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A study of the J1-J2 Quantum
Heisenberg Antiferromagnets

Abstract

In this thesis, we formulated the J1-J2 Heisenberg Hamiltonian in terms of the pesud-
ofermion, in which a exact constraint of single occupancy for each site is imposed through
the Popov-Fedotov procedure [1]. We have also introduced a more generalized approach
to apply the Hubbard-Stratonovich transformation, which enables the decoupling of the
Hamiltonian with an interaction matrix that is not positive definite. The investigation
of the ground state magnetic properties and low-energy excitations has been conducted
within the framework of the path integral formalism. Additionally, an effective field the-
ory is proposed for determining the critical temperature of the nematic phase of J1-J2
Heisenberg model.
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Chapter 1

Introduction

The general aim of our research in the following thesis could be described as the under-
standing of the magnetism of insulators (or semiconductors). The microscopic physical
picture that we refer to is portrayed by the Heisenberg Hamiltonian. Heisenberg model
(HM) was first proposed by Werner Heisenberg in order to give a theoretical explanation
for the observation of the curie temperature. The paper was published in 1928, 8 years
after Wilhelm Lenz had invented the later called Ising model. As pointed out by Dirac
in 1929 [2], the isotropic two-body exchange interaction in the HM is originated from
taking both of the effects of the Coulomb repulsion and the Pauli exclusion principle
into consideration. A more detailed illustration of this will be given in the next chapter.
The limitations of such model are mentioned clearly by P.W.Anderson in his paper [3]:
Due to the strong locality of the magnetic moments in HM, the exchange interaction of
the Heisenberg type has its own problems in explaining the experimental results that are
caused by metallic (anti-)ferromagnetism, which requires another theory that can stress
the itinerant properties of these magnetic materials. And that is the reason why in the
beginning of this paragraph we stressed that the type of magnetic materials that we
focus on investigating in are insulators, in which the alignment of the local spins gives
rise to most of the magnetic effects.

The specific one that we studied in this thesis is called antiferromagnetic spin-1/2
J1-J2 quantum Heisenberg model. Since we have used the word “quantum” to describe
our model, we have to first make a distinction between the classic HM and the quantum
HM. Like Ising model(N=1), the classic HM(N=3) should both be classified as a O(N)
model, which is formulated by the spin operators that obey the certain SU(N) Lie al-
gebra. In our case, all the magnetic moments are being localized on the sites of a two
dimensional square lattice and the occupation number of the spin on each site is con-
strained to be one. Only the exchange interactions between two spins that are nearest
neighbors(NN) or the next nearest neighbors(NNN) are taken into consideration, and
the coupling strengths are characterized by J1 and J2 respectively. One quite interesting
scenario that could happen in such model is that a large degeneracy of ground states is
found when tuning these coupling constants to fulfill J1 = 2J2 > 0. In order to describe
such phenomenon, we have to introduce the concept of frustration, which can be roughly
characterized by the large ground state degeneracy that we just mentioned. In our case,
frustration is introduced to our system due to the competing interactions described by
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Chapter 1 Introduction

J1 and J2. Frustration can also be included by the geometry construction: for example,
when only consider the NN interaction, by placing local spins on a triangular lattice
instead.

In low dimensional materials, effects of both the frustration and fluctuation are rel-
atively strong, especially in the low temperature limit. Hence, how to understand the
nature of them turn out to be very crucial in order to reveal some mysteries in such
materials.

Figure 1.1: Schematic phase diagram of cuprate superconductors as a function of hole
doping p. [4]

One straightforward example is the puzzling narvre of the the cuprates unconven-
tional superconductors, for example the La2−xSrxCuO4 compound. The key properties
of these materials are believed to be characterized by the CuO2 layer. In a certain low
temperature range shown in Fig.1.1, as the holes are being doped into the cuprates par-
ent compound, the system will enter a non-magnetic pseudo gap state first, and only
later become superconducting as the hole concentration is further increased. In the un-
doped regime, the insulating antiferromagnetic state can be qualitatively explained by
spin-1

2 HM. In order to give a possible explanation for such a strange phase diagram,
P.W.Anderson proposed the resonating valence bond (RVB) theory in 1987 [5]. A novel
non-magnetic ground state named “quantum spin liquid state” is used to capture the
formation mechanism of magnetic singlet pairs. The existence of the connection between
these magnetic singlet pairs and the charged Cooper pairs was also pointed out in the
paper, and so that the doping of the holes might be treated as the “trigger” of transition
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Chapter 1 Introduction

processes between them. His proposal was formulated in the frame of the spin-1/2 two
dimensional antiferromagnetic HM, and as we mentioned before, the quantum fluctua-
tions in lower dimensions and the effect of frustration were considered as two essential
effects to suppress the long range magnetic order, which can create the “space” for the
emergence of non-magnetic (RVB) state.

Figure 1.2: A ground state phase diagram of spin-1/2 J1-J2 square lattice magnets as
tuning the strength of J1 and J2. The NAF, FM, and CAF refer to the Néel
antiferromagnetic, the ferromagnetic, and the columnar antiferromagnetic
states, respectively. [6]

After we above mentioned theoretical impact of studying the J1-J2 HM, we shall
shortly discuss the experimental realization of it. As we can see from the Fig.1.2, multi-
ple chemical compounds were reported that could be viewed as the J1-J2 HM in different
J1/J2 ratio. In order to get a more vivid impression of such materials, we shall briefly
discuss two typical examples among them: Li2VOSiO4 and VOMoO4.

The crystal structure of both Li2VOSiO4 and VOMoO4Fig.1.3 are reported as the
realization of the frustrated two-dimensional J1-J2 HM. These two chemical compounds
share several common features of their crystal structure: both have a layered structure
which contains V4+ ions, located at the center of VO5 pyramids that can be treated
as local spins(S=1/2) in the quantum Heisenberg representation. Such pyramids either
point upward or downward in the direction that is roughly perpendicular to the pseudo
two dimensional square lattice plane formed by the V4+ ions. It is shown more clearly in
the Fig.1.3(b), J1 and J2 can be used to describe the effective coupling strength between
the V-V bonds along the side and the diagonal of the square, respectively.

However, while the in-plane alignments of V4+ ions in Li2VOSiO4 crystals is found
to be in a Collinear antiferromagnetic state, in VOMoO4 it exhibits antiferromagnetic
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Chapter 1 Introduction

order, which can be explained by the different J1/J2 ratio in these two compounds. This
difference can be also seen from the relative angle between the pyramid and the MO4
or SiO4 tetrahedra. In Li2VOSiO4, these tetrahedras are not rotated, but they are in
the VOMoO4 case. Whether these two chemical compounds are in a weak or strong
frustration regime is still not conclusive.

(a) (b)

Figure 1.3: The crystal structure of Li2VOSiO4(a) and VOMoO4(b). [7], where VO5
pyramids are marked red. SiO4 and MO4 tetrahedras are marked grey and
yellow, respectively.

We will discuss the motivation for the methodology that have been chosen for this
thesis. As we mentioned above, the spin operators obey SU(N) Lie algebra, which
means that these operators have their own commutation relation. Analytical method like
Feynman diagram expansion is not directly adaptable to the Hamiltonian formed by spin
operators, due to the “painful” fact that they do not satisfy Wick’s theorem. In our work,
we represent spin operators in terms of the pseudofermion. By using such method, we
are able to rephrase the Hamiltonian into fermionic creation and annihilation operators,
allowing us to tackle the problem with the help of the Feynman diagram expansion in
the path integral formalism. In order to get the corresponding physical picture for the
local spin as described in the HM, we use the Popov and Fedotov procedure (PFP) to
impose such constraint, only allow the spin occupation number of each site to be exactly
one.
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Chapter 1 Introduction

1.1 Outline of thesis
This thesis is organized in the following way:

1. In chapter 2, some basics of the magnetic interaction are reviewed. After that, the
origin of the magnetic exchange interaction of the Heisenberg type is discussed.
The concept of superexchange interaction is introduced in the end in order to
build a connection between the microscopic Heisenberg Hamiltonian and effective
interactions in magnetic materials.

2. In chapter 3, we give a derivation of the path integral formalism in the fermionic
case and illustrate the spirit of the Hubbard-Stratonovich transformation. In the
end a of this chapter we show a way of imposing the local constraint on the site
occupancy known as the Popov-Fedatov procedure.

3. In chapter 4, we introduce the basic properties of the J1-J2 HM in order to give
readers some feeling of the model.

4. In chapter 5 we begin with writing down the path integral formulation for the
J1-J2 HM. Then we perform a study of this model by using the saddle point
approximation. A critical temperature for Néel and Collinear phases are found at
the mean field level.

5. In chapter 6 the effects of the fluctuations around the saddle point are taken
into the consideration. The spin-wave dispersion relation for both Néel state and
Collinear state are found. In the end the chapter, we shortly prove the Mer-
min–Wagner–Hohenberg Theorem.

6. In chapter 7 We first illustrated the key features of the nematic phase transition
by a toy model. Then we perform the Feynman diagram expansion to fourth order,
and an attempt for computing the Tc of nematic transition is made, but the results
of which is not correct so far and a further modification towards it is needed.
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Chapter 2

Exchange interaction

The concept of exchange interaction is always linked with a commonly known effect,
which is the ordering phenomenon of magnetic moments in certain materials below the
critical temperature. People may ask the following question: is this ordering necessary
to bring in this type of exchange interaction, or can we just use magnetic dipole-dipole
interactions to explain the Curie temperature instead? Unfortunately, the answer is no,
and the reason is that the magnitude of magnetic dipole-dipole interactions is too small
to account for the mechanism of the ordering phenomenon. The energy of the interaction
of this type for two magnetic dipoles µ1 and µ2, whose magnitude are described by the
Bohr magneton (µB), takes the form:

E = µ0
r3

[
µ1 · µ1 − 3

r2 (µ1 · r)(µ2 · r)
]
, (2.1)

where µ0 is the magnetic constant, r is a unit vector parallel to the line joining the
centers of the two dipoles. r is the distance between the centers of µ1 and µ2, and the
magnitude of it is comparable to the lattice spacing, which is around 1 Å. Therefore, we
can make an estimation by using Eq.2.1 with all the parameters we just mentioned, and if
we convert this energy scale into the scale of temperature, we find that the corresponding
temperature of magnetic dipolar interaction is roughly 1K, which is way smaller than
the Curie temperature of most magnetic materials. For example, the Curie temperature
of iron is around 1043K.

2.1 The origin of exchange interaction
To begin with, we shall consider a model with two electrons, which are located in the
spatial coordinates r1 and r2. Due to the fact that the electrons are ferminons and
their overall wave-functions must be antisymmetric, a singlet pair acquires a symmetric
spatial wave-function and a triplet pair acquires an antisymmetric spatial wave-function,
as given by:

ΨS = 1√
2

[
ψa(r1)ψb(r2) + ψa(r2)ψb(r1)

]
, (2.2a)

ΨT = 1√
2

[
ψa(r1)ψb(r2) − ψa(r2)ψb(r1)

]
. (2.2b)

6



Chapter 2 Exchange interaction

We use Ĥ to represent the Hamiltonian for our model and we can write the energy
for both cases as:

ES =
∫

Ψ∗
SĤΨSdr1dr2, (2.3a)

ET =
∫

Ψ∗
T ĤΨTdr1dr2, (2.3b)

ES − ET = 2
∫
ψ∗
a(r1)ψ∗

b (r2)Ĥψa(r2)ψb(r1)dr1dr2︸ ︷︷ ︸
J

. (2.3c)

Now we have to recall some knowledge of the first quantization of the spin, in order
to link the energy difference shown in Eq.2.3 with the model of two coupled spins. For
a model of two coupled spins (1

2). We can use the total spin representation to get the
following relations:

Ŝtot = Ŝa + Ŝb, (2.4a)

Ŝ2
a/b |S⟩ = 3

4 |S⟩ (S = 1
2), (2.4b)

Ŝ2
tot |S⟩ = S(S + 1) |S⟩ (S = 0, 1). (2.4c)

From Eq.2.4 it is not difficult to show that the operator of Ŝa · Ŝb takes the following
eigenvalues:

Ŝa · Ŝb =


−3

4 (S = 0, Singlet pair)

+1
4 (S = 1, Triplet pair).

(2.5)

Using the J that has been defined in Eq.2.3c, we can further write:

2J(1
4 − Ŝa · Ŝb) =

{
2J (S = 0, Singlet pair)
0J (S = 1, Triplet pair).

(2.6)

By putting together Eq.2.3c and Eq.2.6 we have:

ES/T = E0 + 2J(1
4 − Ŝa · Ŝb) = (E0 + J

2 )︸ ︷︷ ︸
const.

−2JŜa · Ŝb. (2.7)

As the final step, we can simply absorb the constant part in Eq.2.7 into chemical
potential and arrive at our effective Heisenberg Hamiltonian:

Ĥeff = −2JŜa · Ŝb (2.8)
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Chapter 2 Exchange interaction

2.2 The basic of superexchange
First we should examine the sign of the formulation of J that is defined by Eq.2.3c. This
term can be described as the self energy of the charge distribution ψ∗

a(r1)ψb(r2) and it is
valid only for truly orthogonal orbitals. Hence, it is expected to acquire a small positive
value, and this mean a weak ferromagnetism is always favoured in order to lower the
energy. On the other hand, the universal existence of the chemical bonds that charac-
terized by the electron pairs with opposite spin suggest that we are still missing a term
that accounts for the mechanism of antiferromagnetism.

