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Abstract

The spontaneous emergence of collective flows is a generic property of active fluids and often
leads to chaotic flow patterns characterised by swirls, jets, and topological disclinations
in their orientation field. The main part of this thesis will explore a newly introduced
active stabilising term to tame otherwise chaotic, active flows, showing how a balance
between activity-induced order and disorder can act as a robust way of controlling and
guiding active particles into dynamically ordered coherent structures. Here we find that
the introduced term does stabilize active systems. Furthermore, we uncover a range of new
exotic phases where topological defects self-organise into chains and aster-like structures.
Additionally, we extend this framework to a discrete phase-field model of a cell monolayer
by characterising the impact of chiral active stresses acting in between the cells. Here we
explore the emergence of chiral edge currents and coherent patterns of motion of the cells
in different configurations of confined geometry.
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Chapter 1

Active nematics - The flow of
nature

T he work presented in this thesis intends to understand the dynamical behavior of soft
matter systems categorised as active nematics. Active nematics conjoin the field of

nematic liquid crystals with active matter and have two defining attributes: Firstly, the
distribution and orientation of the constituting elements of an active system follow the
physical laws of liquid crystals, a division of soft active matter, which at low temperatures
form a nematic phase. Secondly, the individual elements constituting an active nematic
system, locally convert energy into mechanical work, meaning that these systems belong in
the division of active matter. Both of these concepts will be introduced and discussed in
further detail in this opening chapter.
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1.1 Overview

This chapter introduces the key underlying active nematics theory which makes up the
foundation for the work done in this project. The rest of the thesis is constructed of two
related studies on the topic of activity-induced collective behaviour in active fluids. Firstly,
we will explore a newly introduced active stabilising term from equation 1.20. This is
conducted by means of continuum simulations, and will explore new non-equilibrium states
in active nematics by simultaneously varying the flow-aligning parameter χ, as well as the
ratio between the dipolar activity ζ1 and the new additional force quadrupolar term ζ2.
Secondly, the study is extended to a discrete phase-field model of a cell monolayer by
characterising the impact of chiral active stresses acting in between the cells by introducing
the chiral activity from equation 1.19. The coherent patterns of motion of the cells are
explored in different configurations of confined geometry. Both the continuum and the
phase-field models will be presented in Chapter 2. Chapter 3 will present the results from
the continuum study and is the crux of the thesis. Chapter 4 will present the results of the
phase-field study. Finally, Chapter 5 has a general summary and conclusion of the entire
project.

1.2 Active matter

Active matter is a class of condensed systems out of thermodynamic equilibrium with the
unifying characteristic that they are composed entirely of self-driven units or active par-
ticles. Each component of the system converts locally stored or ambient free energy into
systematic movement. This is in contrast to most equilibrium systems, which rely on exter-
nal contribution of energy [66, 82, 49, 57, 38]. Particles comprising an active matter system
are often elongated and their direction of self-propulsion is set by their own anisotropy,
rather than by an external field or geometric constraint. In nature, an orientational order
can clearly be seen in different examples of macroscopic and microscopic active systems,
such as swarms of bacteria, cell extracts of biofilament-motor protein [8], as well as cellular
tissue [23, 40], schools of fish and flocks of birds [78], see Fig 1.1 for an illustration with
active matter systems observed in nature at different length scales. Active matter is also
found in non-living systems, on a variety of length scales, such as layers of vibrated granular
rods, colloidal particles propelled through a fluid medium, and assemblies of robots [68].
Each element or particle of the active matter consumes and dissipates energy and this cycle
fuels the internal changes which often result in motion. Such systems can be created in
the lab with the aim of studying a simplified system capable of displaying collective motion
whilst simultaneously being able to control parameters to gain insight into the governing
properties of these systems [66].
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Figure 1.1: Scale showing illustrated examples of active systems at a variety of length scales.
From left to right: Sub-cellular filaments, a cluster of cells, a grouping of swimming bacteria,
a flock of birds, and a school of fish.
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1.2.1 Pattern formation

Interactions, both internally between the active particles as well as the particles with a
surrounding fluid, can give rise to distinct patterns. Patterns refer to the spontaneous
formation of collective motion, or self-organization into highly ordered structures on much
greater length scales than the individual unit in an otherwise quiescent system [2, 81, 81,
75, 30, 3].
Generally, well studied patterns can be categorised into three subcategories; polar patterns,
nematic patterns, and clustering patterns. Polar patterns have a polar alignment of particles
which means the particles are predominantly aligned and move unidirectionally. These
patterns are often linked with transport and can also appear as swirls or jets. Polar jets of
swimming bacteria have been shown to transport microscopic cargo [79]. Nematic patterns
are defined as structures in which particles move bidirectionally, sometimes anti-parallel,
along the alignment director. Nematic ordered filaments have been studied in microtuble-
based active gels in [66]. Active systems can also form clustering patterns, such as phase-
separation or motility-induced formation of colonies [62].

1.2.2 Wet and dry systems

In order to understand mechanisms behind diverse behaviours of active materials, it is often
useful to divide active systems into two general categories: wet and dry active matter. In wet
active matter, flows created by the particles mediate long-range hydrodynamic interactions
in the system [42] such as in unconfined suspensions of filaments and motor proteins [57, 45],
bacterial suspensions in low concentrations [79], and collection of artificial active colloids
suspended within a fluid medium [9].

On the other hand, the collective behaviour of dry active materials is governed by
direct interactions, such as collision between active particles [68, 14]. Shaken granular
matter [39, 44] and bacteria moving on a substrate [53] are examples of dry active matter.
Descriptions based on dry active matter theories have been helpful in investigating the
different patterns in clusters of bacteria which live on dry surfaces in tight spaces [63, 32].

1.3 Liquid crystals

Liquid crystals are an intermediate phase between a liquid and a crystal, which are com-
prised by mesogens; the anisotropic rod-like elementary molecules or units that make up
the crystal. The crystals exhibit both solid-like properties, such as elasticity, as well as
liquid-like properties, such as fluidity. Liquid crystals are in thermodynamical equilibrium
and have different mesogenic phases of matter, not limited to, but most notably: crystalline
solid, isotropic liquid and nematic liquid crystal. It is important to note that different
matter can exhibit both different transitions between phases of matter and other phases of
matter. In the isotropic phase, illustrated in Fig 1.2.c, the mesogens can take any orienta-
tion or position in the formation. In the nematic phase the mesogens have an orientational
order but no positional order. This means that mesogens align along the unit vector n
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known as the director (Fig 1.2.b). Given the orientaional order, the mesogens do not have
a positional constraint and can move freely within the liquid. At the lowest temperature,
the liquid form the crystalline phase. Here the configuration has the mesogens in a fixed
alignment side-by-side in assembled layers (Fig 1.2.c).

1.3.1 Director field and order

The molecules in the nematic phase tend to have some order by being parallel to a unit
vector n̂ (see dashed line in Fig 1.2.b). The unit vector n̂ is a headless vector, meaning that
n̂ and −n̂ are indistinguishable. This defines the average orientation of the liquid crystal
volume and is known as the director field. The director field is in a nematic state, is apolar,
and head-tail symmetric. It is noteworthy to clarify that the magnitude of the director
describes the united direction of the system, rather than locally for the individual particle.
To describe the orientational order, we study the evolution of a traceless rank-2 tensor Q,
known as the nematic order parameter. It takes the form

Q = 2q(n̂n̂ᵀ − I
2), (1.1)

where q and n̂ show the magnitude and orientation of the order, respectively, and I repre-
sents the identity tensor. The orientation on the order n̂, can be described as

n̂ = [cos θ, sin θ], (1.2)

where θ is the director angle. We can define the magnitude of the particle alignment using a
probability density function f(θ, φ), here φ is a polar angle. Assuming a cylindrical symme-
try around n̂, the distribution function f(θ, φ) loses its dependency on φ. Furthermore, the
head-tail symmetry of the particle means equivalence in directions n̂ and −n̂, and it follows
that f(θ) = f(θ − π). Due to this equivalence, there is no average dipole and we instead
use the Legendre polynomial for multipole expansion. The next multipole, the quadrupole,
is defined as

q = 1
2N 〈(3 cos2 θ − 1)〉 =

∫ π/2

−π/2
f(θ)1

2(3 cos2 θ − 1)dΩ, (1.3)

with N representing the number of particles [18]. The expansion allows for evaluation of
the magnitude of alignment.

1.3.2 Nematic ordering in liquid crystals

In thermodynamic equilibrium, isotropic and nematic states in liquid crystals are the min-
ima of a free energy F . Based on the symmetry of the Q-tensor, a Ginzburg-Landau free
energy can be defined. This is known as a Landau-de Gennes free energy in nematic liquid
crystals and this description is possible due to the symmetry of the Q-tensor, where the
free energy is the volume integral of a local function based on Q as well as its derivatives
[18]. The Landau-de Gennes expression is presented in terms of expansions of Q as well
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a)

Temperature

nCrystalline Nematic Isotropic

θ

b) c)

Figure 1.2: Illustration of a liquid crystal mesogen system displaying different phases of
matter. a) Crystalline solid state has the mesogens in a fixed positional and orientational
distribution. b) Nematic phase has no positional order, but an orientational order along its
director n. The orange dashed line indicates the nematic alignment along the director n
and orientational angle θ. c) An isotropic liquid crystal has no order in both position and
orientation, the distribution of mesogens is random. Figure interpolated from P. Collings
[Princeton University Press [15]]
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as expansions in derivatives of Q which represent the bulk free energy density Fb and the
gradient free energy density Fg respectively.

