the bigger SR scheme and can be
implemented as a substitute to the blur 𝐻 , in the degradation model 𝑾 .
The source code for the kernel estimation is not public available, and our
implementation seemed �awed as it always converge to a gaussian like ker-
nel. The authors addresses some of the faults of the original work and has
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recently provided a blind estimation scheme based on a generative adver-
sarial network (GAN), with public source code[49]. Future work on the
iterative re-weighted super resolution (IRWSR) algorithm should examine
the possibilities of including such kernels.

A.1.2 Showcase of data used in artificial degradation of images

Showing a sequence of 8 arti�cial degraded LR frames used in the multi-frame
super resolution (MFSR) scheme.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure A.2: An example of a sequence
of 8 arti�cial degraded LR frames
used in the MFSR scheme.

(a) Reference (b) SR (30.83 dB, 0.73)
(c) Median
(31.72 dB, 0.65)

Figure A.3: An example of the peppers
image and super resolution. The �rst
measure is the PSNR and the second
is the SSIM. The median is upscaled
by bicubicinterpolation to its original
size.

A.1.3 Extra data of circuit board

A.1.4 Code snippets related to the IRWSR
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(a) First frame (b) Med (c) SR

Figure A.4: SR for 200ms of a 200×200 crop of the original translated frames. Image magni�ed
by 𝑠 = 1.3 to 260 × 260 with coarse-to-�ne steps of 𝛿𝑠 = 0.1. The regularization parameter set
to the constant 𝜆 = 0.038. Took 385 s. All images normalized to a range of 255 to optimize
visual perception.

(a) First frame (b) Median (c) SR

Figure A.5: SR for 16ms of a 250× 200 crop of the original conveyor frames. Image magni�ed
by 𝑠 = 1.3 to 325 × 260 with coarse-to-�ne steps of 𝛿𝑠 = 0.1. The regularization parameter set
to the constant 𝜆 = 0.038. Took 410.7 s. All images normalized to a range of 255 to optimize
visual perception

(a) First frame (b) Median (c) SR

Figure A.6: SR for 50ms of a 250× 200 crop of the original conveyor frames. Image magni�ed
by 𝑠 = 1.3 to 325 × 260 with coarse-to-�ne steps of 𝛿𝑠 = 0.1. The regularization parameter set
to the constant 𝜆 = 0.38. Took 458.2 s. All images normalized to a range of 255 to optimize
visual perception.
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1 def createSh(img_size, n):
2 N1, N2 = img_size
3 # creates one block
4 block = eye(N2, N2, -n)
5 # string with number of blocks in diagonal
6 num_blocks = "block, " * N1
7 # creates whole block matrix
8 blockMatrix = block_diag((eval(num_blocks)), format = "csr")
9 return blockMatrix
10

11 def createSv(img_size, m):
12 N1, N2 = img_size
13 # creates block matrix
14 N = N1 * N2
15 blockMatrix = eye(N, N, -m*N2)
16 return blockMatrix
17

18 def createSmn(img_size, m, n, alphaBTV):
19 N1, N2 = img_size
20 alpha = alphaBTV**(np.abs(m)+np.abs(n))
21 S = createSv((N1,N2), m).dot(createSh((N1,N2), n))
22 return alpha*(identity(N1*N2)-S)
23

24 def createSStack(img_size, P, alphaBTV):
25 N1, N2 = img_size
26 # meshgrid of all posible m, n values
27 pRange = np.arange(P*2+1)-P
28 pGrid = np.meshgrid(pRange, pRange)
29 # create string with all the differnt Smn matrices
30 SmnStr = "["
31 for i in range((P*2+1)**2):
32 SmnStr += f"createSmn((N1, N2), {pGrid[0].ravel()[i]},"\
33 +f"{pGrid[1].ravel()[i]}, alphaBTV), "
34 SmnStr += "]"
35 # Creates s as a stack of sparse matrices
36 S = vstack(eval(SmnStr))
37 return S

