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Abstract

The Large Hadron Collider is undergoing the High Luminosity upgrade. With the
accelerator upgrade comes an increase in the luminosity of particle collisions, and with
that a factor 10 increase in the amount of data collected by the detectors. This puts
entirely new demands on the computational power used for particle tracking in the
ATLAS detector’s TDAQ system.

This project explores the use of graph neural networks (GNNs) for fast and effi-
cient online track reconstruction via implementation on Intel FPGAs. A three-step
GNN-based track reconstruction pipeline has already been tested for offline track re-
construction, and is modified to fit the size constraints of an FPGA. We specifically
consider FPGAs as the hardware host of the pipeline, due to its parallelism and low
power consumption in comparison with GPUs and CPUs.

I explore two main areas of interest regarding the implementation of GNNs on FP-
GAs. Firstly, the size constraints of Intel FPGAs are studied by obtaining resource
estimates for individual steps of the GNN pipeline. An estimate of the appropriate size
of the pipeline steps is presented. Secondly, I explore how performance of the pipeline
can be maintained whilst reducing its size to fit on an FPGA. I present methods for
increasing performance, along with the track reconstruction efficiency obtained for a
pipeline suited for FPGA implementation.
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1 Introduction

1.1 LHC, ATLAS and TDAQ

The Large Hadron Collider (LHC) [1] is a particle accelerator built to produce high-
energy particle collisions, allowing physicists to study the behaviour of fundamental particles
under extreme conditions. The LHC is currently undergoing an extensive upgrade, which
will increase its instantaneous luminosity1 up to L = 7.5×1034 cm−2s−1 by 2029. For com-
parison, the luminosity of the on-going LHC Run 3 is expected to reach a peak luminosity
of 3×1034 cm−2s−1. This upgrade is called the High Luminosity LHC (HL-LHC) [3]. With
it comes a ten-fold increase in the amount of data produced at collision points.

Along the LHC, four main detectors record data from the many collisions. I will focus on
the ATLAS experiment [4] in this report, which is a 46-by-25 metre cylindrical detector. It
consists of multiple sub-detectors, which are arranged in layers around the collision point.
The layers consist of “cells”, which are the smallest units of the detector. As charged
particles from collisions travel through the detector, they deposit energy in the cells. The
signal from these energy deposits is then used to reconstruct particle trajectories (“tracks”)
through a process called tracking. The steps of the tracking procedure are described in
Ref. [5] and are, in summary:

1. Clustering. Neighbouring cells where energy has been deposited are registered as
a “cluster”. Clusters are then converted to 3D space-points, which are determined
using the signal from each cell and the detector geometry.

2. Pattern recognition. Candidate tracks are initially reconstructed through pattern
recognition algorithms. This step uses as input the space-points from the first step.
I will from now on refer to these space-points as “hits” in the context of pattern
recognition algorithms.

3. Track fitting. Duplicate tracks are then removed and, as a final step, the remaining
tracks are evaluated with a linearised χ2 fit.

Since the amount of data produced in the experiment is greater than the amount of
data that can be sent to permanent storage, real-time decisions have to be made about
which collision events to keep for further analysis and which to discard, based on data from
the ATLAS sub-detectors. In the ATLAS experiment, the Trigger and Data Acquisition
(TDAQ) system [6] is responsible for making these decisions. Since it operates in real-time,
the TDAQ system is referred to as an online system for processing ATLAS data. Once
the data is sent to permanent storage, offline systems analyse the data further. The 3-step
tracking procedure outlined above is performed within TDAQ.

With the HL-LHC upgrade, a new sub-detector, the “Inner Tracker” (ITk) [7], will be
developed and used to cope with the increased luminosity of particle collisions. Furthermore,
the capacity of the TDAQ system will be adjusted in order to keep up with the amount of

1Instantaneous luminosity refers to the rate at which particles pass through a certain cross-section [2].
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data it has to process. For this, a new “Event Filter” [8] will be added, which will process
data coming from the sub-detectors. The new layout of the TDAQ system is presented in
Fig. 1.

There are ongoing studies into how the Event Filter can produce track candidates from
ITk data in the HL-LHC. In fall 2025, decisions will be made by the Event Filter tracking
group regarding the hardware and algorithms used for tracking. In this thesis, I focus on
the second step of the tracking process outlined above. Here I explore the use of Graph
Neural Networks (GNNs) for pattern recognition, and how they can be implemented onto
Field Programmable Gate Arrays (FPGAs).

Figure 1: An overview of the TDAQ upgrade design [9]. The Event
Filter receives data from the Data Acquisition System (DAQ), which
acquires its data from the sub-detectors of ATLAS. The Event Filter
sends its data back to DAQ before it is sent to permanent storage.
The solid lines represent the readout data, and the dashed lines the
Level-0 accept signal.

1.2 Graph neural networks

GNNs are a type of neural network, which are applied to data in the form of graphs [10].
A graph is composed of a set of nodes and a set of edges that connect node pairs. In our
case, nodes represent hits and edges represent track segments, i.e. paths that a particle
could have taken in the detector. This is illustrated in Fig. 2.
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Figure 2: Nodes represent hits in the detector layers, and edges
represent paths between hits in consecutive layers.

In graphs, information can be stored on three levels: the node-level, the edge-level, and
the graph-level. A GNN applied to a graph can consequently make predictions on either of
these three levels. In this project, I use a GNN to predict whether track segments (paths
between two hits) are true or false. Since edges represent track segments, predictions are
made on the edge-level. In Section 3.2.1, I elaborate on the GNN concept, and how I
implemented it as part of a tracking algorithm.

1.3 FPGAs

An FPGA is a semiconductor device, which can be configured based on the demands
of the algorithms it executes. It consists of a matrix of configurable logic blocks and pro-
grammable interconnections, meaning that the hardware can be customised for very specific
applications [11].

Aside from being flexible in terms of design, it is also a device with a high degree of
parallelism. Since neural networks, such as GNNs, contain many repetitive operations,
parallelising the algorithms on an FPGA can significantly reduce their latency. This is
ideal in a set-up like the EF, which sees a high frequency of hit data and has to make rapid
decisions about the storage of collision events.

There is a range of different FPGAs on the market: the companies AMD and Intel are
the biggest manufacturers of FPGAs. In this project, I target an Intel device: the Stratix
10 GX 2800 FPGA [12]. Further details about the device and its properties are given in
Section 4.
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2 Data

2.1 From hits to track candidates

When looking at the pattern recognition step of the tracking procedure outlined above,
the core task of the algorithm is to group hits in a particle detector together to form tracks.
Tracks represent the path a particle has travelled through the detector, and each hit in a
given track belongs to the same original particle. In order to convert hit data to candidate
tracks, I use a three-stage pipeline. The three stages are graph construction, edge
classification and track reconstruction. The pipeline is illustrated in Fig. 3, which I
developed in Python, using PyTorch for its machine learning components. In this thesis,
I will refer to the pipeline as the track reconstruction pipeline. It will be elaborated
upon in Section 3.

Figure 3: Overview of the three-stage track reconstruction pipeline
from hits to track candidates [13].

Before covering the details of the pipeline, I will describe the data that was used during
the project. The datasets contain hit data from simulated collisions at the Large Hadron
Collider, and I implemented two separate datasets in the pipeline. These will be referred
to as “TrackML” and “ITk”. The TrackML dataset is a simplified dataset and was initially
used to gain some familiarity with the pipeline and to obtain some initial results. The ITk
dataset, which bears more resemblance to the data we expect to see in the real ITk detector,
was then used to get more realistic performance estimates. Due to differences in the data
formats, I used a separate pipeline for each of the datasets. They both, however, follow the
same three-stage structure and use some of the same methods.

2.2 Datasets

2.2.1 TrackML

This dataset was retrieved from the Kaggle competition “TrackML Particle Tracking
Challenge” [14]. I used the sample dataset, which contains 100 independent collision events.
All events are simulated measurements of proton-proton collisions. The pile-up2 of this
dataset is µ = 200, which is the value we expect to see at the HL-LHC.

2Pile-up refers to the amount of simultaneous collisions in every bunch crossing in the detector [15].
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The hit data is shaped by the geometry of the detector. The simulated detector is a
generic detector, which is cylindrical and centered around the collision point [16]. It consists
of multiple layers, in which the hits are recorded. Layers are divided into smaller so-called
“modules”, and are grouped into “volumes” to define regions of the detector. All hits are
recorded within the detector layers. Fig. 4 shows a side-view of the detector geometry used
for the TrackML dataset.

Figure 4: A side-view of the detector geometry used for TrackML
data. The vertical and horizontal lines represent layers, and the
coloured sections show the volumes. Individual modules are not shown
in this plot [14].

In the dataset, the hits are represented by their spatial position, which is denoted by x, y
and z coordinates. They are further tagged with a hit ID, along with identifiers for the layer
and volume they appear in the detector. A “truth” dataset contains the mapping between
each hit and its generating particle. Here, information is provided about the particles’
initial momentum, charge and the number of hits generated by each particle. From this
information, true tracks can be inferred by connecting hits belonging to the same particle.
Two hits are connected if the second hit is further away from the collision point than the
first, and if the second hit is the hit from that particle which is closest to the first. The set
of edges that connect the hits is then what we define as the true track. The truth data is
used during training of the pipeline’s neural networks to measure the performance of the
models.

Compared to the data we expect to see in the implemented ITk detector, the TrackML
data is quite simplified. First of all, secondary particles have been removed, i.e. particles
created by other particles away from the collision point. Secondly, noise makes up just 16%
of the dataset [17]. Here, noise denotes any hit in the detector which does not belong to
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a particle. This is a combination of mis-constructed spacepoints, and particles with a pT
below 100 MeV. When I trained the pipeline on this dataset, some further cuts were also
applied to the data. These will be described in Section 5.3.

