

U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

MSc in Physics

Wave Equations without Coordinates
Developing computational and mathematical methods for calculating wave
equations without coordinates on two-dimensional manifolds arising from

fullerene molecules.

Simon Krarup Steensen

Supervised by Assoc. Prof., Ph.D. James E. Avery

November 3, 2020

Simon Krarup Steensen

Wave Equations without Coordinates

MSc in Physics, November 3, 2020

Supervisor: Assoc. Prof., Ph.D. James E. Avery

The University of Copenhagen

The Niels Bohr Institute

Masters Degree in Physics

Blegdamsvej 17

2100 Copenhagen Ø

Abstract

Closed polyhedral molecules consist of atoms which form connecting polygons creating a 2-dimensional

non-euclidean surface e.g. the carbon allotrope of the fullerenes. The geometrical properties of the

fullerenes make them well suited for systematic analysis. The question of interest to this work is, if it

is possible to approximate an electronic density along these surface manifolds without ever needing

the 3-dimensional embedding. The hope that this is in fact possible builds on the assumption that the

electron mobility on the graphene like surface dominates electronic interaction through the hollow

volume holds.

This would be of interest since a single isomer DFT analysis can take days to weeks using a supercom-

puter, with the number of possible n-atom isomers growing as O(n9). The geometrical properties of

fullerenes however allow for fast computations in microseconds per isomer of fullerene bond graphs.

This then allows for rapid construction of an isomer’s 2-dimensional manifold surface. A 2-dimensional

density functional theory approach to this manifold, without ever needing quantum mechanical geomet-

rical optimization, would theoretically reduce computations drastically.

The basis for this thesis is in approaching the problem in a purely 2-dimensional setting of surface

manifolds arising from the fullerene polygons. The hope is that a 2-dimensional DFT can produce

densities that encapsulates key features of the true fullerene electronic densities. This thesis will by

developing mathematical and computational approaches create a PDE solver for the non-euclidean

manifold surfaces. The PDE solver is a finite element method in which a discrete Laplace-Beltrami

operator is introduced to account for the curved space surfaces. This can be used to compute solutions

to PDEs without any reference to global coordinates of the fullerene 3-dimensional embedding. The only

geometrical input needed is the sparse adjacency matrix of the fullerene’s cubic graph representation.

This is then applied to the heat equation to help validate the implementations, as well as Poisson’s

equation and the Kohn-Sham equations. A rudimentary 2-dimensional DFT method developed then

solve Poisson’s equation and the Kohn-Sham equations in an iterative manner using the solver. The DFT

has implemented a local density approximation accounting for the exchange correlation potential, but

no potential arising from nuclear attraction on the surfaces.

Results for the PDEs are presented on various fullerene surfaces to validate the implemented PDE solver.

Results for the preliminary DFT are of electronic densities confined to the 2-dimensional surfaces with

no nuclear attraction present. Electronic densities converging to a steady distribution in the DFT are

presented for the C20-Ih, a C60 nanotube and a C120-D6 surfaces. With the electronic densities confined

to the non-euclidean surfaces presented considerations about the outlook and the challenges of future

research will be discussed.

iii

Acknowledgements

I would first of all like to thank James Emil Avery for his countless hours of indispensable supervising

during the project. Being a part of the fullerene research project has been an incredible instructive

process that I feel fortunate to have participated in. The interplay of many, at the time, unfimiliar

theoretical concepts and especially the future big picture plans is something I still find intriguing.

I would also like to thank the people within the fullerene group for the comradery in our office. This

meant that a sparring mate was always close by to discuss frustrating computational problems or tough

theoretical concepts. Even when the society was in lockdown, James opened his garden for group

meetings with social distancing, which allowed for an understanding of each others project, which aided

in seeing the present and future interplay between the projects.

Lastly I want to thank my family and friends for their general support. While an interesting subject is

important to enjoy the thesis process their support can not be understated.

iv

Contents

1 Introduction 1

2 Theory 5

2.1 Fullerenes . 5

2.1.1 Gaussian Curvature . 5

2.1.2 Graph Theory . 7

2.1.3 2-Dimensional Unfolding of Dual Representation 9

2.1.4 Generalization to Fulleroids . 9

2.2 Finite Element Method . 10

2.2.1 FEM Overview . 10

2.2.2 Variational Formulation . 11

2.2.3 Ritz-Galerkin Approximation . 12

2.2.4 Discretization of Domains . 13

2.3 The Quantum Mechanical Many-Body Problem . 16

2.3.1 Born-Oppenheimer Approximation . 17

2.3.2 Density Functional Theory . 18

3 Method 23

3.1 FEM Implementation . 23

3.1.1 Triangulation of Fullerenes . 24

3.1.2 FEM Matrices and Vector Assembly . 25

3.1.3 The Reference Element . 26

3.1.4 Integral Evaluation with Gaussian Quadrature . 29

3.1.5 Stiffness Matrix in Curved Space . 29

3.2 FEM Modules . 32

3.2.1 Basis Modules . 32

3.2.2 UnitCell Module . 33

3.2.3 FEM_Assembly Module . 36

3.3 Constructing a 2-Dimensional DFT with FEM Software 39

3.3.1 Exchange-Correlation Potential . 39

3.3.2 Local Density Approximations . 39

3.3.3 The Self-Consistent-Field Loop . 41

3.3.4 Computing the SCF loop . 42

3.4 Solving the Heat Equation . 45

3.5 Visualization . 46

3.5.1 Dual Unfolding . 46

3.5.2 2-Dimensional Visualization . 47

v

3.5.3 Mesh Refinement . 48

3.6 Constructing a Torus Shaped Fulleroid . 49

4 Results and Discussion 50

4.1 Simulating the Heat Equation . 51

4.1.1 Simulations on the C20-Ih surface . 51

4.1.2 Heat equation on a C60-Nanotube Surface . 55

4.2 A Rudimentary 2-Dimensional DFT . 58

4.2.1 Solutions for the Hartree potential . 58

4.2.2 Kohn-Sham Orbitals . 64

4.2.3 SCF Loop . 69

5 Outlook 76

5.1 FEM Related Challenges . 76

5.2 DFT Related Challenges . 76

6 Conclusion 78

Appendices 80

A Appendix 81

A.1 Convergence of C20 Simulations . 81

B Appendix 82

B.1 Directory Overview of the Software . 82

A Bibliography 83

vi

1Introduction

Fullerenes are closed-surface carbon molecules formed by pentagon and hexagon faces. The very

first fullerene experimentally discovered in 1984 was the C60-Ih Buckyball[1], which consist of 12

pentagons and 20 hexagons, with all pentagons being separated by exactly one hexagon to each side.

The familiar structure of the modern-day football but was named Buckminsterfullerene, in honour of

the, at the time, recently deceased architect Richard Buckminster Fuller, as the new molecule formed a

polyhedron by the same mathematical rules as Fuller used to construct his experimental architectural

pieces named geodesic domes1. The Buckminsterfullerene has since its discovery been found to have

widespread applications in various fields with uses ranging from solar cells[2] to immunology as asthma

medicine[3], and have even been theorized to have the ability of packing hydrogen at near-metallic

densities[4]. The discovery of the C60-Ih fullerene was a landmark in chemistry and earned its discovers

Kroto, Curl and Smalley the Noble Prize in chemistry in 1996. It has later been noticed to be the most

common fullerene appearing in nature and have even been detected in space by the Spitzer space

telescope[5] along with a few other fullerenes of similar size.

Fullerenes always have exactly 12 pentagons by Euler’s polyhedral formula. It is the placement of

these pentagons and the number of hexagons that fully determine the geometrical structure. The

bonds which outline the polygons are sp2 hybredised and each carbon atom will therefore form three

bonds to its nearest neighbours. As the number of atoms increase, the number of non-isomorphic2

fullerenes grow as O(n9) [6]. For the smallest fullerene C20-Ih which consist of only 12 pentagons

there exists only 1 structure, 1812 exists for C60, 285,914 for C100, 132,247,999,328 for C400 etc.[7].

This incomprehensible number of different molecules leaves us optimistic, since the few fullerenes that

have been synthesized have as mentioned found uses in various technologies. The large number of

possible untested structures therefore leaves a promising outlook of their capabilities. But while the

many geometrical combinations of possible fullerenes seem exciting, it leaves quite a few challenges.

One challenge is how one can actually produce the molecules. Producing the Buckminsterfuller is

commonly done through laser ablation or resistive heating of graphite, which is only possible due to the

high stability of the molecule. These methods are non-selective and can not be applied as a general

technique of producing various isomers, thus we are in need of an alternative approach. A possible

solution to this was presented in [8] where C60 molecules were synthesized from an auto-assembling

planar precursor. The precursor in question contained all 60 carbon atoms and 75 of the total 90 carbon

bonds. Also present in the precursor molecule were chlorine atoms at specific positions which when

exposed to vacuum pyrolysis assembles into the spherical Buckminsterfuller. This has later been used

to produce other nearly spherical fullerenes such as C78[9] and C84[10]. Scaling this method should

be possible in theory, leaving the open ended question: What fullerenes are of interest to actually

synthesize?

1His geodesic domes actually corresponds to a dual representation of fullerenes which consist of equilateral triangles.
2i.e geometrically unique

1

If we wish to compute whether or not a specific fullerene isomer have certain desired physical/chemical

properties, that will be worth the resources to synthesize, we turn to ab initio quantum chemistry

calculations. Due to the large number of electrons in fullerenes the highest level of ab initio theory we

can feasible use is Density Functional Theory(DFT). A detailed DFT calculation though possible, still

take anywhere from days to months in a supercomputer for a single isomer dependent on the size of the

molecule, basis set and complexity of the used DFT method. A single C400 isomer would realistically take

several months on a super computer, which is just one unique structure with over a hundred billions

molecules of the same size. Another approach is therefore needed if we wish to search through isomers

spaces to find structures with desired molecular properties.

While the aforementioned detailed DFT calculation depend on computing the 3-dimensional geometry

of the isomer in question, a new alternative speculative approach is suggested by J. Avery [11] which is

subject to research in the eScience Fullerene group. Describing a fullerene purely by its cubic graph

representation will allow to fully describe the system in a 2-dimensional manner without ever referring

to the 3-dimensional embedding. The idea is then to develop a 2-dimensional DFT method in the hope

that it will approximate well to the true 3-dimensional electronic density. The justification for this is that

the extreme electron mobility along the graphene like surfaces dominate over electronic interactions

through the hollow volume. The validity of this assumption obviously depend on the size and shape of

the fullerene in question.

A DFT implementation however include the task of solving partial differential equations which we wish

to do on the 2-dimensional surfaces. For this the finite element method (FEM), which usually find it’s

applicability in analysis in engineering arts seem like a fitting approach. This is due to the fact that a

FEM can be tailored for this problem by solving partial differential equations purely based on the cubic

graph representation. The partial differential equations relevant to a DFT implementation such as the

Kohn-Sham equations can therefore be constructed without any use of global coordinates, hence the

title of the work at hand.

The Work at Hand
This thesis will lay the groundwork for the stated challenges by developing a computational partial

differential equation solver for the relevant equations within DFT. The constructed solver will be based

on the FEM with an integrated curved space discrete Laplace-Beltrami operator. Once this is in place

a rudimentary 2-dimensional DFT is developed. For this a local density approximation is applied to

account for the exchange-correlation potential. The DFT developed in this thesis deals with simulations

on the manifolds with no positively charged nuclei present. This does obviously not represent the nature

of an electronic density on fullerenes, but it will lay the groundwork for further research.

Future Work
Finite element methods are not commonplace in DFT analysis3. This is mainly due to their inability

of representing the exponential atomic cusps of wavefunctions and densities at nuclear centers. Here

pseudopotentials may aid in ever having to represent exponential behaviour. In a DFT where we would

3Same goes for finite difference methods.

2 Chapter 1 Introduction

like to find electronic densities for the valence electrons pseudopotentials aim to represent the effective

potential arising due to nuclear attraction and electron repulsion of the inner shell electrons.

There are plans within the Fullerene group to research mapping the graphene solution onto the fullerene

as an underlying potential. The hope is within the group that a general potential arising from the

graphene solution can be mapped onto the fullerene as an underlying potential. Having an underlying

solution to graphene will hopefully not only avoid cusps we can not represent, but also to investigate

where the deviation differs from graphene, which is of great interest.

In fullerene regions of special interest, in which the 3-dimensional electronic interaction are dire will

mainly be areas associated with pentagons since they create the curvature in the fullerene. It is mainly

here the behaviour is expected to deviate from graphene. In these special points the fullerene research

group hope an extension to a simplical complex with a 3-dimensional representation around such a

region is possible. Several challenges subject to present or future research and further explanations to

the above problems will be given section 5.

Keeping in mind that a large class of molecular properties can in general be found through derivatives

of the energy in the molecule E4 i.e.

Property ∝ ∂nF +nB+nI+nRE

∂F nF ∂BnB∂InI∂RnR
, (1.0.1)

with the derivatives being with respect to the electric-field F , magnetic-field B, nuclear spin I and the

molecular geometry R. If the 2-dimensional speculative research is successful in approximating true

density appropriately it would allow us to search through large isomer spaces and pick out isomers

of desired approximate properties. These isomers can then be investigated further by producing

their 3-dimensional geometry from their graph using force field optimization. This would allow for

3-dimensional projection of the surface densities. If such a projection approximate well enough to

physical reality we could in turn derive molecular properties which need an 3-dimensional embedding.

Thesis Content
This thesis encapsulates the entirety of my work in the eScience group at the Niels Bohr Institute at the

University of Copenhagen. The research at hand dealing with computational, physical and mathematical

aspects of fullerenes is led by associate professor James Emil Avery. An overview of the research currently

being conducted as well as future tasks can be found at https://www.nbi.dk/ avery/CARMA/index.html.

It is currently funded through Avery’s VILLUM Experiment project 00023321 "FoldingCarbon: A Calculus

for Molecular Origami".

The thesis will at the beginning of each chapter give a short introduction to the following sections and

outline how they fit together. It will through the theory in chapter 2 and the code constructed in chapter

3 produce solutions to differential equations on fullerene surfaces. The solutions will be presented

in chapter 4 by visualizing fullerenes surfaces as 2-dimensional unfoldings. Besides the differential

equations relevant for DFT, simulations of the heat equations on the surfaces will be computed to help

validate the FEM implementation.

To show the adaptability and flexibility of the computational approach, an extension of the code to also

analyze fulleroid structures will be given as well. Fulleroids allow for heptagons, octagons etc. to be

4which is obtained in a DFT.

3

included in fullerenes. This creates negative curvature and allow for countless new structures including

closed structure of genus g 6= 0. Among one possibility is the torus with g = 1, on which the Kohn-Sham

equations are solved to show the implementation’s general applicability.

Software
The software written and used for the thesis can be found at Github repository

https://github.com/SKS94/Fullerene-Thesis

Here various computational implementation relevant to the stated challenges are located. The different

tasks solved by the written software are in broad strokes

• FEM modules using only the fullerenes cubic graph connectivity information

https://github.com/SKS94/Fullerene-Thesis/tree/FEM

• DFT functions including computations of the self-consistent field loop

https://github.com/SKS94/Fullerene-Thesis

• A visualization module for displaying solutions on 2-dimensional unfoldings

https://github.com/SKS94/Fullerene-Thesis/tree/Plotting

• Scripts creating animations of the heat equation simulations on fullerene manifolds

https://github.com/SKS94/Fullerene-Thesis/tree/Heat

A directory of the implemented modules can be found in appendix B. Key functions will be presented in

chapter 3, highlighting the important aspects of the implementations. Before we dive into this work

head first it only seems fitting with a slightly cheesy inspirational quote from the fullerenes eponym

"You can never learn less, you can only learn more"

R. Buckminster Fuller

4 Chapter 1 Introduction

https://github.com/SKS94/Fullerene-Thesis
https://github.com/SKS94/Fullerene-Thesis/tree/FEM
https://github.com/SKS94/Fullerene-Thesis
https://github.com/SKS94/Fullerene-Thesis/tree/Plotting
https://github.com/SKS94/Fullerene-Thesis/tree/Heat

2Theory

The following section aims to cover the most essential theoretical concepts on which this work is build.

Starting with a general introduction to fullerenes in section 2.1 with focus on geometrical aspects that

aid in describing them, such as Gaussian curvature and graph theory. This section will end with a

generalization of fullerenes called fulleroids. Section 2.2 will follow with a more general introduction to

key concepts in finite elements methods. This will explain the approach used to solve partial differential

equations on manifolds. Lastly a section 2.3 explain the general ideas and concepts on which density

functional theory stand since this is a vital premise for the work at hand.

2.1 Fullerenes
The allotropes of carbon many of us are familiar with include graphite and diamonds, but carbon can

form many exotic materials and molecules including graphene, nanotubes, cyclocarbon etc. Graphene is

a carbon allotrope of only one atoms thickness consisting of connected hexagons forming a honeycomb

lattice. The material holds several interesting properties and is the subject to ongoing research. The

alloptrope the work at hand deals with is that of the fullerene. While the hexagonal lattice in graphene

is flat, the introduction of pentagons in the lattice creates curvature in the structure. Fullerenes are

molecules that form closed polyhedron structures with nh hexagons and exactly 12 pentagons, with

some examples illustrated in figure 2.1 ranging from the smallest possible C20-Ih with 20 atoms to a

large nano-tube C1152-D6d with 1152 atoms. The fact that exactly 12 pentagons close a structure can be

shown using Euler’s formula1. Many of the mathematical properties for the fullerene structeres has been

mathematically described long before its discovery. This is in part within polyhedral combinatorics, that

structures such as Goldberg polyhedra has been described since the 1930’s, in which the icosahedral

fullerenes are examples.

While in theory the possible number of fullerenes is infinite, there are limitations to which structures will

create chemically stable molecules. One aspect of the geometries that generally yield stable structures is

the isolated pentagon rule(IPR)[12]. This states that fullerenes where no pentagons are adjacent to

each other are generally more stable. This is due to the distortion of the fullerene cage away from a flat

structures being directly linked to the molecules thermodynamic instability, which the IPR limits. Figure

2.1 reveals that C20-Ih obviously does not obey the IPR since it is solely constructed from pentagons,

making the C60-Ih the smallest fullerene to obey the rule. C60-Ih and C20-Ih are among the few fullerenes

to have icosahedral symmetry. Meaning the structures have 60 rotational symmetries and a total

symmetry order of 120 operations when accounting for reflectional operations.

2.1.1 Gaussian Curvature
Gaussian curvature is an important quantity when understanding the geometrical aspects of fullerenes.

Gaussian curvature is defined as being the product of the the two principal curvatures at point p. For

each point this will be the product of the maximal curvature k1 and minimal curvature k2, when taking

all direction on the surface into account i.e K = k1k2. The Gaussian curvature is an intrinsic property

1which reads Nv − Ne + Nf = 2 with Nv , Ne and Nf being the number of vertices, edges and faces

5

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.1.: Examples of fullerenes. (a) and (b) are the spherical C20-Ih and C60-Ih, Ih referring to icosahedral
symmetry, (c) is the cubic shaped C140-D3h, (d) is the menhir shaped C524-C1, (e) and (f) are the
nano-tubes of C360-D5h and C1152-D6d respectively. From [6] with permission.

for all points on the surface, illustrated in figure 2.2 for shapes with different Gaussian curvatures. If one

can wrap a 3-dimensional structure in a sheet without tearing or stretching, then the Gaussian curvature

is zero everywhere on the surface, as is the case for the cylinder in figure 2.2. A positive Gaussian

curvature will represent a closing surface such a sphere. A negative value represents an opening surface

such as a hyperboloid. Introducing a point with positive Gaussian curvature in a flat space, allows to be

cut up and represented on a 2-dimensional surface, which is not the case for the negative case.

Through the Gaussian curvature K aspects of the topology of a surface can be understood using the

Gauss-Bonnet theorem ∫
S

dsK(s) = 4π(1− g), (2.1.1)

where s is the oriented surface S and g as the genus of the surface. A sphere (g = 0) therefore has total

curvature of 4π, while a torus (g = 1) has 0. As shown in [6] each hexagons in fullerenes structures

have Gauss curvature of 0 everywhere and are therefore flat. The pentagons however induce a positive

curvature of 2π/6. The discrete version of equation (2.1.1) reads

n∑
i=1

Ki = 4π(1− g). (2.1.2)

and will therefore have 12 pentagons induce a total curvature of 12 · 2π/6 = 4π, in order to yield a

closed structure. A visualization of the curvature produced by introducing a pentagon into a honeycomb

6 Chapter 2 Theory

lattice is shown in figure 2.3. Here the triangular wedge removed in figure 2.3b has the angle 2π/6
yielding the curved structure in figure 2.3c. Figure 2.3 also depicts the dual representation, which in

the context of fullerenes can be quite advantageous. The surfaces in the dual representation consist

of equilateral triangles where each triangular face corresponds to an atom placed in the center. Note

also that each vertex is placed at the center of a hexagons or pentagon. This means that a dual vertex

representing a hexagon will outline 6 triangles, and 5 triangles for pentagons. It can also be seen

from figure 2.3a that Voronoi cells for the dual reconstructs the polygonal shapes. This point is quite

important and will be emphasized later on.

(a) (b) (c)

Figure 2.2.: Surfaces where all points have Gauss curvature of (a) zero, (b) positive and (c) negative. From [11]
with permission.

(a) (b) (c)

Figure 2.3.: (a) A hexagonal honeycomb lattice with vertices/atoms in green and its dual representation in orange
consisting of connected triangles. (b) Restructuring the lattice to have a pentagon in the middle by
effectively removing a wedge of of 2π/6 from the dual and merging the dual vertices connected by the
arrow. (c) Illustration of the curvature induced by a pentagon following the operation in (b).

