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2 ABSTRACT

1 Preface

The content covered in this thesis has been limited to the core theories and methods necessary to

address the broad topic of ptychography, it is as such recommended that the reader has knowledge

of electromagnetism, optics, differential equations and Fourier transformations. The appendix

provides further background theory to which the author has not directly contributed. The appendix

concludes with the theory on the use of tilt aberration for phase reconstruction, which sets the

starting point of this project. It is assumed throughout that the experimental parameters are known

exactly and only the determination of sample properties is of interest. The effect of uncertainty in

the experimental parameters will be discussed at the end.

2 Abstract

Fourier Ptychography calculates sample transmission and optical phase differences using an iterative

error reduction pipeline together with efficient methods for simulating light propagation.1 The

method relies on an initial guess for transmission and optical phase differences, and this non-

deterministic guess must contain approximations or random elements for unknown parts. This

project focuses on the exploration and development of Deterministic Fourier Ptychography as a

new method for providing fast, high resolution reconstructions of optical phase differences. The

new approach deterministically calculates the phase in the detector plane by introducing a Gaussian

apodizer in a Fourier Ptychographic Microscopy setup. This is then combined with the stitching

used in Fourier Ptychography to reach a deterministic solution in the sample plane. My novel

contribution is the use of algebra to show that a result can be achieved using feasible approximations

instead of an iterative process relying on a guess. The stitching inherited from Fourier Ptychography

is made non-iterative to allow for this new step. The approach would carry over the advantages of

high field of view and high resolution from Fourier Ptychography while reducing computation time.

The initial work on the new deterministic method shows that it could potentially be much quicker

to calculate and be completely independent of any starting guess as previously used.
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3 INTRODUCTION & BACKGROUND

3 Introduction & Background

Typical microscopes have a trade-off between numerical aperture (NA) and Field of View (FOV).2

An imaging system with high NA captures many diffracted rays from each point on a small area of

the sample, while one with a high FOV captures a few diffracted rays from each point on a large

area of the sample. The combination of high NA and high FOV requires a lens where each position

on the lens correctly focuses rays from many different angles. It also requires a detector which can

capture this information on the scale of billions of pixels (gigapixels). This is expensive if not im-

possible in most cases. Fourier Ptychography offers an alternative by combining many images with

a high FOV to create an image with an artificially high NA. To do this the images are simulated

backwards through the imaging system to restore the state of the wavefield before the objective.

Here they are combined into one wavefield with contributions from diffraction to many angles thus

practically increasing the NA. This reconstruction of the wavefield also makes it possible to image

optical phase differences from variations in the length of the optical path through the sample.

Fourier Ptychography is especially useful for biological and medical imaging where the combination

of phase contrast, high FOV and high resolution allows for observation of spatially rare phenomena

and the context of these phenomena.18 Figure 1 shows an example with an image of cell clusters

where subcellular phenomenon can be observed, it also shows that the initial guess makes a differ-

ence.3 The method is now used in a wide variety of different setups from portable, high resolution

microscopes using consumer grade lenses4,5 to X-ray imaging at a synchrotron using lens transla-

tion.6,7

Deterministic Fourier Ptychography has the possibility to be a novel improvement to Fourier Pty-

chography. It has many of the advantages while eliminating the need for a starting guess and

potentially decreasing the computation time. The method is computationally complex and the

conversion from continuous wavefields to discrete data requires thorough consideration to avoid

unnecessary loss of information. The focus on the development of the method means that the

theory and accuracy of the methods are explored while computational performance is neglected as

long as it doesn’t hinder usefulness. This might seem contrary to the possibility of reducing the

computation time of Fourier Ptychography but it first has to be established if the new method can

produce results similar to or better than Fourier Ptychography.

First follows a brief introduction to the concept of optical phase and phase contrast imaging. Then
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3 INTRODUCTION & BACKGROUND

Figure 1: Image from ”Computational illumination for high-speed in vitro Fourier Ptychographic

microscopy”3. A) Fourier Ptychographic phase reconstruction from a 4x 0.2 NA objective resulting

in an image with an artificial NA of 0.7. Zoom-in to the right shows that phase can be used without

staining the sample. B) Comparing Phase reconstruction when using an initial guess derived from

Differential Phase Contrast (DPC). D) phase contrast image from a 40x 0.65 NA objective compared

with a forward simulated image from the reconstruction.

follows the introduction to Fourier Ptychography and lens translation imaging which makes it pos-

sible to use Fourier Ptychography in different experimental setups. Next, it is shown how correction

of lens aberrations can be included in Fourier Ptychography. Then Differential Phase Contrast is

presented as an independent method for doing deterministic phase contrast imaging. Finally, it is

shown how Fourier Ring Correlation can be used to quantitatively determine the level of detail in

the result.
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3.1 Phase Contrast Imaging 3 INTRODUCTION & BACKGROUND

3.1 Phase Contrast Imaging

The phase of a wave isn’t directly measurable but phase contrast methods can be used to calculate

phase differences between locations on a sample. Imaging using wavefield phase differences allows

contrast between materials with identical elements but differing refraction. This is especially useful

for imaging biological and medical samples as these contain very similar elemental composition

across the sample while having varying refraction. It is possible to image such samples without

phase contrast imaging by introducing a fluorescent compound which binds to specific parts of the

sample but this has other disadvantages. For X-rays with energies above approx. 5 keV the real

part of the refractive index which governs refraction is always higher than the imaginary part which

governs absorption.8 This means that even for a sample consisting of a single material with varying

thickness the changes in phase could allow for higher contrast than the changes in absorption.

To understand phase contrast imaging it is necessary to understand that the wave nature of light

means that it has a repeating phase. The phase of the wave in a certain location is whether the wave

is at a crest, through or in-between, see figure 2. It is intuitive that the phase is repeating so the

phase doesn’t tell how far the location is from the source. The phase is however dependent on the

properties of the electromagnetic wave and it depends on what the wave has interacted with. The

optical path length of a wave changes when the measured sample has a refraction index different

from air. It is exactly these changes that can be used to restore information about the sample.

Figure 2

To determine the sample properties the wavelength of the wave must be known as waves with

different wavelengths, λ, will diffract to different angles, θ, for a given phase differential:8

θ =
λ

2π
O⊥φ (1)
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3.2 Fourier Ptychography 3 INTRODUCTION & BACKGROUND

The wave must be approximated as monochromatic as contributions from different wavelengths

can’t be separated. In reality light can’t be perfectly monochromatic so the requirement is that

the temporal coherence must be high enough for the phase to be well defined through the entire

optical setup. For the angle to be well defined each point on the sample must only be illuminated

from a single angle as each incident angle has a different exit angle. This means the source must be

assumed to be a point and the distance to the sample should be large enough for the phase to be

constant across the sample. Again, the perfect case isn’t possible but the spatial coherence must

be high enough to assume that the entire sample is illuminated from the same angle. Together

the requirement of temporal coherence and spatial coherence means that the illumination must be

coherent. This is easy to achieve for visible light as LEDs can be assumed to be coherent. It is

much harder to achieve coherent illumination in the X-ray regime and it puts constraints on which

experimental setups are possible. For coherent X-rays it is practically impossible to change the

illumination angle and it is thus necessary to change Fourier Ptychography to account for this.9

3.2 Fourier Ptychography

Fourier Ptychography is here presented as a previous method for phase retrieval to provide back-

ground for the development of Deterministic Fourier Ptychography. Fourier Ptychography is also

used for comparing performance.

Normally the resolving power of an imaging system is limited by the Abbe diffraction limit:

d =
λ

2NA
(2)

NA = n sin(θ) (3)

The numerical aperture (NA) is a property of the objective lens and describes to which limit the

lens can capture diffracting rays. It is impossible to increase NA beyond the refraction coefficient,

n, as long as materials have positive refraction coefficients.13,14 This is since waves must have an

imaginary wavenumber in the direction of propagation in order to contain information on details

smaller than λ
2n . waves with imaginary wavenumbers disappear over short distances as evanescent

waves. Discussion of materials with negative refraction is outside the scope of this project.

The goal of Fourier Ptychography is to reconstruct the wavefield at the sample and artificially

increase the numerical aperture by capturing rays diffracted to higher angles. Experimentally this
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3.2 Fourier Ptychography 3 INTRODUCTION & BACKGROUND

is done by tilting the incident beam relative to the lens and detector setup and capturing information

from diffraction to higher angles than θ.19 A similar effect can be achieved by translating the lens in

the lens plane and detector in the detector plane. Tilting the incident beam causes a translation of

the wavefield in the Fourier-plane while lens translation translates the lens function in the Fourier-

plane.

The wavefield is only measured at the detector, and only its intensity is measured. Given the optical

setup used, it is possible to use theory to describe how the wavefield propagates through the optical

elements to finally be measured at the detector.1 Fourier Ptychography calculates the wavefield at

the object by solving the inverse problem of how the detected wavefield is affected by the object.

Propagation of a wavefield determines the amplitude and phase of a known wavefield after it has

traveled a distance z. This can be done by applying the Fresnel-Kirchoff integral to the known

wavefield, ψ0, at its initial position. The appendix shows the derivation of the Fresnel-Kirchoff

integral, equation 143:

ψ1(x′, y′) =
−ik · exp (ikz)

2πz

∫ ∫
ψ0(x, y) · exp

(
ik

2z
·
(
(x− x′)2 + (y − y′)2

))
dxdy (4)

The z-axis is the direction of propagation and the wavefield is initially defined in the xy-plane

and the resulting wavefield is in the parallel x′y′-plane. The appendix shows how the Fresnel-

Kirchoff integral is expanded into an equation which can also describe the effects of the imaging

system trough aberrations. For applying just the propagation it can be rewritten using the Fourier

transform by approximating x′ = x·k
2πz and y′ = y·k

2πz inside the integral:

ψ1(x′, y′) =
−ik · exp (ikz)

2πz
exp

(
ik

2z
· (x′2 + y′2)

)
·F

(
exp

(
ik

2z
· (x2 + y2)

)
· ψ0(x, y)

)
(5)

This approximation makes sense in the Fraunhofer case as it causes the contributions from x′ and

y′ to disappear from the Fourier transform for z >> x
λ and z >> y

λ respectively.10 F is the

two-dimensional Fourier transform:

F (ψ0(x, y)) =

∫ ∫
ψ0(x, y) · exp (−i · 2π · (x · x′ + y · y′)) dxdy (6)

Compared to equation 163 this has the advantage that it only contains one Fourier transform

as Fourier transforms are the main contribution to computation time for Fourier Ptychography.

The experimental setup includes several optical elements which affect the wavefield when it passes

through these elements. To account for these effects one or several transfer functions can be applied
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3.2 Fourier Ptychography 3 INTRODUCTION & BACKGROUND

to the wavefield. Both Fourier Ptychography and lens translation imaging include a lens and an

aperture both of which can be represented as a single combined transfer function. The lens primarily

applies a phase change to the wavefield, this phase change depends on the incident position for each

part of the wavefield. Assuming a perfectly thin lens then only a phase change is applied:

φ(x, y) = − k

2f
(x2 + y2) (7)

In this case the spatial dependence is such that the thin lens formula can be used to determine

when the image of the sample is in focus at the detector:

d2 =

(
1

f
− 1

d1

)−1

(8)

A sample at a distance of d1 from the lens is in focus if the detector is at a distance of d2 on the

other side of the lens. Here f is the focal length of the lens.