Code Listing A.1: The generation of the sparsifying matrix. Implemented
with numpy and the scipy sparse library.
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1 def composeSystemMatrix(lrshape, magFactor, psfWidth,
2 motionEstimate):
3 # LR shape
4 M1, M2 = lrshape
5 M = M1 * M2
6 # HR shape
7 N1, N2 = int(round(M1 * magFactor)),
8 int(round(M2 * magFactor))
9 N = N1 * N2
10 # Define all the pixels in LR
11 uX, uY = np.arange(0, M2), np.arange(0, M1)
12 # Define all the pixels in HR
13 vX, vY = np.arange(0, N2), np.arange(0, N1)
14 # max distance of the supported part of the psf.
15 # guarantees that it is atleast 1 pixel wide
16 maxPsfRange = max(3 * psfWidth * magFactor, 1)
17 # Find subpixel positions of the given LR frame in HR
18 uPrimeX, uPrimeY = (uX + motionEstimate[0])*magFactor,
19 (uY + motionEstimate[1])*magFactor
20 # initiate the matrix W
21 W = lil_matrix((M, N))
22

23 # iterate over every pixel in LR.
24 for i_y in range(M1):
25 for i_x in range(M2):
26 # finds distance between all pixels in HR and u'
27 distX, distY = np.abs(uPrimeX[i_x] - vX),
28 np.abs(uPrimeY[i_y] - vY)
29 # mask defining the squared support of the PSF
30 maskX= distX <= maxPsfRange
31 maskY =distY <= maxPsfRange
32 dist = np.meshgrid(distX[maskX],distY[maskY])
33 # Finds all euclidean distances within supported square
34 dist = np.sqrt(dist[0]**2 + dist[1]**2)
35 # mask defining the radial support of the PSF
36 mask = dist <= maxPsfRange
37 # calc exponents in gaussianblur
38 weights = np.exp(- dist /
39 (2 * magFactor**2 * psfWidth**2))
40 weights[mask != True] = 0
41 # normalize
42 weights = weights/np.sum(weights)
43 # Avoid nans
44 weights[np.isnan(weights)] = 0
45 idx_u = i_x + i_y*M2
46 # Every row in W corresponds to a u in y,
47 # put corresponding weights at the right column
48 idx_v = np.meshgrid(vX[maskX], vY[maskY]*N2)
49 idx_v = np.ravel(idx_v[0] + idx_v[1])
50 W[idx_u, idx_v] = np.ravel(weights)
51 return W

Code Listing A.2: The generation of the image degradation matrix. Imple-
mented with numpy and the scipy sparse library.
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BXS IM EXTENDED NOTES

The following sections provides an elaborating of some of the concepts used
in the development of Xsim.

b.1 controllable parameters

The following is a overview of the di�erent user-de�ned variables used for
Xsim. All distance and sizes are given in [cm].

d1: (�oat) Distance from point source to bottom of the �eld of view (FOV).

d2: (�oat) Distance from bottom of the FOV to the camera.

voxelSizeD: (�oat, �oat, �oat) The physical size of one element in the 𝐷 and FOV array

pixelArea: (�oat, �oat) The physical area of one pixel in the charge-coupled device
(CCD) array.

gridCCD: (int, int) The camera resolution i. e., the amount of pixels.

Nsubpixels (int) The amount of di�erent rays hitting one pixel. Goes as (𝑁𝑠𝑢𝑏𝑝𝑖𝑥𝑒𝑙𝑠ℎ)2,
so if 𝑁𝑠𝑢𝑏𝑝𝑖𝑥𝑒𝑙𝑠 = 3 - 9 subpixels are used in the summation of a single
pixel

photonsRay: (int) The amount of photons emitted in each ray path.

saturation: (int) The photon count setting the saturation level of a pixel.

eta: (�oat) Quantum e�ciency 0 ≤ 𝜂 ≤ 1 the percentage of photons registered
by the camera.

spectrum: (2D array) X-ray source spectrum given probability distribution. First row
energy [ KeV]. Second row probability.

(Emin:Estep:Emax): (int, int, int) The energy range for the sampled spectrum [KeV].

Nframes: (int) The amount of images to generate.