The sole rotational invariant function of a two dimensional tensor is tr(Q2). Thus, we
can express the bulk free energy density as

Fb = A2 tr(Q2) + B4 (tr(Q2))2, (1.4)

where A and B are known as Landau-de Gennes co-coefficients. The gradient free energy
density Fg is defined by

Fg = L1
2 ∂kQij∂kQij + L2

2 ∂kQkj∂iQij , (1.5)

where L1 and L2 are the elastic constant penalizing deformations in the director field.

1.3.2.1 Elasticity in liquid crystals

A system of nematic molecules can acquire elasticity as a response to distortions from a
perfectly aligned state. In two-dimensional nematics, most distortions can be attributed
two different base distortions; splay (Fig 1.3.A), and bend (Fig 1.3.B). The increase in free
energy density, which is a consequence of distortions from the aligned state, is referred as
the Frank free energy. This elastic free energy can be defined in terms of the director n̂:

felasticity = K

2

∫
d2r|∇θ|2 (1.6)

where K is the elastic modulus of the nematic liquid crystal. Nematic liquid crystals prefer
to stay uniformly aligned and distortions in the system are penalised through the elastic
free energy.

1.3.3 Topological defects

In two dimensions, orientational fields can have disclinations; discontinuities in the director
field. These are known as topological defects and represent a local singularity in the liquid
crystal phase. Discontinuities can be point defects, which are located at a point, or on a
line as disclination lines. As this thesis is focused on two-dimensional nematics, only point
defects are considered. The minimization of equation 1.6 reveals distortions in the form

θ(r) = sφ(r) + θ0, (1.7)

where φ(r) is the polar angle and θ0 is the off-angle (canting angle) representing the possible
configurations of a defect with charge s. The charge or strength of the defect is classified
by a winding number s, which is defined as

s = 1
2π

∮
S
dθ, (1.8)
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Splay Bend

A B

Figure 1.3: Particle configurations of the elementary deformation for (A) Splay and (B)
Bend distortions.

+1/2 -1/2

a) b)

Figure 1.4: Illustration showing the mesogen configuration of the a) Comet-like (+1/2) and
b) trefoil-like (-1/2) topological defect. The green (blue) dot symbolises the core of the
+1/2 (−1/2) defect.
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representing the angle of orientation the director must rotate when circumnavigating along
a contour of the defect core. S is a loop in a two dimensional plane. The predominant,
simplest, and lowest topological charge comes in the form of the comet-like +1/2 (Fig 1.4.a)
and trefoil-like −1/2 defects (Fig 1.4.b) [18]. Here the ±1/2 refers to the orientation angle
the nematic rotates when circumnavigating around the defect core and the green and blue
dots represent the defect cores. Defects with a higher charge are outside the scope of this
thesis and will therefore not be covered. Higher order (full-integer) defects are covered in
following references [5, 43]

Topological defects in passive liquid crystals can be attributed to external energy input
into the molecule in the form of distortions to the director. As liquid crystals are in ther-
modynamic equilibrium, any external energy stored in topological defects must be released,
and thus, the defects would vanish. Experimental setups, which are generally conducted us-
ing constrained finite systems, have obvious boundary conditions, since experimental setup
cannot be infinitely large. These boundary constraints to the director field can lead to
perturbations to the alignment of the mesogens creating conditions for the formation of
topological defects.

1.4 Nematohydrodynamics

The flow of liquid crystals is coupled to the orientation of nematic mesogens (nematogens).
The relationship can be described as such; flow disturbs the nematic alignment just as well
as the response from distortions in the orientational field leads to flow. A hydrodynamic
theory, which couples the fluid velocity with the nematic director in terms of the tensor
order parameter Q, was developed by Beris, Edwards, and Grmela [10, 26].

1.4.1 Beris-Edwards formulation

The nematohydrodynamic equations of motion are based on symmetry, have a close affinity
to the Navier-Stokes equations, and can be used to describe the 2D dynamics of Q combined
with the density of a suspension ρ as well as the velocity of the surrounding fluid u.

(∂t + uk∂k)Qij − Sij = ΓHij (1.9)

ρ(∂t + uk∂k)ui = ∂jΠij − fui; ∂iui = 0. (1.10)

f is the friction coefficient. The stress tensor Πij , is comprised of different stresses, and will
be covered in more detail later in this chapter. Γ is the rotational diffusivity which, along
with the molecular field Hij , is the governing property describing the relaxation of the Q -
tensor where

Hij = − δF
δQij

. (1.11)
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The orientation relaxation is governed by the total free energy F , which is the sum of
equations 1.4 and 1.5 and is defined by

F = A

2 (q2 −Q : Q)2 + K

2 |∇Q|2 + g(∇ · [∇ ·Q])2. (1.12)

Here, : denotes the double product of the two tensors. The free energy includes a nematic
alignment term (with coefficient A) and an elastic term which penalises gradients in the Q
tensor. Here, a singular elastic constant approximation is used and is shown by the elastic
constant by K. In line with previous studies of dry active nematic [59, 65], we also include
a regularization term with coefficient g which provides stability to our numerical solutions
at small length scales. Sij is the generalised non-linear advection term which describes the
relationship between a nematic order and its corresponding velocity gradient and is defined
as

Sij = χEij +
[
Qik + δik

2

]
Ωkj − Ωik

[
Qkj + δkj

2

]
(1.13)

Here Eij = (∂iuj + ∂jui)/2 is the strain rate tensor and Ωij = (∂jui − ∂iuj)/2 is the
vorticity tensor. The aligning parameter χ drives the relationship between the magnitude
and orientation of the nematic order Q and the velocity gradient. This determines whether
the system is in a flow tumbling or flow-aligned regime [73]. In a flow tumbling regime, the
director tumbles under shear flow while in a flow aligning regime it aligns with an angle
(Leslie angle) with the direction of the shear [10].

1.5 Active nematics

In order to mimic and understand the mechanisms behind natural active materials, several
approaches have been suggested. The approaches to study the collective behaviour of active
matter have come in the form of both experimental and theoretical model systems [18]. One
particular thoroughly studied class of active matter can be simplified to groupings comprised
of elongated rod-shaped particles. Examples of this class include elongated bacteria and
inter-cellular filamentous particles. These particles are active and share a resemblance to
the aforementioned nematic liquid crystals, which are comprised by elongated molecules
and characterised by long-range orientational order. This resemblance has given rise to the
concept of active nematics that adapts and applies central theories from our understanding
of the physics of liquid crystals to the field of active matter.

1.5.1 Active stress

At the microscopic level, the force exerted by a single active particle on its surrounding fluid
can be represented as a force dipole. Collectively, a large number of force dipoles give rise to
a symmetric active stress, which turns the system out-of-equilibrium. Topological defects
in an active nematic system are formed due to the active stresses acting on the individual
system components, which distort the director field. These instabilities are exaggerated or
mended depending on the type of elements that make up the active nematic system.
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1.5.2 Dipolar extensile and contractile systems

The force distribution acting on an active particle is in its simplest form considered a force
dipole. Using the same bacteria example from [50], the rotation exerted by the flagella
as well as the counter rotation from the body would push the surrounding fluid away
along its axis of direction (Fig 1.5.A). These particles are known as pusher or extensile
particles and are represented as a force dipole with the red arrows indicating the direction of
force. Extensile systems comprise elements that pump the surrounding fluid in an outwards
direction along their symmetry axis n and inwards in the direction perpendicular to n.
Contrarily, a puller in a contractile system, causes elements to pump fluid inwards along n
and outwards in a direction perpendicular to that. This would be similar to Fig 1.5.A with
the signs reversed.

As a result of the flows created in active suspension in the bulk, an extensile system
is stable under splay deformation and unstable under bend deformation [3]. Contrarily,
a contractile system is stable under bend deformations, but unstable as a result of splay
deformations [72] [74]. This flow can be incorporated into the stress component Πij of
nematohydrodynamics equations 1.9 and 1.10. The momentum density in a momentum
conserving system is defined as

∂t(ρui) = −∂jΠij , (1.14)

where Π is the stress tensor. The particles are self-propelling without any outside forces
acting upon them. Thus, according to Newton’s third law, the force exerted by the particle
on the fluid, must be equal to the force exerted on the particle by the fluid. Generally, the
stress tensor in equation (1.9) for the nematic fluid is comprised of different stresses; this
includes viscous, passive and active contributions

Πij = ΠViscous
ij + ΠPassive

ij + ΠActive
ij . (1.15)

ΠViscous
ij is the stress tensor representing the viscous contribution

ΠViscous
ij = 2ηEij , (1.16)

where η determines the fluid viscosity of the surrounding fluid or suspension. The passive
contribution ΠPassive

ij is defined as

ΠPassive
ij = −Pδij − λSHij +QikHkj −HikQkj , (1.17)

and represents the passive, elastic stresses. P denotes the bulk pressure. These stresses
impact the director dynamics by altering the defect motility and trajectory [29]. The active
stress contribution to the stress tensor leads the active particles to act as force dipoles and
is defined by[2] as

ΠActive
ij = −ζQij , (1.18)

here ζ is the activity strength, which determines the intrinsic vorticity-relating length-scale
set by the activity of the fluid. An active nematic system destabilizes as a consequence
of the dipolar force exerted on the surrounding fluid. Systems where ζ > 0 are known as
extensile systems and systems where ζ < 0 are known as contractile systems.
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Figure 1.5: Illustration of an elongated particle. The red arrows indicate the force for A)
force dipole of an extensile particle and B) Torque dipole of a chiral particle. Interpolated
from [50].

