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Abstract

In this work, I study a series of Al(OH)3-based layered double hydroxides (LDHs) with

Cu2+, Ni2+ and Co2+ as cations. They respectively carry S = 1/2, S = 1 and S = 3/2,

which allows me to study the influence of different spin quantum number on otherwise iso-

morph compounds. Furthermore, the cations are organised in chains, which makes them

inherently interesting to study from a quantum mechanical point of view, as quantum

effects are more pronounced in the low-dimensional case.

I studied their magnetic properties, which were previously unexplored, through bulk

susceptibility and heat capacity measurements. They clearly revealed that none of the

three variants order magnetically at T ≥ 2 K. Modelling of the experimental data pre-

dicted that Cu-LDH is a ferromagnetic S = 1/2 spin chain with J = 1.4(3) K, and that

Co-LDH is mainly governed by a strong zero-field splitting of size D = 138+5
−3 K with a

weak antiferromagnetic exchange of J ≈ −0.1 K. The predictions on Ni-LDH were less

clear cut. I was able to reproduce the data both with pure ZFS and pure exchange models,

which respectively yielded D = −24 to −8 K and J = 1 to 4 K depending on the model.

To study Ni-LDH more in-depth, neutron diffraction and spectroscopy experiments

were carried out. Diffraction confirmed the absence of magnetic order down to T = 1.6 K.

In addition, I found no signs of emerging order in the form of magnetic critical scattering,

which tells than an eventual ordering temperature will be much lower than T = 1.6 K.

Spectroscopy found a substantial zero-field splitting of D = 9.59(2) K; a value somewhat

different from the modelling prediction. Thus, further modelling of Ni-LDHs properties

and more experiments are necessary for unravelling it’s true nature.
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Chapter 1

Introduction

Materials science may be one of history’s most defining scientific fields. We name most

ancient historical periods after the primary material used - stone age, bronze age and iron

age, and in recent history e.g. the invention of plastic and the utilisation of silicon have

had a major impact on our world. Even today, materials science is thriving. In the last

ten years, five Nobel prices have been awarded in relation to materials science [1–5].

The search and synthesis of new materials are generally spilt in two factions: The

search for materials with unique utility and/or problem-solving abilities, and the search

for realisations of good model systems with which we can test our fundamental theories

and expand our overall knowledge. In this work, I cater to both these factions.

I have studied a certain kind of anionic clay, namely a family of aluminium hydroxide-

based layered double hydroxides (LDHs) with the formula M(II)Al4(OH)12SO4 · 3 H2O;

in the case of my work M(II)=Cu2+ (S = 1/2), Ni2+ (S = 1) and Co2+ (S = 3/2).

To our knowledge, the magnetic properties of these compounds are widely unexplored,

why they are inherently interesting to study. In addition, versions of similar compounds,

hydrotalcite-like LDHs, have unique anion exchange properties [6] and have found use in

eq. catalysis [7], energy storage [8] and drug delivery [9], which further intrigues our interest.

Furthermore, M(II)Al4-LDHs have an interesting crystal structure. They are made

by inserting divalent cations (M(II)) into exactly half of the vacancies in layered AlOH3,

where the additional positive charge is balanced by the presence of anions (SO4
2– ) in the

interlayers, which also contain intercalated water [10]. The result is a monoclinic unit cell

shown in Figure 1.1 (left) [11], which contains parts of three cation and two anion layers.

However, it is the large-scale geometry, as shown in Figure 1.1 (right), which is truly

interesting. In each cation layer, the spins are organised in chains along the a-axis. They

are separated by ”chains” of vacancies, resulting in an interchain spacing which is ∼ 75

% larger than the in-chain cation spacing. There are 4 bonds between cations along the

chain, but 6 bonds between cations in different chains. Also, the layers are stacked such

that chains of vacancies lie on top of cation chains. This gives reason to believe that these

LDHs could be realizations of isomorph 1D magnetic systems with different spin.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Left: Unit cell of M(II)Al4-LDH which contains three cation layers separated

by interlayers with SO4
2– and H2O. Right: Large-scale geometry of a cation layer, which

contains spin chains along the a-axis. Blue=M(II), grey=Al, red=O and yellow=S. H2O

and H are omitted for clarity. Data from [11] plotted with Vesta [15].

Such low-dimensional magnetic systems are inherently interesting, since quantum me-

chanical effects are more pronounced in the low-D case. A prime example is the excitation

continuum found in copper sulphate [12], a antiferromagnetic S = 1/2 spin chain. An-

other example is the Mermin-Wagner theorem, which states that the 1D isotropic spin-S

Heisenberg model with finite-range exchange interaction does not order at any finite tem-

perature [13]. Some theoretical frameworks are even able to provide accurate predictions

of these quantum effects. Anderson’s spin wave theory for the 2D nearest neighbour anti-

ferromagnetic Heisenberg system on a square lattice (like the one depicted in Figure 2.1

(middle)) is a great example. He derived that it’s ground state is not the Néel state, in

which all spins are oriented perfectly opposite of it’s neighbours, as classical theory oth-

erwise predicts. Instead the average Sz-value is reduced by a factor of order 1− 0.197/S,

which is substantial for S = 1/2. [14]. Realizations of low-D magnetic systems in real mate-

rials as the LDHs makes it possible to test these kinds predictions, why determining their

magnetic properties is important. Also, the study of isomorph compounds with different

spins may provide insight into the spin’s influence on the physics of these compounds.

My work investigates the magnetic properties of Cu-, Ni- and CoAl4-LDH (or simply

Cu-LDH etc.) with bulk measurements of magnetisation and heat capacity, as well as

neutron scattering in the case of Ni-LDH. The thesis is split up into four chapters: Theory,

Experimental Methods, Results and at last Discussion, Conclusion & Outlook. At first

I go through the fundamentals of magnetism in materials, the theory necessary for data

analysis and a short review of some previous results on 1D spin systems, which are also

known as quantum spin chains (QSCs). In Experimental Methods, I briefly describe

the samples I have used, the functionality of a vibrating sample magnetometer and the

necessary theory on neutron scattering. In Results, I present data on each compound

separately, one type of data at a time. At last, I discuss my findings before summing up

the conclusions and giving my thoughts on possible further work.
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Chapter 2

Theory

In this chapter, I present the needed theory for my thesis. This covers the origin of mag-

netism (inspired by Chapter 1 in [16]), relevant magnetic interactions, an introduction to

fundamental magnetic ordering, a brief review of phase transitions through Landau the-

ory and at last magnetism in materials. Then, I give some examples of ways to model the

magnetic susceptibility and heat capacity of materials. In the end, I review some previ-

ous results of one-dimensional magnetism. The reader is assumed to be familiar with the

basics of crystallography, reciprocal lattices and Brillouin zones as well as undergraduate

quantum mechanics.

Regarding notation: It can often be confusing to differentiate between operators and

symbols regarding a single electron or a whole ion. I will use lower case symbols for

entities regarding electrons (e.g. will the spin be s), while upper case symbols will refer

to entities regarding ions (e.g. S for the spin of an ion).

2.1 Origin of Magnetism

The electron is the orgin of magnetism. It carries two kinds of angular momenta: Orbital

angular momentum (~l, ~ is Planck’s reduced contant) as well as intrinsic (spin) angular

momentum (~s). Both of these are associated with two distinct magnetic moments

µo =
−e
2me

(r× p) = −µBl, µs = −gµBs (2.1.1)

where me is the mass of an electron, g = 2.0023 is the electron g-factor and µB is the

Bohr magneton, defined as

µB =
e~

2me

(2.1.2)

where e is the elementary charge. The total magnetic moment of the electron becomes

µ = µs +µl. The Bohr magneton is significantly larger than the magnetic moment of an

atomic nucleus, µN = µB/1836, why one can neglect the nuclear magnetic moment when

considering magnetism in most materials.

3



2.1. ORIGIN OF MAGNETISM CHAPTER 2. THEORY

Now, materials are not composed purely of electrons; they consist of atoms or ions.

However, not all atoms or ions are magnetic, and we need to establish a framework that

tells us which are. Magnetism is a quantum mechanical phenomenon [17], thus we need to

consider the quantum mechanical electrical ground state in order to answer that question.

Assume that the electrons in an ion are subject to an attractive potential from the

nucleus in addition to an average potential from neighbouring electrons, which we both

consider to be spherically symmetric. In that case, the spatial eigenfunctions for the

electrons are (in spherical coordinates (r, θ, φ)) [18]

ψnlm = Rnl(r)Y
ml
l (θ, φ) (2.1.3)

where Rnl is the radial part and Y ml
l , given by the spherical harmonic functions, is the

angular part. Here, n, l, and ml are the principal, orbital and magnetic quantum numbers

respectively. These numbers, together with the spin quantum number ms, uniquely define

the electronic state of the ion.

By definition, the functions Y ml
l are spherically symmetric, which we also assumed

our potential to be. Therefore, the energy eigenvalues (Enl) of an ion depend only on the

quantum numbers n and l. This leads to each eigenenergy being 2(2l+ 1)-fold degenerate

since ml takes 2l+1 integer values and ms = ±1/2. Each set of degenerate states is called

an electron shell; states with l = 0, 1, 2, ... corresponds to s-, p- and d-shells etc. An ion’s

total angular momentum is the sum of all electron momenta, S =
∑

j sj and L =
∑

j lj,

which also explains why an ion is only magnetic when it has one or more partially filled

electron shell(s): In a closed shell, the opposite spin directions cancels out.

2.1.1 Ground State Selection in Magnetic Ions

Now we have established how an ion becomes magnetic and we are ready to try to deter-

mine it’s ground state (GS). In principle GS selection sounds simple: Simply place the

electrons in the orbitals that minimizes the ion’s energy and remember Pauli’s exclusion

principle. Then sum up S =
∑

i si and L =
∑

i li and you have the magnetic moments.

However, it turns out that S and L are weakly coupled and not separately conserved

due to the spin-orbit (SO) interaction, which I describe in more detail in Section 2.2.4.

The SO-interaction breaks the 2(2l+ 1)-fold degeneracy of the orbitals and demands the

consideration of an ion’s total angular momentum J = S + L in order to determine the

ground state. Thus, S and L cannot be chosen independently. Luckily, a set of empirical

rules known as Hund’s rules tells us how to do that if the ion has exactly one unfilled

shell. The rules are (in descending order of importance):

1. Maximize |S|

2. Maximize |L|

3. If the shell is more than half filled, choose |J| = L+ S. Else, choose |J| = |L− S|

4



CHAPTER 2. THEORY 2.2. MAGNETIC INTERACTIONS

These rules are based on the assumption that the most important energy to minimize

is the electrostatic repulsion between electrons, followed by their individual SO-energy.

Classically speaking, the first rule prevents electrons from being packed closely together

by residing in the same orbitals, while the second rule favours electrons moving in the

same direction around the nucleus, thus avoiding forced crossings. The last term seeks to

minimize the SO energy.

Unfortunately, Hund’s rules are not always obeyed. The common example of this are

the transition metal 3d ions, which are the kind of magnetic ions investigated in this

thesis. In that case, measurements of the effective magnetic moment does not comply

with the prediction from Hund’s rules [17]; instead, they seem to favour ground states with

L = 0. This phenomenon is known as orbital quenching and is explained by the electron’s

interaction with the surrounding crystal being more significant than the SO-interaction,

contrary to the underlying assumptions of Hund’s rules.

To understand this from a mathematical point of view, consider the hermitian orbital

angular momentum operator L = −ir × ∇; it is purely imaginary. If we assume that

the crystal environment secures that the GS is non-degenerate, then the GS must be real.

Applying the purely imaginary operator L to the real GS means that L’s eigenvalues must

be purely imaginary. However, L is a hermitian operator, so it’s eigenvalues also need to

be real, and the only number which is both real and purely imaginary is 0.

2.2 Magnetic Interactions

In this section, I will go through the most fundamental magnetic interactions, namely the

dipole interaction, the Zeeman interaction, the exchange interaction and the spin-orbit

interaction. For most of this section (excluding section 2.2.4), I will ignore the electron’s

orbital angular momentum as is often the case in literature, both for simplicity’s sake and

due to the fact that L is mostly ignorable in 3d metal ions due to orbital quenching as

mentioned in the above section.

2.2.1 Dipole Interaction

Naturally, the first magnetic interaction to consider is the fundamental electromagnetic

interaction; the dipole interaction. From electromagnetism, we know that there is an

energy associated with two magnetic dipoles µ1 and µ2 separated by a distance r [19]

E =
µ0

4π|r|3

(
µ1 · µ2 −

3

|r|2
(µ1 · r) (µ2 · r)

)
(2.2.1)

where µ0 is the permeability of free space. Typical energies in a crystal are in the ballpark

of 0.1 meV(≈ 1 K), thus the dipole interaction is quite weak and rarely plays a rôle in the

5



2.2. MAGNETIC INTERACTIONS CHAPTER 2. THEORY

magnetism of materials. However, in materials where other interactions are also weak, it

can play a significant rôle at the lowest temperatures. [17]

2.2.2 Zeeman Interaction

Next, we consider how a magnetic moment µ interacts with a static magnetic field B,

also known as the Zeeman interaction. It is perhaps the simplest magnetic interaction

and is given by the Hamiltonian [18]

H = −µ ·B = −gµBS ·B (2.2.2)

From this equation, one finds that only the magnitude of the magnetic moment and it’s

orientation with respect to the magnetic field determines the energy.

The Zeeman Hamiltonian is quite easy to solve, and it’s solution is the so-called Larmor

Precession in which the magnetic moment precesses around the B-field at a constant angle

(determined by the initial conditions) with an angular frequency ω depending of the field

strength as ~ω = gµBB.

2.2.3 Exchange Interaction

Let us now consider what is often the dominating magnetic interaction in materials,

namely the exchange interaction. In phenomenological terms, the origin of the exchange

interaction is the overlap between neighbouring electron orbitals.

In a more thorough manner, let us start by considering two ions with spatial coor-

dinates r1 and r2 respectively. From quantum mechanics we know such a two-particle

(doublet) system splits up in singlet and triplet states with wave functions [18]

ΨS =
1√
2

(ψa(r1)ψb(r2) + ψa(r2)ψb(r1))χS (2.2.3)

ΨT =
1√
2

(ψa(r1)ψb(r2)− ψa(r2)ψb(r1))χT (2.2.4)

where the ψ’s are the single-electron states and χ is the spin part of the wave function.

By definition the energy difference between these two states are [17]

ES − ET = 2

∫
dr1dr2ψ

∗
a(r1)ψ∗b (r2)Hψa(r2)ψb(r1) (2.2.5)

which is also know as the overlap integral. Now realise that this difference can be

parametrised by the operator S1 · S2 for the doublet system, which has eigenvalues −3/4

and 1/4 for the singlet and triplet state respectively [18], yielding

H =
1

4
(ES + 3ET )− (ES − ET )S1 · S2 (2.2.6)

6



CHAPTER 2. THEORY 2.2. MAGNETIC INTERACTIONS

which gives the correct energies for both the singlet and triplet state. If we define J ≡
1
2

(ES − ET ) and ignore constant terms we then obtain

H = −2JS1 · S2 (2.2.7)

which is the effective Hamiltonian for the exchange interaction between two ions. Notice

that the interaction is essentially determined by J , which is a parametrization of the

overlap of the single-particle states. J is denoted the exchange constant and is determined

experimentally for most materials (more on that in Section 2.4.3), since the integral in

eq. (2.2.5) can be difficult to solve even approximately.

The exchange Hamiltonian can be generalized to a many-body case by summation,

which is known as the Heisenberg model

H = −
∑
i,j

JijSi · Sj (2.2.8)

where Jij is the exchange constant between an ion with magnetic moment Si situated at

ri and an ion with magnetic moment Sj situated at rj. The factor 2 is removed because

the summation counts each bond twice. Most often, one assumes an isotropic nearest

neighbour (NN) interaction in which case the above equation reduces to

H = −J
∑
i,j

Si · Sj (2.2.9)

where J is the isotropic exchange constant between all NNs. The sign of J has a paramount

influence on the magnetic behaviour of materials, which will be described in detail in

Section 2.3

2.2.4 Spin-Orbit Interaction

At last, let me not ignore the orbital angular momentum any longer. In fact, it turns out

that there is an interaction between the spin and orbital angular momentum of a single

electron, namely the spin-orbit (SO) interaction. Consider for simplicity a single electron

(with velocity v) orbiting a nucleus (with charge ze) at a distrance r. In the rest frame of

the electron, the nucleus will be orbiting the electron with velocity −v. I this rest frame,

the moving charge gives rise to a magnetic field given by [17]

B =
ze

cr3
r× v =

ze~
mer3

l (2.2.10)

where me is the electron mass and ~l is the orbital angular momentum of the electron.

Inserting this into the Zeeman Hamiltonian (eq (2.2.2)) yields the SO Hamiltonian for a

single electron:

H =
2zgµ2

B

r3
s · l = λs · l (2.2.11)

7



2.3. MAGNETIC ORDER AND PHASE TRANSITIONS CHAPTER 2. THEORY

were λ is the SO-parameter. The result may seem innocent at first, but when one realises

that neither s nor l commutes with the Hamiltonian anymore, the significance becomes

clear: ms and ml are no longer good quantum numbers, which means that one cannot

choose ms and ml independently to obtain the ground state [18]. Instead, the operator

J = S + L commutes with the Hamiltonian and L+S, L+S − 1, ..., |L−S| are the new

quantum numbers. This makes it necessary to revisit the definition of the ion’s magnetic

moment from Section 2.1, which becomes µ = gJµBJ. Assuming gs = 2 one can show

that [17]:

gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
(2.2.12)

2.3 Magnetic Order and Phase Transitions

In this section I will describe the fundamental para-, ferro- and antiferromagnetic phases,

and how the exchange interaction (Section 2.2.3) is related to those. I will also present

Landau theory, a mathematical framework that can shed light on the temperature de-

pendence of phase transitions, which will be used to discuss transition from 1D to 3D

magnetism in materials.

A fundamental entity when dealing with phase transitions is the order parameter

(OP). An OP is a function on the outer circumstances, e.g. temperature or pressure, and

is chosen such that it is zero when a model prefers one kind of ground state (the disordered

state). When tuning the outer parameters, e.g. by cooling or applying pressure, one can

change the phase, like when water freezes. In that case, the OP governing the liquid-solid

transition will spontaneously become non-zero at T = 0 ◦C.

2.3.1 Fundamental Magnetic Phases

Perhaps the most commonly known magnetic phase is ferromagnetism (FM), named after

the Latin name for iron (ferrum). Despite giving rise to macroscopic phenomena like per-

manent magnets, ferromagnetism has a microscopic origin like all types of magnetism. In

a ferromagnet the magnetic moment of all ions on the lattice point in the same direction

as sketched in Figure 2.1 (left). The order parameter in question is the magnetization per

unit volume, M . In other words, a ferromagnet will have a finite macroscopic magneti-

zation. From the minus sign in the Heisenberg Hamiltonian, eq. (2.2.9), one finds that a

FM ground state will correspond to a positive exchange constant J .

Another common magnetic phase is the antiferromagnetic phase (AFM), depicted in

Figure 2.1 (middle). In a classical AFM, each magnetic moment will point opposite it’s

neighbours. One can view this case as a combination of two FM sublattices with opposite

magnetization, shown in Figure 2.1 (middle) in red and black respectively. For an AFM,
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Figure 2.1: Sketch of FM (left), AFM (middle) and PM (right) states on a quadratic

lattice with magnetic moments represented by arrows. In the FM case, all spins point in

the same direction, while all spins point opposite it’s neighbours in the AFM case. For the

AFM case, the up and down sublattices are shown as respectively red and black arrows.

In the PM phase, spins have a random orientation.

the order parameter is the staggered magnetization, Ms = M+ −M−, the difference in

magnetization between the two sublattices. An AFM ground state will correspond to a

negative exchange constant, again due to the minus sign in eq. (2.2.9).

Both types of magnetic order described above share a common feature: They both

only exist at sufficiently low temperatures. At large enough temperatures it becomes

easier to lower the system’s entropy than to lower it’s energy, and the ordered phases are

destroyed. Instead, the spins become disordered and fluctuate uncorrelatedly in what is

known as the paramagnetic (PM) state (Figure 2.1 (right)). Despite the disorder, the

interactions described by eq. (2.2.9) are still present - They are simply not strong enough

compared to the thermally induced fluctuations to produce an ordered phase. However,

a material is still often referred to as ”ferromagnetic” or ”antiferromagnetic”, depending

on the sign of J for the material in question, even if it is not in the ordered phase.

Magnetic order is often described by an ordering vector Q. Such a description requires

one to use the Fourier transformed version of the Heisenberg Hamiltonian [16]

H = −1

2

∑
q

J(q)Sq · S−q (2.3.1)

where the Fourier-transformed spins are defined as Sq = (N)−1/2
∑

j Sj exp (iq · rj) and

J(q) =
∑

δ Jδ exp(iq · rδ) with δ running over neighbours relative to a spin placed at rj.

The main consequence of this is that the system’s energy is given by Emin = −NS2J(q),

thus there exists a particular q = Q which maximises J(q) and thereby minimises the

energy [20]. Thus the ground state has q = Q, which corresponds to a particular structure

found from the inverse Fourier transform of Sq. When Q = 0 minimises the energy FM

order is realised, while AFM order is appears when Q is at the Brillouin zone boundary.

Other values of Q will give rise to more exotic, e.g. helical, magnetic structures [20].

9
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2.3.2 Landau Theory

Landau theory, originally developed in the early 20th century by the Ukrainian physi-

cist Lev Landau, is a mathematical framework for approximating the Helmholtz free

energy of a system as a function of an order parameter and it’s governing quantities,

around a critical temperature Tc where the system undergoes a second order phase transi-

tion [21]. Such an approximation enables expressing a system’s thermodynamic quantities,

e.g. magnetization or heat capacity, as a function of temperature. This is quite handy,

since thermodynamic quantities are measurable. In other words, Landau theory tells us

how measurables behave at a phase transition and how to recognize those transitions in

experiments.

The completely general form of the Landau theory expansion is

F = F0 + a(P, T )η + b(P, T )η2 + c(P, T )η3 + · · · (2.3.2)

where F is the Helmholtz free energy, F0 is the zero-point energy, η is the order parameter,

T is temperature and P is pressure. Landau’s clever restriction is that only terms which

respect the symmetries of the system in question are allowed.