The aperture simply limits transmission of the wavefield to the area of the plane where the lens is.

A full scan using Fourier Ptychography or lens translation imaging includes many individual mea-

surements. Between measurements the source incident angle is varied for the normal Fourier Pty-

chography setup. For lens translation imaging the lens and detector are translated in a plane

perpendicular to the optical axis. The detector is translated in proportion to the lens translation

such that the waves passing through the lens are measured, see figure 3.

For Differential Phase Contrast and Deterministic Fourier Ptychography it matters whether the

Fourier Ptychography or the lens translation setup is used. This is since the translation of the lens

increases the distance from lens to sample and detector which can cause the sample to be out of

focus, similar to the effect of Petzval field curvature. This doesn’t matter for the normal Fourier

Ptychography method since the Fresnel-Kirchoff integral includes this effect.

The wavefield is of interest in three planes: at the object, before the lens (the Fourier-plane) and

at the detector. In lens translation imaging the wavefield in two of these planes is independent of

lens translation; The object plane which contains the object to be scanned and the Fourier-plane.

For Fourier Ptychography the angle of the source needs to be accounted for. This can be done by

multiplying with a position dependent phase which cancels out the angled beams contribution to

the gradient of the phase. In both cases the wavefield in the detector plane depends on the lens

function and its position or the source angle.

Restoring the wavefield at the sample is done by starting with a guess of the wavefield at the sample,
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3.2 Fourier Ptychography 3 INTRODUCTION & BACKGROUND

Figure 3: Illustration showing the amplitude of the wavefield in different positions of the optical

setup. Not to scale.

this guess can be random, a constant field or determined from another method. This wavefield is

then propagated to the Fourier-plane. Here a transfer function, corresponding to the lens position

of one of the measured images, is applied to the wavefield.

ψout (~r) = T (~r) · ψF
old (~r) (9)

The superscript F shows that a wavefield represents the Fourier-plane of the sample. Vector ~r

represents the Cartesian spatial coordinates perpendicular to the optical axis:

~r =

x
y

 (10)

Here ψF
old (~r) is the wavefield in the Fourier-plane before the correction. The result is then propa-

gated to the detector plane. In the detector plane the amplitude of the generated image is replaced
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3.3 Updating the Transfer Function 3 INTRODUCTION & BACKGROUND

with the amplitude of the measured image. The modified image is then back-propagated to the

lens where the inverse transfer function is applied.

ψF
corrected (~r) = (1− |T (~r) |) · ψF

old (~r) + T ∗ (~r) · ψback (~r) (11)

∗ denotes the complex conjugate. Note that |T | = 1 for a perfect lens which is perfectly transparent

and |T | = 0 outside the aperture. Finally the now corrected portion of the Fourier-plane is stitched

into the original Fourier-plane from the guess:

ψF
new (~r) = (1− α) · ψF

old (~r) + α · ψF
corrected (~r) (12)

The factor α is a noise factor that determines how much the wavefield should be changed and thus

prevents noise in the measured image from dominating the new solution. α =]0, 1]. α = 1 would

correspond to a image with no noise; a smaller alpha represents a image with more noise.

The process is then repeated for all measured images. Examples of how the lens positions cover the

Fourier-plane can be seen in figure 4 and figure 5. The images must overlap in the Fourier-plane

otherwise the reconstruction can’t align the phase of individual images to a solution which is con-

sistent with all measured images.

This process can then be repeated for any number of iterations and each time the error in the solu-

tion will be reduced. After doing one or several iterations the Fourier-plane can be back-propagated

to the object-plane to show the reconstructed object. How correct the initial guess is affects the

number of iterations needed to reach a solution with small error.

3.3 Updating the Transfer Function

Since the transfer function initially imitates a perfect lens with aperture then it won’t match a real

lens. It is possible to update the transfer function when applying a correction to Fourier-plane.11

This will improve the reconstruction when the initial transfer function isn’t correct.

Tnew (~r) = Told (~r) + β · ψ∗F (~r)

max|ψF (~r)
2 |
· (ψback (~r)− ψout (~r)) (13)

The factor β is a noise factor, like α, that determines how much the transfer function should be

changed.
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3.3 Updating the Transfer Function 3 INTRODUCTION & BACKGROUND

Figure 4: Coverage of the Fourier-plane using 3 images

Figure 5: Coverage of the Fourier-plane using 81 images
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3.3 Updating the Transfer Function 3 INTRODUCTION & BACKGROUND

Fourier Ptychography is here shown to reconstruct the transmission and phase using images simu-

lated from a phantom. The parameters of the simulated experiment (except for the phantom and

lens function) were set to match a real Fourier Ptychographic Microscopy setup. The phantom can

be seen in figure 6. 81 images were forward simulated in the configuration shown in figure 5, some

of the simulated images can be seen in figure 7. The reconstructed object after 1 and 10 iterations

can be seen in figure 8. The phantom purposely has more pixels than what is possible for the

reconstruction, this is to make sure that the reconstruction is limited by the quality of the method

and simulated wavefield and not limited by the phantom.

Figure 6: Phantom object. Left: Phase. Right: Intensity (512x512 pixels)
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3.3 Updating the Transfer Function 3 INTRODUCTION & BACKGROUND

Figure 7: Small sample of the simulated images
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3.3 Updating the Transfer Function 3 INTRODUCTION & BACKGROUND

Figure 8: Reconstructed object. Top: After 1 iteration, Bottom: After 10 iterations (128x128

pixels)
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3.4 Differential Phase Contrast 3 INTRODUCTION & BACKGROUND

3.4 Differential Phase Contrast

The sample phase can be reconstructed deterministically with a resolving power up to 2 times the

NA of the lens. This is done by assuming that the transfer function is known and that the phase

contribution can be isolated by using the weak object approximation:

ψ(~r) ≈ 1− µ (~r) + iφ (~r) (14)

This leads to the following equation for the Fourier transform of the measured intensity15

F (I (~r)) = Bδ
(
~r′
)

+Habs

(
~r′
)
·F (µ (~r)) +Hph

(
~r′
)
·F (φ (~r)) (15)

With two weak object transfer functions that apply for any pupil function (P ) when the weak object

approximation holds:

Habs

(
~r′
)

= −P ∗ (~s)
(
P (~s+ ~r′) + P (~s− ~r′)

)
(16)

Hph

(
~r′
)

= iP ∗ (~s)
(
P (~s+ ~r′)− P (~s− ~r′)

)
(17)

In this case the source is assumed to be a point source, this is not necessary but makes the transfer

functions simpler by eliminating the source function. s is the lens position or the lens position that

corresponds to the used illumination angle. The limitation of 2 NA originates from the limitations

on s as set by the pupil function. Setting s outside the aperture results in the complex conjugated

pupil function, P ∗(~s), being zero and thus the transfer functions become zero and the intensity no

longer depends on the sample.

The sample phase is calculated as an inverse problem where the difference between measurement and

model is minimized. The measurement used here is the Differential Phase Contrast (DPC) image.

This image is defined as the difference divided by the average intensity of any two measurements

which are symmetric in lens translation:15,20

IDPC (~r) = 2
I0 (~r)− I1 (~r)

I0 (~r) + I1 (~r)
(18)

The model is that the Fourier transform of the DPC image depends linearly on the sample phase:

F (IDPC (~r)) = H
(
~r′
)
·F (φ (~r)) (19)

Where in the first derivative approximation the model function is assumed to be linear along the

lens translation direction in the Fourier-plane. This means that Fourier components are multiplied
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3.5 Fourier Ring Correlation 3 INTRODUCTION & BACKGROUND

with a value representing their projection along this direction:

H
(
~r′
)
≈ i~r′ · (~s0 − ~s1) (20)

The solution is the phase, φ (~r), that minimizes the difference to all measured DPC images:15

min
∑
j

∣∣∣F (IDPC,j (~r))−Hj

(
~r′
)
·F (φ (~r))

∣∣∣2 + α |F (φ (~r))|2 (21)

α is a noise factor that prioritizes solutions with smaller magnitude in the Fourier-plane. This

equation can then be solved for the phase using Tikhonov regularization.

Compared to Fourier Ptychography this is much simpler to calculate as it doesn’t require an iterative

process and it doesn’t require a starting guess. The disadvantages are that it is limited to 2 NA

and it is impossible to correct the pupil function by updating the transfer function.

3.5 Fourier Ring Correlation

The problem of how to determine the level of detail arises when an image has been generated either

trough direct measurement or indirect reconstruction. This is especially relevant when developing

techniques with resolution beyond the resolving power of the lens since there is no obvious way to

confirm whether the image is correct. The question is whether details beyond the resolving power

of the lens are actually from the sample or whether they are artifacts of the method. Simulation has

the unique advantage that the perfect result is known but a measure is still needed to determine how

well a reconstruction fits with the initial phantom. For real samples a higher resolution technique

can be used as basis for comparison. Fourier Ring Correlation is here used to quantitatively compare

resolution of reconstructions from different methods and different measuring schemes.

FRC(q) =

∑
~q F (I0)F (I1)√∑

~q |F (I0)|2
√∑

~q |F (I1)|2
, |~q| ∈ q (22)

The Fourier Ring Correlation is a function of the size of the ring q. It is essentially calculating

the correlation of band-passed images in Fourier space, which can then be shown as a function of

spatial frequency. Note that I doesn’t need to be intensity, it can be any image.

The resolution is here defined as the first time the Fourier Ring Correlation passes below 1
7 .12 As

can be seen in figure 11 this very closely responds to the width of one deviation of a Gaussian

kernel.

14 of 67



3.5 Fourier Ring Correlation 3 INTRODUCTION & BACKGROUND

Figure 9: Left: original image, center: Fourier space overlaid with a Fourier-band, right: real-space

representation of the Fourier band.

Figure 10: Left: original image, Right: image blurred by a Gaussian kernel with a radius of 2 pixels

The advantage of comparing the Fourier space of the images is that it doesn’t require any previous

knowledge about the sample structure.12 One thing to note is that the Fourier Ring Correlation

is independent of noise which doesn’t obscure detail, this means noise at a smaller scale than the

visible features won’t change the quantitative measure of resolution.
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4 AIM & HYPOTHESIS

Figure 11: The Fourier Ring Correlation of the images in figure 10, The FIRE number given is the

largest distance in pixels for which the correlation drops below 1
7 .

4 Aim & Hypothesis

The aim is to develop deterministic Fourier Ptychography as a method for high resolution recon-

struction of phase contrast images. The method should provide a high resolution result comparable

to Fourier Ptychography but without the long computation time that characterizes ptychography.

This thesis proposes to use tilt aberration to achieve this. As shown at end of the appendix, suc-

cessful use of the tilt aberration method allows reconstruction of the differential phase at arbitrary

illumination angles or lens translation.a This is essential for the method proposed here. The new

reconstruction of images at arbitrary NA suggests that it might somehow be possible to use stitching

from Fourier Ptychography to combine more images to restore a high-resolution image of sample

phase and transmittance. The method is promising in that it is applicable to both the visible light

regime and X-rays. In the visible light regime it could serve as a easy way to increase resolving

power without sacrificing FOV similar to Fourier Ptychography.