Nsubframes: (int) The amount of subframes contributing to a single frame.

moveStep: (int, int) The translation of D in the FOV per subframe.

moveStart: (int, int) The placement of D in the �rst frame.
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b.2 bresenhams line algorithm

Bresenhams line algorithm is used for drawing lines in an N-dimensional
raster grid between two points, returning a list of integer indices creating
the line in the grid. In a 2D grid case we go from point 𝑃𝑠𝑡𝑎𝑟𝑡 (𝑥1, 𝑦1) to
𝑃𝑒𝑛𝑑 (𝑥2, 𝑦2). We start by limiting the system to the positive direction i.e.
𝑥1 < 𝑥2 and 𝑦1 < 𝑦2. Furthermore the slope of the linen is de�ned to be in
the range 0 ≤ 𝑚 ≤ 1, which is found by:

𝑚 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

=
Δ𝑦

Δ𝑥

Figure B.1: The slope error for Bre-
senhams line algorithm. The er-
ror is found with respect to the

integer values and the true values
of the red line. Image from [50]

The algorithm works iteratively by going stepwise from point to point on
the line, through a driving axis. At the step 𝑘 the point𝑃𝑘 (𝑥𝑘 , 𝑦𝑘 ) is found. If
𝑥 is chosen as the driving axis the point at step 𝑘 + 1 is either 𝑃𝑘+1(𝑥𝑘 + 1, 𝑦𝑘 )
or 𝑃𝑘+1(𝑥𝑘 + 1, 𝑦𝑘 + 1). This choice is it determined with respect to a slope
error 𝜖 between the integer value of 𝑦𝑘 and the "true" value of the line point
which should be 𝑦𝑘 + 𝜖𝑘 . The error is illustrated in Fig. B.1 For every step the
"true" value of the line point is increased by𝑚 and if this is above 0.5 the
integer value of 𝑦 is incremented. So the next point is given as:

𝑃𝑘+1 =

{
(𝑥𝑘 , 𝑦𝑘 ) if 𝑦𝑘 + 𝜖𝑘 +𝑚 < 𝑦𝑘 + 0.5
(𝑥𝑘 , 𝑦𝑘 + 1) otherwise.

(B.1)

The error is then changed with respect to the choice of the next point

𝜖𝑘 + 1 =
{
(𝑦𝑘 + 𝜖𝑘 +𝑚) − 𝑦𝑘 if 𝑃𝑘+1 = (𝑥𝑘 + 1, 𝑦𝑘 )
(𝑦𝑘 + 𝜖𝑘 +𝑚) − (𝑦𝑘 + 1) if 𝑃𝑘+1 = (𝑥𝑘 + 1, 𝑦𝑘 + 1).

To avoid �oating points in𝑚 = Δ𝑦/Δ𝑥 the di�erent expressions are multiplied
by Δ𝑥 . The condition in (B.1) is further multiplied by 2 and simpli�ed by
removing 𝑦𝑘 . This gives

𝑃𝑘+1 =

{
(𝑥𝑘 , 𝑦𝑘 ) if 2𝜖𝑘Δ𝑥 + Δ𝑦 < Δ𝑥

(𝑥𝑘 , 𝑦𝑘 + 1) otherwise.

The error is then changed with respect to the choice of the next point

𝜖𝑘 + 1 =
{
𝜖𝑘 + Δ𝑦 if 𝑃𝑘+1 = (𝑥𝑘 + 1, 𝑦𝑘 )
𝜖𝑘 + Δ𝑦 − Δ𝑥 if 𝑃𝑘+1 = (𝑥𝑘 + 1, 𝑦𝑘 + 1) .

Which should be calculated for each iteration[50].
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1 def Bresenham3D(x1, y1, x2, y2, fov_height):
2 dx = abs(x2 - x1)
3 dy = abs(y2 - y1)
4 # goes from top to bottom of in z
5 dz = fov_height
6 z1 = 0
7 ListOfPoints = np.zeros((2, dz))
8 # Positive or negative slope
9 if (x2 > x1):
10 xs = 1
11 else:
12 xs = -1
13 if (y2 > y1):
14 ys = 1
15 else:
16 ys = -1
17

18 # Driving axis is Z-axis"
19 eps_x = 2 * dx - dz
20 eps_y = 2 * dy - dz
21 # while (z1 != z2):
22 for i in range(dz):
23 z1 += 1
24 if (eps_y >= 0):
25 y1 += ys
26 eps_y -= 2 * dz
27 if (eps_x >= 0):
28 x1 += xs
29 eps_x -= 2 * dz
30 eps_y += 2 * dy
31 eps_x += 2 * dx
32 ListOfPoints[:, i] = (x1, y1)
33 return ListOfPoints