In order to come up with a mechanism for antiferromagnetism, we should first think
about in what sense the spin singlet pair can lower the energy compared to the triplet
pairs. Following this idea, we notice that what we are missing should be the tunneling
effect of electrons between the neighbouring lattice sites. This effect is only allowed
for anti-parallel spin pairs due to the Pauli exclusive principle, and it is really this
delocalization of electron pairs with opposite spin that actually lower the kinetic energy
of each electron.

Figure 2.1: A picture of the connection between the delocalization of electron pair and
the kinetic energy sketched by the idea of particle in the box.

In Fig.2.1 we borrow the idea of “particle in the box” to examine the kinetic energy
of each electron on each lattice site. Since we have the electron pairs with opposite spin,
they are allowed to move between neighbouring lattice sites which can be qualitatively
imagined as moving in a “box” which has a length comparable to the atomic spacing.
The electrons are more localized around the ion if they acquire the same spin, and this
shrinks the size of the box and cause a significant increase of the kinetic energy of each
electron.
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Chapter 2 Exchange interaction

As discussed in Chapter 2.2 of [8], with the help of applying the second quantization
of spin to the Hubbard model, we can show the tunneling effect can result in antifer-
romagnetism analytically. To begin with, we shall first introduce the auxiliary-fermion
formulation for later convenience:

Si = f †
iα(σ

2 )
αβ
fiβ, (2.9)

where we note:

σ = (σ1, σ2, σ3) =
([

0 1
1 0

]
,

[
0 −i
i 0

]
,

[
1 0
0 −1

])
(2.10)

In the Hubbard model, the tunneling intensity between the neighbouring sites is char-
acterized by t, and the Coulomb interaction is described by the factor U . So the Hamil-
tonian takes the following form:

Ĥ = −t
∑
⟨ij⟩

f †
iσfjσ︸ ︷︷ ︸

Ĥt

+U
∑
i

n̂i↑n̂i↓︸ ︷︷ ︸
ĤU

. (2.11)

Table 2.1: A table for different occupation scenarios of two sites model

Site A Site B Ĥ

↑↓ 0 Ĥt + ĤU

0 ↑↓ Ĥt + ĤU

↑ ↓ Ĥt

↓ ↑ Ĥt

↑ ↑ 0
↓ ↓ 0

From Table 2.1 we can learn that in the limit of Ut ≫ 1, the term of ĤU is significantly
larger than Ĥt, which results in a ground state that prefers a single occupancy on each
lattice site. For the sake of probing more properties of the spin alignment of the ground
state, we shall impose a perturbation theory in the following way: the general idea is
by treating the term Ĥt as a week perturbation of ĤU , we can get the expression of the
effective Hamiltonian Ĥeff. To begin with, we are always allowed to perform a unitary
transformation (change of basis) to our Hamiltonian:

UĤU † = Ĥ. (2.12)
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Chapter 2 Exchange interaction

Here we have to restrict the form of our unitary transformation as follows, which
preserves the Lie structure of the problem:

U = e−tĜ, with: Ĝ = −Ĝ†. (2.13)

Inserting Eq.2.13 into Eq.2.12 and apply the Baker–Campbell–Hausdorff formula
we can get:

Ĥ = e−tĜĤetĜ = Ĥ − t

1! [Ĝ, Ĥ] + t2

2! [Ĝ, [Ĝ, Ĥ]] + · · · (2.14)

Because we are interest in the limit U
t ≫ 1, we can neglect the higher order correction

terms of t to get the following effective Hamiltonian:

Ĥeff = Ĥ − t[Ĝ, Ĥ] +O(t3)
= ĤU + t[Ĥt, Ĝ] + Ĥt + t[ĤU , Ĝ]︸ ︷︷ ︸

Term 1

. (2.15)

Now we can apply the ansatz Ĝ = 1
tU (P̂sĤtP̂d − P̂dĤtP̂s) in order to get rid of the

Term 1 shown in Eq.2.15 and fulfill the restriction of Ĝ described in Eq.2.13 at the same
time. By inserting this ansatz into Eq.2.15 we have:

Ĥeff = ĤU + t[Ĥt,
1
tU

(P̂sĤtP̂d − P̂dĤtP̂s)]. (2.16)

Where P̂s and P̂d represent the projection operator to the single and double occupied
subspace, respectively. We can further project the effective Hamiltonian to the single
occupation subspace to get:

P̂sĤeffP̂s = −2 t
2

U
P̂s
(
1 + f †

iσf
†
jσ′fiσ′fjσ

)
P̂s = JP̂s

(
− 1

2f
†
iσf

†
jσ′fiσ′fjσ − 1

2
)
P̂s, (2.17)

where J = 4t2
U .

Then we shall link the expression in Eq.2.17 with the spin operators by using the
second quantization of the spin shown in Eq.2.9:

Ŝi · Ŝj = 1
4
∑

α,β,γ,η

f †
iα(σ)

αβ
fiβ · f †

jη(σ)ηγfjγ . (2.18)

We shall carry out the sum over Pauli-matrixes first by using following identity:

(σ)
αβ

· (σ)ηγ = 2δαγδβη − δαβδγη. (2.19)

Applying Eq.2.19 to Eq.2.18 and carries out the sum over spins, we will ended up
with:

Ŝi · Ŝj = 1
2f

†
iαfiβf

†
jβfjα − 1

4f
†
iαfiαf

†
jβfjβ. (2.20)

10



Chapter 2 Exchange interaction

Recalling the anti-commutation relation of fermions

{f †
iα, fjβ} = δijδαβ {f †

iα, f
†
jβ} = {fiα, fjβ} = 0, (2.21)

we can swap the first term of Eq.2.20 to get:

Ŝi · Ŝj = −1
2f

†
iαf

†
jβfiβfjα − 1

4 n̂in̂j . (2.22)

By inserting Eq.2.22 into Eq.2.17 we can get the final description of the effective
Hamiltonian that is achieved by perturbation theory:

P̂sĤeffP̂s = J
(
Ŝi · Ŝj − 1

4
)
. (2.23)

From Eq.2.23 it is clear to see that since J = t2

U > 0, the antiferromagnetic spin
configuration is more favourable now with the consideration of the tunneling effect as the
perturbation of the strong Coulomb onsite repulsion. The projection operators appear
in Eq.2.23 tell us that the electron system that is related to the Heisenberg Hamiltonian
should be considered as the scenario of single occupancy of each site, namely the system
is in the insulating phase. And in order to fulfill this constrain, we can use a specific
method involves a kind of single occupancy projector and it is known as the Popov-
Fedotov procedure. This method will be discussed in the following chapter. In this way,
we managed to show that by considering hybridization effects between two orbitals of the
electrons on neighbouring sites, anti-parallel spins can take advantage of the tunneling
effect to lower their kinetic energy.

Figure 2.2: The crystal structure of manganese (II) oxide. Purple: Mn, red: O

Then, we shall briefly discuss about what mechanism is possible to account for this
kind of neighbouring magnetic orbitals hybridization in real materials, namely the su-
perechange. First of all, the direct overlap between neighbouring magnetic orbitals is
usually very small and insufficient to determine the magnetic properties of the mate-
rial. This is mainly because in rare earths or even transition metals, the electrons are
localized closely around the nucleus, hence the overlap between the probability density
of two neighbouring electrons is very small. In order to find a more realistic picture for
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Chapter 2 Exchange interaction

such mechanism, we have to consider the indirect exchange interaction in the ionic
solids. Let us now look at the example of one antiferromagnet: Manganese (II) Oxide
(MnO). The crystal structure of MnO is shown in Fig.2.2, in which the dashed box marks
an important structure that connected with the mechanism of the superexchange. The
superexchange can be imagined as an indirect exchange interaction between two non-
neighbouring magnetic ions (Mn2+) that is mediated by a non-magnetic ion (O2−) in
the middle, or so to speak, the co-tunneling effect. With the help of valence electrons in
the oxygen orbitals, the hybridization intensity is significantly increased. In general, the
above superexchange mechanism results in anti-ferromagnetism, and only in few cases
can lead to ferromagnetism, which is due to the existence of Hund’s coupling when more
than one orbitals need to be taken into consideration.

In conclusion, we first discussed about the origins of the Heisenberg Hamiltonian,
which can be attributed to the interplay between the Coulomb interaction and the Pauli
exclusion principle. Afterwards, the tunneling effect is considered in order to provide an
explanation for the common occurrence of antiferromagnetism in real materials. Fur-
thermore, we also stressed the significant role played by the indirect mechanism of su-
perexchange in this context.

12



Chapter 3

Theoretical background

3.1 Path Integral formalism
The Feynman path integral is a vivid way of formulating and illustrating the relation
between quantum mechanics and classical mechanics. The probability amplitude for a
particle propagating from state |i⟩ to state |f⟩ has the following formulation:

⟨f | e
−iĤt

ℏ |i⟩ =
∑

Path: i→f

exp
[
i
SPath
ℏ

]
(3.1)

As we can see from above, if we go to the classical limit (ℏ → 0), those paths that do not
fulfill the condition δS[x] = 0, but acquire a strong oscillating phase (φ = SPath

ℏ → ±∞),
which means that the contribution of these paths average to zero after carrying out the
sum, hence the only one remains is the classical path that minimizes the action. We can
use the stationary phase approximation to include quantum effects into the frame of
the classic limit. We shall not discuss the details about this method here, but the similar
method is used in Chapter 6 in order to consider effects of the quantum fluctuations. In
the context of the path integral formalism, one may imagine these quantum fluctuations
as a smearing effect to the boundary of the classical path.

By using the same strategy of summing over all the possible trajectories of a moving
particle that described by the time evolution operator, we can sum over all the possible
configurations of the quantum field that described by the Boltzmann density matrix,
since these two operators have a similar structure (e

−iĤt
ℏ and e−βĤ). In order to do so,

like we find the eigenstate of coordinate and momentum operators for the single-particle
quantum mechanics, naturally we want to find the expression for the eigenstate of the
creation and annihilation operators, which are widely used for the many body system.
Mathematically, coherent states are possible to be defined as the eigenstates of the
annihilation operators:

|ϕ⟩ = eξ
∑

i
ϕiâ

†
i |0⟩ , (3.2)

where ξ = 1(−1) for Bosons(Fermions). From Eq.3.2 we can use the commutation
relations of the bosonic and fermionic operators to have:

[âη, âλ]± |ϕ⟩ = [aη, aλ]± |ϕ⟩ = 0. (3.3)

13



Chapter 3 Theoretical background

From Eq.3.3 we notice that the eigenvalues of the bosonic annihilation operators (+)
obey the commutation relations and thus can be represented by complex numbers, while
for fermionic annihilation operators (−), they obey anti-commutation relation, which
requires a new definition. This kind of numbers are actually classified as the Grassman
numbers. We will use the notation: aλ to represent the conjugate of aλ in the following
discussions.

Here we give a prove of the following identity:

Z = Tr
[
e−β(Ĥ−µN̂)

]
=
∫
D[ψ,ψ]e−S[ψ,ψ], (3.4a)

S[ψ,ψ] =
∫ β

0
dτ
(
ψ∂τψ +H[ψ,ψ] − µN [ψ,ψ]

)
, (3.4b)

which constitutes the central expression of the Path integral formalism. Due to the
limitation of the length of this thesis, we shall show this derivation for fermions, which
can be easily extended to the case of bosons.