1.5.3 Torque dipoles and chirality

Although the active stress created from a force dipole is considered achiral, there have
been multiple systems studied where the surrounding fluid and particle rotate in opposite
directions. This gives rise to the possibility of a torque dipole in addition to the force dipole.
Torque dipoles are represented as two equal and opposite point torques, separated by some
distance, see Fig 1.5. This can be considered the simplest microscopic description of a
chiral active particle. Chirality in biological systems has been studied microscopically in
force dipoles. For example rotating flagella on cells and other microorganisms have been
attributed to microscopic torque dipoles. This gives rise to anti-symmetric stresses which
govern chiral patterns such as rotating flows. These stresses have been shown analytically
for cell monolayers [36], where the active stress tensor is described in terms of the tensor
order parameter Qij

σchiral = −ζτ εikQkj , (1.19)

where ζτ is the activity governing the chiral activity. The effects of this activity are studied
in Chapter 4.

1.5.4 Role of active forces in stabilization

Active matter systems destabilize as a result of the active forces which exert a dipolar force
distribution on the surrounding fluid by the active particles [48]. The schematic in Fig 1.6.A
and B shows both signs of dipole force distributions destabilizing an ordered bend or splay
configuration. When an active particle is in contact with a substrate or under extreme
confinement, the dipolar stress is screened and a higher order quadrupolar contribution
also becomes important [52]. In this vein, a recent study has introduced the coarse-grained
continuum representation of quadrupolar forces as an additional non-equilibrium active
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A B C D

stabilizes alldestabilizes benddestabilizes splay destabilizes all
Figure 1.6: Schematic from [48] illustrating the active forces’ effect on the stability of
surrounding fluid. (A) Top: A contractile particle, also known as a ”puller”, which pumps
the surrounding fluid inwards along its long axis (blue arrows) and outward along its short
axis (red arrows). Bottom: In a system with a splay configuration, the contractility of the
particle results in a flow (red and blue arrows) which drags the particles and accentuates the
disrupted configuration further by rotating in accordance with the thin black curving arrows.
(B) Top: A contractile particle, also known as a ”pusher”, has the opposite force dipole and
further destabilizes bend configurations. (C) (D) Quadrupolar active force present in active
systems at higher multipoles of the force density distribution. For a positive (negative) sign
the resulting force flow of this configuration stabilizes (destabilizes) the active particle in
both dipolar destabilization associated with bend and splay configurations.
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force that is generated by dense suspension of active particles [48]. The argument presented
in this paper suggests that force distributions of a higher angular symmetry do not cause
the ordered phase to destabilize. They consider a square shape with a quadrupolar force
distribution, pulling the fluid to its face and pushing it to the corners. A perturbation in a
system comprised of such particles would lead to bunching in some areas. This would correct
itself as the fluid would flow from the space created by the bunching of particles, pushing
them back into alignment. Including the quadrupolar contribution, the stress tensor from
equation 1.9 is now defined as

ΠActive = −ζ1Qij − ζ2Qij · (∂kQkj). (1.20)

ζ2 is the activity parameters for the stabilising quadrupole activity. Note that the dipolar
activity ζ from equation 1.18 has been renamed ζ1 to easier distinguish the different active
coefficients. In addition to the well-established dipolar activity, the force distribution of the
higher angular symmetry, the force quadrupole term with coefficient ζ2 in equation 1.20,
becomes important in systems in contact with a substrate, where the momentum is not
conserved [48].

1.5.5 Active turbulence

In contrast to passive, molecular or colloidal nematic liquid crystals, the particles comprising
an active system have an activity. This activity, which causes inhomogeneties in the system,
can result in conditions where inconsistencies in the domain cause a directional mismatch.
Such inconsistencies can result in singularities in the order, i.e. topological defects, in a
similar fashion to nematic liquid crystals. This causes the destruction of long ranged nematic
order and can lead to the formation of chaotic systems such as active turbulence. When
the number of active particles in a system increases, their interactions become stronger
and can dominate over the dynamics of a singular unit. This can lead to the phenomenon
active turbulence.

Active turbulence is a state characterised by its chaotic flow-fields, systematic fluctua-
tions in the form of continuous jets, swirls and vorticies. Numerical simulations have shed
light on the mechanisms behind the development of active turbulence in active materials
[74, 76]. Systems in a nematic state with a slight perturbation begin to destabilise as the
perturbations grow larger due to hydrodynamic instabilities. In the director field these de-
formations localise to form walls of bend deformations, separating the nematic regions and
undulating a pair of oppositely charged ±1/2 defects as a result of the elasticity and active
stress of the system. Flow separates the defect pair as the nematic field around the defects
generates active stresses. The dynamics of both the walls and defects become chaotic and
defects of opposite signs annihilate creating stability and restoring nematic order in the
system. [20, 74]. See Fig 1.7 for a visual evolution of this process.
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Figure 1.7: Evolution of turbulence taken and modified from [76]. a) Ordered system. b)
and c) formation of walls, which fluctuate and decay into d) topological defects. The defects
here are marked red and blue for +1/2 and −1/2 respectively. e) Defects annihilate and
restore the nematic order. The pink underlying colour is just for ease visual interpretation
of the director. f) Snapshot of a simulation of active turbulence. The system has many
defects and is characterised by disorder in the domain. The +1/2 (−1/2) defects are marked
by green (blue), and the underlying colour map represented the magnitude of order, with
red being the lowest and yellow the highest.
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1.5.5.1 Taming of active turbulence

Due to the widespread implications in biological processes and in design of non-equilibrium
materials, there is a great interest in control and stabilization of active materials [72, 57,
74, 20]. On that account, several theoretical and experimental mechanisms have been pro-
posed to tame the otherwise chaotic motion of active particles [33, 71, 22]. In particular,
topological [41, 54] and geometrical [34] constraints have shown to be particularly successful
in streamlining flows of active particles. Mechanistically, such constraints induce hydrody-
namic screening effects that allow for stabilisation of active flows. For example, placing
bacterial suspensions or microtubule-motor protein mixtures under confinement is shown
to result in a crossover from chaotic flows to vortex-lattices and coherent streams as the
confinement size decreases [34, 83]. Similarly, placing active particles in contact with sub-
strates results in a friction-induced screening length that could stabilise chaotic flows into
vortex-lattices [19, 77]. The taming of active turbulence is one of the primary motivations
for the work presented in Chapter 3.

1.5.6 Collective behavior in active nematics

There are a number of well-studied examples of large-scale collective behaviour found in
different cellular and bacterial systems within the field of active nematics. Poujade et al.
have shown collective migration of a cellular monolayer of Madin-Darby Canine Kidney
cells. The experiments, inspired by wound-healing, show long-range collective motion of
cells would be triggered when exposed to a free surface [64]. A study by Meacock et al.
2020 found that the physics of active liquid crystals explain how slow-moving bacteria can
expand faster when competing with faster-moving counterparts [53]. Furthermore, cohesive
flow patterns have been observed in geometrically confined sub-cellular filaments. Wu et al.
have shown how fluids display organised and unidirectional flow, independent of geometric
scale, when confined into toroidal channels and cylindrical domains [84]. Collective motion
of sperm has been shown to display turbulent behaviour in terms of long-range whirlpool-like
structures [17]. Turbulent behaviour has also been found in human bronchial epithelial cells
[11]. For further examples of experimental studies of collective motion in active nematics,
see following review articles [20, 2, 31, 21].

1.5.7 Collective behaviour in cells

Having covered general examples of collective behaviour in active systems, we turn to a
well-studied area of experimental active nematics; the collective behaviour in cells. Cell
systems are highlighted as the work in Chapter 4, takes a cell-based modelling approach
to investigate activity induced collective behaviour. The collective motion of cells is known
to impact physiological and pathological conditions in epithelial cells, such as embryonic
morphogenesis, wound healing and cancer invasion [35, 27, 13]. Fluctuations in systems
consisting of cells have also been found to display properties of liquid crystals, specifically,
in the form of local nematic alignment and topological defects [80]. Motivated by the
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Figure 1.8: Collection of images from different experimental cell systems which all exhibit
collective behavior that can be explained by active nematics. a) Death and extrusion
provoked by topological defects in epithelial cell alignments [67]. b) Defects of charge +1/2
(red) and −1/2 (blue) in a monolayer of neural progenitor stem cells (Nature Publishing
Group) [40]. c) Topological defects found in the nematic order of actin fibres [51]. d)
Elongation of a growing epithelial tissue [16]. e) Topological defects of charge +1/2 (red)
and −1/2 (blue) in confined fibrosarcoma cells [85]. f) Cell sorting driven by change in
nematic behaviour of cellular monolayer[7]. Collage image taken from [21].
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evidence of a coupling between the collective dynamics of epithelial cells and the theories
of active liquid crystals, models of dense cellular monolayers have been developed in order
to simulate the collective behaviour of cells with active inter-cellular forces [55, 86, 37].
Physical properties of cells, such as motility or shape, have shown a variety of different
dynamical behaviours such as chaotic flows as well as jamming [28, 60], and edge migration
[85]. See Fig 1.8 for examples of nematic behaviour in cell systems.

