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Preface

This thesis presents the research conducted as a part of my Master of Science

degree in Physics at the University of Copenhagen. It aims to study the sterile

neutrinos in a 2 active and 1 sterile flavour configuration (2+1 model) in

early universe plasma in 60 MeV to 1 MeV Temperature range. Numerical

simulations of 1+1 model and 2+1 model have been carried out in a parameter

range of interest. A comparison between the average and multi-momentum

models has been presented to better illustrate the impact of active-active

oscillation in case of 2+1 scenario to the best of my abilities.
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Abstract

There has been significant interest in the neutrino physics over anomalies in the

LSND, MiniBoone detector and reactor anomalies, this leads to a speculative

interest in the possibility of a sterile neutrino without weak-interactions. The

existence of such a neutrino specie could also explain the deviation of effective

degrees of freedom Neff in the cosmological perspective. Thesis focuses

on 2+1 flavour model with dynamic Lepton Asymmetries, and aims to puts

constraints on mixing parameters between active-sterile parameters based on

final Neff values that are within the observation range allowed by the Planck

2018 results.
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1Introduction

The Early Universe was a high-energy playground for Particle Physics with

plenty of interesting phenomena, such as electron-positron annihilation to

produce Cosmic Microwave Background (CMB), structure formation leading to

deviations in CMB, Big Bang Nucleosynthesis leading to production of light ele-

ments, Spontaneous Symmetry Breaking leading to boson and fermion masses.

A lot of these phenomenon can be measured and tracked with high details.

Thus it can be seen that Particle Physics plays a crucial role in development of

our Universe. The Standard Model (SM) of Particle Physics provides us with a

good understanding of such phenomena.

There are also some early universe phenomena that are being studied in

various scenarios, but the search for a consistent model is still on. Beyond SM

particle physics, such as looking for a fourth generation of fermions has been

empty handed so far. This makes observations of effective number of neutrinos

being allowed to be slightly more than 3, an interesting beyond SM physics

question to be answered.

One other mystery is the absence of anti-matter from the Universe. The bary-

onic asymmetry is measured to be around 10−10 by a number of experiments.

The lepton asymmetry, however, has not been measured. This can be reasoned

by the weakly interacting nature of uncharged neutrinos which makes this

endeavour even more troublesome.

This thesis focuses a non-SM Sterile Neutrino that interacts only via gravita-

tional interaction and Neutrino Oscillations. Developing a model for such a

neutrino for a 2+1 scenario is the goal of this thesis.

Neutrino flavor conversions are important in the Early Universe and they may

affect observable cosmological quantities like effective degrees of freedom

and lepton asymmetry. The thesis focuses on understanding the interplay

between active and sterile neutrino conversions in the hypothesis that extra
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sterile neutrino families exist. A Numerical Model of 1 Sterile Neutrino along

with 2 Active Flavour species has been studied and estimations of the flavor

evolution is derived in the energy ranges 60-1 MeV. A comparison between the

1+1 model and 2+1 model for sterile neutrino has also been carried out.
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2Neutrinos

2.1 The Standard Model Neutrinos

The Standard Model of Particle Physics describes the fundamental elementary

particles and the interactions between them, experienced by the exchange of

some particles, known as bosons. The fermions are broadly classified over

3 generation of particles ranging from the lightest particles being called the

first generation and the heavier ones described as higher generations with

increasing order of mass range. The different generation display the same

interactions and the only parameter to differentiate them is their range of

masses. The neutrinos are also divided among 3 generation of particles with

flavours named after their leptonic partners, electron, muon, and tau leptons.

However, the ordering of masses for neutrinos is very much debatable, this

problem is more colloquially referred to as the mass hierarchy problem.

The ordering of neutrino masses becomes a greatly different topic than for

their leptonic counterparts because of their mass eigenstates being different

from their flavour eigenstates, and the lightness of neutrinos that gives rise to

the phenomenon of neutrino oscillations. This phenomenon not only describes

the change in neutrino flavour values as they travel, but it also predicts the

presence of MSW resonances for solar electron neutrinos inside the sun, which

was later verified [1][2]. For the resonance to occur inside matter for the

electron flavour the mass ordering between the first and the second mass

states should be normal. The values for ∆m2
21 = 7.6 × 10−5 and the mixing

angle was found to be θ12 = 33.45° for the first two mass states. The third mass
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eigenstate decides the nomenclature of mass ordering, if m1 < m2 < m3 the

case is referred to as Normal ordering and the case m3 < m1 < m2 is called

the Inverted ordering.

2.2 Fourth Generation Neutrinos

Before diving in the theory of oscillation, considering how a fourth generation

of fermions would modify the Standard Model is also an important bit to tackle.

The additional introduction of a fourth neutrino with standard model weak

interactions, as that of the 3 known generations would increase the decay

width of the Z Bosons, as observed by [3]. The fits performed in this paper

[4] also excluded effective number of neutrino species to Neff = 3.27 ± 0.30,

whereas the standard model predicts Neff = 3.046 [5], which was excluded at

98% confidence limit.

2.3 Neutrino Anomalies

The LSND (Liquid Scintillator Neutrino Detector) was the first short base-line

detector to observe neutrino oscillation in 0.2 − 10 eV 2 range. [6]. Later

in MiniBooNE experiment excess flux for electron anti-neutrinos was also

observed which was in line with the observation of excess oscillation of ν̄µ →
ν̄e at 0.1 − 1.0 eV 2 range.[7]. The reactor anomalies from various radio-

active decay sources also point to a new non-standard model neutrino with

|∆m2| > 1.5eV 2 [8].

2.4 Cosmological Bounds on Fourth
Neutrino

The weak decoupling approach before 60 MeV, is the time when the active

neutrinos were in thermal contact with the background plasma and radiation

via the weak-interactions and as the universe expands, the weak-interaction

rate that depends upon the temperature of the plasma drops as universe cools

down. The lowering of the interaction rate finally falls below the expansion
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rate of the universe around 1 MeV, thereby essentially removing any thermal

changes in distribution of Dirac Neutrinos. The number of thermalized neu-

trino species Neff is essentially locked into place as the universe cools after the

decoupling. The current value of Neff from the cosmological data and Planck

results [9] is 2.96+0.34
−0.33 and the planck results are also in conflict with inverted

hierarchy with Σmνi
< 0.12 eV . The Neff from the above results allow for

extra neutrino species to exist in a non-fully thermalised manner.

2.5 Sterile Neutrinos

The sterile neutrino is a model for a non-standard model neutrino that does

not undergo any interactions except for gravitational interaction and can only

be produced or converted to other flavours of neutrino via oscillations. The

planck data favours models for sterile neutrino with normal mass ordering

more than inverted ordering. The thesis focuses on single Dirac sterile neutrino

in a 2+1 model, for mass squared difference scale around 1 eV 2. The fully

thermalised sterile neutrinos are forbidden by the experimental data so far,

thus there the alternative of having non-zero lepton asymmetry, which can

suppress production of sterile neutrino before the neutrino decoupling is a

better one. The existence of a non-zero lepton asymmetry would allow for a

non-fully thermalised version of sterile neutrino to be compatible experimental

data from experimental particle physics as well as data derived from cosmology

observables.

2.6 Lepton Asymmetry

The matter-antimatter content of the early universe during the weak decou-

pling era determines the neutron-proton ratio and the light element contents

such as Helium, Hydrogen and their isotopes. There are a number of mech-

anism that can lead to a production of a non-zero lepton number [10]. For

the entirety of the thesis we assume the lepton asymmetry stems from the

active-sterile neutrino oscillations with the sterile species that going inert after

the weak decoupling.

2.5 Sterile Neutrinos 5



This thesis uses a model of dynamics for lepton asymmetry that would con-

serve overall lepton number. This means the evolution equation for lepton

asymmetry does not involve the terms for damping and repopulation, thus the

lepton number is conserved. This also means the lepton asymmetry should be

evolved separately from the neutrino-antineutrino system.