2.1.2 Graph Theory
The geometrical structures and connecting features of the bonds can be characterized mathematically

by graph theory. A graph G = (V, E) consists of vertices V which in our case are the atoms, pairwise

connected by edges E ⊂ {(x, y)|(x, y) ∈ V2 and x 6= y} which corresponds to the neighbouring bonds.

An important distinction is the difference between an undirected and a directed graph. An undirected

graph have unordered pairs i.e. no difference between edges E = (x, y) and E ′ = (y, x). In the case of a

directed graph the edges have orientations. Our case is that of the 3-regular graph where all vertices are

connected to three other vertices, also known as a cubic graph.

If it is possible to map a graph onto a 2-dimensional space, such that no intersections of edges occur, the

graph is said to be planar. A drawing, where vertices are given 2-dimensional coordinates and connected

by the non-intersecting same edges, is called a planar embedding of the graph. Creating embeddings

for fullerenes can be done through various projections. The approach of the Schlegel projection can be

performed, starting by placing a plane beneath the 3-dimensional structure. Then by adding a point

p slightly above the molecule and drawing lines from p through each vertex onto the plane, shown in

2.1 Fullerenes 7

figure 2.4a. To perform the Schlegel projection one needs the 3-dimensional structure, however this

projection occasional yield crossing edges2.

(a) (b)

12

3 4

5

6

7

8 9

10

(c)

Figure 2.4.: (a) Constructing the plane graph for the Buckminsterfullerene using the Schlegel projection where
the the red dot represents the added point p. (b) The produced plane graph where the red shows
atoms, while blue is the the dual representation found by calculating the mean for coordinate for each
polygon. (c) a labelled pentagon used for the adjacency matrix which represents the graph. (a) and
(b) from [6] with permission.

An easy approach to represent the connectivity in a graph is through an Adjacency matrix which will be

denoted C. C is a simple symmetric matrix, where the entry is Cij = 1 if (i, j) ∈ E i.e. if i and j are

vertices connected by an edge, if (i, j) /∈ E then the entry is Cij = 0. Using the labelled pentagon in

figure 2.4c the adjacency matrix takes the form

C =

0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

, Cs =

2 5 6
1 3 7
2 4 8
3 5 9
1 4 10
1

2

3

4

5

. (2.1.3)

Here the left matrix show the N×N adjacency matrix containing all necessary graph information.

Next to it is a sparse representation Cs of size N×3. The order in which the labels appear in sparse

representation it not defined by the representation, as is the case for the dense representation. The

orientation of the surfaces can therefore be decided by the order in which the vertices appear in Cs.

Thus the sparse representation actually contain more information than its dense counterpart and will be

important when dealing with finite element methods.

2A more stable projection scheme which does not require the initial 3-dimensional geometry is the Tutte-embedding. This will
through the adjacency matrix always produce a plane graph.

8 Chapter 2 Theory

2.1.3 2-Dimensional Unfolding of Dual Representation
The dual representation of fullerenes consist solely of equilateral triangles. This allows for an unfolding

to a 2-dimensional plane consisting of equilateral triangles. This is done through Eisenstein integers

which are complex numbers of the form z = a+ bω with ω = ei2π/6. These integers make up a triangular

grid consisting of equilateral triangles called the Eisenstein plane. (a, b) can be thought of as a coordinate

pair defining a vertex, with each vertex being connected to 6 triangles. For each pentagon one of these

triangles will not be included, and edges can be glued together as in figure 2.3. All pentagon nodes

must therefore lie on the outer rim of the unfolding. All interior vertices in an unfolding are part of

a hexagonal mesh in which line and angles behave Cartesian. An example of a non-unique folding

for C32-D3h is illustrated in figure 2.5c. All the numbered labels appearing more than once are the

same vertex in a 3-dimensional representation, and show how the unfolding can be folded into the

fullerene. Note all vertices defining pentagons only define 5 triangles. These 2-dimensional unfoldings

are a convenient way to visualize the solution to whatever differential equation that is investigated on

the manifold surface.

(a) (b)

(c)

Figure 2.5.: (a) The C32-D3h fullerene its corresponding dual shown in (b). This allows for non unique 2-
dimensional unfolding on the Eisenstein plane with an example given in (c), where each labelled
intersection define a dual vertex. From [11] with permission.

2.1.4 Generalization to Fulleroids
Fulleroids are structures in which it is maintained that atoms only form three bonds and form closed

surfaces with regular polygons as faces, but allow for other polygons than pentagons and hexagons.

Since polygons such as heptagons and octagons induce a negative Gauss curvature which curves away

from the tangent plane in two different directions it will thereby open the structure. The structures

are therefore still within cubic graph theory which allow for many interesting and somewhat weird

possible shapes, where once again chemical stability is not a guarantee by any means. A few examples

are illustrated in figure 2.6 which using pentagons, hexagons and heptagons construct peanut shape

fulleroid (g = 0) and a torus (g = 1). A heptagon induces a negative curvature −2π/6 each heptagon

and pentagon therefore cancel out the total Gauss curvature they add. A fulleroid of (g = 0) consisting

of pentagons, hexagons and heptagons as the peanut shape in figure 2.6a, must therefore have exactly

12 more pentagons than heptagons. For the torus in figure 2.6b with (g = 1) through have an equal

number of pentagons and heptagons to form the closed structure. The torus illustrates the concept

of negative and positive curvature quite well, with all pentagons being on the outer rim "closing" the

fulleroid, while the heptagons all lie in the inner ring. The shape is constructed using chemical stable

2.1 Fullerenes 9

coordinates computed in [13], which is why not all polygons seem to lie in a perfect plane, a more

thorough description will be given in section 3.6.

(a) (b)

Figure 2.6.: (a) A C120 peanut shaped fulleroid with 10 heptagons and 22 pentagons. (b) A C168 torus shaped
fulleroid consisting of 14 pentagons and 14 heptagons with chemically stable coordinates from,
explained further in section. (a) From [6] with permission.

2.2 Finite Element Method
As one of the fundamental cornerstones in physics we have differential equations. As mentioned in the

introduction the challenge of constructing a 2-dimensional DFT method on the manifold surfaces involve

solving several PDEs. We wish to obtain these solutions solely from the sparse adjacency matrix without

ever needing the 3-dimensional embedding of the faces. This will be done using the finite element

method(FEM) also referred to as finite element analysis(FEA). FEM is a quite common approach in the

engineering arts, e.g. used for computing stress-strain relations in complicated structures. What makes

FEM especially suited for this work is, that solutions can be computed entirely from information of a

fullerenes graph representation.

2.2.1 FEM Overview
Implementation of a FEM can at the very core be boiled down to a series of steps namely:

• Express the differential problem in a variational formulation in infinite-dimensional space V .

• Reformulate the variational formulation in finite-dimensional subspace Ṽh ⊂ V .

• Construct the function space Ṽ by meshing the domain and defining basis functions on each cell

in the mesh.

• Assembly of the relevant basis matrices and vectors required by the variational formulation of the

problem.

• Solution of the system of equations.

This sections will present the analysis in the above order for a specific differential equation. The reader

should hopefully not find it to difficult to derive and construct the FEM for another given problem.

While full theoretical frameworks of each of these elements are rich subjects each with a considerable

amount of nuances and relevant material, this section will aim to address the most important concepts

of the analysis. For a comprehensive study of the mathematical theory of the Finite Element Methods

the reader is referred to Brenner & Scott[14]

10 Chapter 2 Theory

2.2.2 Variational Formulation
Consider the problem where we let Ω be a bounded domain in space Rn with boundary Γ. Given a

boundary value problem of

−∇2u =f in Ω,

u =g0 on Γ.
(2.2.1)

The problem states that given an input function f ∈ C(Ω)with a Dirichlet boundary condition of value

g0 we must find u ∈ C2(Ω). Here the notation used for spaces of smooth functions are

C(Ω) := {f : Ω→ Rn|f continuous on Ω} and (2.2.2)

Ck(Ω) := {f ∈ C(Ω)|Dαf ∈ C(Ω), for |α| ≤ k}, (2.2.3)

with Dα being a shorthand notation for an arbitrary differential operator

Dα := ∂|α|

∂xα1
1 · · · ∂x

αn
n
. (2.2.4)

The stated problem is the Poisson equations in a n-dimensional space. This elliptic PDE describes many

different physical phenomenon such as an electrostatic potential caused by a charge density and a

gravitational potential arising from a a mass with a defined density in Newtonian gravity. The point-wise

evaluation needed for the system in the above problem have strict continuity requirements and can not

account for discontinuous behaviour. In addition to this f might be continuous but not α-differentiable,

e.g. f = |x| for which the differential is undefined in x = 0. The problem can be expressed in a

corresponding weak form, which does not require the point-wise evaluation of the derivative needed in

the strong form. For the ordinary calculus derivative requires

d

dx
f(x) = lim

h→0

f(x+ h)− f(x)
h

(2.2.5)

to be point-wise defined for all x. The weak derivatives can instead be defined in terms of inner products

on spaces of L1
loc

3, i.e. the function is only assumed to be locally integrable.

Defitnition 1 (Weak derivative). Given a function f ∈ L1
loc(Ω) with a weak derivative Dα

wf if there exists
a function g ∈ L1

loc(Ω) such that∫
Ω
g(x)φ(x)dx = (−1)|α|

∫
Ω
f(x)Dαφ(x)dx ∀φ ∈ C∞0 . (2.2.6)

If such g exists, we define Dα
wf = g.

Which generally allows for defining derivatives for a much larger class of functions compared to the

common derivative. This is the case since the integral formulation allow us to solve the differential

equations using Hilbert spaces.

Continuing from the stated Poisson problem, the weak form is expressed in integrals with respect

to some test function v. Let the test function be any sufficiently regular function with the boundary

3L1
loc(Ω) being the set of locally integrable functions, where the Lebesgue integral is finite on all compact subsets of Ω.

2.2 Finite Element Method 11

behaviour of v(Γ) = 0 then applying the test function to each side of equation (2.2.1) and integrating

over the domain i.e.

−
∫

Ω
v∇2u dx =

∫
Ω
fv dx. (2.2.7)

or equivalently in bra-ket notation

−〈v| ∇2 |u〉 = 〈v|f〉 . (2.2.8)

As it will now be shown the problem can be stated to depend on ∇u instead of ∇2u allowing for

weaker regularity requirements on u. Rewriting the first term in equation (2.2.7) using ∇ · (v∇u) =
v∇2u+∇v∇u leaves

−
∫

Ω
v∇2u dx =

∫
Ω
∇v · ∇u dx−

∫
Ω
∇ · (v∇u) dx. (2.2.9)

The second term in equation (2.2.9) can then be evaluated from the integral over the domain Ω to an

integral over the boundary Γ using Green’s theorem which for a vector field g is
∫

Ω∇ · g dx =
∫

Γ g ·n ds

where n is the surface normal. Following from equation (2.2.9) we now have∫
Ω
∇u · ∇v dx−

∫
Ω
∇ · (v∇u) dx =

∫
Ω
∇u · ∇v dx−

∫
Γ
(v∇u) · n dx. (2.2.10)

For the problem at hand the last boundary integral above vanishes due to the essential boundary

condition on v which stated v(Γ) = 0 thus leaving∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx⇔ A(u, v) = F (v), (2.2.11)

where the last shorthand notation A(u, v) and F (v) for the integrals are introduced. Note that the weak

form in comparison to the strong form, which required u ∈ C2(Ω), now has transformed one of the

differential operators onto the test function v. Defining the function space V for which v ∈ V

V = {v : A(v, v) <∞, F (v) <∞ and v(Γ) = 0} (2.2.12)

then the solution to (2.2.1) in the weak formulation is specified by

find u ∈ V such that A(u, v) = F (v) ∀v ∈ V (2.2.13)

which is the problem fully reformulated to a weak form.

2.2.3 Ritz-Galerkin Approximation
Now that a infinite-dimensional large space V is defined we wish to formulate the same problem but

in a finite-dimensional subspace of V i.e we want to construct Ṽ ⊂ V . With the subspace Ṽ a discrete

approximation to (2.2.13) reads

find ũ ∈ Ṽ such that A(ũ, ṽ) = F (ṽ) ∀ ṽ ∈ Ṽ . (2.2.14)

The accuracy of the approximate solution therefore depends of the size of the subspace Ṽ . The

discretization allows for stating the problem as a system of linear equations thus computable. The FEM

12 Chapter 2 Theory

Figure 2.7.: (a) Triangular mesh of a 2-dimensional polygonal domain bounded by the blue lines, and with Ki and
Nj respectively denoting the shaded triangle and a vertex. (b) A linear basis function ϕj for vertex Nj

on the constructed mesh where the shaded area highlight the triangles that share Nj .

uses the Ritz-Galerkin approximation by creating a mesh on the geometrical domain Ω and assigning

piece-wise polynomial functions to the mesh.

2.2.4 Discretization of Domains
We wish to construct a mesh of Ω i.e. discretize the domain Ω and equip it with a basis-set of piece-wise

polynomial functions. A mesh of a given domain Ω signify that the domain is decomposed into a

collection of n smaller non-overlapping cells. These will usually have a simple geometrical structure.

Thus denoting the individual cells T = K1, ...Kn yields a domain of Ω = K1 ∪K2... ∪Kn =
⋃
K∈Th

K.

Cells are convex polytopes4 with the dimensionality depending on the problem. The cells in a 1-

dimensional problem are intervals, in 2-dimensions we have convex polygons such triangles, square

etc. and for a 3-dimensional problem the structures are convex polyhedra such as tetrahedra, cubes

etc. Cells are connected to neighbouring cells at the vertices. Thus, if two 2-dimensional cells share an

intersect in some way it must be either a full shared edge or a shared vertex; in a 3-dimensional setting

they share a vertex, edge or face. A 2-dimensional triangular mesh(triangulation) created for a domain

can be seen in figure 2.7, note no vertices lie at the edge of another triangle.

The next step is to equip each cell with polynomial functions. Taking the instance of equipping the

triangulation seen in figure 2.7 with simple linear polynomial functions gives each triangle 3 shape

functions each defined by a node zi. In the case of linear basis functions each vertex Ni will coincide

with node zi. Each node zi is associated with a basis function ϕi with the function value of 1 at the the

corresponding node and 0 at all the other nodes i.e. a Kronecker Delta function

ϕi (zj) = δij =
{

1, j = i

0, j 6= i.
(2.2.15)

This is illustrated in figure 2.7 which shows the linear functions vanishing on all triangles that does

not share the vertex Nj . In the linear case the nodes and vertices coincidence and can be used

interchangeably. This is however not the case for higher polynomial degrees. For triangles the number of

linearly independent shape functions on a triangle is (k+1)(k+2)/2 with k being the polynomial degree.

Equipping a triangle cell with quadratic polynomial degree therefore has six nodes {x1, x2, ..., x6} which

4The general n-dimensional version of polygons and polyhedra.

2.2 Finite Element Method 13

obey equation (2.2.15). Three of the Nj vertices therefore define the corners making up a triangle Ki,

while the nodes zk define the basis functions on triangle Ki. Figure 2.8 has illustration of the placement

of the nodes for linear, quadratic and cubic polynomial degree for an equilateral triangle. The number

of individual nodes on a cell are called the local degrees of freedom and will be denoted ndof , while the

number of nodes present in the entire mesh is called the global degrees of freedom and denoted Ndof .

ndof therefore only depends on the polynomial degree, while Ndof not only depend on the number of

ndof but also the total number of cells in the mesh.

z1 z2

z3

k=1 k=2 k=3

z1 z3

z5

z2

z6 z4

z1 z4

z7

z2 z3

z9

z8

z5

z6

z10

Figure 2.8.: The necessary nodes for a linear, quadratic and cubic polynomial implemenation with an equilateral
triangle as the cell structure. The number of points is (k + 1)(k + 2)/2 with k polynomial degree,
thus yielding ndof = {3, 6, 10}. Note node z10 is uniquely confined to the triangle while a mesh with
adjacent triangles has all other nodes included in several triangles.

Having created a mesh of Ω and defined the shape functions accordingly, we can finally reformulate the

problem to a computable linear system of equations. We start by expanding ũ and ṽ in terms of the

basis onto all Ndof nodes

ũ =
Ndof∑
i=1

ũ(zi)ϕi and ṽ =
Ndof∑
j=1

ṽ(zj)ϕj . (2.2.16)

Introducing the shorthand notation of ũ(zi) = ũi and ṽ(zj) = ṽj for the sake of readability. Using the

basis function expansion for ṽ in the shorthand integral notation of the problem (2.2.14) yields

A

ũ,Ndof∑
j=1

ṽjϕj

 = F

Ndof∑
j=1

ṽjϕj

 (2.2.17)

⇔
Ndof∑
j=1

ṽjA(ũ, ϕj) =
Ndof∑
i=j

ṽjF (ϕj) (2.2.18)

⇒ A(ũ, ϕj) = F (ϕj) for j = 1, ...Ndof . (2.2.19)

Now the same procedure by introducing the expansion of ũ to the l.h.s of eq. (2.2.19)

A

Ndof∑
i=1

ũiϕi, ϕj

 = F (ϕj) (2.2.20)

⇒
Ndof∑
i=1

ũiA (ϕi, ϕj) = F (ϕj). (2.2.21)

14 Chapter 2 Theory

Which can be written as a problem of matrices and vectors using

Aij = A(ϕi, ϕj) =
∫

Ω
∇ϕi · ∇ϕj dx (2.2.22)

and

fi = F (ϕi) =
∫

Ω
fϕi dx (2.2.23)

thus leaving a problem of

Aũ = f . (2.2.24)

Where the matrix A is of size Ndof ×Ndof but sparse, and the vector of length Ndof × 1. The above

linear system can then be solved for the vector ũ where ũ = (ũ(z1), ..., ũ(zNdof
)). The matrix A is often

referred to as the stiffness matrix in FEM and will henceforth be denoted W . Note that the overlap

integral of the stiffness matrix in equation (2.2.22) yields a sparse system due to the finite support of the

basis functions; i.e if nodes ϕi and ϕj do not share a triangle, the integral is 0. One of the strengths of

the FEM is control over the the function space which can be expanded quite easily. This can be achieved

by either a finer mesh on the domain or higher polynomial degree on the cells.

The open questions are now how one can effectively assemble the matrices and vectors in question and

how to evaluate the integrals. These will both be addressed in section 3 along with the FEM software

implementation and the necessary PDEs such that the details important to the specific problems are not

lost.

2.2 Finite Element Method 15

2.3 The Quantum Mechanical Many-Body Problem

In a quantum mechanical description the behaviour of the wave function |Ψ(t)〉 govern all physical

properties whether it represents a single particle or an ensemble. The wave function in the non-

relativistic limit obey the Schrödinger equations which in the time-dependent case reads

H |Ψ(t)〉 = i~
∂

∂t
|Ψ(t)〉 , (2.3.1)

where i, ~ and H are the imaginary unit for complex numbers, the reduced Planck constant and

the Hamiltonian operator associated with the quantum system respectively. If the Hamiltonian of

the problem at hand is time-independent, equation (2.3.1) takes a simpler form, namely the time-

independent Schrödinger equation:

(T + V) |Ψ〉 = E |Ψ〉 , (2.3.2)

where the kinetic and potential operators T and V acts on the quantum state yielding the energy E of

the particle/ensemble, i.e. the wave function is an eigenfunction to the Hamilton operator H = T + V
with the energy E as the eigenvalue. Throughout this work many-body and single-body operators will

be denoted by upper-case and lower-case respectively. For a single particle system in a potential v, h
takes the familiar form h =

[
−~2

2m ∇
2 + v

]
, where m is the mass of the particle and ∇2 is the Laplace

operator. Solving this analytically for different potentials is possible and yield some spectacular solutions.

Although there are limitations to the number of analytical solutions we can generally produce solutions

to 1-particle problems nummerically exact to a deserired precision.

Going from the single particle to the concept of the many-body problem. Once again the Schrödinger

equation with an appropriate many-body Hamiltonian govern all behaviour, such as a collection of atoms

forming matter. In theory this would encompass all types of ensembles and behaviour in all phases

whether it be a crystal, ferrormagnet, superconductor etc. Taking equation (2.3.2) with an appropriate,

somewhat daunting Hamiltonian for a collection of Ne electrons and Nn nuclei reads

HΨ = [Te + Tn + Uee + Unn + Uen + Vext]Ψ = EΨ, (2.3.3)

where Te and Tn are the kinetic energy operators for the electrons and nuclei respectively which are

written as a sum over Ne and Nn i.e.

Te = −
Ne∑
i=1

~2

2me
∇2
i and Tn = −

Nn∑
I=1

~2

2mI
∇2
I . (2.3.4)

In the above, the Laplace operator ∇2
i and ∇2

I acts on a the ith and Ith electron with mass of me and

mI . Note the subscript in mI as the nuclei can have varying masses. The operators accounting for the

Coloumb repulsion and attraction which is exerted between all particles present is accounted for as well.

The two-body nature of each interaction is divided into Uee as the electron-electron repulsion, Unn as

16 Chapter 2 Theory

the nuclear-nuclear repulsion and Uen as the electron-nuclear attraction. The sum of these potential

terms define the internal potential and take the form

W ≡ Uee + Unn + Uen = e2
Ne∑
i=1

Ne∑
j=i+1

1
|xi − xj |

+ e2
Nn∑
I=1

Nn∑
J=I+1

ZIZJ
|XI −XJ |

(2.3.5)

−e2
Nn∑
I=1

Ne∑
i=1

ZI
|XI − xi|

, (2.3.6)

with the elementary charge e, ZI as the atomic charge of nucleus I, xi and XI as the electronic and

nuclear coordinates respectively. Lastly Vext is the external potential in which the system is situated in,

which acts separately on each particle, for instance a molecule in an electric field.