2nd order Landau theory for a ferromagnet

Take for example the ferromagnet in Figure 2.1 in which case η = M . Whether the

collective orientation of the spins is up (M = m) or down (M = −m) should not affect

the related physics since that is merely a question of coordinate choices. Therefore, all

terms in eq. (2.3.2) with odd powers of M should vanish, since the choice of M may not

alter the free energy. Approximating to the 4th order and assuming constant pressure

leaves us with [22]

F = F0 + a(T )M2 + b(T )M4 (2.3.3)

If the above equation governs a system undergoing a transition from a disordered to an

ordered state at some critical temperature TC , a M0 6= 0 must exist such that F (M0) < F0

when T < TC and F (M) ≥ F0 for all M if T > TC . These criteria implies that b > 0, and

that a must change sign at Tc, thus a = a0(T − TC). Inserting this into eq. (2.3.2) and

minimizing with respect to M yields:

∂F

∂M
= 2a0(T − TC)M + 4bM3 = 0 ⇒ (2.3.4)

M = 0 ∨M = ±
√
−a0(T − TC)

2b
⇒

F =

F0 − a20
4b

(TC − T )2 if T < TC

F0 if T > TC
(2.3.5)

10
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Figure 2.2: Magnetic susceptibility of polycrystalline MnCl2 ·H2O measured by DeFotis

et al [23] with a fit to Fisher’s expression for the susceptibilty of a classical spin chain [24],

scaled to the specific spin value by [25]. A clear sign of transition to 3D order from 1D

behaviour is seen just above T = 2 K.

From this expression one can derive the behaviour of the heat capacity, C, through

the standard thermodynamic relation C = −T∂2F/∂T 2, which gives

C =


a20T

2b
+ C0 if T < TC

C0 if T > TC
(2.3.6)

where C0 ≡ −T∂2F0/∂T
2 is the zero-point heat capacity. We now arrived at an expression

for a measurable quantity. We did not derive any exact values, but we found that C has

a discontinuity at the transition temperature. The same procedure can be used to derive

an expression for the susceptibility, χ, although that requires adding the term −MH to

eq. (2.3.3) since χ = ∂M/∂H. In this case, minimization yields

∂F

∂M
= 2a(T )M + 4bM3 −H = 0⇒ (2.3.7)

χ =
(
2a(T ) + 12bM2

)−1 ⇒ (2.3.8)

χ =

(4a0(TC − T ))−1 if T < TC

(2a0(T − TC))−1 if T > TC
(2.3.9)

which again diverges at TC . Later, we will see that the expression for T > TC is equivalent

to eq. (2.4.18) (the Curie-Weiss law) derived from mean field theory with 2a0 = C−1.

I have now shown that this framework can shed light on the behaviour of thermo-

dynamic quantities of a compound in the viscinity of a phase transitions. The above

framework could also be used for an AFM by substituting M with Ms. These two OPs

obey the same symmetries, meaning the derivation would be equivalent. However, for an

11
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AFM one would derive the thermal dependence on the staggered susceptibility, which is

not directly measurable in bulk measurements.

A great example of a transition behaving like above is the transition to AFM order

in MnF2 which clearly shows discontinuities in both C [26] and χ [27]. Additionally, discon-

tinuities like the those can be used to determine transitions from quasi-1D behaviour to

3D long range order, exemplified by the transition in MnCl2
[23] (see Figure 2.2). All in

all, this means that one should look for divergences in thermodynamic quantities when

looking for phase transitions.

2.4 Magnetism in Materials

In this section, I will build on the theory from the previous section and dig deeper into how

magnetism is realised in materials. This includes the physical mechanisms responsible

for the exchange interaction, the effect from the ion’s position in a crystal lattice and

models for determining the exchange constant from bulk measurements of the magnetic

susceptibility and heat capacity.

2.4.1 Superexchange

In section 2.2.3 I described the theory behind the exchange interaction. Overlap between

orbitals of neighbouring magnetic ions lead to the exchange interaction parametrized by

the exchange constant. However, what happens in real materials is not that simple. Most

often, the orbitals do not extend far enough away from the nucleus to justify that direct

overlap should be the governing mechanism, even for the far-reaching 3d−orbitals, and for

the 4f -ions the orbitals often only reach about one tenth of the interatomic distance [17].

Instead, a kind of indirect exchange named superexchange is often the responsible

mechanism behind exchange in ionic solids like the LDHs. The mechanism is named

”super” simply because it reaches further than direct (”normal”) exchange. Antiferro-

magnetic interactions is the most common consequence of superexchange but it can also

result in a ferromagnetic interaction [17].

In the AFM case, imagine two magnetic ions with a non-magnetic ion in-between, as

is the case in e.g. MnO. The Mn-ions have an unpaired electron in the outermost d-shell,

while the O-ion has two p-electrons with opposite spin in it’s filled outermost shell. If

the unpaired electrons in the Mn-ions also have opposite spin, they can easily delocalize

by residing completely on either Mn-ion, or by placing one electron from the oxygen in

each unfilled Mn-orbtibal. Such delocalization reduces electrostatic repulsion between

electrons, and reduces their individual kinetic energy and would not be possible if the

Mn-ions had the same spin, e.g. spin-up, as the spin-up electron on the O-ion would have

nowhere to go.

12
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In reality the mechanism can be even more complicated than this. In LDHs, the short-

est path between magnetic ions are M(II)–O–Al–O–M(II), thus the mechanism is not

simple, but exchange is still present. In fact, exchange can also give rise to ferromagnetic

interactions [17]. I will not go into more detail here, but I refer to the original papers of

Goodenough [28] and Kanamori [29] for further insight.

2.4.2 Crystal Field Effects

Figure 2.3: Divalent 3d metal ion

(blue) in an octahedral environment

surrounded by oxygen (red) [15].

Crystal field (CF) effects originate from an ion’s po-

sition in a crystal lattice. In some cases the pres-

ence of a lattice favours some electron orbitals to

others due to the lattice geometry. This effect is

often more pronounced for the 3d metal ions, since

the d-orbitals have significant angular distribution

far away from the nucleus.

To understand these phenomenons on a deeper

level, start by considering an octahedral environ-

ment (see Figure 2.3) which is the local environment

of the magnetic ions in LDHs. They are located at

the centre of the octahedra with six ligands placed

at equal distances along all three axes in both di-

rections. In the LDHs, the ligands are oxygen with

p-orbitals which are distributed along the axes.

The magnetic ion’s outermost electrons reside in the 3d orbitals; their angular de-

pendence is shown in Figure 2.4 (left). They can be categorized in two groups: The

t2g-orbitals (dxy, dxz and dyz), which have angular distribution between the axes, and the

eg-orbitals (dz2 & dx2−y2), which have angular distribution along the local axes. Since

the ligand orbitals also lie along the axes, the eg-orbitals must have a larger overlap with

them compared to the t2g ones as shown i Figure 2.4 (right), which increases electrostatic

repulsion in the eg case. The result is that the orbital degeneracy from the free-ion case

breaks: The three t2g-orbitals will be lowered by an energy of 2∆/5 compared to the

free-ion case, while the two eg-orbitals will have their energy increased by 3∆/5, where ∆

is the energy gap defined by the exact geometry [17].

The magnitude of the CF’s effect can vary greatly. When using Hund’s Rules (see

Section 2.1.1), they are considered insignificant compared to the SO-interaction. However,

for CF effects are immensely important for explaining orbital quenching. The really

interesting case is when the CF is present and comparable to the SO-interaction. In that

case the ground state still has L = 0, but states with L 6= 0 interfere with the system

as a second-order perturbation [30]. The strength of such a perturbation is, among other

things, determined by the energy gap between the excited states (with L 6= 0) and the

13
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dxy dxz dyz

t2g

dx2−y2 dz2

eg

t2g

eg

Figure 2.4: Left: Angular distribution of the 5 different d-orbitals. Right: Overlap of

t2g-orbital (top) and eg-orbital (bottom) with ligand p-orbitals

GS [18], which is determined by the crystal field.

A case like this requires one to use an effective Beff in the Zeeman Hamiltonian (eq.

(2.2.2)) which reflects the symmetry of the CF. In that case one gets [31]

H = gµBS ·Beff = µBSgB (2.4.1)

where any possible anisotropy of Beff originating from an anisotropy of the CF is ”hidden”

in g (the g-tensor). Qualitatively, this can be understood as the Zeeman effect being

enhanced or suppressed when the CF ”helps” or ”counteracts” the external field, which

may be a directional effect is the CF is anisotropic.

Sometimes, the CF can make it energetically favourable for the spin to lie along a

specific crystal axis, which for each ion will add the following term to the Hamiltonian [17]:

Hi = D (Szi )2 (2.4.2)

where D is the zero-field splitting (ZFS) constant. The equation holds for an uniaxial

environment, which can certainly be realised an octahedron. In that case, having D < 0

makes the spin prefer lying along the z-axis, while D > 0 makes it prefer the xy-plane. In

reality, the effects of D and an anisotropic g can be difficult to distinguish, as they can give

rise to similar phenomena. In fact, in simple perturbation theory they are interdependable

as D = λ(gz−gx)/2, thus large SO coupling mimics the effect of the situation gz � gx
[30].

The Jahn-Teller Effect

The Jahn-Teller effect is in a way an the ”opposite” effect compared to the ones described

above: Instead of the magnetic ion being influenced by the local environment, it can itself

influence the symmetry of it’s local environment, if the ion has partially filled orbitals.

Here, I sketch the basics of this effect since it has been found in Cu-LDH [11].

14
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Consider a vibrational eigenmode, with angular frequency ω, of an anion with mass

m. A distortion, described by the parameter Q, of such oscillator will the have an elastic

energy cost E(Q) = 1
2
mω2Q2 similar to a quantum harmonic oscillator [17]. In addition,

the distortion Q may alter the electronic energy of certain orbitals. This alteration may

depend on Q in a complicated manner, but if the distortion is small it can simply be

approximated as Taylor series to the first order, yielding [17]:

E(Q) ≈ 1

2
mω2Q2 ± AQ (2.4.3)

assuming A > 0. This will introduce a minimum of E(Q) at a value Q0 at which E(Q0) <

0, thus making it energetically favourable to distort the local environment along a normal

mode axis, e.g. by altering the length of an axis in the octahedron.

2.4.3 Susceptibility

A common way to determine the nearest neighbour exchange constant J in a material is

by measuring the magnetic susceptibility, which is a measure of a material’s response to

an applied magnetic and defined as [19]

χ(T ) =
∂M(H,T )

∂H
≈ M(H,T )

H
(2.4.4)

where M is the magnetic moment per unit volume, H is the applied field and the last

approximation holds for so-called linear media; an assumption often made when dealing

with experimental data measured at sufficient low H, as measuring M(T ) at a given H is

relatively simple (see Section 3.2). Our goal now is to derive an analytical expression for

M(H,T ), and from that χ(T ), for a paramagnet without NN interaction and then add

the interaction afterwards, ultimately making J obtainable from measurements of χ(T ).

Consider first that the magnetization for one mole is given by M = gµBNAm, where

m is the average spin per site (NA is Avogadro’s number). This means that obtaining an

expression for m is sufficient to obtain one for M . The Hamiltonian for a paramagnet

in a magnetic field is simply the Zeeman Hamiltonian (eq. (2.2.2)) and thus we can use

statistical physics to determine the thermal average of m. For reasons that become clear

later, we choose to look for m normalised by the total spin S [16]:

m

S
=

S∑
m=−S

m
S

exp [−βH]

S∑
m=−S

exp [−βH]

=

S∑
m=−S

m
S

exp [βgµBmB]

S∑
m=−S

exp [βgµBmB]

= Bs(x) (2.4.5)

where β = (kBT )−1, kB is Boltzmann’s constant and x = βgµBSB. Bs(x) is the Brillouin

function given by

Bs(x) =
2S + 1

2S
coth

[
2S + 1

2S
x

]
− 1

2S
coth

[ x
2S

]
(2.4.6)
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which for small x (thus for large T) approximates to Bs = S+1
3S
x + O(x3). Using this

approximation and inserting x

m

S
=
S + 1

3S
βgµBBS ⇒ (2.4.7)

m =
gµBBS(S + 1)

3kBT
⇒ (2.4.8)

χ(T ) =
∂M

∂H
≈ gµBNa

∂m

∂B
=
g2µ2

BNaS(S + 1)

3kBT
=
C

T
(2.4.9)

which is Curie’s Law, named after the Nobel Laureate Pierre Curie who discovered it [17].

The law states that in systems where the temperature is high enough for the approximate

expression for the Brillouin function to be used, and for which the thermal average is

meaningful, one would expect χ(T ) to be inversely proportional to T . However, what

we are really interested in is the susceptibility of an interacting system, which I will now

derive.

Molecular Field Theory

The Heisenberg Hamiltonian can rarely be solved analytically for many-body systems,

thus one has to make due with approximations. Molecular Field (MF) theory is a powerful

and widely used method for dealing with such systems, and here I will use it to derive the

susceptibility of the NN Heisenberg model. MF’s basic assumption is that one can regard

each magnetic moment as only slight deviations from some average value 〈Si〉, hence one

writes Si = 〈Si〉+ (Si − 〈Si〉). The key here is that the fluctuations, Si − 〈Si〉 ≡ δSi, are

assumed to be small such that terms with squared fluctuations vanish. Inserting this into

eq. (2.2.8) and discarding squared fluctuation terms yields

H = −
∑
i,j

Ji,j[〈Si〉+

δSi︷ ︸︸ ︷
(Si − 〈Si〉)] · [〈Sj〉+

δSj︷ ︸︸ ︷
(Sj − 〈Sj〉)] ⇒ (2.4.10)

H = −
∑
i,j

Ji,j [〈Si〉 〈Sj〉+ δSi 〈Sj〉+ 〈Si〉 δSj +XXXXδSiδSj] ⇒ (2.4.11)

H = −
∑
i,j

Ji,j [〈Si〉 〈Sj〉+ Si 〈Sj〉 − 〈Si〉 〈Sj〉+ 〈Si〉Sj − 〈Si〉 〈Sj〉] ⇒ (2.4.12)

H = −
∑
i,j

Ji,j [Si 〈Sj〉+ 〈Si〉Sj − 〈Si〉 〈Sj〉] (2.4.13)

where the last term is constant and is ignored going forward. By symmetry, all 〈Sj〉 have to

be equivalent. Therefore the Hamiltonian splits up into a sum of single-spin Hamiltonians,

H =
∑

iHi. I now consider just the i’th spin, which will have the single-spin Hamiltonian:

Hi = −2Si
∑
j

Ji,j 〈Sj〉 ≡ gµBSi ·BMF , BMF =
−2

gµB

∑
j

Jij 〈Sj〉 (2.4.14)
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where BMF is the molecular field experienced by the i’th spin originating from all other

spins. The factor of 2 is re-established since we still need to count each bond twice and

the summation is now running over nearest neighbours. If exchange is assumed to be

isotropic and with NNs only one gets BMF = −2zJm
gµB

where z is the number of NNs and

m is the average spin magnitude per site. Summing this new Hamiltonian over all sites

will then give the final MF Hamiltonian:

H = −gµB
∑
i

Si · (B−BMF ) (2.4.15)

The observant reader will find that eq.(2.4.15) has the exact same form as the Zeeman

interaction, only with a slight difference in the magnetic field. Thus, we can obtain the

susceptibility by replacing the B-field in the derivation of Curie’s law by a slightly more

complicated one. Doing so will lead to the equations:

m

S
=
S + 1

3S
β(gµBBS + 2zJSm) ⇒ (2.4.16)

m =
gµBBS(S + 1)

3kB

1

T − θCW
⇒ (2.4.17)

χ(T ) =
∂M

∂H
≈ gµBNa

∂m

∂B
=

C

T − θCW
(2.4.18)

which is the a modified version of Curie’s law named the Curie-Weiss law. The Curie

constant C and the Curie-Weiss (CW) temperature θCW are given by

C =
Na

3kB
µ2
Bg

2S(S + 1), θCW =
2zJS(S + 1)

3kB
(2.4.19)

Thus in interacting systems, where the MF approximation is valid, we still expect an in-

verse proportionality between χ and T , only slightly shifted. Recall that it is still required

that the temperature is high enough that the approximate expression for the Brillouin

function can be used. What this means is that extrapolating the high-T behaviour of the

measurable χ(T ) to low T will then allow one to determine θCW and ultimately J if the

spin configuration of the magnetic ions is known.

Non-Critical Scaling Theory

In reality, simple approaches like the CW-law is not always sufficient to describe real

systems. In this section, I present a framework, based on noncritical scaling theory, for

modelling χ of spin-S FM chains based on the work by J. Souletie et al [32]. The approach is

similar to ”traditional” critical scaling theory often used for describing phase transitions,

where some power law scaling of the thermodynamic quantities with a divergence at

the critical temperature Tc is found. However, instead of disregarding nonsingular cases

(Tc < 0) we can use these cases to describe correlated systems without phase transitions.
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Consider a system of N0 units of size ξ0 and magnetic moment µ =
√
S(S + 1) (where

I have set g2µ2
B/kb = 1) governed by the isotropic, ferromagnetic Heisenberg Hamiltonian

(eq. (2.2.9), J > 0). Due to the interaction, at an appropriate temperature, the moments

will begin to align and form new units of size ξ(T ). If the dimensionality is d, the volume

of these units will be ξd. For a FM, µ will scale as the volume and χ will scale as µ,

resulting in χT ∝ ξ(T )d. The static scaling hypothesis then assumes that as T gets lower,

ξ gets larger and eventually diverges as a power law [32]:

ξ

ξ0

= (1− Tc/T )−ν = (1− Tc/T )−Θ/Tc (2.4.20)

with Θ = νTc > 0. Now Tc being positive, null or negative yields different cases with

equivalent thermodynamic legitimacy. Considering e.g. the Tc < 0 case, defining Tk = −Tc
and using χT ∝ ξ(T )d together with the above one gets

χT = C(1− Tc/T )−dΘ/Tc = C(1 + Tk/T )dΘ/Tk = C(1 + Tk/T )−γ (2.4.21)

with γ = −dΘ/Tk and where the first expression is general and the following expressions

assume TC < 0, which would describe a correlated system without phase transition.

In order to decide in which T -range the model is valid, and what sign of Tc one should

use, the above equation is modified:

log10 χT = log10C + log10

[
(1− Tc/T )−γ

]
⇒ (2.4.22)

∂ log10 χT

∂T
=

−γ
1− Tc/T

∂

∂T
(1− Tc/T ) =

γTc
Tc − T

1

T
⇒ (2.4.23)

∂ log10 χT

∂T

(
1

T

)−1

=

(
∂T

∂ log10 χT

∂ log10 T

∂T

)−1

=

(
∂ log10 T

∂ log10 χT

)−1

⇒ (2.4.24)

∂ log10 T

∂ log10 χT
= −T − Tc

γTc
(2.4.25)

which predicts a linear relationship between ∂ log10(T )/∂ log10(χT ) and T as long as the

model is valid (note that the sign in eq. (2.4.25) is different from [32], correcting a typo

in the article). The authors of [32] then numerically calculated χ(T ) for a series of finite

rings of FM spins using an adapted variant of the Bonner-Fisher method [33]. They found

that ∂ log10(T )/∂ log10(χT ) is linear down to some temperature Ts which depends on the

ring size, from that extrapolating the model limit to kbT > 0.1J . Regardless of ring size,

extrapolation of the linear regime always intersected the T -axis at T < 0, telling that

Tc < 0 is the correct approach. This allows Tk to be parametrized as Tk = ΘJS(S + 1)

(J is the exchange constant and g2µ2
B/kb = 1) which gives

χT = C (1 + ΘJS(S + 1)/T ))−γ (2.4.26)

They obtained the values Θ = 0.6 and γ = −1.25S from the fitting the numerical data,

which yields the expression

χ(T ) =
g2S(S + 1)

8T
(1 + 0.6J(S + 1)/T )1.25S (2.4.27)
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in emu/(mol Oe). Since this model, if J is small, is valid to low temperatures compared

to the CW model, one can use mean-field theory to model an AFM interchain interaction

emerging at low T, treating it as a pertubation (again in emu/(mol Oe) [34]:

χ′ = χ

(
1− 16zj

3g2
χ

)−1

(2.4.28)

where j ≤ 0 is the interchain exchange constant and z is the number of neighbouring

chains. Such interchain interactions can possibly be caused by dipolar interaction [35].

The non-critical scaling model has two main benefits compared to the traditional CW

approach: It is less restrictive when it comes to the viable temperature range, and it

allows the addition of an AFM interchain interaction. As will be shown in Section 4.1 the

scaling model in fact proved to be a better fit to data than the Curie-Weiss model.

Zero-Field Splitting

In some cases, the single-ion environment can single-handedly determine the susceptibility,

parametrised by the ZFS-parameter D (see eq. (2.4.2)). The model I present here assumes

an axial ZFS, and is derived by Boča [30] using second order perturbation theory under the

assumptions that the first-order correction due to the spin-orbit coupling is zero, and that

D � gµBB, where B is an applied field. Adapting Boča’s results to isotropic expressions

for S = 1 and S = 3/2 for use with polycrystalline data yields:

χS=1 =
2NAµ0µ

2
B

3kBT (1 + 2d)

[
g2
⊥

2kBT

D
(1− d) + g2

‖d

]
(2.4.29)

χS=3/2 =
NAµ0µ

2
B

3kBT (1 + d2)

[
g2
⊥

(
2 +

3kBT

2D
(1− d2)

)
+ g2

‖
1 + 9d2

4

]
(2.4.30)

where d = exp [−D/kbT ] and the g’s are defined in relation to the uniaxial environment.

I give no expression for S = 1/2, as such systems cannot have a ZFS.

2.4.4 Heat Capacity

Now, we turn to another thermodynamic quantity, namely the heat capacity, C. Note

that, contrary to the susceptibility, heat capacity is not a purely magnetic phenomenon; in

real compounds, things like lattice vibrations may also contribute to C. This is important,

since I will only deal with magnetic heat capacity Cm in this section. In experiments, one

can extract Cm from the measured heat capacity C1 by also measuring the heat capacity

C2 of a non-magnetic isomorph and use Cm ≈ C1 − C2.