The project is split into smaller steps; first the use of tilt aberration must be generalized to combine

several images with arbitrary lens position. Second, the differential phase must be integrated to

a lens translation will from this point onward refer to both the use of illumination angles and lens translation for

the tilt aberration method. Figure 3, figure 4 and figure 5 shows the intuition behind this choice
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5 DETERMINISTIC DIFFERENTIAL PHASE

phase. Third, the resolution must be increased beyond the resolution of individual images. While

the project is approached in this order to make use of the results of ptychography it could be of

interest to investigate whether the phase or differential phase in the sample plane could be extracted

without integration as is done in Differential Phase Contrast.

5 Deterministic Differential Phase

5.1 Non-Collinear Lens Translation

Adding more images collinear with the previous can be done by expanding the finite difference used

in the appendix. But this group of images contain no information in the direction perpendicular

to their relative translation. The case of interest is where at least one is non-collinear with the

rest. The most practical solution to this is to expand the use of the tilt aberration method to

an arbitrary number of images at arbitrary lens translation. Rather than using finite difference

the differential phase can be determined as an inverse problem of linear equations for intensity at

different lens positions. This is done by writing the logarithm to intensity as a model of differential

phase; rewriting equation 199:

∂ log (I (~r))

∂τ
= −4πγO⊥φ (~r) (23)

l

log (I (~r)) = −4πγ

∫
O⊥φ (~r) dτ (24)

Assuming the differential phase at the detector doesn’t change as a function of tilt:

∂

∂τ
O⊥φ (~r) = 0 (25)

This corresponds to the requirement that the sample projection on the detector must remain station-

ary and the sample cannot change between measurements at different tilt. Note that the intensity

and phase will change as function of tilt but the differential phase cannot. Using this assumption

the differential phase isn’t a funciton of tilt and thus eq. 24 becomes:

log (I (~r)) = −4πγτO⊥φ (~r) + C (~r) (26)

Taking n measurements of intensity at arbitrary lens translation results in n linear equations. This

is written in vector notation where the content of each vector is made explicit to show how each
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measured intensity arises from a lens translation and the differential phase which is independent of

translation: 
log(I1 (~r))

log(I2 (~r))
...

log(In (~r))

 = −4πγ


τ1x τ1y

τ2x τ2y
...

...

τnx τny


∂φ(~r)

∂x

∂φ(~r)
∂y

+ C (~r) (27)

The goal of the inverse problem is now to determine the differential phase which results in the

best match to the measured intensities. To this end the tikhonov regularization is used since

it determines the least squares solution to an inverse problem and allows for noise reduction by

prioritizing a result with smaller magnitude.

Using Tikonov reg. the detected intensities, ~d, are given as a linear function of the model parameters,

~m:

~d (~r) = A~m (~r) (28)

The optimal model parameters for a given model and measurements are:

~m (~r) = (ATA− ε2I)−1AT ~d (~r) (29)

I is the identity matrix.

To validate the method under controlled conditions an imaging setup is simulated with propagation

based on equation 5 and it is assumed that the Fresnel number is much less than 1. This imaging

setup is used for all simulations in this project to make sure that results are comparable. The

Fourier ptychographic method of tilting the incident light is chosen as the focus since it serves as

the easier way to get access to experimental data. The simulated setup contains a 640nm coherent

source and a lens with an aperture radius of 3.145mm. The distance from sample to lens is 10mm

while the distance from lens to detector is 100mm. The focal length of the lens is 9.0909mm, using

equation 8 it can be seen that the sample is in focus. The NA of the lens is 0.3 which by eq. 2

leads to a smallest resolvable detail of 1.07µm. The simulated phantom is shown in figure 6. The

wavefield from the phantom is propagated through the imaging system from 25 different source

angles corresponding to 25 bright-field measurements and then again at 25 angles corresponding to

a mix of bright-field and dark-field. The resulting 2 sets of 25 images are reconstructed separately;

both the differential phase and the constant C from equation 27 is reconstructed. The reconstruction

for each pixel is shown in figure 12 for the bright-field images and in figure 13 for the set containing
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both bright-field and dark-field. A dark-field image is defined as an image where no background

intensity is measured as only scattering from the sample is detected. The images are dark-field

in this setup when the illumination angle is so large that the direct beam no longer reaches the

detector.

For the set containing only bright-field images the resolution of the reconstructed phase from Fourier

Ring Correlation is 16.5µm while the phase from the mixed set has a resolution of 16.8µm. The

loss of resolution is minor since the noise induced in the mixed field case is at a smaller scale than

the smallest resolved feature.

It is possible to show the result of Tikhonov regularization in a single pixel as a fit to the measured

intensity. Doing this with the mixed dataset, Figure 14, shows that the tilt aberration method

doesn’t accurately describe the intensities from simulation when combining bright-field and dark-

field.

Equation 27 leads to a result similar to the first derivative approximation of Differential Phase

Contrast. The method is very noise sensitive since a relatively small change in intensity at large

lens translation will cause a large change in the differential phase. It should also be noted that

using a dataset which doesn’t have an average lens position of 0 will bias the result, see figure 15.

The result should depend on measurement but not be biased by the location of the measurement.

This means the method will not work for stitching since it must work for a group of measurements

at any lens position.

These problems arise from the use of a shift-invariant system when describing aberration space as

used for determining phase from tilt aberration. In the definition of aberration space it is explicitly

assumed that:21

C(I)
mn ≥ 0 for all m and n (30)

C(I)
mn = 0 if m and/or n is odd (31)

Both these assumptions contradict equation 185 used during definition of tilt aberration. Tilt

aberration requires that the system isn’t shift-invariant as translating the input wavefield should

lead to dark-field images and not a translated image of the sample. The algebraic reason is that γ

becomes zero when the lens is infinite corresponding to a shift-invariant system. That γ becomes

zero is shown in the following section and a solution is presented.
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Figure 12: Reconstruction from 25 images taken in bright-field. A: reconstructed phase differential

along x. B: reconstructed phase differential along y. C: the reconstructed constant C. D: integration

of phase differentials. E: original phase
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Figure 13: Reconstruction from 25 images taken in a mix of bright-field and dark-field. A: recon-

structed phase differential along x. B: reconstructed phase differential along y. C: the reconstructed

constant C. D: integration of phase differentials. E: original phase
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Figure 14: The least squares solution to equation 27 found by Tikhonov regularization. ∂φ(~r)
∂x and

∂φ(~r)
∂y determine the slope of the fit in the x and y-direction respectively. The tilt aberration theory

used for equation 27 predicts the logarithm of the intensity to be linear in lens translation. Left: fit

shown as a function of tilt in both x and y. Every pixel of the reconstruction has a fit like this as a

function of 2 variables, but it is hard to see if the fit is good. Right: fit shown along one dimension

by only showing measurements where the tilt along the other dimension is 0. It can be seen that

the logarithm of the intensity is not linear in tilt. The first derivative approximation of Differential

Phase Contrast works as it can be approximated as linear close to 0 tilt.

5.2 Gaussian Aperture

Explicitly calculating the effects of the imaging system and including an aperture with a Gaussian

transmission function makes it possible to determine an approximation for γ. For this reason a

Gaussian apodizer is used, it is essentially a filter with a Gaussian transmission function centered

in the middle of the filter. The lens is still finite but the approximation of infinite Gaussian

transmission for a Gaussian apodizer and finite lens is much better than the approximation of an

infinite lens for a finite lens. The wavefield in the detector plane can be written as the result of

several actions applied sequentially to the initial wavefield. First the wavefield is propagated to

the lens plane by the Fresnel-Kirchoff integral, equation 143. Then the Gaussian function A (r1, s),

at lens position s, is applied to the wavefield. Finally the wavefield is propagated to the detector

plane, again by the Fresnel-Kirchoff integral. For the sake of simplicity the derivation is shown with
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Figure 15: Fit of the same pixel as figure 14 but now the slope is different as there are more

measurements in the positive direction than in the negative direction.

only one transverse dimension.

ψ2 = Q2 (r2, s) F−1 (A (r1, s)Q1 (r1) F (ψ0 (r0)Q0 (r0))) (32)

A (r1, s) = exp

(
− (r1 − s)2

2σ2

)
(33)

Where Q0, Q1 and Q2 are the quadratic phase factors from the Fresnel-Kirchoff integral. Q2 also

includes the effect of the lens:

Q2 (r2, s) = exp

(
i
k

2z2

(
r2
2 − s2

(
z2

z1
+ 1

)))
(34)

Differentiating with respect to lens position and expanding using the product rule:

∂ψ2

∂s
=
∂Q2 (r2, s)

∂s
F−1 (A (r1, s)Q1 (r1) F (ψ0 (r0)Q0 (r0))) ·

Q2 (r2, s)
∂

∂s
F−1 (A (r1, s)Q1 (r1) F (ψ0 (r0)Q0 (r0)))

(35)

Differentiating Q2:
∂Q2 (r2, s)

∂s
= −iks

z2

(
z2

z1
+ 1

)
Q2 (r2, s) (36)

Thus:
∂Q2 (r2, s)

∂s
F−1 (A (r1, s)Q1 (r1) F (ψ0 (r0)Q0 (r0))) = −iks

z2

(
z2

z1
+ 1

)
ψ2 (37)
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A (r1, s) is the only term in the inverse Fourier transform that depends on the lens position. The

differentiation with respect to lens position can be moved inside the Fourier transform since it

applies to a different variable:

∂

∂s
F−1 (A (r1, s)Q1 (r1) F (ψ0 (r0)Q0 (r0))) = F−1

(
∂A (r1, s)

∂s
Q1 (r1) F (ψ0 (r0)Q0 (r0))

)
(38)

∂A (r1, s)

∂s
=

∂

∂s
exp

(
− (r1 − s)2

2σ2

)
(39)

Expanding the quadratic term and separating into different exponentials:

∂A (r1, s)

∂s
=

∂

∂s

(
exp

(
− r2

1

2σ2

)
exp

(
− s2

2σ2

)
exp

(r1s

σ2

))
(40)

l

∂A (r1, s)

∂s
= exp

(
− r2

1

2σ2

)(
− s

σ2
exp

(
− s2

2σ2

)
exp

(r1s

σ2

)
+
r1

σ2
exp

(
− s2

2σ2

)
exp

(r1s

σ2

))
(41)

l

∂A (r1, s)

∂s
= A (r1, s)

( r1

σ2
− s

σ2

)
(42)

Thus:

Q2 (r2, s)
∂

∂s
F−1 (A (r1, s)Q1 (r1) F (ψ0 (r0)Q0 (r0))) =

− s

σ2
ψ2 +

Q2

σ2
F−1 (r1A (r1, s)Q1 (r1) F (ψ0 (r0)Q0 (r0)))

(43)

Substituting eq. 37 and 43 into eq. 35:

∂ψ2

∂s
= −iks

z2

(
z2

z1
+ 1

)
ψ2 −

s

σ2
ψ2 +

Q2

σ2
F−1 (r1A (r1, s)Q1 (r1) F (ψ0 (r0)Q0 (r0))) (44)