The system to solve is then a partial differential equation with 3(Ne +Nn) degrees of freedom that are

non-separable due to the two-body nature of the Coulomb interaction5. This problem is more or less

impossible to solve analytically, only a few simple systems can be solved like H and the ions He+, Li2+,

Be3+, B4+ and the molecule H+
2 . Common for these are a single core with a single electron, which still

require require the use of the Born-Oppenheimer approximation to achieve an analytical solution.

2.3.1 Born-Oppenheimer Approximation
Focusing on molecules and for the following ignore any external fields so Vext = 0. The non-separability

of equation (2.3.3) means that the wave function can not be split into a nuclear and electronic part

i.e. Ψ(x,X) = Φ(x)Θ(X) where Φ(x) and Θ(X) respectively refer to the electronic and nuclear

part of the wave function is not possible. However the time scale at which the kinetic energy for

the electrons and nuclei operate differ greatly due to difference in mass. The mass ratio between a

proton and an electron is 1:1836, thus classically speaking an equal force applied to the two will cause

a significantly greater acceleration on the electron considering Newton’s second law. In a quantum

mechanical formalism the electrons wave functions adjust instantaneously with whatever slow nuclei

dynamical behaviour the molecule exhibits. In the Born-Oppenheimer approximation the electronic

wave function is solved with the nuclei assumed fixed in space. Assuming nuclei positions {X ′1, ...,X ′Nn
}

a priori and thereby ignoring the kinetic nuclei kinetic operator Tn, the Schrödinger equation for the

electronic wave equations reads

[Te + Uee + Unn + Uen]Φ(k)(x,x′) = E(k)
e (X ′)Φ(k)(x,X ′), (2.3.7)

in which the notation for the electronic wave function Φ(k)(x,X ′) denote k′th eigenstate being para-

metrically dependent on X ′ with corresponding energy E(k)
e (X ′). Note Unn depends on the fixed

coordinates X ′ and is just a constant term based on the configuration. By varying the configuration

of X ′ the nuclear Schrödinger equation can be solved with E(k)
e (x) acting as an potential surface in

which the nuclei can move. While electrons tend to have quite wavefunctions of a delocalized nature the

nucleus wave functions are localized partly due to the large mass. Recalling that the thermal wavelength

at temperature T is λT = (~2/2MkbT)1/2, thus showing proportionality to the mass of λT ∝ M−1/2.

The probability cloud for nucleus wave-function will therefore only have small variations around the

classical position. By this reasoning the nuclei behaviour can be approximated by treating them as

classical particles. The Born-Oppenheimer approximation is a vital step in computational chemistry

5On top of this the electronic part of the wave function must be anti-symmetric due to the 1
2 -spin fermion nature of electrons.

While the nuclei can either have integer nuclear spin or half-integer nuclear spin which are characterized by boson and fermion
behaviour respectively, demanding symmetric or anti-symmetric with respect to exchange of nuclear variables.

2.3 The Quantum Mechanical Many-Body Problem 17

in minimizing computation. Now the problem has been made simpler by using stationary nuclei for

solving the electronic wave equation, we however still have 3Ne degrees of freedom with correlation

between all electrons.

2.3.2 Density Functional Theory
Restating the problem and viewing the electronic density as the fundamental property of a system is

at the heart of density functional theory, henceforth referred to as DFT. DFT is an extremely popular

computational method in quantum chemistry for determining properties of many body systems. The

motivation for this density based formulation is validated by the Hohenberg and Kohn theorems, which

prove that the ground state energy E0 for an electronic system is completely determined by the electronic

density ρ. Formulating the problem in a density manner instead of the full wave function reduces the

complexity of the problem significantly. The N electron wave function depend on 3N variables6, and the

dimensionality of the system M increases combinatorially as
(
M
N

)
with the number of electrons N . We

see that the density

ρ(x) := N

∫
d3x2 · · ·

∫
d3xN |Ψ (x,x2, . . . ,xN)|2 , (2.3.8)

however only depend on 3 spatial variables and therefore independent of the number of electrons.

A reader, unfamiliar with the proceedings should perhaps have build some skepticism towards using

ρ as a fundamental property instead of Ψ, since it would seem that we are losing information present

in Ψ. For the purpose of intuition keep in mind that the normalization of the integral over the density

yields the number of electrons i.e. N =
∫
ρ(x)dx and that the localization and height of cusps in the

density correspond to nuclear posisitions and nuclear charges.

For good measure a short definition of functionals might be in order. While a function maps a number

x1 onto another number x1 → f(x1), a functional maps a function onto a real or complex number

f(x)→ F [f]. Functionals will be denoted by square bracket e.g. F [f] is a functional of function f7.

In the proofs for the Hohenberg-Kohn theorems the Hamiltonian for the electrons reads H = T + Vext +
Uee, here Vext refer to being a potential external to the electrons and could include attraction from

nuclei as well as fields external to the molecule. Potential operators will also be represented as a sum

of the one-body operators i.e Vext =
∑N
i=1 vext(xi) where the vext(xi) acts on the i’th particle. The

expectation Vext is therefore Vext = 〈Φ′|Vext|Φ′〉 = 〈Φ′|
∑N
i=1 vext(xi)|Φ′〉 =

∫
ρ(x)vext(x)dx.

Hohenberg-Kohn Theorems
Since DFT lie at the heart of the work at hand a walk through of the mathematical foundation for the

formulation is in order

Theorem 1 (First Hohenberg-Kohn Theorem). The electronic density in a bound system is unambiguously
determined by the external potential, apart from an additive constant.

Proof : Assuming the opposite to hold, the electronic density does not unambiguously determine the

external potential. Then it should be possible to find two potentials Vext and V′ext with an identical

ground state density ρ. Let Φ0 be the wave function of the ground state with the energy E0 and a

Hamiltonian of H = T + Vext + Uee. Introducing a similar system denoted Φ′, E′0 and H′. We assume Φ

6If spin is included in the formulation Ψ depends on 4Ne independent variables due to each electrons spin. This is taken into
account in the density by summing over all spins in equation (2.3.8)

7To avoid confusing notation the function variable is omitted when denoting functionals, so if f is stated as a function of x the
functional is denoted F [f] and not F [f(x)]

18 Chapter 2 Theory

and Φ′ give rise to an identical density ρ and that the Hamiltonians only differ in the external potential

i.e. H′ = T + V′ext + Uee. Then by virtue of the variational principle it follows

E0 < 〈Φ′|H|Φ′〉 = 〈Φ′|H + H′ − H′|Φ′〉 = 〈Φ′|H′|Φ′〉+ 〈Φ′|H− H′|Φ′〉 (2.3.9)

= E′0 + 〈Φ′|Vext − V′ext|Φ′〉 = E′0 +
∫
ρ(x) [vext(x)− v′ext(x)] dx, (2.3.10)

where the last argument follows from the fact that the contribution from the external potential, can be

evaluated explicitly in terms of the density by

Vext[ρ] = 〈Φ|Vext|Φ〉 =
∫
ρ(x)vext(x)dx. (2.3.11)

Following with an identical reasoning for E′0 yields

E′0 < E0 −
∫
ρ(x) [vext(x)− v′ext(x)] dx. (2.3.12)

Adding the inequalities from equations (2.3.9) and (2.3.12) yields a clear contradiction that reads

E0 + E′0 < E′0 + E0. (2.3.13)

The above contradiction leads to the assumption that there can not exist two different external potentials

that yield the same electronic density hence proving the theorem. This implies that ρ0 uniquely

determines the full Hamiltonian of the system thus determining all properties derivable from solving the

full N-body Schrödinger equation The proof shows the existence of a function ρ0 → H, but leaves no

explanation of how to compute it.

Theorem 2 (Second Hohenberg-Kohn Theorem). The ground state energy E0can be derived from the
density ρ using the variational principle. The electron density that provides the ground state energy is
therefore the exact and unique8 ground state density.

Defining funcitonal F [ρ′] as

F [ρ′] ≡ 〈Φ[ρ′]|T + Uee|Φ[ρ′]〉, (2.3.14)

where the minimum is taken over all Φ which produces ρ′. Then the second Hohenberg-Kohn theorem

states the energy functional is

E[ρ′] = F [ρ′] +
∫
ρ′(x)vext(x)dx ≥ E0 (2.3.15)

and in the special case of ρ′ = ρ0 then

E0 = F [ρ0] +
∫
ρ0(x)vext(x)dx. (2.3.16)

Thus showing that the total energy can be expressed in full by the density. While theorem 1 and 2

formulate the mathematical basis for DFT, they however do not provide any help with approximating

F [ρ], and the exact minimization calculation in theorem 2 is quite impractical as well. The difficulty in

8Assumed to be a non degenerate problem

2.3 The Quantum Mechanical Many-Body Problem 19

F [ρ] is due to the electrons complicated interacting nature. To aid in approximating this we call upon

the Kohn-Sham equations.

Kohn Sham Theory
A general approach to approximating F [ρ] offered by Kohn and Sham, was to cast parts of the problem

into a non-interacting electronic system. Applying that a system of non-interacting electrons is fully

described by the anti-symmetric wave function

Φ (x1,x2, . . . ,xN) = 1√
N !

∣∣∣∣∣∣∣∣∣∣
φ1(1) φ2(1) · · · φN (1)
φ1(2) φ2(2) · · · φN (2)

...
...

. . .
...

φ1(N) φ2(N) · · · φN (N)

∣∣∣∣∣∣∣∣∣∣
, (2.3.17)

called the Slater determinant. Here ψi(j) refers to the i’th one electron orbital with the j’th spatial and

spin components. With the Slater determinant the kinetic energy contribution can be calculated exactly

by T = 〈Φ(x)|T|Φ(x)〉 = − ~2

2m
∑N
i=1〈φi(x)|∇2|φi(x)〉. The non-interacting T is obviously not equal to

the kinetic contribution in the interacting case. But the difference between the two is however of a much

smaller order than T . Introducing a fictitious effective potential in which the non-interacting particles

move vKS(x) namely the Kohn-Sham potential. In a system with N occupied orbitals the ground state

density comes down to solving the equations

hφi =
[
− ~2

2m∇
2 + vKS(x)

]
φi = εiφi with ρ(x) =

N∑
i=1
|φ(x)i|2. (2.3.18)

If an exact Kohn-Sham potential actually exist is unknown, but if it does it will be unique due to the

first Hohenberg-Kohn theorem. The Kohn Sham ansatz therefore assumes that the Hamiltonian for a

non-interacting system with an appropriate Kohn-Sham potential exists and has the same ground state

density as the interaction system. The energy functional for the non-interacting system and for good

measure the interacting system reads

EKS [ρ] = TKS [ρ] +
∫
ρ(x)vKS(x)dx and E[ρ] = F [ρ] +

∫
ρ(x)vext(x)dx (2.3.19)

Assuming electrons move in a mean field due to all electrons including itself, will have an energy

functional Umfee [ρ] that is the classical electrostatic energy for charge distributions

Umf
ee [ρ] = 〈Φ[ρ′]|Uee|Φ[ρ′]〉 = 1

2

∫ ∫
ρ(x)ρ(x′)
|x− x′|

dxdx′. (2.3.20)

This mean-field approach does obviously not hold physically, but we now introduce a correction to

the energy called the exchange-correlation functional to account for this. This functional is defined

by subtracting the non-interacting kinetic energy and the mean field approximation from the F [ρ] in

equation (2.3.14) i.e

EXC [ρ] ≡ F [ρ]− Umfee [ρ]− TKS [ρ] (2.3.21)

The aim of exchange-correlation functional is to correct for the two false assumptions made. One,

that the electrons move independently, which is false due to not only repulsion but the Pauli exclusion

principle as well. Two, that each electron repels itself through the electronic density.

20 Chapter 2 Theory

With EXC [ρ] defined the pressing matter is how the Kohn-Sham potential is obtained. Starting by

setting the two ground state energies EKS [ρ] = E[ρ] from equation (2.3.19) equal and isolating the

Kohn-Sham potential one obtains∫
ρ(x)vKS(x)dx =

∫
ρ(x)v(x)dx+ F [ρ]− TKS [ρ], (2.3.22)

which with equation (2.3.21) becomes∫
ρ(x)vKS(x)dx =

∫
ρ(x)v(x)dx+ Umfee [ρ] + EXC [ρ]. (2.3.23)

For us to evaluate the Kohn-Sham potential an approach to functional derivatives is needed A general

approach to funcitonal derivatives can be found in appendix A of [15]. With a functional type of

F [ρ] =
∫
f
(
x, ρ, ρ(1), ρ(2), . . . , ρ(n)

)
dx, (2.3.24)

where notation ρ(n)(x) = ∂nρ(x)
∂xn the general funcitonal derivative reads

δF

δρ
= ∂f

∂ρ
− d

dx

(
∂f

∂ρ(1)

)
+ d2

dx2

(
∂f

∂ρ(2)

)
− · · ·+ (−1)n dn

dxn

(
∂f

∂ρ(n)

)
. (2.3.25)

Isolating the Kohn-Sham potential can then be done by taking the funcitonal derivative with respect to

ρ(x) on both sides of the equation (2.3.23).

vKS(x) = δ

δρ

∫
ρ(x)vKS(x)dx (2.3.26)

= δ

δρ

(∫
ρ(x)v(x)dx+ 1

2

∫ ∫
ρ(x)ρ(x′)
|x− x′|

dxdx′ + EXC [ρ]
)

(2.3.27)

= v(x) + 1
2

∫
ρ(x′)
|x− x′|

dx′ + δEXC [ρ]
δρx

(2.3.28)

= v(x) + vH(x) + vXC(x). (2.3.29)

In the above none of the functional derivatives, except the one with respect to EXC , have a dependence

on ρ(n) thus leaving equation (2.3.25) easily applied. Addressing the two last terms contributing to vKS
namely the Hartree potential and the exchange-correlation potential. Finding the Hartree potential

corresponds to solving Poisson’s equation known from electrostatics reads ∇2vh(x) = −4πρ(x). In fact,

Poisson’s equation is the more fundamental definition of the Hartree potential, and the solutions depend

on the space on which it is solved. For example, in flat 2D, the Coulomb potential (over which the

Hartree potential is integrated) becomes 1
2π ln(|x− x′|) instead of −1

4π|x−x′| . In curved space, the solution

will look different yet, arising from the Green’s function to the Laplace-Beltrami operator. Fortunately,

we do not have to solve it analytically, but compute it by solving Poisson’s equation as a numerical matrix

equation. Thus, everything in the above can be calculated exactly except the exchange-correlation

potential. The problem of finding an appropriate approximation of the exchange-correlation potential,

which is expected to be small correction is a much simpler problem then using appropriate funcitonals

for F [ρ]. How the potential actually looks or whether it is even computable is an open question, but due

to the small nature of the correction crude approximations can yield reasonable results. The simplest

2.3 The Quantum Mechanical Many-Body Problem 21

implementations for exchange-correlation are Local Density Approximation(LDA) which is dealt with in

section 3.3.2 as well as solving The Kohn-Sham equations which now reads[
− ~2

2m∇
2 + v(x) + vH(x) + vXC(x)

]
φi = εiφi, (2.3.30)

in an iterative fashion in section 3.3.3.

22 Chapter 2 Theory

3Method

The first step towards reaching the goal of developing a DFT method on the manifold surfaces will

be to create a solver for the relevant differential equations within DFT. For this a computational 2-

dimensional FEM implementation is constructed. While FEM is a well studied and well-known method

for PDEs it is rarely used in the setting of quantum mechanics. While the main FEM implementation is

a standard approach it was build from scratch to allow for it to be tailored to the fullerene geometry

but more importantly makes it possible to introduce curved space. This is necessary since the Laplace

operator within a standard FEM assumes flat space, while its generalized counterpart, namely the

Laplace-Beltrami operator, can account for curved spaces.

This section will first aim to give the reader an understanding of how the fullerene triangulation and

matrix/vector assemblies in a standard FEM are constructed mathematically. Afterwards the necessary

changes to account for curved space are presented. The attention is then turned to the computational

implementation of the stated methods, where vital code snippets will be presented and explained.

Once the FEM software with flat and curved space is in place the attention is turned to density functional

theory. Here the approach to the fully 2-dimensional DFT on non-euclidean manifolds that has been

developed will be presented. This will include an approach to the exchange-correlation using a local

density approximation and an introduction to the iterative self-consistent field(SCF) loop. With this in

place the computational scheme of the aforementioned SCF loop is given.

To allow for some sort of verification of the FEM solver the heat equation is solved using forward

Euler time integration. This verification is however not possible without a proper visualization of the

solutions. An explanation is therefore needed of how a 2-dimensional visualization can be achieved.

This visualization is achieved by mapping the polynomial representation of the FEM onto pixels. This,

along side other important aspects of the visualization is given and will be used to show results on

fullerene unfoldings in the Eisenstein plane in section 4.

Finally the construction of the sparse adjacency matrix in the dual representation of a fulleroid torus

is given. This will be used to emphasize the adaptive nature of the PDE solver, interesting for a

generalization towards fulleroids in the distant future.

3.1 FEM Implementation
The differential equations we wish to solve for DFT are the Kohn-Sham equations and Poisson’s equations

while the heat equation is used to validate and test the implementation. The necessary sub-routines for

a computational implementation are in broad strokes:

1. Creating a mesh of the given fullerene.

2. Assembly of problem dependent matrices and vectors.

3. Solving the system of equations.

4. Presentation/Visualization of the solution.

23

The second tasks is where the standard flat space formulation will be extended to account for curvature.

Thus following the above it seems only natural to start with the problem of meshing, which was

presented in section 2.2.4.

3.1.1 Triangulation of Fullerenes
Keeping in mind that we wish to solve differential equation on fullerenes without any reference to the

3-dimensional space, then it makes sense to approach fullerenes purely in a geometrical sense, as hollow

3D structures defined by connecting 2D polygons, namely pentagons and hexagons which can be seen as

a non-euclidean 2-dimensional surface. For a possible mesh one could choose to use the pentagons and

hexagons as the cells and equip them with shape functions accordingly. However this implementation

uses triangular shapes not only due to their simplicity, but also their adaptability to finer meshes, which

will be explained shortly.

A pre-existing software courtesy of James Emil Avery outputs the sparse adjacency matrix introduced

in section 2.1.2, with an example of vertex/atom labelling shown in figure 3.1 for the Buckyball. The

software constructs two arrays where each row contain the labels defining a pentagon or hexagon. The

pentagon and hexagon arrays will therefore be of size 12× 5 and Nh × 6 respectively, with Nh denoting

the number of hexagons. Each vertex will have three neighbouring vertices and each label point will

appear exactly three times in the arrays produced.

One type of triangulation performed is done by placing a new vertex with a numbered label at the

middle of each polygon. This will create a mesh consisting of 5 isosceles triangle for each pentagon,

and 6 equilateral triangles for the hexagons. Thus the total number of vertices Nv for triangulation is

Nv = N +Np +Nh, where N is the number of atoms/vertices in the original structure and Np is the

number of pentagons. Computation of this triangulation on the C60-Ih molecule is illustrated in figure

3.2 where the gray dots represent the added vertices.

From the triangles formed by the dashed and full lines in figure 3.2 a corresponding neighbouring

array for all the triangles is computed. It has been designed such that the first 5Np rows contain all the

isosceles triangles. The fixed number of 12 pentagons present in a fullerene predetermines the number

of columns necessary in the triangulation. The number of hexagons present can be determined by

N = (5Np + 6Nh)/3 which are all atoms present in each face divided by the number of bonds for each

atom. Continuing from this expression N = (5 · 12 + 6Nh)/3 = 20 + 2Nh ⇔ Nh = N/2 − 10 follows.

This helps us define the number of faces Nf = Np +Nh = N/2 + 2. The triangulation is a fairly simple

piece of code which can be found in script triangulation.py in the stated Github repository. For figure

3.2 the sparse adjacency matrix for the triangulation would read

T =

 0 1 2 3 4 5 . . .

1 2 3 4 0 6 . . .

60 60 60 60 60 61 . . .

T

(3.1.1)

An alternative easily constructed triangulation for the fullerenes is the already discussed dual rep-

resentation. The dual yields a mesh of NT = N triangles, while the former representation has

NT = N +Nf = 5Np + 6Nh. The FEM software written has both triangulations implemented, due to

both of them having advantages and it being uncertain which will feature in the final implementation,

since the approach to triangulation to be used in the future is still to be determined. The data files

received for the FEM implementation already have the dual sparse adjacency matrix given, with the first

12 rows defining pentagon faces.

24 Chapter 3 Method

0

2

12

24

28

1

3

8

10

13

19

23

25 29

53

54

14

4

5

6
7

9

11

15

16

17
18

20

21

22

26
27

38
39

33

34

49
48

Figure 3.1.: The C60 − Ih molecule with precom-
puted labels for each atom with red
and orange illustrating pentagons and
hexagons respectively.

6061

62

63

64

65

72

73

74

75

76

77

78

80

81

0

2

12

24

28

1

3

8

10

13

19

23

25 29

53

54

14

4

5

6
7

9

11

15

16

17
18

20

21

22

26
27

38
39

33

34

49
48

Figure 3.2.: Adding vertex the center of each poly-
gon, here shown in gray, yields the
triangulation here performed on the
C60ih molecule.