Code Listing B.1: Bresenhams line drawing algorithm with driving axis in z.
Inspired by [Bresenham]

In using Bresenhams line algorithm for Xsim the above is expanded to a 3-
Dimensional grid. This is done by choosing 𝑧 as a driving axis and �nding the
slope errors with respect to the 𝑥 and 𝑦 direction. In the cases of a negative
slope, the incrementation is set to be −1 if the endpoint is smaller than the
start point for that axis.[51]

The python function for evaluating Bresenhams algorithm in Xsim is given
in Code Listing 5.5.
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b.3 iteration optimization in the fov

0 1 2 3

4 5 6 7

8 9 10 11

9 12 13 14

10 13 15 16

11 14 16 17

𝑞𝑦

𝑞𝑥

point source

Figure B.2: Top viev of one quadrant
of the CCD array. Illustration the
equivalent ray paths as colored in-
dices. The quadrant sides are 𝑞𝑥 = 6
and 𝑞𝑦 = 4 and the red line indicates
the two terms in the derivation.

This section provides an elaboration of the optimization scheme used
in reducing the amount of iterations it the preprocessing of the ray paths
through FOV. As stated in § 5.3 the system is symmetrical in the 𝑥 and 𝑦 axis
and the ray paths can be split into 4 equal quadrants when related to the CCD
array of size 𝑁𝐶𝐶𝐷𝑥 × 𝑁𝐶𝐶𝐷𝑦 . For simpli�cation of the equations, we denote
the size of a quadrant in the CCD array as 𝑞𝑥 × 𝑞𝑦 i.e 𝑞𝑥 = 𝑁𝐶𝐶𝐷𝑥 /4. The
simpli�ed system is shown in Fig. B.2, where the indices in black is su�cient
for describing all unique paths. The number of unique paths can be described
by the following

𝑁𝑝𝑎𝑡ℎ𝑠 = 𝑞𝑥 (1 + 𝑞𝑦 − 𝑞𝑥 )︸             ︷︷             ︸
𝑎𝑏𝑜𝑣𝑒 𝑙𝑖𝑛𝑒

+ 𝑞𝑥 (𝑞𝑥 − 1)
2︸       ︷︷       ︸

𝑢𝑛𝑑𝑒𝑟 𝑙𝑖𝑛𝑒

, for𝑞𝑦 > 𝑞𝑥 .

The two terms are related to the indices above and under the red line in Fig.
B.2. The equation can be simpli�ed further:

𝑁𝑝𝑎𝑡ℎ𝑠 = 𝑞𝑥
1 + 2𝑞𝑦 − 𝑞𝑥

2

= 𝑞𝑥𝑞𝑦 +
𝑞𝑥 − 𝑞2𝑥

2 , for𝑞𝑦 > 𝑞𝑥 .

b.4 projection of object

In § 5.1.2 a simpli�ed description of the projection of objects denoted 𝐷
onto the FOV is given. As explained the two are de�ned as 3-dimensional
arrays consisting of volume blocks. The system is de�ned such that the
volume-blocks of the FOV and the 𝐷 is of the same size and cubic, such
that geometrical considerations holds for the projections. Furthermore, the
amount of blocks in the 𝑧 direction is for the FOV de�ned to be the same size as
of the object i.e 𝑁 𝐹𝑂𝑉

𝑧 = 𝑁𝐷
𝑧 giving a one to one projection in the 𝑧 direction.

For the 𝑥 and 𝑦 plane parallel with the camera, the same considerations
holds for both directions and the further descriptions is only given for the 𝑥
direction. For projection in the 𝑥-direction there are three relevant variables
the grid sizes 𝑁𝐷

𝑥 , 𝑁 𝐹𝑂𝑉
𝑥 and the desired translation from the center 𝑥𝑡𝑟𝑎𝑛𝑠 .