First, one can define a complete set of Fock space states (|n⟩), then we can further
write the left hand side of the Eq.3.4a as:

Z =
∑
n

⟨n| e−β(Ĥ−µN̂) |n⟩ . (3.5)

Here we first introduce the expression for the resolution of the identity:∫
d[ψ0, ψ0]e−ψ0ψ0 |ψ0⟩

〈
ψ0

∣∣∣ = I. (3.6)

Now we are allowed to insert this identity into Eq.3.5,

Z =
∫
d[ψ0, ψ0]e−ψ0ψ0

∑
n

⟨n|ψ0⟩
〈
ψ0

∣∣∣ e−β(Ĥ−µN̂) |n⟩ . (3.7)

The fermionic coherent states fulfill ⟨n|ψ0⟩
〈
ψ0

∣∣∣n〉 =
〈
−ψ0

∣∣∣n〉 ⟨n|ψ0⟩, so that we can
carry out the sum over states |n⟩ and get:

Z =
∫
d[ψ0, ψ0]e−ψ0ψ0

〈
−ψ0

∣∣∣ e−β(Ĥ−µN̂) |ψ0⟩ . (3.8)

First of all, we have to apply the antiperodic (perodic) boundary condition,
for fermion (bosons) which forces ψN = −ψ0 (ψN = ψ0). Then we can reformulate
e−β(Ĥ−µN̂) into (e−∆τ(Ĥ−µN̂))N , where ∆τ = β

N . In the end we insert the resolution
of identity N-1 times into Eq.3.8 and get:

Z =
∫ [ N∏

i=1
d[ψi, ψi]

]
︸ ︷︷ ︸

D[ψ,ψ]

e−
∑N

i=1 ψiψi
N∏
i=1

〈
ψi

∣∣∣ e−∆τ(Ĥ−µN̂)︸ ︷︷ ︸
≈1−∆τ(Ĥ−µN̂)

|ψi−1⟩ . (3.9)
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Chapter 3 Theoretical background

Using the properties of the coherent states:
〈
ψi
∣∣∣ψj〉 = eψiψj and expanding the expo-

nential to first order we can get:

Z =
∫
D[ψ,ψ]e

−
∑N

i=0 ∆τ
[
ψi(

ψi−ψi−1
∆τ )+H[ψ,ψ]−µN [ψ,ψ]

]
, (3.10)

which in the limit of N → ∞ gives:

Z =
∫
D[ψ,ψ]e

−
∫ β

0 dτ

(
ψ∂τψ+H[ψ,ψ]−µN [ψ,ψ]

)
. (3.11)

In practice, we usually perform the Fourier transformation so that we can diagonalize
our derivative operators. This is done in a similar way in the case of real time. Here
we have to use the expressions of the matsubara frequencies for bosons and fermions in
order to fulfill the periodic and antiperiodic boundary conditions, respectively:

ψ(τB) = 1√
β

∑
iνm

e−iνmτψ(iνm) iνm = 2nπ
β

(Boson) (3.12a)

ψ(τF ) = 1√
β

∑
iωn

e−iωnτψ(iωn) iωn = (2n+ 1)π
β

(Fermion). (3.12b)

The path integral is exactly solvable when it take the form of the Gaussian integral,
for a single real variable is∫ ∞

∞
dxe− 1

2ax
2+bx = e

b2
2a

√
2π
a

(a > 0). (3.13)

The Gaussian integral can be readily extended to the case of bosonic operators which
is the complex matrix version of it:

∫ [∏
α

dZαdZα
2πi

]
e

−Z
[
M
]
Z+J Z+Z J

= (detM)−1e
J
[
M−1

]
J
. (3.14)

The single underline and double underline stress that the variable should be viewed
as a vector and a matrix, respectively.

Similarly one can show that in the fermionic case this Gaussian integral takes the
following form instead:

∫ [∏
j

dcjdcj

]
e

−c
[
M
]
c+J c+c J

= (detM)e
J
[
M−1

]
J
. (3.15)

By generalizing Gaussian integral we are able to deal with an action that contains
with quadratic terms, and one point that needs to be stress is that the matrix M above
has to be a positive definite matrix in order to make the integration converge.
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Chapter 3 Theoretical background

However, when dealing with interactions (for example Coulomb interaction), one nor-
mally has to consider a non-Gaussian integral which contains a quartic term inside the
action. Therefore we need a method to decouple the fermionic quartics, and that can
be done by Hubbard-stratonovich transformation. As we can see from Fig.3.1,
after carrying out the whole procedure of the Hubbard-stratonovich transformation, the
quartics are decoupled into bilinears that are coupled to a fluctuating Weiss field, which
is actually a combination of the white noise field and the physical field. Then, we can
absorb this Weiss field term into the prefactors of the bilinears, so that we managed
to reduce the partition function as the Gaussian integral. We shall not show the prove
of the Hubbard-stratonivich transformation here, for we will show a derivation of it in
section 4.1.

Figure 3.1: The procedure of the Hubbard-stratonovich transformation, where the grey
and orange diamond represent the white noise field and the Weiss field re-
spectively.

In a short conclusion, so far we managed to show the process of adapting the Feynman
path integral method into the quantum many body system, which is in our great interest.
In the later chapters we will show how to perform a study of J1-J2 Heisenberg model in
the path integral formalism.

3.2 The Popov-Fedotov procedure(PFP)
The Popov-Fedatov method [1] manages to impose a local constrain of exact single oc-
cupancy per site in a ingenious way such that it allows the Feynman diagram expansion
for spin operators within only a small modification to the matsubara frequencies of the
fermionic propagator.
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Once again, in the auxiliary-fermion formulation, spin-1
2 can be represented by fermionic

field operators and the corresponding elements in Pauli matrices:

Si = f †
iα( σ⃗2 )

αβ
fiβ. (3.16)

However, the auxiliary-fermion formulation of spin brings in two nonphysical states
which are zero occupation and double occupation of a single site on the lattice. As we
have shown in section 2.2, the Heisenberg Hamiltonian is an effective Hamiltonian for
the half filled Hubbard model and therefore a local constrain in each site i is needed in
order to project all possible states to the physical states for the lattice model only.∑

α

f †
iαfiα = n

(i)
f = 1 (α =↑, ↓). (3.17)

For example if we have N lattice sites on a square lattice, and m is some set of physical
quantum numbers and in the Fock space of the pesudofermion, a state can be written
as:

|m,n1, n2, n3 · · ·ni · · ·nN ⟩ (ni = 0, 1, 2). (3.18)

The only physical state that we care about can be written as:

|Physical⟩ = |m, 1, 1, 1, · · · , 1, · · · , 1⟩ . (3.19)

Then, we know that any nonphysical state should contains at least one zero or double
occupation site, and the nonphysical states must appear in pairs of a given site ni, for
example we can have such two states that only have occupation number different on site
i:

|Nonphysical-i0⟩ = |m, 2, 0, 1, · · · , ni = 2, · · · , 1⟩ , (3.20a)
|Nonphysical-i2⟩ = |m, 2, 0, 1, · · · , ni = 0, · · · , 1⟩ . (3.20b)

Notice that the spin operators has following properties:

Ŝi |Nonphysical-i0⟩ = 0, (3.21a)
Ŝi |Nonphysical-i2⟩ = 0. (3.21b)

Which will leads to the same eigenenergy for both states:

Ĥ |Nonphysical-i0⟩ = Ei0 |Nonphysical-i0⟩ , (3.22a)
Ĥ |Nonphysical-i2⟩ = Ei2 |Nonphysical-i2⟩ . (3.22b)

Ei0 = Ei2 (3.23)
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Chapter 3 Theoretical background

The beauty of this method is that an imaginary chemical potential for pesudo-fermions
is introduced to project out these pairs of nonphysical states with each other:

λf = iπ
T

2 (3.24)

Then, the partition function of the Hamiltonian is written as follows:

Zppv = Tr[e−β[H+
∑

i
iπ T2 (n(i)

f
−1)]] = (−i)NTr[e−βH(ppv) ]. (3.25)

If we write out the explicit form of the trace we will find:

(−i)NTr[e−βH(ppv) ] = (−i)N
∑
m

∑
n1,··· ,nN

⟨m,n1, · · ·ni · · ·nN | e−βH(ppv) |m,n1, · · ·ni · · ·nN ⟩ .

(3.26)
Now with this complex chemical potential in our Hamiltonian, we will find the follow-

ing fact:

⟨Nonphysical-i0| e−βH(ppv) |Nonphysical-i0⟩ = e−iπ2Ei0, (3.27a)

⟨Nonphysical-i2| e−βH(ppv) |Nonphysical-i2⟩ = ei
π
2Ei2. (3.27b)

It is obvious now that these two elements will sum to zero after applying the complex
chemical potential, and if we keep computing in pairs like this we can first find that
we ended up projecting only onto the physical states with respect to site i, and then
repeating this process site by site we can eventually show that:

(−i)NTr[e−βH(ppv) ] = (−i)N
∑
m

⟨m, 1, · · · 1 · · · 1| e−βH(ppv) |m, 1, · · · 1 · · · 1⟩

= (−i)N
∑
m

⟨m, 1, · · · 1 · · · 1| e−βH |m, 1, · · · 1 · · · 1⟩

= (−i)NZ.

(3.28)

After that we can introduce a physical operator Ô that is consisted with linear com-
bination of spin operators, and it’s expectation value in the Popov-Fedatov method is
computed as:

⟨Ô(ppv)⟩ = (−i)NTr[e−βH(ppv)Ô]
(−i)NTr[e−βH(ppv) ]

. (3.29)

Since we already know the expression for the numerator of Eq.3.29 we only need to
compute the denominator:

(−i)NTr[e−βH(ppv)Ô] = (−i)N
∑
m

∑
n1,··· ,nN

⟨m,n1, · · ·ni · · ·nN | e−βH(ppv)Ô |m,n1, · · ·ni · · ·nN ⟩ .

(3.30)
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Then we need to introduce an identity commonly used in quantum mechanics:

1 =
∑
m′

∑
n′

1,··· ,n
′
N

∣∣m′, n′
1, · · ·n′

i · · ·n′
N

〉 〈
m,n′

1, · · ·n′
i · · ·n′

N

∣∣ . (3.31)

Inserting this identity into Eq.3.30 we will find that:

(−i)NTr[e−βH(ppv)Ô] = (−i)N
∑
m

∑
n1,··· ,nN

⟨m,n1, · · ·ni · · ·nN | e−βH(ppv)Ô |m,n1, · · ·ni · · ·nN ⟩

= (−i)N
∑
m

∑
n1,··· ,nN

⟨m,n1, · · ·nN | e−βH(ppv) |m,n1, · · ·nN ⟩

× ⟨m,n1, · · ·nN | Ô |m,n1, · · ·nN ⟩ .

(3.32)

The expectation value of the operator O has the same eigenenergy for a pair of states
that only have difference on the occupancy on single site (zero and double). Therefore,
the total sum of the expectation value of the operator O becomes identical to the state
that only allow single occupancy:

(−i)NTr[e−βH(ppv)Ô] = (−i)N
∑
m

⟨m, 1, · · · 1 · · · 1| e−βH(ppv)Ô |m, 1, · · · 1 · · · 1⟩

= (−i)N
∑
m

⟨m, 1, · · · 1 · · · 1| e−βHÔ |m, 1, · · · 1 · · · 1⟩

= (−i)NTr[e−βHÔ].

(3.33)

Finally by combining Eq.3.28, Eq.3.29 and Eq.3.33 we can get:

⟨Ô(ppv)⟩ = (−i)NTr[e−βH(ppv)Ô]
(−i)NTr[e−βH(ppv) ]

= Tr[e−βHÔ]
Tr[e−βH ] . (3.34)

Then we have shown the following identity:

⟨Ô(ppv)⟩ = ⟨Ô⟩Physical. (3.35)

In conclusion, we proved that by introducing the imaginary chemical potential into
the Hamiltonian, the contribution to the partition function of the nonphysical states are
all canceled out by pairs, which eventually leaves an identical expectation value to the
physical expectation value of the observable. Later we will apply this method to our
square lattice J1-J2 Heisenberg model. Practically, if we want to apply this method to
Feynman diagram expansion for spin-1

2 system, we can use a propagator with a shifted
matsubara frequency ω̃n = 2πT (n+ 1

4). For example a bare propagator looks like:

G(iω̃n) = 1
iωn − λf

= 1
i2πT (n+ 1

4)
= 1
iω̃n

. (3.36)
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The J1-J2 Heisenberg model

In the J1-J2 Heisenberg model, all spins are considered to be located on the sites of
a square lattice, and the occupation number of the electron on each site should be
exactly one. For our convenience, the lattice spacing a is set to one in the following
discussion. The interaction strength between the nearest and the next nearest neighbours
are characterized by the factor of J1 and J2, respectively. Therefore we can represent
the J1-J2 Heisenberg model by the following Hamiltonian:

H = J1
2
∑
⟨ij⟩

Si · Sj + J2
2
∑

⟨⟨ij⟩⟩
Si · Sj

= 1
2
∑
ij

JijSi · Sj ,

(4.1)

where in above, ⟨ij⟩ and ⟨⟨ij⟩⟩ denote the nearest and the next nearest neighbours,
respectively. Jij represent the matrix elements of the interaction matrix.

Figure 4.1: The plot of the structure of J1-J2 Heisenberg model in two penetrating Néel
lattices, which are stressed in the color of black and blue respectively.
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Chapter 4 The J1-J2 Heisenberg model

As we have shown in Fig.4.1, we can define two sub-lattices which are known as the
Néel lattices. In this way, we can view J1 (J2) as the coupling intensity between (within)
two Néel lattices respectively.

In order to find the ground state of the J1-J2 Heisenberg model for a give value of
J1 and J2 in the classical limit, we can use Fourier transformation to diagonalize our
Hamiltonian and find the lowest eigenvalue and the corresponding eigenvector. This is
done by using the Fourier conventions:

Si = 1√
N

∑
q

eiqriSq (4.2)

Sq = 1√
N

∑
i

e−iqriSi (4.3)

Due to the fact that Jij only depends on the relative distance between sites i and j,
we can use the following Fourier convention for it:

Jij = 1
N

∑
q

eiq(ri−rj)Jq (4.4)

Jq =
∑
i

e−iq(ri−rj)Jij (4.5)

Then we can perform the Fourier transformation of Eq.4.1 to get:

H = 1
2
∑
q

JqSq · S−q (4.6)

with
Jq = 2J1(cos qx + cos qy) + 4J2 cos qx cos qy. (4.7)

From Eq.4.7, for a given J1 > 0 and J2 > 0, we can find the magnetic wave vector
q = (qx, qy) that minimizes Jq, which corresponds to the classical ground state configura-
tion of our spin system. As shown in Fig.4.2, in the limit J2

J1
< 0.5, we obtain q = (π, π)

and the ground state is found to be in the Néel state, in which all the spins are aligned
anti parallel to all their nearest neighbours. Nevertheless, in the limit J2

J1
> 0.5, we have

q = (0, π) or q = (π, 0) and the ground state is found to be in the Collinear state, in
which all the spins (1) aligned anti parallel to all their nearest neighbours along either
the X or Y direction, and (2) aligned parallel to all their nearest neighbours a different
direction. One special case that needs to be stressed is when the system is finely tuned
to be in the limit J2

J1
= 0.5. In this case a infinite number of q are found on the edge of

the first Brillouin zone, which implies that there is a massive ground state degeneracy
and it is in this regime that the frustration of each spin is maximized.