No general solution for Cm of Heisenberg systems have been found, but both low- and

high-T approximations have been successful. In the low-T limit, spin wave theory (see

Section 2.5) provides good insight into the thermal dependence of the thermodynamic
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quantities. While SWT is derived for an ordered system, it is still often used to approxi-

mate disordered systems. A general SWT result is that C ∝ T d/n, where d is the system

dimensionality and n is the exponent of the wave number in the SW dispersion relation

ω ∝ qn, which leads to C ∝ T for the AFM QSC and C ∝ T 1/2 for the FM QSC [36].

In the high-T limit, series expansions in β = (kbT )−1 of the partition function, Z, has

proved to successfully provide expressions for Cm (from now simply C) analogous to the

CW law. Recall that at constant pressure one has C = ∂U/∂T = −∂/∂T (∂/∂β(lnZ)),

thus with the proper Hamiltonian one can calculate C using Z = tr{exp(−βH)}. As an

example, I will now sketch the derivation of C of the S = 1 QSC to 2nd order in β. The

same procedure can be employed for other spin values, and I will present the results for

S = 1/2 and S = 3/2 in the end of this section.

Let us first approximate Z with H being the sum of the Heisenberg (HH , eq. (2.2.8))

and Zeeman (HZ , eq. (2.2.2)) Hamiltonians:

Z = tr{exp (−βH)} = tr{exp (−β(Hz +HH)} (2.4.31)

= tr{
(
1− βH + β2H2/2!− β3H3/3! + · · ·

)
} (2.4.32)

≈ tr{
(
1− βH + β2H2/2!

)
} (2.4.33)

= (2S + 1)N − β (tr{HH}+ tr{HZ}) +
β2

2

(
tr{H2

H}+ tr{H2
Z}+ 2tr{HHHZ}

)
(2.4.34)

where I have used the series expansion of the exponential function. Now, we need

to use the raising and lowering operator form of the Heisenberg Hamiltonian, HH =

−
∑

i,j Ji,j
(
Szi S

z
j + 1/2(S+

i S
−
j + S−i S

+
j )
)
, and recall that one can trace out subspaces as

tr{Si · Sj} = (2S + 1)N−2trij{Si · Sj} and tr{Szi } = (2S + 1)N−1tri{Szi }.

First, I will show that the first-order term does not contribute to the trace. Assuming

that the B-field is in the z-direction we have HZ = −gµBB
∑

i S
z
i . For a spin-1 system,

Sz has eigenvalues −1, 0 and 1, which means that HZ does not contribute to the first

order term since tr{
∑

i S
z
i } = Ntr{Szi } = 0. Also, a term can only contribute to the trace

if it contains the same amount of raising and lowering operators on the same site, which

is not the case for the x-y part of HH . Furthermore, the Sz-part of HH can be factorized

as trij{Szi Szj } = tri{Szi }trj{Szj }, which does not contribute for the same reasons as HZ .

Now to the 2nd order terms. Again, any term with odd powers of any of the operators

must vanish, why the HZHH-term is discarded. Simplifying the H2
Z and H2

H terms yields

tr
{
H2
Z

}
= (gµBB)2tr


(∑

j

Szj

)2
 = (gµBB)2(2S + 1)N−1Ntrj{(Szj )2} (2.4.35)
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tr
{
H2
H

}
= tr


(
−
∑
i,j

JijSi · Sj

)2
 = (2S + 1)N−2

∑
i,j

J2
ijtr

{
(Si · Sj)2} (2.4.36)

= 3(2S + 1)N−2Ntrij

{(
Szi S

z
j

)2
}∑

j

J2
0j (2.4.37)

where for HH I have used that all cross terms like Szi S
z
jS

y
i S

y
j vanish due to an un-

even amount of raising and lowering operators on the same site and that trace is ba-

sis independent such that tr{(Szi )2} = tr{(Syi )2} = tr{(Sxi )2}. The traces are given by

tri{(Szi )2} = 12+02+(−1)2 = 2 and trij{(Szi Szj )2} = (12+02+(−1)2)(12+02+(−1)2) = 4,

which when inserting S = 1 results in (to 2nd order in β)

Z = 3N

[
1 +

β2

3
N

(
(gµBB)2 + 2

∑
j

J2
0j

)]
⇒ (2.4.38)

ln(Z) = N ln(3) +
β2N

3

(
(gµBB)2 + 2zJ2

)
(2.4.39)

where I have assumed NN interaction only (
∑

j J
2
0j = zJ2, z is the number of NNs), used

ln(1 + x) ≈ x − x2/2 and discarded terms with β4. The thermodynamic quantities are

then given by

C =
∂U

∂T
= − ∂

∂T

(
∂

∂β
ln(Z)

)
=

2N

3kbT 2

[
(gµBB)2 + 2zJ2

]
(2.4.40)

χ =
∂M

∂B
=

∂

∂B

(
1

β

∂

∂B
ln(Z)

)
=

2N(gµB)2

3kbT
(2.4.41)

where the second equation re-establishes Curie’s Law for S = 1 (eq. (2.4.9)) when B = 0.

For S = 1/2 and S = 3/2 the heat capacity becomes

C1/2 =
N

8kbT 2

[
2(gµBB)2 + 3zJ2

]
, C3/2 =

5N

4kBT 2

[
(gµBB)2 +

15

4
zJ2

]
(2.4.42)

The general result is that regardless of spin magnitude C ∝ T−2 in zero field. Additionally,

C ∝ J2 which means that the FM and AFM cases are equivalent.

Zero-field Splitting

Like for the susceptibility, the heat capacity can be completely governed by single-ion

effects. The crystal environment, in combination with the SO-coupling, can induce an

energy gap between the singlet (mS = 0) and triplet states (mS = ±1) of a S = 1-ion

like Ni2+, or between the Kramer’s doublets of a half-integer ion like Co2+, which has

S = 3/2, thus doublets with mS = ±1/2 and mS = ±3/2 are split.

The ground state depends on the sign of D (see eq. (2.4.2)). However, as these energy

levels are the only ones in consideration, it is simple to calculate their heat capacity
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Figure 2.5: Heat capacity for FM (left) and AFM (right) Heisenberg QSCs with various

spin values, extrapolated from exact diagonalization of finite chain, compared to the

classical case (S =∞). Dashes lines are the low-T spin wave estimate.

from the partition function like in the section above, except now approximations are

not needed. The partition functions are ZS=1 = 1 + 2 exp(−D/kBT ) and ZS=3/2 =

2 + 2 exp(−2D/kBT ), which leads to [30]

CS=1 = 2

(
D

kBTZS=1

)2

exp

(
−D
kBT

)
(2.4.43)

CS=3/2 = 8

(
D

kBTZS=3/2

)2 [
exp

(
−2D

kBT

)
ZS=3/2 − 2 exp

(
−4D

kBT

)]
(2.4.44)

which for D > 0 creates sharp maxima at T ≈ 0.37D/kB with amplitude Cmax ≈ 6.3

J/(mol K), whileD < 0 leads to sharp maxima at T ≈ 0.45D/kB with amplitude Cmax ≈ 2

J/(mol K). In both cases, the maxima becomes broader when |D| gets larger, but C always

goes to zeros at T = 0.

Exact Diagonalization

In intermediate temperature regions, heat capacity of QSCs has been studied through

exact diagonalization (ED) of finite chains governed by the Heisenberg Hamiltonian, e.g.

by Bonner & Fisher [33] for S = 1/2 and by Blöthe [37,38] for a variety of spin values (see

Figure 2.5). From these works, two things become clear: C is significantly affected by the

quantum nature of these systems, and the effect becomes larger for low spin values. In all

cases, C shows a maximum (see Figure 2.5) at finite T , although the exact position and

shape depends on S and J . From Figure 2.5 it is also clear that the low-T behaviour is

different from that of the classical case (S = ∞), thus measurements of the Cm(T ) can

provide significant insight into the quantum nature of a compound. In the high-T limit,

ED re-establishes the T−2-behaviour predicted by HTE.
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Figure 2.6: Classical picture of a spin wave excitation of a ferromagnetic chain in 3D view

(top) and viewed along the quantization axis (bottom).

2.5 Spin Wave Theory

Spin wave theory (SWT) is the go-to framework for dealing with excitations of quantum

systems on a lattice at low temperatures. SWT is derived on the basis of small deviations

from the ordered classical ground state (as will be elaborated below) and therefore requires

that the ground state is known for it to be exact. However, it can provide good results

even if an approximate ground state is used, as exemplified by Anderson [14]. In this

section, I will derive the general dispersion for FM SWs, where the ground state is the

fully magnetised state, and simply state the approximate result for the AFM QSC.

The main results from SWT is that for a collection of spins, the Fourier components

of the spin raising and lowering operators perform periodic motion with frequencies (and

therefore energies) that are directly related to the wave vectors of the Fourier components.

From the classical perspective, SW excitations can be understood as collective precession

of spins in real space, exemplified for the S = 1/2 FM QSC in Figure 2.6, with frequen-

cies equal to those of the periodic motion of the Fourier components. From a quantum

perspective, one can think of the SW excitations as a number of flipped spins de-localised

over the whole chain. Each flipped spin carries S = 1 an can thus be treated as a boson

and follow bosonian statistics [16]. In the quasiparticle image, they are named magnons.

As long as the number of magnons are small, they can be treated as non-interacting [16].

As will be elaborated later, it turns out that the wave vectors related to the afore-

mentioned Fourier components are equal to the scattering vector in inelastic neutron

scattering experiments. Thus, SW frequencies are directly obtainable from experiments,

which is a big reason they are important.

2.5.1 Ferromagnetic Spin Waves

Here I will derive the dispersion of FM SWs inspired by Yosida [16]. Consider the Heisen-

berg Hamiltonian with a Zeeman term where the applied field B is along the z-axis

H = −
∑
i,j

JijSi · Sj − gµBB
∑
i

Szi (2.5.1)
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From this, one can calculate the time evolution of Sj through Ehrenfest’s theorem as [16]

~
dSj
dt

= i[H,Sj] = −Beff,j × Sj (2.5.2)

Beff,j =
∑
i

Jij(S
x
i x̂+ Syi ŷ + Szi ẑ) + gµBBẑ (2.5.3)

Instead of considering dSj/dt, it is more convenient to look at the time evolution of each

component individually. For the three components one gets

~
dSxj
dt

= −x̂ · (Beff,j × Sj) = −
∑
i

Jij
(
Syi S

z
j − Szi S

y
j

)
+ gµBBS

y
j (2.5.4)

~
dSyj
dt

= −ŷ · (Beff,j × Sj) = −
∑
i

Jij
(
Szi S

x
j − Sxi Szj

)
− gµBBSxj (2.5.5)

~
dSzj
dt

= −ẑ · (Beff,j × Sj) = −
∑
i

Jij
(
Sxi S

y
j − S

y
i S

x
j

)
≈ 0 (2.5.6)

where the approximation dSzj /dt ≈ 0 relies on the assumption that deviations from the

ordered ground state are small. That results in both 〈Sxj 〉 and 〈Syj 〉 being small as well,

why they approximately vanish to second order. In fact, they can be shown to have a

time average of exactly zero [20]. Thus, 〈Szj 〉 is a constant of motion.

It turns out that it is more illustrative to look at the derivative of the raising and

lowering form of the spin operators, S±j = Sxj ± iS
y
j . Here, I derive the expression for S+

j ,

but it can be done in a similar manner for S−j .

~
dS+

j

dt
= ~

dSxj
dt

+ i~
dSyj
dt

(2.5.7)

= gµBB
(
Syj − iSxj

)
−
∑
i

Jij
(
Syi S

z
j − Szi S

y
j + i(Szi S

x
j − Sxi Szj )

)
(2.5.8)

= −i

[
gµBBS

+
j +

∑
i

Jij
(
Szi S

+
j − S+

i S
z
J

)]
(2.5.9)

= −i

[
gµBBS

+
j + S

∑
i

Jij
(
S+
j − S+

i

)]
(2.5.10)

where in the last step I have approximated the Szk-operators by their eigenvalue S. This

is motivated by 〈Szj 〉 being a constant of motion and that the B-field secures that the

quantization is along the z-axis. Also, the assumption of small deviations from the ground

state secures that the thermal average 〈Sz〉 is close to S.

Now I introduce the Fourier transform of the spin raising operator

S+
q′ =

1√
N

∑
j

eiq
′·rjS+

j (2.5.11)
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which is the magnon annihilation operator and together with eq. (2.5.10) gives

i~
dS+

q′

dt
=

i~√
N

∑
j

eiq
′·rj

dS+
j

dt
(2.5.12)

=
gµBB√
N

∑
j

eiq
′·rjS+

j +
S√
N

∑
ij

eiq
′·rjJij

(
S+
j − S+

i

)
(2.5.13)

= (gµBB + S[J(0)− J(q′)])S+
q′ (2.5.14)

where the last step introduces the Fourier transform of Jij as

J(q′) =
1√
N

∑
j

eiq
′·(ri−rj)Jij (2.5.15)

J(0) =
1√
N

∑
j

ei0·(ri−rj)Jij (2.5.16)

where J(0) is simply the normalised sum of all exchange parameters related to each site.

The above derivation can also be performed for S−j . The last expression, eq. (2.5.14), is

the differential equation for a parameter performing periodic motion with a frequency ωq′

given by

~ωq′ = gµBB + S[J(0)− J(q′)] (2.5.17)

and thus S±j perform periodic motion. The equation right above is the spin wave dispersion

relation for a ferromagnet and thus relates the frequency and energy of FM spin waves.

For a chain with nearest neighbour interactions only, one has J(q′) = J(0) cos(q′a)

and J(0) = 2J [20], where a is the lattice spacing. In that case, the dispersion reduces to

~ωq′ = gµBB + 2JS (1− cos(q′a)) (2.5.18)

which scales as q2 for low q and is plotted in Figure 2.7. A finite amount of energy is needed

to excite the lowest-lying excitation in the presence of an external field; a phenomenon

called a spin gap. Recall now from Section 2.4.2 that the presence of an uniaxial ZFS

can be modelled as an addition to the external field. Thus, a spin gap can exist even in

zero external field, and the gap will be given by the anisotropy field, which has a size of

Banis = D(2S − 1)/(gµB) [16]. Thus the gap size for e.g. a S = 1 FM QSC will be D.

2.5.2 Antiferromagnetic Spin Waves

AFM spin waves are generally more difficult to deal with, since the classical AFM ground

state is not an eigenstate of the Hamiltonian. As mentioned above, Anderson derived

an approximate dispersion relation for an antiferromagnet on the linear, square or cubic

lattice using the Néel state as an approximate ground state [14]

~ωq′ = gµBB + dJS
√

1− γ2
q’ (2.5.19)
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Figure 2.7: Spin wave dispersion for a FM (cyan) and an AFM (magenta) chain.

where d is the dimensionality of the system and γq’ =
∑d

i cos q′i/d, where q′i are the

components of q′. For a chain, d = 1 and the expression reduces to ~ω = JS sin(q′a),

which is plotted in Figure 2.7. For low q one has that sin q ≈ |q|, thus AFM SWs

are fundamentally different than their FM counterparts. An exact quantum mechanical

solution for d = 1 and S = 1/2 was found by des Cloizeaux and Pearson [39], and for S = 1

by Haldane [40,41], which will be discussed briefly in the following section.

2.6 Quantum Spin Chain Deep Dive

Now the time has come to a take deep dive into established results on QSCs. As mentioned

in the Introduction, the crystal structure of the M(II)-LDHs gives reason to believe that

they could be realisations of QSCs, why familiarising oneself with previous results on the

matter is useful. However, despite my best efforts, this is not close to a full overview of

QSCs; emphasis has been put on the most fundamental situations relevant for the present

work. For more in-depth reviews, the interested reader is referred to the papers by A.

Vasiliev et al [42] or by D.S. Inosov [43].

In a way, the Heisenberg model (eq. (2.2.8)) is the most simple magnetic model; it

contains no anisotropies or other fancy interactions, only spins interacting isotropically.

Even so, it can still produce complicated phenomena, and a theoretical treatment most

often requires approximations or numerical calculations. It turns out that for a QSC,

the exact spin value and the sign of J fundamentally decides it’s quantum nature, which

will be elaborated in this section for S = 1/2, S = 1 and S = 3/2 individually, which

illustratively corresponds to Cu-, Ni- and Co-LDH respectively.

Despite the different spin values, some results are general. Expressions for the suscep-

tibility (χ, in the case J > 0) and the staggered susceptibility (χst, in the case J < 0),

both for arbitrary spin, have been derived with approximate Green’s function theory [44].

It was found that both χ and χst diverge as T−2 when T → 0, and that they re-establish

CW-behaviour at high T . Additionally, general results on the heat capacity has already
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been discussed in Section 2.4.4. Another general result is that the ground state (GS) of

FM chains is the saturated state as depicted in Figure 2.1 (left) regardless of spin [17], and

the fundamental excitations are spin waves as discussed in the previous section.

2.6.1 The S=1/2 chain

Figure 2.8: Experimental dynamical structure

factor of the S = 1/2 AFM chain compound

CuSO4 · 5 D2O (left) measured by Mourigal et

al [12], compared with theoretical two- and four-

spinon dynamical structure factor (right). Fig-

ure adapted from [12].

Quite remarkably, the exact wave func-

tion of the isotropic S = 1/2 Heisen-

berg spin chain was found by Bethe al-

ready in 1931 [45]. This allowed Hulthén

to derive the exact quantum GS of the

AFM chain [46], which paved the road

for des Cloizeaux and Pearson to calcu-

late it’s exact excitation dispersion ~ω =

|J |π sin q [39], complimentary to the al-

ready know dispersion of the FM chain.

Again it was found that the excitations

carried S = 1. In 1981, it was found that

they fractionalize [47], forming pairs of

S = 1/2 excitations. Subsequently these

excitations have been named spinons.

It turns out that the excitations spec-

trum of the AFM chain is dominated by a two-spinon continuum, and not a single dis-

persion curve, thus SWT is not exact for the AFM chain [48]. The exact two-spinon

excitation spectrum was derived in 1996 [49], and a four-spinon contribution was theo-

rised in 2006 [50]. In 2013 it was verified that both two- and four-spinon excitations were

needed to account for the full spectral weight of the isotropic S = 1/2 AFM chain com-

pound CuSO4 · 5 D2O [12] (see Figure 2.8). These findings rely on a quantum mechanical

treatment of the S = 1/2 chain, thus they emphasize it’s fundamental quantum nature.

However, quantum effects are not present in the AFM chain only. Bethe’s framework

furthermore made it possible to deal with interactions among FM spin waves, and it was

found that magnons can lower their energy by creating bound states [16], which has e.g.

been measured in the S = 1/2 FM chain compound CoCl2 · 2 H2O with infrared transmis-

sion spectroscopy [51].

Parallel to the above findings, the thermodynamics of the S = 1/2 chain were studied.

Bonner & Fisher used exact diagonalization to study it’s heat capacity (C) and suscep-

tibility (χ) way back in 1964 [33] for different exchange and Ising anisotropies, and Blöthe

continued the work on the heat capacity ten years later [37,38] (see Section 2.4.4). Bonner &

Fisher found that the susceptibility of the AFM chain shows distinct quantum behaviour:

The susceptibility is finite at T = 0, and a local maximum emerges at low T . They also
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found that χ diverged as T−9/5 as T → 0, similarly to the more recent findings discussed

above. In summary, the review of the Heisenberg S = 1/2 chain boils down to:

� The FM and AFM chains are fundamentally different. The excitations of the FM

chain are magnons, while the exciations of the AFM chain are spinons.

� AFM Spinons are the fractionalization of a spin-1 excitations into two S = 1/2

quasiparticles, and they create an excitation continuum.

� Distinct quantum features are found in the heat capacity at low T , and the exact

behaviour depends on the sign of the exchange interaction.

� χ of the FM chain behaves qualitatively like the S =∞ at high T case and diverges

as T−2 at low T.

� χ of the AFM chain has a local maximum at low T and is finite at T = 0.

2.6.2 The S=1 chain

QSCs with integer spin values turn out to be fundamentally different from their half-

integer counterparts, thus they are also fundamental quantum systems. A main difference

is that magnons are the fundamental excitations of both the FM and AFM chains, again

with dispersions ~ω ∝ cos(q) and ~ω ∝ sin(q) respectively. However, the two cases are

still different. The AFM chain exhibits topological order in the ground state, and has

a finite energy gap of size ∆ ≈ 0.4 |J | at k = π, as first predicted by Haldane in the

1980’s [40,41] and later proven by Affleck et al [52]. Additionally, a single dispersion curve

is not sufficient to describe the excitations of the AFM chain. A two-magnon continuum

Figure 2.9: Heat capacity for FM Heisenberg

QSCs with various single-ion anisotropies (D)

causing an easy axis, extrapolated from finite

chains. Figure adapted from [38].

of excitations around k = 0 was pre-

dicted by Affleck and Weston [53] and

a three-magnon contribution at k =

π, above the single-magnon dispersion

curve, was predicted by Horton and Af-

fleck [54]. Evidence of these continua was

found with neutron spectroscopy, the

two-magnon continuum by Zaliznyak

et al [55] (see Figure 2.10 (left)) and

the three-magnon continuum by Kenzel-

mann et al [56] (see Figure 2.10 (right)).

To complement the studies already

presented in Section 2.4.4, Blöthe also

studied the effect of a zero-field splitting

as described by eq. (2.4.2) on the heat
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Figure 2.10: Inelastic neutron scattering intensity of the S = 1 AFM chain compound

CsNiCl3. Left: Two-magnon continuum at l < 0.5 around E ≈ 5 meV measured by

Zaliznyak et al [55]. Figure adapted from [55]. Right: Three-magnon continuum at 0.6 <

Qc < 1.4 up to E ≈ 12 meV measured by Kenzelmann et al [56]. Figure adapted from [56]

capacity [37,38] (see Figure 2.9). He found that the anisotropy causes a slight shift in

position and intensity of the low-T maximum, and that an additional maximum is created

if the anisotropy is sufficiently large.