1.6 Concluding remarks

This chapter introduced the foundations of active nematics. Specifically, it introduced the
active forces which are key in the studies done in this thesis, namely the quadrupolar active
force from equation 1.20 and chiral active force from equation 1.19. As stated in section
1.5.4, the quadrupolar contribution can stabilize active particles associated with bend or
splay configurations. Understanding the stability of active nematics, is of vital importance in
the pursuit of harnessing the full potential of active materials. An example is a study where
bacterial jets were stabilized in space such that they could carry microscopic cargo [79].
Theory and experiments are inseparably for a complete understanding of active nematics
therefore, this chapter also highlights experimental examples of collective behaviour in active
nematics. In particular, we highlight collective behaviour of cells as a well-studied active
system in the lab. One notable experimental study found collective edge migration in a
confined monolayer of fibrosarcoma cells [85]. This will be of particular importance in
Chapter 4. Using a cell-based modelling approach, we introduce the chiral activity covered
in section 1.5.3, and find that the modelling approach taken, faithfully reproduces the edge
migration phenomenology from the study.
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Chapter 2

Modelling active nematics

2.1 Continuum model

The Beris-Edwards formulation from introduced in Chapter 1 section 1.4.1 lays the foun-
dation for the continuum model for an active model system. The model used in this thesis
numerically solves the coupled nematohydrodynamic equations from 1.9 and 1.10 and the
velocity field u. Work in this thesis is focused on the behavior of an active model system
in the presence of strong hydrodynamic screening, and thus we employ equations of dry
active nematics [19] with the additional quadrupolar active forces. This means there is
no hydrodynamic contribution and the viscous stresses are completely dominated by the
frictional dampening ie., ΠViscous

ij = 0 in the active stress from equation 1.15. Additionally,
the passive contribution, also known as ’back-flow’ is usually small compared to other stress
contributions [74] and will therefore be neglected (ΠPassive

ij = 0). The stress tensor is thereby
defined solely by the active contribution

Πij = ΠActive
ij . (2.1)

As force is the divergence of the stress tensor from equation 1.9 and including the quadrupo-
lar contribution from equation 1.20, we can express the force as

FActive
i = −ζ1 ∂jQij − ζ2Qij∂kQkj . (2.2)

In order to find the velocity, we set up a simple force balance equation from equation (1.9).
Many dry active systems are in the low Reynolds number regime, we thereby lose the time-
dependency and the left-hand side of the equation becomes negligible. The force balance
equation thereby simplifies to

∂jΠij − fui = 0. (2.3)

The first term, the divergence of the stress tensor ∂jΠij , becomes the force vector from
equation 2.2, which yields the following expression for velocity

ui = 1
f

[−ζ1∂jQij − ζ2Qij∂kQkj ] . (2.4)
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f is the friction coefficient, and ζ1 and ζ2 show the activity coefficient related to a force
dipole and a force quadrupole, respectively. The two well-known classes of active sus-
pensions, namely extensile and contractile systems, are described by ζ1 > 0 and ζ1 < 0,
respectively [74]. We study the role of the quadrupole active force in the dynamics of the
system by numerically solving the coupled equations of the nematic tensor Q and the ve-
locity field u.

In this regard, we fix the value of the dipolar active force to ζ1 = 0.2, and study the
role of the tumbling parameter χ as well as the strength of the active force quadrupole
ζ2 in the dynamics. As such, we vary the strength of the active quadrupole term in the
range −0.3 ≤ ζ2 ≤ 0.25, effectively exploring the interplay between the dimensionless ratio
Z = ζ2/ζ1 and the tumbling parameter χ. The system size of 512 × 512 grid points is
simulated with periodic boundary conditions on all sides. Parameters for the rotational
diffusivity, regularisation, and friction are fixed at Γ = 0.05, g = 0.1, and f = 10. In
addition, the elasticity, and the bulk nematic alignment coefficient are set to K = 0.15 and
A = 0.5.

2.2 Phase-field model

Phase-field models are used to solve inter-facial problems, and their application to solve
single cells problems have been frequent [6]. The model works by introducing a phase-field
order parameter φ, which is coupled to the nematic behaviour. This allows us to distinguish
between active and passive regions. Fig 2.1 shows this distinction with the phase-field having
a smooth interface between the two values φ = 1 and φ = 0 of the field. By assigning each
cell by a phase-field parameter, the method allows for modelling different cell systems, such
as a dense cell monolayer.

2.2.1 Phase-field model for dense monolayer

As stated in section 1.2, cells display properties of active nematics, specifically the formation
of topological defects. In cellular monolayers, these defects have been known to control the
death and extrusion of Madin-Darby Canine Kidney (MDCK) cells [67]. This is non-trivial
as such epithelial cells on a substrate have an isotropic shape and a well defined direction
of motion. In that respect, it has been shown that, in dense cellular monolayers, a dipolar
interaction based on the cells’ deformation leads to symmetry breaking which drives the
system out of equilibrium [55].

The active chiral stress is introduced to a dense cellular monolayer using a multiphase-
field modelling approach in which each cell i is defined by a phase field φi(x, t) that is
advected by the cell velocity vi(x, t) according to the equation of motion

∂tφi + vi(x)φi = − δF
δφi

. (2.5)
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φ= 1

φ= 0
Figure 2.1: Basic schematic of the two different values of φ in the phase field.

F is the free energy describing the individual dynamics on the interface. It is defined as
the sum of several contributions, F = FCH +Farea +Frep +Fadh. FCH is the Cahn-Hillard
free energy which stabilises the cellular interface and is defined as [55, 86]

FCH =
∑
i

γ

λ

∫
dx
{

4φ2
i (1− φi)2 + λ2(∇φi)2

}
.

Here the parameter γ sets the relaxation timescale of shape deformations of individual cells.
λ is the corresponding width of the interface at equilibrium for the chosen normalization.
Farea ensures that the cells are only weakly compressible by putting a soft constraint on the
cellular area and is given by

Farea =
∑
i

µ
(
1− 1

πR2

∫
dxφ2

i

)2
,

where R is the individual cell radius and µ is a parameter set to the time scale of area
changes, which makes the target area of each cell πR2 [55, 86]. The passive contributions
come in the form of repulsive and adhesive forces. The term Frep is a passive contribution
to the free energy which penalises overlaps between neighboring cells [55, 86],

Frep =
∑
i

∑
j 6=i

κ

λ

∫
dxφ2

iφ
2
j

The parameter κ sets the strength of the repulsive forces. Finally, the free energy of cell-cell
adhesion is calculated as

Fadh =
∑
i

∑
j 6=i

ωλ

∫
dx∇φi · ∇φj
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Figure 2.2: Schematic of the distribution of forces for A) achiral and B) chiral active stress.
The red arrows correspond to active forces. For the achiral case, the direction of the force
is parallel to the primary deformation axis with external inwards deformation being applied
by contact with neighboring cells. In contrast, the chiral stress appears when the force
exerted by a cell is neither perpendicular nor parallel to the cells alignment axis.

Here ω is the parameter that controls the relaxation of adhesive forces and determines the
strength of cell-cell adhesion. The regularisation of the adhesive interaction is defined in
the rightmost fraction in the derivative of the free energy Fadh

δFadh
φi

= F
0
adh
δφi

1√
1 +

(∑
j 6=i∇2φi

)2
, (2.6)

where
F0

adh = 2
∑
i

∑
j 6=i

ωλ

∫
dx∇φi · ∇φj (2.7)

[47]. As cells are considered to be in the low-Reynolds-number regime, we have overdamped
dynamics and thus the force acting on velocity reduces to

ξvi = f tot
i , (2.8)

where ξ is a substrate friction coefficient and f tot
i is the sum total of the different force

contributions, f tot
i = fpassive

i + fpol
i + f int

i , fpassive
i is the passive thermodynamic force that

drives a non-equilibrium cell towards a lower free energy state, while fpol
i represents the

force acting on an individual cell due to filament treadmilling. Finally, the active inter-
cellular force, f int

i , is defined by the inter-celluar forces driven by the deformation of the
individual cell.
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To demonstrate the effect of a chiral stress, it is possible to define the interface forces
in terms of a macroscopic tissue stress tensor σtissue:

f int
i =

∫
dxφi∇ · σtissue = −

∫
dx σtissue · ∇φi. (2.9)

We define the active stress tensor σtissue by including the chiral activity expression
derived by Hoffmann et al. [36] in addition to the active forces based on shape deformation