Here we want to give a more detailed discussion of the meaning of frustration, and
let us start with following equation:

[Six,Si · Sj ] = iℏ(SizSjy − Si
ySj

z). (4.8)
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(a) (b) (c)

J2/2

J1/4

Figure 4.2: The upper figures are the contour plot of Jq in the regime:(a)J2
J1

= 0.2,
(b)J2

J1
= 0.5,(c)J2

J1
= 5. The lower figures are examples of the corresponding

classical ground state configurations within a unit cell.

From Eq.4.7 we can first conclude that [H,Si] ̸= 0, unless we go to the classical limit
(ℏ → 0), where we can treat the spin operators as vectors, which corresponds to the
classical Heisenberg model. In classical limit, the energy per bond of a spin-1

2 system
can be represented as:

EClassical
NBonds

= ⟨Si⟩ · ⟨Sj⟩ = cosθ
4 , (4.9)

where θ represent the average angle between all spin pairs due to existence of frus-
tration. Then we are manage to construct a configuration that fulfill cosθ = −1 when
there is no frustration, where each spin is anti-aligned with all it’s neighbours. However,
in the scenario shown in the Fig.4.2(b), notice that the energy per bond is significantly
suppressed due to the existence of frustration.

Alternatively, we can start our consideration from the quantum entanglement between
two spins. We can use the total spin representation to write:

ESinglet
NBonds

= ⟨Si · Sj⟩ = 1
Nc

⟨1
2(Si + Sj︸ ︷︷ ︸

Stot=0

)2 − 3
4⟩ = − 3

4Nc
. (4.10)

Now, if we compare Eq.4.9 and Eq.4.10, we find that if the quantum entanglement
between spins is allowed, we have to pay a “price” for the coordinate number: Nc, for we
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can not optimising all bonds at the same time. On the other hand the system constructed
in this way is “robust” against frustrations.

+ + 

Figure 4.3: An illustration of the possible singlet paring ways when the frustration of
the system is maximized.

As a result, when the system is maximally frustrated, it may favour more being con-
structed with the spin singlets, and we can further lower the total energy of the system
by allowing these pairs resonate, namely, by constructing the ground states as the super-
position of all these possible ways of paring. In Fig.4.3, we illustrate the ways of paring
of four spins in total. The proper theory for describing this crossover (J2

J1
≃ 0.5) is called

the resonating valence bond theory first proposed by the P.W.Anderson et al. [9]. The
system is believed to enter the spin-liquid phase, which means that spins are not well
described by the vector model, for they should not be viewed as a rigid body anymore,
and instead a vanishing spin stiffness is found [10].

Figure 4.4: The extrapolated value of the spin stiffness in the ref. [10]

23



Chapter 4 The J1-J2 Heisenberg model

The above discussion can also be viewed as different ways of mean field decoupling the
Hamiltonian. In order to see this more clearly, first we shall use the auxiliary-fermion
formulation to rewrite our Hamiltonian as:

H = 1
4
∑

⟨⟨i,j⟩⟩

∑
α,β,γ,η

Jijf †
iα(σ)

αβ
fiβ · f †

jη(σ)ηγfjγ . (4.11)

From Eq.4.11, by using the PFP we can decouple the Hamiltonian directly, with the
local order parameters that represent the magnetic moment being 1

2
∑
αβ⟨f †

iα(σ)
αβ
fiβ⟩.

This is the way we choose to decouple the Hamiltonian in the following chapters, for
we are more interested in the magnetic ordering properties, especially regarding the Ne-
matic order of the J1-J2 Heisenberg model.

For the resonating valence bond theory, we need to further carry out the sum over the
Pauli matrices in Eq.4.11 obtaining:

H = −1
2
∑

⟨⟨i,j⟩⟩

∑
α,β

Jijf †
iαfjαf

†
jβfiβ + 1

2
∑

⟨⟨i,j⟩⟩

∑
α,β

Jij(ni − 1
2ninj)︸ ︷︷ ︸

Constant

. (4.12)

If we impose the constrain of single occupancy by a Lagrangian multiplier instead of
using the (PFP) (⟨f †

iαfiα⟩ = 1) the fermion are allowed to hop between neighbouring
sites. The second term of Eq.4.11 is still a constant, while the first term now can be
expressed in terms of the non-local order parameter ⟨f †

iαfjα⟩, a non zero value of which
reflects a broken gauge invariance of the system.

On the other hand, as reported before by [11], we can also decouple the Hamil-
tonian directly into the local order parameters that represent the magnetic moment:
1
2
∑
αβ⟨f †

iα(σ)
αβ
fiβ⟩. And this is the way we choose to decouple the Hamiltonian in the

following chapters, for we are more interested in the magnetic ordering properties of the
system.

In summary, the J1-J2 Heisenberg model exhibits distinctive magnetic properties,
depending on the ratio between J2 and J1, except when the ratio approaches the maximal
frustration point of J2

J1
= 0.5. When J2

J1
< 0.5, the system assumes a Néel state, whereas

for J2
J1

> 0.5, a Collinear state is observed. These states are valid when the effects
of thermal and quantum fluctuations are not considered. Additionally, there exists a
non-magnetic state in the intermediate range between these two states. The detailed
analysis of this state is beyond the scope of our discussion, as it requires applying mean
field decoupling to non-local parameters.
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Mean field theory

5.1 The Hubbard-Stratonovich transformation
In this section, mainly by following similar procedures that are discussed in Chapter 13
of [12], we provide a study of the properties of magnetic ground state of J1-J2 model
obtained at the mean-field level. The introduction of the bosonic Weiss field results in
the emergence of non-diagonal elements in momentum space, posing challenges when
attempting to invert the corresponding matrix to derive the expression for the Green
function. Consequently, we will proceed with the mean-field theory in real space in the
subsequent analysis. Our objective is to address the problem using the path integral
formalism, so that

Z =
∫

D[ψ̄, ψ]e−S[ψ̄,ψ], (5.1)

with
S[ψ̄, ψ] =

∫ β

0
dτ
∑
i

ψ̄i(∂τσ0)ψi + 1
2
∑
i,j

JijSi · Sj . (5.2)

Here, we introduced σ0 as the 2 × 2 identity matrix and the spinor operators

ψ̄i =
(
f̄↑i f̄↓i

)
, ψi =

(
f↑i
f↓i

)
. (5.3)

As we can see from Eq.4.7, the eigenvalue Jq of the exchange matrix can range from
negative to positive values. In order to apply the Hubbard Stratonovich decoupling
to this special case, we use following procedures that is motivated by [13]. Firstly, we
include a term that introduce a the white-noise vector field φq=(φxq, φ

y
q, φzq) into the

partition function:
ZH =

∫
D[φ]e−s[φ], (5.4)

with
S[φ] =

∑
q

∫ β

0
dτ

φq · φ−q

2|Jq|
. (5.5)

Because |Jq| is now a positive definite matrix, we can demonstrate that the product
of 5.1 and 5.4 is equivalent to rescale the original partition function by a constant rate.
This ensures that the physical properties of the system remain unchanged. Therefore
we can write our the new partition function as:
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Z × ZH =
∫

D[ψ̄, ψ]
∫

D[φ]e−s[ψ̄,ψ,φ], (5.6)

with
S[ψ̄, ψ,φ] =

∑
q

∫ β

0
dτψ̄q(∂τσ0)ψ−q + 1

2JqSq · S−q + φq · φ−q

2|Jq|
. (5.7)

Noticing that Jq can be both positive and negative, we can make good use of this
property by shifting our auxiliary bosonic fields as follows:

φq → mq − P (q)JqSq (5.8a)
φ−q → m−q − P (q)JqS−q, (5.8b)

where P (q) is a function that only depends on whether the specific q makes Jq positive
or negative.

P (q) =
{

−i (Jq > 0),
1 (Jq < 0).

(5.9)

Then, by inserting Eq.5.8 into Eq.5.7 we will get:

S[ψ̄, ψ,m] =
∑
q

∫ β

0
dτψ̄q(∂τσ0)ψ−q+1

2JqSq·S−q+

[
mq − P (q)JqSq

]
·
[
m−q − P (q)JqS−q

]
2|Jq|

,

(5.10)
which can be further grouped as:

S[ψ̄, ψ,m] =
∑
q

∫ β

0
dτψ̄q(∂τσ0)ψ−q+1

2Jq(1+ |Jq|
Jq

P (q)2)Sq·S−q+mq · m−q

2|Jq|
−|Jq|
Jq

P (q)Sq·m−q

(5.11)
Notice that the second term in Eq.5.11 is zero for all q since

|Jq|
Jq

P (q)2 =
{

−1 (Jq > 0),
−1 (Jq < 0).

(5.12)

By renaming |Jq |
Jq
P (q) as −P(q), we can rewrite Eq.5.11 as:

S[ψ̄, ψ,m] =
∑
q

∫ β

0
dτψ̄q(∂τσ0)ψ−q + mq · m−q

2|Jq|
+ P(q)Sq · m−q, (5.13)

where P(q) is defined as:

P(q) =
{
i (Jq > 0),
1 (Jq < 0).

(5.14)
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We also have to rename two auxiliary fields: mq = Mq

P(q) and m−q = M−q

P(−q) , so that
we get:

S[ψ̄, ψ,M] =
∑
q

∫ β

0
dτψ̄q(∂τσ0)ψ−q + Mq · M−q

2|Jq|P(q)2 + Sq · M−q, (5.15)

after noticing the fact that:

|Jq|P(q)2 =
{

−Jq (Jq > 0),
−Jq (Jq < 0).

(5.16)

Using Eq.5.15 in Eq.5.16 we get a decoupled Hamiltonian in momentum space:

S[ψ̄, ψ,M] =
∑
q

∫ β

0
dτψ̄q(∂τσ0)ψ−q + Sq · M−q − Mq · M−q

2Jq
, (5.17)

and due to the reason we mentioned in the very beginning we want to perform mean-
field theory in real space so we have to Fourier transform to Eq.5.17 obtaining:

S[ψ̄, ψ,M] =
∫ β

0
dτ
(∑

i

ψ̄i(∂τσ0)ψi + Si · Mi

)
− 1

2
∑
i,j

Mi(J−1)ij · Mj , (5.18)

By replacing the spin operator by the auxiliary-fermion formulation in Eq.5.18, we get
the action:

S[ψ̄, ψ,M] =
∫ β

0
dτ
∑
i

ψ̄i(∂τσ0 + 1
2Mi · σ⃗)ψi − 1

2
∑
i,j

Mi(J−1)ij · Mj . (5.19)

5.2 Saddle point approximation
In order to explore how the fluctuating Weiss field Mi is related to the spin polarization
Si we have to make a saddle-point approximation, hence, let us start by writing down
the partition function:

Z =
∫
D[ψ̄, ψ,M]e−S[ψ̄,ψ,M] =

∫
D[M]e−SE [M], (5.20)

with
e−SE [M] =

∫
D[ψ̄, ψ]e−S[M,ψ̄,ψ]. (5.21)

In the mean field theory, we assume all spins polarized along the z-axis Mi =(
0 0 Mi

)
and we approximate the partition function by its value at the saddle point:

Z =
∫
D[M]e−SE [M] ≈ e−SE [M(0)], (5.22)
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where:
δSE [M]
δM |M=M(0) = 0, (5.23)

which means that if we differentiate on the both side in Eq.5.22, the saddle point
condition implies:

δSE [M]
δM = 1

e−SE [M]

∫
D[ψ̄, ψ][

∑
j

(J−1)ijMj − 1
2 ψ̄iσ⃗ψi]e

−S[M,ψ̄,ψ]. (5.24)

Applying the saddle point approximation (Eq.5.23) to Eq.5.24:

∑
j

(J−1)ijM(0)
j = 1

2⟨ψ̄iσzψi⟩|hE [M(0)] = ⟨Szi ⟩|hE [M(0)], (5.25)

and inserting a term
∑
i Jαi on both side of Eq.5.25 so that we can get,

∑
i

Jαi⟨Szi ⟩|hE [M(0)] =
∑
j

∑
i

Jαi(J−1)ijM(0)
j =

∑
j

M(0)
j δαj = M(0)

α . (5.26)

Here we have to introduce a useful identity for later convenience:∑
j

(J−1)ijJjα = δiα. (5.27)

By using the above identity we have:

M(0)
i =

∑
j

Jij⟨Szj ⟩|hE [M(0)]. (5.28)

In the mean-field descriptions of both the Néel and Collinear orders, all spins are
polarized along the same axis, and for our convenience we can choose this direction as
the z-axis. Nevertheless, we are also allowed to define an ordering factor Q = (Qx, Qy) =
(0, 0), (π, π), (0, π), (π, 0) for each phase, so that we can track the spatial dependence of
the spins in different orders shown as follows:

⟨Si⟩|hE [M(0)] = ⟨Sj⟩|hE [M(0)]e
iQ(R⃗j−R⃗i), (5.29)

By using Eq.5.28 together with Eq.5.29 allows us to construct the relation between
the fluctuating Weiss field Mi and the spin polarization Si as:

M(0)
i = JQ⟨Szi ⟩|hE [M(0)], (5.30)

where,
JQ = 2J1(cosQx + cosQy) + 4J2 cosQx cosQy (5.31)

.
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5.3 Mean-field theory as a saddle point of the path integral
The next step is to obtain the self-consistent equation for the J1-J2 model. In order
to do this we start with writing down the constrained action using the Popov-Fedatov
method on our lattice model :

Sppv[ψ̄, ψ,M] =
∫ β

0
dτ
∑
i

ψ̄i[(∂τ +λf ) ·σ0 + 1
2Mi · σ⃗]ψi−

1
2
∑
i,j

Mi(J−1)ijMj . (5.32)

Then we can apply the saddle point approximation described by Eq.5.23, which simply
replaces the fluctuating Weiss field by its value at static saddle point:

Sppv[ψ̄, ψ,M(0)] =
∫ β

0
dτ
∑
i

ψ̄i[(∂τ + λf )σ0 + 1
2M(0)

i · σ⃗]ψi − 1
2
∑
i,j

M(0)
i (J−1)ijM(0)

j .