3.1.2 FEM Matrices and Vector Assembly

With the triangulation in place we take a look at the necessary matrices and vectors for solving the

Kohn-Sham equations and Poisson’s equation which read[
− ~2

2m∇
2 + veff (x)

]
ψα(x) = εαψα(x) and ∇2vh(x) = −4πρ(x). (3.1.2)

Expressing the above in weak formulation is straightforward considering section 2.2.2, however the

argument that has the boundary integral be zero in the stiffness matrix is now due to the fact that this

system has no boundary. The equations in matrix form then read(
1
2L+ V

)
ψα(x) = εαMψα(x) and Lvh = f (3.1.3)

where

Lij =
∫

Ω
∇ϕi(x) · ∇ϕj(x)dx, Vij =

∫
Ω
veff (x)ϕi(x)ϕj(x)dx, (3.1.4)

Mij =
∫

Ω
ϕi(x)ϕj(x)dx and fi = −

∫
Ω

4πρ(x)ϕi(x)dx. (3.1.5)

The matrices and vectors required for solving the PDE of the heat equation is included in the above.

How this is approached will be dealt with in section 3.4.

3.1 FEM Implementation 25

All the integrals in the above matrices are over the entire region Ω, which can be written as the sum of

the integrals taken over the individual triangles K, e.g:

Lij =
∫

Ω
∇ϕi(x) · ∇ϕj(x)dx =

∑
K

∫
K

∇ϕi(x) · ∇ϕj(x)dx =
∑
K

LK
îĵ
, (3.1.6)

where LK
îĵ

is the local matrix for the K ′th triangle of size ndof × ndof . In practice both M and L

are calculated by computing the local matrices and adding contribution from each triangle to the

global system. Here the indices transform locally from îĵ to ij through the global nodes defining the

triangle K. Note that if the system was constructed by geometrically identical triangles, all local matrices

would be identical, and the entire assembly could be performed with the ndof × ndof matrix. This

approach is obviously possible for the dual representation of equilateral triangles. But the alternative

triangulation described for the system will due to the two geometrically different triangles of the

computed triangulation need two local matrices to compute M and L. Assembly of f and V are slightly

different on account of the integrals not only being shape function dependent. This will be addressed

along with relevant code snippets in section 3.2.3 and 3.2.2.

3.1.3 The Reference Element
In a FEM solver the need for evaluating the integrals on a complicated mesh consisting of many

geometrically different triangles, quickly becomes quite complicated. The universal approach is to

define a unit cell also referred to as the reference element. The idea is to transform all the triangles to

a geometrical simple cell equipped with shape functions and then evaluate the integrals on said cell.

This work used a right angled triangle with corners in {0,0}, {0,1} and {1,0} and the variables {ξ, η} to

denote the unit cell. To avoid confusion, FEM literature usually use {x, y} when describing physical

elements(triangles in the mesh) and (ξ, η) for the reference element.

{x2, y2}

{x3, y3}
{x1, y1}

x

y

A

{0,0}

C

{0,1}

B

{1,0}

ξ

η

Figure 3.3.: The triangle transformation from a physical element {x,y} to the unit cell {ξ,η}.

The coordinate transformation seen in figure 3.3 from the {x, y} variables of the physical triangles, to

the {ξ,η} variables of the unit cell is performed by

x = x1 + (x2 − x1)ξ + (x3 − x1)η (3.1.7)

y = y1 + (y2 − y1)ξ + (y3 − y1)η, (3.1.8)

26 Chapter 3 Method

where the triangle notation seen in figure 3.3 is used. Using the above will have a Jacobian matrix for

this transformation of

J =
(
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)
=
(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)
. (3.1.9)

The transformations back and forth are then easily conveyed to a matrix representation using J , and

takes the form (
x

y

)
=
(
x1

y1

)
+ J

(
ξ

η

)
and (3.1.10)(

ξ

η

)
= J−1

(
x− x1

y − y1

)
. (3.1.11)

It is now possible with any coordinate set within the physical element {x, y} to calculate the value of a

basis function. This is done by transforming coordinates into the unit cell {ξ, η} and passing the new

coordinates to the specific basis function, which is defined on the unit cell e.g. for MK
îĵ

MK
îĵ

=
∫ ∫

K

ϕî(x, y)ϕĵ(x, y) dxdy = |JK |
∫ ∫

k

ϕî(ξ, η)ϕĵ(ξ, η) dξdη. (3.1.12)

Where the determinant of the Jacobian in the case of triangular transformations is equal to two times

the area of the original shape. The shape functions defined on the reference element are for the linear

functions

ϕ1 = 1− ξ − η, ϕ2 = ξ, ϕ3 = η, (3.1.13)

and for the quadratic

ϕ1 = 2
(

1− ξ − η
)(1

2 − ξ − η
)
, ϕ2 = 2

(
ξ − 1

2

)
ξ, ϕ3 = 2

(
η − 1

2

)
η, (3.1.14)

ϕ4 = 4ξ(1− ξ − η), ϕ5 = 4ξη, ϕ6 = 4η(1− ξ − η). (3.1.15)

With all of the above illustrated in figure 3.4.

Now to calculate L in a similar method, evaluation of gradients of shape functions is needed. The simple

expressions for the shape functions in the transformed coordinates in equations (3.1.13), (3.1.14) and

(3.1.15) yield easily obtained gradients with respect to the {ξ, η} variables, and applying the chain rule

aids in expressing the gradients in the physical variables. Introducing the notation

∇tϕi =
(∂ϕi
∂ξ

∂ϕi
∂η

)T
, (3.1.16)

where ∇t represents the gradient of basis functions ϕi with respect to ξ and η. The derivatives above

can be calculated using the chain rule for dependent variables,

∂ϕi
∂ξ

= ∂ϕi
∂x

∂x

∂ξ
+ ∂ϕi

∂y

∂y

∂ξ
, (3.1.17)

∂ϕi
∂η

= ∂ϕi
∂x

∂x

∂η
+ ∂ϕi

∂y

∂y

∂η
, (3.1.18)

3.1 FEM Implementation 27

(a)

(b)

Linear shape
functions

Quadratic shape
functions

Figure 3.4.: The implemented basis functions where (a) visualize the linear shape functions on the reference cell
outlined with blue and (b) visualize the quadratic shape functions.

which can be written in matrix form as(
∂ϕi

∂ξ
∂ϕi

∂η

)
=
(
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

) (
∂ϕi

∂x
∂ϕi

∂y .

)
, (3.1.19)

By recognizing the square matrix as the transpose of the Jacobian in eq. (3.1.9) the above can

alternatively be expressed as

∇tϕi = JT∇ϕi, (3.1.20)

from which the expression for the gradient in the original system follow as

∇ϕi = (JT)−1∇tϕi. (3.1.21)

Constructing a FEM is simplified with the use of this unit method, since shape functions are defined in

{ξ, η} and therefore independent of the mesh. Only the computation of the Jacobian in equation (3.1.9)

of geometrically varying finite elements in the triangulation is needed. WK
îĵ

can then be evaluated

through the transformation by

WK
îĵ

=
∫ ∫

K

∇ϕî(x, y) · ∇ϕĵ(x, y) dxdy (3.1.22)

= |JK |
∫ ∫

k

(
(JT)−1∇tϕî(ξ, η)

)
·
(

(JT)−1∇tϕĵ(ξ, η)
)

dξdη. (3.1.23)

Now thatM andW are expressions based on the reference element let us take a look at how to actually

evaluate the integrals.

28 Chapter 3 Method

3.1.4 Integral Evaluation with Gaussian Quadrature
The polynomial integrals on the triangles are solved by using Gaussian quadrature. Gaussian quadrature

is a numerical tool for solving definite integrals of polynomial functions exactly. The integrals are

solved taking a sum over the polynomial function values f(x) at specially chosen coordinates (xi) each

associated with a weight wi i.e.

∫
R

f(x)dnx =
nq∑
i=1

wif(xi), (3.1.24)

over some n-dimensional domain R. The number of quadrature points limits the polynomial order

f(x) can take if the integral evaluation is to be exact. While Gaussian quadrature evaluate integrals

exactly for polynomial functions, quadratures can be implemented for many classes of functions. The

R2 region we are concerned with is an equilateral triangle unitcell. A n-point 1-dimensional quadrature

rule can solve polynomials of orders up 2n− 1. The possible order when dealing with a two-dimensional

square element constructed through tensor products of the one-dimensional element can be found to

be (2n− 1)2. However in the 2-dimensional case of a non rectangular shape no general statement for

correspondence between quadrature points and polynomial order exists.

The work done in [16] produces quadrature points with corresponding weights for a 7, 25, 54, 85, 126

and 175 point implementation on an equilateral triangle as in figure 3.5. This can solve polynomials of

order 5, 10, 15, 20, 25 and 30 respectively. Here the polynomial order for a function f(x, y) is defined

to be the product with the highest sum of exponents e.g. (x2y3 + xy) consists of two terms with and an

order of 5 and 2 given the polynomial an order of 5. Note that the weights must be normalized to the

area of the equilateral triangle which in case of figure 3.5 means
∑nq

i=1 wi =
√

27/4. The 7-point and 54

point example seen in figure 3.5 are both implemented.

The polynomial degree of the shape functions we wish to integrate will fully decide the necessary

number of quadrature points. Several of the FEM matrices are integrals of products between shape

functions, e.g. take the matrix Vij as an example

Vij =
∫

Ω
veff (x)ϕi(x)ϕj(x)dx. (3.1.25)

Using quadratic shape functions will yield a polynomial order of 4 for the product of the two basis

functions, while the effective potential veff (x) is a second order piece-wise polynomial function as

well leaving a solution requirement of 6th polynomial order. The 7 point implementation with an

solvable order of 5 is thus insufficient. The quadrature implementation have been tested thoroughly

by comparing integral results from Wolfram Mathematica[17]. This exposed mistakes in the resulting

25-point coordinates and/or weights from [16]. It simply did not compute the correct results using

identical methods for all n-point implementations.

3.1.5 Stiffness Matrix in Curved Space
The Laplacian/stiffness matrix that has been introduced and constructed is applicable in Euclidean flat

spaces. However the bumpy manifold surfaces in question can not be equipped with a global coordinate

system and are inherently non-Euclidean. The Laplacian must account for this to simulate the physical

system. The Laplace operator is in fact a special case of the more intricate Laplace-Beltrami operator,

3.1 FEM Implementation 29

x

y(
− 1

2 ,
√

3
2

)

(
− 1

2 ,−
√

3
2

)

(1, 0)

x

y(
− 1

2 ,
√

3
2

)

(
− 1

2 ,−
√

3
2

)

(1, 0)

Figure 3.5.: The 7-point and 54-point quadrature which can respectively compute definite integrals of any polyno-
mial function of order 5 and 15.

known from the mathematical field of differential geometry. The continuous Laplace-Beltrami operator

for a n-dimensional space reads

∇2
LB =

d∑
i=1

d∑
j=1

1√
|g|

∂

∂xi

√
|g|gij ∂

∂xj
, (3.1.26)

with contravariant metric tensor gij and Jacobain determinant
√
|g|. This rather complicated expression

will need to be expressed in a discrete sense to be implemented. This is no straightforward task and is the

subject to ongoing research in mathematics and computer science. Some important considerations are

locality of the discrete operator and convergence of solutions when further refining a mesh representing

a smooth surface.

A popular discrete form of the Laplace-Beltrami operator for a triangular mesh, is the cotangent

Laplacian. This operator has be derived in various contexts such as mean curvature flow [18]. This

uses the cotangent of the inner angles in the triangular mesh. This discrete operator for a triangular

mesh can be applied to systems with function values discretely defined at the triangle vertices, and will

therefore be limited to the linear basis implementation.

The cotan Laplacian Lc is defined based on adjacent triangles. Each entry Lcij will be associated with a

weight as

Lcij =

∑
j wij , if i = j.

−wij , if (i, j) ∈ E .

0, if (i, j) /∈ E .

(3.1.27)

where
∑
j wij is the sum over all non-zero weights i.e. (i, j) ∈ E . An edge (i, j) in the graph representa-

tion of the dual is shared by two triangles. The two angles in the triangles not located at i or j as seen in

figure 3.6a are used to define the weights. An early simple approach to these weights in the contangent

Laplacian reads

w(i, j) = 1
2(cot(αij) + cot(βij)). (3.1.28)

While this approach depend on the angles constructing the triangular mesh it contain no information

of scaling whatsoever. As long as all elements in the mesh are scaled accordingly it yields the exact

same matrix. There are therefore several approaches to refine the discretization by using an area

dependent normalization factor. We will be concerned with a normalization with respect to each vertex

30 Chapter 3 Method

i
j

αij

βij

(a)

i
j

(b)

Figure 3.6.: (a) The angles aij and βij associated to the matrix entry W c
ij and used to calculate the weight w(i, j).

(b) The Voronoi element area for the index i constructed of middle of each triangle, which for our
triangulation creates the pentagons and hexagons.

associated Voronoi element as in [19]. A Voronoi diagram is is the result of partitioning a plane into

convex polygons. Each polygon will contain exactly one of the original discrete points, with a polygonal

edge being orthogonal to the vector between the neighbouring points. In a square lattice for discrete

points this will yield a Voronoi diagram of adjacent squares of equal size. In our particular case the

Voronoi element of the dual will yield the penta- and hexagonal shapes present in the fullerene. This is

illustrated for a hexagon in figure 3.6b. Introducing the normalization in equation (3.1.28) looks like so

w(i, j) = 1
2Avi

(cot(αij) + cot(βij)), (3.1.29)

here the Avi refer to the area of the Voronoi element for vertex i illustrated in figure 3.6b. Since the

Voronoi element reconstruct the fullerene polygons we only need to be concerned with two different

areas.

It is important to note that there are various approaches to this normalization of the cotan Laplacian.

Examples of this is a normalization depending on a third of the total area of all adjacent triangles Ai/31

or alternatively 1/
√
AviA

v
j as presented in [20]. The cotangent Laplacian matrix is quite simple to

construct, especially for the dual triangulation where all angles are π/3 for which

cot(π/3) = sin(π/3)
cos(π/3) =

1
2√
3

2

= 1√
3
. (3.1.30)

While perfectly applicable to our mesh the operator can not be applied to a mesh containing blunt

triangles which yields negative weights due to the sinusoidal term.

A convenient way to construct the matrix in question will be through the matrix multiplication

Lc = A−1Lcot. (3.1.31)

HereA is a diagonal matrix defining all Voronoi areas for the vertices and Lcot has entries of all relevant

cotangent values, both of size Ndof ×Ndof . This will allow for flexible implementation for easy problem

reformulation. An example could be Poisson’s equation which will read

Lcu = f ⇒ A−1Lcotu = f . (3.1.32)

Here the left hand side is not symmetric, which can be advantageous when solving linear systems of

equations. Among such advantages is the applicability of the Cholesky decomposition which speed up

1This is the same as the Voronoi element for our dual mesh consisting of equilateral triangles, this is however not generally the
case.

3.1 FEM Implementation 31

0 1

60

95

94 96

Figure 3.7.: All nodes present in a pentagon with quadratic shape function. The labels from GlobalMapping(T) for
C60 − Ih molecule are shown for one triangle. The dark dots are the original vertices/atoms, the dark
gray came when performing the triangulation while the light gray dots are the added nodes for the
quadratic shape functions.

solutions for symmetric positive-definite and semi definite matrices greatly. This is mostly a computa-

tional aspect but worth consideration. Constructing the matrices separately now allow for us to make

the left hand side symmetric simply through matrix multiplication as

Lcotu = Af . (3.1.33)

The function call to construct the matrices in question reads will be presented in listing 3.9.

3.2 FEM Modules
The FEM software written consists mainly of three modules namely the Basis, UnitCell and Assemble

modules. They will be introduced accordingly, with python code snippets for the vital computations.

For an overview of the current directory overview the reader is referred to appendix B. For a concise

description the code presented will be for an input of the dual and often shortened omitting import

statements etc. Comments will be given when the extension to the alternative triangulation is not trivial.

The following three modules are the bedrock of FEM solver suited to the fullerene graph representation.

In section 3.1.5 the introduction of the discretize approach to the Laplace-Beltrami operator was given.

The program has been neatly constructed such that the extension to include the curved space operator

of the cotangent Laplacian can enter without any restructuring.

3.2.1 Basis Modules
The complexity of the matrix/vector assembly in an FEM vary with the order of the implemented basis

functions. The implementation as we will see in the coming sections takes a module named Basis as an

input. This module consists of 5 functions relevant for the polynomial order of the basis functions. In

this work the quadratic and linear modules BasisFunctions_Quadratic and BasisFunctions_Linear have

been written and can be passed to the software. Two of the functions LocalDOF() and GlobalDOF(T)
return the local and global degrees of freedom which for the latter depend on the triangulation T.

BasisFunctionValue(i, point) and BasisGradientValue(i, point) return the function and gradient value of

a specfic point in the reference element using equations (3.1.13), (3.1.14) and (3.1.15), where i is an

integer referring to a specific shape function. The last function GlobalMapping(T) returns a neighbouring

array somewhat like the triangulation, but containing all ndof neighbouring nodes in each triangle. This

will be referred to at the global map of the system. Taking the quadratic implementation as an example,

which as introduced in section 2.2.4, has 6 nodes per triangle. Here each vertex node is shared by either

32 Chapter 3 Method

5 or 6 other triangles, while the mid-point nodes is common to 2 triangles, illustrated in figure 3.7.

Incorporating a new module with implemented basis functions of polynomial order n is a task of coding

these five functions.

3.2.2 UnitCell Module
The UnitCell.py module incorporates all the computations done on the unit cell, this therefore mainly

deals with the local integral assembly. Evaluating MK
îĵ

using quadratures as in equation (3.1.12) yields

MK
îĵ

= |JK |
nq∑
q=1

ϕî(ξq, ηq)ϕĵ(ξq, ηq)wq. (3.2.1)

The computation of this local matrix is performed by calling the function LocalOverlap in the UnitCell

module which reads

1 def LocalOverlap (x_q , w_q , Basis , determinant):

2 local_dof = Basis. LocalDOF ()

3 M_local = np.zeros ([local_dof , local_dof])

4 for i in range(local_dof):

5 for j in range(local_dof):

6 for q in range(x_q.shape [0]):

7 # Looping through all quadrature points and weights

8 point = CoordinateTransformation (x_q[q ,:])

9 M_local [i,j] += Basis. BasisFunctionValue (i, point) *\

10 Basis. BasisFunctionValue (j, point) *\

11 w_q[q] * determinant

12 return M_local

Listing 3.1: LocalOverlap function for computing the local mass matrix MK .

By passing quadrature coordinates xq, quadrature weights wq, the relevant basis module and the

determinant of the Jacobian for the transformation in listing 3.1, obtaining the local matrix is somewhat

straight forward. The function loop over all entries in the local ndof × ndof matrix and then transform a

quadrature point from the equilateral element to the right angled element in line 9 through the function

CoordinateTransformation. Once the transformed coordinate is obtained each quadrature contribution

is added together to the entry matrix [i, j]. Note that the weights are normalized to 1
2 for the area of the

right angled triangle, this is done prior to calling the function above. CoordinateTransformation used

above is a implementation of the coordinate transformation given in equation (3.1.11) and reads

1 def CoordinateTransformation (coordinate):

2 from FEM. shape_construction import FE_construction

3 Element = FE_construction (’triangle_equil ’)[1]

4 Jacobian =np.array ([[Element [1 ,0] -Element [0,0], Element [2 ,0] -Element [0 ,0]] ,

5 [Element [1 ,1] -Element [0,1], Element [2 ,1] -Element [0 ,1]]])

6 inv_Jacobian = np. linalg .inv(Jacobian)

7 quad_reference = np.dot(inv_Jacobian , coordinate - Element [0 ,:])

8 # quadrature coordinates in the reference element

9 return quad_reference

Listing 3.2: Coordinate transformation from physical element to reference element.

3.2 FEM Modules 33

In the above FE_construction called in line 3 is a simple module which computes and returns the

determinants of the Jacobian and coordinates defined in the array Element making up the various

triangular elements used. This function is used for transforming the quadrature points and therefore

only uses the equilateral element called in line 3 no matter what triangulation is used.

LK
îĵ

is obtained in a similar fashion to MK
îĵ

, where by looping through all entries in a function named

LocalGradientOverlap and evaluating in all the relevant quadrature points.

1 def LocalGradientOverlap (x_q , w_q , Basis , determinant , Element):

2 local_dof = Basis. LocalDOF ()

3 L_local = np.zeros ([local_dof , local_dof])

4 for i in range(local_dof):

5 for j in range(local_dof):

6 for q in range(x_q.shape [0]):

7 grad_basis_i = Gradient (i, x_q[q,:], Basis , Element)

8 grad_basis_j = Gradient (j, x_q[q,:], Basis , Element)

9 L_local [i,j] += np.dot(grad_basis_i , grad_basis_j) *\

10 w_q[q] * determinant

11 return L_local

Listing 3.3: The function LocalGradientOverlap which calculate the local stiffness matrix WK .