Due to its simplicity, I used the TrackML dataset as a “toy” dataset to gain some
familiarity with the methods used in the pipeline during the early stages of the project. It
was used to obtain some initial results for track reconstruction efficiency, and for the first
attempts at FGPA implementation. I developed the initial pipeline based on code written
for the paper in Ref. [18]. I then modified the pipeline using pieces of code developed by
the Exa.TrkX group [19]. The pipeline will be described in Section 3.

2.2.2 ITk

This dataset was retrieved from the examples provided in the GNN4ITk “Common-
Framework” [20–23]. It contains hit data from simulated pp → tt̄ events with a pileup of
µ = 200, which have been generated with the Athena framework [24].

The ITk geometry is illustrated in Fig. 5. The detector is here viewed from the side,
where the red components represent the pixel sub-detector, and the blue components rep-
resent the strip sub-detector.

Figure 5: A visualisation of the ITk detector [25].

The spatial positions of the hits are also denoted by x, y and z coordinates, and their
corresponding polar coordinates r, ϕ and z are provided. Similar to the TrackML data,
hits are tagged with unique IDs, along with identifiers for their detector layer and volume.
Truth data is also provided, mapping hits to their generating particles.

The ITk data is, compared to TrackML, more realistic. The events are simulated using
real ITk geometry, and fewer cuts have been made to the data. Compared to TrackML, there
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are more tracks, and hence more hits, in this dataset. Furthermore, secondary particles are
not omitted from the dataset, and noise is, on average, 55%. Table 1 contains a comparison
between the two datasets.

TrackML ITk

Noise amount (avg.) 16% 55%

Secondary particles No Yes

Avg. number of hits ≈ 110, 000 ≈ 310, 000

Avg. number of tracks ≈ 9, 000 ≈ 15, 000

Pile-up 200 200

Table 1: Comparison of the TrackML and ITk datasets [17].

The pipeline code for processing ITk data is based on the codebase from the GNN4ITk
ComonFramework [20], which was originally developed for offline track reconstruction in
the ITk. During this project, I have updated various parts of the code in order to target
online implementation of the framework. Similar to the TrackML dataset, some cuts were
made on the data during training. These will also be described in Section 5.3.

3 Track reconstruction pipeline

3.1 Stage 1: Graph construction

The goal of the graph construction stage is to convert hit data into graphs. The nodes
of the graph are already given from the hit data, so the main job of the graph construction
algorithm is to determine which nodes to connect in the graph. In theory, the graphs
could be constructed as fully-connected graphs with an edge connecting each node pair in
consecutive layers. With an order of 100, 000 nodes in each graph, however, this would
generate graphs that are too large to be processed on both FPGAs and GPUs, and too
impure for the GNN to make accurate predictions. Therefore, this stage of the pipeline is
used to exclude any node connection that is unlikely to belong to a true track, as illustrated
in Fig. 6.
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Figure 6: The graph construction stage chooses the edges that are
most likely to belong to true tracks. Instead of connecting every node
pair in consecutive layers, graph sizes are reduced by constructing
chosen connections only [17].

Maintaining a high efficiency (true edges constructed/total true edges) in the graph
construction stage is important, since any lost track segment cannot be reconstructed further
down the pipeline. This can potentially result in complete failure to reconstruct the given
track. Meanwhile, maintaining a high purity (true edges/constructed edges) is important,
since it reduces the size of the graphs, while also improving the performance of the GNN
stage in the pipeline. Precise definitions for measurements of efficiency and purity will be
given in Section 3.4.

During the project, I implemented two methods for graph construction: Heuristics
and Metric Learning. The Heuristic method was initially used for the TrackML dataset.
The Metric Learning method was first applied to TrackML data, and later used with ITk
data. These two methods will be described in the following sections.

3.1.1 Heuristic method

The Heuristic method connects hits in layer n to hits in layer n + 1, and applies some
filters on the edges to determine specifically which hits to connect. For each edge, the
parameters z0 and ϕslope were first determined. They were calculated as follows:

ϕslope =
dϕ

dr
(1)

z0 = zn − rn
dz

dr
(2)

where r, phi and z are the polar coordinates of the hit point, n represents the layer number,
and where:

dϕ = ϕn+1 − ϕn (3)

dr = rn+1 − rn (4)

dz = zn+1 − zn (5)

The edges were then filtered based on their z0 and ϕslope. Only edges within the following
values were constructed in the graph:
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• −320 ≤ z0 ≤ 520

• |ϕslope| ≤ 0.0055

I chose these values based on an analysis of the z0 and ϕslope distributions of the dataset
made in Ref. [26].

3.1.2 Metric learning

I applied the Metric Learning algorithm to both TrackML data and ITk data. This is also
the algorithm from which I present resource estimates in sections 6 and 7. It uses a Multi-
Layer Perceptron (MLP), which is a type of feed-forward neural network [27] consisting
typically of a number of linear layers and activation functions. The MLP embeds the hits
into a latent space. Through training, it learns to embed the hits such that hits from the
same track are placed close to each other in latent space. This process is illustrated in Fig.
7.

Figure 7: Hits that belong to the same track are encoded such that
they are close to each other in latent space.

The architecture of the MLP that I used for the project is presented in Fig. 8. It
contains an input layer, 3 hidden layers, an output layer, and a hidden tanh activation
between all linear layers.

Figure 8: Standard architecture of an MLP used in Metric Learning.
The weights and biases are here of dimension 1024, however I adjusted
this number during the project to target FPGA implementation.
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The trained MLP can then be applied to a new set of hits (referred to as “inference”).
It encodes the hits into latent space, and a Fixed Radius Nearest Neighbours (FRNN)
algorithm is then applied to find out which hits are closest to each other in latent space,
and could hence belong to the same track. Here, a “FRNN radius” is specified, and for
each hit, an edge will be established with all hits found within the radius. As a result,
graphs are produced where nodes represent the hits, and edges the connections found with
the FRNN algorithm. I use the Pytorch Geometric function “radius” [28] for executing the
FRNN algorithm. The process is illustrated in Fig. 9.

Figure 9: To create a graph from a set of hits, the hits are encoded
with the trained MLP, and a FRNN search determines which edges to
build.

3.2 Stage 2: Edge classification

The edge classification stage assigns an “edge score” to each edge in the graphs produced
in the previous pipeline stage. This score represents the likelihood of the edge being a true
edge, and the scores range between 0 and 1. A cut is then applied to the edges in the graph,
such that only edges above a given score are predicted to be true. For this stage, I use a
GNN.

3.2.1 Graph Neural Networks: An Overview

The core concept of GNNs is the idea of “message passing” where information is passed
between nodes along their connecting edges [10]. A generic GNN algorithm has the following
steps, and is illustrated in Fig. 10:
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1. Update nodes. An MLP is applied to the nodes, updating the properties of each
node.

2. Message passing. Information is passed along edges to neighbouring nodes. This is
also done with an MLP.

3. Aggregation. “Messages” are aggregated at each node using a permutation-invariant
aggregation function.

4. Classification. Finally, a classifier is used to make edge-level predictions, i.e. assign-
ing an edge score to each edge.

The first three steps can be repeated to include multiple message passing steps. For each
message passing step in the algorithm, the degree of information contained at each node
increases. For a GNN with one message passing step, each node will contain information
from their first neighbours. Including two message passing steps allows nodes to receive
information from their neighbour’s neighbours and so forth.

Figure 10: A visualisation of a generic GNN algorithm [17].

In the pipeline, I used a specific type of GNN called an “Interaction Network” [29]. Here,
an extra step is added to the generic message passing algorithm, namely an “edge network”.
This serves the purpose of updating edge features after updating the node features, which
allows neighbouring nodes to form unique relationships. Adding this feature to the GNN
improves the quality of the edge-level predictions made on the graphs.

3.2.2 GNN architecture

The GNN from the track reconstuction pipeline consists of a set of “networks” which
each serve a purpose in regards to either the nodes or the edges of the graph. Each network
is based on an MLP, which has two linear layers and a hidden ReLU activation between the
layers. This is illustrated in Fig. 11.

The networks are:
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Figure 11: The MLPs used in the GNN consist of two linear layers
and a ReLU activation function. The dimensions of the layers can be
varied.

• node encoder: encodes node information into latent space.

• edge encoder: encodes edge information into latent space.

• node network: computes new node features.

• edge network: computes new edge features.

• output classifier: classifies edges and outputs their scores. This network has one
extra linear layer in its MLP.

Fig. 12 illustrates the architecture of the GNN I used, containing the networks outlined
above. The general architecture was the same for both the TrackML and ITk pipeline.
Nodes are first encoded into latent space. Edges are then encoded, using information from
the encoded nodes. This is where the “messages” are produced. At this point, the message
passing algorithm begins. The encoded edges are then aggregated at each node. The
aggregated messages, along with the encoded nodes, are run through the node network
to update the node features. These, along with encoded edges, are run through the edge
network to update the edge features. The output from the node and edge networks can be
used as input into another message passing step, or into the output classifier to produce
edge-level predictions.
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Figure 12: Architecture of the GNN used in the track reconstruction
pipeline.

