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Abstract

The top quark, as the most massive of all observed elementary particles, has
the exclusive advantage of being the optimal candidate to reveal the mystery
of physics beyond the Standard Model of particle physics (BSM). Anomalous
contributions to ¢t production can be investigated in the framework of Standard
Model Effective Field Theory (SMEFT). The potential new contributions are
expected to affect the production cross-section and angular distributions of the
top decay products due to changed spin configurations.

The Future Circular Collider (FCC) process e™e™ to ¢t will be simulated us-
ing the FCC Innovative Detector for an Electron-positron Accelerator (IDEA)
detector setup and investigated with the FCC analysis software to gauge the
potential experimental sensitivity to anomalous top contributions. The project
will focus on the final state with two b-jets and two charged leptons, which is ex-
pected to be very clean, albeit made difficult due to the 2 unmeasured neutrinos.
The project consists of the steps: event selection to identify the collision events
of interest with respect to backgrounds; event reconstruction to determine the
complete kinematic configuration of each event; construct observables sensitive
to anomalous contributions; and finally, determine 68% confidence regions for
all anomalous couplings. As part of these steps, I will investigate potential
observables (production angles, decay angles a.o.) for their sensitivity to BSM
contributions and gauge the improvement by using the production cross section
as additional information. The final step is to fit the anomalous gauge coupling
parameters using both the kinematical observables and cross-section informa-
tion. The fit for anomalous contribution is performed utilising the parabolic
dependency of the observables on the anomalous couplings, else determined
using event simulations with the Whizard and Pythia event generators which
include the contributions from SMEFT. The final result is to determine the po-
tential sensitivity limits of anomalous couplings at a future collider. This will
help to establish the physics potential of such a collider for physics beyond the
Standard Model.
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1 Introduction

Particle physics is a field of study that focuses on elementary particles and their inter-
actions. It is also at the forefront of modern physics, with the potential to significantly
impact our understanding of the natural world. The theoretical framework of particle
physics is the Standard Model (SM), which is currently the most successful theory
in this field. It is capable of describing all known forces except gravity. The 2012
discovery of the Higgs boson, the last particle predicted by the Standard Model, gave
the theory little scope for predicting new physics. The Standard Model is the lowest
order of effective field theory, and higher dimensions may have hints of new physics.
Pursuing higher energies determines the next generation of colliders. Currently, there
are two types of colliders: hadron colliders and lepton colliders. Lepton colliders have
much smaller centers of mass than hadron colliders, but they use elementary parti-
cles for their collisions, which generates data that is not subject to minimum bias.
Conversely, in the low pt(transverse momentum) intervals of a Hadron Collider, su-
perfluous data swamp the desired data. As a result, a Lepton Collider enables deep
exploration of discovered physics. For example, PETRA (DESY) discovered gluons in
1979, and LEP (CERN) discovered three generations of neutrinos. As for the hadron
collider, since hadrons are not fundamental particles, but are composed of quarks and
gluons, the particles in the low pt range are of little significance. Only high pt events
have the potential to reveal new physics. However, the mass of the hadron itself
determines that the center of mass of the hadron collider is much heavier than that
of a lepton collider. Thus, the Hadron Collider can be used to explore new physics.
For example, Tevatron (Fermilab) discovered the top quark in 1995, and the Large
Hadron Collider (CERN) discovered the Higgs boson in 2012. [1] The lack of new
physics discovered at the LHC, despite its high energy range of 8TeV, prompted the
launch of the Next Generation Collider program. The Future Circular Collider (FCC),
a new-generation collider planned to be built by CERN, is divided into two phases:
FCC-ee, which will provide a precise analysis of existing physics, and FCC-hh, which
aims to break through the energy frontiers of physics to uncover new traces of physics.

The Standard Model is a highly successful theoretical framework that can explain
many phenomena in particle physics. However, it cannot account for certain phenom-
ena such as neutrino mass and dark matter. Therefore, exploring new physics beyond
the Standard Model is necessary. However, as there is no evidence for new physics yet,
one possibility is to focus on studying the top quark, which is the heaviest particle
in the Standard Model. By using high-luminosity colliders with extreme statistical
precision and experimental accuracy, there is a chance of detecting small deviations
from the predictions of the Standard Model.

This analysis aims to explore the sensitivity of top anomalous coupling in the ex-
perimental environment of FCC-ee. The second section provides a summary of the
formulas and concepts of the Standard Model, which is the framework of quantum field
theory (QFT). In the third section, the theoretical basis of EFT is introduced, along
with why higher-dimensional terms should be included in the Standard Model. The
fourth section describes the experimental environment and construction standards,
with a focus on the construction blueprint of FCC-ee and the detector IDEA. The
fifth section introduces the simulation data used in this analysis, including the exper-



imental signal (top pair production) and the corresponding backgrounds generated
by the Monte Carlo generator in the collider environment. Additionally, independent
coupling data were generated to explore the sensitivity of top anomalous coupling.
The sixth section explains how reconstructed particles are dealt with at the detector
level, from the performance of the jet algorithm to the measurement of high leptons
and the calculation of neutrinos. The seventh section outlines the optimized selection
cut strategy used to obtain a signal that is as pure as possible for top pair production
through the screening of observables. The eighth section describes how the software
package is used to optimize event reconstruction by employing kinematic fitting. The
ninth section presents the results of simulation experiments through five observable
angles.



2 The Standard Model

The concept of atoms was first proposed by the ancient Greek philosopher Democritus
in the 5th century BCE, but it wasn’t until the 19th century that scientists began
to study the properties of atoms in detail. This led to the development of classical
mechanics, which describes the behavior of macroscopic objects. However, in the early
20th century, experiments showed that classical mechanics was unable to explain the
behavior of subatomic particles, which led to the development of quantum mechanics.
Quantum mechanics describes the behavior of particles on a microscopic scale and is
essential for understanding the behavior of particles in the Standard Model.

The theoretical framework of the Standard Model is quantum field theory, which
combines quantum mechanics with special relativity. In 1954, Chen-Ning Yang and
Robert Mills proposed the Yang-Mills theory, which laid the foundation for the devel-
opment of the Standard Model. In 1960, Sheldon Glashow discovered the electroweak
interaction, which describes the behavior of the electromagnetic and weak nuclear
forces. In 1964, Peter Higgs proposed the Higgs mechanism, which explains how
particles acquire mass. In 1967, Steven Weinberg and Abdus Salam introduced the
Higgs mechanism into Glashow’s electroweak theory, forming the basis of the Stan-
dard Model we know today. [1]
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Figure 2.1:  The Standard Moedel Elementary Particles: Three generations of
Fermions(colume 1-3), row 1 - up type quarksu,c,t, with charge +§,Spin %, row 2
- down tpye quarksd,s,b, with charge —%, spin %, row 3 - charged leptonse,j,7 spin %,
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4-5), vector bosongluon,photon,Z boson,W boson, scalar boson higgs boson. [2]

Elementary particles can be broadly classified into two categories: fermions, which
make up matter, and bosons, which carry the fundamental forces. Fermions, shown
in Figure 2.1, are particles with a spin of 1/2 and can be further divided into quarks
and leptons. Each fermion has an antiparticle with identical mass but opposite quan-
tum numbers. The Standard Model describes three generations of fermions, with each
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Figure 2.2: Standard Model Interactions [2]

generation containing a quark and a lepton of increasing mass, except for neutrinos,
for where only the mass gap between two generations is known. Bosons can be divided
into vector and scalar types. Photons, with a spin of 1, are vector bosons that carry
the electromagnetic force and only interact with charged fermions. W and Z bosons,
also with a spin of 1, carry the weak force, and all fermions participate in this inter-
action. Gluons, with a spin of 1, carry the strong force and only interact with colored
fermions. The Higgs boson, a scalar boson with a spin of 0, endows particles with
mass through the Higgs mechanism, with the strength of interaction proportional to
the particles’ mass.

The Standard Model is based on gauge theory and can be expressed mathematically
as SU(?))C X SU(2)L X U(l)y

2.1 Quantum Electrodynamics

Quantum field theory originated from classical field theory. Unlike quantum mechan-
ics, in classical field theory, £ Lagrangian is used to describe the motion of objects
instead of H Hamiltonian, because Lagrangian is Lorentz invariant. The Lagrange
can be defined as £ =T — V, where T is kinetic energy and V is potential energy.

Quantum Electrodynamics (QED) is a quantum field theory that describes the in-
teractions of charged particles with the electromagnetic force. It is based on the
principle of gauge invariance and is one of the most well-established theories in par-
ticle physics. QED is gauge invariant under U(1) transformation, and we can write
the QED Lagrangian as follows:

- : 1
Loep = ("0, — me)) + ey A, — ZFWFW’ (2.1)

where the first term describes the free charged fermion. By bringing it into the Euler-
Lagrange equation, we obtain the free charged fermion Dirac quation. The second
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term describes the interaction between the charged fermion and the photon field, and
the third term describes the photon field itself from Maxwell’s equations. Spinor fields
and photon fields transform as follows:

Y(x) — e D(x), A, — Au(z) — dua(). (2.2)

The Lagrangian for QED sums up the entire electromagnetism and can be written as
follows:

Lopp = — (P +me)p — i w F (2.3)

where D, is the gauge covariant derivative of electromagnetic interaction defined as
follows:
D, =0, —ieA,(x), (2.4)

and the slash notation is defined as ¢ = 7*a,. Similarly, the weak interaction can
be extended to the SU(2) group. The SU(2) group has three generators that define
a non-Abelian Lie algebra, and we can see that these three generators correspond to
three weak gauge bosons. The covariant derivative of charged weak current is defined
as follows:

D, =0,+1igwT - W,(x), (2.5)

where gy is the coupling of the weak boson, T is the three generators of the group,
and W are the three fields corresponding to the SU(2) group.

2.2 Electroweak unification

The Electroweak theory describes the unification of the electromagnetic and weak
nuclear forces and is based on the gauge group SU(2), x U(1)y. The theory is
described by the following Lagrangian:

Low = =3 FuF™ + (Du0){(D0) + 06D —m)o = V(g)  (20)

where F},, is the electromagnetic field tensor, ¢ is the Dirac field that describes the
electron and neutrino, D,, is the covariant derivative that describes the interaction of
the electron and neutrino with the electromagnetic and weak nuclear forces, and ¢ is
the Higgs field. The last term in the Lagrangian is the Higgs potential, which gives
mass to the weak gauge bosons and fermions.

In addition to the Lagrangian, the Electroweak theory introduces two important quan-
tum numbers: weak hypercharge and weak isospin. Weak isospin is a quantum number
that relates to the weak interaction, analogous to strong interaction isospin. Weak
hypercharge is a quantum number that relates the electric charge and the third com-
ponent of weak isospin. These quantum numbers are essential to understanding the
behaviour of elementary particles in the Electroweak theory, particularly in the con-
text of the Higgs mechanism that gives mass to the weak gauge bosons and fermions.
By introducing these quantum numbers, the Electroweak theory provides a power-
ful framework for understanding the behaviour of elementary particles at the most
fundamental level. Details are shown in Figure 2.3.
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Figure 2.3: The Left-handed Fermions and Right-handed Fermions [3]

In the structure of Electroweak unification, the physical W' and W~ gauge bosons
can be written as a linear combination of the SU(2) generators W) and W®:

1
W = E(W(l) + W®) (2.7)

The photon and Z boson can be written as linear combinations of W? and the B field:

A = +Bcos by + W sin by, (2.8)
Z = —Bsinby + WS cos by,

The B field is from U(1)y, where Y is the hypercharge, which is different from electric
charge, but they are connected by:

Y =2Q — 21, (2.10)

The hypercharge connects the electromagnetic interaction and weak interaction, fol-
lowing the relationship:

e = gw sin By = ¢ cos Oy, (2.11)

where e is electric charge, gy is the coupling strength in interactions involving weak
isospin, and ¢’ is the coupling strength involving weak hypercharge.

Weak interactions W and W~ can only interact with left-handed particles and right-
handed antiparticles, while Z can interact with both right-handed particles and left-
handed antiparticles. Due to the different weak isospin values, the left and right
coupling strengths are different:

Cp =1 — Qsin Oy (2.12)
Cr = —Qsin® Oy (2.13)
In terms of the V-A (vector minus axial-vector) components, we have:

Cy = Cp, + Cr (2.14)
Cy=Cp —Ch (2.15)



2.3 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a component of the Standard Model that de-
scribes the strong interaction. Only particles that carry the colour charge can expe-
rience strong interaction, namely quarks and gluons. QCD is gauge invariant under
the local gauge transformation of SU(3)s, which is formed by 3 x 3 matrices, and
has 8 generators, each corresponding to 8 different gluons. Similar to QED, the QCD
covariant derivative can be written as

Dp =0, +igsGu- T, (2.16)

where G are the 8 generators. The SU(3) group provides a field transformation as
follows:

G* () — Gﬁ(x) — Ouan(z) — gs fijee(2) G, (x), (2.17)

where f;;, are the structure constants and follow the commutation relation [T}, T;] =
tfijrTi. The QCD Lagrangian can be written as follows:

ey a (2.18)

EQCD = &i(i'YH(Du)ij - méij)l/}j - 4w

where the last term is similar to QED but for the gluon field and also describes gluon
self-interaction.

Although QCD is not directly related to the main analysis in this article, there is
a phenomenon worth mentioning, which is the running of the strong coupling. The
interaction cross-section is determined by the coupling strength, which exhibits asymp-
totic freedom in strong interaction, as shown in Figure 2.4. The QCD coupling can be
divided into two regimes. At high energy, the running coupling converges, making per-
turbation theory applicable. This is also mentioned in the CKM(Cabibbo-Kobayashi-
Maskawa) matrix shown in Figure 2.5, where the top quark’s main decay product is
the bottom quark, making b-tagging important. At low energy, quarks cannot exist
as free particles. Virtual gluons can interact with each other to force quarks to form
colour-neutral hadrons or mesons, a phenomenon known as quark confinement. When
quarks move away from each other, the colour charge creates a colour field. If the
field has enough energy, it will produce a new pair of particles while remaining colour-
neutral, until the energy is no longer sufficient to do so. This process is known as
hadronization. This phenomenon can explain the observation in high-energy physics
that quarks and gluons can form jets.
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Figure 2.5: The CKM matrix, indicates the probability of heavy quarks decay modes.
V33 is the probability of top quark decaying into bottom quark. [5]

2.4 Higgs Mechanism

The QFT formalism describes the interaction between bosons and fermions. How-
ever, the Lagrangian itself cannot give particles mass without violating local gauge
invariance. Photons and gluons are massless particles, which does not pose a prob-
lem for the standard model. However, weak gauge bosons are massive, and forcefully
introducing mass terms into the Lagrangian would make the standard model not
renormalizable. [6] The Higgs mechanism can give mass to particles through interac-
tion. The vacuum represents the lowest energy state, and since the Higgs vacuum
state has a non-zero value, the Higgs field will slow down particles, which can be seen
as giving mass.
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Figure 2.6: Higgs potential pu? > 0 left and pu* < 0 right [6]

The simplest Higgs model consists of two complex scalar fields placed in a weak isospin

doublet o L /o 5
o _ 1+ 102
o= (%)= zlotio) (219)

[lecture-15 page 19] The Lagrangian in SU(2) x U(1) is given by

L= (Do) (D"¢) = V(¢) (2.20)
where the covariant derivative is defined as
Y
D,=0,+igwT -W,(z)+ z'g’EBM (2.21)

The Higgs potential can be seen from Figure 2.6. When p? < 0, it takes the shape of
a Mexican hat, and can be defined as

V(¢) = 1?61 + Mo'9) (2.22)

The point ¢ = 0 is not a minimum of the potential. Instead, an infinite number of
degenerate minima form a ring. The Vacuum Expectation Value (VEV) is defined as

v = \/? (2.23)

The choice of vacuum state breaks the symmetry of the system, and this process is
called Spontaneous Symmetry Breaking (SSB).