To construct the local matrix a function named Gradient, used in line 9 and 10, returns the unit cell

gradient of basis function î for a quadrature point, it reads

1 def Gradient (n, coor , Basis , Element):

2 quad_reference = CoordinateTransformation (coor)

3 gradient_reference = Basis. BasisFunctionGradient (n, quad_reference)

4 Jacobian =np.array ([[Element [1 ,0] -Element [0,0], Element [2 ,0] -Element [0 ,0]] ,

5 [Element [1 ,1] -Element [0,1], Element [2 ,1] -Element [0 ,1]]])

6 trans_Jacobian = np. transpose (Jacobian)

7 gradient_physical = np. linalg .solve(trans_Jacobian , gradient_reference)

8 return gradient_physical

Listing 3.4: The function Gradient which compute the gradient for basis function n in the physical space when

given coordinates

Starting by once again transforming the coordinate to the reference system with CoordinateTransformation
then the gradient in the reference cell can found by calling BasisFunctionGradient from the input basis

module. We can then solve for the gradient in the physical system using equation 3.1.20. This is

executed in line 7 with the transpose of the Jacobian and the gradient in the reference system. The local

matrix assembly in line 11 in listing 3.3 is then computed similarly to listing 3.12.

Turning the attention to f and V . The integrals associated with both of these does not solely depend

on the basis functions. Here the density and effective potential which are globally varying functions

enter in entries fi and Vi respectively. These can therefore not be completely constructed from a local

2The local matrices assembled have been thoroughly tested and compared to Mathematica calculation for several types of
triangles.

34 Chapter 3 Method

matrix/vector as in the case of M and L. Writing up the integral computations with quadratures and

sum over relevant triangles K looks like so

Vij =
∑
K

nq∑
q=1

veff (xq, yq)ϕi(xq, yq)ϕj(xq, yq)wq (3.2.2)

fi = −
∑
K

nq∑
q=1

4πρ(xq, yq)ϕi(xq, yq)wq. (3.2.3)

We can not perform matrix assembly of exact integrals on the unit cell the, nevertheless we can return

locally dependent matrices, which can aid in the global construction. Using (xq) = (xq, yq) for notational

simplicity the local matrix in question for V is of the form

V K
local = |JK |

ϕ1(x1)ϕ1(x1)w1 ϕ1(x1)ϕ2(x1)w1 . . . ϕ1(x1)ϕndof

(x1)w1

ϕ2(x1)ϕ1(x1)w1 ϕ2(x1)ϕ2(x1)w1 . . . ϕ2(x1)ϕndof
(x1)w1

...
...

. . .
...

ϕndof
(x1)ϕ1(x1)w1 ϕndof

(x1)ϕ2(x1)w1 . . . ϕndof
(x1)ϕndof

(x1)w1

ϕ1(x2)ϕ1(x2)w2 . . . ϕ1(xnq
)ϕndof

(xnq
)wnq

ϕ2(x2)ϕ1(x2)w2 . . . ϕ2(xnq
)ϕndof

(xnq
)wnq

...
. . .

...

ϕndof
(x2)ϕ1(x2)w2 . . . ϕndof

(xnq)ϕndof
(xnq)wnq

(3.2.4)

The above is of size ndof×(ndof ·nq) and contains quadrature evaluations for all nq for every combination

of the ndof shape functions. Take the top row as an example we see the first ndof entries are all

combination of ϕ1ϕi evaluated in the first quadrature point with the corresponding weight. This is

then repeated for the second, third, foruth etc. quadrature point. The row will therefore be of length

ndof×ndof . flocal is similarly constructed from all combinations of ϕi(xq, yq)wq. The last functions in the

UnitCell module deal with the return of exactly these matrices that are used for the global construction.

Constructing of V K
local is handled by the function LocalPot and reads

1 def LocalPot (x_q , w_q , Basis , determinant):

2 local_dof = Basis. LocalDOF ()

3 V_local_quad = np.zeros ([local_dof , local_dof *len(w_q)])

4 for q in range(len(w_q)):

5 point = CoordinateTransformation (x_q[q ,:])

6 for i in range(local_dof):

7 for j in range(local_dof):

8 V_local_quad [i,j+ local_dof *q]=Basis. BasisFunctionValue (i,point)*\

9 Basis. BasisFunctionValue (j,point)*\

10 w_q[q] * determinant

11 return pot_local_quad

Listing 3.5: The LocalPot function which return the locally dependent matrix Vlocal.

The first for loop initiated in line 4 with q is used to access the quadrature points and weights. For each

iteration a ndof × ndof matrix is added to the total matrix V_local_quad initiated in line 3. This contains

all combinations of ϕiϕj evaluated in quadrature point entry q. Computing f is just a simplified version

of the above and handled by the function LocalLoadVectorMatrix.

3.2 FEM Modules 35

3.2.3 FEM_Assembly Module
Before diving into the entire global assemblies a short but quite important function should be introduced.

In equation (3.2.2) and (3.2.3) it was not discussed that the input of the effective potential and the

density are evaluated in the quadrature coordinates, even though they are both vectors only with defined

values at the nodes. However as we know the order of the basis functions also decide the polynomial

approximation of these quantities. Then with the values at each node in a specific triangle a polynomial

function value at any coordinate within the triangle can be obtained. This is done by taking the sum

over the shape function value at the coordinate multiplied by the value at the corresponding node,

which is computed in the function continuous_rep

1 def continuous_rep (u, indices , Basis , point):

2 local_dof = Basis. LocalDOF ()

3 val_polynomial = 0

4 import FEM. UnitCell_Computations . UnitCell as UnitCell

5 # reference point

6 point_ref = UnitCell . CoordinateTransformation (point)

7 for N in range(local_dof):

8 val_polynomial += u[indices [N]]*Basis. BasisFunctionValue (N, point_ref)

9 return val_polynomial

Listing 3.6: Function continuous_rep which for a coordinate set within a triangle calculate the polynomial

representation of the function using the function values at the triangle nodes.

Here, the input u is the function we wish to approximate in the finite element basis, while indices refer

to the nodes and are the relevant entries into the vector u.

The FEM_Assembly module control the global matrix assemblies which is based upon the input equation

type, one wish to solve. The function Assembly will initialize all necessary computations given an input

string ’equation_type’ and return the relevant matrices and/or vectors for the weak formulation.

1 def Assemble (Triangulation , Basis , x_q , w_q , equation_type ,

2 Input , *argv):

3 w_q = w_q /(np.sqrt (27) /4) * 1/2

5 global_dof = Basis. GlobalDOF (Triangulation);

6 ConnectMatrix = Basis. GlobalMapping (Triangulation)

8 if equation_type == ’Kohn -Sham ’:

9 M, W, V_eff = KohnShamSolver (Input , Basis , x_q , w_q ,

10 ConnectMatrix , global_dof , argv)

11 return (1/2 * W + V_eff), M

12 elif equation_type == ’Poisson ’:

13 P, f = PoissonSolver (Input*4*np.pi , Basis , x_q , w_q ,

14 ConnectMatrix , global_dof , argv)

15 return P, f

16 elif equation_type == ’Heat ’:

17 M, W, b = HeatSolver (Input , Basis , x_q , w_q ,

18 ConnectMatrix , global_dof , argv)

19 return M, W, b

Listing 3.7: The Assemble function which initialize all relevant assemblies for a given equation type.

36 Chapter 3 Method

The input variable given in line 1 differ depending on the type of equation. For the Kohn-Sham equations

it is the external potential, for Poisson’s equation it is the electronic density and finally as the source

term in the heat equation. Inputs such as the basis module and quadrature coordinates and weights

could easily be loaded within the module. For now it left as an input to give the user full control and

allow for easily accessible comparison. The triangulation in used in the software is can be defined

thorugh an *argv input. Simply by passing the string ’dual’ as the last input if the system purely consits

of equilateral triangles. Taking the example of the Kohn-Sham equations the function enters the if

statement in line 8 which calls the function KohnShamSolver which reads

1 def KohnShamSolver (Input_pot , Basis , x_q , w_q , ConnectMatrix ,

2 global_dof):

3 from scipy. sparse import lil_matrix ;

4 local_dof = Basis. LocalDOF ()

5 M = lil_matrix ((global_dof , global_dof)) #Mass matrix

6 W = lil_matrix ((global_dof , global_dof)) # Stiffness matrix

7 V = lil_matrix ((global_dof , global_dof)) # Potential matrix

9 W_local = StiffnessLocal (Basis , x_q , w_q)

10 M_local = MassLocal (Basis , x_q , w_q)

11 V_local = PotLocal (Basis , x_q , w_q , Input_pot)

13 for K in range(ConnectMatrix .shape [0]):

14 glo_indices = Local2Global (ConnectMatrix , K)

15 for i in range(local_dof):

16 for j in range(local_dof):

17 W_global . _set_intXint (glo_indices [i], glo_indices [j], W_local [i,j]+\

W[glo_indices [i], glo_indices [j]])

18 M_global . _set_intXint (glo_indices [i], glo_indices [j], M_local [i,j]+\

19 M[glo_indices [i], glo_indices [j]])

20 val = 0

21 for q in range(len(w_q)):

22 poly_expansion = continuous_rep (Input_pot , glo_indices , Basis ,

23 x_qdinates [q ,:])

24 val += V_local [i,j + q* local_dof] * poly_expansion

25 V. _set_intXint (glo_indices [i], glo_indices [j], val +\

26 V[glo_indices [i], glo_indices [j]])

27 return M, W, V

Listing 3.8: The KohnShamSolver function assembleM ,W and V necessary for solving the Kohn-Sham equations.

Line 5-8 initializes the matrices that in the end will be returned. Due to the sparse nature of the matrices

scipy.sparse is used to minimize the memory usage. Line 9-11 calls functions StiffnessLocal, MassLocal
and PotLocal which return the local matrices. If the triangulation with added vertices is used two local

matrices are computed from the UnitCell module.

Assembly of M and W then comes down to adding the contributions in the correct matrix entry. The

entries of the array from line 14 are the global nodes defining the triangle K. Adding contributions to

the sparse matrices is done in line 17-20, here ._set_intXint takes the matrix entries in the first two

inputs and then the value. The value will then be local matrix contribution added to the current value

of the global matrix entry.

3.2 FEM Modules 37

The assembly of V is however a bit more complicated. For each updated value of V in line 26 a loop

over the number of quadrature points is needed as seen in line 22. Taking an example of a specific

triangle and combination of ϕiϕj we find the polynomial expansion value for the effective potential

in line 23. Iterating with q through all quadratures points and adding contributions can be done, by

the entries V_local[i,j + q*local_dof] since ϕiϕjwq for each quadrature is present. Then the integral

contribution for a specific node is found in line 25 and added to the sparse matrix in line 26. The

functions for Poisson’s equation and the heat equation are computed similarly.

Cotangent Laplacian
The cotagent laplacian introduced in section 3.1.5 is constructed entirely through information about the

triangulation. It it applicable when using a linear basis. It is computed by the functionCotangent_Laplacian

and in the case of the dual reads

1 def Cotangent_Laplacian (Basis , dual_faces):

2 global_dof = Basis. GlobalDOF (dual_faces)

3 Cotan_Laplacian = lil_matrix ((global_dof , global_dof))

4 A_mat = lil_matrix ((global_dof , global_dof))

6 # single cell Voronoi contribution

7 A = np.sqrt (27) / 4 / 3

9 w_ij = 1/np.sqrt (3)

10 for i in range(global_dof):

11 triangle_ind = np.where(dual_faces == i)[0]

12 ind = np. unique (dual_faces [triangle_ind])

13 for j in ind:

14 Cotan_Laplacian . _set_intXint (j, i, - w_ij)

15

16 # Assigning values the diagonal element for both matrices

17 number_of_neighbours = len(np.where(dual_faces == i)[0])

18 Cotan_Laplacian . _set_intXint (i, i, w_ij * number_of_neighbours)

19 A_mat. _set_intXint (i, i, A * number_of_neighbours)

21 return Cotan_Laplacian , A_mat

Listing 3.9: Contagent_Laplacian function for computing the matrices relevant for the curved space stiffness matrix.

Here the single cell Voronoi contribution is defined in 7, which is 1/3 of the area of the equailateral

triangle the dual representation constits of. An important thing to note is that a finer triangulation

within the original dual representation require a scaling of this area. The for loop initialized in line

10 will for each neighbouring triangular indices (i, j) insert −wij into the cotangent Laplace matrix in

line 14. By computing the number of neighbours triangle i has in line 17, we can fill in the diagonal

elements in both cotangent Laplacian and the area matrix in line 18 and 19. This implementation makes

no restrictions when constructing the Laplacian matrix to the number of neighbours a triangle may have,

which makes this directly applicable to fulleroid structures.

38 Chapter 3 Method

3.3 Constructing a 2-Dimensional DFT with FEM
Software

Now that the FEM modules which allow for solving PDEs are described we turn the attention to to-

wards developing a DFT on the manifolds. This chapter will start by presenting the approach to the

exchange-correlation in which a local density approximation has been implemented. Section 3.3.3

will then explain the general approach of the self consistent field(SCF) loop within DFT. Section 3.3.4

will then show the SCF loop implemented in this work, where the PDE solver is implemented to solve

Poisson’s equation and the Kohn-Sham equations in an iterative manner.

3.3.1 Exchange-Correlation Potential
The degree of complexity within a DFT implementation heavily depend on the approximation used for

the exchange-correlation energy functional Exc. A few examples of different groups of approximations

in order of increasing complexity are: local density approximations(LDA) which only depend on the

the spatial value of the density, generalized gradient approximations(GGA) which take the gradient

behaviour of the density into consideration and meta GGA which takes the behaviour of the Laplace

operator on the Kohn-Sham orbitals into account. Other implementations exist and still much ongoing

research for functionals that yield chemical accuracy.

Using the functional Exc[ρ] the exchange-correlation potential vxc can be found by taking the functional

derivative of the two corresponding exchange and correlation energy terms i.e.

vxc(ρ) = vx(ρ) + vc(ρ) = δEx[ρ]
δρ

+ δEc[ρ]
δρ

. (3.3.1)

We therefore now wish to incorporate some expressions for the functionals Ex[ρ] and Ec[ρ] which with

the help of functional derivatives will yield the exchange-correlation potential.

3.3.2 Local Density Approximations
LDA3 approaches are in general simple, but can often yield useful results. Many of the approaches

are based of the the uniform electron gas model also known as jellium. Here an electronic density is

treated in a confined space with a constant potential. This yield a constant electronic density which is

solved with a Hamiltonian accounting for electron-electron interactions. The functional Ex[ρ] for jellium

actually has an analytical expression[21] of

Ex[ρ] =
∫
ρ(x)εx(ρ)dx = −3

4

(
3
π

)1/3 ∫
ρ4/3(x)dx, (3.3.2)

where εx(ρ) is the exchange energy per particle of a uniform electron density gas. Note atomic units are

used throughout this work. Finding the potential expression follow from equation (3.3.1) by taking the

functional derivative with respect the density. Using the general formula for functional derivatives in

3Accounting for spin we refer to it as local spin density approximation LSDA.

3.3 Constructing a 2-Dimensional DFT with FEM Software 39

equation (2.3.25) is simple, since Ex[ρ] does not depend on the spatial derivative of ρ. It can therefore

be found simply by taking the derivative with respect to ρ, like

vx(ρ) = δEx[ρ]
δρ

= ∂

∂ρ

(
−3

4

(
3
π

)1/3
ρ4/3(x)

)
= −

(
3
π
ρ(x)

)1/3
, (3.3.3)

thus yielding the potential accounting for the exchange.

For the correlation energy functional in LDA analytical expressions only exits in the limiting cases of high

and low density systems. Luckily several numerical stochastic methods [22] has produced correlation

energy results in between the limits. Based on this several fits have been suggested to encapsulate the

limits as well as the simulated discrete points. Here the fit suggested by Chachiyo in [23] for εc(ρ) is

used. It has the form

εc(ρ) = a ln
(

1 + b

rs
+ b

r2
s

)
with rs =

(
3

4πρ(x)

)1/3
, (3.3.4)

where the dimensionless rs is known as the Wigner-Seitz density parameter with the high-density limit

being rs → 0 and low-density limit rs →∞. In (3.3.4) a and b are constant defined to be a = ln(2)−1
2π2

and b = 20.4562557. The correlation energy functional reads

Ec[ρ] =
∫
ρ(x)εcdx, (3.3.5)

here the functional derivative follows from the same argument as for the exchange functional thus

vc(ρ) = ∂

∂ρ
(ρ(x)εc(ρ)) = εc

∂

∂ρ
ρ(x) + ρ(x) ∂

∂ρ
εc(ρ) (3.3.6)

The first term is just equal to εc(ρ). Recall that d
dx ln u = 1

u
du
dx , we then turn our attention to the second

term above and introduce the constant c =
(3

4π
)1/3

, the term then reads

ρ(x) ∂
∂ρ
εc(ρ) = aρ(x)

1 + bρ1/3(x)
c + bρ2/3(x)

c2

∂

∂ρ

(
1 + bρ1/3(x)

c
+ bρ2/3(x)

c2

)
(3.3.7)

= aρ(x)
1 + bρ1/3(x)

c + bρ2/3(x)
c2

(
b

3cρ2/3(x)
+ 2b

3c2ρ1/3(x)

)
, (3.3.8)

Yielding a correlation potential which in its full glory now reads

vc = a ln
(

1 + bρ1/3

c
+ bρ2/3

c2

)
+ aρ

1 + bρ1/3

c + bρ2/3

c2

(
b

3cρ2/3 + 2b
3c2ρ1/3

)
. (3.3.9)

40 Chapter 3 Method

3.3.3 The Self-Consistent-Field Loop
Now with the FEM software and a theoretical framework for the exchange-correlation potential in

place, applying it in a DFT routine is the task at hand. The hope is to create an algorithm that can

find a ground state electronic density for a fullerene manifold. This can be achieved by solving the

Kohn-Sham equations in an iterative manner. This is achieved in DFT by a method called the self-

consistent field(SCF) loop. The computational scheme of this method is illustrated in figure 3.8 and will

if successfully integrated yield a ground state density. In this case the effective Kohn Sham potential

solved in the Kohn-Sham equations is veff = vH+vxc. Usually the positively charged nuclei environment

would be included in veff and would be passed as a pre-determined input. This is obviously crucial

to extract any useful ground state density from the fullerene, however this is beyond the scope of this

thesis.

Set ρ = ρ′ Initial guess ρ′

Compute −4π∇2vH = ρCompute vxc

Compute Kohn-Sham orbitals with veff

Compute ρ′ =
∑
i |ψi|2

FEM software used

||ρ− ρ′|| < tol?
No

Ground state ρ′ reached
Yes

Figure 3.8.: The self consistent field loop takes in an initial density outputs a ground state density for the system.
This is done by solving the Kohn-Sham equations with an effective potential veff computed using
the density ρ, which computes a new density ρ′ using the Kohn-Sham orbitals, if ρ and ρ′ have not
converged the process repeats using the new density.

3.3 Constructing a 2-Dimensional DFT with FEM Software 41

3.3.4 Computing the SCF loop
The relevant inputs when implementing the scheme in figure 3.8 in a function will among other things

be the initial density, number of electrons present and the tolerance parameter used as a convergence

criteria. The script DFT_Self_Consistent_Loop.py contain the function DFT_SCF which with specified

input solve the SCF-loop, it reads

1 def DFT_SCF (triangulation , tolerance , rho_initial , occupied_orb , Basis):

2 import FEM. FEM_Assembly as FEM_Assembly

4 # Normalizing the initial density

5 rho_const = full_integration (rho_initial , coordinates_54 , weights_54 ,

6 triangulation , Basis)

7 rho_old = rho_initial / rho_const * occupied_orb

9 global_dof = Basis. GlobalDOF (triangulation);

10 counter = 0

11 while True:

12 # Computing the Hartree Potential

13 P, f = FEM_Assembly . Assemble (triangulation , Basis , coordinates_54 ,

14 weights_54 , ’Poisson ’, -rho_old , ’dual ’)

15 v_h = linalg .lsqr(P,f)[0]

16 v_h -= np.abs(np.max(v_h))

18 # Assembling Kohn -Shal potential and solving the Kohn -Sham equations

19 v_eff = v_effective (v_h , rho_old)

20 A, B = FEM_Assembly . Assemble (triangulation , Basis , coordinates_54 ,

21 weights_54 , ’Kohn -Sham ’, v_eff , ’dual ’)

22 energy_eigen , orbitals_eigen = linalg .eigs(A, k=200, M=B, which=’SM’)

24 # Picking the eigenvectors / orbitals with the smallest energy / eigenvalue

25 index = np. argsort (energy_eigen)

26 orbitals_eigen_small = orbitals_eigen [:, index [0: occupied_orb]]

28 # Normalizing orbital densities

29 orbitals_squared = (orbitals_eigen_small * \

30 np.conj(orbitals_eigen_small)).real

31 for k in range(occupied_orb):

32 rho_norm = full_integration (orbitals_squared [:,k], coordinates_54 ,

33 weights_54 , triangulation , Basis)

34 orbitals_squared [:,k] /= rho_norm

36 # Computing the full density

37 rho_new = np.sum(orbitals_squared , axis=1)

38 rho_new = alpha* rho_new + (1-alpha)* rho_old

40 # Checking if convergence tolerance is met

41 if np. linalg .norm(rho_new - rho_old , 2) < tolerance :

42 print(’Convergence at ’ + str(counter) + ’ iterations ’)

43 return rho_new

42 Chapter 3 Method

44 counter += 1

Listing 3.10: The function DFT_SCF which calculates a ground state density using the SCF-loop method. The loop

iterates will run until the given tolerance criteria is met.

The input triangulation4 in the above listing refer to the cubic graph sparse adjacency matrix and

occupied_orb is the number of electrons present occupying the Kohn-Sham orbitals. Before the SCF loop

starts the input density is made sure to integrate to the number of occupied orbitals in line 5-7. Here

the function full_integration calculates the integral over the entire domain of a given function using

quadrature points and the polynomial expansion of the function.

