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Abstract

Black holes in dimensions > 4 can take on new properties and topologies

compared to those in 4 dimensions. We examine the Myers–Perry black hole,

a rotating black hole in D > 4 dimensions and take it to the ultra-spinning

limit. In this limit, where the horizon exhibits two widely separated length scales,

we explicitly show that Myers–Perry black holes are described by the blackfold

effective theory up to first order in a derivative expansion. We conjecture that

the second order blackfold approximation of Myers–Perry black holes can be

obtained by applying the fluid/gravity correspondence. Using results obtained

in this manner, we examine the expected higher order metrics and associated

energy-momentum tensors. We review the comparison of the Gregory–Laflamme

instability to hydrodynamic perturbations.
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1 INTRODUCTION 1

1 Introduction

As far as we can tell with our senses, we live our everyday lives in four dimensions. We

move as we please through space, and perhaps not quite as we please through time.

Without physics, we might never have seriously considered that this four-dimensional

assumption could be wrong. Physicists have been able to learn much about the universe

while assuming four dimensions, but jumped at the chance of incorporating more. With

the allowance of additional dimensions came more ideas, theories and solutions. A good

example of this is string theory; bosonic string theory requires 26 dimensions, M-theory

requires 11 and superstring theory requires 10. Another example is Kaluza-Klein theory,

which attempts to create a unified theory by adding a compactified 5th dimension.

Even if we find that our universe is simply comprised of four dimensions, studying

higher dimensional regimes will not be for naught. In studying these higher dimensional

regimes, we can probe certain cases that we cannot in four dimensions. For example, the

Gregory–Laflamme instability is an instability that affects thin black branes and strings

via perturbations of the thickness. One of the possible endpoints of the instability

results in naked singularities and studying this case could reveal more about the nature

of black holes in general. Another example is the fluid/gravity correspondence which,

as the names suggests, relates fluid dynamics to gravitational dynamics, allowing one

to map solutions on one side to the other side. In this way, we can gain insight into

fluid dynamics given gravitational solutions.

However, with more dimensions comes more complexity. For instance, vacuum

black holes in four dimensions can be described by two parameters: mass and angular

momentum. In higher dimensions there are more conserved charges and specifying

these charges is not always enough to know what the solution is. When D = 4, there is

only one solution for neutral black holes: the Kerr solution, in which the Schwarzschild

solution is obtained in the static case. The more dimensions we have, the more new

black hole topologies exist, along with the possibility to rotate in more planes. However,

finding solutions that satisfy Einstein’s equations in higher dimensions is not simple.

Physicists have tasked themselves both with finding solutions as well as developing

techniques to simplify calculations. This is where the blackfold approach comes in. The
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blackfold approach allows one to perturbatively fold black brane solutions possessing

two widely differing length scales into different shapes, for example, constructing a black

ring from a black string. The blackfold approach is a long wavelength effective theory;

in this case, this means that the brane varies on scales much larger than its thickness.

Another application of the blackfold approach is to the Myers–Perry black hole,

a spinning spherical black hole in higher dimensions, which serves as the main focus

of this thesis. The blackfold approach can be applied to the Myers–Perry black hole

in the ultra-spinning regime, in which the black hole pancakes out into a disk shape.

The blackfold approach consists of finding an overlap region of solutions far and near

the horizon of the black hole, and once it has been applied, we can examine some

properties of the black hole, most notably the energy-momentum tensor. It has been

shown previously that in the overlap region, at ideal order, the energy-momentum tensor

is that of a perfect fluid. Our thesis consists of verifying these results and investigating

the effect of higher order corrections on the metric and the energy-momentum tensor.

We start off in section 2 by giving a summary of relevant General Relativity (GR)

formulas and conventions, then in section 3, we explain the changes to GR in higher

dimensions and discuss some new black hole solutions that arise. In section 4 we go

over the blackfold approach and in section 5 we review two methods of finding the

energy-momentum tensor: linearized gravity and the method of Brown and York. We

give a review of the important concepts of the fluid/gravity correspondence in section 6.

In section 7, we apply the blackfold approach to the ultra-spinning Myers–Perry black

hole, starting by verifying the energy-momentum tensor for the ideal order case. Next,

in section 7.2, we compute the first order metric and compare our results to work done

in [1] and [2] giving a brief summary of the papers, where hydrodynamic perturbations

are applied to black holes. We then review the work done in [3], where second order per-

turbed black holes are constructed by applying the previously mentioned fluid/gravity

correspondence along with the AdS/Ricci-flat correspondence, which maps asymptoti-

cally AdS solutions to asymptotically Ricci-flat solutions. We review the instability and

comment on the results when applied to the parameters of the Myers–Perry metric. We

review the Gregory–Laflamme instability in section 8 and compare it to hydrodynamic

perturbations. We end in section 9 with a summary of the results and important points

of this thesis, and mention possible future work.
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2 Conventions and Prerequisites

In this section we go over the basic conventions and notation necessary to follow this

thesis. While it is assumed that the reader has an understanding of general relativity,

we start off by giving an overview of the required GR formulas used throughout this

thesis. We end by listing our conventions.

2.1 General Relativity Formulas

In this section we present the basic formulas in general relativity needed to carry out

our calculations. We do not go into detail as it is assumed that the reader is familiar

with these concepts, and if not, we refer them to [4]. General relativity is a way of

understanding the geometry of spacetime and the objects that can affect it. It allows

us to study cosmology, gravitational waves and, most importantly for this thesis, black

holes.

2.1.1 Basic Formulas

In order to study physics in any framework, one of the key tools one must have is

the ability to take derivatives. Taking derivatives in a curved space is not as straight

forward as in a flat space, as we must take into account how the quantity changes from

point to point on curves of spacetime. The laws of physics obey the principle of general

covariance, which states that they do not change under coordinate transformations. In

order to abide by this rule in curved spaces, a covariant derivative is required. The

covariant derivative of a one-form Aν and vector V ν is defined as:

∇µAν = ∂µAν − ΓλµνAλ, (2.1)

∇µV
ν = ∂µV

ν + ΓνµλV
λ,
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where Γλµν are the Christoffel symbols

Γλµν =
1

2
gλσ (∂µgνσ + ∂νgµσ − ∂σgµν) , (2.2)

and for a general tensor T µ1...µn
ν1...νm

, the covariant derivative is

∇σT
µ1...µn
ν1...νm

= ∂σT
µ1...µn
ν1...νm

(2.3)

+ Γµ1

λσT
λ...µn
ν1...νm

+ ...+ ΓµnλσT
λ...λ
ν1...νm

− Γλν1σ
T µ1...µn
λ...νm

− ...− ΓλνmσT
µ1...µn
ν1...λ

.

Here, gµν signifies the background spacetime metric, but the covariant derivative can

also be defined in a subspace, or on a manifold. Using the covariant derivative, we

can probe the curvature of the spacetime, or manifold, to find the Riemann curvature

tensor:

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓµνρ + ΓµαρΓ

α
νσ − ΓµασΓανρ. (2.4)

This tensor can be used to tell whether or not a spacetime is flat, in which caseRµ
νρσ = 0.

From this, we get the Ricci tensor, Rµν and scalar, R, by contracting with the metric

gµν

Rµν = Rρ
µρν = gρσgασR

α
µρν ,

R = Rµ
µ = gµνRµν ,

(2.5)

which, again, are zero in flat space. With this, we can now define Einstein’s equations1:

Rµν −
1

2
Rgµν = 8πTµν , (2.6)

where Tµν is the energy-momentum (or stress-energy) tensor. We go into more detail

about the energy-momentum tensor in section 5. We can also find these equations

through the variation of the Einstein-Hilbert action:

I =
1

16π

∫
dDx
√
−gR. (2.7)

1In this thesis, unless otherwise specified, we assume Λ = 0.
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2.1.2 Submanifolds

Rather than looking at the entire spacetime backgroumd, we can focus on a submanifold,

embedded in the spacetime. We define a map from the background spacetime onto the

subspace, Xµ(σ), which can then be used to find the induced metric on the submanifold

[5]:

γab = gµν∂aX
µ∂bX

ν , (2.8)

where we used the pullback map ∂aX
µ, which allows us to map background tensors to

worldvolume tensors and vice versa. For example, if we have a spacetime metric [6]

ds2 = −dt2 + dρ2
1 + ρ2

1dφ
2
1 + dρ2

2 + ρ2
2dφ

2
2 + δijdx

idxj, (2.9)

with i, j ranging in (1, n), and embedding

X t = t, Xρ1 = ρ1, Xφ1 = φ1, (2.10)

Xρ2 = 0, Xφ2 = 0, Xxi = 0,

we get the induced metric

γab = −dt2 + dρ2
1 + ρ2

1dφ
2
1. (2.11)

As one can see, there are fewer dimensions on the submanifold compared to the back-

ground spacetime. We denote this subset of coordinates as worldvolume coordinates.

A worldvolume is the volume that the subspace takes up, including the time direction.

An easy to visualize example of this is given by string theory, where a string carves out

a two-dimensional worldsheet, fig. 1. From the embedding map, we can find the first

fundamental tensor

hµν = γab∂aX
µ∂bX

ν , (2.12)

which acts as a projector onto the worldvolume. One can also find

⊥µν= gµν − hµν , (2.13)
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Figure 1: A string evolving from time t1 to t2, with σ representing the space coordinate,
creating a 2-dimensional worldsheet.

which projects along directions orthogonal to the worldvolume. hµν can then be used

to find the extrinsic curvature Kρ
µν , which is the curvature of a submanifold caused by

the embedding. The background spacetime does not have an extrinsic curvature, as we

typically assume that the spacetime is not embedded in a higher dimensional space.

We go into more detail on how Kρ
µν is derived in section 5.2.

2.1.3 Derivation of D=4 Schwarzschild Metric

Calculations are often much simpler in 4 dimensions. This fact is exemplified by the

straightforward derivation of the Schwarzschild metric in 4 dimensions. Here, we will

give a brief derivation of this metric, following the procedure of [7]. One can start by

looking at the background spacetime Minkowski metric

ds2 = −dt2 + dr2 + r2dω2 + r2 sin2 ωdω2
2. (2.14)



2 CONVENTIONS AND PREREQUISITES 7

A solution in this background will have the general form of

ds2 = −Udt2 + V dr2 +Wr2dω2 +Xr2 sin2 ωdω2
2, (2.15)

where U , V , W and X are functions that must be solved for. We are looking for a

metric that obeys the following constraints

• Static: ∂tgµν = 0,

• Spherically symmetric,

• Obeys vacuum Einstein equations: Rµν − 1
2
gµνR = 0.

The first requirement demands that the functions do not depend on t explicitly, and

the second that they do not depend on ω or ω2. In addition, the second requirement

allows one to set V = W = 1. In all, the functions become

U → U(r), V → V (r), W → 1, V → 1. (2.16)

The last constraint is satisfied by first finding the Christoffel symbols Γλµν using (2.2),

and then finding the Riemann curvature tensor, using (2.4), which is used to find Rµν

and R. The third constraint is then used to solve for U(r) and V (r) which turn out to

be

U =

(
1− C

r

)
, V =

1(
1− C

r

) . (2.17)

Using the fact that the background metric should be recovered as r → ∞ as well as

when the mass M → 0, C is found to be

C = 2M, (2.18)

which we typically set as rs, the radius of the event horizon.
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2.2 Conventions and Notation

In reading the previous sections, one may have picked up on some of the conventions

used in this thesis but we make our conventions explicit in this section.

The gravitational constant G = 1.

The speed of light c = 1.

The indices (a, b) signify worldvolume coordinates while (µ, ν) signify the background

spacetime coordinates. For example, we denote the background spacetime by gµν and

the induced metric on the manifold as γab. The first fundamental tensor, hµν , is raised

and lowered with the background spacetime metric. The total dimension of the space-

time is D = p+n+ 3, p being the number of spatial worldvolume coordinates, plus one

for time, and n+ 2 transverse directions. Quantities with (a, b) range over p+ 1, while

(µ, ν) range over D. The covariant derivative on the background spacetime is ∇µ and

Da is for the worldvolume metric. Occasionally we will use d rather than D to denote

the spacetime dimension so as not to get confused with the covariant derivative Da.

The Ωn+1 coordinates are expressed with ωi, not to be confused with θ which, when

used as a coordinate, is one of the worldvolume coordinates. For example, for n=2 we

would have

dΩ2
3 = dω2

1 + sin2 ω1dω
2
2 + sin2 ω1 sin2 ω2dω

2
3. (2.19)

We denote the radius of the brane as r+, if brane has several radii, r+ is the smaller

radius and ro = r+ cos θ is what is called the thickness.
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3 Black holes in Higher Dimensions

When considering the existence of more dimensions, one might wonder how these di-

mensions could exist when we do not measure them. There are two main explanations

for this issue [8]. One posits that the higher dimensions could be so small, and periodic,

such that we do not measure them, meaning these dimensions are compactified. The

other supposes that four-dimensional spacetime as we know it, is simply a subspace

embedded in a higher dimensional space with the fields in the standard model confined

to it. One might also wonder how the laws of physics change when going into higher

dimensions. In this section we will give an overview of some of the differences when

doing calculations in GR in higher dimensions. We also discuss some of the new so-

lutions one can get in higher dimensions, Myers–Perry black holes in section 3.2 and

black rings in section 3.3. This section serves more or less as a partial review of [9].

3.1 General Relativity in D > 4

In some ways, four-dimensional black holes are quite limited compared to those in

higher dimensions. For example, they are limited to a spherical topology, which is not

the case in higher dimensions. In four dimensions, a black hole can only possess one

independent angular momentum, given that it can rotate in the (x, y)-plane, (x, z)-plane

or (y, z)-plane. In general, they can rotate in up to bD−1
2
c independent planes, again

we achieve this number of planes by taking pairs of spatial dimensions (xi, xj), each

with an associated angular momentum Ji. In higher dimensions, the relation between

the gravitational potential,

Vg = − M

rd−3
, (3.1)

and centrifugal barrier,

Vc =
J2

M2r2
, (3.2)

changes, as gravitational potential depends on the dimension and the centrifugal barrier

does not. As the number of dimensions increase, the gravitational potential weakens

thus the centrifugal force required to counterbalance the gravitational attraction de-
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creases.

In four dimensions, there is the famous “no-hair” theorem that states that a black

hole can be completely characterized by its mass, charge and angular momentum, these

solutions being given by the Kerr-Newman family of solutions [8]. In higher dimensions,

there is no analogue, in the way that a unique solution cannot be found only from

conserved charges. It is still possible that a uniqueness theorem can be found in certain

cases with the addition of some other parameters, but there is no guarantee. Black

holes in four dimensions also have the rigidity theorem that states that stationary

black holes must either be static or axisymmetric around the plane of rotation [10]. In

higher dimensions, the black hole must only be symmetric along one axis of rotation

[11]. A good example of this is the black ring, which is symmetric in the plane in which

it must rotate to avoid gravitational collapse. These theorems, among others related

to black hole uniqueness, are reviewed in more detail in [8]. Interesting to note is that

the Bekenstein-Hawking entropy does not change in higher dimensions and is always

S =
AH
4
, (3.3)

where AH is the area of the event horizon. As for black holes themselves, in four

dimensions, there is one solution for the metric of an uncharged black hole. For static

black holes, it turns into the Schwarzschild solution

ds2 = −
(

1− ro
r

)
dt2 +

dr2

1− ro
r

+ r2dω2
1 + r2 sin2 ω1dω

2
2, (3.4)

and the Kerr solution for rotating black holes

ds2 = −
(

1− ror

Σ

)
dt2 − 2aror

Σ
sin2 θdtdφ (3.5)

+

(
r2 + a2

)2 −∆a2 sin2 θ

Σ
sin2 θdφ2 +

Σ

∆
dr2 + Σdθ2,

Σ = r2 + a2 cos2 θ, ∆ = r2 − ror + a2.