(5.33)
We can apply the fourier transform to Replace ∂τ by matsubara frequency −iωn and

carrying out the Gaussian integral over ψ̄ and ψ. Then, we obtain the expression for the
constrained effective action:

SppvE [M(0)] = −Trln[−(iωn − λf )σ0 + 1
2M(0)

i · σ⃗] − β

2
∑
i,j

M(0)
i (J−1)ijM(0)

j . (5.34)

Now, we can denote the matrix −(iωn − λf )σ0 + 1
2M(0)

i · σ⃗ as −Gi(iωn)−1, where
Gi(iωn) is given by:

Gi(iωn) =
(iωn − λf )σ0 + 1

2M(0)
i · σ⃗

(iωn − λf )2 −
∣∣∣12M(0)

i

∣∣∣2 (5.35)

In order to identify a local equilibrium magnetization M(0)
i , we shall minimize the

action SppvE [M(0)], which will lead to a self consistent equation:

β
∑
j

(J−1)ijM(0)
j = Tr[−1

2Gi(iωn) · σ⃗]. (5.36)

Now, inserting Eq.5.35, we get:

β
∑
j

(J−1)ijM(0)
j = Tr

[
− 1

2
(iωn − λf ) · σ⃗ + 1

2M(0)
i · σ⃗ · σ⃗

(iωn − λf )2 −
∣∣∣12M(0)

i

∣∣∣2
]
. (5.37)

Noticing the fact that σ is traceless, so that we can carry out the trace over the spins
and Eq.5.37 can be simplified as:

∑
j

(J−1)ijM(0)
j = T

M(0)
i

2
∣∣∣M(0)

i

∣∣∣
∑
iωn

[
1

(iωn − λf ) +
∣∣∣12M(0)

i

∣∣∣ − 1
(iωn − λf ) −

∣∣∣12M(0)
i

∣∣∣
]
.

(5.38)
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Using the results from Eq.5.30, this equation can be rewritten as:

M(0)
i

JQ
= T

M(0)
i

2
∣∣∣M(0)

i

∣∣∣
∑
iωn

[
1

(iωn − λf ) +
∣∣∣12M(0)

i

∣∣∣ − 1
(iωn − λf ) −

∣∣∣12M(0)
i

∣∣∣
]
, (5.39)

which can be further simplified as:

2
∣∣∣M(0)

i

∣∣∣
JQ

= T
∑
iωn

[
1

(iωn − λf ) +
∣∣∣12M(0)

i

∣∣∣ − 1
(iωn − λf ) −

∣∣∣12M(0)
i

∣∣∣
]
. (5.40)

By carrying out the matsubara sum we get:

2
∣∣∣M(0)

i

∣∣∣
JQ

=
∮

dz

2πif(z)
[

1
(iωn − λf ) +

∣∣∣12M(0)
i

∣∣∣ − 1
(iωn − λf ) −

∣∣∣12M(0)
i

∣∣∣
]

= −tanh
(
β

2

∣∣∣M(0)
i

∣∣∣),
(5.41)

so our constrained self-consistent equation for the J1-J2 model read as:

2

∣∣∣M(0)
i

∣∣∣
JQ

= tanh
(

− β

2

∣∣∣M(0)
i

∣∣∣). (5.42)

Now let us explore what happens if we go to the T → 0 limit. Recalling that λf = iπ T2 ,
so the λf → 0 in the zero temperature limit and we end up with the equation:

2
∣∣∣M(0)

i

∣∣∣
JQ

=
∮

dz

2πif(z)
[

1
iωn +

∣∣∣12M(0)
i

∣∣∣ − 1
iωn −

∣∣∣12M(0)
i

∣∣∣
]

= −tanh
(
β

4

∣∣∣M(0)
i

∣∣∣)
(5.43)

Within mean field theory, in both the Néel and Collinear phases the spins on all sites
are polarized along the same direction, but can point align or anti-align with this axis,
leading however to the same norm of the magnetization

∣∣∣12M(0)
i

∣∣∣ = M(0) for all sites.
We can use this 1

2M(0) as an order parameter and evaluate the critical temperatures for
both phases at QN = (π, π) and QC = (0, π), respectively.

2M(0)
(Néel) = −JQ=QNtanh(β2 M(0)

(Néel)) (5.44a)

2M(0)
(Col.) = −JQ=QCtanh(β2 M(0)

(Col.)), (5.44b)
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where we use the short hand notation of JQ that is defined in Eq.5.31. From Eq.5.44
we can write down critical temperatures for both phases:

T (Néel)
c = J1 − J2 (5.45a)

T (Coll.)
c = J2, (5.45b)

which are shown visually in the Fig.5.1 below.

Figure 5.1: Results of the critical temperature of the Nematic phase transition

In conclusion, we find the critical temperature of two magnetic states by mean field
theory, and the transition point of two states is predicted to be located at: gc = 0.5,
which is consistent with the results suggested from the previous chapter. One point
need to stressed is that the critical temperatures for both phases computed without the
constraint are reduced to one half of those with the constraint. The exact mechanism
account for this difference is not very clear to us. Qualitatively, when there is no con-
straint imposed, more non-magnetic states are introduced into the system, which may
impede magnetic ordering and lead to the decreasing of the transition temperature.
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Fluctuations in the magnetization

6.1 Beyond Mean field theory
Within the mean field theory, we neglects the effects that are brought in by fluctuations
in the order parameter, which can be viewed as a key element that could compete and
potential wash away the long range magnetic orders. Nevertheless, according to the
Mermin-Wigner theorem: There is no phase with spontaneous breaking of a continuous
symmetry for T > 0, in d ≤ 2 dimensions. Therefore we need to go beyond the mean-field
theory to examine the fluctuations in the order parameter. We use mean field theory as
our starting point, in which we assume the polarization of spin on all sites is along the
z-axis, so that

M(0)
i = JQ⟨Si⟩|hE [M(0)] = JQSiσz. (6.1)

In both the Néel and Collinear phases, Si is a real number which has same norm on
all sites but can have different signs in front. If we expand the action in Eq.5.34 in
the fluctuations by replacing Mi = JQSiσz + δMi and carrying out the path integral

over ψ̄ and ψ, we will get the leading-order corrections to the effective action, which are
quadratic in the fluctuations, and the following expression for the effective action:

SppvE [M] = − Trln[−Gi(iωn)−1 + 1
2δMi · σ]

− β

2
∑
i,j

(
JQSiσz + δMi

)
(J−1)ij

(
JQSjσz + δMj

)
+O(δM3),

(6.2)

with the expression of our renormalized propagator:

Gi(iωn) =
[
(iωn − λf )σ0 − 1

2JQSiσz
]−1

. (6.3)

Now we need to examine the difference between the action that includes the fluctua-
tions and the one that does not:

∆SppvE [M] = SppvE [M] − SppvE [M(0)]. (6.4)
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Due to the fact that the action is stationary with respect to fluctuations, the linear
terms in δM should sum to zero, which leaves us the following description of ∆SppvE [M]
up to 2nd order:

∆SppvE [M] = −Trln[1 − 1
2Gi(iωn)δMi · σ] − β

2
∑
i,j

δMi(J−1)ijδMj . (6.5)

Then we can do the expansion of the first term above like this:

Trln(1 −G0V ) = Tr
(

−G0V − 1
2(G0V )2 − 1

3(G0V )3 − 1
4(G0V )4 + · · ·

)
. (6.6)

Here we expand to second order like we did above, and due to the same reason the
linear term drops off. After the expansion we get:

∆Fppv
E [M] = − 1

2Ns

∑
i,j,α,β

δMα
i

(
−δij

4βTr
[
σαGi(iωn + iνm)σβGi(iωn)

]
︸ ︷︷ ︸

Παβi (iνm)δij

+(J−1)ijδαβ

)
δMβ

j

(6.7)
Now with these expression of bare susceptibility, we can write Eq.6.7 as:

∆Fppv
E [M] = − 1

2Ns

∑
i,j,α,β

δMα
i

(
Παβ
i (iνm)δij + (J−1)ijδαβ

)
︸ ︷︷ ︸

(J−1)αβij

δMβ
j . (6.8)

In order to compute the spin correlation function, we need to introduce a source term
h into the expression of Eq.6.5:

∆SppvE [M] = −Trln[1 − 1
2Gi(iωn)(δMi + hi) · σ] − β

2
∑
i,j

δMi(J−1)ijδMj . (6.9)

With the source term included we can carry out the same procedure to get a new
expression for Eq.6.9:

∆Fppv
E [M] = − 1

2Ns

∑
i,j,α,β

δMα
i

(
(J−1)αβij

)
δMβ

j + δMα
i

(
Παβ
i (iνm)δij

)
hβj

+hαi

(
Παβ
i (iνm)δij

)
Mβ

j + hαi

(
Παβ
i (iνm)δij

)
hβj .

(6.10)
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Completing the square:

∆Fppv
E [M] = − 1

2Ns

∑
i,j,k,l,α,β,η,ξ,φ,γ

(
δMα

i + hηkΠ
ηξ
k (iνm)(J)ξαki

)(
(J−1)αβij

)(
δMβ

j + (J)βφjl Πφγ
l (iνm)hγl

)

+ hαi

(
Παβ
i (iνm)δij − Παγ

i (iνm)(J)γφij Πφβ
j (iνm)︸ ︷︷ ︸

χαβij

)
hβj ,

(6.11)

Explicitly, the spin correlation term can be acquired by the following way:

⟨TSαi S
β
j ⟩ = 1

Z[h]
δ2Z[h]
δhβj δh

α
i

, (6.12)

and in the generating functional we can integrate out the fluctuations leaving a effective
free energy for the source fields:

Z[h] = const. × e
1
2
∑

i,j,α,β
hαi χ

αβ
ij h

β
j . (6.13)

Together with Eq.6.11, Eq.6.12 and Eq.6.13 we obtain:

⟨TSαi S
β
j ⟩ = 1

Z[h]
δ2Z[h]
δhβj δh

α
i

= χαβij (iνm) = Παβ
i (iνm)δij −

∑
γ,φ

Παγ
i (iνm)(J)γφij Πφβ

j (iνm)

(6.14)
where,

(J)γφij =
(

Πγφ
i (iνm)δij + (J−1)ijδγφ

)−1

(6.15)

Combining Eq.6.15 with Eq.6.16, and reformulating, we obtain:

χαβij (iνm) = Παβ
i (iνm)δij −

∑
j′,η

Παη
i (iνm)Jij′χηβj′j(iνm). (6.16)

The detailed derivation from Eq.6.14 to Eq.6.16 can be found in Appendix.A.
Now we begin evaluating the non-zero components of the bare susceptibility Π(αβ)

ij (iνm)
by first noticing the fact that our propagator is purely localized on the site which leads
to our bare susceptibility:

Παβ
ij (iνm) = Παβ

i (iνm)δij , (6.17)

Π(xx)
i (iνm) = − 1

4β
∑
iωn

Tr[σxGi(iωn + iνm)σxGi(iωn)], (6.18)
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Π(xx)
i (iνm) = − 1

4β
∑
iωn

Tr[G⇑
i (iωn + iνm)G⇓

i (iωn) +G⇓
i (iωn + iνm)G⇑

i (iωn)]. (6.19)

By inserting Eq.6.3 into Eq.6.18 and carrying out the trace we get:

Π(xx)
i (iνm) = − 1

4β
∑
iωn

1
(iωn − λf − 1

2JQSi + iνm)(iωn − λf + 1
2JQSi)

+ 1
(iωn − λf + 1

2JQSi + iνm)(iωn − λf − 1
2JQSi)

.