3.3 Stage 3: Track reconstruction

Once edges have been classified, the graphs enter the final stage of the pipeline: track
reconstruction. Here, I apply an algorithm to the labeled graphs to predict which edges
form tracks. Each edge in an identified track is given the same tag, and this information
is output from the pipeline as the track candidates. I implement two different methods for
track reconstruction: a connected components method, and a walkthrough method.
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3.3.1 Connected Components

The Connected Components algorithm identifies which paths within the graph are con-
nected. Only edges with a score above 0.8 are considered by the algorithm. This is the
threshold found to produce the highest track reconstruction efficiency. The algorithm and
how it is applied to graphs is visualised in Fig. 13. Here, I used the SciPy Sparse function
connected components [30, 31]. This algorithm was used when running the pipeline on a
GPU, and was used for both TrackML and ITk data.

Figure 13: The Connected Components method identifies distinct
series of hits, which produce the track candidates [17].

The Connected Components algorithm is very fast and generally gives quite good per-
formance. There are, however, a few cases where it fails to produce tracks that are a single
line of connected hits seeded in the innermost detector layer. Fig. 14 demonstrates how
such tracks may look. In Fig. 14a, a “branching” track connects the main track (black
edges) to another hit (red edge), which is not a part of the true track. In Fig. 14b, the
track is very short and not seeded in the innermost detector layer. Such cases will still be
considered tracks by the Connected Components algorithm. A solution to this could be to
use the Walkthrough algorithm, described in the following section.

(a) Edges form a branching track, where
only one of the two right-most edges can
be true.

(b) A lonely edge (blue), which is not
seeded at the collision point.

Figure 14: Examples of odd types of tracks produced by the Con-
nected Components algorithm.
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3.3.2 Walkthrough

The Walkthrough method, on the other hand, traverses the graph edge by edge. It
identifies a starting node (“seed”) - in our case any node in the innermost detector layer -
and chooses the edge with the highest score to traverse along to the next node. This process
is continued until there are no more edges reaching into the next detector layer. The set
of traversed edges and nodes are then returned as a track candidate, and the process is
repeated for other seeds. It is illustrated in Fig. 15.

Figure 15: The Walkthrough method constructs track segments by
traversing the graph edge by edge [17].

The algorithm will by its nature always produce tracks that are a single line of hits
seeded in the innermost layer, and thus avoid constructing tracks of the types presented in
Fig. 14. Nevertheless, it is very slow compared to the Connected Components algorithm,
and tends to give a lower track reconstruction efficiency.

The Walkthrough method was used for the FPGA implementation of the track recon-
struction stage, and was tested on the TrackML dataset on a GPU. While the Connected
Components algorithm performs well on a GPU, it contains many loops, which is not ideal
for FPGA implementation. The walkthrough method was developed in VHDL language,
and will be presented in Section 4.6.

3.4 Testing methods

To test the performance of the three pipeline stages, I measured various metrics. This
section covers the definitions of any performance metrics I used.

3.4.1 Truth definitions

Tracks that can be inferred from the “truth” file of the datasets are referred to as “true
tracks”. As edges represent segments of tracks in the pipeline, a segment of a true track
is referred to as a “true edge”. A constructed edge that matches a true edge is a “true
positive” edge. A constructed edge that does not match a true edge is a “false positive”
edge. Correspondingly, an edge connection which is not present in the graphs, but does
correspond to a true edge is a “false negative” edge. An edge connection not present, and
which also does not match a true edge is a “true negative” edge.
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3.4.2 Efficiency and purity

The truth definitions above are used to define the two main performance metrics: ef-
ficiency and purity. During the first two stages of the pipeline, these are measured on an
edge level. This is the “edge-wise” efficiency and purity, which are defined in the box below.
In the following sections, the edge-wise element will be implicit, unless otherwise stated.

Performance definitions

Edge-wise efficiency
Number of true positive edges / number of true edges

Edge-wise purity
Number of true positive edges / number of constructed edges

3.4.3 Signal

There are certain particles that are, from a physics point-of-view, more interesting to
reconstruct than others. These are called signal particles, and they produce signal tracks.
I use the concept of signal particles when evaluating the performance of the ITk pipeline.
To measure the efficiency in reconstructing signal particles, some conditions are defined. A
signal particle leaves at least 3 hits in the detector, it has a pT above 1 GeV, is not an
electron and is a primary particle, meaning that it was produced at the collision point. As
such, the signal efficiency is the efficiency in constructing edges that belong to signal tracks.

3.4.4 Particle reconstruction and track matching

To measure the performance of the entire track reconstruction pipeline, it is necessary
to quantify how many particles were reconstructed by the tracks produced, and how many
of the reconstructed tracks correspond to - or “match” - a particle. Definitions of when a
particle is reconstructed and when a track is matched can vary across tracking efforts. For
this project, I use the “ATLAS matching” convention, which is as follows:

ATLAS matching

Particle reconstruction
A particle is reconstructed if at least one track is

matched to it.
Track matching

A track is matched if over X amount of hits belong to a
single particle. Here, X denotes the “matching fraction”,

described below.

16



I set the matching fraction to 50% for this project, meaning that above half of the hits
in a track must belong to the same particle for the track to be matched. Furthermore,
only signal particles were considered in the performance evaluation of the model. The
definitions for matching and reconstruction above are derived from the Exa.TrkX’s guide
to matching, which can be found in Ref. [32]. When measuring the performance of the
full track reconstruction pipeline, it is conventional to report the efficiency and the fake
rate [33]. These are reported for the “selected” particles and tracks, which are particles and
tracks that satisfy certain selection criteria. For this project, the selection criteria were i)
particles that have at least 3 hits, and ii) tracks consisting of at least 3 hits. Efficiency and
fake rate are then defined by:

Track reconstruction performance definitions

Track reconstruction efficiency
Number of reconstructed selected particles / Total

number of particles
Track reconstruction fake rate

1− (Number of matched selected tracks / Total number
of selected tracks)

3.4.5 Target efficiency

The goal is naturally to have a track reconstruction algorithm that is as efficient as
possible. Fig. 16 shows an efficiency plot of a CPU-based tracking demonstrator algorithm
presented in the Event Filter tracking amendment to the TDAQ upgrade design report.
The simulated data was similar to the data I used in this project: it uses ITk pp → tt̄
events with a pile-up of µ = 200, and reports the efficiency for particles with pT > 1 GeV.
The efficiency is, on average, around 90%. With this demonstrator as a base-line, my goal is
to present a track reconstruction pipeline that significantly improves the efficiency beyond
the 90% reported.
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Figure 16: The efficiency of a CPU-based tracking algorithm [8].

4 FPGA implementation

Algorithms are usually implemented in FPGAs with a hardware description language
[34]. Integrated development environments (IDEs), like Intel Quartus [35], however also
support code written in high-level synthesis (HLS) [36], which is similar to C languages.
IDEs are used for FPGA design, and the underlying software produces resource estimates
for the implemented algorithms.

I translated some parts of the track reconstruction pipeline from Python to HLS, whereas
one part was implemented directly in the hardware description language, in this particular
case in VHDL [37]. With the HLS and VHDL code at hand, I produced resource estimates
to gauge how much space the model is expected to take up on the device.

4.1 Device

In this project, I target the device Stratix 10 GX 2800 from Intel [12]. An Intel FPGA
was chosen due to its potential integration with Intel OneAPI [38], which is a toolkit for
heterogeneous computing. The Stratix 10 device was chosen because it was the largest of the
Intel devices available with the translation tool HLS4ML, which is described below. FPGAs
consist of different building blocks, and I monitored the usage of these when implementing
machine learning models. The resources available on the target device are specified in
Table 2. Digital Signal Processing blocks (DSP blocks) perform operations such as matrix
multiplications. Adaptive Logic Modules (ALMs) are logic elements typically consisting
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of Look-Up Tables (LUTs) and Flip Flops (FFs), which are used to implement and store
logic operations. Random Access Memory (RAM) is used for storage and retrieval of larger
amounts of data. On Intel FPGAs, this is referred to as “M20K” 3. In the results section
(Section 7), I will refer to M20Ks as just “RAM blocks”. In Fig. 17, the layout of the
FPGA building blocks are illustrated.

Resource DSP blocks ALMs M20Ks

Availability 5, 760 933, 120 11, 721

Table 2: Resource specifications of the Intel Stratix 10 GX 2800
FPGA [40].

Figure 17: An example overview of the building blocks of an Intel
FPGA [11].

3An “M20K” is a memory block containing 20,480 programmable bits [39].
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4.2 HLS4ML

I translated the machine learning parts of the pipeline code to HLS with the framework
HLS4ML (“High Level Synthesis For Machine Learning”) [41, 42]. This is an open-source
Python library built particularly for translating neural networks to HLS, which can then
be used with simulation tools such as Intel Quartus or AMD Vivado. The framework is an
ongoing project by the Fast Machine Learning Lab, and so there are certain types of ML
models or operations that are not supported yet, and could therefore not be translated.
Any unsupported features I came across will be pointed out during this section, and where
there was a work-around, this will also be presented.

4.3 Workflow

The general workflow I used for converting models with HLS4ML and obtaining resource
estimates is as follows:

Conversion to ONNX

The models, which are written with PyTorch, were as a first step converted to ONNX
(“Open Neural Network Exchange”) [43]. ONNX is a model format, which is used for in-
teroperability between different machine learning frameworks. At the time of developing
this project, HLS4ML did not support conversion of PyTorch models with a Quartus back-
end, which was needed to target the particular Intel FPGA. As a workaround, the models
were first converted to ONNX using torch.onnx.export, before I translated them with
HLS4ML.