6 Chapter 2 Neutrinos



3Neutrino Oscillations

3.1 Neutrino Oscillations

First theorised in 1957, Neutrino Oscillations is a phenomenon that allows trav-

elling neutrinos to change flavour among 3 leptonic values. The phenomenon

of flavour oscillation is a result of very small neutrinos masses and their

comparatively large momenta, as compared to their more massive leptonic

counterparts.

Each Neutrino travels as a superposition of mass eigenstates and the time

evolution of different mass eigenstates makes them acquires different phase

shifts. This results in the flavour of the superposition to change as they travel.

The flavour of neutrino can be measured via weak interactions in a large

detectors with scintillators and photo-multiplier tubes.

The mixing between leptons is larger than smaller quark mixing. The ex-

perimental results from K2K experiment [11] and KamLAND [12] in 2002

confirmed the mixing parameters of the active neutrino sector.

3.2 Density Matrix Formalism

The problem of neutrino oscillations is a quantum many body problem, it

requires tracking coherence and phases between different eigenstates. To solve

the problem in a simpler fashion, the density matrix formalism is used from

this point forward. First, the relation between the mass eigenstates and flavour
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eigenstates is to be described. We start with defining the time evolution of

mass and flavour eigenstates.

The evolution for mass and flavour states are driven by the hamiltonians Hm

and Hf in respective eigenstates.

|ψm(t)〉 = e−iHmt |ψm(0)〉 (3.1)

|ψf (t)〉 = e−iHf t |ψf (0)〉 (3.2)

Now using 3.2 we can define the flavour density matrix ρ as

ρ(0) = |ψf (0)〉 〈ψf (0)| (3.3)

where Hm is dependent on kinetic energy as follows

Hm = 1
2E

m2
1 0

0 m2
2

 (3.4)

The relation between the two hamiltonian is governed by the mixing matrix U ,

for simplicity lets take the case for 2 flavour evolution. For mixing angle θ the

mixing matrix can be written as

U =
 cos(θ) sin(θ)
−sin(θ) cos(θ)

 (3.5)

This allows for the vacuum flavour hamiltonianHf to be defined as following

Hf = UHmU
† (3.6)

Hf =
c2m2

1 + s2m2
2 cs(m2

2 −m2
1)

cs(m2
2 −m2

1) s2m2
1 + c2m2

2

 (3.7)

where c = cos(θ) & s = sin(θ)

The probabilities for flavour appearance and disappearance can be calculated

with | 〈ψf (t)|ψf (0)〉 |2. The probability of appearance of a muon neutrino in a

electron neutrino beam is given by

Pνe→νµ = sin2(2θ)sin2(∆m2t
4E

) (3.8)
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here ∆m2 = m2
2 −m2

1. The probability above is also known as disappearance

probability for νe . Similarly by conservation of total probability for 2 flavour

case, the survival probability for νe i.e. Pνe→νe is given by

Pνe→νe = 1 − sin2(2θ)sin2(∆m2t
4E

) (3.9)

Next, we define the density matrix ρ for the flavour eigenstates of neutrinos in

terms of polarization vectors.

ρ = 1
2(P0 + ~P · ~σ) (3.10)

where ~σ are the pauli matrices. The above equation can be written in matrix

form.

ρ = 1
2

 P0 + Pz Px − iPy

Px + iPy P0 − Pz

 (3.11)

The main diagonal values of the density matrix represents the occupancy

value for the two neutrino species. For now, lets assume the two species to be

electron neutrino and sterile neutrino.

ne = 1
2(P0 + Pz) (3.12)

ns = 1
2(P0 − Pz) (3.13)

The off-diagonal term measure the coherence in the mixed states of the neutri-

nos.

3.3 Time Evolution of Density Matrix

The time evolution of the flavour density matrix can derived from the equations

3.2 and 3.3.

ρ(t) = e−iHf tρ(0)e+iHf t (3.14)

The differentiation of the 3.14 with respect to time, gives us the Liouville

Equation,
dρ(t)
dt

= −iHfρ(t) + iρ(t)Hf (3.15)

3.3 Time Evolution of Density Matrix 9



or in terms of commutation operator

dρ(t)
dt

= −i[Hf , ρ(t)]. (3.16)

The equation 3.16 can be expanded in terms of the polarization vectors in

vacuum,
dP0

dt
= 0, (3.17)

d~P

dt
= ~V × ~P . (3.18)

V are the projections of Hf taken along the directions of the sigma matrices

σx,y,z. When the neutrinos travel in a medium, we need to introduce the terms

for scattering medium potentials in ~V , damping and repopulation terms in the

differential equations.
dP0

dt
= Re (3.19)

where Re is the repopulation rate of the electron flavour neutrinos; this

quantity is zero for vacuum propagation and non-zero for dense media like

solar medium, early universe plasma. These terms are similar to the term in

[13]

Re = F0(p)Ce

(
f(p,u)
f(p,0) −Ne

)
(3.20)

F0 is the term for collision rate of neutrino with the medium, Ce = 1.27 is

the coefficient for electron flavour neutrinos and for muon and tau neutrinos

the coefficients are Cµ = Cτ = 0.92. f(p, u) = 1
1+ep/T −u is the Fermi-Dirac

distribution with momentum p and chemical potential u.

After adding medium potential, Damping terms. and Repopulation terms, the

equation 3.18 can be written as

d~P

dt
= ~Vvac+med × ~P −D(Px + Py) + dP0

dt
ẑ (3.21)

Where D is the damping rate, taken to be half of the collision frequency. The

damping takes away the coherence of the system and therefore the damping

term is off-diagonal in the density matrix. The Repopulation term on the

other hand is added to the main diagonal thus affecting the occupancy of the

neutrino species directly.

D = 1
2F0 (3.22)
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The medium potential, damping and repopulation terms are generated by the

dense medium that a neutrino travels through. These terms are explained in

much detail in next two chapters. There are also some effects that originate

from the evolution of matter and anti-matter together in a dense medium,

which make the evolution non-linear.

3.3 Time Evolution of Density Matrix 11





4Dense Media Effects

The media plays an important role in forward scattering. As in case for solar

neutrinos, the solar medium enhances the flavour conversion by altering the

coherent scattering potentials to produce resonances such that probabilities for

appearance of solar neutrinos becomes independent of mixing angle [14].This

phenomenon was later named the MSW effect and then the observations by

SNO and Super-Kamiokande detector of the neutrino confirmed the MSW

effect in solar plasma and solved the solar neutrino problem and led to the

Nobel Prizes.

4.1 Primordial Dense Media

The early universe during the weak decoupling epoch only contained elemen-

tary particles with rest masses equal to or below electron’s rest mass. This

time period (100 MeV > T > 1 MeV) was not cool enough to produce nuclei,

hence the universe contained light elementary fermions. The fermions that

are neither too heavy to decay nor have low binding energy are 3 neutrinos

and the electrons. The nucleon synthesis follows this period shortly; hence the

imprint of the dynamics of the weak decoupling can be traced by the ratios of

the light elementary particles in the present age. The primordial plasma inter-

acts with the active neutrinos via forward scattering, mixed-state potentials,

damping and repopulation of the active species. Sterile neutrinos do not feel

any potential and does not undergo repopulation by pair-production.
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4.2 Coherent Forward Scattering

The Neutrinos undergo scattering with the primordial plasma containing

abundant low energy particles that interact with neutrinos and anti-neutrinos

via the W and Z bosons. For the era of weak decoupling, the interaction with

muons and heavier particles can be neglected for simplification. The three

species of neutrinos experience both elastic and non-elastic scatterings with

plasma contents. The neutrinos that we are interested in are the ones which

conserve the coherence of the neutrino ensembles. These type of scattering

are known as coherent forward scattering.