In higher dimensions, the Schwarzschild solution does not undergo a big change and is
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now of the form [9]

ds2 = −
(

1− µ

rn

)
dt2 +

dr2

1− µ
rn

+ r2dΩ2
n+1, (3.6)

where µ = 16πM
(n+1)Ωn+1

is the mass parameter. The analogue of the Kerr solution is not

as simple and we discuss it in the next section.

3.2 Myers–Perry Black Holes

For rotating black holes in dimension D > 4, we have Myers–Perry black holes, which

serve as the main focus of this thesis. We are specifically interested in the D ≥ 6 case,

we will discuss why shortly. For a singly-spinning Myers–Perry black hole in n + 5

dimensions, the metric is [6]

ds2 = − dt2 +
µ

rnΣ
(dt− a sin2 θdφ)2 +

Σ

∆
dr2 + Σdθ2 + (r2 + a2) sin2 θdφ2 (3.7)

+ r2 cos2 θdΩ2
n+1,

where

Σ = r2 + a2 cos2 θ, ∆ = r2 + a2 − µ

rn
, (3.8)

and for doubly-spinning (possessing two angular momenta)

ds2 = − dt2 +
2∑
i=1

[a2
i dµ

2
i + (r2 + a2

i )µ
2
i dφ

2
i ] +

µ

rn+2ΠF
(dt−

2∑
i=1

aiµ
2
i dφi)

2 (3.9)

+
ΠF

Π− µ
rn+2

dr2 + r2[dθ2 + cos2 θ(dψ2 + cos2 ψdΩ2
(n−1))],

where

µ1 = sin θ, µ2 = cos θ sinψ, (3.10)

Π =
2∏
i=1

(1 +
a2
i

r2
), F = 1−

2∑
i=1

a2
iµ

2
i

r2 + a2
i

. (3.11)
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In the singly-spinning case, the mass and angular momentum are

M =
(d− 2)Ωn+3

16π
µ, J =

2

n+ 3
Ma, (3.12)

and the ai’s are approximately the angular momentum per unit mass. An interesting

feature to take note of is the relationship between gravitational attraction and centrifu-

gal repulsion. In order for them to be balanced we must have the equality

∆

r2
− 1 = − µ

rd−3
+
a2

r2
. (3.13)

The gravitational attraction, roughly equal to the first term on the right (as µ is related

to mass via the equation above), depends on the number of dimensions and becomes

weaker as n increases, while the second term, the repulsion term a2

r2 , does not. In-

terestingly, the gravity term becomes smaller, requiring less centrifugal repulsion as n

increases.

The general solution takes on a slightly different form depending on whether D is

even or odd. When D is odd the solution is [9]

ds2 = −dt2 + (r2 + a2
i )(dµ

2
i + µ2

i dφ
2
i ) +

µr2

ΠF

(
dt− aiµ2

i dφi
)2

+
ΠF

Π− µr2
dr2, (3.14)

and when D is even it is

ds2 = −dt2 +r2dα2 +(r2 +a2
i )(dµ

2
i +µ2

i dφ
2
i )+

µr

ΠF

(
dt− aiµ2

i dφi
)2

+
ΠF

Π− µr
dr2, (3.15)

where µ2
i + α = 1 and

F (r, µi) = 1− a2
iµ

2
i

r2 + a2
i

, Π(r) =
N∏
i=1

(r2 + a2
i ). (3.16)

The event horizon is found by taking the largest real root of grr

Π(ro)− µrpo = 0, (3.17)

where p = 2 in the odd case and p = 1 in the even case.
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The Myers–Perry black hole may not appear new and exciting at first glance as it

is similar to the four-dimensional Kerr metric, especially in the singly-spinning case as

it is again a spherical rotating black hole. However, unlike Kerr, with large angular

momenta the Myers–Perry black hole can become extended in D > 5, allowing one to

explore more solutions and phenomena. To see why we cannot have this phenomenon

in D = 5, we take the example of the singly-spinning case where for D = 5, the largest

real positive root of ∆ is ro =
√
µ− a2. This provides a limit on a, requiring a <

√
µ.

Note that in the a =
√
µ case there would be a naked singularity as ro = 0. This issue is

not present in D ≥ 6, allowing a to be arbitrarily large. This will be discussed further

in section 7.

3.3 Black Rings

In D = 5, black rings have topology S1 × S2, where we let S2 be the smaller ring

thickness, and S1 be the larger overall ring with topology maintained by the centrifugal

force of the rotation2. The solution of a black ring with one angular momentum is [9]

ds2 =− F (y)

F (x)

(
dt− CR1 + y

F (y)
dψ

)2

(3.18)

+
R2

(x− y)2
F (x)

(
−G(y)

F (y)
dψ2 − dy2

G(y)
+

dx2

G(x)
+
G(x)

F (x)
dφ2

)
,

where

F (z) = 1 + λz, G(z) = (1− z2)(1 + νz), (3.19)

C =

√
λ(λ− ν)

1 + λ

1− λ
,

2Setting S1 as the smaller radius and S2 as the larger radius is also valid.
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and R is the larger radius, and λ and ν are dimensionless parameters in the range

0 < ν ≤ λ < 1. The range of x and y are

− 1 ≤ x ≤ 1, (3.20)

−∞ ≤ y ≤ −1,

with asymptotic infinity at x→ y → −1. The rotation is around ψ at y = −1. In order

to avoid a conical defect, the angular values must have periodicity

∆ψ = ∆φ = 4π

√
F (−1)

|G′(−1)|
= 2π

√
1− λ

1− ν
, (3.21)

and λ and ν must obey

λ =
2ν

1 + ν2
. (3.22)

These constraints allow for the ring solutions to be characterized by (ν,R). One can

think of ν as the ratio between S2 and S1.

If one does not eliminate λ through (3.22), then the Myers–Perry black hole can be

recovered as a limit of the black ring [12] by taking R → 0, λ → 1, and ν → 1, and

defining fixed parameters a and m

m =
2R2

1− ν
, a2 = 2R2 λ− ν

(1− ν)2
, (3.23)

then making the change of coordinates from (x, y) to (r, θ)

x = −1 + 2

(
1− a2

m

)
R2 cos2 θ

r2 − (m− a2) cos2 θ
, (3.24)

y = −1− 2

(
1− a2

m

)
R2 sin2 θ

r2 − (m− a2) cos2 θ
, (3.25)

and rescaling (ψ, φ)→
√

m−a2

2R2 (ψ, φ) gives a solution in the form of (3.7), when n = 0.

One can look at the phase space of the ring by examining the dimensionless param-
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eters aH , the horizon area, and spin j

aH = 2
√
ν(1− ν), j =

√
(1 + ν)3

8ν
. (3.26)

Because one can write aH in terms of j, we put our discussion in terms of j. There are

three possible solutions depending on these values: thin rings (with small S2 compared

to S1), fat rings and Myers–Perry black holes. In the range
√

27/32 ≤ j ≤ 1, all three

of these solutions exist for the same j. This confirms our earlier statement about how

higher dimensional black holes are non-unique.

We obtain a second angular momentum by letting S2 rotate. In the limit where S2

is infinitely big, each S2 segment along the ring can be thought of as a four-dimensional

rotating black hole. The solution can be written as:

ds2 = − H(y, x)

H(x, y)
(dt+ Ω)2 − F (x, y)

H(y, x)
dψ2 − 2

J(x, y)

H(y, x)
dψdφ+

F (y, x)

H(y, x)
dφ2 (3.27)

− 2k2H(x, y)

(x− y)2(1− ν)2

(
dx2

G(x)
− dy2

G(y)

)
,

where φ and ψ now have period 2π, and k tells us about the scale and can be thought

of as roughly the radius. The form of the functions in the metric in general are quite

complex but are much simpler when the forces are balanced and there are no conical

singularities. The form of the functions in this case are given in (F.1). Again, the

doubly-spinning Myers–Perry black hole can be recovered from a limit of the solution,

but only in the general case. In terms of the angular momenta Jφ and Jψ one can

define jφ and jψ as in the previous case, and the phase space can be examined. There

are three regions of phase space for specific ji values. Maximum Jφ for the given Jψ

gives extremal black rings, minimum Jψ for the given Jφ gives non-extremal minimally

spinning black rings, and otherwise limiting extremal Myers–Perry black holes. There

is again a range of ji values for which all three solutions exist. An interesting note

about black ring temperature is that when the ring becomes infinitely long and thin,

and Jφ is taken to the extremal limit, the temperature goes to zero.

Black rings are a good illustrative example of general relativity in D > 4, as they

provide a new brane topology not seen in D = 4, as well as demonstrate the non-
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uniqueness of D > 4 solutions.
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4 Blackfold Approach

The definition of a blackfold is “a black p-brane whose worldvolume extends along a

curved submanifold of the embedding spacetime” [13]. The blackfold approach is an

effective worldvolume theory for the dynamics of black branes, applicable when the

black hole has differing length scales. This technique does not typically apply in four

dimensions as the length scales are of similar order. Higher dimensional black holes

have more possibilities for differing scales for example, neutral black holes can have

wildly differing mass and angular momentum. Black rings also fall into this category

as they have two radii, one of which can be much smaller than the other.

4.1 Procedure

Blackfolds allow us to investigate certain solutions by using a probe brane, which is

a simpler version of the original solution, by making use of the differing scales. For

example, in the ultra-spinning limit of a black hole, the black hole becomes very thin

and wide. In this case, the differing scales are the smaller radius s = ro and the larger

radius S = R, and the solution is taken to first order in ro
R

. At ideal order, we ignore

back-reactions of the brane on the background geometry.

The blackfold approach consists of examining the metric in three regions:

1. r � S

2. r � s

3. s� r � S.

The solution in the overlap region 3 is found through the other two regions. Finding

solutions in this way is an example of a matched asymptotic expansion (MAE). MAEs

are applicable when one encounters a problem for which different solutions can be found

in different coordinate patches; the solutions in the different patches are then combined
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to find a global solution. In general, solutions found in each region provide the other

regions with boundary conditions.

In [14] this procedure is applied to find approximate solutions for black rings to first

order. The zeroth order starting point is an infinitely long straight string, close to the

horizon. The ideal order (boosted) Schwarzschild black string is

ds2 =
dr2

1− rno
rn

+ r2
(
dθ2 + sin2 θdΩ2

n

)
−
(

1− rno
rn

)
(coshαdt+ sinhαdz)2 (4.1)

+ (coshαdz + sinhαdt)2 .

A small curvature is then added to the string to find the first order correction. The

asymptotic limit gives the solution of a string. To find the solution in the near region,

one must find boundary conditions, which is done by matching the far and near solutions

in the overlap zone. The near zone first order solution can then be used to find second

order solutions. The MAE can then be continued using second order solutions to provide

conditions for third order solutions, and so on and so forth. In Appendix E, we show

the MAE calculations for singly and doubly-spinning Myers–Perry black holes.

This thesis deals with ultra-spinning black holes in higher dimensions. Taking one

such metric and examining it in the region, r � S, one finds that, locally at each point,

the metric describing the black hole is that of a boosted black brane [9]

ds2 =

(
γab +

rno
rn
uaub

)
dσadσb +

dr2

1− rno
rn

+ r2dΩ2
(n+1), (4.2)

where ua corresponds to the boost velocities and γab is the induced metric with (a, b)

indices ranging from 0 to p. For example, it has been shown in [6] that taking a

doubly-spinning Myers–Perry black hole, and applying the ultra-spinning limit to one

of the angular momenta, results in a boosted singly-spinning MP black brane. Ap-

plying the ultra-spinning limit to a singly-spinning MP black hole produces a boosted

Schwarzschild membrane. This technique, being a long-wavelength effective theory, re-

quires for the velocities ua, the transverse velocities ∂X⊥, and ro to vary slowly over

the worldvolume [5], meaning they vary on scales R� ro.
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4.2 Blackfold Equations

In order to have a blackfold, certain conditions must be satisfied. For the source to be

coupled to gravity, we must have [13]

∇̄µTµν = 0, (4.3)

where

∇̄µ = hνµ∇ν , (4.4)

and hµν is the first fundamental tensor, which acts as a projector onto the worldvolume.

The covariant derivative is written in this way because it is only well defined along

tangential directions to the worldvolume. These equations can be split up into D −
p− 1 extrinsic and p+ 1 intrinsic equations by projecting along directions parallel and

orthogonal to the worldvolume [15]

T µνKρ
µν = 0 (extrinsic),

DaT
ab = 0 (intrinsic),

(4.5)

where Da is the covariant derivative on the worldvolume and Kρ
µν is the extrinsic curva-

ture. The extrinsic equation can be thought of as the analogue of (mass × acceleration

= 0) to extended relativistic objects, and the intrinsic equations means that the tensor

is conserved on the worldvolume. In the overlap region, assuming the worldvolume is

isotropic [5], the stress-energy tensor is that of a perfect fluid:

T ab = (ε+ P )uaub + Pγab, (4.6)

ε = −(n+ 1)P = (n+ 1)
Ωn+1r

n
o

16π
, (4.7)

where ε is the energy density, P is the pressure and Ω is the solid angle, given by [16]

Ωd =
2π

d+1
2

Γ(d+1
2

)
. (4.8)
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The associated velocities of this tensor also have the property uaγ
abub = −1. We can

also rewrite the tensor as

T ab =
1

16π
rnoΩ(n+1)n

(
uaub − 1

n
γab
)
. (4.9)

In this thesis, we focus on neutral black branes so we take this case and apply (4.3) to

the perfect fluid tensor (4.9), the necessary equation becomes

u̇µ +
1

n+ 1
uµ∇̄νu

ν =
1

n
Kµ + ∇̄µ ln ro, (4.10)

where u̇µ = uν∇νu
µ is the acceleration of uµ. Again, these can be projected parallel

and orthogonal to the worldvolume

Kρ = n ⊥ρµ u̇µ, (4.11)

u̇a +
1

n+ 1
uaDbu

b = ∂a ln ro, (4.12)

where u̇b = ucDcu
b. These are the blackfold equations which describe the dynamics of

a neutral black brane, up to leading order [5].
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5 Energy-Momentum Tensor of Branes

The energy-momentum tensor, also known as the stress-energy-momentum tensor, is a

symmetric tensor that reveals a lot about a system, summarized by [17]:

T 00: Energy density

T i0: Density of ith component of momentum

T 0j: Energy flux in ith direction

T ij: Flux in j direction of ith momentum component.

This section describes two popular methods of finding the energy-momentum tensor in

GR: linearized gravity and the method of Brown and York.

5.1 Linearized Gravity

The first method we look at is linearized gravity and we follow the notes of [18]. While

in this section we use it to find the energy-momentum tensor, Tµν , linearized gravity has

other applications in physics, such as the study of gravitational waves. It is applicable

when the metric can be expressed as the Minkowski metric plus a perturbation:

gµν = ηµν + hµν , (5.1)

where hµν is raised and lowered with ηµν . In order to find the energy-momentum tensor,

one must use hµν rather than gµν in Einstein’s field equations (2.6). Doing so, keeping

the equations at first order, yields

8πT = ∂ρ∂(µhν)ρ −
1

2
∂ρ∂ρhµν −

1

2
∂µ∂νh−

1

2
ηµν (∂ρ∂σhρσ − ∂ρ∂ρh) . (5.2)
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Because of gauge freedom, we can choose to redefine hµν in a way that simplifies these

equations

h̄µν = hµν −
1

2
hηµν , (5.3)

h = haa = ηaνhaν , (5.4)

so now we have

8πTµν = −1

2
∂ρ∂ρh̄µν + ∂ρ∂(µh̄ν)ρ −

1

2
ηµν∂

ρ∂σh̄ρσ. (5.5)

Furthermore, if we choose the Lorentz gauge,

∂ν h̄µν = 0, (5.6)

the equations simplify to

∂a∂
ah̄µν = −16πTµν . (5.7)

If not already satisfied, the gauge (5.6) is fulfilled by finding a term εµ and adding it to

hµν in the following way:

hµν → hµν + ∂µεν + ∂νεµ, (5.8)

where εµ is found through

∂ν∂νεµ = −∂ν h̄µν . (5.9)

We give explicit examples of the computation in section 7.1.1.