Configure model

The model is configured to HLS4ML. Configuration functions exist for different model
formats - here, I use the config from onnx model function. The precision of the converted
model is also specified here, where I use a fixed-point representation, meaning that weights
are stored with a fixed number of decimals before and after their decimal point. This
representation is common for programs implemented on FPGAs. The precision was set to
ap fixed<18,8, AP RND> meaning that values contain 18 bits in total, with 8 bits reserved
for values before the decimal point, and 10 after the decimal point. AP RND indicates that the
weights were rounded to the nearest representable value in case of overflow. I determined
the specific precision based on an examination of the accuracy of the HLS models’ prediction
compared to the prediction of the original PyTorch model.

Convert model

I converted the models to HLS using the convert from onnx model conversion function
in HLS4ML. There is a range of inputs to this function, which are described below.

• Model (the ONNX model)
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• Backend (set to “Quartus” since we are targeting an Intel device)

• Project name

• Config file (from the previous step)

• Output directory (where the project folder will be saved)

• Input data (testbench data for running the HLS synthesis)

• Output data (testbench data for comparison)

• Part (the target device - here, Stratix10 GX)

HLS compilation

A makefile is produced during the conversion towards HLS. When running the makefile,
the following will happen:

• HLS synthesis: The HLS code is synthesised, and the model is tested on testbench
input data.

• HLS report: From the HLS synthesis, some initial resource estimates are produced.
These are logged into an HLS report.

• Quartus project: A Quartus project is generated, which can be used for the Quartus
compilation to obtain final resource estimates.

Quartus compilation

I open the generated project into Intel Quartus, and compile it. During compilation,
the FPGA design for the model is synthesised, as well as implemented (place and route) in
hardware: resource estimates are produced as part of this process. The estimates produced
by Quartus are considerably different from the ones generated with HLS. Quartus resource
estimates are produced from a compilation that is targeting hardware, whereas HLS esti-
mates come from compiling more C-like code. As such, the Quartus estimates are more
reliable than the HLS estimates. The difference between the two types of estimates will be
elaborated further upon in Section 7.1.5.

4.4 Stage 1 translation

From the first stage of the pipeline, I translate the MLP used in Metric Learning. The
MLP was saved as a checkpoint after training, and I converted it to HLS using a Python
script. The original MLP from the CommonFramework normalises each hidden layer using
the function “LayerNorm”. Normalising weights during training typically allows the model
to learn faster, since learned weights are more stable. This function could not be converted
with HLS4ML, and so was omitted from the model - both during training and during
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conversion to HLS. Removing the layer meant that models needed to train for more epochs
before predictions stabilised. In Fig. 18, I plot the validation loss function, which is an
indication of a model’s performance, for an MLP with and without the LayerNorm function
applied. Here we see that the model without LayerNorm reaches approximately the same
amount of loss as the model with after around 80 epochs. After this point, the two models
are comparable in performance.

Figure 18: Comparing the loss functions of MLPs with and without
LayerNorm. The prominent lines are smoothed versions of the faded
lines.

4.5 Stage 2 translation

From the second pipeline stage, I constructed a simplified version of the GNN, which
was translated. Two features in the original GNN could not be translated with HLS4ML.
The first is the aggregation function, i.e. the summation of messages at the nodes. The
second is an indexing operation of the type a = b[c], where a, b and c are tensors. In
the model, this operation is used to connect node indices to edge indices, which is used
when producing inputs for the node and edge networks. I therefore also omitted indexing
operations from the GNN. As a result, the simplified GNN consists of the individual MLPs
from the node and edge encoders, node and edge networks and the output classifier. Fig.
19 illustrates the updated GNN architecture.
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Figure 19: Simplified GNN. The node and edge networks still re-
main in the message passing block, however removal of the aggregation
function removes the functionality of message passing.

Omitting the aggregation function and indexing operations will certainly impact the
amount of bit operations performed by the model, and hence its occupancy on an FPGA. I
therefore expect the full GNN to give higher resource estimates, were we able to implement
it on an FPGA. The amount of extra resources it would occupy has not been evaluated,
however could be estimated with a back-of-the-envelope calculation.

To simulate a GNN with multiple message passing steps, I iterated over the node and
edge networks, as is demonstrated in the “message passing block” in Fig. 19. When using
HLS4ML to translate a GNN with multiple message passing steps, the FPGA implementa-
tion will by default parallelise the message passing steps. This leads to decreased latency,
but also increased resource usage. It is, however, possible via HLS4ML to force some oper-
ations to be executed in series. This is done by increasing the reuse factor setting, which
determines how many times a component in the FPGA is reused. It could thus be possible
to use an increase in the reuse factor to decrease the GNN’s resource usage.

By default, HLS4ML sets the reuse factor to 1. I attempted to increase it to 2 when trans-

23



lating a GNN with 2 message passing steps, however this was not supported by HLS4ML
when using Quartus backend. Most of the models that I translated to HLS were kept to 1
message passing step with a few exceptions.

4.6 Stage 3 translation

To gauge the resources used by the track reconstruction stage, the Walkthrough method
was implemented in VHDL. This method was chosen as its implementation is suited for
FPGAs (e.g. fewer for-loops and operations).

The input data to this algorithm consists of three arrays. One array (“edge array”)
contains the information about edges. Here, the index for the array element (i.e. array
element number 0, 1, 2, 3 and so forth) identifies the first node in the node pair that an edge
connects. The content of that array element identifies the second node. If the first node
shares edges with multiple other nodes, the array element will be wider. For example, if
node number 0 is connected via edges to node number 4 and 6, the 0th array element will be
[4, 6]. Another array (“score array”) contains the score associated with each edge, as given
by the GNN. The third array (“seed array”) contains the hits recorded in the innermost
detector layer. For this implementation, we assume that tracks are always seeded in the
first detector layer, and therefore the hits in this layer correspond to the seeds of the track.
The nodes in the seed array are the starting points of the Walkthrough algorithm.

For a preliminary implementation of the Walkthrough algorithm, only the first edge in
the edge array was considered. I.e. if a certain node shares edges with multiple other nodes,
such that the array element is e.g. [4, 6], only the edge with node 4 will be passed along the
algorithm. This was done under the assumption that edges with the same starting point
can be sorted by decreasing score, such that only the edge with the highest score remains.

The VHDL algorithm consists of two parts: a score cutter and the Walkthrough itself.
Fig. 20 demonstrates the flow of the algorithm. The score cutter works through the edge
scores one by one. For edges with scores below 0.5, it sets the corresponding array element
in the edge array to 0. For example, if the edge connecting node 2 and node 8 has a low
score, element 1 of the edge array will be set to 0.

Figure 20: The VHDL implementation of the Walkthrough method
includes a score cutter, and the Walkthrough algorithm itself.

24



Once scores have been cut, the edge array is stored in RAM. Here, the index of the array
element corresponds to the address for RAM on the FPGA, where the content of the array
element is the content stored at a given RAM address. Now, the Walkthrough algorithm is
applied to one seed at a time.

Given the first seed, e.g. 0, the algorithms looks for the address zero in the RAM. The
content of the address complete the first edge: let’s assume this is the value 2. The algorithm
looks then for address 2 and its content and so forth until a zero is found as content. When
zero is found, the track is complete and a new seed is taken into consideration for a new
track.

Since the edge information is stored in RAM, the RAM assigned to the algorithm on
the FPGA must be at least large enough to contain the edge array. If the edge array is
larger than the available RAM space, the additional data will be lost.

5 Training and optimisation methods

5.1 Model training

In order to make accurate predictions, machine learning models are trained on a set of
training data. The model is presented with some data, it adjusts its weights based on the
patterns it sees, and the accuracy of the predictions it makes is calculated. This process is
repeated over and over again until predictions stabilise.

Training parameters are set to determine how training is performed. I will here go
through some of the key hyperparameters and considerations made when I trained the
metric learning MLP and the GNN.

Loss function

A loss function measures the difference between the model’s predictions and the truth
values. The goal is to minimise the loss function, meaning more accurate predictions. For
the MLP in stage 1 of the pipeline, I use a “hinge embedding loss” [44]. This is the case for
both the ITk pipeline and the TrackML pipeline. The total loss function, L, is given by:

L = mean(wi · li,true) + mean(wi · li,false) (6)

where,
li,true = di (7)

li,false = max{0,∆− di} (8)

and the weights wi are given by:

wi =


3 if signal true edge,

0 if non-signal true edge,

1 if false edge

(9)

25



Here, di is the distance in latent space between the ith node pair, and ∆ is the margin,
which is a number that determines the scale of the latent space. true and false denote
whether the edge between the ith node pair is a true or a false edge. As such, the loss
function will be minimised by placing signal hits from the same track close to each other
in latent space, and by placing hits from different tracks far away from each other in latent
space.

The GNN loss function is a binary cross-entropy loss [45] for both the TrackML and
ITk pipelines. Here, the loss function, L, is given by:

L = −wi[yi · log xi + (1− yi) · log(1− xi)] (10)

Here, wi are the weights added to the loss function, and are the same as Eq. 9. xi is the
properties of the ith node pair, and yi is the truth condition of the edge connecting the
node pair (= 1 when true, = −1 when false).

Optimiser

The optimiser is the algorithm that updates the model’s weights and biases during
training to minimise the loss. For both the MLP and GNN, I used the AdamW optimiser
[46]. It uses stochastic gradient descent to minimise the loss, and is able to adapt the
learning rate of individual weights in the model during training.

Learning rate

The learning rate determines the step size by which the weights of the model are updated
during training. At the start of training, we want the learning rate to be quite high, such
that weights are tuned in rather quickly. As training progresses, we want the learning rate
to become lower, such that it is able to fine-tune the weights. The learning rate is thus
variable for both the MLP and the GNN, starting at 0.01, and decreasing by 30% every 10
epochs.