For this to happen, we need to take the reactions that have neutrinos in the

initial state as well as the final state. The reactions with intermediate Z-boson

are common for all 3 active-flavors. While the reactions involving W± bosons

are limited to electron flavour.

The forward scattering potentials can be derived in two ways, one is to use

the QFT finite-temperature Lagrangian approach as done in [15] and [16].

The other way is to use the integral over scattering amplitudes as in [17] and

by Rudzsky in [18]. In both the cases the potential terms are order Gf , in

the later case the potential depends on the Matrix element for scattering in a

linear fashion.

4.3 Active-Sterile Potentials

The sterile neutrinos are non-interacting in weak interactions, while the active

species undergo weak current interactions. Both the charged current and

neutral current will contribute to the new flavour hamiltonian. For a active

flavour α = e, µ, τ the active-sterile potentials just get added to the flavour

hamiltonian Hf . The new flavour hamiltonian is given by :

Hvac+med
f = Hf + δαβ(δαeVcc + Vnc) (4.1)

where β = α for active flavour and β = s for sterile flavour. Vcc and Vnc are

the charged and neutral current potentials from the background plasma.

14 Chapter 4 Dense Media Effects
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Z
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e− e−
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Figure 4.1: Neutral current interactions
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ν̄e ν̄e

e−

W+

e+

νe νe

e+

Figure 4.2: Charged current interactions
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4.4 Active-Active Potentials

The charged current interactions will, however, only be limited to electron

flavor neutrino for weak decoupling energy range [100 MeV to 1 MeV], as

the energy is less than the mass of a muon, therefore a muon or tau lepton in

the final state can’t be produced on these energy scales. Hence, there would

be difference between potentials of active-active species only if one species is

electron flavoured. However, matter-antimatter effects also play an important

role in active-active potentials.

4.5 Matter-AntiMatter Potentials

The active-active case is also different because, unlike the sterile state that

could not undergo scattering, here both the species are active flavour. Thus

the resultant superposition or mixed state between the two gives rise to an

off-diagonal potential that can be felt by the mixed active-active states. This

off-diagonal potential V αβ contains both mixed matter-matter and matter-anti-

matter interactions.

Hvac+med
f = Hf + δαβ(δαeVcc + Vnc) + V αβ (4.2)

Here β only runs over active species and V αβ is zero for α 6= β.

There are interactions between matter and anti-matter flavour eigenstates,

pure state and also mixed states. The pure states can be directly influenced by

introducing a potential due to lepton asymmetry in Vcc and Vnc above. This

term has opposite sign for matter and anti-matter.

4.6 Damping Effects

The active flavour neutrinos also interact to background medium in ways that

lead to loss of coherence via collisions. The interactions of active neutrinos to

background not only creates a forward scattering potential, in which the final

state contains a neutrino with conserved phases and momentum, but there are

16 Chapter 4 Dense Media Effects



also reaction where the phase is not conserved in the scattering process and

sometimes there are no neutrinos in the final state of the scattering. These

type of reactions lead to loss of coherence of the neutrino system. Damping

terms are of order G2
f and are rate limited by the temperature, making them

less effective at lower temperatures.

4.7 Repopulation effects

In the primordial plasma the background also served as pair-production driver

for active flavour states producing coherent neutrino states. The rate was

limited by the free states that are available for the newly generated fermions.

The repopulation term used in the thesis also has a dependence on chemical

potential generated by the Lepton Asymmetry. Hence the repopulation received

by the neutrinos and anti-neutrinos would be different.

4.7 Repopulation effects 17





52 Active and 1 Sterile
Flavour Model

5.1 2+1 flavour mixing

To write down equations for the 2+1 neutrino mixing, the density matrix

formalism has been used in the flavour space. The density matrix, describing

the mixed neutrinos, can be expanded in the form of polarization vectors.

ρ = 1
2(P0 +

∑
i

λiPi) (5.1)

where λi are the 8 Gell-Mann matrices. After expanding the summation, the

density matrix can be written as:

ρ = 1
2


P0 + P3 + 1√

3P8 P1 − ι̇P2 P4 − ι̇P5

P1 + ι̇P2 P0 − P3 + 1√
3P8 P6 − ι̇P7

P4 + ι̇P5 P6 + ι̇P7 P0 − 2√
3P8

 (5.2)

Here the diagonal values of the matrix represents the values of normalised

number densities of the 3 flavours of neutrino species.

ne = 1
2(P0 + P3 + 1√

3
P8) (5.3a)

nµ = 1
2(P0 − P3 + 1√

3
P8) (5.3b)

ns = 1
2(P0 − 2√

3
P8) (5.3c)

Here the reader can assess the structure of the equation 5.2 and see that

the 2x2 sigma matrices formulation can be derived by setting P8 and cross

elements between the active sterile species to zero.
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The mixing matrix U for 3 flavour basis is

U =


c12c13 c13s12 s13

−c12s13s23 − c23s12 c12c23 − s12s13s23 c13s23

−c12c23s13 + s12s23 −c12s23 − c23s12s13 c13c23

 (5.4)

where cij and sij are cos(θij) and sin(θij) respectively, and θij are the mixing

angles. The CP-violating phase has been ignored from the mixing matrix to

keep the derivation simple.

The Vacuum PotentialHf in flavour space will have similar expansion with Gell-

Mann matrices as of the polarization vector. We know the flavour Hamiltonian

Hf = UHmU
†, with Hm = diag(m2

1,m
2
2,m

2
3)/2E

Hf =


H0 +H3 + 1√

3H8 H1 − ι̇H2 H4 − ι̇H5

H1 + ι̇H2 H0 −H3 + 1√
3H8 H6 − ι̇H7

H4 + ι̇H5 H6 + ι̇H7 H0 − 2√
3H8

 (5.5)

Here, except for H0 which is (m2
1 +m2

2 +m2
3)/6E, solving for each of the other

eight components of the Hi vector will yield forms as following.

Hi = ki1
m2

1
2E + ki2

m2
2

2E + ki3
m2

3
2E (5.6)

where ki1 are some numerical values that may seem complicated but the δm2
ij

can be recovered by knowing that, ki2 will always be −(ki3 + ki1).

Hi = −ki1
δm2

12
2E − ki3

δm2
23

2E (5.7)
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5.2 Quantum Kinetic Equation for 2+1
flavour model

Now, to write out the evolution of the mixed neutrino density matrix we start

by taking time derivative of Equation 5.1, which will yield in a commutator

product containing Gell-Mann matrices.

i
∂Pk · λk

∂t
= [Hi · λi, Pj · λj] (5.8)

Here, we can use the SU(3) structure constant Fijk to get rid of all λ’s, Note

that the structure used here is twice the original one.

∂Pk

∂t
= HiPjFijk (5.9)

Now, we add potential terms for 2 different active neutrino species to the

vacuum terms.

Ve = −7π2GfxT
5

45
√

2M2
z

(Ne + Nē + 5.143) + 2
√

2ζ(3)
π2 GfT

3Le (5.10)

Vµ = −7π2GfxT
5

45
√

2M2
z

(Nµ + Nµ̄) + 2
√

2ζ(3)
π2 GfT

3Lµ (5.11)

where Nα is the number density normalized to unity, given by

Nα = 2
3ζ(3)

∫
(nα)f0(x)x2dx (5.12)

where the first term for both species is the coupling to background plasma, and

the second term is the correction for lepton asymmetry between the matter

and anti-matter particles of same flavours. The potential for electron neutrino

also contains contribution from charged current interactions i.e. 5.143 term.

Here Le = ne − nē and Lµ = nµ − nµ̄ are the active neutrino asymmetries. As

pointed out in [19], as well as in [20], there are also off-diagonal terms due to

active oscillations adding up to the potential experienced by the two species.