5.2 Brown–York Tensor

Another way of finding the energy-momentum tensor consists of using the method

developed by Brown and York in [19]. In this paper, a bounded region of spacetime is

examined and, along with other quantities, the energy-momentum tensor of the surface

boundary is found.

To start, the paper examines the evolution of a space-like surface in a fixed time

from t′ to t′′. The boundary of the surface over this time period defines a surface ∂B.
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Figure 2: Taking an infinity thin ring at t′ and evolving it to the time t′′.

This surface ∂B along with the original and finals surfaces at t′ and t′′ create the full

boundary ∂M . This boundary with the inside region, defines a spacetime M3. If we

take the example of an infinitely thin ring, we can imagine evolving the ring over time to

create a tube-like manifold, the surface ∂B, and with the initial and final surface we get

a can-like surface, the full boundary ∂M , as shown in fig. 2. The full spacetime M has

metric gµν , the boundary ∂B has metric γab. The cross section of the surface at each t

gives a foliation Σi, which has metric σµν , the metric at t′ and t′′ are denoted as σ′µν and

σ′′µν , respectively. The paper finds the stress-energy tensor through a Hamilton-Jacobi

approach and so the action is examined. To have a valid action, one must ensure that

when extremizing the action, the boundary terms go to zero. One way of doing this is

fixing the metric γab on ∂B, as well as σ′µν and σ′′µν . The action in this case is

S =
1

16π

∫
M

ddx
√
−gR +

1

8π

∫ t′′

t′
dd−1x

√
σK − 1

8π

∫
∂B

dd−1x
√
−γK + Sm, (5.10)

where Sm is the matter action, σ = σµµ, γ = γaa , R is the intrinsic curvature, K is the

trace of the extrinsic curvature on σµν , and K is the same but on γab. In this thesis we

only care about the boundary ∂B, so we look at the part of the action concerning γab

3We use a slightly different notation than the original paper; our ∂B is their 3B, and our σµν is
their hµν .
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which, when extremizing the action gives:

δSγ =

∫
∂B

dd−1xπabδγab, (5.11)

where πab is the gravitational momentum conjugate to γab. There is an ambiguity in the

action which allows for the subtraction of a term S0, depending only on γab, resulting

in a new action S ′ = S − S0. The result of adding such a term is that the energy is

shifted. Extremizing this term gives

− δS0 =

∫
∂B

dd−1x
δS0

δγab
δγab ≡

∫
∂B

dd−1xπab0 δγab, (5.12)

so in total it becomes

δS ′γ =

∫
∂B

dd−1x
(
πab − πab0

)
δγab. (5.13)

With this, we can define the energy-momentum tensor on the boundary ∂B as

T ab =
2√
−γ

δS

δγab
, (5.14)

and, because we can write the variation in the action as

δS

δγab
= πab − πab0 , (5.15)

we write the energy-momentum tensor as

T ab =
2√
−γ

(
πab − πab0

)
. (5.16)

Rather than γab, we can define these quantities in terms of hµν , given by equation (2.12).

If we have the metric gµν , then we can define

hµν = gµν −NµNν , (5.17)

where Nµ is the vector normal to ∂B. The momentum can then be found through the

extrinsic curvature

πµν = − 1

16π

√
−h (Khµν −Kµν) , (5.18)
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where the extrinsic curvature is given by:

Kµν = −hαµ∇αNν ,

K = hµνKµν .
(5.19)

So putting everything together, the Brown–York energy-momentum tensor is given by

T µν = − 1

8π

(
Khµν −Kµν −

(
K

(0)

hµν −K(0)µν
))

, (5.20)

where the K(0) terms are associated with the extra action term S0. This formula works

for surfaces with codimension −1. In general, the extrinsic curvature is given by [5]:

Kρ
µν = hλµh

σ
ν∇λh

ρ
σ, (5.21)

the extra index, ρ, gives the radial components of the extrinsic curvature. One can get

the two-index tensor by contracting over the radial index with Nµ

Kµν = NρK
ρ
µν = Nρh

λ
µh

σ
ν∇λh

ρ
σ = −hρνhλµ∇λNρ, (5.22)

which comes from

∇µNρh
ρ
σ = 0,

Nρ∇µh
ρ
σ + hρσ∇µNρ = 0.

(5.23)

As a preview of the calculations to be done in future sections, we mention that in

our case, K(0) refers to the extrinsic curvature of flat space, which corresponds to

taking ro → 0. We want to find the tensor on the boundary, which corresponds to the

worldvolume of the quantity of interest. To do so, we must integrate out the spherical

coordinates of the stress tensor to put in on the worldvolume [1]

Tab =

∫
Sn+1

T
(BY )
ab . (5.24)
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6 Fluid Gravity Correspondence

Throughout this thesis we repeatedly find analogues between gravity and fluids, so it

is worthwhile to examine the fluid gravity correspondence. In fact, in section 7.3, this

correspondence, in conjunction with the AdS/Ricci-flat correspondence, is used to ex-

amine the second order correction of a boosted brane metric. Originally explored in

[20], the fluid gravity correspondence shows that exploiting the AdS/CFT correspon-

dence in the long wavelength regime, near equilibrium, gives rise to black hole solutions

dual to fluid solutions.

We provide a summary of [21], which gives a good overview of this correspondence

and the tools required to explore it.

6.1 Fluids

In this context, fluid dynamics is defined as being “the low energy effective description

of any interacting quantum field theory,” valid for long wavelength fluctuations. To

understand this in more depth, one can imagine a system at thermal equilibrium which

is then perturbed by allowing fluctuations in the thermodynamic variables. Provided

the wavelengths of the fluctuations are large in comparison to the local energy density

or temperature, at any point in the system one would find the temperature to be

constant in the domain around the point. Each domain will have different values

for the thermodynamic variables; the interactions between these domains and their

thermodynamic variables is described using fluid dynamics.

To take the hydrodynamic limit of an interacting QFT, one should examine the

system at length scales large compared to the characteristic length scale of the system,

given by the mean free path length, `mfp. The dynamical charges of the system are

given in terms of the energy-momentum tensor Tµν , and the charge current Jµ. The

dynamical equations are then given by the conservation equations

∇µT
µν = 0, ∇µJ

µ
I = 0, (6.1)
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where I indexes the conserved charges of the system.

A QFT is defined as living on a d-dimensional spacetimeM with metric gµν described

by coordinates xµ. We seek the energy-momentum tensor and charge currents in terms

of the dynamical degrees of freedom of the system, so the system can be described

using the dynamical equations. These variables are the local energy density ε, charge

densities qI , fluid velocity uµ, pressure P , temperature T and chemical potentials µI .

6.1.1 Ideal Fluids

An ideal isotropic fluid is a fluid with no viscosity that is incompressible. In this case,

the energy-momentum tensor takes the well known form of

T µν(0) = εuµuν + P (gµν + uµuν) . (6.2)

When the fluid is at rest, the energy-momentum tensor is diagonal with T00 = ε, Tii = P .

The charge currents are

Jµ(0) = qIu
µ. (6.3)

It is interesting to look at the entropy current, which is simply given in terms of the

entropy density s(x)

(JµS )(0) = suµ, (6.4)

for an ideal fluid, it is conserved

∇µ (JµS )(0) = 0. (6.5)

Ideal fluids are used in many fields across physics to model and probe ideal scenarios,

for example, modeling the evolution of the universe.

6.1.2 Dissipative Fluids

To be more in tune with the real world, we look at dissipative fluids. To describe dissi-

pative hydrodynamics, dissipative terms are added: Πµν to the ideal energy-momentum
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tensor and Υµ to the ideal charge currents. The next step consists of finding what they

are in terms of the variables of the system.

When constructing the Lagrangian in an effective QFT, one must take into account

all the possible terms consistent with the symmetries, but there are ways of finding

and disregarding unnecessary terms. Here, hydrodynamics is treated as an interacting

field theory so this can also be done. In this case the terms that can be disregarded

are derivatives of the thermodynamic variables and velocity field. This means the

energy-momentum tensor can be found through a gradient expansion. The dissipative

components are constrained with the choice of velocity field, to which is imposed

Πµνuµ = 0, Υµuµ = 0. (6.6)

This ensures that the dissipative contributions are orthogonal to the velocity field. This

is known as the Landau frame. To find the dissipative terms of the energy-momentum

tensor up to first order, all possible symmetric two-tensors composed of velocity terms

must be found, which are obtained by decomposing the gradient

∇νuµ = −aµuν + σµν + ωµν +
1

d+ 1
ϑP µν , (6.7)

where σµν is the shear, ϑ is the divergence, ωµν is the vorticity, aµ is the acceleration

and P is the orthogonal projector given by

ϑ = ∇µu
µ, (6.8)

aµ = uν∇νu
µ,

σµν = ∇(µuν) + u(µaν) − 1

d− 1
ϑP µν ,

ωνµ = ∇[µuν] + u[µaν],

P µν = gµν + uµuν .

We note that, by looking at projections of the conservation equation of the ideal fluid
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tensor, one can relate the gradients of the energy density and pressure to those of uµ

uν∇µ(T µν)ideal = 0⇒ (ε+ P )∇µu
µ + uµ∇µε = 0, (6.9)

Pνα∇µ(T µν)ideal = 0⇒ P µ
α∇µP + (ε+ P )Pναu

µ∇µu
ν = 0.

By applying the Landau frame, one finds the dissipative terms are

Πµν
(1) = −2ησµν − ζϑP µν , (6.10)

where η is the shear viscosity and ζ is the bulk viscosity. The dissipative components

of the charge current are found through first order derivative expansions of the energy

and charge densities, ε and qI . The acceleration is eliminated using the zeroth order

equation of motion (6.9). In addition to the two terms, in D = 4 there is also the

possibility of adding a pseudo-vector

`µ = εµαβγu
α∇βuγ. (6.11)

The first order correction to the charge current is

Υµ
(1)I = −κ̃IJP µν∇νqJ − γ̃IP µν∇νε− fI`

µ, (6.12)

where κ̃IJ is the matrix of charge diffusion coefficients, γ̃I is the contribution of the

energy density to the charge current, and fI are the pseudo-vector transport coefficients.

Adding these perturbations to (6.2) and (6.3) give the energy-momentum tensor and

charge currents for a generic charged fluid flow up to first order corrections

T µν = εuµuν + P (gµν + uµuν)− 2ησµν − ζϑP µν , (6.13)

Jµ = qIu
µ − κ̃IJP µν∇νqJ − γ̃IP µν∇νε− fI`

µ.

With these higher order terms, the entropy current is no longer conserved. The second

law of thermodynamics can be interpreted as entropy having a non-negative divergence,

so we must have

∇µJ
µ
S ≥ 0. (6.14)

This is to be expected as if the system is perturbed away from equilibrium, the dissipa-
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tive equations will allow it to equilibrate again; this process produces entropy. While

the equations for dissipative fluids are not as simple compared to the ideal case, these

complications are necessary to explore physics closer to what we would expect to see in

the real world.

6.1.3 Conformal Fluids

As the fluid/gravity correspondence is a subsector of the AdS/CFT correspondence,

studying conformally invariant theories is imperative. Again taking the boundary met-

ric gµν defined on a d-dimensional spacetime M , a Weyl transformation is made

gµν = e2φg̃µν . (6.15)

A tensor Q is conformally invariant if it transforms under Weyl transformations of the

metric as

Q = e−ωφQ̃, (6.16)

where ω is the conformal weight of the tensor. To be conformally invariant, Tµν must

be traceless and transform with weight d+ 2 as

T µν = e−(d+2)φT̃ µν , (6.17)

while the charge currents transform with weight d as

Jµ = e−dφJ̃µ. (6.18)

The energy-momentum tensor of an ideal conformal fluid is

T µν(0) = αT d (gµν + d uµuν) , (6.19)

where T is the temperature and α is a dimensionless normalization constant depending

on the CFT. For higher order corrections, one must find the higher order operators that

transform homogeneously. At first order, a viscous conformal fluid has, in terms of the
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variables defined in (6.8),

T µν(1) = αT d (gµν + d uµuν)− 2ησµν ,

J(1) = qIu
µ − κIJP µν∇ν

(µJ
T

)
− f`µ.

(6.20)

The next higher order corrections can be found using the same procedure, but in order

to do calculations more generally, it is useful to find a Weyl covariant derivative Dµ.

We start by looking at the conformal class of metrics on the background manifold M .

The background with this class of metrics is denoted as (M, C). On this background,

Dµ is built with Weyl connection ∇Weyl
α that obeys

∇Weyl
α gµν = 2Aαgµν , (6.21)

where Aµ is a one-form to be determined. Dµ takes the form of

Dµ = ∇Weyl
α + ωAµ. (6.22)

Using the fact that the Weyl covariant derivative is transverse, traceless and obeys

Dαgµν = 0, Aµ is found to be

Aµ = uλ∇λuµ −
1

d− 1
uµ∇λuλ. (6.23)

One can rewrite the gradient terms in the stress energy tensor using this derivative,

such as σµν = D(µuν). The conservation equation for the stress tensor (6.1) maintains

its form and simply becomes DµT µν = 0.

6.2 Correspondence to Gravity

Having reviewed the relevant fluid topics, the next step is to examine the correspondence

to gravity.

We take a d-dimensional theory on a background B dual to string theory on an

asymptotically AdSd+1 spacetime; type IIB string theory on AdS5 × S5 dual to N = 4
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SYM is an example of this. In N = 4 SYM, there are two dimensionless parameters: the

’t Hooft parameter λ, and the rank of the gauge group N . When these two parameters

are large, the dynamics of the theory are described by classical gravity. Taking a

universal subsector of the theory allows us to focus on the dynamics of the energy-

momentum tensor. The dynamics in question are those of Einstein gravity in AdS

space, which has action

Sbulk =
1

16π

∫
dd+1x

√
−g(R− 2Λ), (6.24)

and for a metric gµν on the boundary B, the bulk geometry at zeroth order is

ds2 =
1

z2

(
dz2 + gµνdx

µdxν
)
, (6.25)

which can be thought of as asymptotically AdS. To look at hydrodynamics, one needs to

be in a long-wavelength regime, and the field theory must be in local thermal equilibrium

at a high temperature phase. If these constraints are satisfied, the boundary metric is

locally flat, as variations of the metric are small compared to the temperature scale.

When finding the hydrodynamic dual, curvature terms do not need to be considered

until second order in the gradient expansion, because these curvature terms are second

order derivatives.

The geometry dual to a thermal field theory in Minkowski space is that of an AdSd+1

Schwarzschild black hole, with the temperature given by T = dr+
4π

. This family of

solutions is characterized by the radius r+, unless it is boosted in which case it has d

parameters according to the boosts, with metric

ds2 =
dr2

r2f (br)
+ r2 (−f (br)uµuν + Pµν) dx

µdxν , (6.26)
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where f(r) = 1
1− 1

rd

. These boosts can also be written as

uν =
1√

1− β2
,

ui =
βi√

1− β2
,

β2 = βjβ
j,

(6.27)

with the βi’s being constant. The energy-momentum tensor of this metric is that of an

ideal conformal fluid, equation (6.19), with α = πd

16πG
(d+1)
N

. The solution is stationary and

so it is at a global thermal equilibrium, but the system must be perturbed in order to

describe hydrodynamics. This perturbation is achieved by allowing b and βi to depend

on the boundary coordinates. Provided that the variations of the metric caused by this

dependency remain small, a solution can be found.