(6.20)

By further carrying out the contour integration we get:

Π(xx)
i (iνm) =

1
2JQSi

(JQSi)2 − (iνm)2 tanh(1
2βJQSi). (6.21)

By using the same procedure, the rest of the components can be evaluated:

Π(xx)
i (iνm) = Π(yy)

i (iνm) =
1
2JQSi

(JQSi)2 − (iνm)2 tanh(1
2βJQSi), (6.22)

Π(xy)
i (iνm) = −Π(yx)

i (iνm) = 1
2i

iνm
(JQSi)2 − (iνm)2 tanh(1

2βJQSi), (6.23)

Π(zz)
i (iνm) = β

4cosh2(1
2βJQSi)

δiνm,0. (6.24)

Combining Eq.6.22-6.24, we have the bare susceptibility in matrix form:

Πi =

 Π(xx)
i (iνm) Π(xy)

i (iνm) 0
−Π(xy)

i (iνm) Π(xx)
i (iνm) 0

0 0 Π(zz)
i (iνm).

 (6.25)

Here by using the concept of the ordering factor e±iQ·Ri , which can pose the local
magnetic moment into the alignments of the corresponding Néel and Collinear phases.
Then we can rewrite Eq.6.25 as:

Πi =

 Π(xx)
0 (iνm) Π(xy)

0 (iνm)e±iQ·Ri 0
−Π(xy)

0 (iνm)e±iQ·Ri Π(xx)
0 (iνm) 0

0 0 Π(zz)
0 (iνm)

 (6.26)

Recalling that our spin correlation function in real space reads:

χαβij (iνm) = Παβ
i (iνm)δij −

∑
j′,η

Παη
i (iνm)Jij′χηβj′j(iνm), (6.27)
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We can write it in a matrix form in spin space as follows:

χij(iνm) = Πi(iνm)δij − Πi(iνm)
∑
j′

Jij′χj′j(iνm) (6.28)

The Fourier transform forms of both χabij and Jabij are define as follow:

χabij = 1
N2

∑
k,k′

ei(k·Ri−k′·Rj)χabkk′ (6.29a)

J ab
ij = 1

N

∑
k

eik·(Ri−Rj)Jabk (6.29b)

So substituting in Eq.6.28, one obtains:∑
i,j

e−i(k·Ri−k′·Rj)χij(iνm) =
∑
i,j,j′

e−i(k·Ri−k′·Rj)
(
Πi(iνm)δij − Πi(iνm)Jij′χj′j(iνm)

)
(6.30)

Noticed that from Eq.6.24, the longitudinal susceptibility (Π(zz)
0 (iνm)) is exponentially

decreasing while lowing the temperature as shown in the Fig.6.1 below.

Figure 6.1: Plot of bare longitudinal susceptibility Π(zz)
0 (T )

Therefore if we only consider the low temperature physics of the system, we can reduce
the matrix in Eq.6.26 as a 2 × 2 matrix only containing the X and Y components and in
this low temperature limit we also have tanh(1

2βJQS) → −1, we can write Eq.6.22-24
explicitly as:

Π(xx)
0 (iνm) = Π(yy)

0 (iνm) ≈ −
1
4JQ

(1
2JQ)2 − (iνm)2 (6.31a)

Π(xy)
0 (iνm) = −Π(yx)

0 (iνm) ≈ − 1
2i

iνm

(1
2JQ)2 − (iνm)2 (6.31b)

Π(zz)
0 (iνm) ≈ 0, (6.31c)
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which means that the expression of the bare susceptibility in matrix form can be
reduced to:

Πi =
(

Π(xx)
0 (iνm) Π(xy)

0 (iνm)e±iQ·Ri

−Π(xy)
0 (iνm)e±iQ·Ri Π(xx)

0 (iνm)

)
(6.32)

Inserting Eq.6.32 into Eq.6.30 we obtain:

χkk′ = Ns

(
Π(xx)

0 δk,k′ Π(xy)
0 δk,k′±Q

−Π(xy)
0 δk,k′±Q Π(xx)

0 δk,k′

)
−
∑
q

(
Π(xx)

0 δk,q Π(xy)
0 δk,q±Q

−Π(xy)
0 δk,q±Q Π(xx)

0 δk,q

)
Jqχqk′

(6.33)
In order to solve Eq.6.33 we also need to acquire the expression for χkk′ by checking

the following power series:

Ns

∑
q

(
Π(xx)

0 δk,q Π(xy)
0 δk,q±Q

−Π(xy)
0 δk,q±Q Π(xx)

0 δk,q

)
Jq

(
Π(xx)

0 δq,k′ Π(xy)
0 δq,k′±Q

−Π(xy)
0 δq,k′±Q Π(xx)

0 δq,k′

)

= Ns


(
Π(xx)

0
2

− Π(xy)
0

2)
δk,k′ 2Π(xx)

0 Π(xy)
0 δk,k′±Q

−2Π(xx)
0 Π(xy)

0 δk,k′±Q
(
Π(xx)

0
2

− Π(xy)
0

2)
δk,k′


(6.34)

From Eq.6.34 we can infer that the same matrix structure will hold for the expression
of χkk′ :

χkk′ = Ns

(
χ(xx)(k′)δk,k′ χ(xy)(k′ ±Q)δk,k′±Q

−χ(xy)(k′ ±Q)δk,k′±Q χ(xx)(k′)δk,k′

)
(6.35)

By inserting Eq.6.35 into Eq.6.33 we can find an expression for the renormalized
susceptibility:

1
Ns

χkk′ =
(

Π(xx)
0 δk,k′ Π(xy)

0 δk,k′±Q

−Π(xy)
0 δk,k′±Q Π(xx)

0 δk,k′

)
−Ak,k′ , (6.36)

where the matrix elements of Ak,k′ is a 2 × 2 takes the following form:

A11(k,k′) = A22(k,k′) =
[
Π(xx)

0 J (k′)χ(xx)(k′) − Π(xy)
0 J (k′ ±Q)χ(xy)(k′ ±Q)

]
δk,k′

−A21(k,k′) = A12(k,k′) =
[
Π(xx)

0 J (k′ ±Q)χ(xy)(k′ ±Q) + Π(xy)
0 J (k′)χ(xx)(k′)

]
δk,k′±Q,

(6.37)

Combing Eq.6.36 and Eq.6.37 we have:(
1 + J (k)Π(xx)

0 −J (k±Q)Π(xy)
0

J (k)Π(xy)
0 1 + J (k±Q)Π(xx)

0

)(
χ(xx)(k)

χ(xy)(k±Q)

)
=
(

Π(xx)
0

Π(xy)
0

)
(6.38)
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By solving Eq.6.38 we end up with:

χ(xx)(k, iνm) = Π(xx)
0 + [(Π(xx)

0 )2 + (Π(xy)
0 )2]J(k ±Q)

[1 + Π(xx)
0 J(k)][1 + Π(xx)

0 J(k ±Q)] + (Π(xy)
0 )2J(k)J(k ±Q)

, (6.39a)

χ(xy)(k, iνm) = Π(xy)
0

[1 + Π(xx)
0 J(k)][1 + Π(xx)

0 J(k ±Q)] + (Π(xy)
0 )2J(k)J(k ±Q)

. (6.39b)

Then by using Eq.6.31a and 6.31b we can carry out the exact form of our renormalized
susceptibility:

χ(xx)(k, iνm) = χ(yy)(k, iνm) = J(k±Q) − J(Q)
E(k)2 − (iνm)2 (6.40a)

χ(xy)(k, iνm) = −χ(yx)(k, iνm) = (2i)iνm
E(k)2 − (iνm)2 , (6.40b)

where,

E(k) = 1
2

√[
(J(k) − J(Q)

][
J(k±Q) − J(Q)

]
(6.41)

J(k) = 2J1(coskx + cosky) + 4J2 coskx cosky (6.42)

6.2 Spin wave dispersion relation
The spectral function of magnon takes the following form:

A(q, ω) = 1
π

Imχ(xx)(q, ω + iδ)

=
[J(q ±Q) − J(Q)

2πE(q)
]
Im
[ 1
E(q) + (ω + iδ) + 1

E(q) − (ω + iδ)
] (6.43)

The Cauchy-Dirac relation:

1
ω′ − ω ∓ iδ

= P 1
ω′ − ω

± iπδ(ω′ − ω) (6.44)

By using the Cauchy-Dirac relation we are allowed to further reduce the form of
Eq.6.43 to get:

A(q, ω) =
[J(q ±Q) − J(Q)

2E(q)
][
δ
(
ω − E(q)

)
− δ

(
ω + E(q)

)]
(6.45)

Then we get the dispersion relations of spin wave in both magnetic ordered states:

ωNéel = 1
2

√[
(J(q) − J(QN)

][
J(q ± QN) − J(QN)

]
(6.46a)

ωColl. = 1
2

√[
(J(q) − J(QC)

][
J(q ± QC) − J(QC)

]
(6.46b)

J(q) = 2J1(cos qx + cos qy) + 4J2 cos qx cos qy (6.46c)
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Where we use the notations: QN = (π, π) and QC = (0, π), (π, 0).

(a) (b) (c)

Figure 6.2: Dispersion relations of the spin wave in the Néel state(QN)
with different ratios between J1 and J2:(a)J2

J1
= 0, (b)J2

J1
= 0.25, (c)J2

J1
= 0.5

(a) (b) (c)

Figure 6.3: Dispersion relations of the spin wave in the Collinear state(QC)
with different ratios between J1 and J2:(a)J2

J1
= 0.5, (b)J2

J1
= 1, (c)J2

J1
= 5

From above Fig.6.2, two zero excitation energy modes are found at : q1 = (π, π) and
q2 = (0, 0) when the system ordered in Néel state. While the point q2 = (0, 0) is not
a Goldstone mode, for its spectral weight is evaluated to zero which can be seen from
Eq.6.45. Similar argument applied to Collinear state too, and the corresponding two
zero excitation energy modes are found at: q1 = (π, 0) and q2 = (0, 0). The spin wave
velocity is found being suppressed to zero at the maximum frustration point J2

J1
= 0.5

in both magnetic ordered state. This may partial expresses that the magnetic ordering
effect is greatly suppressed by the existence of the frustration. From above Fig.6.2 and
Fig.6.3 one may conclude that the long range magnetic order found when J2

J1
̸= 0.5 is

still true. Then we should compute from the second order corrections to the mean field
magnetization to check whether this term will total destroy the long range magnetic
order, or namely, we want to prove the Mermin-Wagner theorem for our 2D spin system.
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6.3 Check of Mermin–Wagner–Hohenberg Theorem
Now we can shortly prove the Mermin–Wagner–Hohenberg Theorem by following:

⟨Szi ⟩ = 1
2 − (⟨Sxi Sxi ⟩ + ⟨Syi S

y
i ⟩) = 1

2 − 2⟨Sxi Sxi ⟩ (6.47)

Here we have to use fluctuation dissipation Theorem:

⟨Sxi Sxi ⟩ = 1
Ns

∑
q

1
π

∫ +∞

−∞

1
1 − e−βωχ

(xx)
′′
(q, ω)dω (6.48a)

χ(xx)
′′
(q, ω) = Im

[
χ(xx)(q, ω)

]
(6.48b)

Using the results from above section we have:

χ(xx)
′′
(q, ω) = π

(J(q ±Q) − J(Q)
2E(q)

)[
δ
(
ω − E(q)

)
− δ

(
ω + E(q)

)]
(6.49)

Inserting Eq.6.49 into Eq.6.48 we can get:

⟨Sxi Sxi ⟩ = 1
Ns

∑
q

∫ +∞

−∞

1
1 − e−βω

(J(q ±Q) − J(Q)
2E(q)

)[
δ
(
ω − E(q)

)
− δ

(
ω + E(q)

)]
dω

(6.50)
Carry out the integral over ω in Eq.6.50 we get:

⟨Sxi Sxi ⟩ = 1
Ns

∑
q

(J(q ±Q) − J(Q)
2E(q)

)
coth(E(q)

2T ) (6.51)

In the low temperature limit, the fluctuations becomes long range compare the the
lattice spacing, so it is reasonable we going to the continuum limit to get:

⟨Sxi Sxi ⟩ = 1
Ns

∫ π

1
L

dqxdqy
(2π)2

(J(q ±Q) − J(Q)
2E(q)

)
coth(E(q)

2T ) (6.52)

When q = Q + δq, from Eq.6.55 we know that E(q) now becomes a small parameter
which allows us to expand the coth(x) as 1

x :

⟨Sxi Sxi ⟩ = T

4Nsπ2

∫ π

1
L

(J(q ±Q) − J(Q)
E(q)2

)
d2q (6.53)

Where,
E(q)2 = 1

4
[
(J(q) − J(Q)

][
J(q ±Q) − J(Q)

]
(6.54)

J(q) = 2J1(cos qx + cos qy) + 4J2 cos qx cos qy (6.55)
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When q = Q + δq, we can choose Q = (0, π) and write E(q)2 as:

E(Q + δq)2 = 1
4
[
(J(Q + δq) − J(Q)

][
J(δq) − J(Q)

]
= 2J2

[
J(δq) − J(Q)

]
δq2

(6.56)

By change the origin point of our integration shown in Eq.6.53 from (0,0) to (0,π), we
have:

⟨Sxi Sxi ⟩ = T

4Nsπ2

∫ π

1
L

( 1
2J2δq2

)
d2δq (6.57)

Then we can carry out the integration in 6.57 to find:

⟨Sxi Sxi ⟩ ∝ ln(1/L) (6.58)

This implies that the correlation function of the spin exhibits a logarithmic divergence
as we approach the thermodynamic limit, indicating that the long-range magnetic order
does not emerge in our 2D system at any finite temperature.