Approximate Green’s Function theory on χ of the FM chain with a ZFS-parameterD <

0 has also been calculated [57]. The theory predicts suppression of the critical fluctuations,

which normally prevents LRO at finite T , manifested as a finite critical temperature. The

effect of an AFM interchain interaction between FM chains on the susceptibility have also

been treated [32] (see Section 2.4.3), and was predicted to result in a local maximum in

χT before it diverges to negative values, contrary the Curie-Weiss case where χT → ∞
as T → 0 without a local maximum.

In summary, the selected results on the Heisenberg S = 1 chain boils down to:

� Magnons are the fundamental excitations regardless of exhange interaction.

� The AFM chain exhibits topological order in the ground state, and two- and three-

magnon contributions are important to account for the whole excitation spectrum.

� The AFM spectrum is gapped at k = π with a magnitude ∆ ≈ 0.4|J |.

� The heat capacity shows distinct quantum features at low T , and the exact behaviour

depends on the sign of the exchange interaction and size of single-ion anisotropy.

� χ of the FM chain diverges as T−2 as T → 0 and shows CW-behaviour as T →∞.

� For the FM chain, an AFM interchain interaction can produce a local maximum in

χT at low T and make χT trend negative as T → 0.
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Figure 2.11: Magnetic excitation spectrum of CsVCl3 at different temperatures, measured

by Itoh et al [59]. The insert on the leftmost panel shows the q-direction of the energy scan

(along the c∗-axis). Figure adapted from [59].

2.6.3 The S=3/2 chain

Since the S = 3/2-chain is also a half-integer chain, it behaves similarly to the S = 1/2-

chain. However, the larger spin makes the quantum effects less pronounced, why the

S = 3/2-chain is sometimes disregarded as a quantum system and is less studied.

Despite that, some results are present for the S = 3/2-chain. An excitation continuum

of the AFM chain at q = π similar to, but weaker than, the one of the S = 1/2-chain

has been predicted by quantum Monte Carlo (QMC) methods [58]. At other q-values, the

QMC method had insufficient accuracy to detect deviations from classical theory, which

underlines that S = 3/2 is in fact at the quantum/classical boundary. Extrapolation of

neutron spectroscopy data of the S = 3/2 chain compound CsVCl3, performed by Itoh et

al [59] (see Figure 2.11), indeed finds a finite energy width as T → 0, possibly explained

by the existence of an excitation continuum.

The relevant findings on the susceptibility and heat capacity have already been dis-

cussed in the beginning of this section and in Section 2.4.4 respectively. In summary it

seems that the main difference between the S = 3/2- and the S = 1/2-chains is that the

larger spin weakens the quantum effects.
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Experimental Methods

In this section, I present the experimental methods used for collecting data for the present

work. This covers the inner workings of a vibrating sample magnetometer, some back-

ground on neutron powder diffraction and spectroscopy and an introduction to the neutron

instruments used. In addition, I will briefly describe the particular samples studied for

this work, which were synthesized by our collaborators at the Univ. of Southern Denmark.

3.1 Samples

Our M(II)-LDH samples were synthesized by Anders Bruhn Arndal Andersen at Univ.

of Southern Denmark through an optimization of the procedures reported in [60]. 0.25

g bayerite, Al(OH)3(s), was mixed with 20 mL of the respective MSO4(aq) solutions and

pH-adjusted to approx. 2 by addition of 1.8 M H2SO4(aq), whereafter they were treated

hydrothermally at 120 ◦C in 40 ml Teflon-lined autoclaves. Two synthesis parameters

were varied: The reaction time (between 3 and 14 days) and the MSO4(aq) concentrations

(between 0.04 and 2.8 M). The optimal conditions were found to be 14 days and 2.8 M

for Co-LDH, 9 days and 0.7 M for Ni-LDH, and 14 days and 0.08 M for Cu-LDH, which

resulted in phase pure Co- and Ni-LDH, and Cu-LDH containing approx. 13 %(w/w)

unreacted bayerite.

A.B.A Andersen assessed the quality of the samples using the same protocol as earlier

reported [60], e.g. by powder X-ray diffraction (XRPD, to examine crystalline phases), 27Al

magic-angle spinning nuclear magnetic resonance (to examine the content of unreacted

bayerite) and inductively coupled plasma-optical emission spectrometry (to examine bulk

M:Al ratio). For the samples from the optimized synthesis, he performed Rietveld re-

finement of XRPD data to confirm their isostructurality with nickelalumite [61]. He used

thermal gravimetric analysis to determine the interlayer water content, which were 3.3,

3.2 and 3.1 for Co-, Ni- and Cu-LDH respectively. The reader is referred to [62] for more

detail on the synthesis and structural characterization.
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3.2 Vibrating Sample Magnetometer

Figure 3.1: Schematic of a vibrating sample

magnetometer adapted from [63]. (1) sam-

ple, (2) sample coils, (3) magnets.

A vibrating sample magnetometer (VSM)

measures the magnetisation induced in a

sample from applying an external mag-

netic field. A simplified setup schematic

is shown in Figure 3.1. Measurements are

performed by vibrating a sample, (1), with

constant frequency between two stationary

sample coils, (2), in a direction perpendicu-

lar to the uniform magnetic field produced

by the magnets, (3). Since the sample is

magnetised by the external field, and the

effective area-turns of the coils are non-

symmetrically distributed about the axis of vibration, this will induce a voltage in the

sample coils, which is used to deduce the magnetisation. A lock-in amplifier, locked to

the frequency of vibration, extracts the induced voltage from the noisy environment.

To make the setup insensitive to the exact positioning of the sample, one has to

carefully calibrate the setup. This is done by first rotating the sample coils around the

z-axis until maximum voltage output is achieved. Then, the sample’s position on the

x-axis relative to the coils is adjusted to achieve minimum output, whereafter the relative

y- and z-positions, one at a time, are altered to achieve maximum output. This way, a

saddle point is reached, and the output should be insensitive to sample displacements.

The specific VSM used for this work is a Quantum Design VSM for the DynacoolTM

physical properties measurement system (PPMS®), which performs above-mentioned the

spatial calibration automatically. The full information on the equipment can be found of

the data sheets [64,65], but the main features are:

� T-range 1.8 K to 400 K, ±0.1 % for T < 20 K and ±0.02 % for T > 20 K

� Field strength up to 9 T with a resolution of 0.016 mT with a field uniformity of

±0.01 % over 3 cm along the field axis

� Measurement accuracy of ±0.5 % with additional relative noise ratio of 0.5 %

� Vibration frequency of 40 Hz with an amplitude of 2 mm

� Sample centering accuracy within ±0.04 mm

3.3 Neutron Scattering

In this section, I will briefly describe the theory behind neutron scattering. At a general

level, there are two ways to distinguish the different kinds of neutron scattering used for
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studying materials: Inelastic vs. elastic scattering, distinguished by whether or not the

neutron changes energy when scattered, and magnetic vs. nuclear scattering, distinguished

by whether the scattering is caused by the Zeeman interaction between the sample’s

magnetic ions and the neutron’s magnetic moment, or caused by the strong nuclear forces

between the neutrons and the atomic nuclei in the sample. These distinctions create

a total of 4 types of scattering. In principle, only the magnetic scattering signals are

important for the investigation of magnetism, but they are measured simultaneously and

often knowledge of nuclear scattering is crucial for the extraction of magnetic data.

In general terms, elastic scattering, often referred to as diffraction, is used to probe

order (structural or magnetic), while inelastic scattering, often referred to as spectroscopy,

is used to probe excitations (structural or magnetic). Regardless of technique, the scat-

tering vector, defined as the difference between the initial and final wave vectors of the

scattered neutron, q = ki − kf , is an important quantity. The scattering intensity gen-

erally depends on both the direction and magnitude of q, as will be elaborated below,

and these quantities are directly obtainable from neutron scattering experiments. Exactly

how that is will be described in Section 3.3.3, where I describe the instruments HRPT

and FOCUS which were used for the neutron scattering measurements on Ni-LDH.

3.3.1 Diffraction

In neutron diffraction, the quantity one measures is the differential cross section, dσ/dΩ,

regardless of whether the scattering is magnetic or not. It describes the amount of neu-

trons, with constant energy, that are scattered into an infinitesimal solid angle dΩ, nor-

malised to the neutron flux. It is generally given by [20]:

dσ

dΩ
=
(mN

2π~

)2 ∣∣∣〈ψi| V̂ |ψf〉∣∣∣2 (3.3.1)

where ψi and ψf are the initial and final quantum states of the neutrons, mn is the neutron

mass and V̂ is the scattering potential. The choice of V̂ is what differentiates between

nuclear and magnetic scattering, and they are given by [20]:

V̂nuc =
2π~
mN

bjδ(r− rj) (3.3.2)

V̂mag =
µ0

4π
gµbγµN

∑
j

σ̂ · ∇ ×
(

Sj × (r− rj)

|r− rj|3

)
(3.3.3)

V̂nuc is know as the Fermi pseudo-potential, and V̂mag comes from inserting the field of a

dipole, placed at rj, into the Zeeman Hamiltonian (eq. (2.2.2)) and using the definition of

the magnetic moment of a spin (eq. (2.1.1) (right)). bj is the scattering length, an isotope

property which describes how much an isotope scatters neutrons. σ̂ is the Pauli spin

matrices, while γ and µN are the neutron ”g-factor” and nuclear magneton respectively.
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Figure 3.2: Sketch of the symmetry of crystal diffraction. ki and kf are the incident

and outgoing wave vectors respectively, and q is the scattering vector. dn is the distance

between different lattice planes. In this case, the planes d2 and d4 will not result in Bragg

peaks since their nuclear structure factor is zero. Figure adapted from [20].

Nuclear Diffraction

By inserting V̂nuc (eq. (3.3.2)) into the general differential cross section (eq. (3.3.1)) one

ultimately obtains [20]

dσ

dΩ
= N

(2π)3

V0

exp (−2W ) |FN(q)|2
∑
τ

δ(q− τ ) (3.3.4)

which is the general nuclear differential cross section for crystalline materials. A lot of

new quantities are introduced here. V0 is the volume of the atomic unit cell and N is

the number of lattice sites. The factor exp (−2W ) is known as the Debye-Waller factor ;

it originates from the nuclei vibrating at the lattice equilibrium position. It is often

comparable to unity, but always smaller. It becomes smaller for larger |q|, which can be

understood as the deviations from equilibrium becoming relatively more important since

large |q| is equivalent to small real-space distances. On the contrary, the Debye-Waller

factor becomes larger for lower T , since the vibrations have smaller amplitudes at low

T and thus interferes less with the scattering. Ultimately, this means that cooling the

sample may be necessary when studying phenomena at large |q| [20].

Maybe the most important factor is the nuclear structure factor, FN(q), given by [20]

FN(q) =
∑
i

bi exp (iq ·∆i) (3.3.5)

where the sum runs over one unit cell, ∆i is the position of the i’th nucleus in the unit

cell and bi is the scattering length of those nuclei. In other words, the nuclear structure

factor is what actually contains information about the structure of the sample.
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The sum in the end of eq. (3.3.4) tells that scattering only occurs when q is equal to

a reciprocal lattice vector, q = τ , which is also known as the Laue condition [20]. This

can be understood in more detail by examining the scattering geometry as displayed in

Figure 3.2. The wave vector of the incident and outgoing neutrons both make an angle θ

with the crystal plane in question due to momentum conservation. This totals an angle of

2θ between the incident and diffracted beams, which is referred to as the scattering angle

and is what is actually measured in experiments. Furthermore, the incident and outgoing

wave vectors must have the same magnitude, |ki| = |kf | ≡ k, due to energy conservation

in the elastic case. This means that to have constructive interference between scattering

from subsequent lattice planes, the wavelength must in some way match to distance d

between crystal planes. Per definition one has |τ | = τ = 2nπ/d, which together with the

Laue condition and the definition of q gives |ki − kf | = 2nπ/d. Manipulation of these

relations ultimately yields

|q|2 = |ki − kf |2 = |ki|2 + |kf |2 − 2|ki||kf | cos 2θ (3.3.6)

= 2k2(1− cos 2θ) = 22k2 sin2 θ ⇒ (3.3.7)

q =
4π sin θ

λ
=

2nπ

d
⇒ (3.3.8)

nλ = 2d sin θ (3.3.9)

which is known as Bragg’s law. It relates the observable θ and the incident wavelength

of the neutron, λ, to the lattice geometry through d. It is a reformulation of the Laue

condition and thus must be fulfilled for scattering to occur. However, the opposite does

not need to be true. Bragg’s law sometimes allows scattering from lattice planes with a

spacing d = 2nπ/q corresponding to q-values where the nuclear structure factor is zero

and no scattering actually occurs [20]. Scattering from conditions fulfilling Bragg’s law are

normally referred to as Bragg peaks.

It is important to note that the nuclear differential cross section (eq. (3.3.4)) does

not describe a physical observable - the infinite amplitude of the δ-function is unphysical.

However, the integral of such a function can have meaning. Integration over all neutrons

scattered from a particular Bragg peak (thus a particular fulfilment of the Laue condition)

yields the total cross section of that peak [20]

στ = N
(2π)3

V0

2

|ki|
exp (−2W ) |FN(τ )|2δ(|τ |2 − 2|ki||τ | cosω) (3.3.10)

where ω is a quantity which determines the crystal orientation, defined as the angle

between ki and the particular τ corresponding to the Bragg peak in question. This

equation still contains a δ-function, thus it needs another integration to become a physical

observable, this time either over the crystal orientation ω or the initial wave vector ki.

In many cases, one of them being this work, diffraction experiments are performed on

powder samples. Powders, which in principle are collections of tiny single crystals, do not
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Figure 3.3: A so-called Debye-Scherrer cone, which shows the multitude of scattering of

a monochromatic beam happening from a polycrystalline sample. Figure from [20].

have a well-defined crystal orientation. Rather, one can assume that all lattice orientations

are equally represented, and Bragg’s law is fulfilled in every way possible. This leads to

scattering happening in all directions making the same angle with respect to the incoming

beam (see Figure 3.3). Thus an integration over ω (and thereby the crystal orientation)

gives the cross section of a Bragg peak with particular |τ | = τ observed in a powder

diffraction experiment for a given ki. Such an integration yields [20]

στ = N exp (−2W )
λ3

4V0 sin θ
jτ |FN(τ )|2 (3.3.11)

where jτ is the number of equivalent lattice planes that contribute to the scattering.

However, the integration removes information about the direction of τ , thus contributions

from different τ ’s with the same magnitude cannot be distinguished. This is important,

since non-equivalent lattice planes may have the same τ , as is e.g. the case for the (221)

and (300) lattice planes of the cubic lattice [20]. Therefore, the result of the integration

needs to be summed over all τ with the same magnitude, resulting in σq =
∑

τ=q στ ,

which is the actual observable.

In a way, this means that the Bragg peaks one finds from a powder diffraction experi-

ment are different from those found in a single-crystal experiment. In the powder case, a

Bragg peak collects all scattering with a particular q regardless of origin, and there is no

direct way to distinguish individual contributions. Also, it is worth noticing that the cross

section of a particular Bragg peak is proportional λ3, which means that one is severely

punished for using low-wavelength neutrons. However, using long-wavelength neutrons

puts an upper boundary on the available q-range since eq. (3.3.8) leads to qmax = 4π/λ.

Magnetic Diffraction

Magnetic diffraction is in many ways analogous to the nuclear case. The few differences

are the choice of scattering potential (see eqs. (3.3.2) and (3.3.3)), and that the magnetic

36



CHAPTER 3. EXP. METHODS 3.3. NEUTRON SCATTERING

unit cell might be different from the atomic unit cell, which is eq. the case for the 2D

AFM lattice displayed in Figure 2.1 (middle), for which the magnetic unit cell is twice the

size of the atomic in both directions [20]. Inserting V̂mag into eq. (3.3.1), while assuming

that the incident neutrons are unpolarized, will after some manipulation yield [20]

dσ

dΩ
= (γr0)2

[g
2
F (q)

]
exp (−2W )

∑
α,β

(δαβ − q̂αq̂β)
∑
j,j′

exp (iq · (rj′ − rj)) 〈Sαj S
β
j′〉

(3.3.12)

Again, a lot of new quantities are introduced. The classical electron radius, r0 = 2.82

fm, is introduced as a prefactor. F (q) is the magnetic form factor, which varies smoothly

from unity at q = 0 and goes to zero with increasing q. It is defined as [20]

F (q) =

∫
exp(iq · r)s(r)d3r (3.3.13)

where r is a small displacement of the electron coordinate from the lattice position rj,

which comes from the electrons not being located at exactly the nuclear position but in

the electronic orbitals.

The first sum, where α and β runs over the cartesian coordinates, makes sure that

only the part of the spins perpendicular to the scattering vector contributes to the cross

section. This is a defining concept for magnetic scattering which directly pops out when

calculating the magnetic matrix element, 〈ψf | V̂mag |ψi〉. The factor 〈Sαj S
β
j′〉 is the spatial

correlation function between the coordinate α of spin j and the coordinate β og spin j′.

In essence, eq. (3.3.12) is the space Fourier transform of this correlation function.

If one assumes that scattering happens from an ordered magnetic structure, the mag-

netic differential cross section becomes

dσ

dΩ
= (γr0)2

[g
2
F (q)

]
exp (−2W )N

(2π)3

V0,mag

|FM(q)|2
∑
τ

δ(q− τ −Q) (3.3.14)

where Q is the magnetic ordering vector as introduced in Section 2.3. The above equation

is analogous to eq. (3.3.4) for nuclear diffraction. Here, FM(q) is the magnetic structure

factor, which is defined as

FM(q) =
∑
i

exp(−iq ·∆i) 〈Si,⊥〉 (3.3.15)

where the sum runs over one magnetic unit cell analogous to eq. (3.3.5). 〈Si,⊥〉 is the

thermal average of the part of the i’th spin perpendicular to q. In fact, eq. 3.3.14 becomes

eq. 3.3.4 with the substitution

bj → γr0
g

2
F (q)Si,⊥ (3.3.16)

why the right-hand side is denoted the magnetic scattering length, which in most cases is

of the same order of magnitude as bj.
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The only qualitative difference between eq. 3.3.4 and eq. 3.3.14 is the presence of the

magnetic ordering vector Q (see Section 2.3) in the δ-function. It is introduced because

summing over the magnetic unit cell may allow for more τ ’s than summing over the

nuclear unit cell, since the magnetic cell can differ in size. The essence of this is that

the δ-function allows magnetic Bragg peaks when q = Q, give or take a reciprocal lattice

vector, which means that one can directly measure Q in a diffraction experiment.

However, scattering does not solely come from magnetic order. From eq. (3.3.12), one

has that the cross section depends on the spin-spin correlation function. A system does

not need to be ordered for correlations to exist, thus one can have diffraction signals from

disordered, but correlated, magnetic systems. This kind of scattering is known as critical

scattering and appears at the same q-values as the magnetic Bragg scattering but is less

intense and has a Lorentzian line shape [66]. Such a line shape corresponds to exponentially

decaying correlations since the Fourier transform of an exponential gives a Lorentzian,

which is also why the line width is directly related to the correlation length.

3.3.2 Spectroscopy

In neutron spectroscopy, the quantity in question is the partial differential cross section,

d2σ/dΩdEf . Compared to the differential cross section, it now deals with neutrons with a

final energy in the infinitesimal range [Ef ;Ef + dEf ] scattered into the infinitesimal solid

angle dΩ. It is in general given by [20]

d2σ

dΩdEf
=
kf
ki

(mn

2π~

)2 ∣∣∣〈λiψi| V̂ |ψfλf〉∣∣∣2 δ(Ei − Ef + ~ω) (3.3.17)

where λi and λf are the initial and final sample states, ki and kf are the wave numbers of

the incoming and outgoing neutrons respectively, and the other quantities are the same

as those given in eq. (3.3.1). The main difference is the δ-function, which states that the

energy change of the sample, ~ω = ∆E, is equal to the energy difference of the scattered

neutron, Ei −Ef . Note the unconventional choice of sign: Neutron energy loss is defined

to yield ~ω > 0. As for diffraction, the choice of scattering potential determines what

kind of spectroscopy the equation describes.

Eventually, inserting V̂mag (eq. (3.3.3)) into eq. (3.3.17) and assuming that scattering

happens from a lattice with unpolarised neutronsonly will yield

d2σ

dΩdEf
= (γr0)2 kf

ki

[g
2
F (q)

]2

exp(−2W )
∑
α,β

(δαβ − q̂αq̂β) (3.3.18)

N

2π~

∫ ∞
−∞

∑
j′

exp(iq · rj′) 〈Sα0 (0)Sβj′(t)〉 exp(iωt)dt

where 〈Sα0 (0)Sβj′(t)〉 is the spin pair correlation function and the other factors are the same

as given in eq. (3.3.12). The spin pair correlation function should be interpreted as the
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correlation between component α of S0 at a fixed point in time and component β of Sj′ as

time goes by, and the above equation is essentially the space and time Fourier transform

of that function. Again, the factor
∑

α,β(δαβ − q̂αq̂β) is present, which secures that only

the spin parts perpendicular to the scattering vector contributes to the cross section, as

is always the case for magnetic scattering.

The above frameworks shows that calculating 〈Sα0 (0)Sβj′(t)〉 can give an expression

for d2σ/dΩdEf . That can be a daunting task, but making some assumptions about the

dynamics of the scattering system can greatly simplify it. A common approach is to

assume that the system is in an ordered magnetic state and that it’s excitations are well

described by spin wave theory (see Section 2.5).

In Section 2.5, I showed that 〈Sz〉 is a constant of motion in SWT. In order to not

change 〈Sz〉, one must keep the quantum number ms constant and therefore only consider

terms with an equal amount of S+ and S− operators, why only 〈S+
j (0)S−j′ (t)〉 〈S

−
j (0)S+

j′ (t)〉
and 〈Szj (0)Szj′(t)〉 can contribute to the cross section. The zz-term has no time dependence,

since 〈Sz〉 is a constant of motion in SWT, thus it only contributes to elastic scattering.