In the unitary gauge, the Higgs doublet can be written as

o(z) = % (v Jﬁl(x)) (2.24)



The kinematic term of the SU(2) x U(1) Lagrangian is given by

(D6 (D6) = S(@u)(@"R) + S (W i) (WO — a0 o 1 )

(2.25)
+ é(wa(?’)u — ¢'Bp)(gwW®* — ¢'B*) (v + h)? (2.26)
The mass of the gauge bosons can be obtained as
1
mw = 59w (2.27)

1 2 2 1 gw
T — 2.2
Mz 2U 9w 9 2 cos Oy (2.28)

whereas the Higgs boson mass is given by
my = V2\v. (2.29)

Direct fermion mass terms are not allowed in the Lagrangian. For all Dirac fermions,
gauge-invariant mass terms can be constructed as

£ = —g;[LéR + (LoR)1, (2.30)
L= gs[Lo.R + (LocR)'), (2.31)

where the mass is given by
my = 1 (2.32)

v

\/igf
and the conjugate doublet is constructed from ¢, = —io2¢", L is the doublet for left-
handed fermion fields with L = LT4° and R is the singlet for right-handed fermion
fields. The Lagrangians above also show interactions between the fermion and the
Higgs, which lead to both bosonic and fermionic decay modes of the Higgs boson. [6]
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3 Anomalous Couplings

The Standard Model Effective Field Theory (SMEFT) is a theoretical framework that
extends the Standard Model of particle physics by adding higher-dimensional opera-
tors that describe the interactions of particles beyond those predicted by the Standard
Model. It can be seen as an analogy to the Taylor expansion. We perform a Taylor
expansion on the real physical rules, and we can obtain an infinite sequence, where
the first few terms of this sequence are often related to the energy regime we are
currently in, and we call it the characteristic length scale A. The Standard Model is
the first term in this sequence, and it has been able to describe all the experimental
data to date. However, when the energy continues to rise, the second term will begin
to show influence, and the results of experiments are likely to start to deviate from
the prediction of the SM, which is what this analysis will describe.

The Standard Model is based on quantum field theory and has a minimum dimension
of 4. [7] For higher dimensions, the inclusion of dim-5 operators can lead to unphysical
or inconsistent predictions in the SMEF T, such as negative decay rates or non-unitary
scattering amplitudes. Therefore, it is more practical and consistent to neglect the
dim-5 operators in the SMEFT, we will look at dim-6. The SMEFT Lagrangian can
be written as

(8)

(6)
C: C:
Lserr = Lo+ 7 o +3" v 0¥ 4 ... (3.1)

The following sections will be based on the research in [14].

In dim-6, there are 14 contributions to top electroweak anomalous couplings, but only
7 will be investigated in this analysis, as they contribute to Wtb, Ztt and ~tt. [§]

O = i(¢!r! Do) (@ ar)
0% = i(¢' Do) (@ ar)
O = i(0' D,9) (Er7"br)

Ogi = i(¢' Do) (Ery"tr) (3.2)
Ow = (QLUWTIISR)&W;{;/

Oy = (qLa“”TIbR)QSWjV

Oty = (QLUthR>€Z§BHV

where quark weak interaction eigenstates

t
qr = (bL) ) tRa bR (33)
L

The covariant derivative is

NP U .
D, =09,+ zgngM + zg;W/f +1ig'Y B, (3.4)
where G, W, and B, are the gauge fields for SU(3)¢, SU(2)r, and U(1)y. A* are
the Gell-Mann matrices with a = 1,---,8, 7/ is Pauli matrices for I = 1,2,3 and Y

is the hyper charge.
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3.1 Wtb Vertex

The effective Wtb vertex including SM contributions and those form dim-6 operators
can be parameterised as

r - 8 - Wy p P _ 8 m‘“’qy
Wib = —Eb’Y (VL P + VRPR)tW, — \/— Y
within the SM, V}, equals the CKM matrix element Vj;, ~ 1 while the rest of coupling
Vr,91, and gr vanish at the tree level. The dim-6 new physics on Wtb vertex can be

written as

——(9.Pp + grPr)tW,, + h.c. (3.5)

2

. . U

oVy = Cé?;) Az 0gr = \/ﬁobwp
o2 o2 (3.6)

OVg = §C¢¢F ogr = \/ictWF

where v is vacuum expectation value

3.2 Ztt Vertex

The effective Ztt vertex including SM contributions and those form dim-6 operators
can be parameterised as
8 _ioctq,

Loy = —2im (XEP, + XEPp — 252,Qt 2, — —1

2o L, (dZ + id55)tZ, + h.c.

(3.7)
in SM X[ = 2T5(t;) = 1, X[F = 2T3(tg) = 0 (T3 is third component of isospin) and
d%4 = d% = 0 at the tree level. The dim-6 new physics on Ztt vertex can be written as

U2 2

v
5thz — Re [0(3) C«(;])]P 6d‘Z/ = \/ﬁRe[CWCtW — SWCtb‘z)]F (3.5)
02 02 .
5X ReC¢t Az 8d% = \/ilm[cWC'tW - SWctluz)]F

sw, cw are sine and cosine value of weak angle Oy,

3.3 ~tt Vertex

The effective vtt vertex including SM contributions and those form dim-6 operators
can be parameterised as

"

my

‘C'ytt - _tht'YMA - Gt (d,y + ZdA’y5)tAu + h.c. (39)

The dim-6 new physics on Ztt vertex can be written as

2
56[‘}[/ = iRe[CWCtB¢ + SWCWV]%
¢ (3.10)

vmy

V2
5(11 = —Im[cWC'tB¢, + SWctw] A2

12



3.4 Anomalous Contribution to tt

Figure 3.1 shows the process of tt production, where the highlighted 3 points corre-
spond to the 3 vertexes mentioned above, the red corresponds to Ztt and vtt vertex,
and the blue represents Wtb vertex. These vertexes correspond to the dim-6 La-
grangian mentioned in section 3.1. The characteristic length scale A is related to the
energy, so we expected the FCC-ee environment to reveal dim-6 effect. The dim-6 La-
grangian will affect the cross-section of the event, and the 7 operator of Lagrangian
will have an impact on angular distribution.

Figure 3.1: the tf production Feynman diagram, three relevant vertexes are high-
lighted

As mentioned above, the Lagrangian and cross-section are inherently related. By
introducing the influence of dim-6 into the matrix element, we can modify SM matrix
element as follows:

M = MSM + CiMdim—G (311)

As a result, the cross-section is modified and expected to have a quadratic polynomial
form.

IM|* = [ Mg + ¢:Maim |’ (3.12)
= [Msu|* + (M Maimn—s + MsyMi,_6) + ¢ [Maim—|” (3.13)

This quadratic polynomial form allows us to investigate anomalous effects in an effi-
cient way.

13



4 FCC-ee Experiment

4.1 FCC-ee

Since the discovery of the Higgs boson at the Large Hadron Collider (LHC) in 2012,
there has been a growing interest in exploring the fundamental nature of particles
and their interactions. One way to achieve this is through lepton colliders, where
electrons and positrons collide to produce a range of particles for study. Among
the lepton collider projects under development, the Future Circular Collider electron-
positron (FCC-ee) experiment is one of the most promising. Hosted by the European
Organization for Nuclear Research (CERN), the FCC-ee is a proposed circular collider
with a center of mass energy ranging from 90 to 365 GeV. Compared to other lepton
colliders, the FCC-ee offers several advantages, including its high energy and high
luminosity, which enables researchers to study rare processes that would be difficult
to observe elsewhere.

The FCC-ee project is divided into two phases. The first phase will focus on precision
measurements of the electroweak sector, including the Higgs boson and the W and Z
bosons. In contrast, the second phase will explore the properties of the top quark and
other heavy particles.

Currently, the FCC-ee is in the design phase, with researchers working to develop an
efficient and effective collider that can deliver high-quality data on a range of particles.
The FCC-ee is expected to start in 2040, and the center of mass weight will be set at
the Z pole of 91 GeV for the first four years, then at the WW mass for the next two
years, and finally at the Higgs factory (240 GeV) for three years. Afterwards, the tt
threshold will be set at 340 GeV, then increased to 365 GeV. [9]

The FCC project is consists of two parts: the FCC-ee and the FCC-hh. The FCC-ee
is focused on exploring the nature of particles on the smallest scales, with high sen-
sitivity to signs of new physics, such as small deviations from the Standard Model,
and the discovery of new particles or forbidden decay processes. The FCC-hh, on the
other hand, is designed to collide protons at extremely high energies, which could lead
to the discovery of new particles and new physics beyond the Standard Model.

For collider physics, only two main parameters are interested, one is Beam energy,
and another is luminosity. As shown in Figure 4.1, the integrated luminosity varies
in different modes during the 15 years of FCC-ee operation. luminosity can be deter-
mined by parameters, such as bunches, beam size, and beam crossing angle. The full
set of parameters is shown in Figure 4.2. At the ¢t threshold, there will be an average
spacing of 48 bunches with a period of 3396 ns, and a population of 2.3 - 10* bunches.
At this threshold, synchrotron radiation results in the highest energy loss, at 9.2 GeV
per turn. In addition to maintaining a constant 2 T magnetic field, the magnet’s scal-
ing takes energy losses into account. The high brightness range of FCC-ee is further
enhanced by a top-up injection scheme where the beam is refilled during operation.
Without top-up injection, the integrated luminosity is expected to be lower than the
planned value.
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Figure 4.1: FCC-ee integrated luminosities [9]

TR : ww s S
Beam energy GeV 45.6 80 120 s 185
Luminosity / IP 10%cm2st 230 28 85 _—
Beam current mA 1390 147 29 T
Bunches per beam # 16640 2000 328 B
Average bunch spacing ns 19.6 163 994 _—
Bunch population Ao} 1.7 i3 1.8 _—
Horizontal emittance &, nm 0.27 0.84 0.63 --
Vertical emittance &, pm 1.0 1.7 13
B/ By m/ mm 0.15/0.8 0.2/1.0 ez/10
beamsize at IP: o,/ o, pm/ nm 6.4/28 13/41 137/3 [ e
Energy spread: SR / total (w BS) % 0.038/0.132 0.066 /0.131 0.099/0.165 _—
Bunch length: SR / total mm 35/12.1 3/6.0 a15/53 O e
Energy loss per turn GeV 0.036 0.34 1.72 _—
RF Voltage /station 6V 0.1 0.75 20 T
Longitudinal damping time turns 1273 236 70.3 _—
Acceptance RF/ energy (DA) % 19/+13 23/413 23/+17  35/(28+2.4) 3.36/(28+24)
Rad. Bhabha/ actual Beamstr. Lifetime min 68 />200 59 />200 38/18 _—
Beam-beam parameter £,/ &, 0.004/0.133 0.01/0.141 0016/0118  0088/0.148  0099/0126
Interaction region length mm 0.42 0.85 0.9 _—

Figure 4.2: The summary of FCC-ee parameters [9]

The main structure of FCC consists of a circular tunnel with a diameter of 5.5 m
and a circumference of 97.75 km, featuring two interaction points (IPs) as shown in
Figure 4.3. In addition, an 8 km bypass tunnel with 18 shafts, 14 large caverns, and
12 surface sites is included. Moreover, this tunnel has the potential to be upgraded
to a 100 TeV hadron collider as FCC-hh.
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Figure 4.3: The layout of FCC and geological structures. [9]

4.2 IDEA Detector
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Figure 4.4: The schematic layout of the IDEA detector [10]

The IDEA detector is a multi-purpose detector employed in FCC-ee. As illustrated
in Figure 4.4, this detector comprises several subdetectors. The first subdetector is
the Silicon pixel strip detectors. The second subdetector is the 2 m outer radius large
drift chamber, which provides more than 100 measurements for each charged particle
and has excellent particle identification ability. The third subdetector is the vertex
detector, which offers extremely high-precision charged particle tracking, and the in-
nermost layer of 3 pm can reconstruct secondary vertices from heavy flavor quarks.
The central tracker is enveloped by a 2 T solenoidal magnet, which is followed by
the preshower. The preshower measures the resolution of 60 to 70 pm before the
electromagnetic shower reaches the calorimeter. The dual-readout calorimeter simul-
taneously measures the electromagnetic and hadronic components, with a precision of
30% VE for hadronic jets and 10% v/E for electromagnetic energy. The last subde-
tector is the muon detector, which is divided into three stations for better detection.
Each muon station provides a spatial accuracy of 400 um. The three combined can
track charged particles at a distance of 5-6 meters from the vertex, enabling the iden-
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tification of secondary vertices from long-lived particles. More parameters are shown
in Figure 4.5. [11]

Parameters

vertex technology silicon
vertex inner/outer radius (cm) 1.7/34
tracker technology drift chamber and silicon wrapper
tracker half length (m) 2.0
tracker outer radius (m) 2.0
solenoid field (T) 2.0
solenoid bore radius/half length (m) 2.1/3.0
preshower absorber lead
preshower Romin/Rmaz (m) 2.4/2.5
DR calorimeter absorber copper
DR calorimeter Rmin/Rmaz (m) 2.5/4.5
overall height /length (m) 11/13

Figure 4.5: The main parameters of the IDEA concept detector [10]

4.3 Simulation and Reconstruction with IDEA Detector

FCC-ee is currently in the design phase, and we need to do a feasibility study, so the
data from the simulation will be used in this analysis. DELPHES is a fast and flexible
detector simulation package that is used to model the behaviour of particles as they
pass through the detector. DELPHES uses a modular approach, allowing users to
configure the simulation to include different detector components and to customize
the simulation parameters. DELPHES created a simulator for the IDEA detector at
FCC-ee by incorporating IDEA’s specific parameters [12]. DELPHES IDEA collects
a series of data such as electrons, muon, and missing energy for later analysis, and
saves Monte Carlo data for checking. Those simulated data will be discussed in more
depth in the next section.
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5 Monte Carlo Samples

This analysis is based on a simulation generated by the Future Circular Collider
Software [13], which is a powerful tool for simulating the behaviour of particles in fu-
ture particle colliders. The simulation framework consists of three main components:
DELPHES, Pythia8, and EDM4HEP, which are part of the Key4dHEP structure.

Pythia8 is a Monte Carlo event generator that is used to simulate the initial state of
the particles before they interact with the detector. EDM4HEP is a data model that
is used to represent the simulated data in a format that is easily analyzed.

Key4HEP is a Turnkey Software Stack that provides all necessary components from
simulation to analysis. It was developed and used in the linear collider projects ILC
and CLIC as part of a common software stack, iLCSoft. This software stack covers
most of the future linear and circular machines that will collide electrons, muons,
and hadrons. By using established packages such as ROOT, Geant4, DD4hep, Gaudi,
and others, this software stack maximizes the reuse of code, ensures coherency, and
maintains program efficiency to avoid duplicating work.

To generate the signal sample and backgrounds, the DelphesPythia8 EDM4HEP com-
mand, along with the Pythia command and IDEA card, were used. The Pythia com-
mand specifies all initial conditions and event numbers, and at the Monte Carlo level,
it takes care of parton showers and their hadronization process. The two tcl files
tell the DELPHES program the order of data flow between modules and the collider
conditions of this simulation.