Want to find a function f(r2) for which:

∂f(r2)

∂r2
= F−1 (r1A (r1, s)Q1 (r1) F (ψ0 (r0)Q0 (r0))) (45)

This is useful since the angular frequency of r2 can be directly related to r1 in the Fraunhofer

regime and the Fourier derivative theorem can be used to eliminate the outer Fourier transform:

F

(
∂f(r2)

∂r2

)
= iωF (f(r2)) (46)
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l

∂f(r2)

∂x
= F−1 (iωF (f(r2))) (47)

Inserting ∂f(r2)
∂r2

:

F−1 (r1A (r1, s)Q1 (r1) F (ψ0 (r0)Q0 (r0))) = F−1 (iωF (f(r2))) (48)

l

r1A (r1, s)Q1 (r1) F (ψ0 (r0)Q0 (r0)) = iωF (f(r2)) (49)

l

F−1
( r1

iω
A (r1, s)Q1 (r1) F (ψ0 (r0)Q0 (r0))

)
= f(r2) (50)

In the Fraunhofer regime the angular frequency of r2 is:

ω =
r1k

z2
(51)

Substituting into eq. 50:

f(r2) =
z2

ik
F−1 (A (r1, s)Q1 (r1) F (ψ0 (r0)Q0 (r0))) (52)

l

f(r2) =
z2

ik

ψ2

Q2
(53)

Differentiating with respect to r2:

∂f(r2)

∂r2
=
z2

ik

∂

∂r2

ψ2

Q2
(54)

Inserting from eq. 45:

F−1 (r1A (r1, s)Q1 (r1) F (ψ0 (r0)Q0 (r0))) = − iz2

k

∂

∂r2

ψ2

Q2
(55)

Expanding using the product rule:

F−1 (r1A (r1, s)Q1 (r1) F (ψ0 (r0)Q0 (r0))) = − iz2

k

(
∂ψ2

∂r2

1

Q2 (r2, s)
+
∂ (Q2 (r2, s))

−1

∂r2
ψ2

)
(56)

Differentiating the inverse of Q2 from eq. 34:

∂ (Q2 (r2, s))
−1

∂r2
= −ikr2

z2

1

Q2 (r2, s)
(57)
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Substituting into eq. 56:

F−1 (r1A (r1, s)Q1 (r1) F (ψ0 (r0)Q0 (r0))) = − iz2

kQ2

(
∂ψ2

∂r2
− ikr2

z2
ψ2

)
(58)

l

F−1 (r1A (r1, s)Q1 (r1) F (ψ0 (r0)Q0 (r0))) = − 1

Q2

(
iz2

k

∂ψ2

∂r2
+ r2ψ2

)
(59)

Inserting in eq. 44:

∂ψ2

∂s
= −iks

z2

(
z2

z1
+ 1

)
ψ2 −

s

σ2
ψ2 −

1

σ2

(
iz2

k

∂ψ2

∂r2
+ r2ψ2

)
(60)

The wavefunction is substituted for its exponential form and multiplied by its complex conjugate

similar to what is done for eq. 192 in the appendix:

ψ2 =
√
I exp (iφ) (61)

ψ∗2 =
√
I exp (−iφ) (62)

√
I
∂
√
I

∂s
+ iI

∂φ

∂s
= −iks

z2

(
z2

z1
+ 1

)
I − s

σ2
I − iz2

kσ2

(
√
I
∂
√
I

∂r2
+ iI

∂φ

∂r2

)
− r2

σ2
I (63)

l

√
I
∂
√
I

∂s
+ iI

∂φ

∂s
= −iks

z2

(
z2

z1
+ 1

)
I − s

σ2
I − iz2

√
I

kσ2

∂
√
I

∂r2
+
Iz2

kσ2

∂φ

∂r2
− r2

σ2
I (64)

Isolating the real parts since all variables are defined to be real:

√
I
∂
√
I

∂s
= − s

σ2
I +

Iz2

kσ2

∂φ

∂r2
− r2

σ2
I (65)

Dividing by I by assuming I > 0:

1√
I

∂
√
I

∂s
= − s

σ2
+

z2

kσ2

∂φ

∂r2
− r2

σ2
(66)

l

1

2

∂ log I

∂s
= − s

σ2
+

z2

kσ2

∂φ

∂r2
− r2

σ2
(67)

l
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log I =

∫
ds

(
− 2s

σ2
+

2z2

kσ2

∂φ

∂r2
− 2r2

σ2

)
(68)

Using the assumption in eq. 25:

log I = − s
2

σ2
+

2z2

kσ2

∂φ

∂r2
s− 2r2

σ2
s+ C (69)

the lens position, s, becomes the tilt, τ , when using the notation from tilt aberration. It can be seen

that the factor in front of ∂φ
∂r2

τ is now 2z2
kσ2 instead of −4πγ as in eq. 26. Letting the lens aperture

become infinite without a gaussian apodizer must be identical to letting σ approach infinity with

the gaussian apodizer. This shows that γ must go to zero as the lens aperture becomes infinite:

lim
σ→∞

−4πγ ∝ lim
σ→∞

2z2

kσ2
= 0 (70)

Using eq. 69 the system of linear equations is:
log(I1)

log(I2)
...

log(In)

 = −


τ2
1

τ2
2

...

τ2
n

σ−2 +
2

σ2


τ1x τ1y

τ2x τ2y
...

...

τnx τny

 ·
∂φ

∂x

∂φ
∂y

 z2

k
−

r2x

r2y

+ C (71)

The only unknown is the differential phase. Moving all known terms to the left hand side and

absorbing them in a single vector:

~d =
2z2

kσ2


τ1x τ1y

τ2x τ2y
...

...

τnx τny

 ·
∂φ
∂x

∂φ
∂y

+ C (72)

The reconstruction is again done in two dimensions for each pixel. In figure 16 it can be seen that

using the Gaussian apodizer with equation 69 produces a much better fit. It isn’t supposed to be a

perfect fit as different areas of the Fourier-plane should reveal new information about the sample.

5.3 Restoring Beam Angles

The differential phase should contain a contribution from the angled beam when using the Fourier

ptychographic method of angling the incident beam, see figure 17. This isn’t a problem in normal

Fourier Ptychography as the angle contribution to the phase is retained from the propagation to
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Figure 16: The least squares solution to equation 69 found by Tikhonov regularization. Fit of the

same pixel as figure 14 and figure 15.

Figure 17: Sketch of the experimentally inherent phase differential across the detector that arises

from an angled incident wave. The length of the arrows represent the wavelength and it doesn’t

change.

the detector plane. Only the amplitude of the wavefield is corrected in the detector plane. However,

when using Deterministic Fourier Ptychography it isn’t known if the differential phase contribution

from the angle is correct. It is possible to re-add the contribution from the angled beam by assuming

that the phase change incurred by the sample is independent of the beam angle. This assumption is

already a premise of Fourier Ptychography in that the angled illumination is assumed to just cause

a translation of the wavefield in the Fourier-plane. The assumption is that the differential phase

can be split in two terms, one from the sample (O⊥φs) and one from the angle (O⊥φθ):

O⊥φ = O⊥φs + O⊥φθ (73)
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The differential phase contribution from the angled beam is here determined by forward simulation

without a sample since the experimental parameters are known exactly. The forward simulation

uses the propagation derived in equation 5. The wavefield from the forward simulation is normalized

so it doesn’t affect intensity and then it is multiplied with the reconstructed wavefield to add the

phase:

ψ = ψ0 ·
ψθ
|ψθ|

(74)

In figure 18 it can be seen what happens when back-propagation is done with or without adding

a contribution from the angled beam. The contribution is currently added during reconstruction.

However, completely ignoring the angle might lead to a useful result. Figure 19 shows the result of

attempting to deterministically stitch wavefields without changing the angle. This leads to a result

that resembles the sample but the artifacts have yet to successfully be removed. One reason might be

that the reconstructions obtain an imperfect mean angle from measurements during reconstruction

in the detector-plane.

Figure 18: Left: back-propagating a wavefield to the sample-plane without adding phase contribu-

tion from the angled wavefield in the detector-plane. Right: back-propagating after adding phase

as determined from forward simulation without a sample.
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Figure 19: Stitching the Fourier-plane and back-propagating to the sample-plane without phase

differential from the angled wavefield. Created with the scanning scheme shown in figure 23. Left:

phase reconstruction. Right: intensity reconstruction

6 Integrating Differential Phase

The phase is extracted from the differential phase by using properties of the Fourier transform.16,17

First the differential phase along one of the directions is multiplied by i to make the two phase

directions orthogonal. Then taking the Fourier transform of the sum of the two differential phases:

F

(
∂φ

∂x
+ i

∂φ

∂y

)
=

∫∫ (
∂φ

∂x
+ i

∂φ

∂y

)
· exp (−i2π (x · x′ + y · y′)) dxdy (75)

Can be integrated to the image phase by using the Fourier derivative theorem:(
∂

∂x
+ i

∂

∂y

)
φ =

(
∂

∂x
+ i

∂

∂y

)
F−1 (F (φ)) (76)

l

∂φ

∂x
+ i

∂φ

∂y
=

(
∂

∂x
+ i

∂

∂y

)∫∫
F (φ) · exp (i2π (x · x′ + y · y′)) dx′dy′ (77)

Since F (φ) is a function of only x′ and y′ then the differential operators only act on the exponential:

∂φ

∂x
+ i

∂φ

∂y
=

∫∫
F (φ) ·

(
∂

∂x
+ i

∂

∂y

)
exp (i2π (x · x′ + y · y′)) dx′dy′ (78)
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l

∂φ

∂x
+ i

∂φ

∂y
=

∫∫
F (φ) · i2π (x′ + iy′) · exp (i2π (x · x′ + y · y′)) dx′dy′ (79)

Taking the Fourier transform of both sides:

F

(
∂φ

∂x
+ i

∂φ

∂y

)
= F (φ) i2π (x′ + iy′) (80)

l

F (φ) =
F
(
∂φ
∂x + i∂φ∂y

)
i2π (x′ + iy′)

(81)

l

φ = F−1

F
(
∂φ
∂x + i∂φ∂y

)
i2π (x′ + iy′)

 (82)

During the process the resolution of the output images can be set by padding or removing pixels.

The two differential fields might not have a perfect solution and increasing the resolution of the

result makes it possible to be more consistent with differentials in both directions. Restoring the

differentials from more images taken at different lens positions does not increase the level of detail

since the result is a least squares fit. Increasing the lens translation between images or the number

of images means that the result is more noise resistant but the result contains more contributions

from features outside the artificial aperture used during stitching.

6.1 Mirroring Fourier Space

The Fourier transform assumes periodic boundary conditions which means that it is assumed that

the image repeats indefinitely. This is a problem when doing integration as the phase in one edge

and the opposite is likely to be very different. Integrating the differential phase across this edge

results in a solution which attempts to smooth the phase across the edge. The solution to this

is creating a mosaic of four images by mirroring the image across the edges. By doing this the

edges become identical. This new mosaic of four mirrored differential phase images has periodic

boundaries and thus Equation 82 can be used to integrate the differential phase from such a image.
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Figure 20: Left: example of differential phase along y. Right: example of differential phase along x.