V eµ =
√

2Gfζ(3)T 3

4π2

{
[(P1 + ι̇P2) − (P̄1 + ι̇P̄2)] − 28ζ(4)T

3ζ(3)M2
z

(P1 + ι̇P2)
}

(5.13)
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The bars over polarization vectors indicate that they represent the anti-matter

species. While setting the lepton asymmetry to zero, one must remember that

the part inside square brackets in the above equation would go to zero.

The second term with (P1 + ι̇P2) is the first order QFT correction and decays as

mass squared of the carrier Z boson, this term is 10−15 order smaller compared

to the first term, it can be neglected without the loss of much precision. There

is an additional term for anti-matter [21] which looks similar to the last term,

and is neglected for same reason.

We now have to add these 3 terms to correct Hi terms and write the full

effective potential vector Vi. This can be easily done by calculating differences

in potential felt by two active species as compared to sterile species, in terms

of Vi’s, and then equating them to the defined potentials above. We get the

following:

V1 = H1 + real(V eµ) (5.14a)

V2 = H2 − imag(V eµ) (5.14b)

V3 = H3 + 1
2(Ve − Vµ) (5.14c)

V8 = H8 + 1
2
√

3
(Ve + Vµ) (5.14d)

V4, V5, V6, V7 will remain the same as H4, H5, H6, H7, as the diagonal terms

between active-sterile species combinations receive no additional potential

from the plasma. This happens because the scattering matrix for mixed active-

sterile neutrinos would contains a final state with mixed active-sterile state and

contraction of such state vectors would be zero in case of non self-interacting

sterile neutrinos.

5.2.1 Damping and Repopulation Terms

The early universe before the weak decoupling of neutrinos was dominated

by primordial plasma, which affects the mixed neutrino states by introducing

decoherence(damping), coupling matter with anti-matter and refilling of empty

states created by oscillation to sterile flavour (repopulation). These terms can

be derived via values from the table in [19], along with the approximation

that the active neutrino system is kept in thermal equilibrium. This condition

requires the rate of weak reactions to be greater than the rate of oscillations,
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which is already satisfied in the weak epoch (100 MeV to 1 MeV). To make it

suitable for the multi-momentum approach, the damping and repopulation

rates for each comoving momenta points have been calculated individually and

the background parameters like lepton asymmetries and Neff are integrated

over the momentum space. There would be refilling of both νe and νµ that

would be added to the diagonal elements of the density matrix derivatives.

Re = G2
fxT

5Ce

(
f(p, u)
f(p, 0) − ne

)
(5.15)

Rµ = G2
fxT

5Cµ

(
f(p, u)
f(p, 0) − nµ

)
(5.16)

Here, the first terms is just the re-population rate of the background plasma to

the corresponding neutrino flavours with Ce = 1.27 and Cµ = 0.92. The term

is of order G2
f as it arise from 2 vertex interactions with the background.

Next, the system of evolution equations can described as following.

d

dt
P0 = 2

3(Re +Rµ) (5.17)

d

dt
P3 = ViPjFij3 + (Re −Rµ) (5.18)

d

dt
P8 = ViPjFij8 + 1√

3
(Re +Rµ) (5.19)

The zeroth element of the polarization vector only receives contribution from

the repopulation terms. While the third and eighth term are contain not only

combinations of refilling Re and Rµ, but also of the contraction between the

potential vector, polarization vector and the structure constant, which is a

rank 3 tensor. These 3 terms lie on the main diagonal and are responsible for

adding and removing neutrinos to the 3 flavours via both weak reactions as

well as oscillations. Similarly, the other 6 equations are also a combination of

damping (decoherence) terms and contraction between the aforementioned

vectors and tensors.
d

dt
P4 = ViPjFij4 −DeP4 (5.20)

d

dt
P5 = ViPjFij5 −DeP5 (5.21)

where De = 0.635 G2
fxT

5.

d

dt
P6 = ViPjFij6 −DµP6 (5.22)
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d

dt
P7 = ViPjFij7 −DµP7 (5.23)

where Dµ = 0.46 G2
fxT

5.

d

dt
P1 = ViPjFij1 −D′P1 − C ′P̄1 (5.24)

d

dt
P2 = ViPjFij2 −D′P2 − C ′P̄2 (5.25)

where D′ = 0.625 G2
fxT

5 and C ′ = 0.39 G2
fxT

5. There are 4 different damping

coefficients, each affecting specific cross diagonal terms between 2 neutrino

species. De and Dµ are the the damping terms between the electron neutrino

and the sterile species, and between the muon neutrino and the sterile species

respectively. D′ is the active-active damping parameter between electron and

muon neutrinos, and C ′ dictates the annihilation between mixed electron-

muon neutrino species of matter and anti-matter.

5.3 Evolution of Lepton Asymmetry

The Effective Lepton Asymmetry is defined as

Lα = L0 + 2Lνα . (5.26)

The term L0 is the initial asymmetry due to neutrons, protons and electrons and

is taken to be 10−10, Lα is the effective asymmetry in να flavour of neutrinos

and is used to make notations easier.

Lνα = 3
8 [nα − nᾱ] (5.27)

Lepton asymmetry Lα is a quantity getting affected by the refilling of states,

however, this refilling is different for matter and anti-matter. This leads to lep-

ton number violation in this process. In order to conserve the lepton number,

the derivative of the lepton asymmetry can be defined with only oscillation

terms and repopulation and damping terms do not enter into the derivative.

dLα

dt
= 1

4ζ(3)

∫
(ṅα − ṅᾱ)f0(x)x2dx (5.28)
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dLe

dt
= 1

4ζ(3)

∫ 1
2

[
(ViPj − V̄iP̄j)Fij3 + 1√

3
(ViPj − V̄iP̄j)Fij8

]
f0(x)x2dx

(5.29)
dLµ

dt
= 1

4ζ(3)

∫ 1
2

[
−(ViPj − V̄iP̄j)Fij3 + 1√

3
(ViPj − V̄iP̄j)Fij8

]
f0(x)x2dx

(5.30)

The chemical potential u can be calculated from the definition of lepton

asymmetry at equilibrium, as done in [13].

u = −2π√
3
sinh

(
1
3arcsinh

[
−18

√
3ζ(3)Lα

π3

])
(5.31)

5.3.1 Evolution equations for Anti-Neutrinos

The anti-neutrinos experience the same potential from the plasma, except for

the terms containing lepton asymmetry and the active-active potentials. The

potential terms for anti-neutrinos Vē, Vµ̄ and Vēµ̄ can be derived by setting

L → −L and P1&P2 →P̄1&P̄2. The chemical potential in the distribution

function is ū = −u for anti-neutrinos.

5.4 Evolution with Temperature

In an expanding Universe we need a different variable to describe momentum

of mixed neutrinos. Various studies have used the co-moving momentum

x = p/T as the variable of choice and evolved it over temperature instead

of time. The time-temperature relationship can be derived by considering

the temperature T of a photon moving through early expanding universe of

wavelength a in it’s co-moving frame.

a ∝ 1
T

(5.32)

And the Hubble parameter H, is defined as:

H = ȧ

a
(5.33)
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Substituting equation (4.8) in (4.9), we get

∂t

∂T
= − 1

HT
(5.34)

Then, by using the Friedmann equations for weak-decoupling epoch, we

have

H(T ) =
√

8π3gbGT 4

45 (5.35)

gb = 43
8 + 7

8Neff (5.36)

Where gb is the total number of degrees of freedom, and Neff is the number

of effective degrees of freedom from all neutrinos. The value for Neff can be

calculated by,

Neff =
Σα

∫
nαf0(x)x3dx∫
f0(x)x3dx

(5.37)

where f0(x) = 1/(1 + ex) is the Fermi-Dirac function with zero chemical

potential.For reducing the computation time, the value of Neff is set to 3 in the

equation 5.36. Using equation (4.27) we can write the temperature derivative

in terms of time derivative.