σtissue ij = −ζSQij − ζchiralεik Qkj , (2.10)

where the subscripts refer to tensor components in a Cartesian basis, εik is the two-
dimensional Levi-Civita tensor (εxx = εyy = 0, εxy = 1, εyx = −1), ζS and ζchiral are the
activity coefficients of shape deformation and chirality respectively and Q is the nematic
tensor Q =

∑
i φiSi with Si being the deformation tensor of cell i defined as

Si = −
∫

dx
[
∇φi∇φTi −

1
2Tr(∇φi∇φTi )

]
, (2.11)

following [86]. As both ζS and ζchiral correspond to stresses of shape deformation, it is
important to highlight that ζS and ζchiral are the coefficients of respectively achiral and
chiral shape-deformation-driven activity.
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Chapter 3

Quadrupolar active stress induces
exotic phases of defect motion in
active nematics

Awide range of living and artificial active matter exists in close contact with substrates
and under strong confinement, where in addition to dipolar active stresses, quadrupo-

lar active stresses can become important. Here, we numerically investigate the impact of
quadrupolar non-equilibrium stresses on the emergent patterns of self-organisation in non-
momentum conserving active nematics. The results reveal that beyond having stabilising
effects, the quadrupolar active forces can induce various modes of topological defect mo-
tion in active nematics. In particular, we find the emergence of both polar and nematic
ordering of the defects, as well as new phases of self-organisation that comprise topological
defect chains and topological defect asters. The results contribute to further understanding
of emergent patterns of collective motion and non-equilibrium self-organisation in active
matter. This chapter closely follows the authored publication [72].
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Figure 3.1: a) Phase space of the system for different values of the aligning parameter χ
and the activity ratio Z = ζ2/ζ1. The nematic order can become stable for positive values
of the force quadrupole term. The yellow region in the phase diagram shows the stable
region found analytically in [48]. b) Snapshots showing the distinguishable characterization
of defect chains, polar defect ordering, defect asters and polar defect flocks. The underlying
color map shows the magnitude of the nematic order S, and +1/2 (−1/2) defects are
represented in green (blue). In the snapshots, arrows show the direction of the motion
of +1/2 defects and dashed lines separate regions with different orientations of the +1/2
defects.

3.1 Introduction

Chapter 1 section 1.5.1 covered how the force dipole represents the force exerted by a single
active particle. Depending on force dipole coefficient ζ1, these particles can be considered
’pullers’ or ’pushers’ (see Fig. 1.6.A/.B). In addition to this well-established dipolar activity,
the force distribution of the higher angular symmetry, the force quadrupole term with
coefficient ζ2 in equation. 2.2, becomes important in systems in contact with a substrate,
where the momentum is not conserved [48]. These systems, known as dry active matter
systems, were covered in Chapter 1 section 1.2.2. Descriptions based on dry active matter
theories have been helpful in investigating the different patterns in clusters of bacteria which
live on dry surfaces in tight spaces [63, 32]. Since in this work our focus is on the behavior
of active model systems in the presence of strong hydrodynamic screening, we employ
equations of dry active nematics [19] with the additional quadrupolar active forces. The
active nematic model is chosen since it has proven successful in describing a wide variety of
active materials that constitute elongated building blocks such as rod-shaped bacteria [56],
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Figure 3.2: a) and b) show arches and walls, respectively. Arches have a polar symmetry
(red arrow), whereas walls have a nematic symmetry (red double headed arrow). Red
dashed line shows a bend deformation in walls.

subcellular filaments [4], and spindle-shaped cells [24], as well as deformable cells in which
orientational ordering is an emergent feature [55, 67, 11].

In order to investigate the effects of the quadrupolar contribution, we employ the con-
tinuum model introduced in Chapter 2 section 2.1 to study a dry active system. Using
the parameters stated in section 2.1, we start by doing a parametric scan of the interplay
between the dimensionless ratio Z = ζ2/ζ1 and the tumbling parameter χ. With the goal of
creating a phase-diagram to map out all the evolution behaviour from the different simula-
tions, we take different quantitative measures to distinguish between the different phases of
self-organisation. These measures include global quantitative analysis to quantify the over-
all impact of the quadrupolar activity, as well as local analysis to quantify the behaviour of
topological defects.

3.1.1 Stability diagram

We begin by investigating the emergent patterns for varying values of the quadrupolar to
dipolar activity ratio Z = ζ2/ζ1 and the flow-aligning parameter χ. The results are sum-
marised in a stability diagram in Fig 3.1, where distinct patterns of motion are represented.
In what follows, we refer to defect-less nematic phases as “stable nematic phases”. In the
stable nematic phase (in contrast to the unstable nematic phase) we observe perfect nematic
order without any defects.

Fig. 3.1 shows that a positive value of the quadrupolar activity can stabilise the nematic
phase and the required quadrupolar force for stability increases with increasing the value
of the flow-aligning parameter. This is in agreement with the analytical result of [48]: in
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Fig 3.1 we show the stable nematic phase predicted analytically in yellow background color.
Note that the analytical boundary of the stable phase has been found by linearising the
dynamical equations. However, in our simulations we solve the full nonlinear equations and
as a result we do not expect a perfect match.

At the border between stable nematic phase and unstable phases, flows induced by
dipolar activity are just strong enough to trigger nematic deformations but not strong
enough to nucleate topological defects and instead we observe the formation of extensile
walls. These extensile walls have also been observed previously [58] in wet active nematics
in the presence of friction, and are a consequence of the competition between active forces to
create defects and elastic forces to maintain the nematic phase. The walls consist of periodic
bend deformation of the director and have a nematic symmetry along an axis (see Fig. 3.2
(b)). For larger values of activity, these bend deformations grow and form defects. Fig. 3.2
(a) also shows that, in contrast to walls which have a nematic symmetry, arches have a polar
symmetry. The arches consist of both bend and splay deformation. It has been shown in a
previous study (Ref. [58]) that arches are steady state solutions of the nematohydrodynamic
equations, even in the absence of the quadrupolar activity, when friction is larger than a
critical value. Arches do not have a length, but when they form they evolve towards a
uniform size.

Going beyond the stability boundary, topological defects are nucleated in the system
and we observe the emergence of several dynamic phases of defect organisation as a result
of the competition between dipolar and quadrupolar active forces.

To quantitatively distinguish between the stable phase (Fig 3.1, yellow region), where we
either observe a nematic phase or extensile walls, and an unstable phase, where topological
defects form and patterns emerge, we calculate the root-mean-square velocity averaged over
both space and time after the statistical steady-state is reached. As evident from Fig 3.3.a
active flows decrease with increasing the quadrupolar force coefficient ζ2, which is consistent
with the stabilising effect of the quadrupolar term. The development of active turbulence
stems from the onset of instabilities in the director field. Parallel walls consisting of lines
of bend deformation separate the nematic regions. The decay of these walls leads to the
formation of topological defects [76]. In order to quantify the nematic order and distinguish
the nematic phase, we measure the average magnitude of the nematic order (defined as
S0 = 〈Q2

xx+Q2
yx〉). This quantity measures the global nematic order and thus indicates the

overall stability of the nematic phase. A decrease in the value of the nematic order indicates
the formation and presence of more defects. The average order is shown in Fig. 3.3b for
different values of the tumbling parameter. These graphs show the same trend as the average
mean root square velocity graphs, indicating that flows are mainly created in places with
large drop in the magnitude of the nematic order. Both the graphs in Fig. 3.3a and Fig. 3.3b
show a transition from the disordered phase to ordered phase by increasing the quadrupole
force.

To further distinguish between the ordered and disordered phases of defect configurations
we measure the average deformation, defined as 〈∆n〉 = 〈(∂i∂jQij)2〉, for different values of
the tumbling parameter and as a function of activity ratio Z. A large value of deformation
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Figure 3.3: a) Root mean square velocity vrms averaged over space and time in steady state.
Regardless of the aligning parameter vrms decreases as Z increases. By proxy, it is also
apparent that increasing the quadrupolar active term, lowers the energy of the system. b)
Magnitude of the nematic order defined as 〈Q2

xx + Q2
yx〉 averaged over space and time in

steady state. The average order follows the inverse trend compared to the rms-velocity, and
increases by increasing Z. c) Average deformation defined as 〈∆n〉 = 〈(∂i∂jQij)2〉. The
average is taken over time and space in steady state. The fall in deformation correlates
with observed stabilisation as a consequence of increasing Z.

follows a distortion in Q-tensor. Note that this quantity is different from the average order
S0 as it accounts for the distortions in the director and the deviation from the global nematic
ordered phase. 〈∆n〉 is maximum in the presence of walls or in the active turbulence phase,
as in these phases the global distortions in the director is maximum. The average distortion
is presented in Fig. 3.3c for varying values of the tumbling parameter. Note that ordered
phases of defect organisation do not correspond to a peak in the distortion graph as in these
phases the distortions in the director are local (in places of defects) and not global.

Next, we describe the characteristics of defect self-organisation as this new non-linear
regime is the focus of the current study.