Follow the development plan of FCC-ee, and start the plan of ¢f after completing the
plan of Z, W, and Higgs. In the first year of the ¢ program, the luminosity was 0.2
ab, which was later increased to 0.34 ab luminosity per year and continued for four
years, resulting in a total luminosity of 1.5 ab over five years of operation. In this
Monte Carlo simulation, the signal and background events can be predicted by the

following equation:
Nea}pected =L-0 (51)

where L is the integrated luminosity and o is the event cross-section. Table 5.1 shows
the number of events for each process signal and backgrounds.
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Figure 5.1: Feynman diagrams for tf before any cuts. Diagrams are generated by
CompHep. [16,17]

H Process o|pb Neapected H
tt 0.452 4+ 0.001 687,000
bb 4.063 + 0.008 6,094,500
SR 17.034 = 0.029 95,551,000
TV~ 1.901 + 0.003 2,851,500
W+Ww- 11.203 +0.013 16,804,500
ZH 0.13 £ 0.0002 195,000
277~ 0.856 4+ 0.0009 1,284,000
ZWHTW~= 1.592 x 1072 £ 0.007 x 10~2 24,000
L47 7.633 x 107* +£0.01 x 10~* 1,500
Single_top 2.116 x 1073 4+ 0.006 x 1073 3,000

Table 5.1: Expected statistics at /s = 365GeV with £ = 1.5ab™! [14,15]

5.1 Signal

The first part of the analysis focuses on the signal of the ¢t production shown in
Figure 5.1. The top quark (¢) decays quickly, and the CKM matrix describes its
decay path. Almost all top quarks decay into a bottom quark and produce a W
boson. The W boson has two decay modes: hadronic and leptonic. The probability
of each decay mode can be obtained from the branching ratio table of W boson. In
this study, we focus on the di-leptonic events, which only account for about 10% of
the tt pair production [6]. For this target event, we ideally acquire two b-jets and
two high-energy charged leptons (e or ). Due to the mass of the 7 lepton, it decays
into lighter leptons before being detected by the detector. Data and cross-sections
are obtained from Pythia, and there are no restrictions on the decay of the W boson.
Later chapters will demonstrate how to obtain di-leptonic data.

5.2 Backgrounds

For tt production di-leptonic channel, two high energy lepton with opposite charge,
2 b-jets are the key characteristic, for ee collision, other processes will also produce
this characteristic. Simulation of other processes is also necessary for this analysis.
The next step is to analyze the background. By calculating the cross-sections, we
can estimate the amount of background data. Among them, W*W~ events and
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Figure 5.2: Feynman diagram for single top events. note: second diagram on downside
overlap signal events. [20]

light ¢G events account for the most. The events bb, ZZ/Z~y, WTW~, ZZ, ZH, and
7777 are all generated by Pythia8. The ZWW and ZZZ events are generated by the
Whizard Les Houches Event file and then imported into the Pythia command card
and made by Pythia8. For single top events, the ete™ — e i.tb Feynman diagram
overlaps with t£, bb, and W+ W~ as can be seen in Figure 5.2. Pythia8 avoids creating
higher mass particles when dealing with bb and W*W~, so we only need to manually
remove Feynman diagrams that overlap with ¢¢. Because MadGraph5 has a special
code $$t to avoid on-shell t, it can produce the data we need. However, due to the
removal of Feynman diagrams, errors may occur. Nevertheless, the cross-section of
the affected events is low, so it is not expected to cause significant issues [18]. It is
important to note that uu events are not included in the background analysis because
they are particles that can be detected by the detector. Furthermore, studies of their
properties have shown that the probability of these events surviving the subsequent
event selection process is infinitesimally close to zero. [14,15,19]
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5.3 Anomalous Couplings In Top Production

For the analysis of anomalous top production, we used Whizard to generate data,
following a similar process to the previous steps. However, in this case, we modified
the model from SM to SM_top_anom. There are ten parameters associated with the
ten couplings mentioned in the previous section. Based on research conducted in [21],
we fixed three parameters to ensure gauge invariance. We used Whizard to generate
seven corresponding files, with only one parameter being modified at a time for a later
one-coupling fit. We also performed a two-coupling fit by modifying two couplings at
once, combining one-coupling data. The changed and fixed parameters are displayed
in Table 5.2 below.

H Parameter Coupling Gauge freedom H
ta_ttA od)y Free
tv_ttA ody, Free
ta_ttZ 6d4 Fixed
tv_ttZ 5d%. Fixed
vl ttZ 0XEk Fixed
vr_ttZ OX;} Free
tl_tbW_Re 0gr Free
tr_tbW_Re Ogr Free
vl_tbW_Re ovr, Free
vr_tbW_Re oVp Free

Table 5.2: Model parameters and corresponding couplings

5.4 Initial-State Radiation

The different processing methods used by Monte Carlo generators can have a signif-
icant impact on their cross-sections. In this analysis, the signal background BSM
data is sourced from three different Monte Carlo generators. The cross-sections of
Whizard and MG5 do not take into account the ISR effect, whereas for Pythia, the
experimental data is generated after the inclusion of ISR data via a process called
afterburner. Since the center of mass of FCC-ee is slightly higher than the energy
required for tt-production, after ISR, there is a higher probability that the data will
fall on the resonance peak. Therefore, Pythia’s cross-section is higher compared to
the other Monte Carlo generators. For BSM data, Whizard provides a simple method
for generating experimental data. To ensure consistency, the signal and BSM data are
generated by Whizard, and the Whizard events are reweighted by comparing Pythia
and Whizard SM data.
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6 Reconstructed Particles

In experimental physics, real experiments and simulations play an important role.
Real experiments can provide the possibility of new physics, while simulated exper-
iments can allow us to learn more deeply about known physics. As mentioned in
the previous chapters, in particle physics, we use Monte Carlo generators to generate
simulation data determined by their parameters. For researchers, the output of simu-
lated data can be roughly divided into two categories. The first category is MC truth,
which represents real data, and the second category is Reconstructed Particles, which
represent what can be observed by detectors. In this section, we will mainly discuss
RC data. Among them, two high-energy leptons, two b-jets, and two unobservable
neutrinos will be reconstructed from the RC data.

6.1 High Energy Leptons

In the di-leptonic channel, we expect to observe two oppositely charged leptons. Fig-
ures 6.1 and 6.2 show the matching angle and energy between the reconstructed (RC)
level and Monte Carlo (MC) level. The plots are presented in a logarithmic scale,
which clearly shows that the values for both the angle and energy are close to 1,
indicating a high degree of agreement between RC and MC levels.

6.2 Jets

In particle physics experiments, quarks carry a color charge and cannot exist in free
form due to QCD confinement. As a result, only colorless particles can be found
in experiments. When a color-charged particle travels through the detector, it will
decay and produce many colorless particles to obey confinement, and those particles
will form a jet. Jet definitions are not unique and depend on the jet algorithm used.

A jet algorithm is a computational technique used to group particles produced from a

high-energy collision event into a jet. There are several different jet algorithms, such
as the Durham, kp, Cambridge-Aachen (C/A), ee-anti-kr, and Valencia algorithms,

22



Lepton Energy fraction

lepton

— anti-lepton

Event rate per 0.01

v e Lo b by Lo b Lo b n L
02 03 04 05 06 07 08 09 1
Energy fraction

o
o
o

Figure 6.2: Energy matching between RC high energy leptons and MC high energy
leptons

which all differ in how they group particles into jets.

Jets are essential to the study of high-energy particle collisions as they provide a way
to measure the properties of quarks and gluons. Jet properties, such as the jet energy,
jet mass, and jet substructure, can be used to infer the properties of the quark or
gluon that produced the jet.

Jet substructure refers to the internal structure of a jet, which can reveal information
about the substructure of the particle that produced the jet. Techniques such as jet
grooming and jet pruning can be used to remove unwanted contributions from soft
radiation, pile-up, or other sources, allowing for a cleaner and more precise measure-
ment of the jet properties.

6.2.1 Jet Algorithms

In particle physics experiments, quarks, which carry a colour charge, cannot exist in
free form due to QCD confinement. Therefore, only colourless particles can be found.
When a colour-charged particle travels through the detector, it will decay and produce
many colourless particles in order to obey confinement, and those particles will form
a jet. Jet definitions are not unique and depend on the jet algorithm.

The first type of algorithm is cone algorithms, which were first used in the Tevatron
back in the 1980s. Cone algorithms assume that particles in jets will be found within
conical regions, resulting in jets with rigid circular boundaries. However, when two
jets are close enough, the cones start to overlap, and some particles can be found in
multiple jets, making this algorithm no longer collinear safe or infrared safe.

The second type of algorithm is the sequential clustering algorithm. During the
"golden era” of jets in the 1990s, several sequential clustering algorithms were pro-
posed. These algorithms assume that jet particles have small differences in transverse
momenta, and the algorithm is no longer based on conical regions in (n — ¢) space.
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All sequential clustering algorithms have a similar method of merging the two closest
particles into a pseudo-particle and repeating until the criteria (the minimum distance
between two particles is larger than the distance between the beam axis and the de-
tected particle) is met. If this process is repeated until all particles are included, then
it is called inclusive clustering. If the process is repeated until a desired number of
jets is found, then it is called exclusive clustering. This type of algorithm is preferred
by theorists since it is collinear-safe and infrared-safe. However, until the introduction
of the FastJet program, experimentalists preferred cone algorithms. [22]

In this analysis, 6 sequential clustering algorithms are demonstrated, those jet algo-
rithms are available through FastJet package [23], some of them are native, and some
of them are through the plugin.

“Sequential recombination algorithm

1.Find smallest of d,j,d;B

2.If ij, recombine them

3.if iB, call i a jet and remove from list of particles
4.repeat from step 1 until no particles left” [24]
where d;7 depends on algorithms.

Jade Algorithm the distance is defined as

Durham Algorithm the distance is defined as

dij = min(E7, E7)(1 — cos ;) (6.2)

kr Algorithm the distance is defined as
AR,
R2
where ARY; = (y; +y;)° + (¢ + ¢;)* y is rapidity and ¢ is azimuthal angle.

d;j = min(p;, p;;) (6.3)

ete” Cambridge/Aachen Algorithm the distance is defined as

1 — cos 0;;

d;j = min(E;, E;) 1—cosR

(6.4)

ete™ anti-kyr Algorithm the distance is defined as

1 — cos 0;;

d;j = min(E; ?, E;?
] mln( 1 Y )1_COSR

J

(6.5)
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Figure 6.3: Matching angle between RC b-jets and MC b-quarks with six algorithms

Valencia Algorithm the distance is defined as

1 — cos 0;;

dij = min(E;", B)~ i
— COS

J

(6.6)

To achieve optimal performance for di-leptonic events, we will compare six different
algorithms. To carry out this comparison, we will use data that is simulated by the
Whizard program and reconstructed by DELPHES. Since di-leptonic events require
only two jets, both of which are b-jets, the production environment is less complicated
than in the semileptonic and hadronic channels. However, the presence of two unob-
servable neutrinos makes the solutions for two neutrinos highly sensitive to the energy
and momentum of the jets. Therefore, finding the optimal jet algorithm is significant.
The comparison will focus on the matching angle between the RC (reconstructed)
level and the MC (Monte Carlo) level, with cosine values of MC b-quarks and RC
b-jets selected for the comparison.

Figure 6.3 shows that all six jet algorithms exhibit the highest peaks in the interval
where the cosine value is close to 1. However, each algorithm displays some unique
characteristics. The ee-antiky and Cambridge algorithms share similarities in that
they both exhibit a second peak in the interval where the cosine value is 0.5. Addi-
tionally, there is a relatively large fraction of jets that have a larger matching angle,
which may be due to these algorithms occasionally combining two large-angle pseudo-
jets. The Durham and Jade algorithms are very similar and exhibit a closely matched
trend in the figure. Compared to the Valencia algorithm, Durham and Jade algo-
rithms exhibit a smaller fraction of large-angle jets (cosine close to 1). However, in
the interval close to cosine equal to 1, Valencia is more inclined to generate jets that
are closer to the direction of the b-quark.

The energy fraction comparison also highlights differences between the various algo-
rithms, as demonstrated in Figure 6.4. The x-axis shows the energy of the b-quark at
the MC level, and the y-coordinate represents the fraction between jets and quarks.
In the energy range of approximately 50GeV to 95GeV, the energy matching fractions
of Jade, Durham, k7, and Valencia are very similar, while the Cambridge algorithm
exhibits an average fraction of 39%, and ee-antikr only 12%. These results indicate
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that the Cambridge and ee-antiks algorithms may not be suitable for use in di-leptonic
events.

To provide data support, we have compared the energy resolution of different jet
algorithms to determine their sensitivity to energy. We define the energy resolution
as:

ERCb —jet — EMC’,bfquark

EMC,bfquark (67)
As shown in Figure 6.5, after excluding the ee-antik; and Cambridge algorithms, we
compared the remaining four algorithms and found that, in a di-leptonic environment,
the kr and Valencia algorithms are more sensitive to energy. Based on these results,
we have reason to believe that the Valencia and kp algorithms are more reliable for
jet reconstruction under di-leptonic simulation conditions.

6.2.2 Recombination Schemes

After selecting the reconstructed particles using the algorithm, the way in which
particles are combined into a pseudo-particle is determined by recombination schemes.
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In this analysis, we will compare three recombination schemes: the E-scheme, EO-
scheme, and p-scheme.
E-scheme

Parton i and j are replaced by a parton jet k with four-momentum

P.=D; +D; (6.8)

This scheme is Lorentz invariant, it conserves both energy and momentum. however,
the parton jet k has a non-zero mass value, which cannot consistently be accounted
for in the QCD calculations.[29]

EO-scheme

The combined parton four-momentum is calculated as
E, = E, +E, (6.9)
i + ;]
the equations show the energy of combined parton are conserved, the mass of parton
is set to be zero, momentum is modified to fit parton energy.

P - (pi + pj) (6.10)

p-scheme

The combined parton four-momentum is calculated as
Pk = Pi + Dj (6.11)
Er = |p] (6.12)

similar to EO-scheme, p-scheme choose p to be conserved value, modify parton energy
to fit parton momentum.

Similar to the comparison of jet algorithms, we have compared the influence of different
recombination schemes on the matching angle, jet energy, and energy resolution. Fig-
ure 6.6 shows the results for the matching angle, Figure 6.7 for jet energy, and Figure
6.8 for energy resolution. All three combination schemes showed similar performance,
with no scheme outperforming the others. However, since neutrino calculations are
extremely sensitive to the hadronic system, we prioritized the Lorentz invariant prop-
erty. Therefore, Valencia with E-scheme has been chosen for this analysis.

6.2.3 Jet Clustering and Jet Tagging in FCCAnalyses

The FastJet library, written in C++, provides a user-friendly interface for performing
jet clustering using various algorithms. It includes several algorithms designed for
clustering particles into jets, such as the kp algorithm, the Cambridge/Aachen algo-
rithm, and the ee-anti-k; algorithm. Although FastJet was developed in the hadron
collider era, it supports both native jet algorithms and recombination schemes, as well
as plugins for ee jet algorithms, such as Valencia, Jade, and Cambridge/Aachen. Jet
clustering and tagging utilities have been developed by pioneers in the FCCAnaly-
ses project, and this analysis will use those tools to investigate particle phenomena.
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The FCCAnalyses software uses ROOT dataframe to produce root files, which can
be further analyzed using Python or C++. An example of Clustering can be seen in
Appendix A.

For most of algorithms, clustering consisted of 5 input parameters, Valencia algorithm
needs (3, v value to be extra parameters, which relates to Valencia algorithm distance
definition.

The Jet Tagging Utilities were built to check whether a jet originated from a b quark
decay. This piece of code can be seen as an extension of clustering. The logic of
the code involves checking if the reconstructed jets and Monte Carlo parton match
with a small angle. Since the di-leptonic channel consists of only 2 jets, both from
b quark decay, jet tagging is useful to distinguish signal events from background. In
the IDEA detector environment, the efficiency for b tagging is set to 80%. This is
because if some reconstructed particles fly in a direction not covered by the detector,
the direction of the ”b jet” will shift, and it will no longer be identified as a b-jet.

6.3 Neutrinos

Neutrinos are almost invisible in collider environments because they only experience
weak interactions. Therefore, any phenomena raised by neutrinos can only be observed
indirectly. Missing energy or missing momentum in particular are likely caused by
neutrinos, but they could also be due to detector blind spots. In the di-leptonic
channel, two neutrinos originate from two W decay, so the value of missing energy
should be large, as shown in Figure 6.9.