Entering the while loop in 11, where the loop start by computing relevant matrices and vectors for

calculating Poisson’s equation in line 13. A least square solver5 is used in line 15 for computing the

Hartree potential. This yield a potential with values around zero containing both positive and negative

values. This will create the same physical behaviour within the system if only accounting for Coulomb

electron-electron repulsion, but will be problematic when accounting for other potential terms in the

Kohn-Sham potential. The next operation is therefore to shift the potential to have a maximum value of

0 in line 16.

The Hartree potential is the fed to the function v_effective in line 19. Here the effective potential

is computed using the Hartree potential and constructing the exchange-correlation potential as in

equations (3.3.3) and (3.3.9) using the density r_old. The potential v_eff is used in line 19 as an input

into the FEM assembly for the Kohn-Sham system. This leaves the Kohn-Sham eigenvalue problem to

be solved. Using the sparse eigenvalue solver linalg.eigs and requiring it, to return a sufficiently large

number of solutions. The outputs are then a vector and a matrix with the eigenvalues(eigen-energies)

and their corresponding eigenvectors(orbitals) respectively. The eigenvectors of interest are those of

the lowest energy up to the number of orbitals included in the system. All orbital densities are then

computed and normalized in line 29-34 by forcing the integration of each orbital density to be 1 over

the entire domain.

A new density based on the occupied orbitals is then computed in line 37. The density is then tweaked

using density mixing in line 38, which will be explained shortly. If the norm of the differences for the

new and old density is within the tolerance the new density is returned, otherwise it iterates through

the while loop again using the new density6.

A general problem within the SCF loop is the occurrence of charge sloshing. This is a problem in which

charges bounce back and forth in the system mainly due to the Hartree potential. This can occur in

various DFT settings and this implementation is especially susceptible to this, since no positive charges

are present to create attraction. A way to counteract this behaviour is through density mixing. The

somewhat self explanatory name will tweak the newly calculated density in each iteration by mixing

it with the density from the former iteration. A simple way to implement this is through a factor α

between 0 and 1 with the density computed as

ρ′i+1 = αρi+1 + (1− α)ρi, (3.3.10)

yielding ρ′i+1 used to further iterate. This can in theory speed up the DFT calculations greatly, especially

if the SCF loop is close to an energetic minima but overshoot this minima in each iteration. This scheme

4This example uses the dual representation which is passed into the FEM functions in line 12 and 21.
5the sparse least square solver linalg.lsqr from the scipe.sparse library to be exact
6This snippet is slightly modified for compactness sake. Code loading quadrature data, importing basis module and abort

statements for the while loop is excluded.

3.3 Constructing a 2-Dimensional DFT with FEM Software 43

was used with α = 0.5 and section 4.2.3 will show results where the behaviour with and without density

mixing will be highlighted during simulations.

Energy functionals evaluating the energy within the manifold will be a sum of contribution arising from

kinetic and potential terms i.e.

E[ρ] = ET [ρ] + EH [ρ] + EX [ρ] + EC [ρ]. (3.3.11)

This will be presented for various solutions of the SCF loop. Here the kinetic energy will be calculated

using the Thomas-Fermi[21] orbital kinetic functional of

ET [ρ] = 3
10(6π2)2/3

∫
Ω
ρ5/3(x).dx. (3.3.12)

44 Chapter 3 Method

3.4 Solving the Heat Equation
To investigate the validity of the FEM implementation we wish to simulate the heat equation on manifold

surfaces. The heat equations describes the diffusive evolution of a spatial and time dependent function

u(x, t), and in our particular 2-dimensional case reads

∂

∂t
u(x, y, t) = α∇2u(x, y, t), (3.4.1)

where α is a diffusitivity constant of the system. The time evolution for the simulation is handled by

a simple forward Euler method. This approach seemed fitting since it is easily implemented and no

general benefit would come of a more complex method, since the goal of the simulations were to verify

and present the FEM software as a general solver. The evolution is performed by obtaining u(x, y, tn+1)
based on function information u(x, y, tn) by

u(x, y, tn+1)− u(x, y, tn)
δ

= α∇2u(x, y, tn)⇒ (3.4.2)

u(x, y, tn+1) = u(x, y, tn) + δα∇2u(x, y, tn), (3.4.3)

where δ denote the time-step.

To simplify the expression we introduce the notation for the the heat distribution u(x, y, tn+1)⇒ un. To

state the problem in the weak formulation we once again start by taking the integral over each term

multiplied by a test function ∫
Ω
un+1vdx =

∫
Ω
unvdx+ δα

∫
Ω
∇2unvdx. (3.4.4)

Following the arguments from section 2.2.2 we end up with a vectorized problem of the form

Mun+1 = Mun − δαLun, (3.4.5)

with the matrices

M =
∫

Ω
ϕiϕjdx and (3.4.6)

L =
∫

Ω
∇ϕi · ∇ϕjdx (3.4.7)

Thus un+1 is obtained by solving a linear system of equations. The FEM matrices needed are indepen-

dent of the function u(x, y, tn) and only depend on the geometry. The matrices can thus be obtained in

the initialization of the simulation and used throughout. The simulation is initialized by constructing

some initial distribution u0 and then let the system propagate in time by updating un in each iteration.

The simulation is then simply run until the system has converged to an even distribution. Evaluating the

heat equation was performed to validate the FEM implementation. It has a quite intuitive behaviour and

a visualization of the implementation was used to verify the geometrical interactions of neighbouring

triangles and nodes. Animations7 are produced in matplotlib to visualize the simulations performed.

7Gifs to be exact, short for for graphic interchange format.

3.4 Solving the Heat Equation 45

5 5 5 5 5 -1

3 6 7 4 0 3

2 8 9 11 1 2

-1 10 10 10 10 10

1 cos(π/3)
0 sin(π/3)

(a)

5 5 5 5 5 -1

3 6 7 4 0 3

2 8 9 11 1 2

-1 10 10 10 10 10

(b)

Figure 3.9.: (a) A possible grid for a C20-Ih unfolding, by using the rotational matrix yield (b) which is the
unfolding on the Eisenstein plane consisting of equilateral triangles.

3.5 Visualization
As explained in section 2.1.3 the dual triangulation can be unfolded onto a 2-dimensional plane using

Eisenstein integers, which will be used to visualize the results for solutions to differential equations. An

example of such an unfolding with labelled vertices can be seen in figure 3.10 for the case of C20-Ih.

3.5.1 Dual Unfolding
Among the geometrical fullerene data given are information of a possible unfolding. The necessary

data to perform this unfolding onto a 2-dimensional coordinate system are the following: the dual

triangulation, a labelled coordinate grid explained shortly, an array arcs containing all entries with

directed edges and the corresponding arcpos which contains the geometrical coordinates in the grid

defining a directed edge. It is important to note that this data is necessary for visualizations of the

solutions, which are computed only using the graph information.

The grid given is a matrix where each entry is a labelled vertex, which for the C20-Ih can take the form
5 5 5 5 5 −1
3 6 7 4 0 3
2 8 9 11 1 2
−1 10 10 10 10 10

 , (3.5.1)

where −1 denotes a matrix entry without a vertex. The cubic graph connectivity this this matrix

represents is shown in figure 3.9

The coordinates for the unfoldings in the Eisenstein plane can be computed by applying the rotational

matrix seen in figure 3.9. The Eisenstein coordinates for the unfolding are produced by calling the

function transformedEisenstein, which reads

1 def transformedEisenstein (dual_faces , arcs , arcpos):

2 data = []; data_trans = []

3 import numpy as np

4 for tri in dual_faces :

5 tri_data = []; rot_tri = [];

6 j = 0; tri_array = np.zeros ([3 ,2]); b = 0

7 while True:

8 if tri [0] == arcs[j][0] and tri [1] == arcs[j][1]:

9 tri_array [0 ,:] = rot_func (arcpos [j][0])

46 Chapter 3 Method

10 tri_array [1 ,:] = rot_func (arcpos [j][1])

11 k = 0

12 while True:

13 if tri [1] == arcs[k][0] and tri [2] == arcs[k][1]:

14 tri_array [2 ,:] = rot_func (arcpos [k][1])

15 b = 1

16 break

17 k+=1

18 j+=1

19 if b == 1:

20 break

21 #data. append (tri_data); # data_trans . append (rot_tri)

22 data_trans . append (tri_array)

23 return data_trans

Listing 3.11: Function calculating Eisenstein coordinates for an unfolding, provided dual faces, directed edges and

their coordinates.

By looping through all the triangles in the dual starting in line 4 the transformed coordinates for each

triangle are calculated. The dual array obey the nature of directed edges, as an example in figure 3.9b

an edge between label 2 and 3 appear twice, but in the dual array one triangle will have a directed edge

going from 2 to 3 and another going from 3 to 2.

Searching for the triangle defined by [0,3,2] as an example, the if statement in line 8 finds the index j

for a directed edge going from 0 to 3. This index is passed to the coordinates of the edge in arcpos, and

the Eisenstein coordinates are computed using the rotational matrix from figure 3.9. The computation

is repeated to find the coordinates of the last vertex in the triangle. With the unfolding in place the

question is how to create a pixel map showing the results on the unfolding.

3.5.2 2-Dimensional Visualization
Creating a pixel map and assigning function values will be done using barycentric coordinates, for which

a short explanation follow. Imagine a triangle with corners x1, x2 and x3 and denoting the area of

this A. Placing a point x within the triangle one can construct 3 new triangles. Each corner will be

associated with a barycentric coordinate λi, which is the ratio of the newly constructed triangle area

opposite of corner xi to A8. The barycentric coordinates can be calculated for all possible points x. For

a point within the triangle the three barycentric scalars obey 0 ≤ λi ≤ 1 and λ1 + λ2 + λ3 = 1. An easily

computed transformation from Cartesian coordinates (x, y) to barycentric coordinates is x1 x2 x3

y1 y2 y3

1 1 1

λ =

 x

y

1

 (3.5.2)

The first step in the visualization is to create a pixel grid for the unfolding as seen applied in figure 3.10b.

We now take the example of applying pixel values to a specific triangle of [5,6,3]. The coordinates

defining the triangle are known and are used to create a bounding box of all pixels in the vicinity of

the triangle, with an example shown in figure 3.10b. Looping through all pixels and calculating the

barycentric coordinates for the center of the pixel, will show whether or not the pixel center is within

the triangle. If not, then the loop continues without adding a pixel value. If all barycentric coordinates
8When it comes to giving an understanding of barycentric coordinates this is only one of many. This short explanation was

picked due to it’s quite intuitive nature.

3.5 Visualization 47

5 5 5 5 5

3 6 7 4 0 3

2 8 9 11 1 2

10 10 10 10 10

5 5 5 5 5

3 6 7 4 0 3

2 8 9 11 1 2

10 10 10 10 10

Figure 3.10.: (a) A 2-dimensional unfolding of the small C20-Ih fullerene onto the Eisenstein plane consisting of
equilateral triangles. (b) Adding a pixel grid to the unfolding, where each pixel value inside the
unfolding is computed based on the triangle in which it is present. The blue dashed line represent a
bounding box for the triangle [5,6,3]

lie between 0 and 1 for a pixel in a specific triangle a pixel value is added. This is done by transforming

to Cartesian coordinates through equation (3.5.2), and using the function continuous_rep introduced

in 3.2.3. This calculates the polynomial representation of (x, y) using the triangle node values9 thus

yielding a pixel value Appendix. The full visualization is then achieved by repeating this for all triangles.

The results presented in this thesis will all be in the dual representation due to this neat 2-dimensional

unfolding allowing for visualization of solutions.

3.5.3 Mesh Refinement
The dual representation can easily be used to create a denser mesh. An equilateral triangle can be

divided into 4 equilateral triangles all with half the side length of the original, this is shown in figure 3.11

going from (a) to (b). Computing the new sparse adjacency matrix is done using a the GlobalMapping(T)
from the quadratic basis function implementation, module BasisFunctions_Quadratic introduced in

section 3.2.1. Here 3 nodes were added to represent all six shape functions on each triangular element.

These labels can just be extracted and connected to create the adjacency for the triangulation.

While this is neat it would be useless in this setting if the new solution could not be visualized. The

function Mesh_quadruple therefore take the dual faces, directed edges and their location as an input,

and return the same for the new mesh. All new vertices are placed in between the relevant neighbours

in the Eisenstein plane, leaving an identical unfolding. This function can be called n times yielding a

mesh of Nf · 4n elements, illustrated in figure 3.11 going from 1 element (a), to 4 (b) and 16 (c). This

routine can be called in the FEM_Assembly module allowing for easily accessible mesh refinement.

(a) (b) (c)

Figure 3.11.: The computational result of the functions Mesh_quadruple. Feeding a dual triangulation, directed
edges of unfoldings and their coordinates on the Eisenstein grid will lead to each element being
divided into four new elements. The function will for an original element (a) divide and create 4
elements (b) which run again yield 16 elements (c).

9Not necessarily just the vertices, but all nodes based on the polynomial order of the shape functions.

48 Chapter 3 Method

(a)

(b)

Figure 3.12.: (a) show the C168 torus shaped fulleroid consisting of 14 pentagons and 14 heptagons with chemically
stable coordinates, where blue, orange and red illustrate the pentagon, hexagon and heptagon faces
respectively. (b) is the corresponding dual representation computed from the coordinates of each
face in (a)

3.6 Constructing a Torus Shaped Fulleroid
This work will also extend beyond fullerene manifolds by investigating a fulleroid structure. The FEM

software is written generally enough to solve equations on fulleroid dual manifolds, since they are

within cubic graph theory. The alternative triangulation would need a bit of generalization to extent to

heptagons, so the focus will be on the dual representation.

A toroidal shaped fulleroid consisting of pentagons, hexagons and heptagons was chosen. This has

a genus of (g = 1) which will for the discrete Gauss-Bonet theorem yield
∑n
i=1Ki = 4π(1 − g) = 0.

Therefore the torus must have an equal number of pentagons and heptagons to form a closed structure.

But to perform FEM calculations a dual array representing the torus is needed. Computation of the

connectivity of the a torus was done using coordinates from Hypothetical toroidal, cylindrical, and helical
analogs of C60[13]. Here chemically stable coordinates are calculated for C120, C144 and C168. The article

states lists of seven 3-dimensional coordinates that through different given rotational operations yield

all atomic coordinates. This work implemented the C168 shown in figure 3.12a.

Once the atomic structure was computed through the given rotations the indices defining a polygon was

computed. This was achieved by starting from an atom and finding and picking a closest neighbours.

Now that the two first indices are decided a direction can be enforced, meaning that the next the nearest

neighbour picked has a direction right of the original direction10.

With the faces shown in figure 3.12a computing the dual faces is straightforward, since the dual

coordinates are just the mean value of all 3-dimensional coordinates defining a specific polygon, and the

dual faces are computed from the adjacency of the polygons. The dual faces array arising from figure

3.12b will be the input to the FEM software.

10This is perhaps an oversimplification, the code is found in the folder /Torus/ on GitHub along the rotational scheme for
generating the coordinates, if of interest.

3.6 Constructing a Torus Shaped Fulleroid 49

4Results and Discussion

The goal of the research project this thesis is within is, to be able to one day perform fast purely 2-

dimensional DFT on fullerene surfaces. The speculation is that these 2-dimensional densities sufficiently

reflect the nature of its true 3-dimensional counterpart. This new way of approaching quantum chemical

problems, that the fullerene structures allow for, is hoped to eventually lead to understanding and fast

computations of properties of specific fullerene isomers derived through the 2-dimensional electronic

density. The aspiration of this coming together would permit for a multidude of fast computations that

is simply not possible currently.

As a step towards this goal I have built a 2-dimensional FEM software library for discrete surface

manifolds, which allows us to solve differential equations on the surfaces using only the fullerenes graph

representation. The library is written in a genralized way that allow computations of PDEs on any cubic

graph with periodic boundary conditions consisting of equilateral triangles, e.g. fulleroids. This section

will start by presenting results produced using the FEM software, since it is a vital part of further work

on the DFT implementation and has been a focus for the work at hand.

The first results presented are simulations of the heat equation. To help validate the implementation

as well as aid in the understanding of the different basis function implementations. Here simulations

with various initial distributions will be presented on the surfaces of C20-Ih and a C60 nanotube. It is

important to note that, while the surfaces the results will be presented for are of rather small fullerenes.

Thus the assumption that the surface behaviour clealy dominates over the 3-dimensional interactions

in the fullerene volume will generally be least applicable here. This will be crucial when investigating

densities going foward, but is of no concern to this work.

With the validation from the heat equation in place the attention is turned to results related to the

simple DFT described in section 3.3. Here Poisson’s equation and the Kohn-Sham equations have to be

solved in every iteration in the SCF loop. Understanding solutions to these equations before an iterative

implementation is therefore vital. Electron potential solutions to Poisson’s equations will be shown

along the density from which it arose. Here the mesh dependence of the solutions is showcased as well.

These will be solutions of the C20-Ih surface using various basis implementations.

Orbitals arising from the Kohn-Sham equations are then presented. The presented orbitals of the

non-interacting electrons have been computed in a setting of a constant potential. This allow for us to

compare the orbitals to the well known solutions of the hydrogen atom by seeing the C20-Ih surface as a

crude triangulation of a sphere.

With the above solutions in place it will let us implement the FEM software in an iterative manner

within the SCF loop. This will be the first step towards an iterative DFT calculation on the fullerene

surfaces. Simulations of this will be presented with various electron numbers i.e. the number of orbitals

of which the density arise. The simulations will be on the surfaces arising from the C20-Ih, C60 nanotube

and a C120-D6 surfaces are presented.

50

Note all results presented are manifolds arising from the dual representation unfolded onto the Eisen-

stein plane. This is due to the fact that the visualization for the dual is easily constructed in 2-dimensions,

which is not the case for the alternative triangulation. The equilateral triangular nature of the dual also

allow for simple mesh refinement within the same unfolding. Spatial units are defined in terms of A

which is the area of the equilateral triangles the dual consists of.

4.1 Simulating the Heat Equation
The benefit of the simulations of the heat equations are that we can easily construct systems in which

the final solution is known. From an initial heat distribution with no source and periodic boundary the

solution needs to converge towards a uniform distribution. While the final solutions is important, it was

mainly the flow of heat that aided in validating and debugging the assembled matrices. Dealing with the

complexity of inter connecting nodes in a FEM software for high-order basis function implementations,

is no easy task. Applying the matrices to simulations therefore aided greatly in validating and debugging

the geometrical connectivity in the sparse matrices and vectors computed.

All simulations of the heat equation1 are computed using forward Euler time integration, a simple

first-order procedure. This will suffice, since the task at hand is not to produce numerical precise results

but results of physical intuition. The snapshots presented from the computed simulations are snippets

from movies2 created which can be found at https://github.com/SKS94/Fullerene-Thesis/tree/Gifs,

along with other simulations performed on various fullerenes.

4.1.1 Simulations on the C20-Ih surface
Localized initial distribution
Starting by investigating similar simulations using the different basis function implementations shown

in figure 4.1. The forward Euler simulations where performed with a similar localized initial heat

distribution all denoted iteration 0 in the figure. Here snapshots of the distribution during the simulations

are shown on the by now familiar C20-Ih unfolding. Figure 4.1 a, b and c are the flat linear, quadratic and

curved linear implementations respectively. As expected from physical intuition all of these simulations

eventually converge to a homogeneous distribution. The full_integration function was called during

the iterations to make sure the amount of heat in the system stayed constant3, which was the case

for all the numerically stable heat simulations performed. After 20 iterations the flat space linear

and quadratic simulations have dissipated to a somewhat alike distribution. The linear curved space

simulation dissipate throughout the system slower which is highlighted at iteration number 20 and 70.

The fact that the curved space simulation converges slower is illustrated in figure 4.2. The nature of the

cotan Laplacian, which seem differently scaled to the other laplace operators, will be covered in section

4.2.1 when discussing the solutions to the Hartree potential.

In figure 4.2 the linear and quadratic flat space simulations are almost indistinguishable, while the

curved space simulation converges significantly slower. Simulations can obviously be performed where

the difference of the flat space implementations are apparent, but here the focus has been to show that

a sufficiently small δ yields somewhat identical results.

While discussing these continuous solutions in figure 4.1 remember that it is computed discretely using

the number of nodes relevant to the basis functions. This discrete system only contain 20 cells which

1Perhaps referring to this as a solution to the diffusion equation would be slightly more correct, since this is a entirely
dimensionless simulation performed.

2gifs
3i.e. conservation of energy

4.1 Simulating the Heat Equation 51

https://github.com/SKS94/Fullerene-Thesis/tree/Gifs

have Ndof = 12 for (a), (c) and Ndof = 42 for (b). This somewhat coarse mesh and the fact that the

basis functions are piece-wise polynomial is quite apparent in the initial distribution(iteration 0). This

can be seen by lines outlining edges in triangles connected to the "warmest" point.

Random initial distribution
A simulation with a somewhat disordered initial distribution is shown in figure 4.3. The initial heat

distribution is a collection of random numbers between 0 and 100 added to all nodes. Contrary to the

system simulated in figure 4.1 which has a heat flow away from a localized source, this simulation has a

more chaotic initial distribution. As the simulations iterates we once again arrive at an even distribution,

while preserving the total amount of heat within the system. We see that the initial heat signature

in figure 4.3a has mainly two areas that are significantly colder than the rest of the manifold. As the

iterations progress in figure 4.3b and 4.3c we see that these spots remain colder until convergence is

reached to an expected value of ≈ 50 A−1.