The −+-term is by definition given by

〈S−j (0)S+
j′ (t)〉 =

〈
1√
N

∑
q′

exp [−iq · rj]S−q′
1√
N

∑
q′

exp [iq′ · rj′ ]S+
q′ exp[−iωq′t]

〉
(3.3.19)

=
1

N

∑
q′

exp [−iq′ · (rj − rj′)] exp [−iωq′t] 〈S−q′S
+
q′〉 (3.3.20)

As described in Section 2.5, S−q′ and S+
q′ are the creation and annihilation operators of

magnons in a ferromagnet, thus S−q′S
+
q′ is related to the number operator. The thermal

average of it’s eigenvalue is given by 2 〈Sz〉nB(~ωq′/kBT ), where nB is the Bose factor [67]

nB

(
~ωq′

kBT

)
=

(
exp

(
~ω
kBT

)
− 1

)−1

(3.3.21)

With this the above pair correlation reduces to

〈S−j (0)S+
j′ (t)〉 =

2 〈Sz〉
N

∑
q′

exp [−iq′ · (rj − rj′)] exp [−iωq′t]nB

(
~ωq′

kBT

)
(3.3.22)

〈S+
j (0)S−j′ (t)〉 can be found from this equation by utilising that [S−j , S

+
j′ ] = 2Sz, yielding

〈S+
j (0)S−j′ (t)〉 =

2 〈Sz〉
N

∑
q′

exp [−iq′ · (rj − rj′)] exp [−iωq′t]

(
nB

(
~ωq′

kBT

)
+ 1

)
(3.3.23)

Now, recognizing that the x- and y-axes are equivalent one realises that 〈Sxj (0)Sxj′(t)〉 =

〈Syj (0)Syj′(t)〉. From there, one can use the definition of the S±-operators to obtain an
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expression for 〈Sxj (0)Sxj′(t)〉 as

〈S−j (0)S+
j′ (t)〉 =

〈
Sxj (0)Sxj′(t) + iSxj (0)Syj′(t)− iS

y
j (0)Sxj′(t) + Syj (0)Syj′(t)

〉
(3.3.24)

〈S−j (0)S+
j′ (t)〉 =

〈
Sxj (0)Sxj′(t)− iSxj (0)Syj′(t) + iSyj (0)Sxj′(t) + Syj (0)Syj′(t)

〉
(3.3.25)

⇓

〈Sxj (0)Sxj′(t)〉 =
1

4

〈
S−j (0)S+

j′ (t) + S+
j (0)S−j′ (t)

〉
(3.3.26)

Inserting the above into eq. (3.3.18) yields the partial differential cross section for ferro-

magnetic spin waves [20]

d2σ

dΩdEf
= (γr0)2 kf

ki

[g
2
F (q)

]2

exp(−2W )(1 + q̂2
z)
〈Sz〉

2
(3.3.27)

(2π)3

V0,mag

∑
q,τ

[(
nB

(
~ωq′

kBT

)
+ 1

)
δ(~ωq′ − ~ω)δ(q′ − q− τ )

nB

(
~ωq′

kBT

)
δ(~ωq′ + ~ω)δ(q′ + q− τ )

]
where the ~ω δ-functions come from the integral of the time-dependent exponentials in

eq. (3.3.22) and the q δ-functions comes from the j′ sum of the (rj − rj′)-exponentials

in the same equation (τ is added to the δ-function since τ · rj = 2nπ). Since only

the xx- and yy-correlations ended up contributing, the perpendicular factor becomes

(1− q̂2
x) + (1− q̂2

y) = 1 + q̂2
x.

The main result here is hidden in the ~ω δ-functions. They secure that the energy

change of the neutrons, ~ω, is equal to the energy of the related magnons, ~ωq′ . Remember

that the sign convention makes ~ω > 0 for neutron energy loss, thus a positive value of

~ω corresponds to creating a magnon. Also, the q δ-functions secure that the scattering

vector and the magnon wave vector are equal, give or take a reciprocal lattice vector.

Thus, FM SW excitations are directly measurable in a neutron spectroscopy experiment.

For AFMs the calculations are more cumbersome, but the main results are still true [20].

Like discussed in the diffraction section, magnetic order is not a necessity for scattering

to occur - correlations can still exist in the disordered phase, which is also true for time-

dependent correlations. A prime example of this is the S = 1/2 AFM QSC. Scattering

data measured above the transition to long range order was showed in Figure 2.8 and

from that it is immediately clear that rich dynamics are still present. In fact, the lower

boundary of the continuum is given by the spin wave dispersion renormalised by π/2 [12].

3.3.3 HRPT - Powder Diffractometer

HRPT is a high-resolution powder diffractometer for thermal neutrons (hence the name)

at the Swiss neutron facility SINQ at the Paul Scherrer Institute; it’s geometry can be

seen in Figure 3.4 [68]. When the neutrons enter the instrument, they first pass through
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Figure 3.4: Schematic of the powder neutron diffractometer HRPT at SINQ, PSI. The

neutron beam enters from the top. Figure adapted from [68]

an optional Gd-O Soller collimator, which is the primary collimator and can set the

maximum beam divergence to 6′, 12′ or 24′. Any of these choices are referred to as

HRPT’s high-resolution mode. If no collimator is used, the beam passes through an

opening which effectively sets the divergence maximum to ∼ 40′; this is referred to as

it’s high-intensity mode. Thereafter, the neutrons pass through a Si-filter, which removes

neutrons with very high energy. Their low wavelength would make them ignore the Bragg

condition since the wavelength is small enough that they would scatter as particles and

therefore scatter from each nucleus, why they would not be discarded by the wafer-type

Ge-monochromator placed after the Si-filter. After the monochromator, the neutrons

pass through a secondary slit system before reaching the sample position. An optional

pyrolytic graphite (PG) filter can be placed between the slits and the sample to remove

higher order scattering from the monochromator, but it was not used for our experiment.

After hitting the sample, a radial collimator suppresses scattering from the sample

environment by only letting neutrons scattered in directions radially out from the sample

hit the detector. The collimator oscillates to not prevent neutrons from hitting the part

of the detector right behind the collimator walls. The detector is a large multi-detector

with 1600 measurement wires, each separated by an angle of 0.1◦. These wires vary in

efficiency by ±10 %, which needs to be taken into account when normalising data. The

detector can measure 2θ in a 160◦ range, and the angular step can be as small as 0.05◦

since the detector is placed on air cushions and can be continuously displaced.

There is no device which secures that ki = kf , thus HRPT actually measures the energy

integrated partial differential cross section, and the available energy scale is that of the
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incoming neutrons. For nuclear signals, it is not important since the elastic part is anyway

dominant compared to the inelastics. However, if the neutron energy is comparable to the

energy scale of the magnetic interactions it can have an effect on the measurements. The

energy integration happens in the detector wires, thus along constant 2θ and not along

straight lines in q. Therefore, eventual features from the energy integration will have an

asymmetrical line shape. For HRPT however, EN ∼ 25 meV ∼ 290 K, while the magnetic

interactions are in our LDHS are of the order 1 K (as will be shown in Results), why any

eventual magnetic signals can be treated as properly energy integrated in our case.

3.3.4 FOCUS - TOF Spectrometer

FOCUS is a direct geometry (DG) time-of-flight (TOF) neutron spectrometer at the Swiss

neutron facility SINQ located at the Paul Scherrer Institute. In broad terms, it works

by letting monochromatic neutrons, selected by a pair of choppers, scatter from a sample

whereafter it measures the flight time, τf , to the detector and the scattering angle, 2θ.

From these, one can obtain the final energy Ef and the magnitude of q as [69]

Ef =
~2k2

f

2mn

, kf =
mnL2

~τf
(3.3.28)

~2q2

2mn

= Ei +
~mnL

2
2

2τf
− L2cos(2θ)

√
Ei

~mn

2τf
(3.3.29)

where L2 is the (known) distance from the sample to the detector.

The exact geometry of FOCUS is shown in Figure 3.5 [70]. When the neutrons enter

the instrument, a disk chopper creates the initial neutron pulses. It’s rotation speed

is synchronised with the Fermi chopper, which secures that only neutrons in a narrow

energy band can hit the sample. After the disk chopper, a Be-filter is used to suppress

contamination from neutrons with λi < 4 Å. Then the neutrons are focused on the Fermi

chopper with a monochromator, which also removes any neutrons taking an undesired

path through the choppers. The neutrons are then scattered from the sample and passes

through a collimator to minimize divergence. At last they pass a well-known distance

through an Ar-filled flight box before being detected in one of 375 rectangular shaped
3He counter tubes [70]. Then, energy and momentum changes can be determined from the

equations above since L2 and Ei are know and τf and 2θ are measured.
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Figure 3.5: Schematic of the TOF neutron spectrometer FOCUS at SINQ, PSI. The

neutron beam enters from the left Figure adapted from [70].
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Chapter 4

Results

In this section, I will present the results I have collected on each type of LDH (Cu, Ni and

Co). For all three samples, I have analysed heat capacity (vs. temperature) and measured

and analysed magnetisation (vs. temperature and applied field). I also analysed neutron

powder diffraction and spectroscopy data measured on Ni-LDH and partook in the remote

experiments, since doing them in-person was impossible to the covid-19 pandemic. For

details on the experimental methods, see Section 3. I will present the different types of

data one by one, each time presenting general experimental methodology before presenting

the results on each compound individually.

4.1 Magnetisation

All measurements presented here were measured on mg-sized M(II)-LDH powder samples

(M(II)=Cu2+, Ni2+, Co2+, described in Section 3.1) synthesised by Anders Bruhn Arn-

dahl Andersen at Univ. of Southern Denmark. The measurements were performed at the

Technical University of Denmark with the assistance of Ass. Prof. Kasper Steen Pedersen

using a Quantum Design DynacoolTM PPMSr, equipped with a vibrating sample magne-

tometer, with the powder in a polypropylene sample holder. Details about the setup can

be found in Section 3.2.

For all samples, we measured magnetization (M) as a function of both applied field

(H) and temperature (T ). When measuring M(H), the samples were zero-field cooled to

the desired temperature before tuning the field. We measured in the H-range −9 − 9 T

at temperatures T = 2 K and T = 50 K (for Ni- and Co-LDH, only from 0 to 9 T in the

50 K case). The measurements are shown in Figure 4.1. No signs of hysteresis were found

in any sample, except for a tiny recurring effect (∼ 10 mT) which I assume originates

from the magnets in the setup.

For all measurements of M(T ), we zero-field cooled the sample rapidly to 10 K and

afterwards cooled it slowly to 1.9 K. The applied field was then set to desired value (0.01
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Figure 4.1: M vs. H for Cu-LDH (×’s), Ni-LDH (stars) and Co-LDH (diamonds) at

T = 2 K (green) and T = 50 K (magenta). The black vertical line is situated at H = 1 T

and is added to guide the eye. For clarity only every 100th data point is shown.

T, 0.1 T or 1 T), and the sample was heated at 1 K/min. These measurements were used

to calculate the susceptibility under the assumption that our samples are linear media

obeying the equation

χmeas =
M

H
= χsample + χ0 (4.1.1)

where χmeas is the measured (raw) susceptibility data, χsample is the true susceptibility of

the sample and χ0 is a temperature-independent term designed to account for constant

susceptibility contributions, e.g. from the setup or from van Vleck paramagnetism [17].

A field strength of H = 1 T, marked by a vertical black line on Figure 4.1, is clearly

right at the edge of the linear regime for all samples at T = 2 K. For that reason, I only

consider measurements of M(T) performed at H ≤ 1 T, even though we also measured

M(T ) at higher fields. I determine χ0 by fitting the appropriate model (see Section 2.4.3)

to data by minimizing the χ2. Before fitting I subtracted the samples’ temperature-

independent intrinsic diamagnetic susceptibilities from χmeas. They originate from their

non-magnetic parts and are tabulated [71], why they are easy to subtract.

4.1.1 Ni-LDH

The raw susceptibility of Ni-LDH, measured at 0.01 T (orange), 0.1 T (green) and 1 T

(blue) is shown in Figure 4.2. Immediately, it is clear that data measured at H = 0.01 T

has a significantly worse signal-to-noise ratio. Also, the H = 0.01 T inverse susceptibility

is about 50 % larger at high T compared data measured at larger applied fields, which

means χ0 must be smaller when H = 0.01 T, since the signal should not depend on the
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Figure 4.2: χ−1
meas(T ) for Ni-LDH at H = 0.01 T (orange), H = 0.1 T (green) and H = 1

T (blue). Only every 10th data point is shown for clarity. For data measured at H ≥ 0.1

T, errorbars are generally smaller than the markers.

strength of the applied field as long as we are inside the linear regime. Then again, χ0

is difficult to estimate correctly due to the bad S/N-ratio, why I focus on the 0.1 and 1

T data only. For both of these, the raw data reveals no signs at all down of a transition

to long range magnetic order down to T = 2 K, as no discontinuities or dents, like that

shown on Figure 2.2, are seen in the data.

The H = 1 T data is shown in Figure 4.3a, plotted as both χ−1(T ) and χ(T )T . I

unorthodoxly chose to also plot χT since it reveals features hidden when plotting χ−1,

exemplified by the broad peak in χT at T ≈ 8 K. From the M(H)-data shown in the

beginning of this section, it is clear that parts of this data set is not within the linear

regime at T = 2 K, thus χ ≈M/H is not applicable for all data. To determine the lowest

useful temperature, I use the crude approximation M ≈ B/T (ignoring units). This way,

I can use the largest measured value of M inside the linear regime to estimate the lowest

useful T . I observe that for measurements at T = 50 K, M(H) is always inside the linear

regime and the largest measured M -value is M(9 T) ≈ 2000 emu/(mol Oe), meaning

T ≈ B/M = 104 Oe/2000 emu/(mol Oe) ≈ 5 K is the lowest temperature for which M(T )

can be used to determine χ for the 1 T data.

I fitted both the CW (eq. (2.4.18)) and non-critical scaling models (eq. (2.4.27)) to

the 1 T data. For the scaling model, I included an AFM interchain interaction to account

for the local maximum in χT at T ≈ 8 K, assuming that each chain only interacts with

it’s two nearest neighbours within a layer. The scaling model easily fit the data in the

whole temperature range (5 K to 350 K) and yielded J = 3.84(14) K and j = −1.02(2) K

with g = 2.250+0.004
−0.005 assuming S = 1. The fit is shown as a black line on Figure 4.3a. The

errors on the parameters are estimated by observing their change induced by altering χ0

by ±33 %. I chose to estimate the errors in this manner since the statistical errors from
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Figure 4.3: Susceptibility data for Ni-LDH measured at H = 1 T (left column) and

H = 0.1 T (right column). On graphs (a)-(d), only every 10th data point is shown for

clarity, and errorbars are smaller than the markers. χT -data is cyan and uses the left

y-axis; χ−1-data is magenta and uses the right y-axis. CW-fits are magenta and dashed,

non-critical scaling fits are full, black lines and ZFS-fits are magenta and dash-dotted. All

fits are best viewed on the electronic document. Fit parameters are given in the text. The

dashed lines on graphs (e) and (f) show the estimated J-value. (a): Susceptibility data

with fits. The inset is zoom on the low-T region. (b): Susceptibility data with wrongly

estimated background. (c): Susceptibility data with CW and scaling fits fitted to high-T

data (T = 73 K - 350 K). (d): Susceptibility data with properly estimated background.

The uncertainties are scaled by c/
√
T for the scaling fit. The inset is zoomed on the

low-T region. (e): J from CW-fit vs. lower cut-off Tlow. A plateau is found in the range

T = 67 K - 79 K. (f): J from CW-fit vs. lower cut-off Tlow. A plateau is found in the

range T = 54 K - 88 K.
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the fit estimated the error to be on the fifth significant figure; a level of accuracy much

too large. I chose to vary exactly χ0 since the measured signal is weak, thus correctly

determining χ0 is important to correctly determine J and j. I chose ±33 % since it was

the largest change where I visually assessed the fits qualitatively similar.

I had more difficulties fitting the CW-model. It is clear that the behaviour at the

lowest T is not CW-like. If so, one would expect the trend of χT (with background

contributions subtracted) to be constant and not have a broad peak like at T ≈ 8 K (see

Figure 4.3a). Thus, I need to determine a lower boundary, Tlow, for the fit in order to

only fit the region that actually behaves in a CW-like manner. Only fitting the high-T

regime is further motivated by the fact that I used a high-T expansion of the Brillouin

function when deriving the CW law. I never put an upper limit on the fitting range,

as small changes in the upper limit had no effect on the parameters, and large changes

clearly made the fits worse. Also, I have no reason for data at high T not being useful.

The goal for the chosen Tlow is that my choice has as little influence as possible on the

obtained parameter. To find the best choice, I performed CW fits with different values

of Tlow, plotted J vs. Tlow (see Figure 4.3e) and looked for a region(s) where J(Tlow)

was flat, which meant that changing Tlow would not impact J significantly. I found a

plateau in the range 67 K - 79 K. To further distance my choice of Tlow from the final

parameter, I computed the arithmetic mean of J(Tlow)’s with integer values (in K) of

Tlow inside the plateau instead of choosing an arbitrary Tlow within the plateau. This

approach yielded J = 1.12(2) K with g = 2.24311(9) assuming S = 1, which corresponds

to θCW = 2.981(6) K. The error is the uncertainty on the arithmetic mean. The CW

model with these parameters is shown as a dashed line on Figure 4.3a.

The above CW result is significantly different from the scaling approach, which is

to be expected, since the CW-approach does not consider the low-T behaviour nor the

interchain interaction. To compare the two models, I fitted the scaling model in the same

high-T regime as the CW-fit (73 K - 350 K) and obtained J = 3.36+0.06
−0.08 K, where the

errors again are estimated by altering χ0 by ±33 %. Since the feature caused by the

interchain interaction lie outside this T -regime, I locked j to the previous value before

fitting. The resulting fit is shown in Figure 4.3c (black line) together with the CW-fit,

which shows that the two models behave similarly despite yielding different parameters.

Consider now the data measured at H = 0.1 T (Figure 4.3b). This time, all data

down to 2 K could be used since T ≈ B/M = 103 Oe/2000 emu/(mol Oe) ≈ 0.5 K. It is

clear that the scaling approach did not fit easily contrary to the 1 T case; the model does

not follow data at high T . At high T , the sample should be firmly in the paramagnetic

state and therefore behave in a completely CW-like manner, meaning that χT should not

have no slope at the highest T , which is not the case for the data in Figure 4.3b.

By manually lowering χ0 to about 35 % of the fitted value, I made the fit behave in the

expected manner, which told that correct determination of χ0 might be the issue. Such
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behaviour can be explained by the fact that the statistical errors on the low-T data are

one order of magnitude smaller than those on the high-T data, thus the χ2-fit neglects

the high-T data in favour of fitting the low-T data more accurately. This caused the fit

to wrongly determine χ0, which is of great importance due to the weak signal, since χ0 is

only determined by high-T data.

To make the fit behave correctly, I chose to scale the uncertainties by a factor c/
√
T

before fitting, with c chosen such that the error on the data measured at the highest

T is not changed. The resulting fit is shown in Figure 4.3d and yielded J = 3.2(4) K

and j = −0.81+0.06
−0.07 K with g = 2.204(12) while assuming S = 1. The errors are again

estimated by the change in parameters induced by changing χ0 by ±33 %. These results

are slightly different from those from 1 T data, which is not unexpected, since I used data

at T < 5 K this time; a T -region where χ(T ) changes rapidly.

Like for the 1 T data, I also fitted the CW model to data. Again, the obtained

parameters depended strongly on the lower fit boundary Tlow. I used the same procedure

as above to find Tlow; the J vs Tlow-plot is shown in Figure 4.3f, where I found a plateau

in the range 54 - 88 K. I again computed the arithmetic mean with integer values of Tlow
(in K) within the plateau and obtained J = 1.086(10) K with g = 2.1924(4) assuming

S = 1, which corresponds to θCW = 2.90(3) K. The CW model with these parameters is

shown on Figures 4.3b and 4.3d. These results are again different from the scaling model

for the same reason as above, but are in agreement with the CW fit to 1 T data.

Inspired by our findings from neutron spectroscopy, which I present later, I also fitted

a ZFS-model (eq. (2.4.29)) to both data sets; these fits are shown as dash-dotted magenta

lines on Figures 4.3a and d. They are only visible on the χT -axis, since the CW-, scaling

and ZFS-fits are indistinguishable on the χ−1-axis. The 1 T fit yielded D = −24.0(4)

K, g‖ = 3.115(2) and g⊥ = 1.634(5), which corresponds to giso = 2.13(5), while the 0.1

T fit yielded D = −19.3+1.3
−1.4 K, g‖ = 3.094+0.013

−0.014 and g⊥ = 1.57(3), which corresponds

to giso = 2.08(12). No treatment of experimental uncertainties were necessary when

fitting the ZFS-model. The parameter uncertainties are again estimated as the parameter

changes induced by changing χ0 by ±33 % in both cases.

Clearly, both models are excellent fits to data, even though the obtained D’s are

different from the excitation found with neutron spectroscopy (see Section 4.4). Also,

differences between 0.1 T and 1 T results is not surprising, as it is clear from the insert on

Figure 4.3a that not considering data at T ≤ 5 K worsens the fit. However, the g-values

are indeed surprising. According to Boča, g-components outside the range 1.99−2.40 has

not been reported [30]. Despite this oddity, the isotropic g-values matches other reports

on Ni-compounds [30].

I tried adding a MF perturbation, as described by eq. (2.4.28), to the ZFS-model to

account for weak NN exchange interactions. However, such perturbation did not visually

improve the fit, and the fit parameters were almost identical, why I deemed the introduc-
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tion of an extra parameter into this model redundant. I also tried to lock the D-parameter

to the excitation energy found with neutron spectroscopy, but it yielded no meaningful

result.

4.1.2 Cu-LDH

As mentioned in Section 3.1, our Cu-LDH sample contains a small amount of unreacted

bayerite, which will, like the non-magnetic part of the actual LDH, give a constant diamag-

netic contribution, χdia, to the measured susceptibility. To correct for this, a contribution

of χdia = −3.8·10−5 emu/(mol·Oe) [71] was subtracted from χmeas before fitting, in addition

to the subtraction already performed. Even after the subtraction, the Cu-data showed

the same problems as described for Ni-LDH: The 0.01 T data proved to be too noisy to

accurately determine the background parameter χ0, in precisely the same manner as for

Ni-LDH, why I again only focus on the 0.1 T and 1 T data. The raw data is shown in

Figure 4.4a. As for Ni-LDH, the absence of dents and discontinuities clearly tells that no

transition to long range magnetic order happens at T > 2 K.