∂

∂T
= ∂

∂t

∂t

∂T
= − 1

HT
∂

∂t
(5.38)

5.4.1 Effective Degrees of Freedom, Neff

Neff , the number of effective degrees of freedom is a cosmological quantity of

interest, which is defined as degrees of freedom from non-radiation content.

In relevance to the thesis the quantity ∆Neff measures the degrees of freedom

generated by the sterile neutrino production and repopulation of the free

energy states in the fermi-distribution of the neutrinos.
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5.5 Commutator Values by Expanding
Einstein Summations

The values for the commutator in the 2+1 flavour model are given as the

following Einstein summation over potential, polarization vector, and the

SU(3) structure constant Fijk.

ViPjFij1 = −P2V3 + P3V2 + 1
2P5V6 + 1

2P7V4 (5.39a)

ViPjFij2 = P1V3 − P3V1 − 1
2P4V6 + 1

2P6V4 (5.39b)

ViPjFij3 = −P1V2 + P2V1 + 1
2P5V4 − 1

2P7V6 (5.39c)

ViPjFij4 = 1
2P2V6 − 1

2P6V2 − 1
2P7V1 − 1

2(V3 +
√

3V8)P5 (5.39d)

ViPjFij5 = −1
2P1V6 + 1

2P6V1 − 1
2P7V2 − 1

2(P3 +
√

3P8)V4

+1
2(V3 +

√
3V8)P4

(5.39e)

ViPjFij6 = −1
2P2V4 + 1

2P4V2 − 1
2P5V1 − 1

2(−V3 +
√

3V8)P7 (5.39f)

ViPjFij7 = −1
2P1V4 + 1

2P4V1 + 1
2P5V2 − 1

2(−P3 +
√

3P8)V6

+1
2(−V3 +

√
3V8)P6

(5.39g)

ViPjFij8 =
√

3
2 P5V4 +

√
3

2 P7V6 (5.39h)

The values for vacuum potentials V2, V5, and V7 are all zero for the entire

temperature range. However, the active-active potential 5.13 adds to the

vacuum value of V2 leading to a non-zero value.
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6Numerical Simulations and
Results

6.1 Details of Numerical Computation

The primary version of the code is written in python, and scipy ODE solver,

with the method set to dopri5, was used to solve the differential equations, it

is based on Runge-Kutta method of order 4-5. Other solver, based on Range-

Kutta of order 5, dop853, was used to check for the solver dependence of

solution. Both solvers are written in Fortran with Python wrapper built around

them, they both converged on the solution with dop853 being slower than

dopri5. To speed up the solution convergence numpy module was used for

doing all the matrix and linear algebra operations. It allows for the array

operations to be offloaded from python to C/C++ where it can be executed

better at machine level. Checks for convergence were also done using different

tolerances and increasing comoving momentum bins, both of which showed

small dependencies on these parameter, however, there was no significant

deviation of the overall trend of the output from the solver.

6.2 Numerical Evolution of Density Matrix
1+1 model

The above defined evolution equations are defined such that they can be solved

for both average momentum and multi-momentum evolution with minimum

changes required. The model used above is good for simulating both 2+1, as
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Figure 6.1: Distribution of sampled comoving momentum ’x’ points

well as, 1+1 mixing with one sterile species. In the following subsections the

results from 1+1 multi-momentum model are presented.

6.2.1 1+1 Flavour model with Zero Asymmetry

For testing the workings of the evolution equations, it is first tested with 1+1

flavour model with zero lepton asymmetry based on [13], for single and multi-

momentum output simulations. For multi-momentum runs, it’s needed to

track the motion of resonance through the spectrum. To accomplish this task

comoving momentum grid is defined like [22], but with different xmin = 10−2

, xmax = 20 and xext = 3.15, and with 500 points. The fig. 6.1 shows the

histogram of distribution of selected x-points.

The reduction of of 2+1 model to 1+1 model requires a few things, one is

selecting an active flavour, here muon neutrino was chosen and setting the

mixing angles and squared mass difference for the other active species to be set

to zero, i.e. θ12 = 0, θ13 = 0 and δm2
12 = 0. Here the mixing angle is taken to

be θ23 = 0.0184 and separation between mass eigenstates δm2
23 = −3 × 10−3eV .

The system was evolved from 20 MeV to 1 MeV (electron-positron annihilation).

It is a case for Inverted Hierarchy (IH) where the δm23 is negative, hence the

vacuum frequency can be equated by the effects of media and lead to MSW

resonances. The resonances are both momentum and temperature dependent,

therefore the entire spectrum will not go into resonance simultaneously.
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Figure 6.2: Evolution of normalised population of νe, νµ and νs with s23 = 0.0184 and
δm2

23 = −3 × 10−3eV and Lµ = 0.The system was evolved numerically
from temperature 20 MeV to 1 MeV. Blue curve for electron neutrinos is
under the orange curve.
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(b) Lµ = 10−5

Figure 6.3: The Evolution of 1+1 model with initial lepton asymmetry Lµ = 10−7

and Lµ = 10−5

It can be seen from fig. 6.2, the electron neutrinos remains unaffected by

mixing between muon and the sterile flavours, i.e. the parameters set have

reduced the 2+1 flavour model to 1+1 model effectively. Here the resonances

between the selected flavour and sterile neutrinos can seen moving through the

momentum space as the temperature is going down. The oscillation between

the two flavours is bringing the sterile neutrinos into thermal contact with

the universe. The thermalisation for this case brings the entire spectrum of

sterile neutrinos in thermal contact with the background plasma before the

neutrino decoupling. However this will not be the case always and there can

be partial thermalisation of the sterile species and resonances can occur after

the electron-positron annihilation(1 MeV), this model does not account for

photon reheating due to recombination.
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6.2.2 1+1 Flavour model with Non Zero
Asymmetry

The fig. 6.3 shows the evolution 1+1 model along with anti-neutrinos and the

second panel show the evolution of lepton asymmetry, Here the parameters

for evolution were same as the zero lepton asymmetry case, except the initial

lepton asymmetry Lµ = 10−7 and 10−5. This system was evolved from 10

MeV to 1 Mev. Since the repopulation terms are not present in the derivative

of lepton asymmetry the changes in this quantity can only be driven by the

oscillation to sterile neutrinos(anti-neutrinos).

The Lepton Asymmetry seems to always jump to order of 10−5 for values less

than 10−5, while for initial value above 10−5 the value for lepton asymmetry

stay in order of the 10−5.

6.2.3 1+1 Model Evolution for Positive ∆m2

The simulations for this subsection were run with 100 momentum points on

the grid over 8000 temperature points from 60 MeV to 1 MeV.

In figure 6.4 the value for 1+1 model for electron-sterile flavours (blue curves)

and muon-sterile flavours(orange curves) has been plotted for their evolutions

from 60 MeV to 1 MeV. For the range of combinations for both mixing angles

e-s(θ13) and µ-s(θ23) and mass difference splittings between active-sterile

flavours ∆m2 show a decrease in value of the asymmetries, all the features for

the asymmetries lie under 10−10 dashed black line. To suppress the production

of sterile neutrinos significantly the value of the Lepton Asymmetry should

be higher depending on the mixing parameter values and potentials due to

media. In this case, the potentials due to primordial plasma is larger than the

asymmetry potential throughout the temperature range for evolution thus the

evolution of Neff is not greatly affected by the small asymmetry values.