Epochs

Epochs refer to the amount of times the model sees the data. To best learn from the
data, ML models are often trained for multiple epochs. Ideally, a model is trained until the
loss function, and hence also the accuracy, stabilises. This is affected by multiple factors
such as the learning rate and the size of the dataset. For the models I use in this project,
I found the loss to stabilise after 50 to 150 epochs. For the results presented in Section 7,
the models have been trained for 150 epochs unless stated otherwise.

Data split

The data was split into a training set consisting of 80 events, a validation set consisting
of 10 events, and a testing set consisting of 10 events. The training set was used for training
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the model, and the validation set for providing feedback to the model during training. The
testing set was used to measure the performance of trained models.

5.2 Pruning

Pruning is a technique used to reduce the size of a model while maintaining, to a
certain extent, performance. It works by setting the smallest weights to zero, which reduces
the amount of matrix multiplication operations it performs. Pruned models could hence
potentially consume fewer resources when implemented on FPGAs. Pruning is implemented
iteratively during training, where only a small amount of weights are removed at a time.
This ensures that the remaining weights can be re-trained to compensate for the removed
weights.

To prune the MLP and GNN, I implemented the PyTorch function ModelPruning into
the CommonFramework. By studying the training behaviour of the two models, it was
possible to determine when pruning should start and stop, and by what amount models
could be pruned before performance suffers.

In Fig. 21, I train an MLP and a GNN without pruning. We see here that the efficiency
of model predictions plateaus after training for a certain amount of epochs. At this point,
the model has adjusted its weights sufficiently to know which weights are the smallest. This
is where pruning can start. For the MLP, this plateau happens after around 35 epochs. For
the GNN, pruning could start slightly later, at around 65 epochs. From the starting point
of pruning, a small amount of weights (the “pruning amount”) were then removed every 5
epochs. I set the pruning to stop 20 epochs before training stopped altogether, giving the
models time to adjust its remaining weights.

(a) MLP signal efficiency (b) GNN signal efficiency

Figure 21: Both MLP and GNN efficiency stabilise after training
for a certain amount of time. The MLP stabilises sooner than the
GNN, allowing pruning to start sooner.

I determined the pruning amount by observing the training performance of some trial
models that underwent different amounts of pruning. At every pruning iteration, the ef-
ficiency and purity of the model dropped slightly. Since pruning was implemented during
training the efficiency and purity could, in most cases, recover before the next pruning it-
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eration. However, since more and more weights are removed, the drops become larger and
larger. If the pruning amount is too large, this could result in the behaviour seen in Fig. 22.
The pruning amount was thus determined on a model-to-model basis, where the training
behaviour was observed to avoid any large drops in efficiency and purity.

(a) Efficiency (b) Purity

Figure 22: These plots are from an initial study on pruning, where
pruning was set to start in the 35th epoch. For a while, the efficiency
and purity were maintained, however the efficiency started to suddenly
drop at 95 epochs, and the purity already suffered at 60 epochs.

In Section 7.3.3, I present a deeper study on the effect pruning has on the efficiency and
purity of trained models. Here, I also present its effect on FPGA resource consumption.
Some of the pruned models that were used to study FPGA implementation were pruned
after training. Since these models were used purely for an initial exploration of FPGA
resource usage, it was not necessary for them to maintain performance by pruning during
training.

5.3 Training cuts

During the development of the models presented in this report, I applied some cuts to
the data. Since events in the datasets are very large, training the models on whole events
can both take a long time, and is limited by the size of the GPU on which training takes
place. Applying cuts is one way of reducing the data, such that different model features can
quickly be tested. In general, I applied cuts such that the models train on signal particles,
or particles that meet at least one of the signal requirements, as presented in Section 3.4.

5.3.1 Heuristics cuts

When implementing the Heuristic method for the TrackML pipeline, these were the cuts
that I made to the data:

• Noise removal: Hits that do not belong to a reconstructible particle were removed.

• pT cut: Any hits belonging to particles with pT < 1 GeV were removed.
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• Double hits: In the TrackML dataset, some particles left two hits in the same layer.
This is due to modules in the detector layers overlapping, and they thus measure the
same hit twice. Therefore, I removed any duplicates.

• Track length: Hits that belong to tracks with fewer than 4 hits were removed.

• Detector sectioning: I section the detector into 8 sections (4 ϕ sections, 2 η sec-
tions), such that graphs become smaller.

• Volume cut: For this project, I considered only hits in the “barrel” region of the
generic detector. This is the region comprised of volume 8, 13 and 17 in the detector
pictured in Fig. 4. Thus, any hits belonging to the volumes outside the barrel were
cut.

5.3.2 Metric Learning cuts

When training the Metric Learning algorithm, I implemented a 1 GeV cut on the pT
of the data. This was the case for both TrackML and ATLAS ITk data. This effectively
also removed noise from the data, since the noise hits do not have a pT value attached to
them. For the ITk pipeline, tracks of all lengths were included, and I did not section the
detector. I also conducted a preliminary test for the ITk pipeline with the pT cut removed.
Here, I significantly reduced the MLP and GNN sizes to be able to train the models on the
available GPU. Results on performance and resource consumption of this pipeline will be
presented in Section 7.5.

6 TrackML Results

6.1 Pipeline performance (on GPU)

At first, I ran the TrackML track reconstruction pipeline with Heuristics for graph
construction and Walkthrough for track reconstruction. With these methods, and a GNN
with 5 message passing steps, the total track reconstruction efficiency was 94.8%. The fake
rate was 0.0%.

In an attempt to improve this result, I substituted the first and final stages of the
pipeline, such that I used Metric Learning for graph construction and Connected Compo-
nents for track reconstruction. The MLP used in Metric Learning had 16 hidden dimensions
in its linear layers, corresponding to 1084 parameters. The GNN also had 16 hidden di-
mensions, along with 5 message passing steps. This corresponds to 2,369 parameters. The
track reconstruction efficiency for this pipeline was 97.8%, and the fake rate was 0.8%. Fig.
23 shows the pT -wise efficiency.
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Figure 23: Track reconstruction efficiency vs. pT for the TrackML
pipeline.

6.2 Resource estimates

From the TrackML pipeline, I converted the Metric Learning MLP to HLS and compiled
it in Quartus. The resource estimates are found in Table 3. From these numbers, we see
that DSP blocks are the predominantly used resource. This is expected, since the MLP
performs many matrix multiplications, and such multiplications are typically processed by
DSP blocks on FPGAs. DSP blocks are thus a limiting factor for the implementation of
machine learning components on FPGAs. In Section 7.2 I elaborate on how pruning the
model can decrease the DSP usage.

Resource DSP blocks ALMs RAM blocks

Usage on S10 FPGA 19.9% 3.3% 9.9%

Table 3: Resource estimates for an MLP with 16 hidden dimensions
(1,084 parameters)

With these estimates, we have an idea of the amount of resources we can expect an
MLP of a given size to take up on the target device. This allowed me to make informed
decisions about which model sizes to use when training the ITk pipeline.
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7 ITk Results

In this section, I present my findings for the ITk pipeline. At first (Section 7.1), I explore
the FPGA implementation of individual parts of the pipeline and their respective resource
usage. I then look into the effect on resource usage from pruning the models (Section 7.2).
After the initial studies on resource usage, I will present my findings on the performance on
a GPU of individual pipeline stages, i.e. their respective efficiency and purity (Section 7.3).
The influence of pruning on performance will also be discussed (Section 7.3.3). With an
understanding of the behaviour of the individual pipeline stages, I then use these results to
construct an entire pipeline, and present its performance and resource usage (Section 7.4).
Finally, I train a pipeline without the pT cut, which was discussed in Section 5.3.

7.1 Resource usage

7.1.1 Metric Learning MLP

To study the resources used by the Metric Learning MLP and the simplified GNN, I
varied the size of the models. Specifically, I increased the number of dimensions in the
hidden layers until the models could no longer be compiled with Intel Quartus. This had a
direct influence on the number of parameters in the model, and hence the model size. The
number of hidden dimensions started at 2, and was increased to 4, 8, 16 and so forth. I
recorded the FPGA resources: DSP blocks, ALMs and RAM blocks (in some figures referred
to as just ”RAM”).

The resource usage of the MLP is plotted in Fig. 24. It was possible to compile the
model with Quartus up to 16 hidden dimensions, corresponding to 1,084 parameters in
the model. The larger the MLP, the more resources it occupies on the FPGA. It occupies
primarily DSP blocks, followed by RAM and ALMs. As was also concluded in Section 6,
DSP blocks seem to be the limiting factor in terms of fitting machine learning models onto
an FPGA.
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Figure 24: FPGA resource usage for increasing model sizes.

7.1.2 GNN

Taking a look at the GNN, there is a similar trend in resource usage, as plotted in Fig.
25. A GNN (simplified version) with one message passing step, could be compiled with
Quartus for up to 16 hidden dimensions, corresponding to 2,369 parameters. Here, DSP
blocks are also primarily used, followed by ALMs and RAM.

Figure 25: FPGA resource usage for simplified GNN with 1
message-passing step.
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Adding multiple message passing steps to the model increases the amount of resources
used, as seen in Fig. 26. Here, I translated and compiled a GNN with 4 hidden dimen-
sions and message passing steps ranging from 1 to 10. There is a linear increase in both
DSP blocks usage and ALM usage when adding message passing steps, whereas the RAM
remains flat. As discussed in Section 4.5, the increase in resource usage might be avoided
by increasing the reuse factor.

Figure 26: Adding more message passing steps increases the FPGA
resource usage. This model has 4 hidden dimensions, corresponding
to 209 parameters.