The H = 1 T data is shown in Figure 4.4c. This time, the highest largest M -value in

the linear regime is M = 750 emu/(mol Oe), thus T ≈ B/M = 104 Oe/750 emu/(mol Oe)

≈ 13 K is the lowest useful temperature. In addition, only data at T < Tcut = 75 K can

be used in this case due to the bump in χT at Tcut (see the inset on Figure 4.4c). The

bump is absent in all other measurements of Cu-LDH’s susceptibility, why we assume it

to be an artefact of the experimental setup, especially considering that Tcut is similar to

the temperature of liquid nitrogen, which is used for cooling in the PPMS.

With these considerations in mind, I again fitted the CW and scaling models to data.

The scaling model, now without interchain interaction, easily fit the data in the whole

range (13 K - 75 K) yielding J = 1.293+0.005
−0.011 K with g = 2.1551+0.0005

−0.0002 while assuming

S = 1/2. The asymmetrical errors are estimated by considering the change in J obtained

by altering the upper fit boundary by 5 K in either direction. The scaling model with

these parameters is plotted in Figure 4.4c as a black line.

In contrast, the CW-fit depended strongly on the fitting range. To find the appropriate

range, I again iterated over Tlow as described in the above section and again kept Tcut = 75

K. The obtained J(Tlow)-plot is shown in Figure 4.4e, which revealed a small plateau is

the range 32 K - 41 K. I again estimated J with the arithmetic mean method, which

resulted in J = 0.796(8) K with g = 2.1501(3) while assuming S = 1/2, corresponding

to θCW = 0.796(8) K; a somewhat different result than from the scaling model. The CW

model with these parameters is plotted on Figure 4.4c as a dashed line.

Consider now the H = 0.1 T data shown in Figure 4.4d. This time, all data down to

2 K can be used since T ≈ B/M = 103 Oe/750 emu/(mol Oe) ≈ 1.3 K. Again, the scaling

model, still without interchain interaction, fit the data in the whole range (2 K - 350 K).

However, like for the Ni-LDH data measured at H = 0.1 T, it was still necessary to scale
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Figure 4.4: χ-data for Cu-LDH. On graphs (a)-(d), only every 10th data point is shown

for clarity, and errorbars are smaller than the markers. For (b)-(d), χT -data is cyan and

uses the left y-axis; χ−1-data is magenta and uses the right y-axis. CW-fits are magenta

and dashed while non-critical scaling fits are full, black lines. The dashed lines on graphs

(e) and (f) show the estimated J-values. (a): Raw data measured at H = 0.01 T (orange),

H = 0.1 T (green) and H = 1 T (blue). (b): Susceptibility data with wrongly estimated

background. (c): Susceptibility data with fits fitted for T < 80 K. The insert is zoomed

at the χT -bump around T = 80 K. (d): Susceptibility data with fits fitted to T = 350

K. The uncertainties are scaled by c/
√
T for the scaling fit. (e): J from CW-fit vs. lower

cut-off, Tlow, with a plateau in the range T = 32 K - 41 K. (f): J from CW-fit vs. lower

cut-off, Tlow, with a plateau in the range T = 34 K - 43 K.
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the uncertainties by a factor c/
√
T in order to make the model behave in a meaningful

manner at high T . Otherwise, the model still has issues fitting the high-T region precisely

as shown in Figure 4.4b. From the fit I obtained J = 1.4(3) K with g = 2.140(15) while

assuming S = 1/2, in agreement with the H = 1 T data. The error is again estimated by

the change in parameters obtained by changing the fitted χ0 by ±33 %.

For this data set, the CW model was even more susceptible to change with variation

of Tlow. I used the Tlow-iteration method once more, which revealed plateaus in the ranges

34 K - 43 K and 75 K - 95 K (see Figure 4.4f). Since the plateau at 34 K to 43 K is

firmly inside the high-T regime compared to J , as is required for the CW model, I chose

to use the first plateau to use as much data as possible. I again employed the arithmetic

mean method from above and got J = 1.074(6) K with g = 2.13086(12) while assuming

S = 1/2, which corresponds to θCW = 1.074(18) K. This result is close to both scaling

model results, but somewhat larger than the CW result for H = 1 T. The CW model

with these parameters is shown in Figure 4.4d.

4.1.3 Co-LDH

The magnetization of Co-LDH, measured at respectively 0.01 T (orange), 0.1 T (green)

and 1 T (blue), is shown in Figure 4.5a. Like for the other samples, one finds no dents or

discontinuities, and therefore no transition to long range magnetic order, down to 2 K.

Rather peculiar is it however that the data measured at different applied fields are not

similar at any temperatures but the very lowest. If Curie-Weiss-like mechanisms governed

the susceptibility, the sample should be firmly in the paramagnetic state at high T and

therefore behave in the same manner regardless of H. Despite that I still tried to fit

CW-models to data, since the inverse susceptibility seems to behave in a linear manner,

and because it is the go-to method for treating susceptibility data.

As expected, estimating J using CW methods proved difficult or even impossible

depending of the applied field. For 0.01 T and 0.1 T data, I succeeded in fitting the

CW model to the data, but was not able to estimate J from the fits. Like for both Ni-

and Cu-LDH, the obtained fit parameters depended strongly on the choice of lower fit

boundary Tlow, and I was not able to find a plateau in J vs. Tlow. However, I found that

the CW-fit always yielded a negative J-value, which corresponds to AFM NN interactions.

Therefore, the scaling model was not employed, as it is derived for FM interactions only.

Things were a bit more successful for the data measured at 1 T. The largest value of

M(H) measured inside the linear regime is M = 4100 emu/(mol Oe), thus T = B/M =

2.44 K is the lowest useful temperature. I again investigated J vs. Tlow (plotted in Figure

4.5d) and found a plateau in the range 156 K to 198 K. By computing the arithmetic

mean from integer values (in K) of Tlow in the plateau range I got J = −6.26(2) K with

g = 3.0117(10) assuming S = 3/2, which corresponds to θCW = −31.30(10) K. This is a

strikingly large g-value, but it matches preliminary results from a electron paramagnetic
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resonance (EPR) experiment carried out with the assistance of Prof. Jesper Bendix (see

Appendix A). From that data, we obtained g = 2.9 as the estimated isotropic value from

the resonances at g ≈ 2 and g ≈ 5. The CW model with the obtained parameters is

shown in Figure 4.5b as a dashed line.

I also fitted the low-T regime of the 1 T data with a CW model, since it seems that

data shifts to a different slope in χ−1 around ∼ 30 K. This can be caused by a switch

of χ-governing mechanism from single-ion effects at high T to magnetic interactions at

low T , as is the case for Ytterbium Gallium Garnet, where the high-T susceptibility was

accurately reproduced by crystal field calculations [72]. Also, if the g-tensor is anisotropic

as our EPR result suggests, the single-ion effects are important to consider in regard to

the susceptibility.

When fitting CW models to the low-T data, I always fitted from the lower boundary

T = 2.44 K, and iterated over the upper boundary Tupper, since the exact spot where the

slope changes is not given. The result can be seen in Figure 4.5e and shows two plateaus,

around 5.5 K and 7.5 K respectively, marked by red lines. A fit with Tupper = 7.5 K is

shown in Figure 4.5b (see insert for details) as a dotted line. Assuming g = 2.9 I obtain

J ∼ −0.16 K with S ∼ 1.1, while assuming S = 3/2 yields J ∼ −0.075 K with g ∼ 2.28,

where the approximate J- and S-values are aggregates between the results for Tupper = 5.5

K and Tupper = 7.5 K.

The success of the low-T CW fit reinforces the idea that different mechanisms govern

the susceptibility at different temperatures. For that reason, I employed a model which

describes the susceptibility of a compound by only considering the ZFS of the magnetic

ions (eq. (2.4.30)). Since this model does not take NN interactions into account, I only

fitted data at T ≥ 7.5 K, which yielded D = 125(2) K, g‖ = 3.15+0.12
−0.14 and g⊥ = 2.752+0.016

−0.014,

corresponding to giso = 2.88(4). The uncertainties are still estimated as the parameter

changes induced by changing χ0 by ±33 %, as the statistical uncertainties from the χ2-fit

were unbelievably small. The model is shown in Figure 4.5c as a black line. It fits the

high-T regime very precisely, but, unexpectedly, fails to capture the low-T behaviour.

Therefore, I added a mean-field perturbation, as given by eq. (2.4.28), designed to

account for NN exchange interactions at the lowest T . In this case, j describes the NN

exchange interaction J , and g in eq. (2.4.28) is defined as g ≡ (2g⊥ + g‖)/3. With

this perturbation, I fitted the whole experimental range and obtained D = 138+5
−3 K,

J = −0.133+0.005
−0.004 K, g‖ = 3.02+0.14

−0.17 and g⊥ = 2.81(2), corresponding to giso = 2.88(5).

The uncertainties are estimated as above. The model is shown on Figure 4.5c as a red

line, and it is clear that the perturbations helps fitting the low-T regime, although not

as precisely as the low-T CW fit, which can explain the slight difference in the J-values

obtained from the two approaches.
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Figure 4.5: Susceptibility data for Co-LDH. On graphs (a)-(c), errorbars are generally

smaller than the markers. (a): Raw data measured at H = 0.01 T (orange), H = 0.1

T (green) and H = 1 T (blue), plotted as χ−1(T ). (b): χsampleT (cyan, left y-axis)

and χ−1
sample (magenta, right y-axis) measured at H = 1 T. CW-fits of the low-T (dotted,

T = 2.4 K - 7.5 K) and high-T (dashed) regimes are shown on both axes. The insert

is a zoom on the low-T regime and only shows χT with the low-T fit. (c): Same data

as (b), now with ZFS-models, with and without MF NN interactions in red and black

respectively. (d): J from high-T CW-fit vs. lower cut-off Tlow assuming g = 2.9. The

estimated J-value is shown as a dashed line. (e): J from low-T CW-fit vs. upper cut-off

Tupper assuming g = 2.9. The plateaus used to give an approximate value of J are shown

as red lines.
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4.2 Heat capacity

The heat capacity measurements I present here were measured on mg-sized M(II)-LDH

powder samples with M(II)=Cu2+, Ni2+, Co2+ and Zn2+ by Edgar Dachs at Paris-Lodron

University Salzburg by low-temperature calorimetry from 2-303 K using a PPMS. C(T )

were measured at 60 logarithmically spaced T-points three times, and arithmetic means

were computed from that. The averaged data for all compounds is shown in Figure 4.6a.

For the purpose of my work, I am only interested in the magnetic heat capacity, Cmag
of the samples. Therefore, we measured C(T ) of Zn-LDH, a non-magnetic isomorph of

the other LDHs, to complement the measurements of the magnetic compounds. Since all

four compounds are isomorph, we can used the Zn-data, as described in Section 2.4.4,

to estimate the lattice heat capacity. However, simply subtracting the Zn-LDH-signal

yielded negative values of Cmag, which is unphysical. Therefore, the Zn-data ws scaled by

a factor close to 1 to avoid negative Cmag’s. The factor was chosen such that the lowest

value of Cmag for each compound went to 0, since Cmag goes to zero at high T . These

data sets are what I will analyse in the coming sections.

4.2.1 Ni-LDH

Our measurement of Ni-LDH’s Cmag is shown in Figure 4.6b. To obtain Cmag, I subtracted

CZn, multiplied by 0.948, from CNi for the reasons explained above. The resulting Cmag
trends towards zero with increasing temperature until Tupper ≈ 56 K, which means that the

extraction of Cmag works well until approximately that temperature. The heat capacity

shows distinct quantum behaviour at low T , with a broad maximum at Tmax ≈ 4 K,

and no signs of transition to long range order, in the form of λ-shaped peaks or other

divergences, are found.

I fitted our data to a model built on Blöthe’s exact diagonalization (ED) results on

the isotropic S = 1 chain, which were described in Section 2.4.4. I did this by fitting a B-

spline to the ED data with a least squares method under the constraint C(0) = 0. I used

the method minimize from the scipy python library to optimize the spline coefficients,

and the methods splrep and splev from the scipy sub-package interpolate to create and

evaluate the B-spline. After creating the model it was fitted to data within the same

T -range as the ED data, this time with a χ2-method. The fit yielded J = 2.17(2) K,

similarly to the values obtained from χ-data. The error is the statistical error on the fit

parameter, and the fit is shown in Figure 4.6b as a cyan line. The ED model fits well for

T ≤ 10 K, as is clear from the insert on Figure 4.6b, but it does not capture broad bump

between T = 10 K and T = 30 K.

When comparing our data to Blöthe’s results on anisotropic chains I consistently find

that his results show a larger value of Cmag at the local maximum compared to our data.

For the lowest value of the anisotropy parameter, |D/J | = 0.5, Blöthe’s data is a factor
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Figure 4.6: Heat capacity data for all LDHs. (a): Raw C(T) for all LDHs (see legend) on

a double-logarithmic scale. (b): Cmag(T ) for Ni-LDH with ED (cyan) and ZFS (black)

fits. (c): Cmag(T ) for Cu-LDH with ED (cyan) and HTE (golden) fits. The HTE model

is fitted to data in the range T = 3.83 K - 19 K. (d): J from fit of a HTE model to

Cu-LDH data as a function of lower fit boundary, Tlow, for different upper fit boundaries

Thigh. The insert is zoomed on the chosen Tlow-value, which is marked by a vertical black

line. (e): Cmag(T ) for Co-LDH with ED (cyan) and HTE (golden) fits. The HTE model

is fitted in the range T = 2.3 K - 23 K. The insert is a zoom on the low-T regime where

the HTE and ED fits are nearly identical. (f): J from fit of a HTE model to Co-LDH

data as a function of lower fit boundary, Tlow, for different upper fit boundaries Thigh. The

insert is zoomed on the low-T regime, and the chosen Tlow is marked by the black line.
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1.5 larger than our data at the maximum, and the difference only becomes larger for larger

anisotropies, why the anisotropic ED data was not considered any further in regard to

the heat capacity data.

However, a pure ZFS-model (eq. (2.4.43)) tells a completely different story. I fit-

ted that model, with an added constant, to the whole available data range (T ≤ 56

K) and obtained an excellent fit (dashed, black line of Figure 4.6b), which yielded

D = −8.19(5) K = −0.706(4) meV, similarly to the neutron spectroscopy excitation (see

Section 4.4). However, to fit the model, the added constant needed to be quite large; the

fit yielded C0 = 0.503(8) J/(mol K), which corresponds to approximately one-fifth of the

total signal. However, the large constant may be an artefact of the aforementioned issues

with the extraction of the magnetic signal. The uncertainties are the statistical errors on

the fit parameters.

4.2.2 Cu-LDH

Data from our measurement of Cu-LDH’s Cmag is shown in Figure 4.6c. To obtain Cmag,

I subtracted CZn, multiplied by 0.888, from CCu for the same reasons as explained in the

beginning of this section. The resulting Cmag trends towards zero with increasing tem-

perature until Tupper ≈ 19 K, which means that the subtraction of the lattice contribution

works well until approximately that temperature. This is a significantly lower Tupper than

for Ni-LDH, which is presumably caused by the small amount of unreacted bayerite (see

Section 3.1). A small anomaly is seen in the data as an upturn at the lowest T (below

T ≈ 5 K), reminiscent of Blöthe’s quantum anomalies. Also, as for Ni-LDH, no signs of

transition to long range order is seen.

I again built a model on Blöthe’s ED data, this time using his results for S = 1/2, and

fitted it to data in the same manner as described for Ni-LDH. The result, which yielded

J = 0.583(3) K, is shown as a cyan line on Figure 4.6c. From the fit behaviour below our

experiment limit of T = 2 K, it is clear that the significant Cmag-features lie below our

experimental limit, why it is safe to assume that we are in the high-T regime.

For that reason, I also tried fitting a high-T expansion model (eq. (2.4.42)) to the

data. Like the CW model for susceptibility, the HTE model is only approximate, and a

proper temperature range needs to be determined. To quantify my choices of the upper

(Thigh) and lower (Tlow) fit boundaries, I studied their impact on the obtained J-value by

iterating over different values. The result is shown in Figure 4.6d, which revealed that

Tlow = 3.83 K is the optimal value, since for that value, J(Tlow) has reached a plateau and

the choice of Thigh induces minimal change in J (see the insert of Figure 4.6d for details).

In fact, the changes induced by changing Thigh are lower than the statistical errors on the

fit, why I choose Thigh = 19 K to use as much data as possible. These choices of Tlow and

Thigh yielded J = 0.514(5) K, a little lower than the value obtained from the ED-fit. The

fit is shown on Figure 4.6c as a golden line.
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4.2.3 Co-LDH

As for the susceptibility measurements, the treatment of the Co-LDH C-data was more

tricky compared to the others. The data, shown in Figure 4.6e, was obtained by subtract-

ing CZn, multiplied by 0.964, from CCo for the same reasons as above. It is clear that the

extraction of Cmag is not perfect. In fact it only works reasonably well for T ≤ 22 K; in

particular, the drop around T = 22 K is strange. It is also odd that Cmag flattens just

above 0.2 J/(K mol) and not around 0. Still, no signs of a transition to long range order

is seen.

Despite the oddities, I fitted both an ED and a HTE model, this time with an added

constant C0, to the data. For the HTE fit, I again examined the choices of temperature

boundaries as for Cu-LDH, the result is shown in Figure 4.6f. I found that J has local

maximum at Tlow ≈ 4.5 K, and that a plateau is forming as T approaches the lower

experiment limit. However, most features in the data lie below T = 4.5 K, why I chose to

use all data (Tlow = 2.20 K), which is also reasonable since a plateau is forming as T → 2

K. Like for Cu-LDH, the choice of Tupper has no effect on the fitted parameter as long as it

is large enough. Therefore, to use as much data as possible, I chose Tupper = 22.1 K. With

these choices, the fit yielded J = 0.0771(8) K and C0 = 0.2036(10) in compliance with

the CW result from low-T χ-data when assuming S = 3/2. The fit is shown on Figure

4.6e as a golden line.

The ED data, fitted with the same method as for Ni-LDH, is shown as a cyan line

on Figure 4.6e (most clearly on the insert). It is only plotted in the T -region where

ED and experimental data overlap, which shows that the overlap is quite limited. This

means that the ED model is only fitted to 6 data points, which limits the fit quality and

makes it impossible to use it to estimate a background parameter. Therefore, I locked

the background parameter to the value obtained from the HTE fit before fitting the

ED model, which which yielded J = 0.0550(4) K, slightly smaller than the HTE value,

but still comparable with results from low-T susceptibility data. All uncertainties on fit

parameters are the statistical errors on the fitted values.

I was not able to fit a ZFS-model to the heat capacity data, despite the χ-data sug-

gesting an enormous D-parameter. When inserting the D’s estimated from the χ-data

into model presented in Section 2.4.4 (eq. (2.4.44)), the model has a maximum at T ≈ 50

K and C(T < 10 K) ≈ 0. Due to the issues with the extraction of the magnetic part

of the heat capacity, it is impossible to fit such a model to the data, since only data at

T ≤ 22.1 K can be considered.

4.3 Neutron Diffraction

The neutron diffraction measurements on Ni-LDH I present here were collected on the

thermal diffractometer HRPT at SINQ, PSI (see Section 3.3.3 for instrument details) in
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Figure 4.7: Neutron diffraction data of Ni-LDH at different temperatures measured at

HRPT at SINQ, PSI in high-intensity mode with λi = 1.886 Å [68]. The red data points,

on which the inserts are zoomed, corresponds to the ∆I data points which needs to be

removed to pass the Anderson-Darling test [73] at a 5 % significance level.
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November 2020 as a part of the student beam time for the course Neutron Scattering

at the University of Copenhagen. Due to the covid-19 situation we were not able to

perform the experiment on site. Instead, it was carried out by the instrument responsible

Denis Cheptiakov with the assistance of postdoc Henrik Jacobsen. The instrument was

operated in the high-intensity mode described in Section 3.3.3 since we were looking for

broad magnetic signals, as will be elaborated below, why high flux was immensely more

important than good resolution.

The measurements were performed on a 1.003 g partly deuterated powder sample. We

used neutrons with λi = 1.886 Å coming from the (511) reflection of the Ge-monochromator,

and we measured for 3 hours at T = 1.67(5) K, T = 10.0(1) K and T = 50(1) K.

The data is shown in Figure 4.7 for each of the three temperatures, and it is clear

upon first inspection that they are quite identical. The data was normalised to a standard

monitor count by D. Cheptiakov, who also properly propagated the statistical errors while

taking into account the relative efficiencies of the detector wires, which differ by ±10 %.

Regardless of temperature, we find ca. 20 Bragg peaks, which presumably are the nuclear

peaks. Also, a significant non-flat background is present at all temperatures, presumably

due to incomplete deuteration of our Ni-LDH sample, which leaves 1H, which has a very

large incoherent cross section [20].

From eq. (3.3.12), one has that the magnetic diffraction signal is essentially the space

Fourier transform of the spin correlation function. In the case of a magnetically ordered

sample, it means that one would observe magnetic Bragg peaks when q is equal to the

magnetic ordering vector, give or take a reciprocal lattice vector as given by eq. (3.3.14).

However, as mentioned in the above sections, magnetic ordering is absent in Ni-LDH

down to T = 2 K and thus no magnetic Braggs peaks could emerge at T = 10.0(1) K or

T = 50(1) K. Since the T = 1.67(5) K diffractogram is more or less identical to these, we

can confirm that no magnetic ordering is present at that temperature either.

Still, short-ranged magnetic correlations can exist in the disordered phase close to a

transition and still scatter neutrons as described by eq. (3.3.12). This phenomenon is

referred to as critical scattering, and manifests itself as broad peaks with Lorentzian line

shapes at the same q-values as where Bragg peaks will eventually develop in an ordered

phase [66]. The signals can be weak and troublesome to distinguish from the nuclear signal

since they are much less intense. Especially critical scattering signals at ferromagnetic

q-values can be difficult, as they will coincide with the nuclear Bragg peaks, since Q = 0

for ferromagnetic ordering, which, if any, is the kind of order we would expect to see given

the χ- and Cm-results. To magnify eventual magnetic features, I choose to look at the

difference ∆I(= I1.6 K−I50 K) between the T = 1.67(5) K and T = 50(1) K diffractograms.

If spin correlations are present, we expect them to be stronger at low T and thus emerge

as positive peaks in ∆I.