The Weyl covariant form of the boosted AdSd+1 Schwarzschild black hole is used,

using ingoing Eddington–Finkelstein coordinates, where this transformation is shown

in detail in Appendix D.1, to ensure that the metric is regular at the horizon

ds2 = −2uµdx
µ (dr + rAµdx

µ) + r2 (1− f(rb))uµuνdx
µdxν + r2gµνdx

µdxν . (6.28)

Now, b and β are promoted to functions varying on the boundary coordinates, with

the resulting metric denoted as G
(0)
µν . With these fluctuations, G

(0)
µν is not necessarily

a solution to Einstein’s equations but in the case of slowly varying βi and b, as long

as they satisfy the equations of boundary fluid dynamics, we can say that G
(0)
µν is a

good approximate solution. Using a small parameter ε to keep track of the number of

derivatives, the solution up to second order will take the form of

G ≈ G(0)
µν (βi, b) + εG(1)

µν (βi, b) + ε2G(2)
µν (βi, b) , (6.29)

and, as βi and b are functions of εxµ, they can be expanded as

βi ≈ β
(0)
i + ε β

(1)
i ,

b ≈ b(0) + ε b(1).
(6.30)
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To aid with calculations, the background field gauge is chosen

Grr = 0, Gru ∝ uµ, T r
(
G(0)−1

µν G(n)
µν

)
= 0 ∀n > 0. (6.31)

Plugging (6.29) into Einstein’s equations gives d(d + 1)/2 dynamical equations and d

constraint equations. The metric solving these equations up to second order is of the

form

ds2 = −2S(r, x)uµ(x)dxµdr + χµν(r, x)dxµdxν , (6.32)

where S(r, x) and χµν(r, x) can be written as a perturbative expansion and are given

explicitly in equation (F.2). It is raised and lowered with the boundary metric

gµν = lim
r→∞

1

r2
χµν(r, x). (6.33)

To include Weyl covariance, a different form of the metric is used

ds2 = −2uµ(x)dxµ (dr + Bν(r, x)dxν) + Gµν(r, x)dxµdxν , (6.34)

where the explicit form of B and G are written in equation (F.3). The boundary

energy-momentum tensor can now be found using the method of Brown and York, as

summarized in section 5.2. The metric used in these calculations is the metric found

on the hypersurface at r = Λc.

This technique is quite powerful for finding higher order perturbations when so-

lutions are known on one side of the correspondence. In section 7.3, we review an

application of this correspondence together with the Ads/Ricci-flat correspondence.
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7 Myers–Perry Black Holes as Blackfolds

This section consists of the main work of this thesis. We apply the blackfold approach

to the Myers–Perry black hole, verifying the metric and energy-momentum tensor for

the ideal case. We then take the metric to first order and compare the metric with

known results. We end the section by reviewing second order corrections found in [3].

We start off by explaining the conditions under which the blackfold approach can

be applied to Myers–Perry black holes. The first step is identifying the different scales,

s and S as described in section 4. One of the black hole’s angular momenta is chosen

to act as the larger scale, while the radius acts as the smaller scale. In the case of the

doubly-spinning Myers–Perry black hole, equation (3.9), defining a = a1 and b = a2, a

is chosen which gives the relation a � r+. The thickness of the disk r+ is found by

taking the largest real root of of the denominator of grr. The same relation is obtained

for the singly-spinning case, equation (3.7). Taking this limit, the black hole flattens

out in the worldvolume directions into a rotating disk of larger radius a, fig. 3. The

Figure 3: The ultra-spinning Myers–Perry black hole. On the left is the side view and
on the right side is the top view.

center of the disk is at θ = 0 and the boundary is at θ = π
2
. A new variable ρ is defined

as ρ = a sin θ and can be seen at the radius of the disk at each θ. For the rest of our
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calculations, we will focus on the singly-spinning case

ds2 = − dt2 +
µ

rnΣ
(dt− a sin2 θdφ)2 +

Σ

∆
dr2 + Σdθ2 + (r2 + a2) sin2 θdφ2 (7.1)

+ r2 cos2 θdΩ2
n+1,

Σ = r2 + a2 cos2 θ, ∆ = r2 + a2 − µ

rn
.

7.1 Ideal Order

In this section we show the calculations for the ultra-spinning limit in the ideal or-

der case, following the work in [6], and calculate the energy-momentum tensor using

linearized gravity and the method of Brown and York.

We begin by applying the ultra-spinning limit, r+ � a. The thickness of the disk

at each θ is given by ro = r+ cos θ, which turns the limit into ro � a cos θ. We find r+

by taking the largest root of ∆

0 = r2
+ + a2 − µ

rn+
, (7.2)

which allows µ, the mass parameter, to be written as:

µ = rn+
(
r2

+ + a2
)
,

µ =
rno

cosn θ

(
r2
o

cos2 θ
+ a2

)
.

(7.3)

In order for the blackfold approach to be valid, ro must vary on scales much larger than

its magnitude

ro �
1

| r′′o |
, (7.4)

=⇒ ro � a cos2 θ

where r′′o is the curvature. In order to achieve the metric of a black brane everywhere

on the horizon, the limit r � a cos θ must also be taken. We introduce ε(r, θ) = r
a cos θ

,
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which we use as an expansion parameter. With this criteria, ∆, µ and Σ become

∆→ a2 − µ

rn
,

µ→ a2rno
cosn θ

,

Σ→ a2 cos2 θ,

(7.5)

and Σ
∆

simplifies to
Σ

∆
→ a2 cos2 θ

a2 − a2rno
rn cosn θ

=
cos2 θ

1− rno
rn cosn θ

. (7.6)

As discussed in section 4, locally a blackfold gives the metric of a boosted brane. In

this case, we fix θ → θ∗, or alternatively ρ → ρ∗. In order to put the metric in a form

resembling the familiar Schwarzschild metric, we make the changes of variables z = ρ∗φ

and r cos θ∗ → r, which gives

ds2 = −dt2 + dz2 + dρ2 +
rn0
rn

(
dt

cos θ∗
− tanθ∗dz

)2

+
dr2

1− rn0
rn

+ r2dΩ2
(n+1). (7.7)

As expected, this metric corresponds to that of a boosted black brane (4.2) with veloc-

ities given by:

ut = secθ∗,

uz = −tanθ∗.
(7.8)

This can also be written in the form of a Lorentz boost: t
′

z′

...

 =

 t

z

...


 γ −γv 0

−γv γ 0

0 0 ...

 (7.9)

with γ = 1√
1−v2 . From this we see γ = sec θ∗ and v = sin θ∗.

Now, we examine the metric in the region a� r � ro. This is done by taking the
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asymptotic limit r � ro, which results in the metric

ds2 = −dt2 + dz2 + dρ2 +
rn0
rn

(
dt

cos θ∗
− tanθ∗dz

)2

+

(
1 +

rn0
rn

)
dr2 + r2dΩ2

(n+1). (7.10)

As previously mentioned, in the overlap region the Myers–Perry black hole acts as a

fluid which can be shown by looking at the stress energy tensor and comparing it to

that of a perfect fluid, which is what we will do next.

7.1.1 Linearized Gravity

In this section we use linearized gravity to compute the stress energy tensor as detailed

in section 5.1 and compare it to that of a perfect fluid. Rather than using (7.10), it

is convenient to switch to isotropic coordinates before taking the asymptotic limit, for

computational reasons. This transformation is detailed in Appendix A.

n = 1 case

We take the metric (7.7) and make the transformation r → r
(
1 + ro

4r

)2
, yielding the

metric

ds2 = −dt2 +dρ2 +dz2 +
r0

r
(
1 + ro

4r

)2

(
dt

cos θ∗
− tanθ∗dz

)2

+
(

1 +
ro
4r

)4 (
dr2 + dΩ2

(n+1)

)
.

(7.11)

Now expanding in the limit of r � ro and switching to Cartesian gives

ds2 = −dt2+dρ2+dz2+
ro
r

(
dt

cos θ∗
− tanθ∗dz

)2

+
(

1 +
ro
r

) (
dx2 + dy2 + dw2

)
, (7.12)

where r =
√
x2 + y2 + w2. To find the energy-momentum tensor through linearized

gravity, we split up the metric into gµν = ηµν + hµν . The perturbation hµν is

hµν =
r0

r

(
dt

cos θ∗
− tanθ∗dz

)2

+
ro
r

(
dx2 + dy2 + dw2

)
. (7.13)
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To apply the Lorentz gauge, which will give an energy-momentum tensor of (5.7), we

need to find h̄µν , which requires the trace h given by

h =
ro
r

(
− 1

cos θ∗2
+ tan θ2

∗ + 3

)
= 2

ro
r
. (7.14)

Using equation (5.3), h̄µν is found to be

h̄µν =
ro
r

[(
1

cos2 θ∗
+ 1

)
dt2 +

(
tan2 θ∗ − 1

)
dz2 − 2

tan θ∗
cos θ∗

dzdt− dρ2

]
. (7.15)

Before finding the fluid tensor, the gauge condition (5.6) must be verified. Seeing as h̄

only depends on r, and there is no h̄rr component, the gauge condition is satisfied. For

example, for µ = t we have

∂νhtν = 0,

ηtr∂rhtt + ηzr∂rhzt = 0.
(7.16)

The fluid tensor is now found by taking the Laplacian of h̄. Using the property

∆(D−1)r
−(D−3) = −(D − 3)Ω(D−2)δ

D−1(r), (7.17)

where D=n+3 [6]. The Laplacian of h̄µν is

∂a∂
ah̄µν = −Ω(2)roδ

3(r)

[(
1

cos2 θ∗
+ 1

)
dt2 +

(
tan2 θ∗ − 1

)
dz2 (7.18)

− 2
tan θ∗
cos θ∗

dzdt− dρ2

]
= −Ω(2)roδ

3(r)
(
(u2

t − γtt)dt2 + 2uzutdzdt+ (u2
z − γzz)dz2 − dρ2

)
= −Ω(2)δ

3(r)ro(uµuν − γµν), (7.19)

giving an energy-momentum tensor of

Tµν =
1

16π
δ3(r)Ω(2)ro(uµuν − γµν). (7.20)

Intuitively, the delta means that we are looking from asymptotically far away, so we
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have an infinitesimal black hole.

Now we compare to the perfect fluid tensor, given by equation (4.9). In this case

γab, the worldvolume metric, is the Minkowski metric. When n = 1, the perfect fluid

tensor is

Tab =
Ω(2)ro
16π

(uaub − γab), (7.21)

which matches the result of (7.20).

General n case

Examining the n = 1 and n = 2 cases, which we compute in appendix B, a pattern

emerges. In arbitrary dimensions, starting with

ds2 = −dt2 + dρ2 + dz2 +
rno
rn

(u0dt+ u1dz)2 +

(
1− rno

rn

)
dr2 + r2dΩ(n+1), (7.22)

we would expect hµν to look like

hµν =
rno
rn

(u0dt+ u1dz)2 +
1

n

rno
rn
(
dx2

0 + ...+ dx2
n+1

)
, (7.23)

which gives

h̄µν =
rno
rn

(u0dt+ u1dz)2 +
1

n
dt2 − 1

n
dz2 − 1

n
dρ2, (7.24)

and

Ttt = n
1

16π
δn+2(r)Ω(n+1)r

n
o

(
u2

0 +
1

n

)
, (7.25)

Ttz = n
1

16π
δn+2(r)Ω(n+1)r

n
ou0u1,

Tzz = n
1

16π
δn+2(r)Ω(n+1)r

n
o

(
u2

1 −
1

n

)
,

Tρρ = −n 1

16π
δn+2(r)Ω(n+1)r

n
o

1

n
,

which matches (4.9). Increasing the worldvolume dimensions has no effect on the result.

One can see this first by noting that the energy-momentum tensor explicitly depends on

n but not on p. The second way to see this is by looking at the computation of h; because
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of the property uau
a = −1, the calculation of h will simply yield rno

rn

(
1
n
(n+ 2)− 1

)
, no

matter the dimension of p. Knowing this, it is easy to see by following the previous

calculations that p does not have an effect anywhere else.

7.1.2 Brown–York

The stress-energy tensor can also be calculated through the method of Brown and

York as detailed in section 5.2. This method requires calculating the stress energy

tensor on a quasilocal surface. In this case, this surface ∂B is achieved by taking

the directions transverse to the worldvolume coordinates very large, as was done to

the metric previously when taking the asymptotic limit resulting in (7.10). Using the

equation (5.20) to compute the stress energy tensor requires computing the extrinsic

curvature Kµν (5.21). To calculate the metric hµν (not to be confused with hµν from

the linearized gravity section) on the surface, the vector normal to the surface must be

found, which only has the radial r component. This is found through:

Nµ =
dr

| N |
,

gµνNµNν = 1,

1

| N |2
1

1− rno
rn

= 1,

Nµ =
dr√

1− rno
rn

,

(7.26)

which yields a metric of

hµν = gµν −NµNν ,

hµν = −dt2 + dρ2 + dz2 +
rn0
rn

(
dt

cos θ∗
− tanθ∗dz

)2

+ r2dΩ2
(n+1).

(7.27)

We take the n = 1 for the remainder of the calculations. The metric (7.27) is equivalent

to projecting the spacetime metric onto the surface while keeping r constant, which is
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to say using the embedding map

X t = t, Xz = z, Xρ = ρ, Xr = R, Xω = ω, Xω2 = ω2. (7.28)

The form of hµν yields hµν = δµν . In addition, using the fact that Nµ has only one

component, Nr = 1√
1− ro

r

, and that r is constant on the surface, the equation for

extrinsic curvature (5.21) simplifies to:

Kµν = − 1√
1− ro

r

Γrµν . (7.29)

The Christoffels symbols are first calculated using gµν and then fixed with r → R:

Γrtt =

(
1− ro

R

)
rosec

2θ∗

2R2
,

Γrzt = −
(
1− ro

R

)
rosecθ∗tanθ∗

2R2
,

Γrzz =

(
1− ro

R

)
rotan

2θ∗

2R2
,

Γrrr =
ro

2R2
(
1− ro

R

) ,
Γrωω = −R + ro,

Γrω2ω2
= (−R + ro) sin2 φ.

(7.30)

K
(0)
µν is calculated from flat space, which is achieved by setting ro = 0 in gµν which

gives:

h(0)
µν = −dt2 + dρ2 + dz2 + r2dΩ2

(2). (7.31)

Now the normal vector is

N (0)
µ = dr, (7.32)

and the equation for K
(0)
µν is

Kµν = Γ(0)r
µν , (7.33)
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with Christoffel symbols:

Γrωω = −R,

Γrω2ω2
= −R sin2 φ.

(7.34)

The Brown–York tensor is

T ab = − 1

8π

(
Khab −Kab −

(
K(0)hab −K(0)ab

))
. (7.35)

which, plugging in the components found, is

T tt =
1

8π

ro (1 + sec2 θ∗)

2R2
,

T zt =
1

8π

ro sec θ∗ tan θ∗
2R2

,

T zz = − 1

8π

ro (1− tan2 θ∗)

2R2
,

T ρρ = − 1

8π

ro
2R2

,

T ωω = − 1

8π

(
ro

2R4
+
ro (−2R + ro)

2R4

)
,

T ω2ω2 = − 1

8π

(
ro csc2 θ∗

2R4
+
ro (−2R + ro) csc2 θ∗

2R4

)
.

(7.36)

The next step is to integrate over S2:

T ab =

∫ 2π

0

∫ π

0

T (BY )abR2 sinωdωdω2. (7.37)

As the asymptotic limit is being taken, R → ∞, after integration the T ωω and T ω2ω2

components vanish. In the end, the energy-momentum tensor is

T tt =
roΩ(2)

16π

(
1 + sec2 θ∗

)
,

T zt =
roΩ(2)

16π
sec θ∗ tan θ∗,

T zz = −
roΩ(2)

16π

(
1− tan2 θ∗

)
,

T ρρ = −
roΩ(2)

16π
,

(7.38)
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which matches the stress-energy tensor for a perfect fluid (4.9) in n = 1 dimensions

T ab =
Ω(2)

16π
ro
(
uaub − γab

)
. (7.39)

With these calculations, we have shown explicitly that, in the ideal case, the energy-

momentum tensor of the ultra-spinning Myers–Perry black hole is that of a perfect

fluid.