3.1.2 Dynamic phases

We now turn to the unstable part of the phase diagram, where for a given value of the flow-
aligning parameter, the instability driven by dipolar activity is strong enough to lead to
deformation of the director field and nucleation of topological defects, while the presence of
the quadrupolar activity acts to restructure the spatial defect organisation. In this regime,
we found a variety of phases depending on the value of the tumbling parameter:

Defects flocking: In the unstable phase, but close to the boundary of the stable phase,
we observe a phase in which different groups of self-propelled +1/2 defects move together
forming flocks of motile topological defects (Fig. 3.1 and Supplementary Movie 1 in [1]).
Fig. 3.6a shows the angular distribution of +1/2 defects within this phase. Defects are
identified using the diffusive charge density [12]

s =
( 1

2π

)
×
([
∂Qxx
∂x

∂Qxy
∂y

]
−
[
∂Qxx
∂y

∂Qxy
∂x

])
(3.1)
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Figure 3.4: Time evolution of dynamics for (a) polar defect flock and (b) defect chains.
In the polar defect flocking phase, the system forms motile defects that flock together in
anti-parallel directions as indicated by the arrows. Defects in the chain phase self-organise
to form (c) long chains of robust −1/2 defects as well as (d) chains of dynamic oscillating
+1/2 defects as the system relaxes towards a steady state. In the snapshots, arrows show
the direction of the motion of +1/2 defects and dashed lines separate regions with different
orientations of the +1/2 defects. Here, we have used ζ2 = 0, χ = 0.7 for the chain phase
and ζ2 = 0.05, χ = 0.3 for the polar phase.

which takes values of±1/2 at the defect cores and is zero otherwise. The angle θ is calculated
using ∇·Q = (cos θ, sin θ), where ∇·Q gives the direction of the defects self-propulsion [61]
that for extensile systems (ζ1 > 0) is from tail to head of the +1/2 defect. Interestingly, in
this phase, the defects in each flock move in the same direction and show polar order, but
different defect flocks can migrate in anti-parallel directions within the system as seen from
the snapshots in Fig. 3.4a. To show this behavior more clearly, we calculate both polar
and nematic order parameter for the alignment of the +1/2 topological defects. The polar
ordering is defined by

P+1/2 =
√
P 2
x + P 2

y , (3.2)

where

[Px, Py] =
[
N∑
i

mxi

N
,
N∑
i

myi

N

]
, (3.3)

and m is defined by the orientational angle θi of each +1/2 defect as mxi = cos θi and
myi = sin θi. Similarly, the nematic order of the defect alignment is characterised by the
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Figure 3.5: a) Screening of polar ordering P+1/2 (equation 3.2) shows peaks for the aligning
χ = 0.3. These peaks correspond to the phase with polar ordering of defects. b) Plot of the
nematic ordering of defect alignment (equation 3.4). The peaks correspond to the observed
polar flocks and defect chains which show nematic orientations of their +1/2 defects.

higher order multipole of the alignment angle [18], S+1/2 =
√
N2

1 +N2
2 , where

[N1, N2] = 1
N

N∑
i

(cos 2θi, sin 2θi). (3.4)

For a perfect polar alignment of the motile defects P+1/2 = 1.0, while for the perfect
nematic alignment S+1/2 = 1.0. For the angular distribution represented in Fig. 3.6a that
corresponds to the defects flocking state, we find P+1/2 = 0.24 and S+1/2 = 0.8, indicating
that the orientational organisation of the +1/2 defects in the defect flocks state shows a
dominant nematic alignment. See Fig. 3.5 for the full screening of P+1/2 and S+1/2

Polar defect ordering: Close to the defect flocking state, reducing the flow-aligning
parameter together with lower quadrupolar activity leads to the global polar ordering of
the motile +1/2 defects (Fig. 3.1 and Supplementary Movie 2 in [1]). This is reminiscent
of the polar defect ordering predicted by the hydrodynamic theory of active defects in the
over-damped limit and is due to the active aligning torque on defects in a charge neutral
system [69]. The polar ordering state is best represented in the angular distribution plot
showing the sharp peak in the orientational alignment of the defects (Fig. 3.6b) and corre-
sponds to the quantitative value of the global polar order P+1/2 = 0.5 (Fig. 3.5a).

Defect asters and active turbulence: At the zero value of the flow-aligning pa-
rameter, where the director only responds to the rotational part of the flow gradient, and
for negligible values of the quadrupolar activity coefficient, we find a different state char-
acterised by aster-like organisation of groups of +1/2 defects (Fig. 3.1 and Supplementary
Movie 3 in [1]). Increasing the strength of the quadrupolar activity towards negative values
results in the breakup of the aster-like structures and the establishment of the active tur-
bulence characterised by the chaotic motion of the topological defects (see Supplementary
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Movie 4 in [1]). Within both phases the orientational organisation of the defects is isotropic
(Fig. 3.6c,d).

Defect chains: Interestingly, for negative moderate quadrupolar activities, we found
a phase in which ±1/2 defects self-organise into large chain-like structures. The chains of
+1/2 and −1/2 defects show different characteristics: while −1/2 defect chains are stable
and do not restructure after they are formed, the +1/2 defect chains are dynamic and
within the chains pairs of ±1/2 defects nucleate, annihilate, move, and oscillate around
each other (see Fig. 3.4b and Supplementary Movie 5 in [1]) in a fashion resembling local
defect dancing that has been reported for confined active nematics [22]. The large-scale
defect chains could be reminiscent of the propagating soliton-like clusters that have been
recently discovered for confined active nematics with chiral anchoring [46], though here they
are emergent properties of the system, where neither confinement nor chiral anchoring are
present. In this vein, the impact of the friction on hydrodynamic screening and quadrupolar
activity on breaking the angular momentum conservation could resemble the confinements
and chiral anchoring effects, respectively, that have been shown to induce soliton-like defect
clusters.

In order to better understand the mechanism of chain formation we analytically calculate
the force induced by dipolar and quadrupolar activities around isolated ±1/2 topological
defects. The Q tensor around a topological defect with charge k reads:

Q =
(

cos(2kφ) sin(2kφ)
− sin(2kφ) cos(2kφ)

)
, (3.5)

where the defect symmetry axis is along the x-axis (as represented in Fig. 3.8), and φ is the
polar angle (measured counter-clockwise with respect to the x-axis). Using this definition
for the Q tensor the active force around a defect reads:

fa = qk

r

(
ζ2 cosφ− ζ1 cosφ(1− 2k)
ζ2 sinφ+ ζ1 sinφ(1− 2k)

)
. (3.6)

From the symmetry of the quadrupolar active force it is expected that such a force does
not have any impact on the self-propulsion speed of the defects. Interestingly, however,
the quadrupolar activity induces distinct diverging and converging forces around +1/2 and
−1/2 topological defects, respectively (Fig. 3.8). The converging force around an isolated
−1/2 defect can explain the attraction of −1/2 defect pairs and the formation of chains of
−1/2 defects (Fig. 3.4b,c). On the other hand, the +1/2 defects that are in small distance
from the −1/2 chain annihilate, but the +1/2 defects far from the −1/2 chain can form
a dynamic chain. The orientation of the defects in a +1/2 chain, agrees with the active
torque between +1/2 defects introduced in Ref. [70]. In Ref. [70] it has been shown that
two isolated +1/2 defects orient towards each other due to an active torque caused by
the dipolar activity. The alignment of two +1/2 defects towards each other has indeed
been observed in experiments and simulations of active systems in circular confinement
where the boundary condition imposes formation of two +1/2 defects. In the simulations
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Figure 3.6: Angular distribution of +1/2 defects for different phases: a) Defects flocking, b)
Polar defect order, c) Active turbulence, d) Defect asters, e) Defect chain and f) Polar defect
flock coexisting with the defect chain. The different phases are distinguishable both by the
direction of the +1/2 defects as well as the number of defects that form in a given phase. The
colour bar corresponds to the number of +1/2 defects orientated at angle θ Here, we have
used the following parameter values: chains (ζ2 = 0, χ = 0.7), polar (ζ2 = 0.05, χ = 0.3),
asters (ζ2 = −0.05, χ = 0), polar flock (ζ2 = 0.05, χ = 0.5), coexistence of polar flock and
chains (ζ2 = −0.15, χ = 0.3), turbulence (ζ2 = −0.25, χ = 0).

in bulk, however, this has not been observed, mainly because the topological charge in bulk
simulations is zero and so +1/2 defects are not isolated due to the presence of -1/2 defects.
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Figure 3.7: Comparative plots to further distinguish phases that have a similar angular
distribution of +1/2 defect. a) Defect density ρdefect comparing the aster phase and tur-
bulent phase. The abundance of defects is a characteristic of active turbulence. b) Mean
squared displacement (MSD) of −1/2 defects. In the chain phase, defects form long dor-
mant chain-like structures. In contrast, the defect flocking phase is characterised by flocks
of topological defects in motion.

In our simulations, since the new active force aggregates −1/2 defects, +1/2 defects that
are far from the −1/2 defect chain can experience the active torque, and so orient towards
each other. Their self-propulsion velocity (which is towards their head) then makes their
position stable.