7.1.3 Walkthrough algorithm

The walkthrough algorithm described in Section 4.6 was simulated using dummy data.
In the compilation, I used an edge array with a length of 18,000. This roughly corresponds
to the average amount of nodes in the graphs coming from the edge classification stage. The
seed array was set to a length of 8,000, which is a typical amount of hits in the innermost
layer. The resource estimates obtained from the simulation are listed in Table 4.

Resource DSP blocks ALUTs RAM

Usage 0% 69.7% 0.3%

Table 4: Resources used by the VHDL implementation of the Walk-
through algorithm.

From the synthesis in Quartus, ALM estimates were not available. Instead, I report here
the usage of Adaptive Look-Up Tables (ALUTs). ALUTs are components placed in ALMs,
and there is one ALUT used for each ALM in Intel FPGAs [47]. The ALUT estimate
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is therefore a good first estimate of how many ALMs will be used by the design. From
these resource estimates, we see that the implemented Walkthrough algorithm uses mostly
logic modules - 69.7% of the device’s ALUTs are occupied by the algorithm. Since the
algorithm does not perform any calculations, no DSP blocks are used. A low amount of
RAM blocks are used for storage of the edge arrays. This comes out to 0.3% of the RAM
blocks available in the device. The Walkthrough algorithm thus behaves quite different to
the machine learning components of the pipeline, where DSP blocks and RAM were used
more predominantly.

7.1.4 Resource limits

In the studies above, the number of hidden dimensions was doubled at every increase
in model size. For the MLP, for example, the 32-dimensional model could not be compiled
with Quartus, whereas the 16-dimensional model only occupied 17.5% of DSP blocks. To
narrow in on the concrete limit where Quartus fails to compile the models, I compiled
models where the number of hidden dimensions was incremented by 2 in the range 16 to
32 dimensions. Here, I found that Quartus resource estimates could be obtained for up
to 28 hidden dimensions. This model had 2,896 parameters, and it occupied 96% of DSP
blocks and 23% of ALMs. This narrows down the concrete limit on model size to just below
3,000 parameters if we allow the model to occupy the full FPGA. In reality, when designing
FPGAs, there are stricter limits on the amount of resources that can be used: to be able to
close a design from a timing perspective (using a certain amount of resources at a certain
clock speed) an FPGA’s resources are never fully used.

7.1.5 HLS vs Quartus estimates

As described in Section 4.3, resource estimates can also be obtained from HLS synthesis.
These estimates are considerably different to the estimates produced by Quartus. In Fig.
27, I plot the estimated RAM block, DSP block and ALUT usage obtained from Quartus
and HLS, respectively. HLS did not produce a resource estimate for ALMs, however it was
possible to compare the ALUT estimates. The Quartus estimate for DSP blocks is always
double that of HLS. The Quartus RAM estimate is between 80 and 90% that of HLS. For
ALUTs, the discrepancy varies a lot. For the 62-parameter model, the Quartus estimate is
85% of the HLS estimate. For the 1,084-parameter model, the Quartus estimate is 50% of
the HLS estimate.

Some models that do not compile in Quartus do pass HLS compilation. For these
models, the HLS estimate can give a rough indication of what the Quartus estimate would
look like. For example, if HLS predicts a model to use 3,000 DSP blocks, we may infer
that the Quartus estimate is 6,000, which is more than 100% of the resources available, and
could lead to a failed Quartus compilation.
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Figure 27: Comparing Quartus and HLS resource estimates (DSPs,
ALUTs and RAM blocks). Resource estimates were obtained from
pruned MLPs with increasing sizes.

7.2 Pruning studies

Pruning was implemented with the methods presented in Section 5.2. I present here
my findings on the effect of pruning on FPGA resource usage. In Section 7.3.3, I will go
through the effect pruning has on model performance.

7.2.1 MLP resource usage

Fig. 28 demonstrates the effect of pruning on FPGA resources. Here, I pruned an
MLP with 8 hidden dimensions (356 parameters), and recorded the resource usage for
various amounts of pruning. The pruning was performed during training. We see here that
increasing the amount of pruning leads to a slightly concaving decrease in resource usage.
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Figure 28: Resource estimates for an increasingly pruned MLP with
8 dimensional hidden layers

Varying the model size while keeping the pruning amount constant allows us to compare
pruned models to the unpruned models presented in Fig. 24. Fig. 29a contains a plot of
the resources used by MLP models that have been pruned by 75%. In this case, the models
were pruned after training. Comparing this plot to Fig. 24, we see that DSP block usage
has been reduced by 75%, whereas RAM decreases only by 32 - 46%. We see also that RAM
becomes the predominantly used resource as models grow larger.
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(a) Resource estimates for an MLPs of various
sizes, all pruned by 75%. The x-axis contains the
total number of parameters for comparison with
Fig. 24. The number of non-zero parameters will
be 25% of the total number.

(b) Resources estimates for MLPs of various sizes,
unpruned. This figure is identical to Fig. 24

Figure 29: A comparison of the resource usage of pruned and un-
pruned models

7.2.2 GNN pruning

To study the effect of GNN pruning on FPGA implementation, I pruned the simplified
GNN after it was initialised. The full GNN was also pruned during training to study the
effect on performance, which will be described further in Section 7.3.3. In Fig. 30, I plot the
FPGA resource usage of a GNN, which has been pruned between 20 and 90%. Similar to
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the MLP, more pruning results in fewer resources used across both DSP blocks, ALMs and
RAM. The decrease is almost linear, but slightly concaves for higher pruning percentages.

Figure 30: A GNN with 16 hidden dimensions and 2 message pass-
ing steps pruned by increasing amounts.

7.3 Performance studies (on GPU)

As well as keeping the models small for FPGA implementation, it is also important that
models perform well. Given the constraints on model size presented in the previous section,
I will now explore the effect that size and pruning has on efficiency and purity. I will present
my findings for individual stages of the pipeline, and in Section 7.4, I will use these findings
along with results on resource usage to explore how well the full pipeline performs.

7.3.1 MLP efficiency

To study how the MLP’s size influences its efficiency, I trained models with a varying
number of hidden dimensions for 50 epochs. The signal efficiency and the total purity were
recorded. Fig. 31a shows a plot of the signal efficiency during training of these models.
Although the improvements in efficiency are small, there is a correlation between model size
and its efficiency. Only models with 32 hidden dimensions or more performed above 99%.
For the purity, there are larger differences in performance between the models. This is shown
in Fig. 31b where it becomes clear that model size affects its purity upon training. The
increase in performance for larger models can be attributed to the amount of information
stored in the model. For each parameter contained in the model, one more number, and
hence one more piece of information, is used to make the predictions. Therefore, the more
parameters in a model, the better its predictions will be.
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(a) MLP signal efficiency

(b) MLP total purity

Figure 31: Signal efficiency and Purity of MLPs after training for
50 epochs.

Since these plots clearly demonstrate larger models perform best, we are interested in
using as large a model as possible for the final pipeline. In Section 7.1 I found that the
upper limit for unpruned models was 16 dimensions. I however also found that pruning
leads to a decrease in resource usage. In section 7.3.3, I will explore the possibility of fitting
larger models onto the target device by applying pruning.

7.3.2 GNN efficiency

For the GNN, I also recorded the efficiency and purity as a consequence of varying the
model size and number of message passing steps. Here, the models were trained for 150
epochs.

Fig. 32 shows the efficiency and purity of the GNN for different numbers of hidden
dimensions. In this case, there is also a clear increase in performance when the model size
is increased. For example, the 8-dimensional model has a final signal efficiency of 86.4%,
the 16-dimensional model 92.7% and the 32-dimensional model 95.5%. Based on the plots,
and considering the size constraints found in Section 7.1.2, I consider the 16-dimensional
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model to be a good compromise between model size and performance.

(a) GNN signal efficiency (1 message passing step)

(b) GNN total purity (1 message passing step)

Figure 32: Signal efficiency and Purity of GNNs after training for
150 epochs. The lines have been smoothed for better visibility.

When varying the number of message passing steps, there is not a clear relationship
between them and performance results. Fig. 33 shows the efficiency and purity when
training the models. The model with 6 message passing steps performs the best when
looking at both efficiency and purity. For the purposes of my project, however, I only used
1 message passing step for the models I translated. This is due to the fact that the reuse
factor could not be increased, as also mentioned in Section 7.1.2.
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(a) GNN signal efficiency

(b) GNN total purity

Figure 33: Training GNNs with an increasing number of message
passing steps for 50 epochs. The lines have been smoothed for better
visibility.

When adding a message passing step to the GNN algorithm, the node properties are
updated once more, and each node will contain information from one further degree away.
This also updates the parameters, and intuitively, would make the model more accurate.
This is not the behaviour seen in the plots above. If too many message passing steps are
added, the nodes end up containing unnecessary information from other nodes very far away,
and the model will learn features that are not relevant to the given node. This explains
why the models with 8 and 10 message passing steps perform worse than those with 4 and
6.

7.3.3 Pruning: MLP efficiency

As discussed in Section 5.2, pruning leads to a small decrease in efficiency and pu-
rity. The efficiency can often be restored through training. However if enough weights
are removed, the performance will suffer indefinitely. I therefore tested the maintenance of
efficiency and purity for different models. The models I tested were trained for 150 epochs.
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As a first step, I looked at the models that were used to investigate the effect of pruning
on resource usage (as presented in Fig. 28). In Fig. 34, I plot the efficiency of the MLP
with 8 hidden dimensions for increasing pruning amounts. The efficiency was recorded at
the end of training. We see here that efficiency is maintained until just before 50% pruning.
Purity, on the other hand, drops already at 30% pruning.