In case of two flavours it’s easy to track the derivatives of lepton asymmetry,

since only the terms from the commutators from matter and anti-matter are

the one contributing to the their evolution, it’s possible to write a compact
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Figure 6.4: Evolution of Lepton Asymmetries for 1+1 flavour model with 100 momen-
tum grid points. Blue color represents the asymmetry for electron flavour
and orange curve represents the lepton asymmetry for muon flavour. The
first row shows evolution for ∆m2 = 0.1 eV 2, second row ∆m2 = 1 eV 2,
third row ∆m2 = 2 eV 2 and fourth row ∆m2 = 4 eV 2. The system was
evolved from 60 MeV to 1 MeV for sin2(2θ13) and sin2(2θ23) written on
top. The initial Asymmetry for both active flavours was taken to be 10−10.
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equation in terms of P±
i = Pi ± P̄i vectors and their first order derivatives. For

more simplicity we can define dP−
e and dP−

µ using equations 5.39

dP−
e = dP−

3 + 1√
3
dP−

8 = P−
5 V4 (6.1)

dP−
µ = −dP−

3 + 1√
3
dP−

8 = P−
7 V6 (6.2)

It is further possible to look at the evolution of P−
5 and P−

7 using equations

5.39, ignoring damping terms dP−
5 and dP−

7 can be written as

dP−
5 = −1

2(P−
3 +

√
3P−

8 )V4 + 1
2(H3 +

√
3H8 +VW +VZ)P−

4 + 1
2(VLe)P+

4 (6.3)

dP−
7 = −1

2(−P−
3 +

√
3P−

8 )V6 + 1
2(−H3 +

√
3H8 + VZ)P−

6 + 1
2(VLµ)P+

6 (6.4)

Here VW and VZ are the forward scattering potentials due to charged and

neutral current respectively.

In figure 6.4 there is a small sharp increase in asymmetries near 20 MeV, the

reason for this can be inferred from the equation 6.3 where the first V4 and

P−
4 terms cancel out each other leading to increase in contribution from the

P+
4 term which depends on the asymmetric potential for electron flavour and

the sharp increase is seen in the asymmetry for electron flavour, and since

the value of asymmetry is small the increment of asymmetry is comparably

small as well. Similarly, the first 2 terms of equation 6.4 cancel leading to

the increase in variation of muon flavour asymmetry Lµ. All of this can be

explained physically conditions where vacuum potential V4 is surpassed by

the potential due to primordial media VW and VZ . Hereafter, the fluctuations

due to asymmetric potentials continue until a significant part band of charged

current in taken over the vacuum potentials. If the conditions are met earlier

and at higher Le and Lµ the fluctuation region would be of short duration

as higher asymmetry potential would equilibrate the entire momentum band

faster. After the fluctuations the increase in lepton asymmetry is driven by

vacuum and asymmetric terms.

The Neff plots in figure 6.5 for 1+1 model shows that the thermalisation of

sterile neutrino with muon flavour take place at lower mixing parameters as

compared to electron flavoured neutrinos. This is due to the higher media

potential experienced by the electron flavour due to primordial plasma.
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Figure 6.5: Final ∆Neff for 1+1 flavour model with 100 momentum bins. The first
panel is for electron-sterile flavour neutrino oscillations and second panel
is for muon-sterile flavour oscillations. The system was evolved from 60
MeV to 1 MeV. The initial Asymmetry for both active flavours was taken
to be 10−10.

6.3 Numerical Evolution of 2+1 model

The addition of active-active mixing along with active-sterile mixing introduces

new off-diagonal complex quantities which did not exist in 1+1 active-sterile

case. The higher mixing angle between the active-active species also plays

a significant role in the evolution of the 3 neutrino system. Henceforth for

simplicity, the ∆m2 will be referred as the muon-sterile mass squared difference

between muon and sterile flavour neutrinos, and the electron-muon mass

squared difference and θ12 are fixed to 7.6 × 10−5eV 2 and 33.45° respectively

for all the results below. The comoving grid is also changed to xmin = 10−1 ,

xmax = 50 and xext = 3.15.

6.4 Dynamics of Neff

The degrees of freedom Neff are dependent on the sum of values P0 and P̄0.

This can be seen by adding the three flavours populations.

ne + nµ + ns = 3
2P0 (6.5)
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Then the equation 5.37 can be written in terms of polarisation vectors

Neff =

∫
3
2(P0 + P̄0)f0(x)x3dx

2
∫
f0(x)x3dx

(6.6)

And the fractional degrees of freedom can be calculated by subtracting 4 from

the numerator.

∆Neff =

∫
3
2((P0 + P̄0) − 4)f0(x)x3dx

2
∫
f0(x)x3dx

(6.7)

If there are some unfilled active states left at the end of the run there can

effective degree of freedom due to active species can be different from 4. Then

to calculated degrees of freedom due to sterile species one has to use.

Neff,s =

∫
3
2((P0 + P̄0) − (ne + nē + nµ + nµ̄))f0(x)x3dx

2
∫
f0(x)x3dx

(6.8)

It can be easily seen from the above formulas the evolution of all the above

quantities is dependent on the addition of matter and antimatter main-diagonal

terms. The 2 in the denominator is to normalize the total degrees of freedom

from each matter+anti-matter pair of flavours to unity .

6.5 Dynamics of Lepton Asymmetries

The 2+1 model is essentially 3 oscillating system coupled together, there-

fore just looking at main diagonal potentials would not give us the full pic-

ture. There are regions of temperature that show domination of one type

of oscillation and in some regions of there is interplay between two systems.

The off-diagonal potential V eµ is a complex quantity and a term that links

matter-antimatter, along with the Lepton asymmetry potentials along the main

diagonal, therefore it is useful to take a look at it, when considering to make

sense of the lepton asymmetry evolution. For figuring out dynamics of Le

and Lµ the differences between matter-antimatter potentials is what taken

into consideration. The dynamics of the lepton asymmetries are dependent

on the differences between the derivatives of the components P3, P̄3 and P8,

P̄8. This is due to the fact that the evolution of asymmetries conserves lepton
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number and ignores the terms containing any repopulation, damping and

terms involving non-vacuum potentials.

dP−
3 =

[
(P2V1 − P1V2) + 1

2P5V4 − 1
2P7V6

]
−
[
(P̄2V̄1 − P̄1V̄2) + 1

2 P̄5V̄4 − 1
2 P̄7V̄6

]
(6.9)

dP−
8 =

[√
3

2 P5V4 +
√

3
2 P7V6

]
−
[√

3
2 P̄5V̄4 +

√
3

2 P̄7V̄6

]
(6.10)

The value of above polarization vectors can also be written in terms on addi-

tion or subtraction of matter and anti-matter terms P±
i = Pi ± P̄i, the ones

interesting are the P−
i because they are related to Lepton asymmetries and are

to be tracked for their evolution.

dP−
3 = −(P1V2 − P̄1V̄2) + (P2V1 − P̄2V̄1) + 1

2P
−
5 V4 − 1

2P
−
7 V6 (6.11)

dP−
8 =

√
3

2 P−
5 V4 +

√
3

2 P−
7 V6 (6.12)

V1 and V2 can be expressed in terms of the vacuum and medium dependent

parts leading to further simplification of first two term of 6.11

dP−
3 = P+

1 imag(V eµ) + P−
2 H1 + P+

2 real(V eµ) + 1
2P

−
5 V4

−1
2P

−
7 V6

(6.13)

The difference between the matter and anti-matter terms for electron and

muon flavours asymmetry evolution can be written as

dP−
e = P+

1 imag(V eµ) + P−
2 H1 + P+

2 real(V eµ) + P−
5 V4 (6.14)

dP−
µ = −P+

1 imag(V eµ) − P−
2 H1 − P+

2 real(V eµ) + P−
7 V6 (6.15)

6.5.1 2+1 Flavour Average Momentum Model with
zero asymmetry

This model is requires to requires solving 20N ordinary differential equations

where N is the number comoving momentum bins being used. 9 equations for

neutrinos, 9 for anti-neutrinos and two equations for Lepton asymmetry. By

setting the Lepton Asymmetries Le and Lµ and their time/temperature deriva-

tives to zero, the system is reduced to 18N and the computational demand for
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Figure 6.6: Evolution 2+1 flavour average momentum model with zero lepton
asymmetry Le, Lµ = 0 with s12 = 0.0112 , s23 = 0.0087 and δm2

23 =
−3 × 10−3eV , The system was evolved from 10 MeV to 1 MeV.

performing integral over asymmetries is also removed, thus the convergence

to the solution is much faster comparatively to solving a full system evolution.