The projection is dependent on whether the 𝐷 or the FOV is smallest as it
de�nes the maximum width of the broadcasting 𝐵𝑥 i.e. the relevant part of
𝐷 for projection. The smallest and largest of the two is de�ned as 𝑥𝑚𝑖𝑛 =

𝑚𝑖𝑛(𝑁𝐷
𝑥 , 𝑁

𝐹𝑂𝑉
𝑥 and 𝑥𝑚𝑎𝑥 = 𝑚𝑎𝑥 (𝑁𝐷

𝑥 , 𝑁
𝐹𝑂𝑉
𝑥 p The broadcasting is further

described by the translation, as the object might be out of scope for the FOV.
Giving 𝐵𝑥 =𝑚𝑖𝑛(𝑥𝑚𝑖𝑛, 𝑥𝑚𝑖𝑛/2− (|𝑥𝑡𝑟𝑎𝑛𝑠 | −𝑥𝑚𝑎𝑥/2). The projection is further
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de�ned by the di�erence in grid size as Δ𝑥 = |𝑁𝐷
𝑥 − 𝑁 𝐹𝑂𝑉

𝑥 . added with the
translation 𝑥𝑝𝑟𝑜 𝑗 = Δ𝑥 + 𝑥𝑡𝑟𝑎𝑛𝑠 .

With the di�erent variables de�ned the projection can be done with respect
to four di�erent scenarios.
Positive translation with 𝑁𝐷

𝑥 > 𝑁 𝐹𝑂𝑉
𝑥

𝐹𝑂𝑉 [0 : 𝐵𝑥 ] = 𝐷 [𝑥𝑝𝑟𝑜 𝑗 : 𝑥𝑝𝑟𝑜 𝑗 + 𝐵𝑥 ]

Positive translation with 𝑁𝐷
𝑥 < 𝑁 𝐹𝑂𝑉

𝑥

𝐹𝑂𝑉 [𝑥𝑝𝑟𝑜 𝑗 : 𝑥𝑝𝑟𝑜 𝑗 + 𝐵𝑥 ] = 𝐷 [0 : 𝐵𝑥 ]

Negative translation with 𝑁𝐷
1 > 𝑁 𝐹𝑂𝑉

1 𝑖𝑛𝑑𝐷 =𝑚𝑖𝑛(𝑥𝑝𝑟𝑜 𝑗 , 0)

𝐹𝑂𝑉 [𝑁 𝐹𝑂𝑉
𝑥 − 𝐵𝑥 : 𝑁 𝐹𝑂𝑉

𝑥 ] = 𝐷 [𝑖𝑛𝑑𝐷 : 𝑖𝑛𝑑𝐷 + 𝐵𝑥 ]

Negative translation with 𝑁𝐷
1 < 𝑁 𝐹𝑂𝑉

1 𝑖𝑛𝑑𝐷 =𝑚𝑖𝑛(𝑥𝑝𝑟𝑜 𝑗 , 0)

𝐹𝑂𝑉 [𝑖𝑛𝑑𝐷 : 𝑖𝑛𝑑𝐷 + 𝐵𝑥 ] = 𝐷 [𝑁𝐷
𝑥 − 𝐵𝑥 : 𝑁𝐷

𝑥 ]
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1 def projectInX(Nx_FOV, Nx_D, xTrans, D):
2 min_x = min(Nx_FOV, Nx_D)
3 max_x = max(Nx_FOV, Nx_D)
4 delta_x = (max_x - min_x)/2 + xTrans
5 xB = min(min_x, min_x/2 - (abs(xTrans)-max_x/2))
6 xProj = delta_x + xTrans
7 if xTrans >= 0:
8 if Nx_FOV <= Nx_D:
9 FOV[0:xB] = D[xProj:xProj+xB]
10 elif Nx_FOV > Nx_D:
11 FOV[xProj:xProj+xB] = D[0:xB]
12 if xTrans < 0:
13 # Guarantees that xProj isn't negative
14 xProj = min(0, xProj)
15 if Nx_FOV <= Nx_D:
16 FOV[Nx_FOV-xB:Nx_FOV] = D[xProj:xProj+xB]
17 elif Nx_FOV > Nx_D:
18 FOV[xProj:xProj+xB] = D[Nx_D - xB:Nx_D]

Code Listing B.2: Example of object projection in x-direction.
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