Figure 21: Left: Original. Right: Integrated from the differential phase images.
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7 Stitching Phase

Integration of the deterministic phase gradients provides reconstructions of optical phase but the

least squares fitting means that it is averaged over lens positions rather than combined. The

deterministic phase gradients are assumed to be linear with lens translation. This assumption holds

as long as the same details are captured by the Fourier components. Different features revealed

by changing lens position cannot be assumed to be correlated with previously found features. The

individual reconstructions are thus limited by the information contained in the wavefield passing

trough the aperture. To achieve high resolution reconstruction a large area of the Fourier-plane

must be determined. To do this wavefields from different phase gradients can be stitched together in

what is essentially non-iterative or Deterministic Fourier Ptychography. Firstly a scanning scheme

is used to capture images in groups at different lens positions. Each group is then reconstructed to

phase gradients and then integrated to wavefields. These wavefields can now be back-propagated

to the lens where the inverse transfer function is applied. The wavefields are then stitched into the

Fourier-plane. There is no need to iterate over wavefields since they are assumed to be accurate

representations of phase. The intensities can be determined as the mean of the group as the distance

between members must be small such that the assumption of linear phase gradients remains true.

The phase of the wavefields has an unknown phase offset since it originates from integration of

differential phase. As with all other integration this leaves an unknown constant offset. The phase

is aligned in the Fourier-plane by adding the mean phase offset to the part of the wavefield that

should be included. The mean offset is calculated as the mean of a set of angles is calculated

with complex numbers. First the overlapping area of the current wavefield and the new incoming

wavefield needs to be found:

o = T ∩ ψcurrent (83)

ψcurrent is the current reconstruction and T is the transfer function of the next wavefield to be back-

propagated from the detector-plane. Dividing the normalized wavefields is identical to subtracting

the phases:

ψoffset (~r) = exp (i (φback (~r)− φcurrent (~r))) =
ψback (~r) |ψcurrent (~r) |
ψcurrent (~r) |ψback (~r) |

for ~r ∈ o (84)

The mean of ψoffset (~r) is ψ̄offset; its phase is the mean phase offset and the magnitude describes

to which degree the phase offsets are identical across the overlapping area o. Multiply the back-
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propagated wavefield with the normalized mean offset to get the aligned wavefield:

ψaligned back (~r) = ψback (~r) · ψ̄offset

|ψ̄offset|
(85)

The aligned wavefield is then stitched into the current reconstruction. This is done for all groups

such that the entire wavefield in the Fourier-plane is restored. The only exception is the first group

which serves as the initial phase in the Fourier-plane. The full wavefield in the Fourier-plane is

then back-propagated to the sample plane but now it is not aligned with the phantoms optical

phase. When using Fourier Ring Correlation the phase must be aligned with the original sample

phase for the correlation to make sense. This is done exactly as the alignment of the phase in the

Fourier-plane except the entire wavefield is compared at once:

ψoffset =
ψback (~r) |ψsample (~r) |
ψsample (~r) |ψback (~r) |

(86)

Multiply the reconstruction with the normalized mean offset to get the phase aligned:

ψaligned = ψback ·
ψ̄offset

|ψ̄offset|
(87)

This step isn’t needed in an experimental case unless it needs to be aligned with the phase from

another method. It doesn’t make sense to define a true sample phase as it would depend on the

phase of the incident wavefield. There is also the effect that any offset between two points on the

sample by n · 2πn ∈ N will make the optical phase of the two points indistinguishable.

Now the performance of the method can be determined by calculating the Fourier Ring Correlation

between the aligned wavefield and the phantom used for simulation. Fourier Ring Correlation is

defined for images and not wavefields so the intensity and optical phase are compared separately.

7.1 Scanning Schemes

An optimal scanning scheme attempts to maximize coverage of reconstructions in the Fourier-plane

while having a well defined lens position for the result of each intermediate reconstruction. Lets call

the images resulting in single intermediate reconstruction a group, as previously done. Maximizing

coverage in the Fourier-plane involves spacing groups apart such that they cover as much space

as possible while retaining some overlap. Within a group the result will have a well defined lens

position if the lens translation between members is very small. But this setup is very noise sensitive,

small changes in measured intensity will cause large changes in the reconstructed differential phase
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thus amplifying noise. Figure 22 shows an example of this. A well defined lens position is preferred

since the lens positions within a group must show the same features. This means a balance between

a well defined lens position and noise sensitivity has to be found. A general scanning scheme can

be defined but the optimal scheme will depend on the amount of noise in the experiment. Two

scanning schemes are presented here, each has the same number of groups but the number of images

in each group is varied. Figure 23 shows a scanning scheme with three images per group, this is the

minimal amount to have non-collinear lens translation which is necessary to restore phase reliably in

two dimensions. Figure 24 shows a scanning scheme with five images per group to see if the quality

improves with more images. The number of groups and group centers are identical such that the

coverage of the Fourier-plane is identical for both schemes. This means results only depend on the

quality within groups. The results for the triangle scheme can be seen in figure 25 and figure 27 for

the phase and intensity respectively. The results for the cross scheme can be seen in figure 29 and

figure 31. The full Fourier Ring Correlations are shown below the reconstructions. When stitching

in the Fourier-plane the overlap between wavefields, which is necessary to align phase, means that

a choice can be made for which group to use. One solution is using an approach similar to Fourier

Ptychography by defining a ratio of intermediate results to use. The approach used here is to

start from small lens translation and then only stitch previously empty areas of the Fourier-plane.

This means each area of the Fourier-plane aligned with the results at the smallest lens translation

possible where noise should have less of an effect. Another approach would be to use mostly the

center of each group as this should minimize lens aberrations which are likely to increase towards

the edge of the lens. Another reconstruction done as a function of the number of groups can be

seen in figure 33. The Fourier Ring Correlation for each of these results can be seen in figure 34.
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Figure 22: Left: Scanning scheme with very small distance between members of each group for

a normal scanning scheme see figure 23 or figure 24. Since the results only contain numerical

errors and errors from approximations the distance needs to be very small to show artifacts. Right:

deterministic stitching result; there is a too high phase differential going from the top left to the

bottom right.
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Figure 23: Lens centers in the Fourier-plane for the triangle scanning scheme with three images for

each group. Coordinates show lens translation distance rather than frequency in Fourier space.

Figure 24: Lens centers in the Fourier-plane for the cross scanning scheme with five images for each

group. Coordinates show lens translation distance rather than frequency in Fourier space.
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Figure 25: The results of reconstructing the phase with the scanning scheme in figure 23. The

Fourier Ring Correlations (FRC) can be seen in figure 26. Left: Reconstruction using the cen-

tral group and equation 72, resolution according to FRC: 0.649µm. Middle: Reconstruction using

deterministic stitching on all groups, resolution according to FRC: 0.640µm. Right: Fourier Pty-

chography from all lens positions, resolution according to FRC: 14.7µm

Figure 26: Fourier Ring Correlations of the results in figure 25 when compared with the original

phantom. The threshold of 1
7 is the minimum correlation for details to be defined as visible.
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Figure 27: The results of reconstructing the intensity with the scanning scheme in figure 23. The

Fourier Ring Correlations (FRC) can be seen in figure 28. Left: Reconstruction using the central

group and equation 72, resolution according to FRC: 1.47µm. Middle: Reconstruction using deter-

ministic stitching on all groups, resolution according to FRC: 1.52µm. Right: Fourier Ptychography

from all lens positions, resolution according to FRC: 0.526µm

Figure 28: Fourier Ring Correlations of the results in figure 27 when compared with the original

phantom. The threshold of 1
7 is the minimum correlation for details to be defined as visible.
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Figure 29: The results of reconstructing the phase with the scanning scheme in figure 24. The

Fourier Ring Correlations (FRC) can be seen in figure 30. Left: Reconstruction using the cen-

tral group and equation 72, resolution according to FRC: 0.605µm. Middle: Reconstruction using

deterministic stitching on all groups, resolution according to FRC: 0.679µm. Right: Fourier Pty-

chography from all lens positions, resolution according to FRC: 0.526µm

Figure 30: Fourier Ring Correlations of the results in figure 29 when compared with the original

phantom. The threshold of 1
7 is the minimum correlation for details to be defined as visible.
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Figure 31: The results of reconstructing the intensity with the scanning scheme in figure 24. The

Fourier Ring Correlations (FRC) can be seen in figure 32. Left: Reconstruction using the central

group and equation 72, resolution according to FRC: 1.47µm. Middle: Reconstruction using deter-

ministic stitching on all groups, resolution according to FRC: 1.52µm. Right: Fourier Ptychography

from all lens positions, resolution according to FRC: 0.526µm

Figure 32: Fourier Ring Correlations of the results in figure 31 when compared with the original

phantom. The threshold of 1
7 is the minimum correlation for details to be defined as visible.
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Figure 33: The top images show how the transmission functions cover the Fourier-plane, the color

only serve to make them distinguishable. The bottom show the reconstructed phase. Left: back-

propagation with just a single group, FRC: 1.30µm. Center: back-propagation after stitching 5

groups, FRC: 0.640µm. Right: back-propagation after stitching all 25 groups, FRC: 0.640µm

Figure 34: Fourier Ring Correlations of the reconstructions in figure 33. The FRC with 5 groups

isn’t visible as it is exactly covered by the datapoints of the FRC with 25 groups. This shows that

there is no improvement after the first five groups.
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Figure 35: Fourier Ptychography results when using a regular scanning lens translation scheme

with 81 measured images and without a Gaussian apodizer. Top: Coverage of the Fourier-plane

when using the scanning scheme. Left: Phase reconstruction after 10 iterations. Right: Intensity

reconstruction after 10 iterations. The pixel size of the reconstructions is 0.574µm, the resolution

given by the Fourier Ring Correlation in figure 36 is 1.15µm.
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Figure 36: Fourier Ring Correlation of the phase and intensity in figure 35 when compared with

the originals in figure 6. Since the Fourier Ring Correlation doesn’t go below 1
7 the resolution is

the maximum possible, which is 2 pixels (1.15µm).
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8 Discussion

Figure 37

First a recap and overview of Deterministic Fourier Ptychography, also see the flowchart in

figure 37:

1. Images are measured in groups according to a scanning scheme like figure 23 or 24.

2. A group is reconstructed by using Tikhonov regularization to solve equation 72 for the

differential phase in 2 dimensions.

3. The wavefield of the group is restored by integrating the mirrored differential phase using

equation 82. The amplitude in each pixel is set to the square-root of the mean measured

intensity in that pixel.

4. The forward simulated differential phase corresponding to the lens position of the group center

is added to the wavefield according to equation 74.
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5. The wavefield is back-propagated to the lens-plane and the inverse transfer function is applied,

as in Fourier Ptychography.

6. The wavefield is aligned with the Fourier-plane by comparing overlapping areas as in equation

84 and 85.

7. The wavefield is stitched into the empty portion of the Fourier-plane, as shown in figure 33.

8. Repeat from 2. until all groups have been stitched into the Fourier-plane.

9. The full wavefield in the Fourier-plane is back-propagated to the sample-plane thus creating

a reconstruction of sample properties.