Finally, parameter-wise deep in the unstable phase we found a phase in which the polar
defect flock phase coexists with the defect chain phase. In both pure defect chain phase and
the coexistence phase, characterisation of the angular defect orientation reveals a dominant
nematic alignment of the +1/2 defects (Fig. 3.6e, f). In summary, to distinguish between
different phases, we note that in the “stable nematic phase” and “extensile walls”, no defects
form and so this distinguishes these two phases from the other phases. Then looking at
〈∆n〉, can distinguish between walls and stable nematic order, as this quantity is large
(zero) for the former (latter). The polar defect phase is then distinguished from the other
phases by looking at the distribution of the +1/2 defect orientation (Fig 3.6.b) as this is
the only phase with a polar symmetry in the distribution. Then, “defect flocks” and “defect
chain” phases can be distinguished from other phases by looking at the orientation of defects
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Figure 3.8: Force distribution around ±1/2 topological defects due to the dipolar and
quadrupolar active forces, showing distinct diverging and converging force patterns due to
the quadrupolar force around +1/2 and −1/2 defects, respectively. Here, blue solid lines
indicate the director field of the defects, while yellow and red arrows illustrate force induced
by dipolar and quadrupolar activities, respectively. Here, we have used Z = −0.75.
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(Fig 3.6.a and e) which show a nematic symmetry in both of these phases. To distinguish
these two phases from each other, we have now plotted the mean square displacement of
−1 defects. Chain phases have ordered and stable −1/2 defects, on the other hand, the
dynamics of the polar flock phase has both +1/2 and −1/2 defects in motion and thus a
similar mean squared displacement MSD for both defect types (Fig. 3.7,b).

Finally, both the “aster” phase and “active turbulence” phase have an isotropic distribu-
tion of defect orientation and this distinguishes them from the other phases. The distinction
between these two phases can be done by looking at the defect density ρdefect which is much
higher in the active turbulence phase (Fig. 3.7,a).

3.2 Conclusion

We have numerically studied the dynamics of active nematic systems in contact with a sub-
strate. In this setup, a new active force contribution, that is absent in a bulk momentum
conserving system, plays a role in the dynamics of the system [48]. We confirmed that
for one sign of this active force, the nematic state becomes stable in agreement with the
analytical result of Ref. [48]. Remarkably, going beyond linear stability, we also showed
that in the unstable regime where the new active force cannot recover the nematic phase, it
introduces new patterns of topological defect organisation in the system. In particular, we
found the formation of stable chains of −1/2 topological defects, while the corresponding
+1/2 defects form elongated clusters and oscillate around a center in pairs. By varying the
aligning parameter, we additionally found the emergence of polar defect flocks, in which the
system forms different flocks of +1/2 defects. Defects in each flock represent polar order
but different flocks move in opposite direction and show nematic order. Furthermore, states
showing pure polar flocking of the +1/2 defects and aster-like dynamic defect configura-
tions, in which +1/2 defects point radially towards a center, were uncovered for varying
quadrupolar-to-dipolar active force ratios and flow aligning parameters.

This work could supplement further investigations into taming of active turbulence.
Moreover, it provides numerical context to both the work in [48] as well as possible experi-
mental assay results in which the quadrupolar force plays a role in the active stabilization or
destabilization of the system. The exotic defect organisation phases revealed by the current
numerical study can further trigger new experimental exploration of the topological defect
structures in strongly confined active nematic systems.
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Chapter 4

Active chiral stress induces
collective motion in cell monolayers

Recent experiments conducted using human fibrosarcoma cells in confinement have re-
vealed appearance of collective motion of cells by virtue of topological chiral edge

currents. In this project we add a chiral stress to a phase-field model and investigate the
collective behavior of cells under different numerical conditions. We are able to repro-
duce the phenomena of chiral edge currents when placed in a domain with boundary walls.
These edge currents are shown to be robust and exist in other geometries such as the con-
figurations of channels and rectangular stripes simulated in this work. Finally, local defect
analysis reveals the chiral stresses impose a tilt on the flow-field around a +1/2 defect. This
strengthens experimental results and serves as a precursor for further numerical exploration
in the realm of biological organisation in cell monolayers.
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4.1 Introduction

Experimental assays on monolayers of spindle-like cells on adhesive stripe-shaped plates
have shown convincing results of various collective phenomena in epithelial cells governed
by active nematic hydrodynamics. It has further been suggested that some of these un-
explored features could be attributed to the presence of chiral stresses over length scales
larger than the typical size of a cell [25]. The work of Hoffmann et al. [36] elaborated on
this by analytically introducing a chiral stress for a nematic cell monolayer. The authors
show that chiral active stresses can cause a misalignment between cell motion and defect
polarity as evidenced by a tilt in the flow surrounding ±1/2 topological defects [36]. Evi-
dence of edge currents, which are collective streams of motion alongside the boundary of a
confinement, has been observed in experimental assays using human fibrosarcoma (HT1080)
cells in confinement on adhesive stripes. This behaviour was also explained to be governed
by the physics of active nematics [85]. Corresponding numerical simulations based on hy-
drodynamics led to the suggestion that the edge currents were governed by layers of +1/2
topological defects, where the defects are anchored at the confining walls and act as local
sources of chiral active stress [85].

In order to investigate the effect of the chiral stress on a cellular monolayer, we employ
the phase-field model introduced in Chapter 2 Section 2.2 to study the collective behaviour
of the entire cellular monolayer in different geometric configurations.

We start with a comparative simulation of the cell monolayers with different types
of activity both chiral and non-chiral. We then explore the collective behaviour of the
system when different types of boundary conditions are used in simulation of the monolayer.
Domains with periodic boundary conditions are compared with hard walls. In addition, the
monolayer in channels, which are comprised of hard walls and periodic boundaries, is also
investigated. Additionally, the magnitude of the activity coefficients, as well as cell-cell
adhesion is also varied. Finally, we investigate the flow-fields around a +1/2 defect for a
system with achiral and chiral stresses respectively.

4.2 Chiral and achiral stresses

We compare periodic-boundary simulations (box size 256 × 256) of cell monolayers with
only achiral shape-driven stresses (ζS 6= 0, ζchiral = 0) to ones with only chiral activity
(ζS = 0, ζchiral 6= 0). Fig 4.1 shows snapshots of the cellular monolayer as well as the
corresponding velocity field for both the shape deformation and chiral activity respectively.
The velocity field plots reveal the behavioural changes in the system. The simulation with
the chiral stresses has the cells form multiple vortex currents, all at a similar length scale in
contrast to the achiral stresses, which creates nematic flow patterns within the monolayer.
For these simulations, parameters are set at µ = 5, = 0.2, λ = 3, ξ = 1, and γ = 0.2. Now
that the behavioral differences between the chiral and achiral stresses have been established,
we turn to investigating the effects of ζchiral. For this we increase the chiral activity ζchiral in
8 increments between ζchiral = 0.0015 and ζchiral = 0.0050. At activities ζchiral < 0.002 the
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Figure 4.1: Comparison between two simulations performed for achiral and chiral activ-
ity respectively both with periodic boundary conditions. a) Left: A plot of the interfaces
between cells together with lines indicating the nematic director within them. Right: Ve-
locity distribution v with the colour map representing the magnitude of the velocity field.
Magenta being the lowest and yellow being the highest. With the only present activity
being chiral ζchiral = 0.03, the monolayer tends to organise itself into smaller local vortices
as revealed by the velocity field. b) Snapshot from a phase-field simulation of a cellular
monolayer with periodic boundary conditions and coefficient of achiral activity ζS = 0.03.
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Figure 4.2: Average spaced velocity for large periodic-boundary simulations for simulations
with different chiral activities ζchiral. Increasing chiral activity leads to a more dynamic
monolayer.

monolayer remains mostly stationary, and uniformly aligned. At higher ζchiral, the uniform
state, due to the internal stresses, begins to lose stability which results in more active
monolayers. This is shown in Fig 4.2, where the averaged-spatial velocity vs increases with
the chiral activity. The averaged-spactial velocity is given by

vs =
∫
S

√
v2
x + v2

y dS, (4.1)

where S is the surface area and vx,y are the velocity components in the x and y direction re-
spectively. Intracellular adhesion has been known to change the dynamics of the monolayer
[87], therefore we introduce the adhesion parameter ω from equation 2.2.1, which controls
the strength of the intracellular adhesion. Using the same periodic domains and parame-
ters, we add ω in the range ω = 0, 0.010, 0.015, 0.020. Regardless of the adhesion strength,
all systems would have an increase in vrms following an increase in chiral activity. Adding
cell-cell adhesion to the system also increases the vrms until the threshold ω = 0.020. This
can possibly be explained by the adhesion creating small adhesive clusters of cells which
act as local vorticies. Increasing ω over a certain threshold hampers the creation of well
defined vorticies as cells become too adhesive and are unable to form rotating clusters.

4.2.1 Edge currents

Next, we study monolayers with the same parameters, but in a box with hard walls instead
of periodic boundary conditions where the cells are free to slide along the boundary walls
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Figure 4.3: Simulations with periodic domains of size 256×265, for different values of chiral
activity ζchiral and cell-cell adhesion ω. Regardless of cell adhesion, higher activity results
in higher vrms, and thus, more energy by proxy. Strangely an increase in cell-cell adhesion
ω results in an increase in the vrms of the system until the threshold ω = 0.20.
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whilst retaining a fixed orientation with respect to them. Introducing the boundary results
in radically different dynamics with cells migrating counterclockwise along the boundary,
and the collective motion appearing as an edge current (Fig 4.4.a). This is similar to ex-
perimental findings presented by Yashunsky et al. in [85]. Although already evident in
the velocity field (Fig 4.4.a), we can quantify this by plotting the averaged velocity in the
x-direction with respect to the y-direction (Fig 4.4.b). There is a peak at lower values of y
and a dip at the highest values of y, effectively showing increased motion, in the form of a
current, alongside the edges of the confinement in the counter-clockwise direction.