∆I is shown in Figure 4.8a. To further magnify eventual features, I also plotted
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Figure 4.8: Difference (∆I = I1.6 K−I50 K) between diffractograms measured at T = 50(1)

K and T = 1.67(5) K. (a): Unbinned data. The points coloured red needs to be removed

for this data to pass the Anderson-Darling test [73] for normality. (b): Running average

of 4 data points. (c): Running average of 8 data points. (d): Histogram of ∆I from

(a) with a scaled Gaussian (red) fitted to data with a χ2-method. The parameters are

written on the graph. Errors on each bin is the square root of the frequency.

running averages of 4 and 8 data points in respectively Figures 4.8b and 4.8c. It is clear

that no features are seen except for a small decrease in ∆I at the lowest q. However, it is

negative and therefore not of magnetic origin, since we expect ∆I > 0 for any magnetic

signal. One possible explanation for this decrease is that the part of the detector which

measures the neutrons with lowest q is close to the direct neutron beam. This means

that even a tiny displacement of the detector bank between measurements could result

in capturing a little more of the direct beam. Even though the decrease is around 750

counts/monitor, it only corresponds to ∼ 5 % of the actual measurement and thus could

easily be caused by the mentioned instrument error. The apparent absence of magnetic

signals down to T = 1.67(5) K suggests that little spatial spin correlations are present

down to that temperature, which underlines that an eventual ordering temperature would

be at significantly lower T .

Recall now that each data point is simply counts in a neutron detector and therefore

independent measurements obeying Poisson statistics. However, the count numbers are

large and the probability to hit a specific detector is small, why the distribution of counts
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in each detector can easily be approximated to be Gaussian. If I1.6 K and I50 K are truly

identical, and there is no magnetic signal, then each of the aforementioned independent

Gaussian distributions will be identical. This ultimately means that the set ∆I should

be Gaussianly distributed if there is no magnetic signal.

To investigate if that is the case, I plotted a histogram of the data in Figure 4.8a,

which is displayed in Figure 4.8d. I used 80 bins, which lead to 67 actual entries since 13

bins were empty. The observed frequencies are assumed to follow count statistics, thus

a Poisson distribution, why the errors on the frequencies are set to the square root of

the bin counts. I used a χ2-method to fit a Gaussian distribution, scaled by a factor

N , to the histogram. It fit nicely (χ2
red = 0.997) and yielded µ = 29(3) counts/monitor

and σ = 157(2) counts/monitor, thus the fit strongly suggests that ∆I is in fact normal

distributed. Having µ > 0 is to be expected, as the cross sections is proportional to the

Debye-Waller factor, which is larger for lower temperatures.

To further strengthen the claim that ∆I is in fact normal distributed, I performed and

Anderson-Darling (AD) test for normality [73] on both the unbinned and the two binned

data sets. My null hypothesis was that the data is normal distributed, meaning that ∆I is

merely statistical noise. For the two binned data sets, I obtained test statistics A2 = 0.463

and A2 = 0.457 for the running average of 4 and 8 data points respectively (see [73] for

details on A2), which means the null hypothesis could not be discarded even at a 15 %

confidence limit. However, the unbinned data set did not pass the test immediately, as

an AD test on the full, unbinned data set yielded A2 = 1.31. My initial guess was that

this was caused by the dip at lowest q explained above, which would be smoothed out

in the binned case. I found that removing the first 11 and the last 5 data points from

the unbinned data, all coloured red in Figures 4.7 (top & bottom) and 4.8a, led to the

unbinned data passing the AD test at a 5 % significance level with A2 = 0.763. I have

good reason to remove data points at the lowest q as explained above, but no explanation

for why removing an amount of data at the highest q is required for passing the AD test.

4.4 Neutron Spectroscopy

The neutron spectroscopy measurements on Ni-LDH I present here were collected on the

FOCUS time-of-flight spectrometer at SINQ, PSI (see Section 3.3.4 for instrument details)

as a part of the student beam time for the course Neutron Scattering at the University of

Copenhagen. Due to the covid-19 situation, we were not able to perform the experiment

on site. Instead, it was carried out by Henrik Jacobsen and the instrument responsible

Jan Peter Embs. The experiment ended on Dec. 16th, only a few days before this thesis

was handed in, why the data treatment is not as thorough as one could have wished.

The measurements were performed on a 1.003 g deuterated powder sample with the

incoming energy Ei = 3.55 meV at T = 1.5 K for 10 hours, and at T = 100 K for 3.5
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Raw, T = 1.5 K Empty can, T = 1.5 K

T = 1.5 K T = 100 K

Figure 4.9: Top: Raw inelastic neutron scattering intensity of Ni-LDH at T = 1.5 K

(left) and empty-can measurement (right) at T = 1.5 K. Bottom: Inelastic neutron

scattering intensity of Ni-LDH at T = 1.5 K (left) and T = 100 K (right), with background

subtracted. All measurements are performed on a 1.003 g deuterated powder sample at the

TOF-spectrometer FOCUS at SINQ [70]. The plots are made with the MSlice software [74].

hours. I performed the reduction of the TOF-data with the DAVE software [75], and MSlice

was used for making the 1D cuts shown later [74]. For background estimation, the empty

sample can was measured for 9 and 5 hours at T = 1.5 K and T = 100 K respectively,

whereafter the empty can signals were subtracted from the raw data. The raw data and

empty can signal for T = 1.5 K can be seen in Figure 4.9 (top left and right respectively).

Colormaps of the two data sets, with background subtracted, can be seen in Figure

4.9 (bottom). A well-defined, |q|-independent peak is seen at E ≈ 0.8 meV at both

temperatures. The peak is presumably a crystal field excitation, as the presence of a

ZFS can give rise to such a dispersion-less excitation as described in Section 2.5.1. This

can explain the lower intensity at T = 100 K, as the excited ZFS level will also be

populated at T = 100 K, seen as scattering at negative E, which is indeed the case (see

Figure 4.9, bottom rigt). The total amount of scattering must be constant, thus the

scattering at E > 0 must become less intense. This also confirms the two-level nature

of the excitation, which certainly agrees with the idea of the it being caused by a ZFS.

Alternatively, frustrated magnetic systems can give rise to similar scattering patterns

named zero modes [76], but we have no reason to believe that that is the case here [77].
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Figure 4.10: Investigation of T = 1.5 K crystal field data from Figure 4.9. Top: Cuts

along E, integrated over 0.2 Å−1 from |q| = 0.4−2.2 Å−1. Each cut is shifted by 0.5 A.U.

for increasing |q|. The red lines are Gaussians with constant background contributions,

fitted to the range E = 0.45 − 2.00 meV using a χ2-method. Middle: Integrated peak

intensity, defined as given in the text, vs. |q|, where the value at e.g. |q| = 0.5 corresponds

to the result from the fit of the E-cut integrated from |q| = 0.4 − 0.6 Å−1. Bottom:

Peak position vs. |q|, with a constant E = 0.8261(17) meV (red line) fitted to data with

a χ2-method.

.
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Figure 4.11: Inelastic neutron scattering intensity of Ni-LDH, integrated along respec-

tively E = 0.30 − 0.59 meV (left) and E = 1.06 − 1.70 meV (right), as a function |q| at

T = 1.5 K (top) and T = 100 K (bottom).

To investigate the nature of the signal at E ≈ 0.8 meV, I made cuts of the T = 1.5

K data along the E-axis, integrated over 0.2 Å−1 in |q|. These cuts are shown in Figure

4.10 (top), where successive cuts have been shifted by +0.5 A.U. to be able to show all

cuts in the same plot; the lowest-lying data, which have not been shifted, corresponds to

the lowest |q|. I fitted a Gaussian peak shape, with a constant background contribution,

to each cut in the range E = 0.45 − 2.00 meV; these are shown on Figure 4.10 (top)

as red lines. First- and second-order polynomials were also considered for modelling the

background, but they did not unambiguously make the fits better, and they ultimately

made the estimates of the Gaussian parameters less precise, why they were abandoned.

Also, they yielded negative intensities within the experimental range, which is unphysical.

Due to the magnetic form factor in eq. (3.3.18), the intensity of magnetic scattering

signals decrease as |q| increases, as described in Section 3.3.1. To investigate the magnetic

nature of the signal at E ≈ 0.8 meV, I computed the integrated intensity of the fitted

Gaussian peaks as Iint =
√

2πσImax, where Imax is the maximal intensity of the peak and

σ is the Gaussian line width. I show Iint(|q|) in Figure 4.10 (middle), where |q| = 0.5 Å−1

corresponds to an integration over the interval |q| = 0.4− 0.6 Å−1 , from which it is clear

that from |q| = 1.5 Å−1, the intensity decreases as |q| increases.

For comparison, H.A. Mook found that nickel’s form factor deviates very little from

it’s peak value for |q| < 1 Å−1 [78], and R. Nathans et al found that it plummets for |q| > 2
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Raw data Empty can

Figure 4.12: Left: Raw data measured at T = 1.5 K (blue) and T = 100 K (red),

integrated over E = 0.30 − 0.59 meV, as a function of |q|. Right: Empty can data

measured at T = 1.5 K (blue) and T = 100 K (red), integrated over E = 0.30 − 0.59

meV, as a function of |q|.

Å−1 [79], which is also true for our excitation. Thus, the signal is indeed magnetic. During

our experiment, the FOCUS detector was known to have low efficiency at low |q|, why a

low Iint at low |q| is expected [80].

To give an estimate of the exact excitation energy, I investigated the peak position’s

dependence on |q| as displayed in Figure 4.10 (bottom). It is clear that the peak position is

effectively constant, and I obtained E = 0.8261(17) meV = 9.59(2) K by fitting a constant

to the data with a χ2-method. Neutron spectroscopy is not able to estimate the sign of

D, as it simply measures the energy gap between the crystal field levels. The obtained

energy is similar to the estimate from the ZFS-fit to heat capacity data, but only about

half of the estimate from the ZFS-fit to susceptibility data.

To look for any hidden magnetic signals, I investigated the seemingly empty areas of

I(E, |q|) away from the CF-excitation. I integrated the areas E = 0.30 − 0.59 meV and

E = 1.06− 1.70 meV and plotted their |q|-dependence as shown in Figure 4.11 (left and

right respectively). The E-intervals were chosen to always be more than 2σ away from

the excitation maximum. The intensity of the high-E region is indistinguishable from

zero within the errorbars regardless of temperature, thus no signal is hidden there.

The low-E region is different however, as there definitely is a signal with strength

I ≈ 0.2 A.U. At low T , the signal seems to be constant in |q|; the dip at the lowest |q| is

presumably caused by the aforementioned issues with the detectors at small angles. At

high T , the signal is constant for |q| > 1 Å−1 , but decreases in intensity for low |q|. While

surprising at first, it can be explained by the fact that the raw signal does not change

with temperature (see Figure 4.12 (left)), while the 100 K empty-can data is more intense

than the 1.5 K empty-can data at low q (see Figure 4.12 (right)). Thus, the difference

between the top-left and bottom-left panels on Figure 4.11 is presumably an artefact of

the background subtraction.
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Chapter 5

Discussion, Conclusion & Outlook

This is the final chapter of my thesis. Here, I will collect and discuss all my findings

before I formulate my final conclusions and give my thoughts on possibilities for further

work. At first, I will discuss a few features which are common for each sample, whereafter

I consider them individually, as they all proved to require specific treatment.

5.1 Discussion

In this work, I have studied the magnetic properties of a series of layered double hydroxides

based on bayerite, namely M(II)Al4(OH)12SO4 · 3 H2O with M(II)=Cu2+, Ni2+ and Co2+,

mainly by measuring their heat capacity and magnetic susceptibility. An overview of the

obtained parameters is found in Table 5.1.

Despite being isomorph compounds, I had to employ several different models to ac-

count for the individual intricacies of the bulk properties of our LDHs, as will be elaborated

below, which bodes well for the possibility for synthesising compounds with different mag-

netic properties based on this LDH family. One thing they did have in common however:

Their bulk magnetic properties behaved smoothly as functions of temperature down to

T = 2 K, as seen in Figures 4.3 through 4.6. This clearly confirms the absence of long-

range magnetic order in all samples, as described in Section 2.3, which is a first step

in investigating if our LHDs are good realisations of 1D quantum systems, as true 1D

isotropic Heisenberg systems do not order according to the Mermin-Wagner theorem [13].

In addition to the measurements mentioned above, we investigated the magnetic prop-

erties of Ni-LDH with both neutron diffraction and spectroscopy, as presented in Sections

4.3 and 4.4. These experiments were severely delayed due to the covid-19 pandemic, why

the data treatment is not as thorough as one could have wished. Furthermore, preliminary

results from electron paramagnetic resonance spectroscopy of Co-LDH (see Appendix A),

measured in collaboration with Prof. Jesper Bendix (Department of Chemistry, Univ.

Copenhagen), will be discussed in this section.
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Cu-LDH Ni-LDH (0.1 T) Ni-LDH (1 T) Co-LDH (1 T)

θCW [K] 1.074(6) 2.90(3) 2.981(6) ∼ −0.49

JCW [K] 1.074(18) 1.086(10) 1.12(2) ∼ −0.075(a)

Jscaling [K]
1.4(3) (0.1 T)

1.293+0.005
−0.01 (1 T)

3.2(4) 3.84(14) -

JZFS,χ [K] - - - −0.133+0.005
−0.004

|JC | [K]
0.583(3) (ED)

0.514 (5) (HTE)
2.17(2) (ED) 0.0771(8) (HTE)

j [K] - −0.81+0.06
−0.07 −1.07(2) -

Dχ [K] - −19.3+1.3
−1.4 −24.0(4) 138+5

−3
(b)

D [K] -
−8.19(5) (ZFS)

9.59(2)(c) (INS)
-

gCW 2.13086 (12) 2.1924(4) 2.24311(9) ∼ 2.28(a)

gscaling

2.140(15) (0.1 T)

2.1551+0.0005
−0.0002 (1 T)

2.204(12) 2.250+0.004
−0.005 -

giso,ZFS,χ - 2.08(12) 2.13(5) 2.88(5)

Table 5.1: Overview of magnetic parameters obtained from measurements of our LDHs’

magnetic properties. The given errors are estimated using the methods described in

Chapter 4. θCW , JCW and gCW are obtained by fitting Curie-Weiss models (eq. (2.4.18)) to

susceptibility data. Jscaling, j and gscaling are obtained by fitting non-critical scaling models

(eq. (2.4.27)) to susceptibility data. JZFS,χ, giso,ZFS,χ and Dχ are obtained by fitting ZFS-

models (eqs. (2.4.29)-(2.4.30)) to susceptibility data. JC ’s are obtained from fitting high-

temperature expansion (HTE, eqs. (2.4.40) or (2.4.42)) and/or exact diagonalization (ED)

models to heat capacity data; the exact models are given in parentheses. D is estimated

by fitting a ZFS-model (eq. (2.4.43)) to heat capacity data, or obtained directly from

inelastic neutron scattering (INS) data; the exact model is given in parenthesis. The

VSM applied field strengths are also given in parentheses. (a): With S = 3/2. (b): With

a MF NN exchange perturbation. (c): INS only gives the magnitude of D.
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When looking at the susceptibility data of all three LDHs (Figures 4.3-4.5), it is clear

that the inverse susceptibilities generally behave in a linear manner at high T , in addition

to behaving smoothly as a function of temperature. Indeed, I was able to fit Curie-Weiss

models (eq. (2.4.18)) to all data sets, which in the literature is the go-to method for

treating this kind of data; the obtained parameters will be discussed later in this section.

However, determining a unique set of fit parameters from CW models was not an easy

task. Intrinsically, the CW-model is a high-T model, as it is derived in the high-T limit

(see Section 2.4.3). Therefore, one has to choose a limited range of data to which the model

should be fitted. To quantify my choices of fit boundaries, I investigated their influence

on the obtained parameters (see Figures 4.3e-f, 4.4e-f and 4.5d-e). To my surprise, it was

often difficult to find an unambiguous best choice of fitting range even with this method.

Also, even within intervals of lower boundaries which were supposed to be equally good,

my choices caused parameter fluctuations larger than the statistical uncertainties from

the fits. I therefore chose to combine parameters from within equally good intervals by

computing arithmetic means as described in Section 2.4.3; those are given in Table 5.1.

The uncertainties on parameters obtained in the above manner were estimated as

the errors on the means; these are also the ones given in Table 5.1. This choice of

uncertainty estimation yields three significant figures on J , and four to six significant

figures on g, which, compared to similar kinds of results reported in the literature, are

quite precise [23,32,34,81]. My method probably underestimates the uncertainties, especially

when compared to the uncertainties from the other models I have employed (see Table

5.1), but at least it does not re-introduce the choice bias I had tried hard to eliminate.

Given the issues with the CW model, I also employed a non-critical scaling model

(see Section 2.4.3) when applicable. According to the original authors, this model is valid

down to kBT > 0.1 J [32], which means it would be applicable to the whole experimental

range if the initial CW-results were correct. In some cases however, I had trouble fitting

the model precisely in the high-temperature region, which became most apparent when

plotting χT , which underlines the importance of fitting χT in addition to the traditional

χ−1. I found that the error was mainly caused by wrong estimation of the background.

However, rather than being an issue with the model, it turned out to be an issue

with the fitting method and the experimental uncertainties. I used a χ2 fitting routine,

which intrinsically puts a lot of weight on data with small uncertainties and only takes

statistical uncertainties into account [82]. My experiments were performed with a vibrating

sample magnetometer, which uses lock-in amplifiers to measure tiny currents, induced by

the magnetised sample, to high accuracy (see Section 3.2). The accuracy becomes even

greater as the sample is cooled, since the sample magnetisation gets larger and thus in-

duces a higher voltage, why the statistical uncertainties on low-T data become minuscule.

This leaves room for small systematic errors to have an impact, especially considering the

weak magnetic signals. Such systematic errors are presumably not temperature depen-
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dent, contrary to the statistical ones, thus they will become relatively more important

as the sample is cooled. Since the χ2 fitting method does not consider these systematic

uncertainties, it wrongly puts great emphasis on the low-T data and neglects the data at

high T, which determines χ0, which was important to estimate correctly due to the weak

signal. I therefore forced the fitting routine to put a greater emphasis on the high-T data

by multiplying the statistical uncertainties by c/T 1/2, choosing c such that the uncertainty

on the data point at the highest T was unchanged.

Like for the CW model, I was forced to estimate the parameter uncertainties in an un-

conventional manner when employing the above method, since the statistical uncertainties

on the fit parameters were on the fourth significant figure; a level of precision I deemed

impossible due to the fitting difficulties. Instead, my estimation was that the uncertainties

are given by the parameter changes induced by altering χ0 by ±33 %, motivated by the

fact that χ0-estimation had already proved to be a decisive factor.

I also had to face difficulties when treating the heat capacity. I am only interested

in the magnetic contribution, which needs to be extracted from the raw data, which also

contains the lattice vibration contribution. I tried to do so by estimating the lattice heat

capacity of the magnetic samples as the heat capacity of the non-magnetic Zn-LDH. This

way, simply subtracting the Zn-LDH data from the others would extract the magnetic

data. Unfortunately, this method yielded negative C-values, which is unphysical. This

means that the lattice heat capacitiy of Zn-LDH is not completely equal to that of the

others, presumably due to small differences in the lattice parameters and the atomic

masses. To avoid negative C-values, the Zn-data was scaled by small factors close to 1,

which removed the negative values. However, the subtraction still was not perfect. The

magnetic heat capacity did not go to zero at high temperatures contrary to expectation

(see Figure 4.6). Regardless, the subtraction seemed to work well until temperatures

much larger than the J-values estimated from the χ-data, why assessing the magnetic

properties from the heat capacity data should not be problematic.

I always fitted at least one of the two following models to the heat capacity data:

One derived from a high-temperature expansion of the partition function, and one built

on Blöthe’s exact diagonalization (ED) results [37,38], which both have their limitations.

Most of the concerns regarding the CW model for susceptibility are also applicable for the

HTE model, and for that reason, I again evaluated the influence of the fitting range on

the obtained parameters, as I had done for the CW model (see e.g. Figure 4.6d). Blöthe’s

ED data is naturally limited to a certain temperature range, why the model also had to

be, thus in certain cases it might have limited overlap with the experimental data as well.

5.1.1 Cu-LDH

Our susceptibility and heat capacity data for Cu-LDH can be found in Figures 4.4 and 4.6c

respectively. The parameters obtained from different models can be found in Table 5.1,
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which tells that Cu-LDH is a S = 1/2 spin chain with weak ferromagnetic interactions.

Contrary to the other LDHs, there is no zero-field splitting in Cu-LDH, as that is not

possible in a S = 1/2 system.

As mentioned in Section 3.1, our Cu-sample contained a small amount of unreacted

bayerite. This does not effect our susceptibility measurements, as bayerite’s diamagnetic

susceptibility is tabulated [71], thus it was simple to subtract it’s constant contribution

from our data. I measured the susceptibility using applied field strengths of H = 0.01

T, 0.1 T and H = 1 T. The first was not considered for determining the magnetism, as

the signal-to-noise ratio is significantly worse compared to the others. Both the others

were used, even though the H = 1 T data had some issues. As displayed on Figure 4.4c

(insert), I found a strange feature in the H = 1 T data not present in any other data sets.

It is presumably from the experimental setup, as it matches the temperature of LN2 used

for cooling. It is worth to notice that the feature is not visible on the χ−1-plot, which

emphasises the need for also plotting χT when dealing with susceptibility data.

Due to the anomaly, I could only use part of the H = 1 T data set (up to T = 75 K),

which made background estimation significantly harder, especially for the Curie-Weiss

model. Due to the weak signal (χ(350 K) ≈ 1.25 · 10−3 emu/(mol Oe)), background

estimation has a big impact on the obtained parameters, why I do not include the CW

results from H = 1 T data in the further discussion.

To make things more cumbersome, Cu-LDH displays the fastest magnetic saturation

of any of our LDHs (see Figure 4.1). At T = 2 K, H = 1 T is not inside the linear

regime, thus the full M(T ) data set cannot be used to obtain the susceptibility for H = 1

T. I estimated that only data at T ≥ 13 K can be used, which limits the useful data

to the range 13 − 73 K for the H = 1 T data set. Despite that, scaling model results

from H = 0.1 T and H = 1 T are in compliance (see Table 5.1), which underlines the

robustness of the scaling model.