52 Chapter 4 Results and Discussion

(a) (b) (c)

Flat-space linear Flat-space quadratic Curved-space linear

[A−1]

Heat simulation using various basis function implementations

Figure 4.1.: Snapshots of unit-less heat equation simulations performed on the surfaces arising from the C20-Ih

molecule. The simulations are performed using the written FEM software with various basis function
implementations. All simulations uses a time-step δ = 0.015 and are initiated with the same initial
heat distribution. The different basis function implementations shown are (a) the flat space linear, (b)
the quadratic and (c) the linear curved space using the contangent Laplacian.

4.1 Simulating the Heat Equation 53

Dissipation speed

Figure 4.2.: The largest heat difference between all nodal points as a function of number of iterations in the heat
simulations shown in figure 4.1.

Heat dissipation of random initial distribution on C20-Ih surface

[A−1]

Figure 4.3.: A forward Euler simulation of the heat equation on manifold arising from the dual representation of
the C20-Ih with time-step δt = 0.015. Produced using the written FEM software with the quadratic
shape function module. (a) The initial heat signature with random node values between 0 and 100
which after 10, 20 and 200 iterations yield (b), (c) and (d) converging to a uniform distribution.

54 Chapter 4 Results and Discussion

4.1.2 Heat equation on a C60-Nanotube Surface
Longest geodesic location using localized initial distribution
A similar simulation with an initial localized distribution is presented for the C60 nanotube surface.

Which is the thinnest closed nanotube possible. All pentagons are situated at the endings, with 6

pentagons adjacent to each other. Since this is the first encounter with the C60 nanotube unfolding an

illustration with labelled vertices appearing more than once is given in figure 4.4.

The specific simulation performed is like the localized distribution simulation performed for C20-Ih.

The initial distribution can be seen in figure 4.5a. The purpose of this simulation will however be

to showcase a different physical aspect of the system. A challenge when dealing with surfaces of a

non-Euclidean geometry is calculate of basic geometrical properties, such as distances between two

points. Approaching the challenge of finding the node with the longest geodesic to another node, where

an initial heat distribution is placed. The heat will flow towards a uniform distribution, however the

point furthest away will the last point the heat flow reaches.

A few snapshots of the simulation are presented in figure 4.6. The localized heat distribution is quite

apparent after 40 and 60 iterations. After 100 iterations the heat is more scattered and the flow of heat

perhaps not as intuitive to grasp. Our interest is mainly towards the near convergence plot in iteration

600. This is plotted with an appropriately scaled colormap in figure 4.5b. Here heat is still flowing

towards the vertices of label 3 and 0. The unfolding reveal that the heat flow is closer to vertex number

3. Vertex 0 is therefore the longest geodesic vertex from the initial structure, which agrees with the

unfolding.

This may seem like a rather odd way to approach the stated challenge, but as a matter of the fact an

approach subject to research within the computer science community4[24]. Now that the heat flow

simulation using the FEM software has yielded results in accordance with physical intuition we turn our

attention to the PDEs within the SCF-loop.

4As a way to help maps and compute behaviour in animations of objects with non-euclidean surfaces

4.1 Simulating the Heat Equation 55

Figure 4.4.: An unfolding of the the C60 nanotube, where all vertices that appear more than once in the unfolding
are labelled. Connecting these matching labels will yield the 3-dimensional dual structure of the
nanotube.

[A−1]

(a)

[A−1]

(b)

Figure 4.5.: (a) The initial heat distribution used to initialize the simulation shown in figure 4.6. (b) The simulation
in figure 4.6 after 600 iteration shown with a colormap that highlights the differences in the heat
distribution, which reveals the longest geodesic from the initial distribution

56 Chapter 4 Results and Discussion

[A−1]

Figure 4.6.: Forward Euler simulation on the C60 nanotube with δ = 0.015. The snapshots shown are after 40,
60, 100 and 600 iterations were performed. For a detailed look at the distribution after 600 iteration
consult 4.5b.

4.1 Simulating the Heat Equation 57

4.2 A Rudimentary 2-Dimensional DFT
Shifting the focus to the task of using the FEM software within a DFT model. This will aim to lay the

groundwork of creating future physically sound simulations of the fullerene’s electronic densities. Before

diving into a SCF loop implementation in DFT, the following section will present solutions to Poisson’s

equation and the Kohn-Sham equations. The solutions to both Poisson’s equation and the Kohn-Sham

equations will be in a generalized setting i.e. solving systems in which we have at least some intuition

of what to expect which allow to further validate the FEM software. Note that all units are with respect

to the area A of the equilateral triangular unit cell for the dual. The energies are in Hartrees which will

generally be denoted Eh.

4.2.1 Solutions for the Hartree potential
The DFT solutions produced by the SCF loop heavily depend on the implemented Kohn-Sham potential.

One of the potential contributions is the Hartree potential, which can be computed by solving Poisson’s

equation for the electronic density. The Hartree potential is as discussed in section 2.3 a vital part in any

DFT as it accounts for the repulsive nature of electron-electron interaction.

All solutions to the Hartree potential were found using a least square solver, as seen in the SCF-loop

listing 3.10. The presented solutions of the Hartree potential will be illustrated with the corresponding

density distribution from which it arose.

Local Density on C20-Ih Surface
The first solution investigated is a localized density structure shown in figure 4.7. The density structures

in figure 4.7 are all normalized to
∫

Ω ρ(x)dx = 10. The mid-edge nodes in the quadratic case have been

set to match the values in the linear approach for the initial density. Once a solution in 4.7 was found

it was shifted by subtracting the maximum value. The solution is therefore solely negative with the

highest repulsion for negative charges being located at the high density5.

Figure 4.7 (a) and (b) which are the flat space linear and quadratic basis, show an almost identical

response in distribution and strength. However the visualization clearly shows the coarse nature of

the linear implementation. For the curved implementation in figure 4.7c the solution is similar. The

potential differs quite noticeable in strength compared to (a) and (b).

Although this seems strange it is not unexpected. Recalling the mathematical approach of the cotagent

laplacian, this included scaling with respect to the Voronoi cell for each triangle vertex. The use of

dividing by Voronoi cells to scale the cotagent expression in equation 3.1.29 is a popuplar approach but

not unique mentioned in section 3.1.5. We should therefore not necessarily expect the curved and linear

approaches to yield in this case potentials with corresponding strenghts.

One could investigate a possible scaling between the flat and curved space implementations. This could

be done by constructing a dual mesh arising only from hexagons and scale the curved space laplacian

to yield the same result as the flat space solution, since such a mesh has Gaussian curvature of 0
everywhere. A future task is therefore a matter of scaling the solution of the potential to an appropriate

strength in the DFT.

5If a model only accounted for the hartree potential this shift is not necessary, since points with the lowest repulsion would
create the same physical behaviour if defined to attract.

58 Chapter 4 Results and Discussion

(a)

(b)

(c)

Flat-space linear

Flat-space quadratic

Curved-space linear

[A−1]

[A−1]

[A−1]

[EH·A−1]

[EH·A−1]

[EH·A−1]

Figure 4.7.: Solutions to the Hartree potential arising from the densities from which they arose. (a) and (b) are
linear and quadratic flat space implementions while accounts for curvature (c). All densities shown
left are of an localized nature which yields a Hartree potential peaking in this localization.

4.2 A Rudimentary 2-Dimensional DFT 59

Symmetric Density on C20-Ih Surface
Now we turn to a solution in which the physical inaccuray is apparent due to the coarseness of the

implemented mesh. Figure 4.8 show the densities investigated, with a density localized on 10 triangles

with the distribution peaking in the bottom and top vertices. The computed potentials are inaccurate

approximations to a correct continuous solution since it fails to capture several aspects of a correct

continuous solution.

If we turn to the linear solutions in (a) and (c) the behaviour of the potential is to drop when moving

away from the vertices with the localized distribution. It however reaches its minimum and is constant

across all triangles in between the triangles with non zero density. We would expect it to decrease further

as we approach the furthest distance away from the concentrated density distributions. A true solution

will not be a horizontal line in the middle of constant magnitude since distances between the localized

densities are not constant along this line6. It can however be helpfull to think of when investigating

the solutions since the potential variations on such a line can be rather small. While physically wrong,

the solutions discussed is a product of a coarse mesh and a basis of low polynomial order. The linear

elements have no vertices where the minimum occures and can simply not represent this behaviour any

better.

Reaching a better solution with the same polynomial order can only be done by using a finer mesh7.

Solutions after further dividing all triangles into four smaller triangles are shown in figure 4.9. This

shows a more smooth gradient behaviour of the potential as we are moving away from the localized

charge distribution. The minimum occure where it is expected to, but this is only made possible due to

nodes being present at the minimum. This showcases the importance of the mesh. Note all triangle

nodes on the horizontal middle line will be the same distance from the densities. There can therefore be

no varitation in the potential along this line.

The quadratic solution in figure 4.8 just as in the linear case fails to capture the necessary physical

behaviour. The nodes that are on the before mentioned horizontal line does have the smallest value, but

is only slighly different than the vertex nodes for the same triangle. The finer mesh in figure 4.9b yields

a more physical sound solution. While difficult to see in figure 4.9b the solutions on the horizontal line

vary slightly. The minimum value of 0 occure on the triangle vertices on the line, with the mid point

node having values of ≈ −0.155 EH·A−1. Note the smoothness of this solution compared to the linear

implementations in figure 4.9 (a) and (c).

6This would be the case for a sphere with densities located at two opposite poles.
7assuming the original mesh is sufficeintly regular

60 Chapter 4 Results and Discussion

(a)

(b)

(c)

Flat-space linear

Flat-space quadratic

Curved-space linear

[A−1]

[A−1]

[A−1]

[EH·A−1]

[EH·A−1]

[EH·A−1]

Figure 4.8.: Inaccurate solution to the Hartree potential arising from the densities from which they arose due to
the coarse mesh. (a) and (b) are linear and quadratic flat space implementions while accounts for
curvature (c). All densities shown left are of an localized nature which yields a Hartree potential
peaking in this localization.

4.2 A Rudimentary 2-Dimensional DFT 61

(a)

(b)

(c)

Flat-space linear

Flat-space quadratic

Curved-space linear

[A−1]

[A−1]

[A−1]

[EH·A−1]

[EH·A−1]

[EH·A−1]

Figure 4.9.: A finer mesh applied to the Hartree solutions in figure 4.8. (a) and (b) are linear and quadratic flat
space implementions while accounts for curvature (c). All densities shown left are of an localized
nature which yields a Hartree potential peaking in this localization.

62 Chapter 4 Results and Discussion

General Considerations
A problem for the system at hand is however the periodic boundary conditions. In a general FEM setting

the approach is to use Dirichlet boundary condition are usually added, i.e. the solution is set to zero

sufficiently far away from the region of interest. This is the case in where [25] this is enforced both

on the electrostatic potential and the electronic wavefunctions Due to the periodic boundary no values

can be enforced, this leaves Poisson’s equation undetermined. Poisson’s equation in periodic boundary

conditions assure a unique set of solutions where two solutions differ by an additive constant. The

only considearation of this additive constant within this work is that all potentials are shifted to have a

maximum of value of 0 EH·A−1 at the point of least repulsion. An alternative approach to this is needed,

since the system with correctly scaled nuclei interactions must respond accordingly with a correctly

scaled electronic behaviour.

The focus will throughout the rest of this thesis be on the linear curved space implementation. It not

only captures the true nature of the surfaces better, we avoid an apparent problem with the quadratic

representation.

In the SCF loop a new density is an linear combination of single particle densities, the densities

will therefore always be positive as it should be. However, the quadratic basis may have negative

values in the polynomial representation between the nodes. Take the vector fi =
∫

Ω ρ(x)ϕi(x)dx,

when computing this the Gaussian quadrature method need a polynomial representatiton at certain

coordinates, where a negative density may occur. An automated warning was set up in SCF loop to

identify if this happened. This was not an unlikely occurence and the focus is therefore shifted to the

linear curved space implementation for now.

4.2 A Rudimentary 2-Dimensional DFT 63

Figure 4.10.: The spherical harmons yielding the angular part of the hydrogen orbitals. Downloaded from
wikipedia [26]

4.2.2 Kohn-Sham Orbitals
The results discussed so far have been based on whether or not solutions using the FEM software

yield physically sound behaviour from intuition. Having results from previous similar simulations

to compare with would obviosly be ideal and aid in further implementing and tweaking of the FEM

software8. However now that we turn the attention to the eigenvalue problem of the Kohn-Sham

equations, solutions are shown which can be seen as a approximations to a well-known system with

familiar solutions.

The eigenvector solutions presented will once again be on the C20-Ih surface using the contangent

Laplacian. Constructing an enviroment with a uniform distribution of density yield a constant potential

which is fed to the Kohn-Sham solver. Here we will investigate solutions based on the fact that the

C20-Ih surface can be seen as a crude polyhedral approximation to represent a sphere.

As we know the quantum mechanical solutions of the hydrogen atom are electron wave functions

occuring due to a stationary positively charged proton in the center. The electro-static potential arising

from the prescence of a proton is only dependent on the distance from the proton, thus the potential has

perfect spherical symmetry. Our 2-dimensional surface with a constant potential can therefore be viewed

as a sphere enclosing a charge. Our solutions to the Kohn-Sham equations must consequently somewhat

resemble the spherical harmonic nature of the hydrogen wave functions illustrated in figure 4.10. The

results that follow where obtained using a mesh consiting of 20 · 43 = 1280 equilateral triangles.

The first 9 Kohn-Sham orbitals computed i.e. the eigenvectors with the lowest eiganvalues are shown

in figure 4.11, 4.12 and 4.13. Starting with the lowest energy orbital shown in figure 4.11. This has

a constant value and subsequently also a constant density on the surface. This is identical to the s

orbital in figure 4.10. It has the lowest energy corresponding to the hydrogen solution as well as being

non-degenerate.

The next orbitals in line are three solutions with an identical energy as seen in figure 4.12. All consist of

two peaks of a positive and a negative nature. Here the value zero correspond to the plane in between

the negative and positive region in each p orbital in figure 4.10. Just as in the hydrogen atom where

the non-zero angular momentum break the spherical symmetry, the eigensolver compute the three
8which will mainly be more complex discretizations to the Laplace-Beltrami operator as well as basis functions of higher

polynomial order.

64 Chapter 4 Results and Discussion

[A−1/2]

Figure 4.11.: The lowest energy orbital solution in the Kohn-Sham equations on the C20-Ih surface correpsonding
to a spherical cut-out of the s orbital in the hydrogen atom. The solution is found using the FEM
software with a detailed mesh consisting of 1280 triangles using the cotangent Laplacian. Figure
4.12 and 4.13 are illustrations of higher energy orbitals. Note the energy is in Eh

orthogonal eigenvectors spanning the eigenspace yielding the p orbitals. The axes the solutions picks

out in figure 4.12 is easily comparable to the hydrogen three time degenerate p orbitals where the

magnetic quantum number is m = 1 for (a), m = −1 for (b) and m = 0 for (c).

After the p like orbitals we have five eigenvectors that all have the same energy shown in figure 4.13.

This is once again corresponding with the hydrogen solutions in this case the d orbitals. The complexity

of the orbitals does make the manifold unfolding much harder to interpret. If we take the special case of

m = 0 where we would expect two distinct circular peaks of the same sign opposite of each-other. This

is the case for figure 4.13 (d), which shows two negative regions surrounded by a positive band. The

other orbitals show two distinct peaks in both the negative and positive values in line the the d orbitals

with m 6= 0.

4.2 A Rudimentary 2-Dimensional DFT 65

[A−1/2][A−1/2]

[A−1/2]

Figure 4.12.: Kohn-Sham orbitals number 2, 3 and 4 if ordered after lowest eigenvalue for the C20-Ih surface. The
eigenvectors correspond to p orbitals which a which picks out three unique axes in the system. They
all have the exact same eigenvalue and are identical differing by orientation. Note the energies are
in Eh

[A−1/2]

[A−1/2][A−1/2]

[A−1/2]

[A−1/2]

Figure 4.13.: Kohn-Sham orbitals number 5, 6, 7, 8 and 9 if ordered after lowest eigenvalue for the C20-Ih surface.
All energies which are in Eh are identical and while the eigenvectors correspond to d orbitals in the
hydrogen atom.

66 Chapter 4 Results and Discussion

Figure 4.14.: Kohn-Sham orbital φ1 with an energy of ε1 = 1.000 EH

Kohn-Sham Orbitals on C168 Torus
To emphasize the finite element PDE solvers applicability beyond fullerenes we turn the attention to

the case of the C168 torus constructured in section 3.6. The FEM has been built to work for all dual

representations arising from a cubic graph with periodic boundary conditions. While the triangulation

for the cases of fulleroids and fullerenes are embedded in a real space representation it is not a necessary

restriction set by the software.

Just as in the above C20-Ih surface the presented results will be of the orbitals arising on the torus

surface due to a constant potential everywhere. The solutions were computed using the dual but will be

represented on the real fullerene pentagon/hexagon representation. Each polygon will have a constant

colour corresponding to the value of the dual node in the middle. The solutions were computed using

the original number of triangular cells in the dual of 168, with Ndof = 84.

The orbital of lowest energy shown in figure 4.14 is non degenerate. It is perhaps a bit unclear due to

the shading, but it is has constant nodal values everywhere. The solutions then interestingly exhibit

solutions of Kohn-Sham orbitals are 2-fold degenerate. All the pairs of orbitals in figure 4.15, 4.16 and

4.17 show a somewhat continuous behavior. The true orbitals must be continuous and the computed

orbitals should obviously obey this. There is of course a limitation to the complexity of the solution the

linear implementation can represent, which is why we are only concerned with the low energy orbitals

in this case. No orbitals jump from a maximum value to a minimum value in discontinuously, i.e. there

is a gradual difference in color between a maximum and minimum value.

4.2 A Rudimentary 2-Dimensional DFT 67

Figure 4.15.: Degenerate Kohn-Sham orbitals φ2 and φ3 with an energy of ε = 1.011 EH

Figure 4.16.: Degenerate Kohn-Sham orbitals φ4 and φ5 with an energy of ε = 1.043 EH

Figure 4.17.: Degenerate Kohn-Sham orbitals φ4 and φ5 with an energy of ε = 1.095 EH

68 Chapter 4 Results and Discussion

Figure 4.18.: The L2-norm difference between ρi and ρi+1 in the SCF loop. Here the number in the legend denote
the number of orbitals of which the density consist i.e. how many electrons present in the system.
The SCF loop initializes the density mixing after 15 iterations which allow several of the simulations
to converge to the 10−2 criteria used.

4.2.3 SCF Loop
While a full 2-dimensional DFT with nuclear attraction is beyond the scope of this project, a SCF loop

algorithm was constructed where the Hartree potential and Kohn-Sham equations are obtained using the

developed PDE solver. The SCF loop implementation will however tested in systems with only electrons

present. An initial localized density will be the initial density for simulations with a varying number of

electrons. It will then be investigated what systems converge as well as the density they converge to.

The C20-Ih surface will serve for discussion of general behaviour, examples of a few simulations will

then be given for the surfaces of C60 nanotube and a C120-D6.

Starting with figure 4.18 show the convergence of the density at iteration i for a few selected simulations

with a various number of electrons on the C20-Ih surface. All simulations where performed with a mesh

consisting of 80 elements and a convergence criteria of 0.01. At iteration number 15 the density mixing

scheme is initialized and used throughout to highlight it’s importance and behaviour for minimizing

charge sloshing. The convergence behaviour of the all the simulations using from 1 to 24 orbitals are

included in SCF loop can be found in appendix A. The following sections will be closing in on specific

simulations in figure 4.18.

1-Electron Density on the surface manifold of C20-Ih

The 1-electron simulations initial density can be seen in figure 4.19a. This localized density distribution

will inevitably create orbitals mainly with distribution opposite of this. The next density computed based

on ρ0 is seen in figure 4.19b. This will be an endless loop of charge sloshing with c showcasing the

density for the next iteration. This distribution would bounce back and forth iteration after iteration

and partly explain why the initial density can be extremely influential. We see in figure 4.19e that

the energy of the states during the charge sloshing are identical. It is not until density mixing is

introduced that the densities start to converge to a more stationary structure between each iteration.

While the convergence of the density is computationally an easily constructed parameter to control

the SCF-loop, it would bare no physical significant if the energy did not minimize as well. This energy

minimize to a evenly density distribution which is seen in figure 4.19. Note that the convergence has

4.2 A Rudimentary 2-Dimensional DFT 69

[A−1]

[A−1]

[A−1]

[A−1]

Figure 4.19.: SCF simulation of C20-Ih with a density constructed from a single orbital. The SCF loop is initiated
with the density seen in (a) while (b) and (c) show the first and second computed densities
respectively. (e) Show the L2-norm difference between density ρi and ρi+1 and the energy in Eh

associated with density ρi. The convergence criteria of 0.01 is met 5 iterations after density mixing is
introduced and yields a uniform final density shown in (d). Convergence criteria 0.01 using a mesh
of 80 triangles, introducing density mixing after 5 iterations.

nodal values ≈ 0.0385 A−1, which is easily shown to confirm the normalization for a constant density∫
Ω ρ0dx = ρ0

∫
Ω dx = 0.0385 A−1 · 20

√
27
4 A ≈ 1.9

Many-Electron Density on the surface manifold of C20-Ih
A 4-electron system an very similar convergence and energy behaviour to the one electron system can

be seen in figure 4.20b. The final density reached shown in figure 4.20a is almost a uniform distribution.