The figure 6.6 shows the resonances of electron-sterile flavour system and

muon-sterile flavour for negative ∆m2 in this model takes place at different

temperatures indicating for inverted hierarchy and zero lepton asymmetry

the active-active components are of little importance. The resonance peak

for electron flavoured neutrinos appear later than muon flavour due to the

additional potential of charged current that the has to be overcome by the

vacuum potential, then V3 +
√

3V8 = 0, i.e. the difference between potentials

felt by the electron and sterile species is zero. Similarly −V3 +
√

3V8 = 0 is the

resonance condition for muon and sterile flavour neutrinos. This condition

can be seen in the figure 6.7, with corresponding increase in sterile population

there is a drop in absolute values for the total effective potential felt by electron

neutrino V3 +
√

3V8 and muon neutrino −V3 +
√

3V8. After both the resonances

there is no change in sterile population, hence the the quantity Neff is locked

away from evolution.
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Figure 6.7: Sum of potentials for Electron flavour (blue) and Muon Flavour(orange)
2+1 flavour average momentum model with zero lepton asymmetry
Le, Lµ = 0 with s12 = 0.0112 , s23 = 0.0087 and δm2

23 = −3 × 10−3eV ,
The system was evolved from 10 MeV to 1 MeV.
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Figure 6.8: Final ∆Neff for 2+1 flavour model with average momentum p = 3.15 T .
The first panel sin2(2θ23) = 3×10−3 second panel sin2(2θ23) = 3×10−2.
The system was evolved from 60 MeV to 1 MeV. The initial Lepton
Asymmetry for both active flavours was taken to be 0.
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Figure 6.9: Final ∆Neff for 2+1 flavour model with Average momentum p = 3.15 T.
The first panel sin2(2θ23) = 3×10−3 second panel sin2(2θ23) = 3×10−2.
The system was evolved from 60 MeV to 1 MeV. The initial Asymmetry
for both active flavours was taken to be 10−10.

6.5.2 2+1 Average Momentum Model with Non Zero
Asymmetry

The introduction of lepton asymmetries not only shifts the ∆Neff to lower val-

ues in fig. 6.9, but also shows that the asymmetries are slightly more capable

of suppressing the conversion to sterile neutrinos if the electron-sterile mixing

angle is larger than muon-sterile mixing angle. The features in lepton asym-

metries move to higher temperatures as the mixing parameters are increased.

Looking into figure 6.10 and 6.11, the major contributors for evolution of the

Lepton Asymmetries are V3 and V8. The potential among V3 and V8 with the

highest magnitude is specific temperature range is the driver of the evolution

of the lepton asymmetries for that particular range. The closer the value of

the V eµ is to the main diagonal potentials is the more jittery the evolution

lepton asymmetries will be. These jitter regions are the ones where the con-

versions to sterile neutrinos is taking place, and the active-sterile conversions

is more effective when the asymmetries are low. The jitters are caused by the

active-active mixing trying to compensate the empty energy states left by the

conversion of active flavour to sterile neutrino.
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Figure 6.10: Evolution of absolute values of Lepton Asymmetries for 2+1 flavour
model with Average momentum p = 3.15 T. Blue color represents
the asymmetry for electron flavour and orange curve represents the
lepton asymmetry for muon flavour. The first row shows evolution for
∆m2 = 0.1, second row ∆m2 = 1, third row ∆m2 = 2 and fourth row
∆m2 = 4. The system was evolved from 60 MeV to 1 MeV for different
combination of sin2(2θ13) and sin2(2θ23) written on top. The initial
Asymmetry for both active flavours was taken to be 10−10.
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Figure 6.11: Evolution of absolute value of Potentials for 2+1 flavour model with
Average momentum p = 3.15 T. Blue = real(V eµ), orange = imag(V eµ),
green = V3 and red =V8 . The first row shows evolution for ∆m2 = 0.1,
second row ∆m2 = 1, third row ∆m2 = 2 and fourth row ∆m2 = 4.
The system was evolved from 60 MeV to 1 MeV for different combination
of sin2(2θ13) and sin2(2θ23) written on top.
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Figure 6.12: Evolution of Neff for 2+1 flavour mutli-momentum model, panel one
with ∆m2 = 0.1eV 2 and second panel with ∆m2 = 1eV 2. The sys-
tem was evolved from 60 MeV to 1 MeV with Le, Lµ and their time
derivatives set to zero.

6.5.3 2+1 Multi-momentum Model with Zero
Asymmetries

The figure 6.12 shows the curves for evolution of ∆Neff . The increment in

the value of ∆Neff starts to takes places at low temperatures around 20 MeV

for ∆m2 = 0.1eV 2 and around 30 MeV for ∆m2 = 0.1eV 2. The conversion

to sterile happens for particular momentum value after it’s vacuum potential

crosses the medium potential of the plasma. The figure 6.13 depicts the growth

of ∆Neff , corresponds to normalised vacuum potentials crossing the medium

potential due to plasma.
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Figure 6.13: Evolution of Neff for 2+1 flavour mutli-momentum model, with ∆m2 =
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set to zero.
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Figure 6.14: Final ∆Neff for 2+1 flavour model with 100 momentum grid points.
The first panel sin2(2θ23) = 3×10−3 second panel sin2(2θ23) = 3×10−2.
The system was evolved from 60 MeV to 1 MeV. The initial Lepton
Asymmetry for both active flavours was taken to be 10−10.
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Figure 6.15: Evolution of absolute values of Lepton Asymmetries for 2+1 flavour
model with 100 momentum grid points. Blue color represents the
asymmetry for electron flavour and orange curve represents the lepton
asymmetry for muon flavour. The first row shows evolution for ∆m2 =
0.1, second row ∆m2 = 1, third row ∆m2 = 2 and fourth row ∆m2 = 4.
The system was evolved from 60 MeV to 1 MeV for different combination
of sin2(2θ13) and sin2(2θ23) written on top. The initial Asymmetry for
both active flavours was taken to be 10−10.
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Figure 6.16: Evolution of Neff for 2+1 flavour mutli-momentum model, panel one
with ∆m2 = 0.1eV 2 and second panel with ∆m2 = 1eV 2. The system
was evolved from 60 MeV to 1 MeV with initial of Le, Lµ at 10−10.

6.5.4 2+1 Multi-momentum Model with Non-Zero
Asymmetries

The figures 6.14 and 6.15 shows a quite complicated picture of the 2+1 multi-

momentum model. The figure 6.14 on one hand shows that adding non-zero

initial lepton asymmetries to the system lowers the final δNeff of the 2+1

system at 1 MeV. The figure 6.15 also shows amplifications for all chosen pa-

rameters ranges, and the final values of asymmetry potentials VLe and VLµ are

larger than forward scattering potentials after a certain temperature, leading

to a halt on sterile neutrino productions. The region of sterile neutrino is also

pushed to higher temperatures as compared to zero lepton asymmetries results

for 2+1 model. This means the conversion to sterile neutrinos are aided by

the active-active mixing.

The pattern of increment in Le and Lµ as seen in figure 6.15 is similar sug-

gesting both active flavours are responsible for the growth of asymmetries.

The pattern of evolution for Le and Lµ across the range of mixing parameters

scanned also show similar features in all panels of figure 6.15. It is required
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for reader’s understanding to name these features in the evolution, the region

where asymmetries have values equal to 10−9 or below will be called Plateau

1, the region with a positive slopped increase in asymmetries to 10−6 or 10−5

levels will be called Ramp region, the next region after the Ramp region and

the before the sharp vertical line increase to 10−3 levels will be referred to as

Plateau 2, and the 10−3 increase will referred to as Peak and region after Peak

will be called Plateau 3.