Figure 34: Pruning an 8 dimensional MLP by more than 50% leads
to a significant drop in efficiency.

To see how pruning affects a larger model, I did the same test for an MLP with 32
hidden dimensions. The outcomes are plotted in Fig. 35. Here, efficiency suffered only after
78% pruning. Purity decreased slightly after 32% pruning, and more drastically after 78%
pruning. From this we can conclude that the larger the model, the higher the percentage
can be pruned whilst maintaining performance.
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Figure 35: Pruning an MLP with 32 hidden dimensions (3,692
parameters) by up to 98%. Purity starts to slightly drop after 32%
pruning, and efficiency after 78%. At 78% pruning, the efficiency is
99.0% and the purity is 17.7%.

In Section 7.1.4, I found that unpruned MLPs could only be compiled in Quartus up
to 28 hidden dimensions. Since pruning reduces resource usage, I tested whether a pruned
32 dimensional MLP could be compiled. The model I compiled was pruned by 78%, i.e.
before the performance drop we see in Fig. 35. The resource estimates obtained from this
compilation are listed in Table 5.

Resource DSP blocks ALMs RAM

Usage 11.7% 2.9% 15.3%

Table 5: Resource usage of an MLP with 32 dimensional hidden
layers, pruned by 78%. The model had 99% efficiency and 17.7%
purity.

I conducted a similar test for a 64 dimensional MLP. Here, efficiency remained at 99%
until 95% pruning, and purity at 18% until 80% pruning. It was however not possible to
compile the well-performing pruned models in Quartus. A model pruned by 90% passed
the HLS compilation, and inferring from the resource estimates it produced, the Quartus
estimate for RAM would have been above 100%, leading to the compilation failure.

Comparing the resource estimates presented in Table 5 with the plot from Fig. 24,
we see that the pruned 32-dimensional model has similar resource usage to the unpruned
16-dimensional model. The performance of the 16-dimensional model is presented in Fig.
31a, where it has a final efficiency of 98.7% and a purity of 16.0%. The resource usage and
performance of the two models is compared in Table 6.
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16 dim, unpruned 32 dim, pruned

DSP blocks 17.5% 11.7%

ALMs 2.9% 2.9%

RAM blocks 9.9% 15.3%

Efficiency 98.7% 99.0%

Purity 16.0% 17.7%

Table 6: Comparing FPGA resource usage and performance of
two models: one 16-dimensional unpruned, and one 32-dimensional
pruned.

For roughly the same resource usage (fewer DSP blocks, but more RAM blocks), we have
thus gained an increase in performance by using a slightly larger, but pruned model. Based
on this, I conclude that a 32-dimensional MLP, pruned by up to 78% is a good candidate
for the Metric Learning algorithm implemented on a Stratix 10 GX FPGA.

7.3.4 Pruning: GNN efficiency

To test how the performance of a GNN is affected by pruning, I trained GNNs with 16
hidden dimensions in the linear layers (2,369 parameters) with various amounts of pruning.
We saw in Section 7.1.2 that GNNs with up to 16 dimensions could be implemented onto
an FPGA, and in Section 7.3.2, I showed that this model performs better than any of the
smaller GNNs I trained. The pruned models were trained for 150 epochs and had 1 message
passing step. The result can be seen in Fig. 36. We see here that purity starts to drop after
around 42% pruning, and efficiency after around 60%.

Figure 36: When pruning a GNN (16 dim), the performance is
roughly maintained until 42% pruning.
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As in the case of the MLP, I checked the resource usage of the 16-dimensional GNN
pruned by 42%, i.e. before the performance drops significantly. These estimates are pre-
sented in Table 7. In Section 7.3.2 I concluded that a 16-dimensional GNN performs well
for its size with 92.7% efficiency and 38.6% purity. To fit the model on the target device,
it is not strictly necessary to prune it, but any effort to decrease the model size is desired
considering the aim to fit a full pipeline onto an FPGA. Based on these findings, along with
the results presented in this section, I conclude that a 16-dimensional GNN with 1 message
passing step, pruned by up to 42%, is a good candidate for implementation onto the Stratix
10 GX FPGA.

Resource DSP blocks ALMs RAM

Usage 13.4% 2.0% 6.8%

Table 7: Resource usage of a GNN with 16 dimensional hidden
layers, pruned by 42%.

7.4 A sample pipeline

Having obtained results for how various model architectures impact both performance
on a GPU and FPGA resource usage, I used these results to construct a full pipeline. The
goal here was to maximise the track reconstruction efficiency and purity, while minimising
the resources occupied on the target device. While the amount of resources available on
the Stratix 10 FPGA puts an upper limit on how much the pipeline can occupy, the limit
for the parts of the pipeline I am exploring is, in reality, much smaller. Two factors should
be kept in mind here. First of all, I only test the occupancy of the MLP and a simplified
GNN. The pipeline consists of many more algorithms including the FRNN search and the
track reconstruction algorithm. The full GNN also has more operations than the simplified
version. Secondly, as described in Section 7.1.4, the FPGA will not be able to operate in
reality if all resources are occupied. Based on these factors, as an estimate, I decided to
aim for the MLP and GNN combined to occupy at most 40% of each respective resource.

The MLP chosen for this pipeline had 32 dimensional hidden layers, and was pruned by
74%. I chose these settings based on the results reported in Section. 7.3.3. While efficiency
could be maintained until 78% pruning, I decided to leave some room for error and prune
it by 74%. At this amount, efficiency is still maintained, whereas purity has only slightly
dropped. The GNN I chose for the pipeline had 16 hidden dimensions and was pruned
by 42%. As reported in Fig. 36, pruning a GNN of this size by 42% causes only a slight
reduction in efficiency and purity.

The performance of both individual steps of the pipeline, as well as the full pipeline are
listed in Table 8. The pT -wise track reconstruction efficiency for signal particles is plotted
in Fig. 37. The resources used by the MLP and GNN are listed in Table 9.
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Track reco: Efficiency 97.9%

Track reco: Fake rate 15.5%

MLP signal efficiency 98.9%

MLP total purity 16.5%

GNN signal efficiency 89.3%

GNN total purity 47.9%

Table 8: Performance on GPU of the track reconstruction pipeline,
following the definitions presented in Section 3.4.

Figure 37: pT -wise efficiency of the full track reconstruction
pipeline. There is a fairly even performance across a range of pT s.

DSP blocks ALMs RAM

MLP resources 14.5% 3.4% 26.7%

GNN resources 13.4% 2.0% 6.8%

Total resources 27.9% 5.4% 33.5%

Table 9: Resources used by the MLP and GNN for the full track
reconstruction pipeline.

The HLS model can be run on a set of testbench data to generate predictions. I compared
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these predictions to the ones from the PyTorch model. The discrepancy (d) between the
two sets of output was calculated by:

d = mean
(2× |PHLS − PTorch|

|PHLS + PTorch|

)
(11)

where PHLS and PTorch refer to the predictions from the HLS and PyTorch models, respec-
tively. The discrepancy for the MLP was 0.9%. For the GNN, it was 1.5%.

The graphs used in this pipeline had an average of 18,141 nodes. The number of nodes is
determined by the number of hits, and therefore remains constant across the entire pipeline.
The number of edges was on average 101,420. I refer here to the edges that were established
by the Metric Learning algorithm, and thus also the number of edges receiving labels from
the GNN. Had the purity of the Metric Learning stage been higher, there would be fewer
edges in the graphs. For the two first stages of the pipeline, graph sizes do not influence the
size of the model (and hence occupancy on the FPGA). For the track reconstruction stage,
however, the sizes of the graphs are used to determine the architecture of the Walkthrough
algorithm. The resource estimates for stage 3 are therefore influenced by the number of
nodes and edges in the graphs.

7.4.1 Including Walkthrough estimates

In the sample pipeline I present, I am using the Connected Components method to
build track candidates. Since this method has not been implemented on an FPGA, resource
estimates for this stage of the pipeline were not included in the table above. We do, however,
have resource estimates for the VHDL implementation of the Walkthrough method, as
presented in Section 4.6. While there is no measurement of the pipeline’s performance using
this method, the resource estimates allow us to gauge the occupancy of the full pipeline on
an FPGA. Table 10 summarises the resource estimates for the MLP, simplified GNN, and
the Walkthrough implementation.

DSP blocks ALMs/ALUTs RAM

MLP + GNN 27.9% 5.4% 33.5%

Walkthrough 0% 69.7% 0.3%

Total resources 27.9% 75.1% 33.8%

Table 10: Total resources used when including the VHDL imple-
mentation of the Walkthrough algorithm. DSP block and RAM block
usage remain under the 40% target. Due to the Walkthrough’s heavy
use of ALUTs (and hence ALMs), this resource is used beyond the
40% target.

7.5 Removing the pT cut

To establish a track reconstruction pipeline that can be implemented in the new Event
Filter, it is ultimately necessary that it performs well on entire datasets without making
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cuts on the data. To be able to process such large datasets, the models need to be trained
on large GPUs. The GPU I used was the Quadro P2000 [48], which has a capacity of 4 Gb.
To be able to train the pipeline on datasets with no pT cut on this GPU, I reduced the sizes
of the Metric Learning and GNN algorithms significantly. The Metric Learning algorithm
of the pipeline contained an MLP with 16 hidden dimensions, and the model was pruned
by 24%. The pruning frequency was increased to 10, allowing models to re-gain more of
their performance before the next pruning iteration. The “KNN value”, which specifies the
maximum amount of neighbouring nodes the FRNN algorithm can construct edges with,
was reduced from 50 to 10 during training, and the KNN value for inference was reduced
from 800 to 50. This means that the algorithm could only build edges between nodes and
their closest 50 neighbours in latent space, even if more than 50 nodes were within the
FRNN radius. The GNN had 8 hidden dimensions, 1 message passing step, and was not
pruned. Both the GNN and MLP were trained for 500 epochs.