7.2 First Order

7.2.1 Derivation

Starting again with the singly-spinning Myers–Perry black hole (3.7), the metric is

taken to first order in ε(r, θ). Following the same procedure as the ideal order case

yields the same results, as the higher order terms are all second order. However, there

is a change when taking the coordinate transformations. The procedure is the same

until the point where the metric is in the form

ds2 = − dt2 + a2 cos2 θdθ2 + a2 sin2 θdφ2 +
rno

rn cosn θ

(
dt

cos θ
− asin2 θ

cos θ
dφ

)2

(7.40)

+ cos2 θ

(
dr2

1− rno
rn cosn θ

+ r2dΩn+1

)
.

First, taking r′ = r cos θ, we have:

r =
r′

cos θ
, (7.41)

dr =
dr′

cos θ
+ rdθ

sin θ

cos2 θ
.
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The next transformation we take is ρ = a sin θ, which gives:

sin θ → ρ

a
, (7.42)

cos θ →, 1√
1− ρ2

a2

,

ε(r, θ)→ r

a
√

1− ρ2

a2

= ε(r, ρ).

Now our expansion parameter is in terms of ρ rather than θ. We do calculations in

terms of ρ, but will often write the results in terms of cos θ and sin θ for clarity. When

taking the transformation above, dr′2 becomes

dr′2 =
dr2

1− ρ2

a2

+ 2rdrdρ
ρ

a2
(

1− ρ2

a2

)2 + dρ2 r2ρ2

a2
(

1− ρ2

a2

)3 . (7.43)

We can see that the dρ2 term is second order, so we neglect it. We plug this into the

metric, but rewrite dr′ as dr and write everything in terms of sin θ and cos θ:

ds2 = − dt2 + a2 sin2 θdφ2 + dρ2 +
rno
rn

(
dt

cos θ
− asin2 θ

cos θ
dφ

)2

(7.44)

+
dr2

1− rno
rn

+ 2
r sin θdrdρ(

1− rno
rn

)
a cos2 θ

+ r2dΩn+1.

Compared to the ideal order calculations, the next change is that there is another

higher order variable that must be taken into consideration. When doing ideal order

calculations, we took θ, and therefore ρ, to be constant. At first order, this gives rise

to higher order corrections in cos θ∗ and sin θ∗:

ρ∗ = a sin θ∗, ρ = a sin θ,

sin θ = sin θ∗ +
ρ− ρ∗
a

,

sin2 θ = sin2 θ∗ + 2 sin θ∗
ρ− ρ∗
a

+

(
ρ− ρ∗
a

)2

,

cos2 θ = cos2 θ∗ − 2 sin θ∗
ρ− ρ∗
a
−
(
ρ− ρ∗
a

)2

.

(7.45)
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Now, in addition to ε(r, ρ), the metric will be expanded in terms of ρ−ρ∗
a

. To simplify,

we make the change of coordinates ρ − ρ∗ → ρ. Before expanding the metric in ρ, we

must take into account the definition of ro = r+

√
1− ρ2

a2 . As it also depends on ρ, we

make the transformation back to r+

ds2 = − dt2 + a2 sin2 θdφ2 + dρ2 +
rn+ cosn θ

rn

(
dt

cos θ
− asin2 θ

cos θ
dφ

)2

(7.46)

+
dr2

1− rn+ cosn θ

rn

+ 2
r sin θdrdρ(

1− rno
rn

)
a cos2 θ

+ r2dΩn+1.

Now, we take ρ to be constant, and making the corrections listed above, the metric

becomes

ds2 = − dt2 + a2
(

sin2 θ∗ + 2 sin θ∗
ρ

a

)
dφ2 + dρ2 (7.47)

+
rn+
rn

(
dt2(

cos2 θ∗ − 2 sin θ∗
ρ
a

)1−n
2

+
a2
(
sin2 θ∗ + 2 sin θ∗

ρ
a

)2(
cos2 θ∗ − 2 sin θ∗

ρ
a

)1−n
2

dφ2

− 2
a
(
sin2 θ∗ + 2 sin θ∗

ρ
a

)(
cos2 θ∗ − 2 sin θ∗

ρ
a

)1−n
2

dtdφ

)

+
dr2

1− rn+(cos2 θ∗−2 sin θ∗
ρ
a)

n
2

rn

+ 2
r
(
sin θ∗ + ρ

a

)
drdρ(

1− rn+(cos2 θ∗−2 sin θ∗
ρ
a)

n
2

rn

)
a
(
cos2 θ∗ − 2 sin θ∗

ρ
a

) + r2dΩn+1. (7.48)
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Now we expand in ρ and get

ds2 = − dt2 + a2
(

sin2 θ∗ + 2 sin θ∗
ρ

a

)
dφ2 + dρ2 (7.49)

+
rn+
rn

((
cosn θ∗
cos2 θ∗

+ (2− n)
ρ

a
sin θ∗

cosn θ∗
cos4 θ∗

)
dt2

+ a2

(
cosn θ∗
cos2 θ∗

sin4 θ∗ + sin3 θ∗
ρ

a

cosn θ∗
cos4 θ∗

(
4 cos2 θ + (2− n) sin2 θ∗

))
dφ2

− 2a

(
sin2 θ

cosn θ∗
cos2 θ∗

+
ρ

a

(
2 sin θ∗

cosn θ∗
cos2 θ∗

+ (2− n) sin3 θ∗
cosn θ∗
cos4 θ∗

))
dtdφ

)

+
1(

1− cosn θ∗
rn+
rn

)(1− ρ

a

n sin θ∗ cosn θ∗
rn+
rn

cos2 θ∗

(
1− cosn θ∗

rn+
rn

))dr2

+ 2
r

a

1

1− cosn θ∗
rn+
rn

(
sin θ∗
cos2 θ∗

+
ρ

a

(
n sin2 θ∗ cosn θ∗

rn+
rn

2a cos4 θ∗

(
1− cosn θ∗

rn+
rn

) +
1 + 2 sin θ∗

cos2 θ∗

a cos2 θ∗

))
drdρ

+ r2dΩn+1.

The grρ term contains second order terms that we drop, and we transform r+ back to

ro:

ds2 = − dt2 + a2
(

sin2 θ∗ + 2 sin θ∗
ρ

a

)
dφ2 + dρ2 (7.50)

+
rno
rn

((
1

cos2 θ∗
+ (2− n)

ρ

a

sin θ∗
cos4 θ∗

)
dt2

+ a2

(
sin4 θ∗
cos2 θ∗

+
ρ

a

sin3 θ∗
cos4 θ∗

(
4 cos2 θ + (2− n) sin2 θ∗

))
dφ2

− 2a

(
sin2 θ

cos2 θ∗
+
ρ

a

(
2

sin θ∗
cos2 θ∗

+ (2− n)
sin3 θ∗
cos4 θ∗

))
dtdφ

)

+
1(

1− rno
rn

)(1− ρ

a

n sin θ∗
rno
rn

cos2 θ∗
(
1− rno

rn

))dr2 + 2
r

a

1

1− rno
rn

sin θ∗
cos2 θ∗

drdρ+ r2dΩn+1.

This metric indeed solves Einstein’s equations and yields Rµν = 0. This metric is also

retrieved when taking the metric (7.44) and performing a Taylor expansion around the

point ρ∗. Because of this, we can say that the metrics (7.44) and (7.50) are equivalent.
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7.2.2 Hydrodynamic Perturbations of Branes

Although finding higher order corrections as done in the previous section is adequate,

there are methods to find corrections for general metrics in the near region. One such

method is explored in [1]. The idea behind it is that black branes, having thermo-

dynamic behaviour, should be describable by an effective hydrodynamic theory. The

paper finds the correction terms through a generic hydrodynamic-type perturbation of

the black brane. As stated previously, the energy-momentum tensor of a boosted black

brane is asymptotically that of a perfect fluid, depending on the pressure P , and the

energy density ε. These quantities can be found through the temperature T of the

black hole and the expansion parameter is proportional to T−1. For a vacuum brane,

ro is the inverse of T , so ro can be used for the expansion, as is done in this thesis.

In this perturbation ro and ua are no longer uniform, as opposed to at ideal order,

varying with respect to the worldvolume coordinates σa and become ro(σ) and ua(σ).

Up to first order perturbations, splitting the velocities into the t component and the

remaining p worldvolume components, they can be written as

ut = 1 +O(ε2),

ub = εσa∂au
b +O(ε2),

ro = ro + εσa∂aro +O(ε2),

(7.51)

where ε is a derivative counting parameter. With these perturbations, the metric is not

guaranteed to be Ricci flat, so a term fµν is added to compensate. The components

of fµν are found by ensuring that Einstein’s equations are satisfied up to first order in

ε. In order to guarantee horizon regularity, a coordinate transformation to Eddington–

Finkelstein coordinates is made. Then, the metric is switched back to Schwarzschild

coordinates to ensure asymptotic flatness, which also fixes any remaining constants.

The work done in this paper is generalized in [2] where both the fluid corrections and

extrinsic corrections are given. In this paper, the fluid correction terms are shown to
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be

fab(r) = ϑuaubf1(r) +

(
σab +

1

p
ϑPab

)
f2(r),

far(r) = ϑuaf3(r) + u̇af4(r),

frr(r) = ϑ
1

1− rno
rn

fr(r),

(7.52)

where p is the dimension of worldvolume coordinates, ϑ is the divergence of the fluid’s

velocity, σab is the shear of the velocity, and Pab is the orthogonal projector given by

ϑ = Dau
a,

σab = P c
aP

d
bD(cud) −

1

p
ϑPab,

Pab = γab + uaub.

(7.53)

The functions fi are

f1(r) =
ro

n(n+ 1)

(
2− (n+ 2)

rno
rn

)
ln

(
1− rno

rn

)
, (7.54)

f2(r) =
2ro
n

ln

(
1− rno

rn

)
, (7.55)

f3(r) =
r0

n+ 1

1

1− rno
rn

[(
n+ 1

n

rno
rn
− 1

n

)
ln

(
1− rno

rn

)
− rno
rn

(
n
r∗
ro

+ 1

)]
+ δ(n−1),

(7.56)

f4(r) =
r∗ − r
1− rno

rn

− δ(n−1)ro ln
r

ro
, (7.57)

fr(r) =
ro

n+ 1

1

1− rno
rn

rno
rn

(
2− ln

(
1− rno

rn

))
, (7.58)

where

r∗ =

∫
dr

1− rno
rn

. (7.59)

In order to compare to the results we achieved in the previous section, we need to provide

the worldvolume metric γab and the boosts ua of the ultra-spinning Myers–Perry black
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hole:

γab = −dt2 + ρ2dφ2 + dρ2, (7.60)

ut =
1√

1− ρ2

a2

, uφ = − ρ2

a
√

1− ρ2

a2

.

Plugging these values in, ϑ and σab turn out to be zero. To see this, the Christoffel

symbols are calculated with the worldvolume metric. The only non-zero terms are

Γφφρ =
1

ρ
,

Γρφφ = −ρ,
(7.61)

which gives

ϑ = ∂au
a + Γaaλu

λ,

ϑ = Γttλu
λ + Γφφλu

λ + Γρρλu
λ,

ϑ = 0,

(7.62)

so σab simplifies to

σab = P c
aP

d
bD(cud), (7.63)

which also gives zero. In the end, the only nonzero perturbation term turns out to be

fra = u̇a
r∗ − r
1− rno

rn

− δ(n−1)∂aro log

(
r

ro

)
, (7.64)

where u̇a is given by

u̇a = ubDbua. (7.65)

Having only t and φ components of ua gives

u̇a = utDtua + uφDφua,

u̇a = −utΓλtauλ − uφΓλφauλ.
(7.66)
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The only non-zero component turns out to be

u̇ρ = − sin θ

a cos2 θ
= − ρ

a2

1

1− ρ2

a2

. (7.67)

This gives only an frρ perturbation term:

frρ = − ρ

a2

1

1− ρ2

a2

(
r∗ − r
1− rno

rn

− δ(n−1)ro log

(
r

ro

))
. (7.68)

For n = 1 we have

frρ = − ρ

a2

1

1− ρ2

a2

(
ro log (r − ro)

1− ro
r

− ro log

(
r

ro

))
. (7.69)

The need for the extra log term in the n = 1 case becomes obvious when expanding

with r →∞

frρ = −ro
ρ

a2

1

1− ρ2

a2

(
log r − log r + log ro +

ro
r

log r
)

= −ro
ρ

a2

1

1− ρ2

a2

(
log ro −

ro
r

log r
)
.

(7.70)

Without the extra term the log(r) part would blow up as r →∞. The other term log(r)
r

also goes to zero as r →∞.

With the correction, the full metric is

ds2 =

(
γab +

rno
rn
uaub

)
dσadσb +

dr2

1− rno
rn

(7.71)

+2u̇ρ

(
r∗ − r
1− rno

rn

− δn,1ro log
r

ro

)
drdρ+ r2dΩ2

(n+1).

This is the same as our previous result, equation (7.44), except with extra terms

− 2
ρ

a2

1

1− ρ2

a2

(
r∗

1− ro
r

− δ(n−1)ro log

(
r

ro

))
. (7.72)
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This difference is not a problem if the metrics can be shown to be the same with a

gauge transformation. To verify that this is the case, we look at the entropy. As stated

in [2], the entropy of the corrected metric should be the same as for the ideal case. The

entropy is proportional to the area [22]

A =

∫
(Sn+1)∩W

dD−2x
√

det(gc), (7.73)

where gc is the metric at constant t and r, (Sn+1)∩W is the surface over the worldvolume

and the polar coordinates, and we integrate over the remaining D − 2 dimensions.

The entropy is then calculated using S = 1
4
A. As we are calculating the area of the

event horizon, we send r → ro, but in Schwarzschild coordinates there is a coordinate

singularity. One trick to get around this is to set the dr component to 0. At ideal order

in n = 1 dimensions, first integrating over the angular part dΩn+1, we have

S = −1

4
4π

∫ 2π

0

dφ

∫ a

0

dρ r2
oρ

1√
1− ρ2

a2

= −πr2
+

∫ 2π

0

dφ

∫ a

0

dρ ρ

√
1− ρ2

a2

=
2

3
π2r2

+a
2.

(7.74)

Because the only gauge term is in grρ, and we are setting dr = 0, the area and entropy

are trivially the same. More formally, we would have to switch to Eddington–Finkelstein

coordinates to work around the singularity issue. The area of an object does not change

based on the coordinates, so after this transformation the result should be the same.

By comparing the entropy we confirm that our metric matches that of [1], so we can

use this paper to find the energy-momentum tensor up to first order

Tab = εuaub + PPab − ζθPab − 2ησab. (7.75)

In our case, because θ and σab are zero, it turns into that of a perfect fluid, as was in

the ideal case.

We will make a brief note about the Brown–York calculation for the energy-momentum
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tensor. In the ideal order case, one could find Kµν through a simplified formula (C.1).

However, in the first order case, because of the drdρ term, it is not as simple, and we

recommend calculating hµν using (2.12). In this case, the hrr component is not guar-

anteed to be zero, and instead, one must check that it tends to zero as r → ∞. One

can also verify

Nµhµν = 0, (7.76)

where Nµ is the normal to the worldvolume, to ensure hµν is valid.

7.3 Second Order: The AdS Ricci-flat Correspondence

Due to insufficient time, we were unable to compute the second order ultra-spinning

Myers–Perry black hole metric. Instead, we turn to [3], in which second order brane

perturbations are found by first applying the fluid/gravity correspondence, then the

AdS/Ricci-flat correspondence. We expect that solutions found through this method

should match what we would find by going to second order in the perturbative expansion

of the ultra-spinning Myers–Perry black hole in the near-horizon region. In order to

compute this second order metric using this method, only the induced metric γab and

the velocities ua must be provided (7.60). Using this, one can find the second order

Ricci-flat metric of a perturbed black p-brane.