Deterministic stitching has one known major problem which remains to be solved; the restoration

of beam angles by forward simulation without a sample doesn’t work for dark-field images at all.

No intensity reaches the detector if there is no sample, by the definition of dark-field images. The

assumption that the contribution can be isolated from the sample contribution to the wavefield

should be true for this to work, even when forward simulation is possible. If the solution depends

on sample properties then it becomes even harder if not impossible to solve deterministically since

these properties must be derived from the wavefield in the detector-plane. The problem might need

to be solved analytically to get the correct differential phase contribution for all possible illumi-

nation angles. Another solution would be to attempt to remove the artifacts which arise when

stitching without aligning any angles, as shown in figure 19.

It has been decided to limit the project here, there is no proof whether more problems arise before

dark-field images can be successfully stitched.

Given the current progress Deterministic Fourier Ptychography generally performs worse than nor-

mal Fourier Ptychography. This is contrary to what Fourier Ring Correlation shows for the phase

reconstructions in figure 26 and figure 30. This rather shows a disadvantage of using Fourier Ring

Correlation for phase contrast images. The correlation is low if the phase in a reconstruction changes

by more than 2π while the phantoms optical phase doesn’t. The Fourier Ring Correlation doesn’t

account for the periodic phase and thus penalizes a change from −π to π even if it remains close

to the optical phase of the phantom. In this case the reconstructed intensities are much better for

describing the quality of the reconstructions. Fourier Ptychography performs better in these cases

as can be seen in figure 28 and figure 32.
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Deterministic Fourier Ptychography has fewer artifacts in the phase reconstruction when compared

to Fourier Ptychography but this might be related to the higher level of detail of Fourier Ptychog-

raphy. Fourier Ptychography usually uses a equally spaced scanning scheme without a Gaussian

apodizer, this is done in figure 35 and results in an even better correlation as can be seen in figure 36.

It has the advantage that as long as an accurate simulation of aberrations and propagation is used

then the result should converge. The simulation used to create the measurements is in this case

identical to the methods for reconstructing the sample. This means the reconstructions should be

good since some of the steps are a perfect match to how the images were created.

The underlying problem for Deterministic Fourier Ptychography is that it requires very precise cal-

culation of each step to reach a successful reconstruction. Since there is no iterative error reduction

the solution to every step must be very accurate.

The reconstruction quality hardly changes between the two scanning schemes tested here, figure

23 and 24. Only Fourier Ptychography improves considerably with the extra measurements; both

phase and intensity has better FRC with the extra images in the cross scanning scheme. This shows

that, with the parameters used here, nothing is gained for the deterministic methods by using more

than 3 images for each group. This again highlights that stitching is necessary to increase the

resolution further.

Figure 34 shows that the resolution increases when the first few intermediate reconstructions are

stitched together. This shows that the stitching must work somewhat. The changes are however

small enough to not be visible by looking at the reconstructions. As can be seen in figure 33 the

last groups are at larger tilt and that they don’t improve resolution is likely linked to the missing

differential phase contribution for dark-field images.

The effect of forward simulating the angle doesn’t affect the Gaussian reconstruction method much

for bright-field images. This shows as the reconstruction method with the Gaussian apodizer even

seems to allow for resolution beyond the resolving power of the lens. The Abbe diffraction limit

of the simulated setup is 1.07µm but Fourier Ring Correlation states resolutions around 0.6µm for

the phase reconstructions. The method does a fit to data which is assumed to come from the same

features and it should thus also be limited by the lens. The integration of differential phase in two

dimensions might be the reason as it uses two differential values for each pixel. Another probable

reason is that the sample doesn’t contain a number of well defined features just below the resolution

reached and thus the Fourier Ring Correlation is high until a limiting number of features are gone.
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Both of these reasons explain why the transmission reconstruction is worse as it isn’t integrated

and the phantom contains finer detail. From the Fourier Ring Correlations it can be seen that a

single group of images reconstructed with the Gaussian apodizer performs just as well if not better

than attempting to stitch several groups together.

9 Conclusion

The use of tilt aberration has been generalized to arbitrary combinations of either lens positions

or source angles. It had to be recalculated with a Gaussian apodizer to avoid bias when not using

tilt measurements centered at zero. The reconstructed differential phase has been integrated to

phase that can then be back-propagated to the Fourier-plane. A full simulation and reconstruction

pipeline was programmed to compare performance under controlled conditions. The results show

that the level of detail achieved during the stitching of Deterministic Fourier Ptychography still

needs more work. The resolution is limited since the dark-field images aren’t stitched correctly.

This likely stems from the attempt at restoring the phase differential from the beam angle by for-

ward simulation which doesn’t work for dark-field images.

Some conclusions on the usefulness of the method can be made regardless of this. The method

requires computations that could slow it down, this is likely to limit if not entirely remove the

speed advantage it had over Fourier Ptychography. The computations needed beyond the ones in

Fourier Ptychography are: reconstruction in the detector plane, aligning beam angles and inte-

gration. Whether this takes longer likely depends on the number of iterations needed for Fourier

Ptychography to reach the same result.

While the deterministic results generally have fewer artifacts than Fourier Ptychography it is not

enough to conclude that it is less noise sensitive as it has a too low level of detail to be comparable.

There is nothing which suggests that it is more or less sensitive to noise or misalignment of the

experimental setup. Noise in both methods will manifest as errors in the differential phase which

will affect the entire image. The error reduction of Tikhonov regularization helps here and since

it also compares multiple images it is likely to perform as well as the iterative error reduction of

Fourier ptychography.

Something of special interest is that the use of a Gaussian transmission function from a Gaus-

sian apodizer allows for fast deterministic reconstructions of phase in the detector-plane. It could
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potentially be an improvement to Differential Phase Contrast. It could likely also be used to create

initial guesses for Fourier Ptychography, whether it is a considerable improvement is not known.

For future progress on Deterministic Fourier Ptychography the differential phase in the detector-

plane as a function of illumination angle needs to be investigated further. If the results get to be

on par with Fourier Ptychography it could be of interest to see if some of the steps could be done

differently to improve computation time or improve performance.
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Tilt aberration arises through a series of different equations, principles and approximations. A

derivation of tilt aberration shows the validity in using the theory and the limitations due to the

approximations used.

11.1 Scalar Diffraction Theory

The derivation will begin from Scalar Diffraction theory since this can be derived from the vacuum

field equations which in turn can be derived from the free space Maxwell equations1. Scalar

Diffraction theory describes a electromagnetic wave by a single complex scalar function which

is a function of spatial coordinates and time. Scalar diffraction theory has the limitation that all

components of the wave must abide by the same wave equation. This means the theory doesn’t

handle interactions which affect individual spatial components of the electric or magnetic field or

if the interactions couple these components. The theory is therefore not suited for changes in the

permittivity or boundary conditions on the scale of a few wavelengths however the error will be

small if the features are large compared to the wavelength.2

The core of scalar diffraction theory is the Helmholtz equation:

(
∇2 + k2

)
ψω (~r, t) = 0 (88)

Which can be rewritten as:

∇2ψω (~r, t) = −k2ψω (~r, t) (89)

Where k is the wavenumber given by: k = ω
c and ~r is a vector of the Cartesian spatial coordinates:

~r =


x

y

z

 (90)

One solution to the Helmholtz equation is the plane harmonic wave given by:

ψω

(
~r,~k, t

)
= A · ei(~r·~k±ωt) (91)
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Where ~k is the wavevector describing the direction of the plane wave:

~k =


kx

ky

kz

 (92)

|~k| = k =

√
kx

2 + ky
2 + kz

2 =
ω

c
=

2π

λ
(93)

Another solution is the harmonic spherical wave:

ψω (r, t) =
A

r
· ei(r·k±ωt) (94)

Where r is the distance from the origin of the spherical wave. Differentiating either of these solutions

twice with respect to time gives:
∂2ψ

∂t2
= −ω2ψ (95)

Using ω = kc from eq. 93:
∂2ψ

∂t2
= −k2c2ψ (96)

l

1

c2
∂2ψ

∂t2
= −k2ψ (97)

Finally by substituting using eq. 89 the differential wave equation is derived:

∇2ψω (~r, t) =
1

c2
∂2ψ

∂t2
(98)

11.2 Huygens-Fresnel Principle

The goal of this section is showing how Huygens-Fresnel principle can be used to determine the

wavefunction at an arbitrary point within a volume given that the wavefunction is known along

the entire edge of the volume. To make it similar to a instrumental setup with an aperture the

incoming field is assumed to only pass through a plane at the edge of the volume as seen on figure

38. The Huygens-Fresnel principle can be derived from the differential wave equation by using

Green’s functions. Green’s second identity is given by:∫∫
s

ds

(
U
∂G

∂N
−G∂U

∂N

)
=

∫∫∫
V

dV
(
G∇2U − U∇2G

)
(99)
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Figure 38: The volume V with the surface s. Σ is the subset of the surface for which the incoming

wave is non-zero.

s is a surface enclosing volume V and
∫∫
s
ds is the integral across this surface. ∂

∂N is differentiation

along the normal with respect to s. Intuitively Green’s second identity says that if the value and

first differential of two functions is known along a surface then the values can be determined in the

enclosed volume.

Setting U = ψ and assuming that ψ and G are solutions to both the Helmholtz equation and the

Differential wave equation:3∫∫
s

ds

(
ψ
∂G

∂N
−G ∂ψ

∂N

)
=

∫∫∫
V

dV

(
G

1

c2
∂2ψ

∂t2
− ψ 1

c2
∂2G

∂t2

)
(100)

Substituting by using eq. 96:∫∫
s

ds

(
ψ
∂G

∂N
−G ∂ψ

∂N

)
=

∫∫∫
V

dV

(
−G 1

c2
k2c2ψ + ψ

1

c2
k2c2G

)
(101)

l∫∫
s

ds

(
ψ
∂G

∂N
−G ∂ψ

∂N

)
= 0 (102)
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G is set to the sum of two free space Green’s functions mirrored by the plane of incoming rays in

s, as done by Sommerfeld2. The Green’s function at a point P is given by:2,3

G(~P ) =
exp(ikr)

r
− exp(ikr−)

r−
(103)

And the derivative of G with respect to the normal of s:

∂G

∂N
= cos(θ)

(
ik exp(ikr)

r
− exp(ikr)

r2

)
− cos(θ−)

(
ik exp(ikr−)

r−
− exp(ikr−)

r−2

)
(104)

Where r is the distance from some initial point P0 inside the volume to the point P . r− is the

distance from the mirrored point P0− to P . θ is the angle between a vector from P0 to P and the

normal of s. θ− is the angle between a vector from P0− to P and the normal of s.