While it was possible to remove the pT cut, the GPU could not handle datasets when
noise was added, even when reducing model sizes to their absolute minimum. I trained the
size-reduced pipeline on data both with and without a pT cut. This was thus a test to gauge
whether we can expect performance and/or resource estimates to change when removing
data cuts.

In Table 11, I summarise the efficiency and fake rate of the track reconstruction pipeline,
along with the resource usage for training on data with and without cuts. It is evident from
these results that removing the cut on the pT in the datasets causes a decrease in the
efficiency of the model, and an increase in fake rate. Since the model is very small, it can
have a hard time learning the characteristics of a more diverse dataset, i.e. a dataset with
a wider range of pT values. The gap in efficiency is therefore to be expected. Whether this
gap closes for larger models has yet to be explored.

The resource estimates, on the other hand, remain roughly the same. This is also to be
expected, since the amount of data processed by the model does not influence the size of
the model. A larger dataset merely affects the values of the model’s parameters, while the
number of parameters affects the occupancy on an FPGA.

Cut 0 GeV 1 GeV

Efficiency 75.5% 98.2%

Fake rate 44.8% 17.9%

DSP usage 14.8% 14.8%

ALM usage 2.6% 2.6%

RAM usage 9.1% 9.0%

Table 11: A comparison of performance and resource usage between
pipelines trained on data with and without a pT cut. Here, the resource
usage reported is combined for the MLP and GNN.
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7.6 ITk pipeline: Summary and discussion

The ITk pipeline was trained on 100 simulated ITk events. The events were from pp → tt̄
collisions with a pileup of 200 to mimic the data we expect to see in the HL-LHC. It was
possible to construct a full pipeline with a track reconstruction efficiency of 97.9% when
trained on the events with a 1 GeV cut applied. The machine learning parts of this pipeline
occupied 27.9% of DSP blocks, 5.4% of ALMs and 33.5% of RAM.

7.6.1 Resource studies

Behind the construction of this pipeline were studies on how model architectures influ-
ence its resource usage on the Intel Stratix10 GX FPGA and its performance on a GPU.
First of all, I found that the size of the model, adjusted by increasing the width of its hidden
layers, led to a linear increase of FPGA resources used. This was the case for both the MLP
and the GNN. For the initial studies, before pruning was implemented, DSP blocks were
the most used resource. This is because the parameters of machine learning models are
stored in tensors, which are multiplied when using the model to run inference. These types
of operations are typically handled by DSP blocks.

7.6.2 Pruning studies

When I implemented pruning into the training of the models, the pattern changed.
First of all, I saw a close-to-linear decrease in the amount of resources used when the
pruning amount was increased. This was especially the case for DSP blocks, which saw a
bigger decrease in resources compared to RAM and ALM usage. Since pruning sets a given
percentage of a model’s parameters to zero, the amount of tensor multiplication operations
also decreases. For the larger models, the decrease in DSP blocks meant that RAM became
the most predominantly used resource.

7.6.3 Performance studies

There is a trade-off between model size (and hence compatibility with FPGAs) and its
performance. For both the MLP and the GNN, I found there to be a correlation between
their sizes, and their efficiency and purity. I however also found that performance can,
to a certain point, be maintained during pruning - for example, a 32-dimensional model
maintains its performance until 78% pruning, as presented in Fig. 35. In general, the larger
the model, the more it can be pruned before efficiency and purity decrease. This can be
attributed to the fact that a larger model will have more non-zero parameters remaining
after pruning, which can be re-trained to still give accurate predictions. The GNN was
more sensitive to pruning, meaning that it could be pruned less than a similar-sized Metric
Learning MLP before performance decreased.
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7.6.4 The full pipeline

The resource and performance studies were then coupled by using the results to propose
the architecture of a full track reconstruction pipeline, which I deem possible to implement
on the target device. Here, the model sizes and their amount of pruning were balanced,
such that neither DSP blocks nor RAM blocks were over-used compared to the other.

Since I have focused on implementing the pipeline’s machine learning components onto
an FPGA, there are still studies to be done regarding the size and resource usage of the
remaining pipeline. A first estimate of its 3rd stage, track reconstruction, was presented
in Section 4.6. The current implementation of stage 3 uses primarily ALMs, whereas ALM
usage remains low for the first two stages of the pipeline. In Section 8, I give my suggestions
for further studies on the pipeline’s FPGA implementation.

As a final step, I began the work of adjusting the pipeline to run on full events, i.e.
without cuts being made to the data. While it was not possible to train the pipeline on
events with their, on average, 55% noise, I trained a small pipeline without a cut on the
transverse momentum. This led to a clear decrease in efficiency when comparing to the same
(small) pipeline trained on data with a cut. I did not make any exhaustive attempts at
increasing this efficiency; however training larger models, and for longer, could potentially
yield higher track reconstruction performance on full events. The FPGA resource usage, on
the other hand, did not change significantly between the two pipelines.

8 Future work

This section contains a list of tests I suggest be conducted in continuation of this project.

• Training on full events. In this project, I trained a small version of the track
reconstruction pipeline on 100 events without a pT cut. For an even more realistic
study on the pipeline’s performance, a bigger pipeline (within the limits of the FPGA)
should be trained on more data. Here more data refers both to more events in the
datasets, as well as adding noise back in. This would require access to a large GPU,
and ability to train for many more epochs. The pipeline running on full events could
also benefit from further optimisation studies to make it suited for a more diverse
dataset.

• Full GNN resource estimates. Once support for aggregation functions and in-
dexing operations is added to HLS4ML, the resource estimates of the full GNN can
be tested. Until then, one could test on a GPU the occupancy of the full GNN and
compare it to the simplified GNN.

• Resource usage in Event Filter. In this project, I have worked with data in the
form of hits. As mentioned in Section 1.1, the Event Filter uses a three-step procedure
to perform tracking. The resource usage of the first and the final steps has not been
explored in this thesis. To gain a better understanding of the resource usage for the
entire Event Filter tracking process, this will be necessary.
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• Sectioning. The events used in the pipeline contained hits from the full ITk detec-
tor. In reality, breaking the data into smaller detector sections, as was done for the
TrackML pipeline, could be a way to reduce the stress on the FPGAs in use.

• Impacts on track reconstruction efficiency. The concrete effects of efficiency and
purity of the two first stages in the pipeline on track reconstruction efficiency could
be tested. Whether the track reconstruction efficiency is more sensitive to efficiency
or purity of the first pipeline stages is currently not known.

• Quantisation aware training. Along with pruning, quantisation aware training
(QAT) could be implemented to reduce model sizes. Since model parameters are
quantised when implemented onto an FPGA device, training can be adapted to make
sure that quantisation favours a size reduction while maintaining efficiency.

• Fixed point precision. The precision of the fixed points, as discussed in Section
4.3, influences the accuracy of the HLS model’s predictions when compared to the
PyTorch predictions. Its influence on the model’s resource usage on the FPGA is
however not known and could be studied further.

• Accuracy on FPGA. While the HLS compilation ran a simulation on some test-
bench data, this has not been done in Quartus. Whether the model implemented in
an FPGA can produce predictions identical or similar to the PyTorch model running
on the GPU should be tested.

• Integration with Intel OneAPI. During this project, I was in contact with Intel
regarding running the HLS code as a kernel in OneAPI [38]. This proved not to be
possible currently, however there are ongoing discussions with Intel engineers. One
recommended solution is to rewrite the pipeline code with SYCL for easier integration
with OneAPI.

9 Conclusion

In this project, I tested the FPGA implementation of a three-stage GNN-based track
reconstruction pipeline for tracking in the ATLAS TDAQ system for the HL-LHC upgrade.
I developed pipelines for two different datasets: TrackML for an initial assessment of the
track reconstruction pipeline, and simulated ITk data for more realistic estimates of the
pipeline’s performance in the new ITk detector. With the goal of implementing the pipeline’s
machine learning components onto an Intel FPGA, I translated the Python code to high
level synthesis, and compiled the code with Intel Quartus to obtain resource estimates.
I found there to be a direct correlation between the size of the models and their FPGA
resource usage. This imposes a limit on the size of a track reconstruction pipeline that can
run on an FPGA.

Simultaneously, I studied the performance of the track reconstruction pipeline, and
implemented pruning methods for decreasing model sizes while maintaining their accuracy.
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Depending on the size of the model, it is possible to prune models by up to around 80%
while both preserving efficiency, and being able to fit them onto the target device. While
unpruned models occupy mainly DSP blocks, pruned models tend to use more RAM blocks
than DSP blocks.

Based on efficiency and resource studies, I constructed a sample pipeline, which was
developed to fit onto the target device Intel Stratix 10 GX FPGA. It was trained on data
subject to a 1 GeV cut on the transverse momentum. The track reconstruction efficiency
presented in the sample pipeline is 97.9%. In Section 3.4.5 I defined a goal of improving
the efficiency compared to a CPU-based demonstrator algorithm, which had an average
efficiency of around 90%. The sample pipeline achieves this goal. When removing the
pT cut, however, the efficiency dropped to 75.5%, which is below that of the base-line
algorithm. To improve on this result, further studies into both the architecture of the
pipeline and methods for minimising its size are required.
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Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef
Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.
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