7.3.1 The Correspondence

In [3], the AdS/Ricci-flat correspondence is presented, which is the duality between

solutions in Ricci-flat spacetimes and asymptotically AdS spacetimes, which has appli-

cations in studying fluid metrics. The paper uses (µ, ν) indices and functions with hats

(ie - f̂) to indicate AdS quantities, and (a, b) indices and functions with tildes (ie - f̃)

to indicate Ricci-Flat quantities.

The correspondence is applicable to solutions Gµν in AdS space in d+ 1 dimensions

that satisfy Einstein’s equations of the form

ds2
Λ = dŝ2

p+2 (r, x; d) + e2φ̂(r,x;d)/(d−p−1)dȳ2, (7.77)
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where Rµν = −d
`
Gµν and Λ = −d(d−1)

2`2
, and ` is the AdS radius. The solution depends

on a scalar field φ̂ (r, x; d), and (p + 2)-dimensional metric ĝ (r, x; d) (corresponding to

dŝ2
p+2 in (7.77)), which can both explicitly depend on the dimensions d. One can take

this solution and construct a Ricci-flat solution by taking ĝ and φ̂ and setting d = −n

g̃ (r, x;n) = ĝ (r, x;−n) φ̃ (r, x;n) = φ̂ (r, x;−n) . (7.78)

This scalar field φ̃ (r, x;n) and (p+2)-dimensional metric g̃ (r, x;n), again both able

to depend explicitly on n, yield a Ricci-Flat solution (Rab = 0), in D = p + n + 3

dimensions, of the form

ds2
0 = e2φ̃(r,x;n)/(d−p−1)

(
ds̃2

p+2 (r, x;n) + `2dΩ2
n+1

)
. (7.79)

The correspondence also goes the other way, starting with Ricci-Flat space and taking

n = −d to arrive at a solution with negative cosmological constant. In this case, ȳ

denotes a (d−p−1)-torus but can be generalized to any (d−p−1)-dimensional compact

Ricci-flat manifold. Likewise, Ω denotes a unit (n + 1)-sphere, but can be generalized

to any (n+1)-dimensional compact Einstein manifold with constant positive curvature.

An Einstein manifold is a manifold with Ricci tensor proportional to its metric, Ricci-

flat manifolds being included in this definition.

One example of its application is to that of a planar AdS black brane

ds2
Λ =

1

r2

(
−f(r)dτ 2 + δijdx

idxj + d~y2 +
dr2

f(r)

)
, (7.80)

with f(r) = 1− rd/rdo , and ȳ denoting a torus. Applying the correspondence maps

φ̂ = − ln(r) (d− p− 1)→ φ̃ = ln(r) (n+ p+ 1), (7.81)

dŝp+2 =
1

r2

(
−f(r)dτ 2 + δijdx

idxj +
dr2

f(r)

)
→ ds̃p+2 =

1

r2

(
−f(r)dτ 2 + d~x2 +

dr2

f(r)

)
,

which gives the Schwarzschild p-brane in Ricci-flat space

ds2
0 = −f(r)dτ 2 +

dr2

f(r)
+ δijdx

idxj + r2dΩ2
n+1, (7.82)
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with f(r) = 1− rno /rn.

7.3.2 Derivation of Second Order Brane

The gravity/fluid correspondence, reviewed in section 6, can be used to find solutions

to Einstein’s equations in AdS space. At zeroth order in derivatives, these solutions

describe planar black holes (7.80), which are given by a velocity uν and black hole

temperature T . In [3] the metric is presented with derivatives up to second order in uν

and T on the AdS side, then the correspondence is used to find the metric in Ricci-Flat

space. The boundary metric is chosen to be flat. The AdS metric is

ds2
Λ = −2uµdx

µ (dr + Vνdxν) +Gµνdx
µdxν . (7.83)

The full form of the metric is shown [3] but for the purpose of this thesis, only the

relevant terms, meaning terms relevant for the ultra-spinning Myers–Perry black hole,

of the Ricci-flat metric will be shown explicitly.

On the Ricci-flat side, a configuration with a (d−p−1)-torus symmetry is required,

with uµ = (−ũa,~0) and a in (0, ..., p), (the negative sign is for in-going Eddington–

Finkelstein coordinates). In this case, Gyy is

Gyy = e2φ̂(r,x;d)/(d−p−1), (7.84)

which are the components of Gµν along the homogeneous directions ~y. In general, the

shear σ, and divergence ϑ of the fluid are not zero, but for the velocities we are interested

in (of the ultra-spinning Myers–Perry black hole), they are. These properties simplify

the metric significantly. Making the change n = −d and writing the components in
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terms of ũa rather than uµ, the Ricci-flat metric is given by

ds2
0 =

1

Gyy

(
2ũadx

a

(
−dr
r2

+ Vbdxb
)

+Gabdx
adxb + dΩ2

n+1

)
,

Gyy =
1

r2
,

Gab =
1

r2
P̃ab − ω̃aλω̃λb ,

R = −2(n+ 1)∂aA
a − (n+ 2)(n+ 1)AbA

b,

Va =
1

r
Aa −

1

(n+ 2)

[
Dλω

λ
a +

Rũa
2(n+ 1)

]
+

ũa
2( r

ro
)n

[
1

r2

(
1−

(
r

ro

)n)
− 1

2
ω̃αβω̃

αβ

]
,

ω̃ab = P̃a
α
P̃b

β
∂[αũβ],

Dλω
λ
a = (∂c + (n+ 3)Ac) ω̃ac,

(7.85)

where Aa = ũc∂cũa acts as a connection for the local conformal symmetry and ω̃ab is

the vorticity. All together, the Ricci-flat metric is that of a slowly fluctuating black

p-brane, also known as a blackfold, which is what was expected to be found. One can

find the energy-momentum tensor Tµν in AdS space and map it to the tensor T̃ab in

Ricci-flat space by taking Tµν → −T̃ab, d → −n and ua → −ũa. The tensor takes the

form of a perfect fluid tensor but with extra perturbation terms

T̃ab =ε̃ũaũb + P̃ P̃ab − 2η̃σ̃ab − ζ̃ θ̃P̃ab (7.86)

+ 2η̃τ̃ω

[
P̃ c
a P̃

d
b ũ

e∂eσ̃cd −
θ̃σ̃ab
n+ 1

+ 2ω̃c(aσ̃b)c

]
+ ζ̃ τ̃ω

[
ũc∂cθ̃ +

1

n+ 1
θ̃2

]
P̃ab

− 2η̃ro

[
P̃ c
a P̃

d
b ũ

ε∂εσ̃cd +

(
2

p
+

1

n+ 1

)
θ̃σ̃ab + σ̃caσ̃cb +

σ̃2

n+ 1
P̃ab

]
− ζ̃r0

[
ũc∂cθ̃ +

(
1

p
+

1

n+ 1

)
θ̃2

]
P̃ab.

where η̃ and ζ̃ are the shear and bulk viscosities, σ̃µν is the shear, ϑ̃ = Daũ
a is the fluid

divergence, P̃ab is the orthogonal projector, P̃ is the pressure, ε̃ is the energy density,

and the value of τ̃ω = ro
n
H−2/n−1, where this function is shown in (F.10). The equation
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of state is given by

ε̃ = −(n+ 1)P̃ , ζ̃ = 2η̃

(
1

p
+

1

n+ 1

)
. (7.87)

As mentioned before, for the velocities in question of the ultra-spinning Myers–Perry

metric (7.60), σ̃ab and ϑ̃ are zero, which turns the energy-momentum tensor into the

ideal fluid tensor, yet again.

As this method works for general boosted branes, we reiterate our expectation that

the procedure detailed should yield the same solution as the second order the ultra-

spinning Myers–Perry black hole.
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8 Gregory–Laflamme instability

When talking about higher dimensional black branes, the Gregory–Laflamme instability

often comes up. This instability, originally explored in [23], arises when perturbing

higher dimensional black p-branes and demonstrates that they are unstable. We begin

by going over the general procedure applied to string theory. Next, we review the black

ring case and discuss the results of simulations. We finish by comparing the instability

to hydrodynamic perturbations.

8.1 Application to String Theory

The question of stability in black p-branes is especially relevant for string theory, so it

is instructive to look at low energy 10-dimensional string theory:

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2dΩ2

d−2 + dxidxi, (8.1)

where V (r) = 1 − (r+/r)
d−3, 4 ≤ d ≤ 10 and i runs from 1 to (10 − d). The metric is

then perturbed with hµν

gµν → gµν + hµν . (8.2)

We are looking at solutions to the vacuum Einstein equations, meaning Rµν = 0,

which, when choosing the transverse trace-free (de Donder) gauge haa = hab;a = 0, gives

the following equation for the perturbation:

∆Lhµν =
(
δaµδ

b
ν�+ 2Rab

µν

)
hab, (8.3)

where ∆L is known as the Lichnerowicz operator and � is the d’Alembert operator

∂µ∂
µ. The modes are investigated in Schwarzschild coordinates, but one must switch

to Kruskal coordinates on the horizon to test them as the event horizon is singular

in Schwarzschild coordinates. To solve the equations, an initial data surface is chosen

to end on the future event horizon. By examining the symmetries, a solution to the



8 GREGORY–LAFLAMME INSTABILITY 59

perturbation equation is found to exist of the form:

hµν = eΩteiµix
i



H tt H tr 0 0 ...

H tr Hrr 0 0 ...

0 0 K 0 ...

0 0 0 K
sin2 θ

...
...

...
...

...
. . .


, (8.4)

for certain values of Ω and µ. With this, the Lichnerowicz equation simplifies to:(
∆d
L +

∑
i

µ2
i

)
hµν = 0, (8.5)

with the superscript d signifying d dimensions. It is important to ascertain which

solutions are purely gauge and which are physical. A pure gauge solution obeys ∆d
Lhµν =

0, so as long as
∑

i µ
2
i is not zero, the solution will be physical. A gauge can be chosen

so that the Lichnerowicz equations reduce to only one component which we can choose

to be H tr, giving a second order ordinary differential equation to solve, which we write

explicitly in (F.11). The solutions at infinity and at the horizon are

htr ∼ e−
√

Ω2+µ2
i r, (8.6)

htr ∼ (r − r+)−1±r+Ω/(d−3) ,

with boundary conditions requiring that the root is positive and that Ω > 0. In [23],

a numerical check is made that confirms an instability exists for small values of Ω and

µi. The general solution near the horizon is

htr ∼ A+(µ) (r − r+)−1+r+Ω/(d−3) + A−(µ) (r − r+)−1−r+Ω/(d−3) . (8.7)

Finding A+(µ) and A−(µ) is difficult but in [23] the ratio R = A−/A+ was found. There

is an instability when R = 0, so it is possible to find a range of values of Ω and µi for

which an instability exists.
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Figure 4: A sketch of the caged black holes case. It is confined along the fifth dimension,
beside its mirror images with which it ‘interacts’ [24].

8.2 Black Rings and Black Holes

In [24], a good overview of the instability is also presented, where thermodynamics is

used to motivate the possible existence of an instability. A black hole in 5 dimensions,

where one of the dimensions is compactified, has two possible topologies: black holes

and black rings. In the case where the radius of the black hole is much smaller than

the length of the compactified dimension, L, we have infinite mirror image black holes

side by side, along the compactified dimension. These are four-dimensional black holes

in five-dimensional space, so the metric is

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2dΩ2

3, (8.8)

where it is compactified along one of the dΩ3 directions and V (r) is a generalization of

the D = 4 Schwarzschild potential. In the case where L is infinite, V (r) =
(

1− r2
+

r2

)
.

As the radius of the black hole increases, the black hole turns into a string along the

compactified dimensions, which turns the metric into

ds2 = −V (r)dt2 + V (r)−1dr2 + r2dΩ2
2 + dz2, (8.9)

where V (r) =
(
1− r+

r

)
and z is the coordinate along which the black hole is extended.

These two solutions are typically called “caged black holes” and “nonuniform black

strings”. The existence of these two solutions raises the question of which is more

probable. Giving the solutions the same mass and angular momentum also gives them

the same energy, so the energy cannot be used to determine which solution one would
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Figure 5: The mode pairs (Ω,m) for which the Gregory–Laflamme instability exists in
the case of a black string in 5 dimensions. [24]

expect to find. Instead, one can turn to entropy, as the configuration with the highest

entropy is the most probable. The entropy of the black hole, SBH , and of the black

string, SBS, are

SBH = 4π2M2

√
8L

27πM
, SBS = 4πM2, (8.10)

where M is the mass of the black hole and black string set to be equal. Looking at

these entropies, one can see that when L becomes large enough, the black hole will be

preferred over the black string, which suggests a long wavelength instability in the string.

Following the procedures previously detailed, an equation of the form (8.4) is derived

that can be solved to find a relation between Ω and m = µ0. For thermodynamical

reasons, an instability can only exist for r+m < 32/37. One value of Ω is found for

each value of m, shown in figure 5. This instability suggests that the black string could

segment into black holes, possibly revealing naked singularities.

In [25], a perturbed black ring is numerically evolved. Taking a ring with topology

S1×S2, the thickness parameter ν is identified as the ratio between these rings. For very

fat rings and rings with 0.2 . ν . 0.6, perturbing the rings results in a nonaxisymmetric
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Figure 6: The Gregory–Laflamme instability of a ring.
Top: the thin ring forms the initial bulges connected by thin segments.
Bottom: the thin connecting segments undergo the instability.

instability, commonly referred to as an elastic mode. This instability ends in a Myers–

Perry black hole, with a smaller angular momentum than the original ring. In the

case of a thin black ring, ν . 0.15, the Gregory–Laflamme instability would dominate

the evolution. In this case, the ring’s thickness starts to vary and bulges, connected

by thin segments, start to form in the ring. These thin segments could also then be

subjected to the instability, creating more bulges connected by even thinner necks, as

visualized in fig. 6. While, for insufficient computational resources, the simulations

were unable to reach this point, the recursive nature of the simulation suggests that

at finite asymptotic time, the thickness of the necks will reach zero, revealing a naked

singularity. This scenario was simulated in [26], where one can see the effect visually.

8.3 Fluid Perturbations

In [1], fluid perturbations are compared to the Gregory–Laflamme instability. Consid-

ering small static fluid perturbations, a fluid with energy density ε and pressure P is

taken from rest, uµ = (1, 0, ...), and is perturbed

ε→ ε+ δε, P → P + c2
sδε, uµ = (1, 0, ...)→ (1, δui),

δε(t, σi) = δε eiωt+ikjσ
j

, δui(t, σi) = δuieiωt+ikjσ
j

,
(8.11)
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where cs is the speed of sound, i ranges over the space indices and µ ranges over the

whole spacetime indices. Plugging these into the viscous fluid equations and linearizing

in δρ and δui gives the equations one must solve to achieve the solution for a black

brane with long-wavelength fluctuations of ua and ro. In order to find the dispersion

relation ω(k), one must solve

ω − c2
s

k2

ω2
− i k

2

Ts

(
2

(
1− 1

p

)
η + ζ

)
+O(k3) = 0, (8.12)

where k =
√
kiki is the wavenumber, s is the entropy, η is the shear viscosity and ζ is

the bulk viscosity given by

η =
s

4π
, ζ = 2η

(
1

p
− c2

s

)
. (8.13)

For the energy-momentum tensor of a fluid, the relation between the pressure and

energy density gives the speed of sound

c2
s =

dP

dε
= − 1

n+ 1
. (8.14)

One can see that cs is imaginary, which means ω is also imaginary and the sound waves

are unstable. Taking ω = −iΩ,

Ω =
√
−c2

sk −
((

1− 1

p

)
η

s
+

ζ

2s

)
k2

T
+O(k3). (8.15)

Plugging these values in gives

Ω =
k√
n+ 1

(
1− n+ 2√

n+ 1

k

4πT

)
+O

(
k2

T 2

)
. (8.16)

This equation is expanded in terms of T−1 rather than ro, since T−1 ≈ ro
n

, which

suggests we can consider the brane as very hot rather than very thin. In figure 7, we

plot (8.16) for n = 1 to n = 7. One can remark that as n increases, the maximum

values of k and Ω decrease; there are fewer possible unstable modes as n increases so

hydrodynamics represents more accurately Gregory–Laflamme modes as n grows. This

stems from the assumption that the k
T

correction terms in (8.16) depend on n in such a
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Figure 7: Ω for dimensions n = 1 to 7 and fixed T .

way that they tend to 0 as n→∞. The maximum values scale as Ω
T
∼ 1

n
and k

T
∼ 1√

n

which we plot in figure 8 and figure 9. To show the agreement with the GL modes, one

can find the k value for the 0th mode. With the rescaling

Ω̃ = nΩ, k̃ =
√
nk, (8.17)

the equation for Ω becomes

Ω̃ = k̃

(
1− k̃

4πT

)
, (8.18)

which is valid for 0 ≤ k̃ ≤ 4πT . As n → ∞, the analytical value of k for the GL zero

mode kGL becomes

kGL →
4πT√
n
, (8.19)

which when plugged into (8.18) yields 0, which further promotes the similarity of the

GL instability and fluid perturbations.
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Figure 8: k
T

compared to 10√
n
.