The mass squared difference ∆m2 and mixing angles θ23 and θ23 are not only

increasing the conversion to sterile neutrinos, it’s also increasing the Tempera-

ture at with the above stated features appear in lepton asymmetries leading

to an earlier increase in asymmetries and blocking of conversion to sterile

neutrinos. However figure 6.16 shows having mixing angle θ13 higher than

θ12 delays Peak region of asymmetries to lower temperature leading to higher

∆Neff than for other parameters in range. From figures 6.15 it’s possible to see

that having angle θ13 larger than θ23 makes the evolution of asymmetries more

jittery due to more active-active oscillations required to fill empty electron

flavour states, but the overall trend of the evolution leads to same 5 features

mentioned above. To understand these feature, it is necessary to use the equa-

tions 6.14, 6.15 and track the active-active and active-sterile terms separately.

In Plateau 1 region and Ramp region of figure 6.17 the terms P+
1 imag(V eµ)

and P−
2 H1 in 6.14 and 6.15 remain larger than other active-active term

P+
2 real(V eµ) and these first two terms summed up are larger than P−

7 V6 and

smaller than P−
5 V4. This means the active-active oscillation carry over the

changes from electron-sterile flavour mixing to muon-sterile mixing. The first

and the last terms of the equations 6.14 and 6.15 are keeping the values of

the derivatives dP−
e and dP−

µ from changing much, the increase in Lepton

Asymmetries in Ramp region of electron-sterile sector is caused by the term

P−
2 H1 increasing with temperature and then carried over to muon-sterile sector.

The Ramp region finally stops with the third active-active term P+
2 real(V eµ)

becomes comparable to first 2 active-active terms. The Plateau 2 is the region

where the conversion to sterile neutrino as well as active-active are maxi-

mum. This results in increase in ∆Neff at higher temperatures as compared

to 1+1 model. The figure 6.18 shows the ∆Neff slope of changes suddenly

at the Peak in Le and Lµ indicating the lepton asymmetries potentials have
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Figure 6.17: The top panel show the evolution of terms in dP −
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flavour mutli-momentum model with ∆m2 = 0.1eV 2, sin2(2θ23) =
3×10−3 and sin2(2θ23) = 3×10−2, and second panel shows the Lepton
asymmetries for both active flavours. The system was evolved from 60
MeV to 1 MeV with initial of Le, Lµ at 10−10. The legend for first panel
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sin2(2θ23) = 3 × 10−2, and second panel shows the absolute values of
Lepton asymmetries for both active flavours. The system was evolved
from 60 MeV to 1 MeV with initial of Le, Lµ at 10−10.

started dominating and the conversion to sterile are shut off by after the entire

momentum grid have VLe and VLµ larger than charged and neutral current

potentials in Plateau 3.

The Peak in Lepton Asymmetries is due resonances occurring for small values

for comoving momentum x. In figure 6.19 the active-sterile resonances occur

for both anti-neutrino active flavours, since there is loss of active flavours from

anti-matter populations the Le and Lµ will move towards positive values or

matter side, thus the chemical potentials would allow more refilling of matter

states than anti-matter states, thereby causing the anti-matter empty states

to remain unfilled for longer. In the Plateau 3 region the values for dP−
e and

dP−
µ remain relatively smaller than Le and Lµ to cause any significant change

in them, thereby the values for Lepton Asymmetries remain stable for rest

of the temperature range. The figure 6.17 fails to capture this increase in

asymmetry as it only occurs for a few small comoving momentum points and

it gets overwhelmed by the normalised values from the spectrum.
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Figure 6.19: The evolution of active-sterile resonances at small comoving momen-
tum x for 2+1 flavour mutli-momentum model with ∆m2 = 0.1eV 2,
sin2(2θ23) = 3 × 10−3 and sin2(2θ23) = 3 × 10−2 for temperature 30
The system was evolved from 60 MeV to 1 MeV with initial of Le, Lµ at
10−10.
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7Discussion

7.1 Summary of findings

The result from 2+1 Average momentum model and 2+1 Multi-momentum

model with non-zero initial asymmetries display increase in Le and Lµ asym-

metries to orders of 10−4 and 10−3, that slows the production of sterile neutrino

and stops them becoming fully thermalised. The 2+1 multi-momentum model

shows a larger suppression on the final values of ∆Neff than average momen-

tum model.

7.1.1 Average momentum 2+1 model

The value of ∆Neff from the figure 6.9 suggests that the value for ∆m2

above 3 eV 2 are the Planck 2018’s limit of 2.96+0.34
−0.33. The range between

3 × 10−3 and 3 × 10−2 is suitable for Sin2(2θ13) with ∆m2 below 3 eV 2 and

Sin2(2θ23) = 3 × 10−3.

But high value for sin2(2θ23) restricts the choice to for below ∆m2 in sub 2 eV 2

range and higher mixing angles for electron and sterile flavour become less

possible.

This model is however doesn’t cut off the sterile productions completely even

at low temperatures, the jitters in lepton asymmetries indicate the sterile

neutrino the value for asymmetries of orders 10−4 are insufficient to fully halt

the sterile neutrino production for the range of mixing parameters.
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7.1.2 Multi-momentum 2+1 model

The multi-momentum model shows more complicated behaviour but consistent

behaviour as compared to average momentum model. The absolute values

for Lepton Asymmetries do not drop to lower magnitudes and stay stably at

same order or get amplified with decreasing temperature. The conversion to

sterile flavour is mostly occurs at low comoving momentum values, and the

conversion to sterile neutrinos stop when the Lepton Asymmetries reach a

magnitude of 10−3.

The suppression of final value of ∆Neff is large when θ23 is taken to be 0.03 and

the whole parameter space becomes sub 0.1 ∆Neff level which is well within

Planck 2018’s allowed range. However when θ23 = 0.003 the system gives

higher ∆Neff only a few points with high mass squared values are excluded.

When the mixing angle θ13 is set higher than θ23, the system shows more

production of sterile neutrino as the temperature at which the Peak occurs

is lower to around 10 MeV, thereby increasing the ∆Neff as compared other

combination of angles.
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8Perspectives

The have been a similar 2+1 multi-momentum study done in [23], however

they have collision terms that conserve Lepton Number, they fix the Lepton

Asymmetry amplitude to 10−2 and 10−3 levels and their momentum grid had

only 21 points. The study presented in this thesis has more momentum

resolution than it and has 2 dynamic asymmetries, thus it’s an improvement

over their study. Another study of 3+1 model has been done in the paper

[24] with ∆m2 = 1 eV 2 between first and fourth mass eigenstates. They find

with no lepton symmetry even with low mixing the sterile neutrino can be

thermalised leading to Neff = 4.

There would be an upcoming paper continuing from this thesis, that would

elaborate more on the features found in multi-momentum 2+1 model and

would include cases where the initial lepton asymmetries would be taken to

be unequal.

Lastly, the code for the simulation should be run at higher temperature res-

olutions and lower tolerance for differential equation solvers. The program

being computational intensive raises the solver time and the required runs

would take much longer than the allowed time limit of the supercomputer

cluster available. The basic program written in python which was greatly

limited by the speed of the language. Several workarounds and optimisations

were made to make the overall computation time lower and achieving solver

convergence, these include figuring out the constants for each run prior to

solving of the 20N differential equation, reducing number of very small and

very large power multiplications, pre-calculation of predictable evolution vari-

ables. These modification and optimisations of the code can be carried over to

different programming languages.

The speed requirements could be reduced by writing the program in a faster

computer language such as C++, which would require less optimizations

than python to run for higher resolution runs for both the comoving mo-
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mentum and the temperature. Using a GPU programming language CUDA

could be leveraged for parallel computation of the momentum grid simul-

taneously and increasing the scaling capacity of the algorithm. The use of

modern CPU(s)/GPU(s) with built-in matrix multiplication hardware could

bring a lot of freedom to the simulation limits that is imposed by the hardware

capacities.
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