We extend this study by simulating the monolayer in different geometric confinements.
First, we simulate a channel. The channel is defined as having a periodic boundary condition
alongside its short boundary, as well as having a hard wall boundary alongside its long
boundary. This effectively lets the containing fluid ’flow’ through the domain. Fig 4.5.a
shows the space and time averaged velocity in the x-direction for the domain in the y-
axis. There is a slight increase in velocity alongside the lower and higher values of y giving
the impression of a weak edge current alongside the confinement of the domain. Likewise,
simulations of the monolayer confined in a long rectangular stripe (Fig 4.5.b), shows clear
indications of edge currents similar to the box confinement from Fig 4.4. These additional
simulation demonstrate the robustness of these edge currents, as the monolayer is able to
organise flow along its confinement in different geometries.

In addition to the box domain, edge currents show up in a variety of different domain
geometries including rectangular domains which, similar to the box geometry, have hard
walls. Channel domains with hard walls on the long axis and periodic domains on the
adjacent shorter axis also display edge current behavior, indicating the edge current is
robust in both confined and semi-confined geometries at a range of different parameter
values for ζchiral and channel or rectangular domain width.

4.2.2 Defect flow-field analysis

The argument in [36] states that the presence of chiral active stresses causes a tilt to the
flow around +1/2 defects. This consequently causes a misalignment between the defect
polarity and the direction of motion of the defect, which can lead to its path of motion
rotating. Local analysis of the flow-field gives insight into the flow-field behaviour in the
vicinity of the +1/2 defects. The presence of a symmetric chiral active stress morphs the
flow generated by the +1/2 defect by deforming and rotating the velocity field surrounding
the defect. Fig 4.6 indicates that the flow field which causes the propulsion of the defect,
is only on one side of the defect, effectively causing a tilt of the defect. This behaviour is
in line with Hoffmann et al.’s statement [36] that the +1/2 defects self-propel at a certain
angle with respect to their orientation due to the asymmetric flow field around the defect.
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Figure 4.4: a) Snapshot of chiral activity simulation with ζchiral = 0.03 in confinement with
hard walls (box size: 150× 150). Left: visualization of the cell monolayer. Right: Velocity
field for the system with the underlying colour-map representing the relative magnitude of
velocity. The velocity field indicates a stronger current alongside the edge of the confine-
ment. b) Time and space averaged velocity in the x-direction. The dashed line indicates
the corresponding standard deviation. The positive peaks representing vx at both ends of
the x-axis show the presence of an x-directional flow of cells along the top and bottom edge
of domain.
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Figure 4.5: Snapshots, velocity field, and corresponding average velocity plots for simula-
tions of a) channel and b) rectangular stripe geometric configurations with ζchiral = 0.03.
The channel configuration (domain size: 250× 90) has periodic boundaries along its short
axis and hard walls as the confinements of its long axis. Left: Averaged velocity in the
x-direction. Right: Visualization of cell monolayer as well as the velocity field for the sys-
tem with the underlying colour-map representing the relative magnitude of velocity. The
rectangular stripe (domain size: 300×75) is a confined domain with a long axis and a short
axis. The averaged velocity is in the y-direction. The dashed line indicates the correspond-
ing standard deviation. The peaks and dips in both average velocity plots indicates the
presence of a counter-clockwise flow of cells along the confined edges of the domains.
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Figure 4.6: Averaged velocity flow field averaged over time for a confined monolayer (box
size 150×150) with activity ζs = 0.03 for a) achiral stresses only and b) chiral stresses only.
The underlying colour map represents the magnitude of the flow field velocity. Plot inserts
show the direction of motion for a +1/2 defect. Achiral stresses would propel the defect
forward as a result of the flow field. The flowfield created by chiral stresses are positioned
to tilt the defect from its direction of motion and change its alignment.
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4.3 Conclusion

In conclusion, we were able to successfully introduce chiral stresses to a phase-field model
of a dense cellular monolayer. Simulations using this model managed to recreate recent
experimental results from [85] and demonstrate chiral edge migration of the monolayer
alongside the confinement of the domain. These edge current were shown to be robust as
they appear under various geometric configurations. Analysis of the flow-field surrounding
a defect reveals a tilt in the flow around +1/2 topological defects, in agreement with [36].
Furthermore, we find that adding a cell-cell adhesion can, within a certain threshold, lead to
more lively dynamics of the monolayer. The findings in this study give numerical context to
the analysis in [36] and the experimental assays in [85] and could lead to further questions
regarding the coupling of biological organisation of cell systems and active nematics. One
exciting evolution of this project could be to look at systems of a monolayer with half of
the cells taking one value of chiral activity and the other half a different value of chiral
activity. This could give insights into pattern formations during a battle for governance of
the collective dynamics in the monolayer.
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Chapter 5

Conclusion and outlook

5.1 Summary of conclusions

The thesis explores the collective behavior of active fluid systems after introducing new
activity terms in both a continuum and phase-field description of an active system. As a
whole, it is found that introducing the new quadrupolar activity ζ2 and the chiral activity
ζchiral results in a significant impact on the motion of their respective systems. Thus, this
thesis contributes to a more complete understanding of activity induced patterns in active
systems for the quadrupolar activity ζ2 and the chiral activity ζchiral. By implementing
these activities into the tool framework, the work in this thesis also contributes to a more
complete framework for simulating active fluids. We can draw further conclusion from both
of the individual studies that comprise this thesis:

1. In Chapter 3 we use a continuum model to numerically simulate active matter in the
presence of hydrodynamic screening, known as dry active nematics. By adding a new
quadrupolar active stress, meant to have a stabilizing effect on the system dynamics,
we can draw two conclusions. Firstly, we have numerical context to support the linear
stability analysis given in [48]. We clearly find that the quadrupolar term indeed has
stabilising effects on active systems as increasing the quadrupolar activity term corre-
lates with stabilization of the system. Secondly, the work reveals the emergence of new
phases of self-organising behaviour. The phases include polar and nematic ordering of
defects, as well as exotic phases of self-organisation, with topological defects forming
chains and aster-like structures. These results could further supplement studies into
taming active turbulent systems. Additionally, it can support experimental assays in
which the stabilizing effects of the quadrupolar force are explored. Finally, the work
could lead to experimental endeavors exploring the exotic phases unveiled numerically
in this thesis.
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2. In Chapter 4 we add a new chiral activity to a phase-field model of cellular monolayer.
We find that the chiral activity create vorticies in the monolayer. Flow-field analysis
shows that the addition of a chiral stress induces a tilt on the flow surrounding +1/2
topological defects.
When this system is placed in a confinement we find that, similar to other prior exper-
imental results [85] we were able to, by virtue of our model, numerically reproduce the
phenomena of collective cell migration within the monolayer as it organises with chiral
edge currents along the borders of its confinement. We find that these edge currents
are robust and exist in a variety of geometric configurations including channels and
rectangular stripes.

5.2 Outlook

Investigating the quadrupolar force in Chapter 3 using a dry continuum model yielded a
number of new exotic phases such as systems with defect chain formation and defect asters.
It could be interesting to see what states of self-organisation could form when enforcing
different geometric boundary conditions on the system. Another possible extension of the
project would be to explore the stabilising effects of the quadrupolar force in wet dynam-
ics. Having contributing hydrodynamics effects could lead to completely different collective
behaviour.

The topic presented in Chapter 4 is work in progress and the project can evolve in
multiple exciting directions. It is promising that we are, using a cell-based approach, able
to reproduce similar phenomenology as in experiments and in continuum modeling [85, 36].
This indicates that this framework can be a strong tool for multiscale modeling bridging
scale of the cell to the scale of the tissue. One possible extension of this project would be to
investigate the behaviour in a system where the cells are two different phases rather than
one. Another evolution could look into the effects of a chiral stress on the collective shape
of a cluster colony of cells in a free interface. This could give insight into the governing
properties of complicated cell monolayers which are made up of cells with different activity
strengths.

Simulations using theoretical models are limited in many regards such as computing
power and model complexity. It is therefore important to couple theory and experiment in
order to archive a complete understanding of the properties of active materials. A greater
understanding of the governing properties of active materials can help in the ability to
control biological systems which have inherent chaotic behaviour. This could have exciting
opportunities in many fields ranging from microscopic drug delivery to a greater under-
standing of the cell behaviour at the morphogenesis stage of embryo formation.
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dini, Fernando Peruani, Hartmut Löwen, Ramin Golestanian, U Benjamin Kaupp, Luis
Alvarez, Thomas Kiørboe, Eric Lauga, Wilson C K Poon, Antonio DeSimone, Santiago
Muiños-Landin, Alexander Fischer, Nicola A Söker, Frank Cichos, Raymond Kapral,
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