In a short summary: we managed to find the dispersion relation of the spin wave for
both the Néel and Collinear states, and the corresponding Goldstone modes is obtained.
The relation between the frustration and the low-energy excitations is partially revealed
by the fact that both the intensity and velocity of the spin wave is decreasing when it
reaches the higher frustration limit. Moreover, we proved the Mermin-Wagner theorem
by showing the long range magnetic orders can be totally washed away by fluctuations
in the thermodynamic limit.
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Chapter 7

Nematic order of J1-J2 Heisenberg model

From last chapter, we found that the long range magnetic orders are washed away by
the quantum fluctuation in the thermodynamic limit, which prohibits the spontaneous
breaking of a continue symmetry in any two dimensional system. The nematic phase,
characterized by discrete symmetry breaking, was initially predicted to occur in the J1-J2
Heisenberg model by P. Chandra et al. [14]. Our particular interest lies in understanding
the relationship between the critical temperature (Tc) for the nematic phase and the
degree of frustration within the system, as quantified by the ratio of J1 and J2.

(a) (b)

Figure 7.1: The critical temperature (Tc) as a function of different frustrating ratios
between J1 and J2: (a) Predicted by Monte Carlo simulation [15] , (b) Pre-
dicted by Nematic Bond Theory [16].

The critical temperature (Tc) prediction, as a function of various frustrating ratios
between J1 and J2, is illustrated in Fig. 7.1 through computational methods. However,
the outcomes obtained from the analytical method proposed by [14] do not exhibit strong
agreement with those from [15] and [16], especially in the regime of strong frustration.
Consequently, it is essential to explore alternative analytical approaches that can may
effectively resolve this conflict, which serves as the primary motivation for the research
conducted in this chapter.
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Chapter 7 Nematic order of J1-J2 Heisenberg model

7.1 A toy model for illustrating the nematic phase transition
Here we shall first consider about a naive toy model that may describe some character-
istics of the nematic phase transition.

(a) (b)

Figure 7.2: An illustration of a little ball passing the energy barrier with respect of
different J1 and J2 ratios. (a) J2

J1
= 1, (b) J2

J1
= 10

As we can see for Fig. 7.2, the height of yellow configurations in the 3D plot cor-
responds to the eigenenergy (Jq) of the J1-J2 Heisenberg Hamiltonian (see Eq.4.7) as
the function of qx and qy. The order parameter for the nematic phase is imagined as a
red ball shown above. A finite temperature is considered as some disturbances to kick
the ball away from the saddle points: Q = (0,±π), (±π, 0). When the intensity of the
disturbance is strong enough to move the ball from one saddle point to another one,
the critical temperature for the nematic phase transition is believed to be reached. As
pointed out in [14], the nematic Tc is proportional to the size of the magnetic domain,
which is estimated by the square of the correlation length: N ∝ ξ2 ≈ e

aJ2
T . Here we

assume that the transition temperature for nematic phase should also be proportional
to the lowest barrier value of (Jq) that lies in between two saddle points. In Fig.4.2(b),
one notices that this lowest barrier height should be found along the lines: (qx = qy or
qx = −qy), for the Jq has a fourfold symmetry along these two lines. We may choose
qx = qy and get the following description for the barrier value of (Jq) along this line:

Jq = 4J1cos(q) + 4J2cos2(q). (7.1)

The saddle point of the value of Jq along this line is find by using: ∂Jq
∂q = 0, from

which we found: q = arccos(−J1
2J2

). Hence, the lowest value of Jq along this line is found
to be:

Jmin = −J2
1
J2
. (7.2)

The true lowest barrier value of (Jq) is the difference between Jmin and Jq=(0,π):
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B0 = Jmin − Jq=(0,π) = J2(4 − J2
1
J2

2
), (7.3)

where B0 stands for the lowest barrier value, and we find the it becomes zero at the
maximal frustration point (J2

J1
= 0.5). As we mentioned above, the critical temperature

of nematic phase is proportional to both N and B0. Hence, we obtain:

Tc ∝ aJ2(4 − J2
1
J2

2
)e

bJ2
Tc , (7.4)

where a and b are the undecided coefficients, and for our convenient, here we set J1 = 1
and solve the approximation solution for the Tc and we find:

Tc ∝ bJ2

W0
[ 2bJ2

2
a(4J2

2 −1)

] , (7.5)

where W0(x) stands for the main branch of the Lambert W function. From Eq.7.5 we
get the Fig.7.3 below:

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0

2

4

6

8

10

J2
J1

T
C J 1

a=1.0

a=0.5

a=0.2

a=0.1

0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

J2
J1

T
C J 1

Figure 7.3: The transition temperature for the nematic phase is estimated by fixing b = 1
and varying a at values of 0.1, 0.2, 0.5, and 1.0 for tuning purposes.

In this study, we did not extensively delve into the precise determination of these co-
efficients, as the model employed is considered a simplified representation. Nevertheless,
the observed behavior of the function in proximity to the critical point (J2

J1
= 0.5) re-

mains consistent, suggesting that this model may captures certain characteristics relates
to the critical behavior of the nematic Tc.
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7.2 An effective Heisenberg Hamiltonian
In the subsequent chapters, our objective is to establish a formulation for the nematic Tc
utilizing the path integral formalism and the methodologies developed in the preceding
chapters. Apart from the procedure that are used to perform the Hubbard-stratonovich
transformation in Chapter 5, here alternatively, one may choose to use a effective Heisen-
berg Hamiltonian with a positive definite interaction matrix to replace the original one.
And this can be done in the following way:

First we subtract the maximum eigenvalue Jmax = 2J1 + 2J2 for the Hamiltonian to
get:

H = NS2Jmax +
∑
q

(1
2Jq − Jmax)Sq · S−q

= Emax −
∑
q

(Jmax − 1
2Jq)Sq · S−q.

(7.6)

We have S2 = 3
4 for our spin-1

2 system, ensuring that the term Emax can be regarded
as a constant shift to the eigenenergy, without altering the physical properties of the
system. Hence we can neglect the contribution of the this term to obtain a effective
Hamiltonian for our model:

Heff =
∑
q

−J>q Sq · S−q

=
∑
ij

−J>ijSi · Sj

(7.7)

where we note J>q = Jmax − 1
2Jq and J>ij = Jmaxδij − 1

2Jij , which are both positive
definite matrices. By using the path integral formalism we have:

Z = e−βEmax
∫

D[ψ̄, ψ]e−s[ψ̄,ψ] (7.8a)

S[ψ̄, ψ] =
∑
q

∫ β

0
dτψ̄q(∂τσ0)ψ−q − J>ijSi · Sj , (7.8b)

where in above ψi is related to spin operators by: Si = ψ†
i (σ

2 )ψi
Again we introduce a white-noise vector field φi = (φxi , φ

y
i , φ

z
i ) into the partition

function and entangle it with the original partition function to get:

Z × ZH =
∫

D[ψ̄, ψ]
∫

D[φ]e−s[ψ̄,ψ,φ] (7.9a)

S[ψ̄, ψ,φ] =
∑
q

∫ β

0
dτψ̄q(∂τσ0)ψ−q +

∑
ij

[
− J>ijSi · Sj + φi · φj

J>ij

]
. (7.9b)
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Then we shift the white-noise field as follow:

φi → mi −
∑
k

J>kiSk (7.10a)

φj → mj −
∑
h

J>jhSh. (7.10b)

Then by inserting the Eq.7.10 into Eq.7.9b we get:

S[ψ̄, ψ,m] =
∑
q

∫ β

0
dτψ̄q(∂τσ0)ψ−q −

∑
i

2Si · mi +
∑
ij

mi · mj

J>ij
. (7.11)

We apply Fourier transformation to Eq.7.11 with the following conventions:

Si = N−1/2∑
q
Sqe

iqRi , (7.12a)

mi = N−1∑
q
mqe

iqRi , (7.12b)

ψi = N−1/2∑
q
ψqe

iqRi , (7.12c)

Jij = N−1∑
q

eiq(ri−rj)Jq, (7.12d)

to get:

S[ψ̄, ψ,∆] =
∫ β

0
dτ
∑
k,k′

ψ†
k′(∂τδk,k′σ0 − 1

N
mτ,k′−k · σ)ψk + 1

N

∑
q

∆q · ∆−q

J>q
. (7.13)

we can rescale the Hubbard field as follow:

∆q = 1
J>q

mq, (7.14)

Then from above we can write down the action:

S[ψ̄, ψ,∆] =
∫ β

0
dτ
∑
k,k′

ψ†
k′(∂τδk,k′σ0 − 1

N
J>k′−k∆τ,k′−k

· σ)ψk + 1
N

∑
q

J>q ∆q · ∆−q.

(7.15)
Then we carry out the Gaussian integral of the quadratic term we can get:

SE [∆] = −Trln
(

(−iωnδk,k′σ0)
[
1+(iωnδk,k′σ0)−1( 1

N
J>k′−k∆m,k′−k·σ)

])
+ β

N

∑
q

J>q ∆q·∆−q.

(7.16)
Then we note (iωnδk,k′σ0)−1 as G0(n, k) and 1

N J
>
k′−k∆m,k′−k · σ as −Vm,k,k′ and we

can get:

SE [∆] = −Trln(−G−1
0 ) − Trln(1 −G0Vm,k,k′) + β

N

∑
q

J>q ∆q · ∆−q. (7.17)
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7.3 Feynman diagram expansion up to fourth order
In this section, we perform the Feynman diagram expansion in momentum space up
to the fourth order. This is necessary because the nematic order is connected to the
fluctuations (⟨∆2⟩) of the Weiss field, and the susceptibility of nematic phase is then
suggested by the quadratic form of fluctuations, which is a fourth order correction.

Eq.7.17 is obtained by using the formula for the Taylor expansion of a logarithmic
function, together with the fact that the term G0V is a small parameter and can be
treated as a perturbation:

Trln(1−G0Vm,k,k′) = Tr
[
−G0Vm,k,k′−1

2(G0Vm,k,k′)2−1
3(G0Vm,k,k′)3−1

4(G0Vm,k,k′)4+· · ·
]
.

(7.18)
Here we compute it to fourth order. Firstly due to Pauli-matrix are trace-less so the

odd order term is zero and for the second order we find:

−1
2
∑
i···l

(G0ijVjkG0klVliδijδkl). (7.19)

Here “ij” stands for kk’, nn’ and σσ′ and for the momentum and matsubara frequency
dependence we found:

−1
2

∑
n,n′,k,k′

G0(n, k)Vn−n′,k′−kG0(k′, n′)Vn′−n,k−k′ , (7.20)

which is:

−1
2

∑
n,n′,k,k′,i,j,a,b

(J>k′−k)2

N2 G0(n, k)∆(i)
n−n′,k−k′σ

(i)
abG0(n′, k′)∆(j)

n′−n,k−k′σ
(j)
ba . (7.21)

By using the properties of the Pauli matrices: Tr(σ(i)σ(j)) =
∑
a,b σ

(i)
ab σ

(j)
ba = 2δij we

can further get:

−
∑

n,n′,k,k′,i

(J>k′−k)2

N2 G0(n,k)∆(i)
n−n′,k′−kG0(n′,k′)∆(i)

n′−n,k′−k. (7.22)

We can rewrite it as:

−
∑

n,m,k,q,i

(J>q )2

N2 G0(n,k)∆(i)
m,qG0(n−m,k − q)∆(i)

−m,−q, (7.23)

where i stands for x,y,z.
Notice that there is no actual momentum dependence of the propagator G0. Hence

we can further simplified above equation as:

−
∑
n,m,q

J>q
2

N(iωn)(iωn − iνm)∆m,q · ∆−m,−q (7.24)
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In above ωn stands for the fermionic matsubara frequency
(
2π(n + 1

2)kBT
)
, and νm

stands for the bosonic matsubara frequency (2πnkBT ). So far we have not put any
constraint on the occupation number for each site .

If iνm is non-zero than we carry out the matsubara sum we will get:

−
∑
m,q

1
N
J>q

2
[
f(0)
−iνm

+ f(iνm)
iνm

]
∆m,q · ∆−m,−q. (7.25)

And if we apply the periodicity of the Fermi-Dirac function: we can have f(iνm) = f(0)
so that this gives zero, by considering the case for iνm is zero we should get:

−
∑
n,q

J>q
2

N(iωn)(iωn)∆0,q · ∆0,−q. (7.26)

And we can carry out the matsubara sum to get:

β2

4N
∑
q

J>q
2
∆0,q · ∆0,−q. (7.27)

For the third order term we have:

−1
3
∑
i···q

(G0ijVjkG0klVlpG0pqVqiδijδklδpq). (7.28)

This can be simplified as:

−1
3
∑
i,k,p

(G0iVikG0kVkpG0pVpi). (7.29)

By using the same procedure that we just used in computing the second order terms,
we found the results for the static configuration of the white-noise field (iνm1 = iνm2 = 0)
is zero, and the detailed calculations of this can be found in Appendix.B.