Two leptons originating from W decay naturally have high energy. Since muons (u)
and electrons (e) are well-measured particles, we can easily extract those high-energy
oppositely charged leptons from the reconstructed particle list. In an ideal scenario,
all daughter particles originating from b-quarks are also well-measured, so the sum of
the 4-momentum of the hadronic system will be close to the sum of the 4-momentum
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Figure 6.9: In signal events three channels missing mass comparison
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Figure 6.10: Angle matching between RCrest and the sum of two MC b-quarks

of the b-quark pair. RCrest is the way to define this scenario, RCrest is the sum of
all RC particles excluding selected leptons. Figure 6.10 illustrates the angle matching
comparison, while Figure 6.11 shows the energy matching. Compared to the jets,
RCrest is more efficient in defining the total hadronic system. We care about the
hadronic system because our di-lepton events involve a 6-particle kinematics problem
(tt events). By removing the well-defined hadronic system, this problem degenerates to
a 4-particle problem (WW-like events), allowing us to calculate neutrino solutions. [25]
A General Lorentz Transformation Matrix can be written as

g —7Bs —7By 8-
—8 1+ (= DG (=D (- 1)k
B, (=D 1+ -DE (- )%
8. (v =1DEE (v —-1DEE 1+ (v -1)]

(6.13)

<

A

[

_ 1 —
where v = i and 3 = 2.

After obtaining the four-dimensional momentum of the hadronic system, we can re-
construct the back-to-back WW decay event through Lorentz transformations.
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Figure 6.11: Energy matching between RCrest and the sum of two MC b-quarks

We start with the first constraint the W~ energy conservation:
5 = Pw- — P (6.14)

for o decay product, which is equivalent with (m, = 0 for SM)

vy’ = (- —1})° (6.15)
and similar for W,

-2 0 0\2

DPv = (pW+ —pj) (6-16)

The second constraint, total momentum conservation for the whole events

po = —(Ps + P + 17) (6.17)

insert Equation 6.17 to Equation 6.16, it leads to

—_

(Pi + 1) - s = P+ (pf + ) = (1) = i+ Pi + 5 (mu + o) (6.18)

The third constraint is that the invariant mass of lepton-antineutrino system must
equal the W~ mass

(P + pw)® = miy (6.19)
and leads to
i po = Py+p) — (1) — %miv + %m? (6.20)
and ] 1
BBy = it~ BT+ oy i (6.21)

where the lepton and anti-lepton momentum are unlikely to be parallel, so p;,p7,pi X o7
could form a basis in the momenta space. Therefore neutrino momentum can be
expressed as

Py = ap; + bpy + c(p; X py) (6.22)
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at the last, by collecting all infomation, a, b, and ¢ parameter can be expressed as

(a> = ( i _ﬁﬁ) ( Pt~ (1)~ oy %71”122> (6.23)

b) P — (pp)? \~Pi-Pp D —PywP} = D P+ gmay + 5my

2 1
15 % il

due to the restrictions, the sign of ¢ cannot be determined, and we have a twofold
discrete ambiguity.

(P — p))? — @®pi° — U°p;° — 2abpi - (6.24)

After calculating the two neutrino solutions, we need to apply another Lorentz trans-
formation to translate them back to the lab frame. Figure 6.12(a) and Figure 6.12(b)
show the neutrino solutions with respect to MC level. Since neutrino solutions are

sensitive to the measurements of the leptons and the hadronic system, the blurring of
the neutrino momentum is expected.
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Figure 6.12: The angle matching between calculated neutrinos and MC neutrinos is

on the left, and the energy matching between calculated neutrinos and MC neutrinos
is on the right
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7 Event Selection

The definition of the signal and backgrounds has been provided in Section 5. In
this section, we will discuss the optimal methods for recovering the signal from back-
grounds. This will be done in two parts: the first part will focus on object identifica-
tion, while the second part will determine the signal region through event selection.

7.1 Object Identification

In order to understand the motivation behind different selection criteria, we start
with the characteristics of tf production. From the CKM matrix mentioned in sec-
tion 2, almost all of the top quarks will decay into bottom quarks and generate a
W boson. Among them, the bottom quark will eventually form a b-jet that will be
detected, while the W boson will continue to decay to produce a high-energy lepton
and a neutrino, with a branching ratio of approximately 33.3%. Alternatively, the
W boson can decay through hadronization to form two jets, with a branching ratio
of 66.6%. The final product of dileptonic events is relatively simple compared to
other processes: two high-energy leptons, a large missing transverse momentum, and
two b-jets. For neutrino missing momenta, there is no unambiguous solution through
the kinematics shown in section 6, so this issue will be elaborated on in later chapters.

In collider physics, leptons, especially electrons and muons, provide clear signals and
are easily identified. Tau leptons (1.777 GeV) have much higher mass than electrons
(0.511 MeV) and muons (0.106 GeV), and since particle lifetime depends on mass
(T x =), taus will decay inside the detector, with only decay products seen. The
research of taus needs to be revisited in future works. From the data on tau branch-
ing ratio, (17.4% 7~ — p~v,v,) and (17.8% 7~ — e~ P.v;) [26], hence approximately
35.2% of taus decay into lighter leptons. Meanwhile, in di-leptonic events, only 12.4%
of tau events will be misidentified as lighter lepton events. In the events, more than
one lepton can be seen from a hadronization process, but the lepton from the W
leptonic decay is assumed to have the highest energy, due to it happening in the early
stage of decay. This high-energy lepton assumption can be considered as part of the
preselection. From Figure 7.1, we can see that in the process we are interested in,
the highest energy lepton from the leptonic channel and the hadronic channel are
shown, and roughly a 10 GeV energy cut is ideal to distinguish W leptonic decays
from hadronic decays.

The di-leptonic events are accepted by searching reconstructed particles for two high-
energy leptons with opposite charges. The remaining high-energy leptons are all
accounted for as sub-products originally from b-quark decays. In this analysis, jets
are reconstructed with FastJet, and 3 jets are used for further investigation. Two op-
posite charged high-energy leptons are excluded from the clustering, and the Valencia
algorithm with E-scheme is used to define these 3 jets. The ability to identify b-jets
has been set to 80%, which is the efficiency set in the Delphes card for the IDEA
detector. However, 80% efficiency would result in a 36% mis-tagging rate, so at least
1 b-tagged event is also worth checking.
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Figure 7.1: Highest energy distribution for leptonic and hadronic channel

7.2 Signal Selection

Signal selection is crucial for picking out the desired signal from a significant number
of background events, as seen from Table 5.1 where 687,000 signal events are mixed
with a large number of background events. Experimentalists have developed two
optimized selection cut strategies for this situation. The first strategy is based on the
significance defined as:

stg
Vsig + bkg
where sig represents the number of signal events left after cuts, and bkg represents
the number of background events. The second strategy is based on the product of
efficiency and purity (PE) and can be defined as:

Significance = (7.1)

Efficiency = 8 (7.2)
5180t
) sig
Purity = ——— 7.3
LY sig + bkg (7.3)
PE = —© >l (7.4)

*
sigy.  sig + bkg

where sig,, is the total number of signal events before the cut.
The € x p strategy is well-known and has been used for decades [27], so this analysis
will be based on this strategy.

7.2.1 Pre-selection

Pre-selection is an important step in event selection as it helps to remove irrelevant
events and reduces the computational burden. In this analysis of the di-leptonic chan-
nel, two pre-selections were chosen: high-energy leptons and b-jets. The high-energy
lepton pre-selection requires acquiring two high-energy leptons with a threshold of
10 GeV to distinguish between hadronic and leptonic decays, thereby removing most
of the irrelevant events. The b-jet pre-selection involves identifying b-jets, which are
crucial for separating signal events from background events. section 4 states that
b-tagging has an efficiency of 80%), which means that acquiring 2-bjets would remove
36% of signal events. However, discarding such a significant number of signal events
is not ideal. Therefore, with later cuts, it is possible to preserve some events and
increase the significance of the signal data. In this case, 1-bjet pre-selection is ideal.
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Table 7.1 shows how many events passed the pre-selection.

Among the events that pass the pre-selection, two processes are worth discussing. The
first is the 7771 process, which survives the lepton filter but cannot form b-jets. As
a result, all 7777 events are removed by this pre-selection. The second process is the
bb process, for which the b-jet filter has little impact, but the lepton filter removes
almost all events.

H Pre-selection Events H
H all backgrounds 26,917 + 29.7 H
tt 26,174 + 57.9
bb 116 = 0.2
2q:u,d,s,(zqq T£0
T~ 0+0
WW= 5+0
ZH 6,291 + 6.7
YA A 19,818 4+ 20.8
ZWTW~= 145 £+ 0.6
2727 33+ 0
Single_top 501 £ 1.4

Table 7.1: Events passed pre-selection

7.2.2 Selection

In this section, we analyze the observables, and a list of the considered observables is
shown in Table 7.2. Among them, ZH and ZZ are the most dominant backgrounds.
Therefore, it is expected that two same-flavor particle pair productions will be pro-
duced on the Z resonance peak. For the two jets, the invariant mass of the two leptons,
and the missing mass (neutrino), we need to consider the Z mass pole carefully. We
define the distance as

1 — cos6;;
M;;

The reason for defining distance is that since the signal only consists of two b-jets,
acquiring three means that two of them are likely to be close in distance. This means
that we can determine the cuts by analyzing the overlapping jets. Another observable
is thrust [28]. Thrust is defined as

S o I .
|pi]

where ny defines the direction of maximum energy flow. The T value is from 0.5 to

1, where 0.5 is more global-like (¢¢ events), and 1 is more pencil-like (77 events).
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Figure 7.2: PE plots and distribution of missing mass (discard all events with missing
mass < 40GeV)

H Observables H

Highest energy lepton energy

Second highest energy lepton energy
Missing mass

Angle of two small energy jets

Two lepton invariant mass

All jets invariant mass

Two lepton invariant mass at Z mass pole
All jets invariant mass at Z mass pole
Two small energy jets distance

Missing mass at Z mass pole
Thrust

Table 7.2: List of observables for selection

This selection is an iterative process in which all observables (excluding one of the
three Z poles) are scanned from the lower bound to the upper bound, and also from
the upper bound to the lower bound. Three Z pole observables are started from the
Z mass (91.2GeV) to both sides. Collect all PE values, choose the highest one as the
first cut, and repeat the process, until the PE value no longer increases.

The first cut is to cut the missing mass at the lower bound, as shown in Figure 7.2.
Panel (a) shows the PE value as a function of the scanned missing mass from low to
high, with the significance also plotted, which has a similar shape to the PE, and in
this section, event selection is based on the PE curve. Panel (b) shows the distribu-
tion of events, where the blue curve corresponds to the backgrounds and the red curve
corresponds to the signal.

The remaining plots can be found in Appendix B. After removing events with missing
mass < 40GeV, we iterate again and place the second cut on the lepton invariant mass
around the Z pole (93.05GeV > lepton invariant mass > 89.35GeV). From the event
distribution plots, we can see a clear peak around the Z mass. Upon cross-checking
Table 7.1, we can see that the ZZ channel is the majority of backgrounds, so this cut
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also significantly increases the PE value. Additionally, since the Z boson creates a
lepton and its antiparticle, and the lepton flavor is well-defined in the detector, we can
remove events at this cut and ensure that the lepton pair flavor is identical. The next
cut is on the highest energy lepton energy, by removing events with highest lepton
energy < 18GeV and > 106GeV, the PE value increases. The next cut is a lepton
invariant mass cut on the lower side, placed at < 6.0GeV. Two more cuts are placed
on missing mass > 256GeV and two jets minimum angle > 4 degrees, respectively.
For the remaining cuts, some of them do increase the PE value, but it is too small to
make a significant difference. Tables 7.3 and 7.4 summarize the cut flow.

Selection Signal Backgrounds €5, €xy PE

Initial 26,174 £57.9 26,917 +£29.7 1.00 1.00 0.49

Missing mass < 40 GeV 24573 £+ H4.4 3172 £35 094 0.12 0.83
89.35 GeV < Z cut < 93.05 GeV 23957 £+ 53 2562 + 2.8 0.92 0.10 0.88
Highest energy lepton > 106 GeV 23808 4+ 52.7 2215 +£24 091 0.08 091
Highest energy lepton < 18 GeV 23738 £ 52.5 2124 £ 2.3 091 0.08 0.92
Lepton invariant mass < 6 GeV 23731 + 52.5 2091 £ 2.3 091 0.08 0.92
Missing mass > 256 GeV 23730 £ 525 2078 £2.3 091 0.08 0.92
Jets minimum angle < 4.0 degree 23699 + 52.4 2044 £2.3 091 0.08 0.92

Table 7.3: Cut flow for signal and backgrounds
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8 Kinematic Fitting

In the words of William Blake, ” To see a world in a wild flower, and a bodhi in a leaf.”
Experiments can be considered the leaves in the world of science. In the field of particle
physics, each collision between particles has the potential to produce both desired and
undesired events. In some cases, desired events are discarded while undesired ones are
preserved, introducing bias into the results. While this experimental bias cannot be
entirely eliminated, it can be minimized by collecting a large amount of collision data.
By applying specific constraints, valid data may be discarded, but a larger amount
of invalid data is also removed. This approach enables experimentalists to narrow
the range of uncertainty around the parameter, bringing it closer to the true value of
nature.

8.0.1 Simple Rescaling

A method to improve the measurements of reconstructed objects is setting the mass
of particles to massless. The energy is assumed to be fixed, and it fulfils the condition

4

Zpi =0 (8.1)

i=1
and the momentum is rescaled by

| 12

’ ’ |9;]

the direction of jets therefore preserved. [25]

8.1 Constrained Fit

the following section is based on [29]. The least-square methods are simple yet pow-
erful statistical tools. The least squares principle is to minimise the sum of squares
of deviations Ay; between the model and data. The sum of squared deviations could
be written in different forms:

s=S"ay  s=3"(2Fp  s=ayv'Ay (8.3)
i=1 v

; o
=1
The principle of least squares requires to minimise the sum of squared deviations
S = Z(y — ;) = minimum (8.4)
i=1

and mean value of n measured value y;

i=2
=1

In di-leptonic events, two unmeasurable neutrinos have ambiguity in momentum, so
least square methods can help to choose the best neutrino solution to satisfy con-
straints.

3|

: (8.5)



A linear or non-linear (equality) constraint could be written as

fk(a :trueaytrue) =0 k= 1,2,...,777, (86)

where e and ¥4 are equivalent to the expectation value if there are a large number
of measurements. k represents the number of constraints.
The Method of Lagrange multipliers can be used to minimise the sum of squared

S(a, Ay) = Ay" WAy (8.7)
under the conditions
frla,y+Ay=0 Ek=1,2,...,m) (8.8)

where W is the inverted covariance matrix of the data, also called as a weight matrix.
The method of Lagrange multipliers defines a new function

L(a, Ay) = S(a, Ay) + 2 Z e fr(a, y + Ay) (8.9)
k=1

for this equation, the necessary condition is for a local extremum with respect to all
parameters (Ay, a and \) is equivalent to the condition which minimises the sum of
squared under the condition fi(a,y + Ay = 0).