The distribution does however contain small peaks, which are located at the vertices whose Voronoi

element is hexagonal. This distribution will yield a potential which is almost flat, though with a slight

repulsion at the small density peaks. It is due to the repulsive nature being small, the interplay between

the Kohn-Sham orbitals and the density mixing will yield a similar structure, thus the final density also

depend on the mixing scheme and α parameter. This solution is not far from a uniform density and is

within 1% in energy.

Another converged simulation is that of 25-electrons which can be seen in figure 4.21. It has a similar

density structure and will produce densities alike the one shown due to the same arguments. The

relaxed densities are all close to a flat distribution, with small density peaks recognizing the symmetry

within the manifold. This therefore greatly exemplifies the dependence on the number of orbitals the

9since the system has 20 triangles each of A =
√

27
4 .

70 Chapter 4 Results and Discussion

[A−1]

Figure 4.20.: (a) Final density for the SCF loop for 4-electron system with the energy in Eh and convergence
behaviour plotted in (b). The simulation was performed with an initial localized density causing
charge sloshing, which is inhabited by introducing density mixing.

4.2 A Rudimentary 2-Dimensional DFT 71

[A−1]

Figure 4.21.: (a) Final density for the SCF loop for the 25-electron system with the energy in Eh and convergence
behaviour plotted in (b). The simulation was performed with an initial localized density causing
charge sloshing, which is inhabited by introducing density mixing.

density is constructed from. In figure 4.22 an example of a non-converge simulation is shown. Here

the somewhat chaotic density (a) yields (b), which show a high spatial displacement of charge. The

densities, although not far from flat, look nothing alike and will show no converging behaviour if

continued further. The density mixing does have an effect, but it effectively only shifts the value of the

L2-norm seen in (c), and it iterates until manually stopped. The energy remains alike in the system just

like L2-norm, meaning that while the difference in densities is apparent it is not for the energy. The

simulations are quite delicately dependent on the mixing scheme, initial density and number of orbitals

included.

Many-Electron Density on the Surface Manifold of C60-nanotube

Now we apply the SCF loop to a larger fullerene than the dodecahedrane namely a C60 nanotube with

the already familiar unfolding illustrated in figure 4.4. Simulating 25-electron and 50-electron densities

yield the final densities shown in figure 4.23. Here the densities look quite similar and clearly converge

to a density that highlights the symmetry in the nanotube. This seems to be the case for all converging

densities the SCF loop computes for the electrons contained on the manifolds.

Many-Electron Density on the surface manifold of C120-D6

Applying the SCF loop to an even larger fullerene surface from a C120-D6 molecule. The unfolding for

this surface is seen in figure 4.25 since this is the first encounter of the unfolding. A SCF loop simulation

yielding the final 100-electron density can be seen in figure 4.24. Except the small peaks near the

pentagons this is almost uniform. An outline of a hexagon can though vaguely be seen in the middle.

All of these vertices have an equal geodesic to the closest pentagon dual node outlining the symmetry. Is

must be emphasized that these densities are the optimal result that SCF loop can reach. The method is

72 Chapter 4 Results and Discussion

[A−1][A−1]

Figure 4.22.: The failed SCF loop for the 5-electron simulation. (c) The convergence does not decrease much after
the density mixing is introduced and it remains flat. After 39 iterations the density (a) yield the
wildly different density (b). Energy in in Eh.

[A−1]

(a)

[A−1]

(b)

Figure 4.23.: Final converged electronic densities on a C60 nanotube surface. The 25-electron density in (a) and
50-electron density in (b) have both reached a convergence criteria of 10−6 in the SCF loop after
22 and 24 iterations respectively. The density initial density was a flat distribution and the mixing
scheme was initiated after 5 iterations

4.2 A Rudimentary 2-Dimensional DFT 73

[A−1]

Figure 4.24.: Final converged electronic densities on a C120-D6 surface. The 100-electron density reached a
convergence criteria of 10−6 in the SCF loop after 15 iterations respectively. The density initial
density was a flat distribution and the mixing scheme was initiated after 5 iterations. The original
120 triangle dual mesh was further refined to 480 triangles.

especially interesting due to future aspect. The SCF scheme in itself is not an approach especially suited

to the nuclei-less 2-dimensional surfaces

74 Chapter 4 Results and Discussion

Figure 4.25.: A C120-D6 dual unfolding to the Eisenstein plane, where all vertices that appear more than once
in the unfolding are labelled. Connecting these matching labels will yield the 3-dimensional dual
structure of the molecule.

4.2 A Rudimentary 2-Dimensional DFT 75

5Outlook

Now with all the the details that have been presented in this work, let us take a step back and walk-

through the bullet points of the work and challenges the research project faces in the future. This will

be a collection of tasks that are generally beyond the scope of this thesis as well as modifications needed

to the written software.

5.1 FEM Related Challenges
One of the important aspects of the FEM software are the basis function implementations. While the

linear curved space implementation is easy to work with, the complexity which it captures is decided

only by the mesh. It seems no clear consensus within the engineering and computer science communities

on how to approach non linear basis functions that account for curvature, is present. An approach

to this, would allow for the possibility of using high order polynomial functions and therefore more

complex simulations.

The 2-dimensional approach was based in the hope that the extreme electron mobility along the

graphene like surfaces dominate over electronic interactions through the hollow volume. While this

may generally be the case for many of the hexagons, the pentagons induce positive Gaussian curvature

and will make the inter volume interactions more likely. Not only does this lose its validity at the 12

pentagons, but there are the areas of greatest interest. Here the idea is to extend the surface mesh

to a simplical complex, consisting of 2-dimensional triangles and 3-dimensional tetrahedra. These

3-dimensional shapes will then be constructed at areas of interest near the pentagons. This is in fact the

subject of a thesis currently within the group.

5.2 DFT Related Challenges
As mentioned we have an undetermined solution to Poisson’s equation on periodic boundary conditions.

This means that a solution to Poisson’s equation only define the Hartree potential up to an additive

constant. The Hartree potential must represent the electronic repulsion shifted correctly, before the

nuclei are accounted for. An idea to investigate this shift would be to construct a simulation in which

the Hartree potential or its corresponding energy to a given density is known.

Once this is achieved the attention can be turned to the positively charged nuclei. In the dual represen-

tation each atom is situated at the center of a face. This must be approached in a smart manner, due to

finite element methods inability to generally represent functions with exponential behaviour, present

due to atomic cusps of wavefunction and densities at nuclear centers. To even represent this in a FEM

sense, the mesh would need to become finer and finer towards the cores, until itself is infinitely dense.

76

However since it is mainly the valence electrons that are of our interest we are aided by the concept of

psudopotentials. Pseudopotentials attempts to encapsulates the joint potential behaviour of the core

and the inner shell electrons.

Another new untested approach would be to add the graphene solution to the 2-dimensional unfolding.

This is idea is that a DFT treatment of the fullerenes can be developed for which solutions are difference

densities to the graphene-like solutions, smooth enough to be treated numerically with finite elements.

The part of the solution that looks like graphene wrapped around the polyhedron is also the same

for all isomers. This can therefore hopefully be factored out of the solutions and represented as a

mostly-smooth potential. This idea is currently in an early speculative state, but an interesting approach

none the less.

The DFT model constructed does not account for spin in any way. Two different ways of approaching this

is through the restricted and unrestricted formalism. The restricted formalism enforce that up and down

spins accompany each-other and doubly occupy orbitals. Contrary to this, is the unrestricted formalism

in which a "pair" of up and down spins can occupy different spatial orbitals with energies sufficiently

close to each other. Whichever and however these are implemented, we compute a density as the sum

of the spin densities ρ(x) = ρ↑(x) + ρ↓(x). Extending the used LDA for the exchange potential in a

spin-polarized system is straight forward. This is however not the case for the implemented correlation.

The desire to implement a generalized gradient approximation has however been discussed in the group.

It could therefore practical to tackle these challenges simultaneously.

If the 2-dimensional approach manages to approximate true density appropriately to search through

large isomer spaces. A search of specific characteristics will then perhaps yield 1000-100,000 isomer

candidates. The plan is then to produce the 3-dimensional structures of the specific isomers using force

field optimization from the graph, recently researched within the group[27]. Projecting the surface

densities into a 3-dimensional representation will allow for deriving molecular properties and finally

map the isomers which are actually interesting to perform a complex time consuming DFT analysis on.

The early work done in [28] within the group investigated how one might approach this 3-dimensional

projection. This was based on testing the hypothesis of whether or not a 3-dimensional density can be

approximated by a 2-dimensional representation by

ρ(s, z) = a(s)e−b(s)|z| (5.2.1)

Here the ρ(s, z) is density dependent on the surface coordinate s and the orthogonal distance from

the surface z. Each surface point will then be assigned values of the scalar field functions a(s) which

describe the density on the surface and b(s) describing the decay away from a certain point on the

surface.. The work was somewhat inconclusive with respect to this problem but if future work deem it

usable, it allows for simple 3-dimensional projections of the 2-dimensional densities. It was suggested

that two different models were needed for the decay inward and outward in respect to the fullerene

surface.

5.2 DFT Related Challenges 77

6Conclusion

This thesis has constructed an approach to solve partial differential equations on the non-euclidean 2-

dimensional surfaces of fullerenes as well as implementing the approach in a preliminary 2-dimensional

density functional theory method. The methods developed in this thesis have laid the groundwork

for research to come investigating purely 2-dimensional electronic densities on the fullerene surfaces,

hopefully yielding sufficient approximations to the true 3-dimensional electronic densities. If successful,

this will in theory greatly reduce the computations needed for approximating electronic densities,

allowing for us to search for specific molecular properties in huge isomer spaces.

The approach uses a finite element method with a curved space Laplacian-Beltrami operator, which

due to the fullerenes geometrical properties, allow for solutions to be obtained by only providing the

fullerenes bond graph representation as the input. PDEs on fullerene surfaces are therefore possible

without any global coordinates. This was constructed from scratch to allow for full computational

control of the method and made it possible to tailor the method to the graph input. More importantly it

allow for tweaking the approach to the Laplace-Beltrami operator in the hope of describing the curved

2-dimensional surfaces. This was all implemented in as a python software library, written in a way

which allows to easily adapt higher complexity of the polynomial order of basis functions in the finite

element method in the future. Once fully functional, it can be be constructed in C++ allowing for much

faster computation which can then be included in the Fullerene Library[29].

A 2-dimensional preliminary DFT was then developed with a local density approximation accounting

for the exchange-correlation potential. This DFT directly implemented the newly developed surface

manifold FEM library to solve Poisson’s equation and the Kohn-Sham equations on the fullerene surfaces

in an iterative manner within a SCF loop.

Results from the partial differential equations solver was presented. The heat equation was investigated

in an qualitative manner on the C20-Ih and a C60 nanotube surfaces, which yielded meaningful results in

terms of verifying that the nodes defining adjacent triangles were computed correctly within the solver.

It also yielded an intuitive flow of heat dissipating throughout the fullerene structure converging to a

uniform distribution.

Poisson’s equation was investigated on the C20-Ih surface. It showcased the importance of further

meshing the dual graph triangulation before solving. This is an important result going forward and the

dual triangulation without mesh refinement will need a basis functions of a higher polynomial order.

Solutions to the Kohn-Sham orbitals were then presented in the context of the hydrogen atom. The

orbitals were computed using a constant potential on the dodecahedran surface. These orbitals were

then compared to the solutions of the hydrogen atom and showed to not only obey the same degeneracy

present in the spherical harmonics but having analogous orbital shapes. Similar results of orbitals arising

from a constant potential along the fullerene surface were presented for a C168 torus, partly to show the

PDE solver’s general applicability.

Lastly the results for the SCF loop with N -electrons confined to the 2-dimensional surfaces were pre-

sented on the C20-Ih, a C60 nanotube and a C120-D6 surfaces. Several simulations for the dodecahedron

78

surface with a various number of electrons was presented, where several cases yielded converging

distribution of the electronic density. The converging electronic density distributions showed to clearly

arrange in some symmetric structure within the surface. Converging simulations may therefore generally

be easier to obtain on fullerene surfaces within the groups of the highest symmetric order. These results

showcased the skeleton for a DFT where the developed PDE solver was applied, hence the intermediate

nature of the results.

Future Work
The work at hand should be considered in the larger context of the Folding Carbon Project https:

//www.nbi.dk/~avery/folding-carbon/. The outlook along with future work presented in section 5

is therefore of great importance. Here extensions necessary to the code developed in this thesis was

stated. This also dealt with approaches to include nuclear attraction through pseudopotentials as well

as a speculative approach of computing difference densities to the graphene solutions.

If all research within the Fullerene project can succesfully realized it could in theory enable researchers

and engineers to categorically search huge isomer spaces of fullerenes with desired molecular properties.

The specific isomers could then be realized synthetically through rational synthesis. For this to ever be

realized a multitude of things has to come together, but the prospects are fascinating none the less.

79

https://www.nbi.dk/~avery/folding-carbon/
https://www.nbi.dk/~avery/folding-carbon/

Appendices

80

AAppendix

A.1 Convergence of C20 Simulations

Figure A.1.: The convergence scheme for 1 to 12 electrons confined to the C20-Ih surface

Figure A.2.: The convergence scheme for 13 to 24 electrons confined to the C20-Ih surface

81

BAppendix

B.1 Directory Overview of the Software
directory

DFT SCF loop.py

Heat tester.py

Plotting

plot.py

animation.py

FEM

FEM_Assembly.py

BasisFunction_Modules

BasisFunctions_Linear.py

BasisFunctions_Quadratic.py

CoordinateQuadrature

coordinates_7.py

coordinates_54.py

weights_7.py

weights_54.py

UnitCell_Computations

UnitCell.py

TriangularElements

shape_construction.py

82

ABibliography

[1] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, „C60: Buckminsterfullerene“,

Nature, vol. 318, no. 6042, pp. 162–163, 1985.

[2] S. Nam, J. Seo, S. Woo, W. H. Kim, H. Kim, D. D. C. Bradley, and Y. Kim, „Inverted polymer

fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electron-

collecting buffer layers“, Nature Communications, vol. 6, no. 8929, 2015.

[3] J. J. Ryan, H. R. Bateman, A. Stover, G. Gomez, S. K. Norton, W. Zhao, L. B. Schwartz, R. Lenk,

and C. L. Kepley, „Fullerene nanomaterials inhibit the allergic response“, Journal of Immunology,

vol. 179, no. 1, pp. 665–672, 2007.

[4] O. V. Pupysheva, A. A. Farajian, and B. I. Yakobson, „Fullerene nanocage capacity for hydrogen

storage“, Nano Lett, vol. 8, no. 3, pp. 767–774, 2008.

[5] J. Cami, J. Bernard-Salas, and E. P. andS.E Malek, „Detection of c60 and c70 in a young planetary

nebula“, Science, vol. 329, no. 5996, pp. 1180–1182, 2010.

[6] P. Schwerdtfeger, L. N. Wirz, and J. Avery, „The topology of fullerenes“, WIREs Computational
Molecular Science, vol. 5, no. 1, pp. 96–145, 2015.

[7] G. Brinkmann, K. Coolsaet, J. Goedgebeur, and H. Mélot, „House of graphs: A database of

interesting graphs“, Discrete Applied Mathematics, 161:311–314, 2013.

[8] L. T. Scott, M. M. Boorum, B. J. McMahon, S. Hagen, J. Mack, J. Blank, H. Wegner, and A. de

Meijere, „A rational chemical synthesis of c60“, Science, vol. 295, no. 5559, pp. 1500–1503, 2002.

[9] K. Y. Amsharov and M. Jansen, „A c78 fullerene precursor: toward the direct synthesis of higher

fullerenes“, The Journal of Organic Chemistry, vol. 73, no. 7, pp. 2931–2934, Apr. 2008.

[10] K. Amsharov and M. Jansen, „Synthesis of a higher fullerene precursor—an “unrolled c84fullerene“,

Chem. Commun., pp. 2691–2693, 19 2009.

[11] J. E. Avery, „Wave equations without coordinates i: Fullerenes“, Rendiconti Lincei. Scienze Fisiche
e Naturali, vol. 29, no. 3, pp. 609–621, Sep. 2018.

[12] H. Li and H. Zhang, „The isolated-pentagon rule and nice substructures in fullerens“, Ars Mathe-
matica Contemporanea, vol. 15, pp. 487–497, Sep. 2018.

[13] C. Chuang and B.-Y. Jin, „Hypothetical toroidal, cylindrical, and helical analogs of c60“, Journal
of Molecular Graphics and Modelling, vol. 28, pp. 220–225, 2009.

[14] S. C. B. L̃. R. Scott, The Mathematical Theory of Finite Element Methods. Springer Publishing, 1994.

[15] R. G. P. W̃. Yang, Density-Functional Theory of Atoms and Molecules. Oxford University Press, 1989.

[16] S. Wandzura and H. Xiao, „Symmetric quadrature rules on a triangle“, Computers and Mathematics
with Application, vol. 45, no. 12, pp. 1829–1840, 2003.

[17] W. R. Inc., Mathematica, Version 12.1, Champaign, IL, 2020.

83

[18] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr, „Implicit fairing of irregular meshes using

diffusion and curvature flow“, 1999.

[19] M. M., D. M., S. P., and B. A.H., „Discrete differential-geometry operators for triangulated

2-manifolds“, 2003.

[20] B. Vallet and B. Lévy, „Spectral geometry processing with manifold harmonics“, Computer Graphics
Forum (Proceedings Eurographics), 2008.

[21] P. M. W. Gill, Density Functional Theory(DFT), Hartree-Fock (HF) and the Self-consisten Field. Wiley

Online Library, 2002.

[22] D. M. Ceperley and B. J. Alder, „Ground state of the electron gas by a stochastic method“, Physical
Review Letters, vol. 45, no. 7, 1980.

[23] T. Chachiyo, „Communication: Simple and accurate uniform electron gas correlation energy for

the full range of densities“, The Journal of Chemical Physics, vol. 145, no. 021101, 2016.

[24] K. Crane, C. Weischedel, and M. Wardetzky, „The heat method for distance computation“,

Commun. ACM, vol. 60, no. 11, pp. 90–99, Oct. 2017.

[25] P.Motamarri, M. R. Nowak, K. Leiter, J. Knap, and V. Gavinia, „Higher-order adaptive finite-

element methods for kohn–sham density functional theory“, Journal of Computational Physics,
vol. 254, pp. 308–343,

[26] Alternative picture for the real spherical harmonics, https://en.wikipedia.org/wiki/Spherical_

harmonics#/media/File:Sphericalfunctions.svg, Accessed 2020-20-10.

[27] B. N. Pedersen, „Molecular shapes of fullerenes“, Master’s thesis, University of Copenhagen,

Blegdamsvej 17, 2100 København, Oct. 2020.

[28] K. E. Iversen, „A toolkit for investigating 3d electron densities of molecular surfaces“, Bachelor’s

Thesis, University of Copenhagen, Blegdamsvej 17, 2100 København, Sep. 2020.

[29] P. Schwerdtfeger, L. Wirz, and J. Avery, „Program fullerene: A software package for constructing

and analyzing structures of regular fullerenes“, Journal of Computational Chemistry, vol. 34,

no. 17, pp. 1508–1526, 2013.

84 Chapter A Bibliography

https://en.wikipedia.org/wiki/Spherical_harmonics#/media/File:Sphericalfunctions.svg
https://en.wikipedia.org/wiki/Spherical_harmonics#/media/File:Sphericalfunctions.svg

	Acknowledgements
	1 Introduction
	2 Theory
	2.1 Fullerenes
	2.1.1 Gaussian Curvature
	2.1.2 Graph Theory
	2.1.3 2-Dimensional Unfolding of Dual Representation
	2.1.4 Generalization to Fulleroids

	2.2 Finite Element Method
	2.2.1 FEM Overview
	2.2.2 Variational Formulation
	2.2.3 Ritz-Galerkin Approximation
	2.2.4 Discretization of Domains

	2.3 The Quantum Mechanical Many-Body Problem
	2.3.1 Born-Oppenheimer Approximation
	2.3.2 Density Functional Theory

	3 Method
	3.1 FEM Implementation
	3.1.1 Triangulation of Fullerenes
	3.1.2 FEM Matrices and Vector Assembly
	3.1.3 The Reference Element
	3.1.4 Integral Evaluation with Gaussian Quadrature
	3.1.5 Stiffness Matrix in Curved Space

	3.2 FEM Modules
	3.2.1 Basis Modules
	3.2.2 UnitCell Module
	3.2.3 FEM_Assembly Module

	3.3 Constructing a 2-Dimensional DFT with FEM Software
	3.3.1 Exchange-Correlation Potential
	3.3.2 Local Density Approximations
	3.3.3 The Self-Consistent-Field Loop
	3.3.4 Computing the SCF loop

	3.4 Solving the Heat Equation
	3.5 Visualization
	3.5.1 Dual Unfolding
	3.5.2 2-Dimensional Visualization
	3.5.3 Mesh Refinement

	3.6 Constructing a Torus Shaped Fulleroid

	4 Results and Discussion
	4.1 Simulating the Heat Equation
	4.1.1 Simulations on the C20-Ih surface
	4.1.2 Heat equation on a C60-Nanotube Surface

	4.2 A Rudimentary 2-Dimensional DFT
	4.2.1 Solutions for the Hartree potential
	4.2.2 Kohn-Sham Orbitals
	4.2.3 SCF Loop

	5 Outlook
	5.1 FEM Related Challenges
	5.2 DFT Related Challenges

	6 Conclusion
	Appendices
	A Appendix
	A.1 Convergence of C20 Simulations

	B Appendix
	B.1 Directory Overview of the Software

	A Bibliography