Since the function used in Green’s theorem must have a continuous first and second derivative then

the singularity at r = 0 is excluded from the volume V by containing the point P0 in a small

spherical volume with radius ε, see figure 39. Therefore the surface of integration is now:

s = s′ + sε (105)

Integration across the surface s can thus be split into the sum of the integration across s′ and sε:∫∫
s

ds

(
ψ
∂G

∂N
−G ∂ψ

∂N

)
=

∫∫
s′
ds

(
ψ
∂G

∂N
−G ∂ψ

∂N

)
+

∫∫
sε

ds

(
ψ
∂G

∂N
−G ∂ψ

∂N

)
= 0 (106)

The integral over sε can be calculated by letting ε become infinitesimally small as from eq. 103

and eq. 104 the value of G and its derivative along the normal of sε at all points on sε can be

determined:

lim
ε→0

G(sε) = lim
ε→0

(
exp(ikε)

ε
− exp(ik(r−))

r−

)
(107)

lim
ε→0

∂G(sε)

∂N
= lim
ε→0

(
−
(
ik exp(ikε)

ε
− exp(ikε)

ε2

)
− cos(θ−)

(
−ik exp(ikr−)

r−
+

exp(ikr−)

r−2

))
(108)

Only keeping terms of lowest order in ε:

lim
ε→0

G(sε) = lim
ε→0

exp(ikε)

ε
(109)

lim
ε→0

∂G(sε)

∂N
= lim
ε→0

exp(ikε)

ε2
(110)
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Figure 39: P0− is P0 mirrored in Σ which is a subset of s′. The point P0 is excluded from the

volume by the spherical surface sε with radius ε.

Noting here that the cosine from the first term has been removed since it is always minus one as

the angle, θ, between the vector from P0 to P and the normal of the surface sε is 180◦.

When epsilon goes towards zero the value of ψ and G approaches a constant which is their value

at P0. Since the value in the integral becomes constant the integral can be exchanged with multi-

plication by the area of a sphere with radius ε:

lim
ε→0

∫∫
sε

ds

(
ψ
∂G

∂N
−G ∂ψ

∂N

)
= lim
ε→0

4πε2
(
ψ(P0)

∂G

∂N
−G∂ψ(P0)

∂N

)
(111)

l

lim
ε→0

∫∫
sε

ds

(
ψ
∂G

∂N
−G ∂ψ

∂N

)
= lim
ε→0

4πε2
(
ψ(P0)

exp(ikε)

ε2
− exp(ikε)

ε

∂ψ(P0)

∂N

)
(112)

↓

lim
ε→0

∫∫
sε

ds

(
ψ
∂G

∂N
−G ∂ψ

∂N

)
= 4πψ(P0) (113)

Inserting into eq. 106: ∫∫
s′
ds

(
ψ
∂G

∂N
−G ∂ψ

∂N

)
+ 4πψ(P0) = 0 (114)
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l

1

4π

∫∫
s′
ds

(
−ψ ∂G

∂N
+G

∂ψ

∂N

)
= ψ(P0) (115)

There is no contribution from the area of s′ for which there is no incoming waves. It is possible

to show this using the Sommerfeld radiation condition. For this s′ is assumed to be a sphere with

Figure 40: Illustration of how the angle between ~r− and ~r approaches 0 when |~r| approaches ∞.

radius |~r| and center in P0; see figure 40. Using trigonometry the angle between ~r and ~r− can be

determined as a function of the distances:

cos(θ − θ−) =
|~r|+ |~r + (~p0 − ~p0−) | − |~p0 − ~p0−|

2|~r||~r + (~p0 − ~p0−) |
(116)

The angles φ and φ− are defined as in eq. 104 and (~p0 − ~p0−) is the vector between P0 and P0−.

By taking the limit for the radius |~r| going to infinity the contribution from (~p0 − ~p0−) disappears:

lim
|~r|→∞

cos(θ − θ−) = lim
|~r|→∞

|~r|+ |~r|
2|~r||~r|

(117)

l

lim
|~r|→∞

cos(θ − θ−) = lim
|~r|→∞

1

|~r|
(118)
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l

lim
|~r|→∞

cos(θ − θ−) = 0 (119)

The possible values for θ− θ− is {nπ|n ∈ Z} where Z is the set of all integers. This can be further

reduced to {2nπ|n ∈ Z} as P0− is on the same side of s′ as P0.

θ is known to be 0 since θ was defined as the angle between ~r and the normal of s′. This means:

cos(θ−) = cos(θ) = 1 (120)

Thus in this limit eq. 104 reduces to:

lim
|~r|→∞

∂G

∂N
= lim
|~r|→∞

((
ik exp(ikr)

r
− exp(ikr)

r2

)
−
(
ik exp(ikr−)

r−
− exp(ikr−)

r−2

))
(121)

The substitution lim
|~r|→∞

r− = r can be made by remembering that the contribution from (~p0 − ~p0−)

becomes negligible when |~r| approaches ∞.

lim
|~r|→∞

∂G

∂N
= lim
|~r|→∞

((
ik exp(ikr)

r
− exp(ikr)

r2

)
−
(
ik exp(ikr−)

r
− exp(ikr−)

r2

))
(122)

l

lim
|~r|→∞

∂G

∂N
= lim
|~r|→∞

G

(
ik − 1

r

)
(123)

l

lim
|~r|→∞

∂G

∂N
= ikG (124)

Inserting in eq. 115:

ψ(P0) =
1

4π

∫∫
s′
ds

(
−ikψG+G

∂ψ

∂N

)
(125)

l

ψ(P0) =
1

4π

∫∫
s′
dsG

(
−ikψ +

∂ψ

∂N

)
(126)

Which in polar coordinates is:

ψ(P0) =
1

4π

∫∫
Ω

dω|~r|2G
(
−ikψ +

∂ψ

∂N

)
(127)

Finally the Sommerfeld Radiation condition is2:

lim
|~r|→∞

|~r|
(
∂ψ

∂N
− ikψ

)
= 0 (128)
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The condition can be confirmed for a harmonic plane wave traveling along the wavevector
(
~r ‖ ~k

)
.

eq. 91 is differentiated along the normal of s′ which always will be along the direction of travel for

|~r| → ∞:
∂ψ

∂N
=
∂ψ

∂~r
= ikAei(~r·

~k±ωt) = ikψ (129)

It can also be confirmed for a spherical wave originating within V .

The integral in eq. 115 is thus only non-zero over Σ. For P on Σ the distances r and r− are identical

since P0− is P0 mirrored in Σ which using eq. 103 means G = 0. Similarly the angles θ and θ− are

always mirrored around 90◦ or 270◦ which means cos(θ) = −cos(θ−). Thus:

∂G

∂N
= cos(θ)

(
ik exp(ikr)

r
− exp(ikr)

r2

)
+ cos(θ)

(
ik exp(ikr)

r
− exp(ikr)

r2

)
(130)

l

∂G

∂N
= 2cos(θ)

(
ik exp(ikr)

r
− exp(ikr)

r2

)
(131)

It is possible to simplify further given that the wavelength is typically much smaller than the

distances:

r >> λ (132)

↓

2π

λ
= k >>

1

r
(133)

eq. 131 becomes:
∂G

∂N
= 2 cos(θ)

ik exp(ikr)

r
(134)

Inserting into eq. 115 and remembering that G(P ) = 0 for P on Σ:

ψ(P0) =
1

4π

∫∫
Σ

ds

(
−2ikψ(P ) cos(θ)

exp(ikr)

r

)
(135)

l

ψ(P0) =
k

2iπ

∫∫
Σ

ds

(
ψ(P ) cos(θ)

exp(ikr)

r

)
(136)

l

ψ(P0) =
1

iλ

∫∫
Σ

ds

(
ψ(P ) cos(θ)

exp(ikr)

r

)
(137)

This is the first Rayleigh-Sommerfeld solution which mathematically shows Huygens-Fresnel Prin-

ciple2.
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11.3 Paraxial approximation

Figure 41: Illustration showing the different vectors. Not to scale since it is later assumed that

z >> |~p0 − ~p|

Here it is exploited that the distance along the direction of travel is usually much larger than

the size of the sample and aperture. First, from trigonometry it is known that:

cos(θ) =
z

r
(138)

This is substituted into eq. 137:

ψ(P0) =
1

iλ

∫∫
Σ

ds

(
ψ(P )

z exp(ikr)

r2

)
(139)

The distance r can be expanded into the contributions from the Cartesian components where z is

set to point opposite the normal of Σ and thus in the direction of the incoming wavevector. See

figure 41.

r =

√
z2 + |~p0 − ~p|2 (140)

It can in the denominator of eq. 139 be approximated that r ≈ z by assuming the distance z is

much larger than |~p0 − ~p|. This approximation can not be made for r in the exponential since k is
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a large number a small change of r will make a non-negligible difference to the exponential. In this

case r is further expanded to second order about its z-coordinate using the binomial expansion:

√
z2 + |~p0 − ~p|2 = z

√
1 +

(
|~p0 − ~p|

z

)2

≈ z

(
1 +

1

2

(
|~p0 − ~p|

z

)2
)

(141)

These approximation are inserted into eq. 139 and z in the denominator is taken outside the integral

since all points on Σ have equal distance z. To clarify it is here made explicit which variables depend

on the position on the surface s:

ψ(P0) =
1

izλ

∫∫
Σ

ds

ψ(P (s)) exp

ikz
1 +

1

2


∣∣∣~p0 − ~p(s)

∣∣∣
z

2


 (142)

l

ψ(P0) =
exp(ikz)

izλ

∫∫
Σ

ds

ψ(P (s)) exp

ik
∣∣∣~p0 − ~p(s)

∣∣∣2
2z


 (143)

This is the Fresnel-Kirchhoff integral, also known as the Fresnel diffraction integral. It shows that

the wavefunction at a position in V can be viewed as the sum of the contributions from an infinite

number of Huygens point sources.