The solution simultaneously fulfils

0L oL oL

= =0 =0 t—| 8.10

dy da O\ (8.10)
In general, the problem is Non-linear, and Non-linear conditions can be linearised by
Taylor-expansion|70]

a",y" +Z@a”+1 (At — +Za (A M Ag) R~ 0 (8.11)

and function L for the (n 4 1) — th iteration can be rewritten as

L=Ay"V(y)'Ay + 20T (AAa + BAy — ¢) (8.12)
and
c=AAa" + BAY" — f (8.13)
where
8f1/8a1 8f1/8a2 0f1/aap fl(a”,y”)
A _ 8f2/8a1 8f2/8a2 8f2/8ap f _ f2(a”,y”) (814)
Ofm/0ar Ofm/0ay ... Ofp/0a, fm(a™ y™)
(9f1/(9y1 afl/aQZ 5f1/3yn
B— af2/33/1 ah102/5’y2 an/ayn (8.15)

8fn;/3y1 8fn;}3y1 8%/ OYn
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the system of equations to be solved in the general case are

W 0 BT Ay 0
00AT | [Aa| =10 (8.16)
B A O A c
and .
W 0 BT\~ Cy CH CF
00AT ] =|Cy CxnCL (8.17)
B A O Cs1 Csp Cs3
where
Cu =V —VB"WzBV + VB"Wp AW ' ATW5 BV (8.18)
Cy = W tA"WpBV (8.19)
Cop =W, (8.20)
C3 = WpBV — W AW [P ATW 5BV (8.21)
C3y = WpAW ! (8.22)
Cz3 = —Wp + WgAW ' ATWp (8.23)

Wp = (BVBT)™! and W' = (ATWpA)~! V for measurements in symmetric, and
C11, Cae, C31 and Cs3 are also symmetric so we can arrive

1 ChChH O
% C:L =|Cy Cypy 0 (8.24)
A 0 0 —Css

The covariance matrix shows that Lagrange multipliers are independent to measured
and unmeasured particles.

8.2 Inclusion of Breit-Wigners

The derivations in this section are based on [25]. After including four-momentum
conservation, we have an additional four constraints to the problem: mass constraints.
When two t-quarks are created, they decay very quickly into 2 b-quarks and 2 W
bosons, which will decay further. For one of the W bosons, its mass will be equal to
the invariant mass of the neutrino and lepton, and the same applies to the other W
boson. W bosons and b-jets can be reconstructed into Top quarks, allowing us to add
four mass constraints. Due to the Breit-Wigners distribution, the top and W bosons
do not need to be completely on the peak, so the constraints can be relaxed by the
Breit-Wigners distribution. The function L can be extended accordingly.

Liy) = S(y) + g(x) + 2> Mefila,y,7) (8.25)

g(x) only depends on the scalar, and it could be a penalty function. the measured
parameters can be corrected as

n+1 N 0 ~ ~
(ynﬂ) - (yg) . Ve (l i ) +VBY(BVBT)™ (8.26)
2 dx?
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x[A(a" — ag) + B ( v L ) — fla™,y", 2] (8.27)

dg|—1
%|x:m"§m|$:$"

and free parameters can be written as

an—i—l =ap+ ngATWB X [A(a” - (Z(]) +B ( / :ﬂyf ) - f(an7 yn> xn)] (828)

dg|—1
dx |50=30" 2 dx? |x:x"

8.3 ABC-Parametrisation

In order to use constrained fit, we need to use particle momentum in a way that can
be associated with Gaussian distribution, the otherwise constrained fit will be mean-
ingless. Similar to energy resolution of the detectors, we could write reconstructed
jets as

Pr = aj|P"| P8 + b, PY + ¢; ¢ (8.29)

where P;" is measured jet momentum P}’ ,P]b , P§ s defined as

(8.30)
Py = ;?n‘ (8.31)
P = ﬁ(@”, —P™,0) (8.32)
pe ! (—Pr P, PPl p2,, + P2) (8.33)

’ ’P]m|2 P:?,m—i_Py%m

from formula, we can see the P;@ is the direction of the original particle, and the initial
parameter can be defined as {a;, b;,¢;} = {1,0,0}

8.4 ABCfit4++ Software Package

The ABCfit++ software package was written in connection with this analysis. [30]
The following classes are used in this analysis:

Coordinate Representation: CoorRepr.h is the basic class, and it contains 4 de-
rived classes, and they are PxPyPzE.h, PxPyPzM.h, PtEtaPhiM.h, and ABCD.h, and
each class defined how representation transforms itself. Naively we know PxPyPzE, 3
momenta and energy, and PxPyPzM is just straightforward replacing energy to mass.
PtEtaPhiM and ABCD are more tricky. Pt is transverse momentum, Eta the pseudo-
rapidity, Phi the polar angle in the transverse plane, and M mass as usual. ABCD
coordinates were introduced in previous section, the D again, the mass. In addition,
the default expectation values of the first three representations are simply themselves,
but the ABCD is {1,0,0,m}.
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Particle Object: basic class for particles, to define the particle information and
input coordinate representation. in addition, one extra input is provided, and only
measured particles contribute to the 2, it provides extra information, and depends
on how well particles are measured.

Constraint: this class is written for constraints setting, and there are 5 constraints
derived from it, named SumP(x,y,z) Constraint.h, SumEConstraint.h, and InvMass-
Constraint.h. The first 4 constraints are simply conservation of energy and momen-
tum, the constrained particles must fulfil the condition of constraints. The InvMass-
Constraint needs extra Breit-Wigners function as input, but due to the Breit-Wigner
peak being similar to Gaussian, so Gaussian is used here, and due to this distribution,
it allows particles to vary in mass.

CompositeConstraint: this class is used to create a linear combination of con-
straints, it takes a list of constraints as input and also takes a constraint value or a
PDF depending on how tight the composite constraint should be defined.

Probability distribution functions: The PDF is currently used to set up Gaussian
PDF, in the future it could be expanded by adding ISR, this PDF tells the constraint
how tight it should be. The penalty function is calculated from the PDF by

9(x) = —2In(pdf (z)) (8.34)

this class does not only have a calculation of those, but it also includes expectation
value for the initial setting of fit.

Matrix Algebra: This class is used to calculate matrices, such as addition, multi-
plication, and also inverse and transpose.

ABC Fit: The class take a list of composite constraints, and also a maximum number
of iterations It iterates the calculation of the parameter until reaching the maximum
number of iterations or converged. It returns the number of iterations before con-
verging, x? value on how well its constrained, the number of degrees of freedom, and
a list of fitted particles. Since the particle objects are passed as pointers into the
constraints, a constrained fit can be applied in stages where the fit is first applied
for one set of constraints followed by another set of constraints instead of requiring
all constraints to be fulfilled at once. This could be relevant in cases of convergence
issues. [18]
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9 Analysis

9.1 Event Reconstruction of Di-leptonic ¢t Production

In section 8, we discussed the constrained fit which aims to improve the consistency
of the output particle momentum with a perfect collision through event conditions,
thereby reducing the systematic error caused by observation behavior. However, the
neutrino is an unobservable quantity, and its calculation can overlap and amplify the
measurement error of the jet and lepton, resulting in a relatively low resolution of the
four-dimensional momentum of the neutrino. In Figure 9.1, we show the improvement
of constrained fit for jets and leptons. Although it is not unique matching shown in
Figure 9.1(a), it can show the improvement of constrained fit for jets momentum from
a statistical point of view. For lepton (Figure 9.1(b)), since lepton is a well-measured
particle, the optimization of constrained fit for lepton is not obvious. The optimiza-
tion logic for these two objects will be shown in Figure 9.2.

10°
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10° 1 10 =
10° =
i 10° =

10

0 Nl

O lwao Liby L L 1 L E L L L 1 | I I I I
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((a)) ((b))
Figure 9.1: Constrained fit to jets and leptons

For the signal events analyzed in this article, there are a total of eight constraints,
with the first being the conservation of energy and the conservation of momentum,
making a total of four constraints. Additionally, there are two rest masses of W and
two rest masses of the t quark. Since two unobservable neutrinos have used W mass
and 4-momentum conservation, the constrained fit performed after that is called a
2-constraint fit, simply because the two t quark masses have not yet been used.

In the previous section, we mentioned the issue of the neutrino ambiguous solution.
The two results obtained are consistent with the WW system from the perspective
of the derivation method. Therefore, for the selection of the neutrino reco level, the
constraint of t quark mass is particularly important. In this analysis, we use the basic
x*(Equation 9.1) as the basis for selecting the optimal solution.

Z (Mi; = Miop) = min (9.1)

o2
Since the measurements of leptons are more precise than those of other particles, par-
ticle combinations are mainly focused on neutrinos and b-jets. There is no way to
distinguish the jets formed by b and b, so there are ultimately four combinations. To
obtain the closest true value, we select the combination with the lowest chi-squared
value by calculating it for each combination. Although obtaining a weighted sum by
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Figure 9.2: a, b and ¢ parameter distributions for leptons and b-jets.(Reproduced
from [18]

calculating the probability of each combination is an option, in this analysis, we always
choose the combination with the lowest chi-squared value to show the most likely data.

Next, we will discuss how to apply the constrained fitting technique in the case of di-
lepton tt events. In section 8, we mentioned that the ABCfit++ used in this analysis
is based on the contributions in reference. [30]

The process of event reconstruction involves cycling through all possible combinations
and conducting a constrained fit to determine the combination that results in the
lowest constraint x? value, as calculated from Eq. 8.25. The fit utilizes the ABCD-
parametrisation explained in the preceding section. Assuming that measurements are
uncorrelated, the covariance matrix is diagonal as

V= (SijO'Z'O'j (92)
Figure 9.2 presents the distribution of the a, b, and ¢ parameters for leptons and b-jets,
respectively. These distributions were obtained by matching the measured leptons and
jets to their corresponding true counterparts in the Monte Carlo data, with each jet
matched to the quark closest in angle. The mean value of the parameter for leptons
is 1, indicating that quark-level leptons and measured leptons have equal energies
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on average. However, for b-jets, the mean of the parameter is 1.03, suggesting that
the measured energies of b-jets are slightly lower than those of their corresponding
quarks. The leptons have a resolution of 0.003 for all three parameters, while the
resolutions for a, b, and ¢ are 0.07 and 1.2, respectively, for b-jets. The covariance
matrices for leptons and b-jets are provided to further characterize their distributions.
The covariance matrix for leptons is given by a 4x4 matrix with diagonal elements of
0.003 and 10 in the last element. On the other hand, the covariance matrix for b-jets
is a 4x4 matrix with diagonal elements of 0.07 for a and 1.2 for b and ¢, and 10 in the
last element.

0003 0 0 0 007 0 0 0
0 0003 0 O 0 1.2 0 0

Viewon = |09 0003 0 |V = 0 0 120 (9.3)
0 0 0 10 0 0 0 10

The mass parameter is not used in the fit because it is fixed after scaling the en-
ergy and momentum of the input particles to have zero mass. Therefore, the mass
parameter does not contribute to the fitting process. To match the mean values of
the a distributions, the parametrisation function for the jets has been modified from
the default (1.0,0.0,0.0,m) to (1.03,0.0,0.0,m). However, since the neutrino is not
measured, there is no associated covariance matrix for it.

9.2 Observables

After completing the selection and processing of event samples, the next thing to
analyze is the final observables, cross-section and angular distributions. There are a
total of 5 angles we are interested in, the first one is the polar angle in the electron
beam and the reconstructed top quark, which is given by [26]

pe'pt

cos b, =
" bl Ipdl

(9.4)

where p, is the unit vector of the electron beam, and it naively parallels to the z-axis
(0,0,1), the p, is the 3-momentum of reconstructed top quark.

The next two angles are the polar angle and azimuthal angle of the top quark and
its decay product. For the signal event, this decay product can be considered as a
b-quark, and the three-dimensional momentum of a b-quark can be converted into
the direction parallel to the top quark and vertical The direction of the top quark.

P

Py = (P Py)—5 (9.5)
P

PiL = Pt — Py (9.6)

when we move to the reference frame of the top quark, the parallel momentum of b
quark can be transformed by Lorentz transformation.

p; = 7(py — BE) (9.7)
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Table 9.1: Summary of the angles of interest

So the polar angle of the t-quark and the b-quark can be calculated as
Py
V)2 + ()2

At the same time, for their azimuthal angle, we can redefine the coordinate system.

The z-axis, in relation to the top particle, is aligned with its direction of travel. This

implies that 2/ = |g—"| In this same reference frame, the x’-axis can be obtained by
t

(9.8)

* —_—
cosfy, =

taking the cross product between the z’-axis and the z-axis ' = 2’ X p,. the y’-axis
can be obtained by taking the cross product of x” and z”’, where it is perpendicular to
both the x and z axes 3/ = 2’ x Z’. From this, we can get the azimuthal angle between

them as .

L - Py
Y- py
Similarly, we repeat the same steps for the decay of W to obtain the angle of W related
to its decay products. All the angles we are interested in are summarized in table 9.1.
After completing the selection and processing of event samples, the next step is to
analyze the final observables, including the cross-section and angular distributions.
In particular, we want to investigate the impact of event selection on the SM signal

angular distribution and understand how it may affect BSM data.

¢ = arctan (9.9)

The analysis uses the x? test, a basic statistical test, to compare the distribution
images before and after event selection. As mentioned in the observables section, we
compare the distribution of five angles before and after selection. Figure 9.3 shows
only one angle, and the remaining angular distributions are in Appendix C. Since
event selection removes some signal events, there is a certain gap between the am-
plitudes of the two distributions. To better show the impact on the distribution and
remove the impact on the cross-section, we rescale the before-selection histogram to
the after-selection histogram.

The x? test estimates the degree of relevance between two histograms by calculating
the value of each degree of freedom. However, since the x? test is sensitive to bin
value and bin width, it can only verify the two histograms to a certain extent. For
0., the value of x? is 67.889, the degree of freedom is 24, and the p-value is 4.54476.
Therefore, event selection has affected this angle distribution. For 6, the value of
x? is 109.325, the degree of freedom is 15, and the p-value is 2.172716, indicating
that event selection has affected this angle distribution. The third angle, ¢, has a
x? value of 8.507, the degree of freedom is 31, and the p-value is 1.000. The impact
of event selection on this angle can be ignored. The last two angles, 0y, and ¢y,
have p-values of 1.42272%6 and 3.41477, respectively, indicating that these angles are
affected by event selection. The effect of event selection on these angles can also be
seen from the ratio plot of Figure 9.3.
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Figure 9.3: Normalised 6.; angular distribution before and after event selection, and
its ratio plot

As mentioned earlier, the y? test is affected by the bin effect, and the impact of event
selection on the angular distribution deserves a more detailed discussion.

The previous part mentioned the impact of event selection on the SM angular distri-
bution. From Figure 9.4, we can intuitively see the impact of event selection on the
BSM cross-section. Compared with the 33.22% of SM, the couplings tr_tbW _re and
tl.tbW _re have a significant decline, while the efficiency of the remaining couplings is

comparable to the SM.
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Figure 9.4: Event selction efficiency of all couplings and the SM
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coupling o 1ot [PD]

SM 0.0 0.4834
" i) Iy
tv_ttA _45‘160 ?izé

vr_ttZ :1(')0 8:12(5)1
t1tbW_Re s 1831
tr_tbW_Re _+1‘1(50 421?2219

vl.tbW_Re _+0955 8:222
vr_tbW_Re _—;100 giggi

Table 9.2:  Whizard Cross-section for different couplings. Not normalized by the
leptonic branching ratio.

9.3 Results

After completing all the previous steps, the next step is to determine the confidence
intervals of the couplings. These intervals are a way for us to explore the sensitivity of
the FCC to anomalous couplings. In section 3, we mentioned that in order to explore
the influence of BSM in FCC, we first seek higher-order modifications in the SM. The
BSM fit model is expected to have a quadratic polynomial form (Equation 3.11-3.13).

9.3.1 Single-Parameter Fit to 1 Dimensional Angular Distribution

Three points can determine a parabolic model, as shown in Table 9.2. For most cou-
plings, we choose a values of -1, 0, and +1. When the coupling is zero, it corresponds
to the SM. However, since vl_tbW_Re is particularly sensitive to coupling changes, we
choose a values of -0.5, 0, and 0.5 in this analysis instead.