Figure 9: Ω
T

compared to 1
n
.
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In [3], which we reviewed in section 7.3, this relation is also explored by examining

second order hydrodynamic perturbations of black branes. The energy-momentum

tensor in this case is (7.86). The instability resulting from the imaginary speed of sound

(8.14) causes the pressure to fluctuate, which causes perturbations in the thickness of

the brane. The linearized fluctuations are

ro = 〈ro〉+ δroe
Ωt+ikx, ua = 〈ua〉δuaeΩt+ikx. (8.20)

The energy-momentum tensor is linearized, which consists of dropping products of

derivatives. From the conservation of the resulting tensor, the dispersion relation of the

speed of sound modes are

Ω =
1√
n+ 1

k − 2 + n

n(1 + n)
rok

2 +
(2 + n) [2 + n (2τ̃ω/ro − 1)]

2n2(1 + n)3/2
r2
ok

3 +O(k4). (8.21)

This dispersion relation resembles the Gregory–Laflamme instability for large n. Taking

n large with Ω̃ = nΩ and k̃ =
√
nk yields

Ω̃ = k̃

(
1− k̃

4πT

)
− k̃

n

(
1

2
+

k̃

4πT
− k̃2

(4πT )2

)
+O

(
1

n2

)
. (8.22)

One can compare this relation to the one found in [1], equation (8.16). The assumption

of [1], that higher order terms will tend to 0 as n → ∞, remains to be true for the

second order term in (8.21). From these results, one can again see the relation between

gravity and hydrodynamics.
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9 Conclusion

When first introduced, the idea of a black hole was quite bizarre but with time and

research, black holes have become both a real observable quantity, as well as an invalu-

able theoretical tool. Physicists have been tasked with examining these extreme objects

to garner what they can about their nature and the laws of physics themselves.

For neutral black holes in four dimensions, we have one solution which yields the

Schwarzschild black hole in the static case, and the Kerr black hole in the rotating case.

Examining black holes in higher dimensions gives us much more freedom in finding black

hole solutions. The simplest solution is the higher dimensional Schwarzschild black hole,

equation (3.6). Less trivial is the higher dimensional analogue of the Kerr metric, but

despite the increased complexity, the solution was found by Myers and Perry. These

black hole solutions, shown in equation (3.14) in the odd case, and equation (3.15) in

the even case, allow one to construct solutions in D > 4 dimensions, spinning in up to
D−1

2
planes. In higher dimensions, we are not restricted only to these two solutions as

more dimensions gives more possible topologies, such as black rings, which we reviewed

in section 3.3. However, finding new solutions is challenging.

This is where it is worthwhile to examine the blackfold approach. This technique

serves as a useful tool to mold black branes into possible solutions, black rings for

example. The example we were most interested in was the case of the Myers–Perry

black hole. In the D ≥ 6 ultra-spinning case, the blackfold approach can be applied. We

took the singly-spinning MP black hole and verified in the ideal case that the blackfold

approach is applicable. In the near region we confirmed that locally, the solution is

that of a boosted black brane, equation (7.7). We then found the metric in the overlap

region and found the energy-momentum tensor using both linearized gravity, equation

(7.18), and the method of Brown and York, equation (7.38), which both gave us the

tensor of a perfect boosted fluid. Examining the ideal case is always enlightening, but

examples in the real world are seldom perfect so it is useful to investigate until what

point our assumptions hold. For this reason, we recalculated the ultra-spinning MP

metric, this time allowing for first order terms. For this calculation, one could imagine

that we are in the case where the brane spins a little slower, and where we look at an



9 CONCLUSION 68

area around a point rather than precisely at that point. We found our results matched

those of [2], which allowed us to confirm that the energy-momentum tensor remained

that of a perfect fluid in the overlap region at first order.

It is not surprising that we find a perfect fluid, as analogies between fluids and

gravity are common in physics. One example of this is the fluid/gravity correspondence,

which allows one to construct hydrodynamic solutions in d dimensions and map them

to gravitational ones in (d + 1)-AdS space, and vice versa. In [3], the correspondence

is used along with the Ads/Ricci-flat correspondence to find second order corrections

to black branes. We reviewed these results in section 7.3 and showed the general form

of the solution one would expect to achieve when applied to the parameters of the

ultra-spinning Myers–Perry black hole.

Another way of looking at this correspondence is through the Gregory–Laflamme

instability, reviewed in section 8, which is an instability that affects black branes, caus-

ing the radius ro to vary, becoming thinner in some places and thicker in others. One

interesting feature of this instability is its possible endpoint of pinched black holes

resulting in naked singularities. The higher order black branes solutions constructed

with the duality suffer from sound-mode instabilities. The comparison of the dispersion

relation associated to these perturbations to the GL instability has been discussed in

both [3], and [1]. In both papers, the match was found to be quite accurate for large n.

In section 8.3, we reviewed the discussions of these papers and plotted the dispersion

relation found in [1].

As for future work, there is still much to be explored regarding higher dimensional

brane calculations. We did not have time to calculate the second order Myers–Perry

ultra-spinning black hole but we discussed the form of the second order solution we

would expect to find, equation (7.85). One could carry out the calculations explic-

itly and compare the results with (7.85). Many of our computations were done in

Mathematica, using the differential geometry package of [27]. We aimed to extend this

package to include the calculation of the Brown–York tensor and were able to write the

calculations specifically for black branes of the form (4.2). A package to find this tensor

for a general metric, including higher order perturbations, would be useful.
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Theoretical black holes continue to allow physicists to probe areas of spacetime

inaccessible through observation, partly because it is not guaranteed that these areas

exist. Nevertheless, our results allow us to test the limits of our theories and create

analogies to others. No matter the topic, if there is an idea to be explored, then a

physicist will surely explore it.
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A Isotropic Coordinates

Here we will describe the general transformation to isotropic coordinates.

A.1 General Procedure

Following the procedure of [28] Starting with the metric:(
ηab +

rno
rn

)
dσadσb

1

1− rno
rn

dr2 + r2dΩ2
(n+1), (A.1)

the goal is to find an r′ such that taking r → r′ will put the polar coordinates in the

form of

f(r′)(dr′2 + r′2dθ2 + r′2dΩ2
(n+1)). (A.2)

By comparing the two metrics, one can find a relation between r, r′ and f :

r2 = r′2f(r′),

1

1− rno
rn

dr2 = f(r′)dr′2,
(A.3)

which can then be used to find the relation between r and r′:

dr′

r′
=
dr

r

1√
1− rno

rn

. (A.4)

Integrating this, and using the fact that r′ → ∞ as r → ∞, one can find r′ and

subsequently f .
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A.2 n=3 Case

In the n=3 case, the integral evaluates to:

2

3
log
(√

r3 − r3
o + r

3
2

)
+ c = log(r′), (A.5)(√

r3 − r3
o + r

3
2

) 2
3
ec = r′,

then taking the limit r →∞ (
2r

3
2

) 2
3
ec = r′. (A.6)

For r to equal r′, ec must be 2
3
2 . Writing r in terms of r′ gives:

r = r′

(
r3
o2

9
2

r′
+ 1

) 2
3

,

f(r′) =

(
r3
o2

9
2

r′
+ 1

) 4
3

.

(A.7)

Plugging the new r′ into the metric transforms it to isotropic coordinates.
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B Linearized Gravity for MP black brane in n=2

Here we compute the energy-momentum tensor of the ultra-spinning ideal order Myers–

Perry black brane in n=2 dimensions. Once again starting from equation (7.7), the

switch to isotropic coordinates in the n=2 case is r → r
(

1 + r2
o

4r2

)2

. Employing this

transformation and again switching to Cartesian gives

ds2 =− dt2 + dρ2 + dz2 +
r2
o

r2
(

r2
o

4r2+1

)2

(
dt

cos θ∗
− tanθ∗dz

)2

(B.1)

+

(
1 +

r2
o

4r2

)2 (
dx2

1 + dx2
2 + dx2

3 + dx2
4

)
.

Taking the r � ro limit yields

ds2 = −dt2+dρ2+dz2+
r2
o

r2

(
dt

cos θ∗
− tanθ∗dz

)2

+

(
r2
o

2r2
+ 1

)(
dx2

1 + dx2
2 + dx2

3 + dx2
4

)
,

(B.2)

for which we find hµν , h and h̄µν :

hµν =
r2
o

r2

(
dt

cos θ∗
− tanθ∗dz

)2

+
r2
o

2r2

(
dx2

1 + dx2
2 + dx2

3 + dx2
4

)
,

h =
r2
o

r2
,

h̄µν =
r2
o

2r2
dt2 − r2

o

2r2
dz2 +

r2
o

r2

(
dt

cos θ∗
− tanθ∗dz

)2

− r2
o

2r2
dρ2

=
r2
o

r2

(
u2

0 +
1

2

)
dt2 + u0u1

r2
o

r2
dzdt+

r2
o

r2

(
u2

1 −
1

2

)
dz2 − r2

o

2r2
dρ2dρ2.

(B.3)
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Taking the Laplacian (7.18) and plugging into equation (5.7)

Ttt =
1

8π
δ4(r)Ω(3)r

2
o

(
u2

0 +
1

2

)
, (B.4)

Ttz =
1

8π
δ4(r)Ω(3)r

2
ou0u1,

Tzz =
1

8π
δ4(r)Ω(3)r

2
o

(
u2

1 −
1

2

)
,

Tρρ = − 1

8π
δ4(r)Ω(3)r

n
o

1

2
,

which matches the perfect fluid equation in 2 dimensions

T ab =
1

8π
Ω(3)r

2
o(u

aub − 1

2
γab). (B.5)
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C Brown–York Tensor for Schwarzschild Metric

Here we will show explicit computations of the Brown–York tensor calculation for the

D = 4 Schwarzschild black hole. For the ideal order branes we work with, the equation

for the extrinsic curvature is simplified to

Kµν = − 1√
f(r)

Γrµν . (C.1)

For the Schwarzschild metric,

ds2 = −
(

1− ro
r

)
dt2 +

dr2

1− ro
r

+ r2dθ2 + r2 sin2 θdφ2, (C.2)

f(r) = 1− ro
r

. We find hµν by embedding on a constant R surface:

hµν = −
(

1− ro
r

)
dt2 + r2dθ2 + r2 sin2 θdφ2. (C.3)

The Christoffel symbols for the Schwarzschild metric, taking r constant, are:

Γrµν =


(1− ro

R
)ro

2R2 0 0 0

0 ro
2R2(1− ro

R
)

0 0

0 0 −R(1− ro
R

) 0

0 0 0 −R(1− ro
R

) sin2 θ

 , (C.4)

which yields

Kµν =


−
√

1− ro
R
ro

2R2 0 0 0

0 0 0 0

0 0 R
√

1− ro
R

0

0 0 0 R
√

1− ro
R

sin2 θ

 . (C.5)
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K can then be calculated:

K = hµνKµν

= − 1

(1− ro
r

)

−
√

1− ro
R
ro

2R2
+

1

R2
R

√
1− ro

R
+

1

R2 sin2 θ
R

√
1− ro

R
sin2 θ

=
ro

2R2
√

1− ro
R

+
1

R

√
1− ro

R
+

1

R

√
1− ro

R

=
ro

2R2
√

1− ro
R

+
2

R

√
1− ro

R
.

(C.6)

The next step consists of doing the same procedure in flat space, which corresponds to

setting ro = 0 so now f(r) = 1 and the metric is

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2. (C.7)

Then taking the constant r = R embedding

ds2 = −dt2 + r2dθ2 + r2 sin2 θdφ2, (C.8)

yields

Γrµν =


0 0 0 0

0 0 0 0

0 0 −R 0

0 0 0 −R sin2 θ

 , (C.9)

and

K(0)
µν =


0 0 0 0

0 0 0 0

0 0 R 0

0 0 0 R sin2 θ

 . (C.10)
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We then find K(0)

K(0) = hµνKµν ,

= 1 ∗ 0 + 1 ∗ 0 +
1

R2
∗R +

1

R2 sin2 θ
R sin2 θ,

=
2

R
.

(C.11)

Now Tµν can be worked out:

Tµν = − 1

8π

(
Kµν − hµνK − (K(0)

µν − hµνK(0))
)
. (C.12)

We will show the explicit computation for the Ttt component

Ttt = − 1

8π

(
Ktt − httK − (K

(0)
tt − httK(0))

)
= − 1

8π

(
−
√

1− ro
R
ro

2R2
+
(

1− ro
r

)( ro

2R2
√

1− ro
R

+
2

R

√
1− ro

R

)
+ (−1 +

ro
R

)
2

R

)

= − 1

8π

(
−
√

1− ro
R
ro

2R2
+
ro
√

1− ro
R

2R2
+

2

R

(
1− ro

R

) 3
2 − 2

R
+
ro
R

2

R

)
.

(C.13)

Expanding this in ro
R

, we have

Ttt =
1

8π

ro
R2
. (C.14)

The rest of the components follow in a similar manner.
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D Eddington–Finkelstein Coordinates

This section gives an example of switching to Eddington–Finkelstein coordinates [1] as

follows:

σa → σa − uar∗, r∗ =

∫
1

f(r)
dr,

dσa → dσa − ua 1

f(r)
dr.

(D.1)

We use the example of a typical boosted black brane

ds2 = (ηab + uaub(1− f(r))) dσadσb +
1

f(r)
dr2 + r2dΩ2

2, (D.2)

and apply the transformation

ds2 = (ηab + uaub(1− f(r)))

(
dσa − ua dr

f(r)

)(
dσb − ub dr

f(r)

)
+

1

f(r)
dr2r2dΩ2

n+1.

(D.3)

Expanding

ds2 = ηabdσ
adσb − ηabuadσb

dr

f(r)
− ηabubdσa

dr

f(r)
+ ηabu

aub
dr2

f(r)2
+

uaub(1− f(r))dσadσb − uaub(1− f(r))dσaub
dr

f(r)
− uaub(1− f(r))dσbua

dr

f(r)

+ uaub(1− f(r))uaub
dr2

f(r)2
+

1

f(r)
dr2 + r2dΩ2

n+1,

(D.4)

and using

uaubu
aub = uaη

acucubη
bdud = (−1)2 = 1, (D.5)
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gives

ds2 = ηabdσ
adσb − 2ucdσ

c dr

f(r)
− dr2

f(r)2
(D.6)

+uaub(1− f(r))dσadσb + 2uc(1− f(r))dσc
dr

f(r)
+ (1− f(r))

dr2

f(r)2

+
1

f(r)
dr2 + r2dΩ2

n+1,

which can be written as

ds2 = Pabdσ
adσb − f(r)dσadσb + 2ucdσ

c + r2dΩ2
n+1, (D.7)

where Pab = ηab + uaub is the orthogonal projector.
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E MAE of Myers–Perry Black branes

In section 7, we used the method of matched asymptotic expansion to find the overlap

region of the ultra-spinning Myers–Perry black hole, starting with the near region and

then applying the asymptotic limit. It is worthwhile to examine whether the same

metric is achieved if the opposite procedure is put into place, namely, if one takes the

r � ro limit before taking the a � r cos θ limit. This section deals with verifying

that the resulting metric is indeed the same as previously obtained (7.10), up to second

order. We also apply this procedure to the doubly-spinning case at ideal order.