11.4 Rewriting the Fresnel-Kirchhoff integral using the Fourier trans-

form

F is the two-dimensional Fourier transform:

F (ψ(x, y)) =

∫∫
ψ(x, y) · exp (−i · 2π · (x · x′ + y · y′)) dxdy (144)

F−1(ψ(x′, y′)) =

∫∫
ψ(x′, y′) · exp (i · 2π · (x′ · x+ y′ · y)) dx′dy′ (145)

A convolution is defined as:

f(x, y) ∗ g(x, y) =

∫∫
f(tx, ty)g(x− tx, y − ty)dtydtx (146)

The convolution theorem states:

F (f(x) ∗ g(x)) = F (f(x)) F (g(x)) (147)
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Rewriting eq. 143 as a convolution with respect to ~p0:4

ψ(~p0) =
exp(ikz)

izλ

(
ψΣ(~p0) ∗ exp

(
ik
|~p0|2

2z

))
(148)

Turning the convolution into multiplication by taking the Fourier transform and using the convo-

lution theorem2:

F (ψ(~p0)) =
exp(ikz)

izλ
F (ψΣ(~p0)) F

(
exp

(
ik
|~p0|2

2z

))
(149)

The Fourier transform of the exponential can be treated like the Fourier transform of a bell-curve

by extending the fraction by i:

F

(
exp

(
ik
|~p0|2

2z

))
= F

(
exp

(
−π |~p0|2

izλ

))
(150)

Writing out the Fourier transform:

F

(
exp

(
ik
|~p0|2

2z

))
=

∫∫
exp

(
−π |~p0|2

izλ

)
· exp

(
−i · 2π ·

(
~p0 · ~p′

))
d~p0 (151)

l

F

(
exp

(
ik
|~p0|2

2z

))
=

∫∫
exp

(
−π

(
|~p0|2

izλ
+ i · 2 ·

(
~p0 · ~p′

)))
d~p0 (152)

Multiplying with exp
(
−πi3zλ~p′

2
)

in the integral and dividing it outside:

F

(
exp

(
ik
|~p0|2

2z

))
= exp

(
πi3zλ~p′

2
)∫∫

exp

(
−π

(
|~p0|2

izλ
+ i · 2 ·

(
~p0 · ~p′

)
+ ~p′

2
i3zλ

))
d~p0

(153)

Rewriting by reducing to the square of two terms:

F

(
exp

(
ik
|~p0|2

2z

))
= exp

(
πi3zλ~p′

2
)∫∫

exp

(
−π
(

~p0√
izλ

+ ~p′
√
i3zλ

)2
)
d~p0 (154)

Doing integration by substitution:

~u =
~p0√
izλ

+ ~p′
√
i3zλ (155)

Since ~p′ lies in the xy-plane and the integral is infinite in x and y the translation by ~p′
√
i3zλ can

be ignored:

d~p0 =
√
izλd~u (156)

61 of 67



11.5 Aberration Space 11 APPENDIX

F

(
exp

(
ik
|~p0|2

2z

))
= exp

(
πi3zλ~p′

2
)
izλ

∫∫
exp

(
−π (u)

2
)
d~u (157)

The two dimensional integral of a Gaussian function is:∫∫
exp

(
−a
(
x2 + y2

))
dxdy =

π

a
(158)

Thus: ∫∫
exp

(
−π (u)

2
)
d~u = 1 (159)

And eq. 157 becomes:

F

(
exp

(
ik
|~p0|2

2z

))
= exp

(
πi3zλ~p′

2
)
izλ (160)

Taking the inverse Fourier transform of eq. 149 after substituting:

F (ψ(~p0)) = F (ψΣ(~p0)) exp
(
πi3zλ~p′

2
+ ikz

)
(161)

l

ψ(~p0) = F−1
(
F (ψΣ(~p0)) exp

(
πi3zλ~p′

2
+ ikz

))
(162)

l

ψ(~p0) = F−1
(
F (ψΣ(~p0)) exp

(
−i2π2zk−1~p′

2
+ ikz

))
(163)

11.5 Aberration Space

In the above alternate version of the Fresnel-Kirchhoff integral the incoming wave is convoluted by

a kernel describing the effects of the imaging system. By expanding the kernel using a Taylor series

in Fourier space it is possible to describe the different contributions individually5:

ψ(~p0, Cmn) = F−1

(
F (ψΣ(~p0)) exp

(
i4π2

∑
m,n

Cmnx
′my′n + ikz

))
|{m,n} ∈ {0, 1, 2, ...} (164)

C02 = C20 = − z

2k
(165)

{Cmn|{m,n} /∈ {{0, 2}, {2, 0}}} = 0 (166)
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For all further equations it is implicit that {m,n} ∈ {0, 1, 2, ...}.

The coefficients Cmn correspond to aberrations which characterize the imaging system, in this case

every coefficient is zero except the two in eq. 165 representing defocus aberrations5. In general the

coefficients can be written as the sum of a real and an imaginary part:

C ≡ C(R)
mn + iC(I)

mn (167)

The real part preserves the norm of the wavefunction while the imaginary does not5. An equation

describing the change in the wavefunction with repsect to a change in an aberration can be reached

by differentiating eq. 164 with respect to a specific real or imaginary coefficient (m′, n′):

∂ψ(~p0)

∂C
(R)
m′n′

=
∂

∂C
(R)
m′n′

(
F−1

(
F (ψΣ(~p0)) exp

(
i4π2

∑
m,n

Cmnx
′my′n + ikz

)))
(168)

↓

∂ψ(~p0)

∂C
(R)
m′n′

= F−1

(
F (ψΣ(~p0))

∂

∂C
(R)
m′n′

exp

(
i4π2

∑
m,n

Cmnx
′my′n + ikz

))
(169)

↓

∂ψ(~p0)

∂C
(R)
m′n′

= F−1

(
F (ψΣ(~p0)) i4π2x′m

′
y′n
′
exp

(
i4π2

∑
m,n

Cmnx
′my′n + ikz

))
(170)

Setting:

U(x′, y′) = F (ψΣ(~p0)) exp

(
i4π2

∑
m,n

Cmnx
′my′n + ikz

)
(171)

∂ψ(~p0)

∂C
(R)
m′n′

= F−1
(
U(x′, y′)i4π2x′m

′
y′n
′
)

(172)

The same result can be achieved by using i4π2

(i2π)n′+m′
∂m
′

∂xm′
∂n
′

∂yn′
:

i4π2

(i2π)n′+m′
∂m
′

∂xm′
∂n
′

∂yn′
ψ(~p0) =

i4π2

(i2π)n′+m′
∂m
′

∂xm′
∂n
′

∂yn′
(
F−1U(x′, y′)

)
(173)

l

i4π2

(i2π)n′+m′
∂m
′

∂xm′
∂n
′

∂yn′
ψ(~p0) =

∫∫
dx′dy′

(
U (x′, y′)

i4π2

(i2π)n′+m′
∂m
′

∂xm′
∂n
′

∂yn′
exp (i2π (x′x+ y′y))

)
(174)

l
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i4π2

(i2π)n′+m′
∂m
′

∂xm′
∂n
′

∂yn′
ψ(~p0) =

∫∫
dx′dy′

(
U (x′, y′) i4π2x′m

′
y′n
′
exp (i2π (x′x+ y′y))

)
(175)

l

i4π2

(i2π)n′+m′
∂m
′

∂xm′
∂n
′

∂yn′
ψ(~p0) = F−1

(
U(x′, y′)i4π2x′m

′
y′n
′
)

(176)

The result in eq. 172 and eq. 176 are equal, thus:

∂

∂C
(R)
m′n′

ψ(~p0) =
i4π2

(i2π)n′+m′
∂m
′

∂xm′
∂n
′

∂yn′
ψ(~p0) (177)

A similar derivation can be done for the imaginary part of the coefficient; the result is:

∂

∂C
(I)
m′n′

ψ(~p0) = − 4π2

(i2π)n′+m′
∂m
′

∂xm′
∂n
′

∂yn′
ψ(~p0) (178)

These partial differential equations describe the change of the wavefunction with respect to a change

in one of the aberration coefficients. Note that these results differ slightly from the references since

a different choice for the Fourier transform is used.

Following Paganin et al. the aberration coefficients are set to be function of a real variable τ :5

Cmn(τ) = C(R)
mn (τ) + iC(I)

mn(τ) (179)

Assuming the first derivative with respect to τ is finite:

∂

∂τ
ψ(~p0, C(τ)) =

∑
m,n

∂
(
C

(R)
mn (τ) + C

(I)
mn(τ)

)
∂τ

∂ψ(~p0, C(τ))

∂
(
C

(R)
mn (τ) + C

(I)
mn(τ)

)
 (180)

Using the chain rule with multiple intermediate functions this can be rewritten as:

∂

∂τ
ψ(~p0, C(τ)) =

∑
m,n

(
∂C

(R)
mn (τ)

∂τ

∂ψ(~p0, C(τ))

∂C
(R)
mn (τ)

+
∂C

(I)
mn(τ)

∂τ

∂ψ(~p0, C(τ))

∂C
(I)
mn(τ)

)
(181)

Substituting the derivative with respect to the aberration coefficients for the results in eq. 177 and

eq. 178:
∂

∂τ
ψ(~p0, C(τ)) = L (τ)ψ(~p0, C(τ)) (182)

L =
∑
m,n

4π2

(i2π)n+m

(
i
∂C

(R)
mn (τ)

∂τ
− ∂C

(I)
mn(τ)

∂τ

)
∂

∂xm
∂

∂yn
(183)
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11.6 Tilt aberration

With an equation describing the effects from tilt aberration separately it is possible to show how a

combination of images at different tilt make it possible to determine the phase of the wavefunction.

C
(I)
01 and C

(I)
10 represent incoherent tilt aberration. It is now assumed that only these aberration

coefficients are a linear function of τ , which we then call tilt, and the remaining are set to zero:

{C(R)
mn} = 0 (184)

C
(I)
01 = C

(I)
10 = γτ (185)

{C(I)
mn|{m,n} /∈ {{0, 1}, {1, 0}}} = 0 (186)

γ is a real unknown factor that doesn’t depend on τ . Eq. 182 becomes:

∂

∂τ
ψ(~p0, C(τ)) = i2πγO⊥ψ(~p0, C(τ)) (187)

O⊥ =

(
∂

∂x
+

∂

∂y

)
(188)

The wavefunction is substituted for its exponential form,6 which is known to be a solution from eq.

91. The exponential form is here defined as:

ψ =
√
I exp (iφ) (189)

ψ∗ =
√
I exp (−iφ) (190)

φ = ~p0 · ~k ± ωt (191)

Where the intensity I at different wavevectors ~k implicitly is a function of the incoming wavefunction

ψΣ (~p) and the imaging system C(τ). Inserting ψ in eq. 187:

∂

∂τ

(√
I exp (iφ)

)
= i2πγO⊥

(√
I exp (iφ)

)
(192)

l
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∂
√
I

∂τ
exp (iφ) + i

√
I exp (iφ)

∂φ

∂τ
= i2πγ

(
∂
√
I

∂x
+
∂
√
I

∂y
+ i
√
IO⊥φ

)
exp (iφ) (193)

Multiplying both sides of eq. 193 with ψ∗ and reducing:

∂
√
I

∂τ

√
I + iI

∂φ

∂τ
= i2πγ

(
∂
√
I

∂x

√
I +

∂
√
I

∂y

√
I + iIO⊥φ

)
(194)

Equating the real parts since all variables are defined to be real:6

∂
√
I

∂τ

√
I = −2πγIO⊥φ (195)

Dividing by I by assuming I > 0:

∂
√
I

∂τ

1√
I

= −2πγO⊥φ (196)

Differentiating left hand side using the chain rule:

∂I

∂τ

1

2I
= −2πγO⊥φ (197)

Making the following substitution and multiplying both sides by two:

∂ log (I)

∂τ
=
∂I

∂τ

1

I
(198)

eq. 197 becomes:
∂ log (I)

∂τ
= −4πγO⊥φ (199)

Using the finite difference approximation the differential phase can be calculated as a function of

the intensity of two images at nearby tilt.6 The assumption made is that the logarithm of the

intensity is linear in tilt between the two images. Here the spatial dependence is made explicit and

converted to 2 dimensions. Note that the negative sign means that τ1 and τ2 have been flipped in

the denominator:

O⊥φ

(
~p0,

~τ1 + ~τ2
2

)
=

log (I(~p0, ~τ2))− log (I(~p0, ~τ1))

4πγ (~τ1 − ~τ2)
(200)

l

O⊥φ

(
~p0,

~τ1 + ~τ2
2

)
= log

(
I(~p0, ~τ2)

I(~p0, ~τ1)

)
1

4πγ (~τ1 − ~τ2)
(201)
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