In order to describe the parabola of the BSM-included fit model, we parameterize the
angular distribution.

fl@®)y=cC (9.10)
fla™) = Aa® + Ba +C (9.11)
f(a™)=Aa*> — Ba+C (9.12)

it is trivial to get BSM fit model parameters

flaf) +f(a7) _ f(SM)

A= = (9.13)
B — f<04+)2_af(a_) (914)
C = f(SM) (9.15)
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and the BSM fit model is
f@)=A-22+B-2+C (9.16)
where the C parameter includes signal and background events.

The confidence intervals of single coupling could be determined by the minimum y?
method, by scanning each bin. The x? is getting from

X2 _ Z (yz - f(l‘z, (1/))2 (917)

. 2
o1 YT %)

The numerator in the expression for x? represents the squared difference between the
SM histogram and the i-th bin content of the fitted histogram. The denominator is
obtained by summing the i-th bin content of the SM histogram and the square of the
fitting model error.

Monte Carlo simulators generate perfect data, which are also known as Asimov
datasets, and their expected values are perfectly equal to the true value. However,
when generating BSM data through Whizard, the generated values are larger than
the expected cross-section value. This implies that the weight of these data is less
than 1. Consequently, generating more data can help reduce statistical error in the fit
model. On the other hand, SM data, although generated using Monte Carlo, need to
be treated as real data. Therefore, we use their standard deviation when calculating
x?2, and this is why the i-th bin content is used.

For the Minimum y? Method, a 1o confidence interval of 68% is used here, and since
we are performing a one-coupling fit, the number of parameters is also 1. There-
fore, as shown in Figure 9.5 (a), the upper and lower bounds of the 1o confidence
interval are limited to Ax? = 1, and the fit model can be clearly seen within 1o confi-
dence interval. A special example is shown in Figure 9.6, where the double minimum
structure arises due to the effect of the linear term, indicating a non-trivial correlation.

Appendix D1 contains the relevant values for the remaining angles and couplings.
the right side demonstrates the agreement between the fit model and the data in the
signal region.

In this analysis, both the cross-section and angular distribution are important for de-
termining anomalous top couplings. Removing the cross-section would theoretically
reduce the sensitivity of the analysis. To demonstrate the impact of removing the
cross-section, we normalized the fit histogram to the SM histogram. The following
table presents the results with and without the cross-section.

In Table 9.3, all 70 confidence intervals are summarized, with marks indicating whether
or not the cross-section is included. In general, the results are in agreement with previ-
ous predictions, and the confidence intervals have higher sensitivity when cross-section
information is included. We use four significant figures for each result, as some re-
sults differ in the third significant figure. When comparing with Table 9.2, couplings
that cause a significant change in the cross-section also have a significant change in

20



Delta chi*2

o

w

N

=

thetaet_Delta chi*2 Theta et

Ly
= Z

5
12200

2100

2000

1900

1800

1700

1600

|
-0.2 -0.1 0 0.1 0.2 -1 -08 -06 04 02 0 02 04 06 08 1
alpha Cos

(a) (b)

Figure 9.5: 6., for ta_ttA o included

phiWl_noX_Delta chi”2

Delta chi*2

oy

T P T HENTIN PR T SO
-0.1 0 0.1 0.2 0.3 0.4
alpha

((a))
Figure 9.6: ¢y, for tr tbW_Re o excluded

51



Figure 9.7: The left is the TH2D plot of strong correlation 2 variables, the right is
the TH2D plot of weak correlation 2 variables.

the confidence interval when the cross-section is removed. Among them, 6y, is less
affected by cross-section compared to other angles. Overall, the coupling with the
highest sensitivity for FCC-ee is tv_ttA, with a more precise value compared to other
couplings. On the other hand, the coupling with the worst sensitivity for FCC-ee is
vr_tbW _Re, with a larger value compared to other couplings.

9.3.2 Single-Parameter Fit to 2 Dimensional Angular Distribution

At the theoretical level, there is no fundamental difference between using 2D and the
previous 1D analysis, as it simply provides more information for a specific angle to
increase sensitivity. The same logic as before is applied to construct the fit model.

In this section, the five observables from the previous part are expanded to seven
observables, and the cos part can be expressed in radians, mapping an angle from the
interval [-1,1] to [—m, 7]. While there is a strong correlation(Figure 9.7(a)) between
these observables, their confidence intervals will still change due to the binning ef-
fect. However, the effect of binning on sensitivity is not significant, and meaningful
variables should be weakly correlated(Figure 9.7(b)) and have a more homogeneous
distribution. Except for strongly correlated observables, additional information will
improve sensitivity for anomalous contributions. Figure 9.8 shows that, for the same
angle, any second angle will positively contribute to the anomalous top coupling sen-
sitivity. Similar to the 1D analysis, we can remove the cross-section effect to assess
its impact on sensitivity.

Figure 9.9 shows cos(et) angle(tb) for ta_ttA, while the figures for other angles will be
included in Appendix D2. On the left, we see cos(et) angle(tb) for ta_ttAAx?, with
SM still at the minimum point. In this section, the upper and lower bounds of the 1o
confidence intervals are still limited to Ax? = 1. On the right, we see the agreement
between the fit model and the data in the signal region of the 2D plot.

From Table 9.4 to Table 9.10, where each table is divided into lower left and upper
right parts using a diagonal line. The lower left part separated by a diagonal block
corresponds to the cross-section excluded confidence interval, while the upper right
part is the cross-section included confidence interval. For By combining weakly corre-
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coupling Otot Oct O, on O dwi
-0.1558 -0.1581 -0.1591 -0.1578 -0.1592
Yes to to to to to
fa ttA 0.1573 0.1573 0.1598 0.1573 0.1586
-0.3097 -0.3787 -0.5971 -0.3453 -0.5924
No to to to to to
0.3535 0.3663 0.6768 0.3429 0.5928
-0.1083 -0.1060 -0.1084 -0.06177  -0.09552
Yes to to to to to
0.1125 0.1108 0.1126 0.06045  0.094669
tLEbW-Re 02771 02110 -0.3810  -0.06357  -0.1214
No to to to to to
0.2879 0.2234 0.3260 0.06168 0.1139
-0.004303 -0.004216 -0.004259 -0.004149 -0.004244
Yes to to to to to
tr bW Re 0.004439 0.004346  0.004392  0.004275 0.004376
-0.07265 -0.1034 -0.1459 -0.02174  -0.06459
No to to to to to
0.1509 0.2046 0.1701 0.02514 0.2549
-0.001501 -0.001466 -0.001480 -0.001467 -0.001479
Yes to to to to to
v A 0.001510 0.001475 0.001489 0.001476  0.001488
-0.1125 -0.06120  -0.07532  -0.05358  -0.08701
No to to to to to
0.07370 0.06407 0.06918 0.05213 0.07304
-0.007315 -0.007113 -0.007197 -0.007117 -0.007176
Yes to to to to to
vl tbW Re 0.007249 0.007049 0.007133  0.007053 0.007112
-0.1660 -0.3684 -0.3736 -0.2311 -0.4799
No to to to to to
0.1908 0.09693 0.3022 0.1155 0.1508
-0.2758 -0.2885 -0.2905 -0.1904 -0.2697
Yes to to to to to
0.2930 0.3121 0.3166 0.1909 0.2935
vr-tbW.Re 0.5055  -0.6314  -0.6172  -0.2010  -0.3354
No to to to to to
0.4205 0.5742 0.6061 0.1965 0.3947
-0.01811  -0.02224  -0.02247 -0.02225 -0.02244
Yes to to to to to
. 0.01773 0.02150 0.02171 0.02151 0.02169
-0.03295 -0.5686 -0.6024 -0.4956 -0.7389
No to to to to to
0.03283 0.3368 0.4619 0.3394 0.5650

Table 9.3: Confidence interval for every couplings. The first column denotes the name
of the couplings, the second indicates the cross-section, and the rest column denotes
the confidence interval of five angles of interest.
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lated observables, we have raised the sensitivity of single-parameter fit to a new level.
Comparing all confidence intervals, we can see that most of them have improved by
around 20%. The highest sensitivity in the 1D fitting, tv_ttA, still exhibits a certain
degree of improvement in the 2D fitting. Thus, in general, the sensitivity ranking of
the 1D fitting is still preserved in the 2D fitting. Similarly, the change of cross-section
to the confidence interval is also significant. For example, for the data of tv_ttA,
removing the cross-section will increase the confidence interval of cos 6.; — cos 0y, from
[-0.001411,0.001419] to [-0.01821,0.01769]. If we compare the data of 1D tv_ttA, we
find that for the case where the cross-section is excluded, the 2D fitting sensitivity has
significantly improved. Thus, we can draw the conclusion that for the cross-section
included case, the improvement of the confidence interval is much lower than for the
cross-section excluded case.

ta_ttA cosby  cosby,  angleby, ¢y cosBw; angleBy;  dwy
\ -0.1351 -0.1422 -0.1350 -0.1369 -0.1433 -0.1323
€050 to to to to to to to
\ 0.1362 0.1440 0.1358 0.1384 0.1451 0.1329
-0.1840 '\ \ -0.1351 -0.1383 -0.1453 -0.1336
cosBy, to to to to to to to
0.1887 '\ \ 0.1353  0.1379 0.1452 0.1340
-0.2047 \ \ -0.1437 -0.1468 -0.1509 -0.1429
angleby,  to to to to to to to
0.2157 '\ \ 0.1434 0.1477 0.1513 0.1420
-0.1819 -0.1897 -0.2242 \ -0.1344 -0.1422 -0.1299
o to to to to to to to
0.1886 0.1934 0.2292 \ 0.1351 0.1417 0.1290
-0.1855 -0.2021 -0.2361 -0.1824 '\ \ -0.1339
cosby, to to to to to to to
0.1927 0.2012 0.2477  0.1895 '\ \ 0.1334
-0.2071 -0.2359 -0.2612  -0.2147 \ \ -0.1422
angleby,; to to to to to to to
0.2189 0.2366  0.2706 0.2177 '\ \ 0.1414
-0.1748 -0.1853 -0.2234 -0.1704 -0.1823 -0.2165 \
Owi to to to to to to to

0.1779 0.1883 0.2191 0.1694 0.1811 0.2132 \

Table 9.4: ta_ttA 2D Confidence regions.
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tl.tbW_Re cosf.; cosBy, angleby, oy cosby, angleby;  dw
\ -0.09044 -0.09322 -0.09036 -0.05634 -0.05842 0.08307
0804 to to to to to to to
\ 0.09485  0.09941 0.09294 0.05550 0.05737  0.08339
-0.1219 '\ \ -0.08963 -0.05671 -0.05864 -0.08237
cosBy, to to to to to to to
0.1266 \ \ 0.09119 0.05517 0.05704  0.08131
-0.1288  \ \ -0.09442 -0.05829 -0.06006 -0.08633
angleby, to to to to to to to
0.1441 \ \ 0.09596  0.05685 0.05851  0.08498
-0.1243  -0.1190  -0.1348 \ -0.05659 -0.05863 -0.07587
D to to to to to to to
0.1233 0.1152 0.1292 \ 0.05519 0.05738  0.07515
-0.05749 -0.05787 -0.05951 -0.05774 \ \ -0.05628
cosOy to to to to to to to
0.05624  0.05586  0.05763  0.05593 '\ \ 0.05510
-0.05995 -0.06016 -0.06166 -0.06016 \ \ -0.05808
anglefy,;  to to to to to to to
0.05839  0.05798 0.05956 0.05842 \ \ 0.05709
-0.09592 -0.09471 -0.1010  -0.08290 -0.05738 -0.05951 '\
dwi to to to to to to to
0.09330  0.08974  0.09527 0.08034 0.05579  0.05804  \

Table 9.5: tl.tbW_Re 2D Confidence regions.
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tr.tbW_Re cosf,, cosly, angleby,  ou cosOyy, angleby,  owy
\ -0.004033 -0.004110 -0.004077 -0.003964 -0.003981 -0.004078
0804 to to to to to to to
\ 0.004150 0.004232 0.004196  0.004074 0.004092 0.004197
-0.02702 '\ \ -0.004088 -0.004039 -0.004052 -0.004085
cosBy, to to to to to to to
0.02844 \ \ 0.004209  0.004158  0.004171  0.004206
-0.03057 '\ \ -0.004163 -0.004118 -0.004129 -0.004164
angleby, to to to to to to to
0.03275 '\ \ 0.004289  0.004242 0.004254  0.004290
-0.02992 -0.03381  -0.04214 \ -0.004084 -0.004098 -0.004095
D to to to to to to to
0.03097  0.03477 0.04418 \ 0.004205 0.004220 0.004217
-0.01360 -0.01802  -0.01894  -0.01881 '\ \ -0.004087
cosOy to to to to to to to
0.01401  0.01992 0.02128 0.02061 \ \ 0.004208
-0.01408 -0.01867  -0.01948  -0.01971 \ \ -0.004104
angleBy, to to to to to to to
0.01455  0.02084 0.02208 0.02188 \ \ 0.004227
-0.02750 -0.03068  -0.03603  -0.02306  -0.01846  -0.01960  \
dwi to to to to to to to
0.02891  0.03247 0.03945 0.02492 0.02012 0.02172 \

Table 9.6: tr_tbW_Re 2D Confidence regions.
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tv_ttA 080, cos0y, angleby, — Ou cosby, angleby,  owy
\ -0.001411 -0.001436 -0.001425 -0.001432 -0.001435 -0.001426
0804 to to to to to to to
\ 0.001419 0.001444 0.001434 0.001441 0.001444 0.001434
-0.01821 '\ \ -0.001428 -0.001434 -0.001437 -0.001427
cosBy, to to to to to to to
0.01769 \ \ 0.001436  0.001442 0.001446 0.001435
-0.02133 '\ \ -0.001453 -0.001461 -0.001464 -0.001453
anglefy,  to to to to to to to
0.02067 \ \ 0.001461 0.001470 0.001473 0.001462
-0.01976 -0.01846  -0.02305 \ -0.001448 -0.001452 -0.001440
D to to to to to to to
0.01883  0.01778 0.02210 \ 0.001457 0.001461  0.001448
-0.01839 -0.02032  -0.02549  -0.01881 '\ \ -0.001450
cosOy to to to to to to to
0.01781  0.01957 0.02463 0.01809 \ \ 0.001458
-0.02069 -0.02397  -0.02902  -0.02252 \ \ -0.001453
angleBy, to to to to to to to
0.01999  0.02302 0.02801 0.02152 \ \ 0.001462
-0.01782 -0.01869  -0.02282  -0.01576  -0.01891  -0.02241 '\
dwi to to to to to to to
0.01719  0.01800 0.02186 0.01528 0.01822 0.02146 \
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vlI_tbW_Re cosb,, cosBy, angleby, — Ou cosby, anglebw,  owy
\ -0.006776 -0.006915 -0.006887 -0.006903 -0.006923 -0.006882
0804 to to to to to to to
\ 0.006717  0.006855  0.006827 0.006843  0.006863  0.006823
-0.05056 '\ \ -0.006901 -0.006928 -0.006944 -0.006901
cosBy, to to to to to to to
0.04739 \ \ 0.006840  0.006866  0.006882  0.006839
-0.05711 '\ \ -0.007041 -0.007080 -0.007096 -0.007050
angleby, to to to to to to to
0.05304 \ \ 0.006978  0.007017  0.007032 0.006987
-0.07596 -0.08416  -0.1064 \ -0.007021 -0.007042 -0.006989
D to to to to to to to
0.06704 0.06120 0.07063 \ 0.006959  0.006980  0.006927
-0.05675 -0.07840  -0.09389  -0.08479 \ \ -0.007034
cosOy to to to to to to to
0.05274  0.05943 0.06725 0.06563 \ \ 0.006972
-0.06120 -0.08501  -0.09906  -0.1007 \ \ -0.007054
angleBy, to to to to to to to
0.05758  0.06290 0.06947 0.07492 \ \ 0.006991
-0.06002 -0.07771  -0.09279  -0.07785  -0.08294  -0.09914 '\
dwi to to to to to to to
0.05567  0.05858 0.06665 0.06291 0.06404 0.07161 \