E.1 Singly-Spinning Case

We start with (3.7) which is in terms of r+ so this limit we take is r � r+. The only

terms affected by the limit are µ
rnΣ

and Σ
∆

. Starting with (3.7) and putting the relevant

terms in terms of r+
r

gives:

µ =
rn+

cosn θ

(
r2

+

cos2 θ
+ a2

)
µ

rnΣ
=

rn+
(
r2

+ + a2
)

rn (r2 + a2 cos2 θ)
→

rn+

(
r2
+

r2 + a2

r2

)
rn
(
1 + a2

r2 cos2 θ
)

Σ

∆
=

r2 + a2 cos2 θ

r2 + a2 − rn+
rn

(r2
+ + a2)

dr2 →
1 + a2

r2 cos2 θ

1 + a2

r2 −
rn+
rn

(
r2
+

r2 + a2

r2

)dr2.

(E.1)

Expanding Σ
∆

up to second order in r+
r

gives, for n = 14:

Σ

∆
=

1 + a2 cos2 θ
r2

1 + a2

r2

+

(
1 + a2 cos2 θ

r2

)
a2r+
r3(

1 + a2

r2

)2 +

(
1 + a2 cos2 θ

r2

)
a4r2

+

r6(
1 + a2

r2

)3 , (E.2)

4When taking higher orders of
rn+
rn , the next order terms kept are

r2n+
r2n .
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and for n=2:

Σ

∆
=

1 + a2 cos2 θ
r2

1 + a2

r2

+

(
1 + a2 cos2 θ

r2

)
a2r2

+

r5(
1 + a2

r2

)2 +

(
1 + a2 cos2 θ

r2

)(
1 + a2

r2 + a4

r4

)
r4
+

r4(
1 + a2

r2

)3 . (E.3)

Taking higher and higher n, a pattern emerges (This generalization works for n ≥ 2 as

when n = 1, the n+ 2 term is third order):

Σ

∆
=

(
1 + a2 cos2 θ

r2

)
(
1 + a2

r2

) +

(
1 + a2 cos2 θ

r2

)
a2

r2

rn+
rn(

1 + a2

r2

)2 +

(
1 + a2 cos2 θ

r2

)
rn+2
+

rn+2(
1 + a2

r2

)2 +

(
1 + a2 cos2 θ

r2

)
a4

r4

r2n
+

r2n(
1 + a2

r2

)3 .

(E.4)

Taking ro = r+ cos θ and r cos θ → r:

Σ

∆
=

((
1 + a2 cos4 θ

r2

)
(
1 + a2 cos2 θ

r2

) +

(
1 + a2 cos4 θ

r2

)
a2 cos2 θ

r2

rno
rn(

1 + a2 cos2 θ
r2

)2 + (E.5)(
1 + a2 cos4 θ

r2

)
rn+2
o

rn+2(
1 + a2 cos2 θ

r2

)2 +

(
1 + a2 cos4 θ

r2

)
a4 cos4 θ

r4

r2n
o

r2n(
1 + a2 cos2 θ

r2

)3

)
dr2

cos2 θ
.

For µ
rnΣ

, when going up to second order, only the n = 1 case has third order terms that

must be truncated:

µ

rnΣ
=

r+

(
r2
+

r2 + a2

r2

)
r
(
1 + a2 cos2 θ

r2

) → r+
a2

r2

r
(
1 + a2

r2 cos2 θ

) =
ro
a2 cos2 θ

r2

r
(
1 + a2

r2 cos4 θ
) . (E.6)

Starting first with n = 1, and later moving on to the general n case, the ultra-spinning

limit is now taken. The terms affected by this expansion are Σ
∆

, µ
rnΣ

. The terms in front

of dθ2 and dφ2 also have r2/a2 cos2 θ terms but they do not change as they are second

order. After the asymptotic limit, taking n = 1, these terms are:

Σ

∆
=

(
1 + a2 cos4 θ

r2

)
(
1 + a2 cos2 θ

r2

) +

(
1 + a2 cos4 θ

r2

)
a2 cos2 θ

r2
ro
r(

1 + a2 cos2 θ
r2

)2 +

(
1 + a2 cos4 θ

r2

)
a4 cos4 θ

r4

r2
o

r2(
1 + a2 cos2 θ

r2

)3 ,

µ

rnΣ
=

ro
a2 cos2 θ

r2

r
(
1 + a2

r2 cos4 θ
) .

(E.7)
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Taking the ultra-spinning limit a cos θ � r up to second order turns these terms into:

Σ

∆
= cos2 θ

(
1 +

ro
r

+
r2
o

r2

)
+

(
1 +

ro
r

+
r2
o

r2
− cos2 θ

(
1 + 2

ro
r

+ 3
r2
o

r2

))
r2

a2 cos2 θ
,

µ

rnΣ
=

ro
r cos2 θ

− ro
r cos4 θ

r2

a2 cos2 θ
.

(E.8)

Now looking at the general n case, starting with equation (E.5), Σ
∆

turns into:

Σ

∆
= cos2 θ

(
1 +

ro
r

+
r2
o

r2

)
+

(
1 +

ro
r

+
r2
o

r2
− cos2 θ

(
1 + 2

ro
r

+ 3
r2
o

r2
+
rn+2
o

rn+2

))
r2

a2 cos2 θ
,

(E.9)

and µ
rnΣ

becomes

µ

rnΣ
=
rno

(
r2
o

r2 + a2 cos2 θ
r2

)
rn
(
1 + a2

r2 cos4 θ
) → rno

rn cos2 θ
+
rno

(
r2
o

r2 cos2 θ − 1
)

r2

a2 cos2 θ

rn cos4 θ
. (E.10)

To summarize, in general n dimensions:

Σ

∆
= cos2 θ

(
1 +

ro
r

+
r2
o

r2

)
+

(
1 +

ro
r

+
r2
o

r2
− cos2 θ

(
1 + 2

ro
r

+ 3
r2
o

r2
+
rn+2
o

rn+2
Θ(n−2)

))
r2

a2 cos2 θ
,

µ

rnΣ
=

rno
rn cos2 θ

+
rno

(
r2
o cos2 θ
r2 Θ(n−2) − 1

)
r2

a2 cos2 θ

rn cos4 θ
,

(E.11)

where Θ is the step function. The ideal limit (with orders of rno
rn

and
(

r
a cos θ

)0
) is taken

in order to compare with equation (7.10), giving:

ds2 = − dt2 +
rno

rn cos2 θ
(dt− a sin2 θdφ)2 +

(
1 +

rno
rn

)
dr2 (E.12)

+ a2 cos2 θdθ2 + a2 sin2 θdφ2 + r2 cos2 θdΩ2
n+1,

which, after making the appropriate changes of variables, matches (7.10).
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E.2 Doubly-Spinning Case

Now we apply this procedure to the doubly-spinning case, starting with the metric

(3.9). In [6], it was found that taking the ultra-spinning limit turns this metric into

ds2 = −dt2 + dρ2 + dz2 +
rno

Σrn−2

( dt

cos θ∗
− tanθ∗dz − b sin2 ψdφ

)2

+
Σ

∆
dr2 + Σdψ2

+
(
r2 + b2

)
sin2 ψdφ2 + r2 cos2 ψdφ2 + r2 cos2 ψdΩ2

n−1,

Σ = r2 + b2 cos2 ψ, ∆ = r2 + b2 − rno
rn−2

,

(E.13)

where the following transformations have been made

r cos θ∗ → r, r+ cos θ∗ → ro, b→ b cos θ∗, (E.14)

ρ = a sin θ, z = ρ∗φ1, φ2 → φ.

We take the r � ro limit where the only term affected is the dr2 term:

Σ

∆
dr2 → r2 + b2 cos2 ψ

r2 + b2

(
1 +

rno
rn−2

1

r2 + b2

)
dr2. (E.15)

Now we do the opposite procedure, taking the asymptotic limit first. We start by

writing µ in terms of r+:

µ = rn+2
+

(
1 +

a2

r2
+

)(
1 +

b2

r2
+

)
= rn+2

+

(
1 +

a2

r2
+

)
B, (E.16)

with the renaming a1 = a and a2 = b, and B=
(

1 + b2

r2
+

)
. Applying the asymptotic limit

to the dr2 term, we get

ΠF

Π− µ
rn+2

dr2 → F

1 +
rn+2

+

rn+2

(
1 + a2

r2
+

)
B

Π

 dr2, (E.17)
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and outside the squared term we get

µ

rn+2ΠF
→

rn+2
+

(
1 + a2

r2
+

)
B

rn+2ΠF
. (E.18)

As these are the only terms containing r+, everything else remains the same. Now we

can again take the ultra-spinning limit, with a cos θ � r, a cos θ � r+ and a� b . The

terms outside dr2 become(
cos2 θ − b2 cos2 θ sin2 ψ

r2 + b2

)(
1 +

rn+
rn

B

1 + b2

r2

)
dr2. (E.19)

Making the changes rno = rn+ cosn θB, r cos θ → r, and b cos θ → b:(
r2 + b2 cos2 ψ

r2 + b2

)(
1 +

rno
rn−2

1

r2 + b2

)
dr2, (E.20)

and outside the squared term:

rno
rn−2

(
1

r2 + b2 cos2 ψ

)
, (E.21)

which matches what we found before.
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F Explicit Large Functions

In this section is where the large functions of this thesis are stored.

Doubly-Spinning Black Ring

The functions in the black string solution with two angular momenta (3.27) are

Ω = −
2kλ

√
(1 + ν)2 − λ2

H(y, x)

[
(1− x2)y

√
νdφ (F.1)

+
1 + y

1− λ+ ν
(1 + λ− ν + x2yν(1− λ− ν) + 2νx(1− y))dψ

]
,

G(x) = (1− x2)(1 + λx+ νx2),

H(x, y) = 1 + λ2 − ν2 + 2λν(1− x2)y + 2xλ(1− y2ν2) + x2y2ν(1− λ2 − ν2),

J(x, y) =
2k2(1− x2)(1− y2)λ

√
ν

(x− y)(1− ν)2

(
1 + λ2 − ν2 + 2(x+ y)λν − xyν(1− λ2 − ν2)

)
,

F (x, y) =
2k2

(x− y)2(1− ν)2

[
G(x)(1− y2)

[ (
(1− ν2)− λ2

)
(1 + ν)

+ yλ(1− λ2 + 2ν − 3ν2)
]

+G(y)[2λ2 + xλ((1− ν)2 + λ2)

+ x2((1− ν)2 − λ2)(1 + ν) + x3λ(1− λ2 − 3ν2 + 2ν3)− x4(1− ν)ν(−1 + λ2 + ν2)]
]
.

AdS/Fluid metric Functions

The metric functions are given by a perturbative expansion:

S(r, x) =1−
∞∑
k=1

εks(k)
a , (F.2)

χµν(r, x) =− r2f(br)uµuν + r2Pµν

+
∞∑
k=1

εk
(
s(k)
c r2Pµν + s

(k)
b uµuν + j(k)

ν uµ + j(k)
µ uν + t(k)

µν

)
,

f(y) =
1

1− 1
y4

,
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where the functions (s
(k)
a , s

(k)
b ...) are local functions of the inverse temperature b(x).

Ond one can consider them arbitrary functions of r and xµ for this thesis, the same

goes for j
(k)
µ and t

(k)
µν .

Weyl Covariant Form of AdS/Fluid metric

The functions in the Weyl covariant form of the metric (6.34) are

B = rAµ − Sµλu
λ − v1(br)P ν

µDλσ
λ
ν (F.3)

+uµ

[
1

2
r2f(br) +

1

4
(1− f(br))ωαβω

αβ + v2(br)
σαβσ

αβ

d− 1

]
,

G =r2Pµν − ωλµωλν + 2(br)2g1(br)

[
1

b
σµν + g1(br)σλµσλν

]
− g2(br)

σαβσ
σβ

d− 1
Pµν (F.4)

− g3(br)[J1µν +
1

2
J3µν + 2J2µν ] + g4(br)[J1µν + J4µν ], (F.5)

where J
µν
i ’s are the set of symmetric traceless tensors which transform homogeneously

under Weyl rescalings

J
µν
1 = 2µαDασµν , (F.6)

J
µν
2 = Cµ ν

α β u
αuβ,

J
µν
3 = 4σα〈µσν〉α ,

J
µν
4 = 4σα〈µων〉α ,

J
µν
5 = ωα〈µων〉α ,
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and functions are

g1(y) =

∫ ∞
y

dζ
ζd−1 − 1

ζ(ζd − 1)
, (F.7)

g2(y) = 2y2

∫ ∞
y

dξ

ξ2

∫ ∞
ξ

dζ ζ2g′1(ζ)2,

g3(y) = y2

∫ ∞
y

dξ
ξd−2 − 1

ξ(ξd − 1)
,

g4(y) = y2

∫ ∞
y

dξ

ξ(ξd − 1)

∫ ξ

1

dζ ζd−3
(

1 + (d− 1)ζg1(ζ) + 2ζ2g′1(ζ)
)
,

v1(y) =
2

yd−2

∫ ∞
y

dξ ξd−1

∫ ∞
ξ

dζ
ζ − 1

ζ3(ζd − 1)
,

v2(y) =
1

2yd−2

∫ ∞
y

dξ

ξ2

[
1− ξ(ξ − 1)g′1(ξ)− 2(d− 1)ξd−1

+
(
2(d− 1)ξd − (d− 2)

) ∫ ∞
ξ

dζ ζ2g′1(ζ)2
]
.

Cµνλσ is the Weyl tensor, the trace free part of the Riemann tensor, which in d ≥ 3 is

Cµνλσ ≡ Rµνλσ + 4δα[µgν][λδ
β
σ]Sαβ, (F.8)

and Sµν is the Schouten tensor

Sµν =
1

d− 2

(
Rµν −

Rgµν
2(d− 1)

)
. (F.9)

Functions for Second Order Energy-Momentum Tensor

The functions to find τ̃ω in the second order energy-momentum tensor are:

F (br) =

∫ ∞
br

yd−1 − 1

y(yd − 1)
dy, (F.10)

H2(br) =
1

2
F (br)2 −

∫ ∞
br

dξ

ξ(ξd − 1)

∫ ξ

1

yd−2 − 1

y(yd − 1)
dy.
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Gregory–Laflamme Instability Differential Equation

The differential equation to find the Gregory–Laflamme instability of a string is

0 =
[
− Ω

2 − µ2
V +

(d− 3)2
( r+

r

)2(d−3)

4r2

]
H

tr′′ −
[
µ
2

[
(d− 2)− 2

(
r+

r

)d−3
+ (4− d)

(
r+

r

)2(d−3)
]

+
Ω2[(d− 2) + (2d− 7)

( r+
r

)d−3
]

rV
+

1

4r3V
3(d− 3)

2
(
r+

r

)2(d−3)
[(d− 2)−

(
r+

r

)d−3
]

]
H

tr′

+

[ (
µ
2

+ Ω
2
/V
)2

+
1

4r2V 2
Ω

2

[
4(d− 2)− 8(d− 2)

(
r+

r

)d−3
− (53− 34d + 5d2)

(
r+

r

)2(d−3)
]

+
1

4r2V
µ
2

[
4(d− 2)− 4(3d− 7)

(
r+

r

)d−3
+ (d2 + 2d− 11)

(
r+

r

)2(d−3)
]

+
1

4r4V 2
(d− 3)

2
(
r+

r

)2(d−3)
[
(d− 2)(2d− 5)− (d− 1)(d− 2)

(
r+

r

)d−3
+

(
r+

r

)2(d−3)
] ]
H

tr
. (F.11)
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