The accuracies of the H = 1 T results are an order of magnitude better compared to

the H = 0.1 T results, which might be surprising at first, since the fit range was rather

limited for the H = 1 T data. It might be caused by the different approach to error

estimation, as described in Section 4.1.2, but the S/N-ratio is better for H = 1 T, why

improved accuracy can be justified. Also, unlike for the H = 0.1 T data, I did not have to

scale the uncertainties on the H = 1 T data for the scaling model to fit the high-T data,

which may explain why the H = 1 T data can yield parameters with improved accuracy.

Despite the issues with the CW model mentioned in the beginning of this section, I

still obtained reasonable results for the H = 0.1 T data when taking the proper measures.

My fit (Figure 4.4d, magenta line) uses the parameters obtained from of the mean-method

mentioned above and is clearly a good fit to data. The fit becomes worse at the lowest

temperatures, as expected for the Curie-Weiss model. The scaling model was also appli-

cable to the H = 0.1 T data, after correcting the uncertainties as mentioned above. At
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low T , it fits the data even more precisely than the CW model (black line, Figure 4.4d),

and the obtained parameters are close to those from the CW-model (see Table 5.1).

Despite the necessity to scale the uncertainties for the H = 0.1 T data, I have most

faith in the scaling model. The parameters I obtained with it from the different data

sets are within each other’s uncertainties, and it provided the best fits at low T . Also,

the need for scaling the uncertainties can be explained from a statistical perspective, as

mentioned in the beginning of the chapter, and it was only necessary when using data

not accounted for with the CW model - had the CW model also been applicable to the

lowest T , scaling of the uncertainties might have been necessary as well.

Both the HTE and ED models were applicable to the Cu-LDH heat capacity data. The

obtained J-parameters can be found in Table 5.1. Both models yielded ferromagnetic J-

values, like the susceptibility models, but they both predicted J to be about 40 % smaller

than the susceptibility models. Getting a different J-value is not a surprising result, for

two reasons: First, none of the C-models take the unreacted bayerite into account, and

secondly, there is only a limited magnetic signal within the available temperature range. It

also speaks to C−models’ favour that they obtained approximately the same parameters

- the heat capacity data tells almost the same thing regardless of model. Therefore,

the reason for the discrepancy between χ- and C-data should probably be found in the

underlying assumptions, which again leads back to the 13 %(w/w) unreacted bayerite not

being accounted for in the C-modelling.

Intrinsically, the HTE model has similar issues to the CW model, as described in the

beginning of this chapter, why evaluation of the fitting range was necessary. However,

compared to the susceptibility data, it was more clear what the choice of fitting range

should be, since the J-parameter depended on the boundaries in a simpler manner (see

Figure 4.6d). Also, most of the available range proved useful (3.84 - 19 K), which bodes

well for the applicability of the HTE model.

The limited overlap between our experimental range and the supposedly interesting

region becomes most clear when considering the ED model (green line on Figure 4.6c).

The model only overlaps with about half of the data within the range where the lattice

subtraction works well, and the major features of the model lie outside our experimental

range. The model’s range is determined by that of Blöthe’s ED data, why the model is

not easily extended. Despite that, the ED model captures the behaviour at the lowest

T slightly better than the HTE model and yields approximately the same J-value (see

Table 5.1), which suggests that the ED model is rather robust.

Both C-models gives results to three significant features, based on the statistical un-

certainties on the fit parameters, which is an accuracy close to one order of magnitude

larger than typically reported [34,83,84]. However, the models visually fit the data quite

well, thus the accuracy is not necessarily overestimated. Still, the discrepancy between χ-

and C-results maybe tells that the precision is off, even if the accuracy is well estimated.
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5.1.2 Ni-LDH

Our experimental data on Ni-LDH can be found on Figures 4.3, 4.6b, 4.7 and 4.9 for χ-,

C-, diffraction and spectroscopy data respectively. The various obtained parameters can

be found in Table 5.1, from which one can see that modelling of both the χ- and C-data

yielded ferromagnetic J-values.

I measured Ni-LDH’s susceptibility with a VSM using three different applied fields:

0.01 T, 0.1 T and 1 T. From Figure 4.2 it was quickly clear that the 0.01 T data, like for

Cu-LDH, had a significantly worse S/N-ratio, why that data set was not considered any

further. The other two were modelled with Curie-Weiss and scaling models (eqs. (2.4.18)

and (2.4.27)), which both yielded positive J ’s, but failed to capture the local maximum

in χT at T ≈ 8 K. It is worth to notice that the maximum is not visible on the χ−1-axis,

where the scaling and CW models are nearly indistinguishable. This again emphasises

the need for plotting χT in addition to χ−1 when treating susceptibility data. Since the

scaling model is valid to low T [32], contrary to the CW model, a MF perturbation of the

form in eq. (2.4.28), designed to account for AFM interchain interactions, was added to

the scaling model. This made the model fit the local maximum as seen in Figure 4.3d.

The modelling of the H = 0.1 T and H = 1 T data sets yielded slightly different

results, why they each have a column in Table 5.1. The difference is presumably caused

be the 1 T data reaching magnetic saturation at low T , as seen on Figure 4.1, which means

that only data at T > 5 K can be used in that case. The impact of this on the modelling

can e.g. be seen by comparing the inserts on Figures 4.3a and 4.3d, from which it is clear

that a lack of data below 5 K makes the fit worse. Also, scaling of the uncertainties by

c/
√
T was necessary for the H = 0.1 T data. Still, the fact that the two data sets give

similar results despite these issues tells that the rather unconventional way of estimating

the uncertainties, as described in the beginning of the Discussion, may have some merit.

The heat capacity data initially confirmed the idea that exchange interactions governed

the magnetism, as I was able to model the low-T heat capacity with a model built on

Blöthe’s ED results on finite chains [37]. The model fit the data nicely at the lowest T ,

but failed to capture a broad feature between 10 K and 30 K. It also predicted a slightly

lower J-value than the χ-data, but overall the picture of a ferromagnetic QSC persisted.

However, the neutron scattering data on Ni-LDH tells a different story. Magnetic

signals were completely absent in our diffraction data, as the difference between low- and

high-T data was indistinguishable from Gaussian noise as shown in Figure 4.8. This means

that little to no spatial spin correlations are present at T = 1.6 K, and that a transition

to long-range magnetic order happens at a much lower temperature, if it occurs at all,

since we would observe magnetic critical scattering if magnetic ordering was eminent [85].

This can either be a sign of a good realisation of a low-D Heisenberg spin systems, as

they do not order at any finite temperature according to the Mermin-Wagner theorem [13],

or a sign of the spin-spin interactions being different than modelled with the CW and

73



5.1. DISCUSSION CHAPTER 5. DISC., CONC. & OUTLOOK

scaling models, as one would expect spin-spin correlations to be present at temperatures

comparable to J . On a different note, our diffraction data revealed a significant, non-flat

background at all T (see Figure 4.7), which presumably is incoherent 1 H-scattering from

incomplete deuteration of our sample.

What is really interesting is the discrepancy between the NN exchange-based modelling

of the bulk properties and the neutron spectroscopy results. The apparent absence of

inelastic magnetic signals from spin-spin correlations, such as diffuse scattering originating

from the out-smearing of SW-like signals due to a lack of long-range order and powder

averaging, is somewhat surprising. Even in the paramagnetic phase, the spins should

precess in the fields produced by their neighbours, and one would expect diffuse scattering

smeared out along the E-axis with a height defined by the SW dispersion.

Instead of the expected ”blob”, we found an intense, |q|-independent signal at E =

0.8261(17) meV; a clear sign of a crystal field excitation. I found that it’s intensity

decreases with increasing |q|, as expected from the magnetic form factor of nickel, which

confirms it’s magnetic nature. In addition, integration over E = 0.30−0.59 meV revealed

that some intensity is present at low E, although it did not seem to depend on either |q|
or temperature. Since it does not decrease with increasing |q|, it is presumably not of

magnetic origin, but it is difficult to say for certain. As of right now, we have no reason

to believe it is anything other than broadening of the elastic line. However, there is no

doubt about the existence of an excitation coming from a ZFS.

Thus, spin-spin correlations in Ni-LDH either scatter very little, or they are hid-

den inside the thermal broadening of the elastic scattering (Eelas < 0.25 meV), since

they are not visible in our experiment. If the latter is the case, we can, if the corre-

lations are assumed to be ferromagnetic and one-dimensional, put an upper bound of

J < Eelas/(4S) = 0.0625 meV = 0.725 K on the exchange constant. In that case, one

could lift the excitations out of the elastic line by application of an external B-field, as

that simply adds a constant energy to the dispersion as described by eq. (2.5.18).

These neutron scattering results made me rethink the previous data treatment. On top

of the exchange-based modelling discussed above, I now modelled both the susceptibility

and heat capacity with ZFS-models (eqs. (2.4.29) and (2.4.43) respectively). These proved

to be equally good at describing the bulk measurements when compared to the exchange-

based models, or even better in the case of the susceptibility, as seen on Figures 4.3b

and 4.6b. In addition to the improved fit quality, scaling of the uncertainties was not

needed for obtaining a meaningful fit when fitting the H = 0.1 T susceptibility data.

However, the ZFS susceptibility fit predicts |D| = 19 − 24 K depending on the applied

field, a quite different value than measured with neutron spectroscopy. Once again, the

uncertainties of the fit parameters were estimated from the ±33 % background changes,

since the statistical uncertainties from the fit still were not trustworthy. The heat capacity

estimate comes a lot closer with D = 8.19(5) K, but the introduction of a large background
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parameter is needed for obtaining a meaningful fit, which might be due to the issues with

extracting the magnetic signal.

In reality, the magnetism of Ni-LDH is probably not governed completely by either

nearest-neighbour exchange or zero-field splitting, but rather a mixture of the two. It is

hard to imagine otherwise when both types of modelling seems to fit the data, especially

since the various experiments do not agree on the magnitudes of either D nor J . However,

we do not have the proper model for fitting this case; adding a NN exchange to the ZFS

susceptibility model as a perturbation did not improve the model.

Still, it is worth noting that two sets of intrinsically different models, based on re-

spectively NN exchange and a ZFS, can model experimental data to roughly the same

level of success. It certainly illuminates the limitations on the insight model-based data

treatment can provide, and underlines the necessity of experimental methods like neutron

scattering, which directly measures the involved energies instead of parametrizing them.

5.1.3 Co-LDH

Our susceptibility and heat capacity data for Co-LDH can be found in Figures 4.5 and 4.6e

respectively, and the parameters obtained from the different models can be found in Table

5.1. In contrast to the two other compounds, Co-LDH proved to have antiferromagnetic

nearest neighbour couplings, why scaling model results are absent from Table 5.1, as that

model is derived for ferromagnetic chains only.

For an unknown reason, extraction of the magnetic heat capacity signal worked even

more poorly for Co-LDH than for the others. At the lowest T , a minuscule magnetic signal

seems to add to a constant contribution C0 ≈ 0.2 J/(mol K), which suddenly disappears

at T ≥ 22 K. Despite that, the HTE model (eq. (2.4.42), now with an added constant

parameter) proved to be a good fit to data at T ≤ 22 K, given the same caveats as

described for the HTE fit to Cu-data (except for the considerations regarding bayerite).

The obtained parameter is found in Table 5.1. Given this result, the ED model only

overlapped with six data points, thus reporting results from that method is redundant.

The HTE result is, like the HTE-result for Cu-LDH, accurate to three significant figures,

thus the discussion on parameter accuracy from the Cu-data is also applicable here.

Getting consistent results from the Co-LDH susceptibility data was not an easy task.

Raw data measured at respectively H = 0.01, 0.1 and 1 T did not behave in the same

manner at high T (see Figure 4.5a), contrary to expectation for a material in a param-

agnetic state. Like for the other samples, the H = 0.01 T data was discarded due to

the much worse S/N-ratio, but I still fitted CW models to the H = 0.1 T and H = 1

T data, despite the aforementioned oddity, since the inverse susceptibilities seemed to

behave linearly. The H = 0.1 T data yielded no consistent result, since my choice of

lower fit boundary always had a large impact on the obtained parameters, why H = 0.1

T data will no be discussed any further. Only considering the high-field data should not

75



5.1. DISCUSSION CHAPTER 5. DISC., CONC. & OUTLOOK

be problematic, since my estimate is that being at the edge of the linear regime only

disqualifies data below T = 2.44 K in this case, thus almost all available data is usable,

and no significant features lie outside the usable range.

I was able to reproduce the high-temperature region of the H = 1 T data by fitting a

CW model (see Figure 4.5b), and I was even able to give a best estimate of J = −6.26(2)

K. However, this results is not given in Table 5.1, as a ZFS-model (eq. (2.4.30)) proved

much more successful in describing the high-T data (T ≥ 7.5 K, black line on Figure 4.5c)

and yielded D = 125(2) K. Also, the heat capacity data (Figure 4.6e) suggests that J is

two orders of magnitude smaller than the high-T CW prediction, why I am confident that

the ZFS governs the susceptibility at high T . Also, density functional theory calculations

by J. Vaara and A.B.A. Andersen predicts a large, positive D-parameter [62].

However, the ZFS-model was not able to reproduce the χ-behaviour at the lowest

T . I tried to model the low-T data in two ways: By fitting a CW model to it, inspired

by Sandberg et al’s success with this method in describing the low-T susceptibility of

YbGG [72], and by adding a MF perturbation, in the form of eq. (2.4.28), to the ZFS-

model and fitting the whole experimental range. The CW model fits the data nicely

at T ≤ 7.5 K and yielded −J = 0.075 − 0.16 K depending on the choices of g and S,

which are interdependable in the CW model, while J only depends on S. This result is in

compliance with the HTE-fit to heat capacity data. Adding the MF perturbation made

the ZFS-fit even better (red line on Figure 4.5c); the parameters obtained from this model

are tabulated in Table 5.1. It also yields a J in compliance with CW and heat capacity

results. I was not able to fit a ZFS-model to the heat capacity data, as the features of

such a model lie outside the T -range where the extraction of Cmag works well; for D ≈ 130

K, the maximum lies at T ≈ 50 K, way above the the useable range T ≤ 22 K.

The choice of g for the low-T CW fit is an interesting discussion. On one hand,

preliminary EPR results (see Appendix A) suggests an isotropic giso ≈ 2.9 in compliance

with the ZFS-model. However, the ZFS-values for the components of g (g⊥ = 2.81(2) and

g‖ = 3.02+0.14
−0.17) do no in any way match the EPR results (resonances at g ≈ 2 and g ≈ 5).

Locking g = 2.9 in the low-T CW model yielded S = 1.1, a value quite different from the

expected S = 3/2, but yields J ≈ −0.16 K, which is the closest the low-T CW model

comes to the ZFS result. Locking S = 3/2 and fitting g yielded g ≈ 2.28, which is quite

different from isotropic value predicted by the ZFS-model, but gives J ≈ −0.075 K in

compliance with the HTE fit to heat capacity data. Preliminary density functional theory

(DFT) calculations by J. Vaara (Univ. of Oulu) and A.B.A. Andersen (Univ. of Southern

Denmark) yields giso = 2.42, which do not agree with either method. However, DFT yields

gz = 2.8, which is rather close to the isotropic ZFS value. Due to these challenges, giving

precise estimates of J and g from χ-data is not possible, but estimations of J ∼ −0.1 K

and g ∼ 2.3 can be justified.
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5.2 Conclusion

In conclusion, I have managed to shed light on the magnetic properties of a family of

layered double hydroxides not previously studied. I found that Cu-LDH is a ferromagnetic

S = 1/2 spin chain, and my best estimate of the exchange parameter is J = 1.4(3) K,

based on fitting a non-critical scaling model to susceptibility data measured at H = 0.1

T. Ni- and Co-LDH proved to have significant zero-field splittings which govern their

magnetism, while the exchange interaction seems to play a smaller role.

For Ni-LDH, neutron spectroscopy revealed a zero-field splitting D = −9.59(2) K,

where knowledge of the sign of D comes from modelling of susceptibility and heat capacity

data, and from DFT calculations performed by J. Vaara and A.B.A. Andersen, which all

agreed on D < 0. However, neither method estimated the same magnitude of D as

found from the direct measurement, and χ-modelling yielded some questionable values

for g⊥ and g‖. Furthermore, models based purely on the Heisenberg Hamiltonian were

also capable of fitting the bulk data. Despite not agreeing on the exact magnitude of

J , they all predicted J > 0. For these reasons, I am confident that both the ZFS and

the exchange interaction need to be considered in regard to the magnetic properties of

Ni-LDH. Modelling C and χ with a combined model, while locking D to the spectroscopy

value, would be a clear next step, but is unfortunately outside the scope of this work.

For Co-LDH, I found that consideration of both the ZFS and exchange interactions

was necessary for modelling the bulk magnetic properties. By modelling the susceptibility

with a ZFS model with a mean-field exchange interaction incorporated as a perturbation,

I found D = 138+5
−3 K. Different suscpetibility and heat capacity models yielded slightly

different results for the exchange parameter, but all agreed on an antiferromagnetic in-

teraction of the order J ≈ −0.1 K.

Aside from knowledge on my samples, I learnt several other valuable lessons during this

work. First and foremost, my treatment of the susceptibility data, on several occasions,

underlined the necessity for plotting χT , since important features can be hidden when only

considering the traditional χ−1-plots. I learnt that one should be weary about the choice

of applied field when performing experiments with a vibrating sample magnetometer, and

that H = 0.1 T is generally a good choice. Furthermore, I experienced that extraction of

the magnetic part of heat capacity data can be a more difficult task than anticipated.

On a more general note, my work is a good example of a model not necessarily being

well suited to describe data, even if it is physically reasonable and fits the data well.

In the case of Ni-LDH, it was not until less than a week before deadline that neutron

spectroscopy revealed that a ZFS had to be taken into account, despite Heisenberg models

fitting the data nicely. The fact that two intrinsically different sets of models were able

to reproduce the Ni-LDH bulk data is indeed a lesson that will linger with me, and it

certainly underlines the strength of experimental methods that can measure the involved

energies directly instead of parametrising them.
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All in all, I cannot cannot conclude anything final about the general QSC nature

of M(II)Al4-LDHs. What I can say is that none of the three samples I studied order

magnetically above T = 2 K, and in all cases the spins only couple weakly. I provided

some good estimates of some of the magnetic parameters, but further studies are needed,

as expected for a completely new set of compounds. I will elaborate on that in the outlook

below, but I will say one thing: Experiments at dilution temperatures are a must if we

truly want to understand these compounds.

5.3 Outlook

As is always the case at the start of any project, the first round of results spark new ideas

and ask new questions, and this project is no different. Here, I try to outline some of the

most interesting ideas for the continuation of this work.

First of all, direct measurements of the crystal field energy levels in Co-LDH, like

the one obtained for Ni-LDH at FOCUS, would be of great interest. This would allow

us to compare the estimates from χ- and C-modelling to direct measurements. Such an

experiment could be performed on the neutron TOF spectrometer IN5 at Institute Laue-

Langevin in Grenoble [86], which I conveniently will be connected to from February 1st, as

the instrument responsible Jacques Ollivier will be my ILL PhD supervisor.

Furthermore, it could be interesting to investigate spin-spin interactions in the LDHs,

especially for the Ni- and Co-variants. So far, my results suggest that the involved energies

are tiny, why extra measures would have to be taken in order to lift the scattering signals

out of the elastic line if one were to measure the dynamics with neutron spectroscopy. This

could be done by performing the experiments in an applied field, as it defines the lower

energy of the spin-wave dispersion. At H = 1 T, the lower boundary would be gµBB =

115.8 µeV, which is just outside of IN5’s elastic energy resolution of ∼ 100 µeV [86]. In that

case, the top of the excitation would maximally be at (0.1158 + 4 · 0.0625) meV = 0.366

meV, assuming that Ni-LDH has the strongest exchange and that my upper bound on J

is true. This way, the excitations will not overlap with the ZFS excitations.

If we were able to produce single crystals, the possibilities would be even greater. In

addition to the possibility for more advanced neutron spectroscopy experiments, we would

be able to directly measure the components of g, which could be compared to our bulk

estimates, and allow us to to estimate the magnitude of the spin-orbit coupling if we had

been able to measure D directly as mentioned above.
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[30] R. Boča, “Zero-field splitting in metal complexes,” Coordination Chemistry Reviews,

vol. 248, no. 9, p. 757, 2004.

[31] P. M. Schosseler, “Basic concepts of EPR.” (https://epr.ethz.ch/education/basic-

concepts-of-epr/one-elect–in-the-magn–field/cf-split–so-coupl-.html), ETH Zürich.
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Appendix A

EPR
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Figure A.1: Raw EPR spectroscopy data of Co-LDH on a logarithmic x-axis measured at

T = 10(1) K in the range B = 80− 6880 Oe using a radio wave with f = 9.64 GHz. The

peaks are situated at g ≈ 2 and g ≈ 5. The spectrum is captured in derivative mode.

Electron paramagnetic resonance spectroscopy of Co-LDH (Figure A.1) was measured

at T = 10(1) K using a radio-wave with f = 9.64 GHz and field strengths in the range

B = 80−6880 Oe. The measurements were performed with the assistance of Prof. Jesper

Bendix from the chemistry department at the Univeristy of Copenhagen using their in-

house EPR apparatus. The field strengths are translated into g-values by the formula

g =
hf

µBB
(A.1)

where h is Planck’s constant. The peaks are centred around at g ≈ 2 and g ≈ 5.

Susceptibility data predicts a large ZFS-parameter D = 138+5
−3 K, which according to Boča

means that the mS = ±1/2 Kramer’s doublet of the S = 3/2 ion has the lowest energy [30].
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APPENDIX A. EPR

Only transitions with ∆mS = 1 are allowed in EPR spectroscopy, thus only the transitions

mS = −1/2 ↔ mS = 1/2, mS = −3/2 ↔ mS = −1/2 and mS = 1/2 ↔ mS = 3/2 are

allowed. The resonance at g ≈ 2 probably corresponds to the mS = −1/2 ↔ mS =

1/2, but the other allowed transitions are not visible if the susceptibility result is even

approximately true, as EPR with f ≈ 9 GHz only probes energy levels split by E < 0.5

K [30].
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