Table 9.8: vl.tbW_Re 2D Confidence regions.
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vrtbW_Re cosl.;  cosly  anglely oy cosby, anglebw; odw
\ -0.2120 -0.2235 -0.2027 -0.1641 -0.1718 -0.2013
080, to to to to to to to
\ 0.2204 0.2340 0.2106 0.1626 0.1691 0.2103
-0.2409 \ \ -0.2060 -0.1668 -0.1744 -0.2062
cosBy, to to to to to to to
0.2408 '\ \ 0.2137 0.1693  0.1759 0.2099
-0.2618 \ \ -0.2288 -0.1757 -0.1818 -0.2215
angleby, to to to to to to to
0.2625 '\ \ 0.2407 0.1778 0.1821 0.2308
-0.2267 -0.2356 -0.2807 '\ -0.1599 -0.1702 -0.1818
O to to to to to to to
0.2277 0.2316  0.2766 \ 0.1616 0.1715 0.1891
-0.1692 -0.1727 -0.1827 -0.1653 \ \ -0.1617
o8Oy to to to to to to to
0.16563 0.1722 0.1815 0.1642 \ \ 0.1621
-0.1785 -0.1821 -0.1907 -0.1775 \ \ -0.1698
angleBy, to to to to to to to
0.1725 0.1797 0.1866 0.1751 \ \ 0.1708
-0.2212 -0.2326 -0.2585 -0.1947 -0.1670 -0.1768 \
owi to to to to to to to
0.2253 0.2242 0.2556 0.1970 0.1646 0.1743 \

Table 9.9: vr_tbW_Re 2D Confidence regions.
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vr _ttZ 080, cos0y, angleby, oy costy, anglebw;  owy

\ -0.01758 -0.01787 -0.01786 -0.01748 -0.01753 -0.01764
0804 to to to to to to to
\ 0.01723 0.01751 0.01750 0.01715 0.01720  0.01730
-0.02869 \ \ -0.02155 -0.02167 -0.02175 -0.02154
cosBy, to to to to to to to
0.02865 \ \ 0.02085  0.02096 0.02104  0.02085
-0.02900 '\ \ -0.02197 -0.02214 -0.02220 -0.02199
anglefy,  to to to to to to to
0.02896  \ \ 0.02125 0.02140 0.02146  0.02127
-0.02937 -0.2064 -0.2536 '\ -0.02189 -0.02198 -0.02175
Ow to to to to to to to
0.02932  0.1507 0.1796 \ 0.02117  0.02126 0.02104
-0.02748 -0.2389  -0.3060 -0.2100 \ \ -0.02191
cosOy to to to to to to to
0.02746  0.1658 0.2043 0.1562 \ \ 0.02119
-0.02761 -0.2860  -0.3470  -0.2597 '\ \ -0.02199
angleBy, to to to to to to to
0.02760  0.1937 0.2222 0.1862 \ \ 0.02127
-0.02837 -0.2030  -0.2427 -0.1770  -0.2038  -0.2455 \
dwi to to to to to to to

0.02835 0.1525 0.1808 0.1419 0.1547 0.1828 \

Table 9.10: vr_ttZ 2D Confidence regions.

9.3.3 Two-Parameter Fit to 1 Dimensional Angular Distribution

Unlike the previous section, the following discussion aims to expand on the number of
parameters used in the minimum y? method. As mentioned in section 3, the events
we are concerned with involve a total of seven couplings. Combining them results in
21 possible arrangements. To perform a two-parameter fit, we must restructure the
fit model. A generic fit model would appear as follows:

fla,f)=A-a*+B-a+C-+D-B+E-af+F (9.18)

To generate the fit model, we require additional data based on the previous MC data
sets. Using Whizard, we set both couplings to 1 simultaneously. The specifics are
outlined in Table 9.11, which encompasses 21 arrangements.

In the previous section, we utilized f(«) to denote angular distribution. However, in
this section, we incorporate a second coupling and use f(«, ) to describe the angular
distribution, where 5 denotes the second coupling. The entire derivation process can
be expressed as follows:
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flat,0)=A-a*+B-a+F (9.19)
fla”,0)=A-a*-~B-a+F (9.20)
f0,8N=C-B*+D-B+F (9.21)
f0,7)=C-B*~D-B+F (9.22)
fla",pf)=A-a*+B-a+C-f+D-B+E-af+F (9.23)
f(0,0)=F (9.24)
(9.25)
the parameters can be easily concluded

_ fla",0)+ f(a",0)  f(0,0)

A= e - (9.26)
oy e

o[ ,o>2af<a 0) 027)

OB +1(0,87)  f(0,0)
C= 25 ~ (9.28)
E=f(a*,f")~A—B—-C—-D—F (9.30)
F = £(0,0) (9.31)

For a two-parameter fit, the definition of x? is the same as Equation 9.17. For 1o of 2
parameters, its upper and lower limits of confidence intervals are limited to Ay? = 2.3.

For a two-parameter fit, the logic behind y? is similar to that of the previous method,
but as it is a 2D fit, it can be visualized as a funnel shape. The most intuitive way
to display this is through contour plots. As depicted in Figure 9.10, the two figures
correspond to each other. The (0,0) position denotes the Standard Model (SM), while
the red and blue lines indicate the 2D confidence interval. The couplings associated
with Figure 9.10 are ta_ttA and vr_ttZ 6., and additional images can be found in
Appendix D3. Similarly to the previous method, the contour plots are divided into
including and excluding cross-sections. It can be observed from Appendix D3 that
the cross-section has a significant impact on the shape of the contour plots.

All the confidence intervals obtained from the two-parameter fit are summarized in
five Tables (Table 9.12-9.16), where each table is divided into lower left and upper
right parts using a diagonal line. Each cell is also divided into upper and lower parts,
where the upper part of each cell corresponds to the confidence interval of the ab-
scissa, and the lower part corresponds to the confidence interval of the ordinate. The
lower left part separated by a diagonal block corresponds to the cross-section excluded
confidence interval, while the upper right part is the cross-section included confidence
interval. For each set of data, there are corresponding contour plots similar to Figure
9.10 (a) in Appendix D3. For two-parameter fit contour plots, there are many differ-
ent shapes, the most common of which are banana-shape and ellipse-shape. Figure
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9.11 shows a more complex contour plot for the two-parameter fit.

In principle, this analysis should use minos to obtain the confidence interval [31].
However, since 2D x? sometimes has a double minimum or the contour is larger than
the expected range, minos fails. Therefore, in this analysis, we used a solution scan-
ning method to this problem by scanning in the o and  ranges from -2 to 2 to get a
relatively low resolution. There is no essential difference between this approach and
minos, but by comparing a scanning solution with a successful minos solution, we
can know how reliable its confidence interval is. We selected the confidence interval
of ta_ttA vr_ttZ 6. to calibrate the data, where the o and [ of the minos solution
are [-0.2470, 0.2674] and [-0.05057, 0.02689], respectively, while the o and (3 of the
scanning solution are [-0.248; 0.269] and [-0.05, 0.027], respectively. By comparing
these two sets of data, they are consistent in two decimal places. Since Equation 9.17
is very sensitive to the coupling value, theoretically increasing the precision of the
solution scanning or changing to a more efficient algorithm can make these confidence
intervals more convincing.

The choice of coupling value in this analysis is -1 and 1, so there is some ambiguity
about the number greater than 1 in Table 9.12-9.16. Since the weight of each event
is greater than one, it will increase the statistical error. Thus, setting a higher cou-
pling value will become a necessary choice in future research. For the contour plots
in Appendix D3, although most of the auxiliary lines can perfectly match the contour
edges, there are still a small number of figures that have mismatches. This is because
the fitting line does not necessarily connect every TH2D point, and the accuracy of
the scan can be improved or more efficient algorithms can be used to optimize this
situation.

In Table 9.12-9.16, some confidence intervals are equal to 2 or -2, which correspond

to unclosed contours. For these data, we can only obtain more simulated data for
research by increasing the coupling value in the future.
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Figure 9.10: ta_ttA and tr_ttZ, 6, two-parameter fit y? plots, the left is the contour
plot, and the right is the surface plot.
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Figure 9.11: more complicated contour plots of two-parameter fit

65



S[RAIDIUT 2OULPYUOD 1 Iojowrered-om) g 716 9[RT,

\ €620 03 TC0- 902003 GET'0-  GPO'T 03 LF-0- 8L0°0 0% LFO'0- FTT°0 03 90 0- €40 93 ¢¥'0- N AL TA
\ 864093 L0~ 8890093 L9L°0- T6TTOIGRG0- 290019590~ LE90 93690~ Ly, 093 ¥0L0-
16°0 03 9€9°0- \ 868°0 03 F0Z'0-  9€L°0 03 F0L'0- 850°0 03 €6T°0- SOT'0 03 8020~ TSSO 03 950~ AT M TA
£¢0°0 93 10°0- \  GZF0 03 29F°0- 6830 0% €85°0-  695°0 03 G8F°0-  €L5°0 03 8FC0-  8LF°0 03 6150~
8€G'0 03 6L5°0-  ¢cl'0 93 ¥¢°0- \  TEF0 0¥ BT 0- 950°0 03 LTg°0- TTT°0 0% €06°0- 80¥°0 0% 8L€°0- N AT}
L00°0 93 4TO°0-  TE€0 93 L¥1°0- \ L1800 0¥ FPL0- S9%°0 03 €9°0-  8T°0 0% LTT°0- 6L1°0 O% 860°0-
LEV'0 03 6E€°0-  ¥90°0 03 TO'0- 9€4°0 93 00L°0- \  8F0°0 03 ¥S0°0- SET'0 03 ¥02°0- 6080 03 GLL0- N M
LEE0 03 ¥OE'0- TL0OITE90-  GOE0 ©F¥0°0- \  P8L003 LL0- 9080 03 8L 0~ E£IF0 0% 180~
€€9°0 03 98%°0- 6100 93 LTO'0- T4¢°0 03 TI0°0-  G¥E0 03 ¢EC0- \ 9€1°0 03 L02'0-  8¥0°0 0% G0°0- 711 1A
¢L0°0 9% Lg0'0- 9%0°0 93 G¥0°0-  G0°0 93 L8T°0- 0€¥0°0 9% L20°0- \ TG00 03 ¥90°0-  gF'0 0% 8L€°0-
80G°0 03 TLG°0- €¢c’093981°0-  8T°0 9% 9L0°0- 89°0 03 90L°0- L¥0°0 03 L¥0°0- \ $SH°0 03 FLE°0- VAl
€00°0 93 G00°0-  €20°0 93 6¢0°0-  T¥0°0 93 T¢0'0-  €00°0 ©3 STO'0- S00°0 9% €00°0- \  G0T°0 9% 8120~
9690 93 999°0- TT0°0 93 T¥0°0- ¥EO0 03 900°0-  88E0 03 89E'0- 69¢°0 93 8¥¢'0-  TO0 93 2000~ \ Vire)
8IY'0 93 GEE'0- 88E'0 93 T¥E'0- G0¥'0 93 9L€°0- 1290 93 99¢°0-  Lg0°0 ©3 G0°0-  G6€°0 93 89€°0- \
o M9y U M9y A od M9 1 o MY D 1 VA el 0

66



S[RAIDIUL 9OULPYUOD 1 Iojowreied-om) 99 :¢1°6 o[qe],

\  €L1°003GL0- FSV0 0% GOF0- 0203 0% 6290 010% SFG0 0L E0T0- TLLOOVOTO0- oo
\  69L°0 03 Z6F'I-  S88°0 0% 120’1~ 07002 FI6003 0 00T 0% 908°0-  FZ'1 0% PET'T-
8TL'0 0% 229°0- \ GEV0 03 £6Z0- €950 0 LEG0- 6OV 03 TELO- €20 OLEIT0- 89V°0 03 9290~ o o0y
GE0°0 03 10°0- \ 607003 TIG0- 6LT°0 03 TIG0- LET'0 03 8GF°0-  L6T'0 03 ¥6F°0- Z¥T°0 0% TLY 0-
2€9°0 03 TS0~ €LE°0 03 651°0- \ EC0039GE0- TE80 01 9LL0- 69S0 0 C600 GOV IIPOT
£82°0 0% 820°0-  GEE'0 0% L60°0- \  $€9°0 03 7090~ £9€°0 03 GZT0- FIL0 0 LIT'0-  FHT0 0% THT0-
8GF'0 03 9TF'0-  GFO'0 03 T0°0-  £29°0 0% 69¥°0- \ L9001 PER0- L2002 LET0- LPLTOVTOGO o0
LEE0 01 80€°0- €550 0 8240~ G680 O 620°0- \ 860016550~ 609°0 03 TTL0- 0T 0 8IT'T-
9L°0 03 €290~ STT'0 0% 8ZT'0-  FZI'0 0% CT'0- SIS0 0% 6VC0- \ 6FF003 T0- 6LV0 0% ThL0- -
L0T°0 03 €0°0-  6FF'0 03 21€'0-  999°0 0% £1L°0-  LET'0 0% VEO'0- \  919°0 03 708°0- F9¥°0 ©% LG 0-
L29°0 0% LGL'0- LOT'0 OF L¥E'0- LET'0 OF 9GT°0- €460 O3 60S°0-  8S°0 O) ¥€9°0- \ G89°0 0% G¥G0- Vi
67°0 0 600°0-  SF0°0 ©3 FF0°0-  90%°0 03 T80°0-  £00°0 0 600°0-  LFF'0 03 610°0- \ G970 03 G60°0-
260 0% 126°0- T10°0 0% LIT'0- €50°0 03 900°0- GGE'0 03 9£€°0- 9TF'0 03 8TC'0- GT0'0 0% 2000 \ —
6LE0 0% 6€°0-  GOF'0 03 L8G'0-  Z6V°0 03 997°0-  0LG'0 03 6350~ E££0°0 03 9970~ T8I0 O3 £8F'0- \
O MY A N MAY A N MY 1 N MY ZAY 1A VAl vires g 500

67



S[RAIDIUL 9OULPYUOD 31 Iojowreied-om) o H1°6 9[qR],

\  ISV003 TG0~ £FG0 0% 8ET0- 07 0307 €290 036920~ F2C0 O3 6110~ LLOTOVIOS 0~ oo
\ 180038940 S0800%€LL0-  0TOI666T- 800S0~ 8060 O 8¥8'0- 9880 O3 ¥8L0-
SPL0 0% LTL0- \ Z8£003802°0- £OT'T 01 L60T- €99°0 03 LPLO-  8T'0 01 ZZT0~ T860 0V PLLO oo
870°0 03 10°0- \  8ZF0 01 6550~ FI90 0 8SG0-  GGF'0 03 €850~ GFF0 0 GFS0-  GLF'0 03 867°0-
9TL0 0% €2L°0- EFE0 0% GOT0- \ EEE0 03 €S0~ 82G0 OV PFLO- OF60 03 9TT0- G660 OV LU0 o
PST'0 03 €20°0-  TEE0 0% GTT0- \ 628003 L80'T- 9ZL°0 03 ZEC'0- 960°T 0% 192°0- 1650 O3 72 0-
GOF'0 09 8TF°0-  960°0 03 T0'0-  8L°0 03 89L°0- \ €0L003 G6L0- TOT0 01 IET0- LETTOVG00T- om0
8EE°0 01 60£°0- 9F8°0 03 9LL°0-  TOL'0 03 L¥0'0- \  T€6°0 03 €50°T- 980°T 03 G66°0- GLT'T 03 628°0-
€6L°0 03 999°0- LTZ'0 0% GET'0- FSF'0 0% 6TT'0- LES0 0% L0L0- \ L1003 CT0- $99°0 0% GFL0- -
221003 FE0'0-  PLV0 03 G0~ TSL'0 03 9440~ FT'0 O3 FE00- \ 6890 0% €8°0- LT60 O3 G8L0-
60L0 03 £L°0- €00 6FE0- 1680 03 9ST°0- €620 0 €58°0- L59°0 0% 8L9'0- \ _—_—
€00°0 03 800°0-  €9T°0 0 FF0°0- F6T°0 0 T80°0-  £00°0 03 220°0-  9TT°0 03 610°0- \  Z00)6IT0-
96L°0 0% TZL'0- TT0°0 0% Z9T°0- ¥8T'0 03 900°0- LEG'0 O3 TLF'0- GE9'0 O3 62S°0- F90°0 0% 2000 \ —
Z8€°0 03 FGE'0- L0003 FL90- 6790 03 969°0- SL8°0 03 £9L'0-  ££0°0 03 61C°0- F96°0 O3 1GL0- \
O MY TA N MAYTA N MY 1 N MY AR VA vire) v

68



S[RAIDIUT 9OUPYUOD J1 Iojowreied-om) 1My GG 9[qR],

\ 66T°0 03 G9E0- 650°0- 03 TLO'0- L0T°0 03 9150~ GF'0 03 GT9°0- G0 03 €60°0- €E€¥'0 03 6870~ N AL TA
\ GLT00) €ST0- TGP0 O3 8F0-  €3E0 0 LEE'0-  T€°0 03 €85°0- €60 0% €9L°0-  TST0 OF LST0-
Gyc'0 03 87¢ 0- \ 702003 F02°0- 9ST°0 03 88T°0- TGF'0 03 L09°0- 86T°0 03 €80°0- GTF 0 0% T6¥°0- AT M TA
€10°0 ©3 T0°0- \  P8T'0 03 6TF0- F8T°0 0% TL€°0-  29T°0 03 9°0- F91°0 03 91G°0- 99T°0 0% 68¢°0-
¥,¢°0 0y ¥9c’0- $490°0 03 961°0- \ 6800 03 €50°0- 970 03 9T6°0- L8G°0 03 ZIT'0- 65F0 0% FEF0- N AT}
L00°0 93 L00°0-  GEO'0 93 ¢1°0- \ G920 03 g9¥°0- TG00 03 €6T°0-  Lg'0 03 LF0°0-  TF0°0 0% €€0°0-
60€°0 03 80¢'0-  ¢I0°0 9 TO0- 691°0 93 €ST°0- \ 6FF°0 03 9T9°0- T6F'0 03 880°0- 6ST°0 O3 L6T 0- N M
10¢°0 93 ¢0¢'0-  €ST°0 03 LGT°0-  L00°0 93 L00°0- \ 6820 0¥ FFZ0- 610 03 80L0- LgF0 0% g 0-
Iv¢'0 03 ¢Sc0- TIPI'0036I1°0- ¢€0°0 93 6600~ TGT°0 03 I9T°0- \ 910 03 ¥80°0-  G9¥°0 0% 809°0- 711 1A
6€0°0 93 ¥E0'0- ¥IV'0 93 29€°0- 991°0 93 ¢0g'0- LEO'O ©3 ¥E€0°0- \  989°0 03 8580~ 9g¥°0 O% 69¥°0-
SYC 0 0¥ ¥rc'0-  LST°0 03 ¢Pc’0-  LEO'0 03 8¢O'0- ¥ST°0 03 ¢ST°0- €99°0 03 ¢C40- \  ZFG 0 0% G610~ VAl
667°0 93 ¢00°0-  ¥¥0°0 93 G€0°0- ¢10°0 93 TO'0-  €00°0 ©3 €00°0-  9¥°0 93 8T0'0- \  ZIZ0 9% £€80°0-
6560 03 94¢°0- TT0°0 03 ¢L0°0- G20°0 939000~  6¢¢°003¢c’0- ¥Ov0 9% ¢9¥°0- €T0°0 93 2000~ \ Vire)
G¢c’0 91 91¢0- LTP' 0093 TLP'0-  99€°0 93 €F€0- 0810 93 88T°0- €E0°0 9% L8C'0-  ¥¥°0 93 6€F 0~ \
od M9y 1 U MIy A U M9y 1 o MY D 1 VA virel Mg s0o

69



S[RAIDIUL 2OUPYUOD J1 Iojowreied-om) Mo Q1 6 9[qe],

\ 9SCT OV OTTT- TOT0 O3 6T ZEP0 O3 €270~ GE0'T 02900 T EIT0 O3 LPTO- 6STTOIOT60- oo
\  0TOIFIOT- SOI'T 03 9F0'T- LEL0 03 T69°0- TLS'0 03 860~ TFL0 O3 ¥89°0- LGS0 O3 1650-
967°0 0% T61°0- \ 90ZT 03 CLE0- OFR0 01 T9TT- €8L°0 03 9G0'T- PIT0 O3 LPT0- 2080 03 6660~ oo 00y
520°0 03 10°0- \ 126001 690-  SEITOI 0T 1500 1L9°0- TIT0 0 1660~  TT'0 03 819°0-
L6S°0 03 GF'0-  GLT'0 0% €2°0- \ TEV003TOZ0- LEOT O3 LE0T- ZIT0 03 LPTO0- 6060 O3 680~ oy
L8T°0 03 LT0'0- €0£°0 03 TFT°0- \  6SL°003 80~ TS0 0% LZT'0-  LOE0 O G60°0-  FOL0 O3 260°0-
PGP0 03 GOF'0- 6100 03 T0°0-  ¥2€°0 0% 8LZ0- \ €960 03 00T ZIT0 03 2PT0- 96E0 0V ZOF0~ om0
G0E'0 01 6820~ £8%°0 01 GO0~ 8820 03 T10°0- \  G8F°0 03 €090~ T€Y'0 03 €09°0- FIOT O3 626°0-
9LF'0 0% €0G°0- SLT'0 0% P9T'0- TLV'0 0% €CT°0- €470 0% GIE0- \ SET'0 03 LPT0- G6I'T 0% GLO'T- -
8L0°0 03 PE0'0-  T6S°0 O3 PEF0-  FL0 0% LZ6'0-  650°0 O3 FE00- \ L0800 FFO'T- TFTT O3 L060-
267°0 01 6S7°0- 28T°0 03 L9F°0-  20£'0 03 80°0- ¥82°0 03 680~ 9599°0 01 FL8'0- \ Z8L0 0% 98L°0- __
€00°0 © 700°0-  $S0°0 ©3 G0°0-  FF0°0 03 T80°0-  £00°0 ©3 €00°0-  STT'0 03 6T0°0- \  ZIT0 0% LPT0-
PGS0 03 96G°0- TT0°0 0% TEC'0- L8T'0 03 900°0- EEE'0 03 TTE0- 6950 03 PS'0- FE0'D 0% 2000 \ —
69£°0 03 L9E'0-  LF9°0 03 TLL'0- LF9'0 03 639°0-  TFE'0 O3 £9£°0-  €E0°0 O3 L0~ STL'0 O} 8TL0- \
O MY TA N MAYTA N MY 1 N MY AR VA vire) 11

70



9.3.4 Multi-Parameter Fit to Higher Dimensional Angular Distribution

Multivariate analysis is a powerful technique for improving the sensitivity of anoma-
lous coupling studies. In the single-parameter fit, we only considered the change in
confidence interval for one and two-variable analyses. However, in theory, including
more independent variables can improve sensitivity more effectively. For the observ-
ables used in this analysis, there are five weakly correlated variables that are worth
discussing. Therefore, for future studies, a multivariate analysis can be performed to
include all variables in the single-parameter fit.

For a two-parameter fit, the same logic can be applied, but the data must be processed
more carefully because more couplings are involved. Similarly, in future studies, mul-
tivariate analysis can be performed for multi-parameter fits. By including all relevant
variables, we can improve the sensitivity of anomalous coupling studies and gain a
better understanding of the physics at play.
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10 Conclusion

The results of the sensitivity analysis of top anomalous couplings at FCC-ee have been
presented in Section 9.3, where multi-variate techniques and multi-parameter analysis
were employed to provide different perspectives, and the confidence interval shows
the optimistic coupling in new physics to be probed in FCC-ee data. The simulated
datasets used in this study were generated in the experimental setting of the IDEA
detector at the FCC-ee with a center-of-mass energy of /s = 365GeV in the leptonic
channel for top pair production events. The single-parameter and two-parameter fits
were performed using the minimum x? method to determine the 1o confidence inter-
val. Five observables were selected, and the angular distribution was also analyzed
to determine the inclusion of cross-section and pure distribution to obtain different
results.

In the future, the data collected by the FCC-ee can be used to probe beyond the
Standard Model physics using the method shown in this analysis. Even if the data
collected by the FCC-ee is not enough to support anomalous top couplings, it does
not necessarily mean that their effect does not exist. The method used in this analysis
can still be applied to colliders with even higher energies in the future.

The analysis presented in this study demonstrated the use of FCCSoftware for Monte
Carlo simulation, event selection, and event reconstruction. The reconstruction of jets
is crucial for reconstructing events, and research on jets has revealed the need for fur-
ther improvement in the FCC-ee project. The effectiveness of various jet definitions
is influenced by experimental circumstances, so refining the selection of jet definitions
might require additional investigations in the future. The constrained fit provided
by ABCfit++ improves the accuracy of events and the sensitivity of anomalous top
couplings.

While this analysis provides valuable insights, there are several potential points for
further investigation. Future research could focus on ISR to the cross-section, higher
angular analysis dimensions, or analysis of all seven couplings combinations. As sci-
ence and technology continue to improve, there is also room for optimization of the
tools used in this analysis. Better algorithms can provide more accurate data and
more efficient calculations, which can bring higher sensitivity to this analysis. With
the progress of FCC-ee feasibility, further research on processes and channels will
bring more optimization to this study and obtain more accurate results.
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A The Jet Clustering Example

Struct clustering {
clustering(
float arg radius,
int arg_exclusive,
float arg_cut,
int arg_sorted,
int arg_recombination

-
}

arg_radius refers to Jet cone radius

arg_exclusive Clustering options
0 — inclusive clustering
1 — exclusive clustering with dcut
2 — exclusive clustering to exactly njets
3 — exclusive clustering up to exactly njets
4 — exclusive clustering with ycut

arg_cut refers to cut value
arg_exclusive = 0 — p; cut value
arg_exclusive = 1 — dcut value
arg_exclusive = 2 — njets value
arg_exclusive = 3 — njets value
arg_exclusive = 4 — ycut value

arg_sorted refers to returned jets ordering
0 — sorted by p;
1 — sorted by E

arg_recombination refers to recombination schemes
0 — E-scheme
1 — ps-scheme
2 — pZ-scheme
3 — Ej-scheme
4 — E?-scheme
5 — Boost-invariant p;-scheme
6 — Boost-invariant p?-scheme
10 — EO-scheme
11 — p-scheme
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B Figures for Event Selection
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C Figures for \? test
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D Figures for Results
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D.2 Single-Parameter 2 Dimensional Angular Distribution
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D.3 Two-Parameter 1 Dimensional Angular Distribution
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tl tbW_Re-ta_ttA o excluded
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Figure D.88: x? of tl_.tbW_Re-ta_ttA 1 Dimensional Angular Distribution
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tl. tbW_Re-tr_tbW_Re ¢ included
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Figure D.89: x? of tl_.tbW_Re-tr_tbW_Re 1 Dimensional Angular Distribution
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tl tbW_Re-tr_tbW_Re o excluded
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Figure D.90: x? of tl_.tbW_Re-tr_tbW_Re 1 Dimensional Angular Distribution
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Figure D.91: x? of tl.tbW_Re-tv_ttA 1 Dimensional Angular Distribution
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tl tbW_Re-tv_ttA o excluded
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Figure D.92: x? of tl_.tbW_Re-tv_ttA 1 Dimensional Angular Distribution
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tl tbW_Re-vr_ttZ o excluded
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Figure D.94: 2 of tl_.tbW_Re-vr_ttZ 1 Dimensional Angular Distribution
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Figure D.96: x? of trtbW_Re-ta_ttA 1 Dimensional Angular Distribution
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Figure D.102: x? of tv_ttA-ta_ttA 1 Dimensional Angular Distribution
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Figure D.103: x? of tv_ttA-vr_ttZ 1 Dimensional Angular Distribution
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Figure D.104: x? of tv_ttA-vr_ttZ 1 Dimensional Angular Distribution
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Figure D.105: x? of vI.tbW_Re-ta_ttA 1 Dimensional Angular Distribution
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Figure D.106: 2 of vI.tbW_Re-ta_ttA 1 Dimensional Angular Distribution
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Figure D.107: %2 of vI.tbW_Re-tl_tbW_Re 1 Dimensional Angular Distribution
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Figure D.108: 2 of vI.tbW_Re-tl_tbW_Re 1 Dimensional Angular Distribution
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Figure D.109: x? of vI.tbW_Re-tr_tbW_Re 1 Dimensional Angular Distribution
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Figure D.110: x? of vI.tbW_Re-tr_tbW_Re 1 Dimensional Angular Distribution
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Figure D.111: x? of vI.tbW_Re-tv_ttA 1 Dimensional Angular Distribution
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Figure D.112: x? of vI.tbW_Re-tv_ttA 1 Dimensional Angular Distribution
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Figure D.113: x? of vI.tbW_Re-vr_tbW_Re 1 Dimensional Angular Distribution
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Figure D.115: x? of vI.tbW_Re-vr_ttZ 1 Dimensional Angular Distribution
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Figure D.116: x? of vI.tbW_Re-vr_ttZ 1 Dimensional Angular Distribution
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Figure D.117: x? of vr_tbW_Re-ta_ttA 1 Dimensional Angular Distribution
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Figure D.118: x? of vr_tbW_Re-ta_ttA 1 Dimensional Angular Distribution
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Figure D.119: x? of vr_tbW_Re-tl_tbW_Re 1 Dimensional Angular Distribution
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Figure D.120: x? of vr_tbW_Re-tl_.tbW_Re 1 Dimensional Angular Distribution
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Figure D.121: x? of vr_tbW_Re-tr_tbW_Re 1 Dimensional Angular Distribution
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Figure D.122: x? of vr_tbW_Re-tr_tbW_Re 1 Dimensional Angular Distribution
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Figure D.123: x? of vi_tbW_Re-tv_ttA 1 Dimensional Angular Distribution

160



vr_tbW_Re-tv_ttA o excluded

thetaet_noXDelta chi*2 thetatb_noXDelta chi*2
S 0.3 £ 0.8
K] C 2 C
E 06—
0.2? C
C 04
01 C
F 02
o o~
F -0.2—
-01— E
C -0.4
-0.2~ C
E ‘ -0.6(—
—0.3;\ I N SN SN ETE AR S | —0.87\\\\‘\\\‘\\\\‘\\\\‘\\\\‘\\\\
-1 -0.5 0 0.5 1 -1 -1 -0.5 0 0.5 15
alpha alpha
(a) X2 of 0 (b) x2 of
a) X~ of Og X~ oL Ugp
phitb_noXDelta chi*2 thetaW|_noXDelta chi*2
o E o
g o3 B C
[ 0,6?
0zf- 0al
01— 02;
o o~
oal 02—
702; 04—
E -0.6—
Bt =TI PR R B I IR RN I N B S R
-1 -0.5 0 0.5 -1 -0.5 0 0.5
alpha alpha
(c) x*of ¢ (d) x* of 0
c) x* of ¢ X~ of bwy
phiwl_noXDelta chi*2
o g
3 02
0.15;
0.1;
005
o
—0.05;
—0.1;
—0.15;
—O.Zi
C P

RN
|
=)
@
o
o
@

1
alpha

(e) x* of dwi

Figure D.124: x? of vr_tbW_Re-tv_ttA 1 Dimensional Angular Distribution
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Figure D.125: x? of vr_tbW_Re-vr_ttZ 1 Dimensional Angular Distribution
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Figure D.126: x? of vr_tbW_Re-vr_ttZ 1 Dimensional Angular Distribution
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