For the fourth order term we find:

−1
4
∑
i···r

(G0ijVjkG0klVlpG0pqVqhG0hrVriδijδklδpqδhr), (7.30)

which can be simplified as:

−1
4
∑
i,l,p,h

(G0iVilG0lVlpG0pVphG0hVhi). (7.31)

Final result for the static fourth order correction reads:

− β4

96N3

∑
q1,q2,q3,i,j

J>q1J
>
q2J

>
q3J

>
−q1−q2−q3∆(i)

0,q1∆(j)
0,q2∆(j)

0,q3∆(i)
0,−q1−q2−q3

. (7.32)
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We also include detailed calculations of this in Appendix.C. One may notice that there
are also third and fourth order non-static corrections to the action, which is beyond the
scope of this thesis, but we do include these terms in Appendix.D just in case it may be
needed in the future.

Now if we only consider the static part of the action up to fourth order we will get:

SE [∆] = S0 + β

N

∑
q

J>q ∆q · ∆−q − β2

4N
∑
q

J>q
2
∆q · ∆−q

+ β4

96N3

∑
q1,q2,q3

J>q1J
>
q2J

>
q3J

>
−q1−q2−q3(∆q1 · ∆q2)(∆q3 · ∆−q1−q2−q3).

(7.33)

Then let us write what happen if we go out from T → 0 limit, which means we
have to apply the projection to the physical state and here we done this by using the
Popov-Fedatov method: instead using G0(n,k) = (iωnδk,k′σ0)−1, we have to add a so-
called imaginary chemical potential to map out the unphysical state, which leads to:
G0(n,k) = δk,k′

(iωn−λf )σ0
, where λf = iπT

2 . By using this trick we get a new expression for

the action:

SE [∆] = S0 + β

N

∑
q

J>q ∆q · ∆−q − β2

2N
∑
q

J>q
2
∆q · ∆−q

+ β4

12N3

∑
q1,q2,q3

J>q1J
>
q2J

>
q3J

>
−q1−q2−q3(∆q1 · ∆q2)(∆q3 · ∆−q1−q2−q3).

(7.34)

7.4 An effective theory for computing the nematic Tc

In this section, our goal is to use the form of action that is described in Eq.7.33 to derive
a expression for the nematic Tc as a function of the ratio between J1 and J2. To begin
with, we make following approximations in order to capture the feature of the nematic
order. In the Collinear phase (J2 ≫ J1), the J>q is peaked at points in the momentum
space as shown in Fig.7.4 Q1 = (±π, 0), Q2 = (0,±π). Nevertheless, from Eq.7.33, we
observe that J>q acts as a prefactor for the Weiss field, representing contributions from
fields with same momentum dependence. In a simplified scenario, we impose an energy
cutoff near the peak intensity, allowing us to focus solely on the small region around Q1

and Q2. Within this energy cutoff, we may also disregard the q-dependence of the order
parameter, introducing two new notations ∆X/Y and J>Q1

(δq) to replace ∆(Q1/Q2)
and J>(Q1 + δq), respectively. By employing this approximation, we can express our
new action up to second order as follows:

S(2)[∆X ,∆Y ] = S0 + β2

2N
∑
δq

J>Q1
(δq)

[
2T − J>Q1

(δq)
]
(|∆X |2 + |∆Y |2), (7.35)
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where we used the fact that the J>Q1
(δq) and J>Q2

(δq) can transform into each other by
the π

2 rotation around the point (0,0) in the momentum space to further reduced its form.

And the fourth order term reads as the following:

S(4)[∆] = β4

12N3

∑
δq1,δq2,δq3

[
J>Q1

(δq1)J>Q1
(δq2)J>Q1

(δq3)J>Q1
(−δq1 − δq2 − δq3)(|∆X |4 + |∆Y |4)

+ 2J>Q1
(δq1)J>Q1

(δq2)J>Q2
(δq3)J>Q2

(−δq1 − δq2 − δq3)|∆X |2|∆Y |2

+ 4J>Q1
(δq1)J>Q1

(δq2)J>Q2
(δq3)J>Q2

(−δq1 − δq2 − δq3)|∆X · ∆Y |2
]
.

(7.36)

Figure 7.4: Contour plot of J>q in the regime J2 ≫ J1 , the value of J>q is reflected by
the color, namely warm and cold colors each corresponds the high and low
value of J>q respectively.

In order to stress the core of the problem and get rid off the lengthy mathematical

50



Chapter 7 Nematic order of J1-J2 Heisenberg model

expressions in Eq.7.35, we shall define following new parameters:

K1 =
∑
δq

J>Q1
(δq) (7.37a)

K2 =
∑
δq

J>Q1
(δq)2 (7.37b)

Kaa =
∑

δq1,δq2,δq3

J>Q1
(δq1)J>Q1

(δq2)J>Q1
(δq3)J>Q1

(−δq1 − δq2 − δq3) (7.37c)

Kab =
∑

δq1,δq2,δq3

J>Q1
(δq1)J>Q1

(δq2)J>Q2
(δq3)J>Q2

(−δq1 − δq2 − δq3). (7.37d)

If we note the angle between the two parameters (∆X and ∆Y ) as φ, we can rewrite
the above action as the norms of ∆X and ∆Y ( ∆X and ∆Y ) together with the angle φ.

SE [∆X ,∆Y ] = S0+ β2

2N
(
2K1T − K2

)
(∆2

X + ∆2
Y )

+ β4

12N3

[
Kaa

(
∆4
X + ∆4

Y

)
+
(
4 + 2cos(2φ)

)
Kab∆2

X∆2
Y

]
.

(7.38)

We can further carry out the path integral over the variable φ to get a effective action
that only contains ∆X and ∆Y :

e−SE [∆X ,∆Y ] =
∫
D[φ]e−S[∆X ,∆Y ,φ]. (7.39)

The only relevant term of this integral over φ will be the following:

∫ π

0
exp

(
− S[φ]

)
dφ =1

2

∫ π
2

0
exp

[
− 2Kab∆2

X∆2
Y cos(2φ)

]
d(2φ)

=π

4

[
I0
(
2Kab∆2

X∆2
Y

)
− L0

(
2Kab∆2

X∆2
Y

)]
,

(7.40)

where I0 stands for zeroth modified Bessel function of the first kind and L0 stands for
zeroth modified Struve function.

Now we can write down the new form of the effective action after integrated over φ
and we also absorb the constant −ln(π4 ) into the S0:

SE [∆X ,∆Y ] = S0+ β2

2N
(
2K1T − K2

)
(∆2

X + ∆2
Y ) − β4

12N3 ln
[
I0
(
2Kab∆2

X∆2
Y

)
− L0

(
2Kab∆2

X∆2
Y

)]

+ β4

12N3

[
Kaa + 2Kab

2
(
∆2
X + ∆2

Y

)2
+ Kaa − 2Kab

2
(
∆2
X − ∆2

Y

)2
]
.

(7.41)
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The later two terms in above equation are crucial for inducing the Nematic phase
transition. If the sign of Kaa−2Kab

2 is negative, then the last term will definitely favours
Collinear phase in the sense of minimizing the free energy. Moreover the third term may
also promote the emergency of Collinear phase. In order to illustrated this idea, we shall
take a look at the series expansion of this term:

ln
(
I0
[
A(∆X ,∆Y )

]
− L0

[
A(∆X ,∆Y )

])
= − 2

π
A(∆X ,∆Y ) +

(1
4 − 2

π2

)
A(∆X ,∆Y )2 + · · ·

(7.42)

Full

1st order expansion

2nd order expansion

0 2 4 6 8
0

1

2

3

4

5

Figure 7.5: Plot of the series expansion up to 1st and 2nd order compare to the full
description

Here we have to make an approximation which means we only keep the linear term in
the series expansion. As we can clearly tell from the Fig.7.5, this approximation is valid
only when A(∆X ,∆Y ) can be considered as a small parameter. So that in the small ∆X

and ∆Y limit, this term can be approximated as a term also favours nematic:

−ln
[
I0
(
2Kab∆2

X∆2
Y

)
− L0

(
2Kab∆2

X∆2
Y

)]
≈ + 4

π

(
Kab∆2

X∆2
Y

)
(7.43)

Which means by using the approximation shown in Eq.7.42 and drop out the term
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S0we can rewrite Eq.7.40 as:

SE [∆X ,∆Y ] = r0(∆2
X + ∆2

Y ) + u

2
(
∆2
X + ∆2

Y

)2
− g

2
(
∆2
X − ∆2

Y

)2
(7.44a)

r0 = β2

2N
(
2K1T − K2

)
(7.44b)

u = β4

12N3

[
Kaa + (2 + 2

π
)Kab

]
(7.44c)

g = β4

12N3

[
(2 + 2

π
)Kab − Kaa

]
(7.44d)

Where the r0, Kaa and Kab are defined in the Eq.7.36.

By using the notation (|∆X |, |∆Y |) = ∆(sin(θ), cos(θ)), we can rewrite Eq.7.43a as:

SE [∆, θ] = r0∆2 + u

2 ∆4 − g

2∆4cos2(2θ) (7.45)

Then we apply the saddle point approximations to ∆ and θ to get:

∂SE
∂∆ = ∆

(
2r0∆ + 2u∆2 − 2g∆2cos2(2θ)

)
= 0 (7.46a)

∂SE
∂θ

= g∆4sin(4θ) = 0 (7.46b)

From Eq.7.45 we find:

∆1,2,3 = 0,±
√

r0
gcos2(2θ) − u

(7.47a)

θ1,2,3 = nπ,
(2n+ 1)π

2 ,
(2n+ 1)π

4 (7.47b)

In our case, as shown in Eq.7.43c,d, u > g and u > 0 are always fulfilled, therefore a
finite value for the magnetic order parameter is developed only when r0 < 0.

When θ = nπ, (2n+1)π
2 , the order parameters have the corresponding form: (∆X , 0)

and (0,∆Y ), which characterizes the Collinear phase and we have the following action:

SE [Coll.] = −r2
0

2(u− g) (7.48)

When θ = (2n+1)π
4 , the order parameter have the corresponding form: (|∆|, |∆|), which

charaterizes the Spin density wave phase and we have the following action:

SE [SDW] = −r2
0

2u (7.49)
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By comparing Eq.7.47 and 7.48, gc = 0 is found for the critical value for the transition
between Collinear phase and charge-spin density wave phase.

Then we shall further simplified our case by neglecting all fluctuations. Recall the
expressions of J>q = Jmax − 1

2Jq and Jq = 2J1(cos qx + cos qy) + 4J2 cos qx cos qy .
Since we are not considering the whole q range anymore and also regarding the fact that
J2 > 0, we could simply remove the Jmax. N = 2, for Q1 and Q2 are the only two points
we pick in the momentum space, which means in this case we could use this expression:
J>Q1

= J>Q2
= J2 > 0 in Eq.7.43 and get:

r0 = β2J2
2
(
T − J2

)
(7.50a)

u = (J2β)4

12

(
3 + 2

π

)
(7.50b)

g = (J2β)4

12

(
1 + 2

π

)
(7.50c)

From Eq.7.49, when Tc < J2, we have r0 < 0, and together with the fact u > g > 0,
the transition temperature for the Collinear phase is found equals to J2, which is consist
with the result found in chapter5.

(a) (b)

Figure 7.6: The contour plot of SE [∆2
X ,∆2

Y ] when (a)T = 8 and (b)T = 12. (J2 =
10, J1 = 1)

Alternatively we can check whether we can find a Collinear phase transition when
lowing the temperature by doing a contour plot of the action as the function of ∆2

X and
∆2
Y . From Fig.7.6 we observe what we have expected above. We found that when T=12,

there is only one minima corresponds to |∆X | = |∆Y | = 0, but when the temperature
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cool down to 8, two minima are found on either X-axis or Y-axis ( |∆X | = 0, |∆Y | ̸= 0
or vice versa), which corresponds to the Collinear phase. While we adjust the value J2,
we always found Tc ≈ J2, which confirm that our approximation is valid to some extent.

As we have shown before in the section 6.3 about Mermin-Wagner theorem, the order
parameter ∆X or ∆Y which characterizes the Collinear phase, obtains zero expectation
value (⟨∆X⟩ = ⟨∆Y ⟩ = 0) in any finite temperature. But this shall not be the case for
the fluctuations in these two degenerate Collinear orders (⟨∆2

X⟩ = ⟨∆2
Y ⟩ ̸= 0), which

means what we should check is whether the fluctuations along either X or Y direction
can be stronger than the other direction (⟨∆2

X⟩ ≠ ⟨∆2
Y ⟩) and that is the feature of the

nematic order. Hence we can decouple the quadratic terms in the Eq.7.43a by Hubbard-
stratonivich transformation again to get:

S[∆X ,∆Y , ψ, ϕ] =r0(∆2
X + ∆2

Y ) − ψ2

2u + ϕ2

2g
+ ψ

(
∆2
X + ∆2

Y

)
− ϕ

(
∆2
X − ∆2

Y

) (7.51)

The saddle point approximations to ψ and ϕ implies:

⟨ψ⟩ = u
(
⟨∆2

X⟩ + ⟨∆2
Y ⟩
)

(7.52a)

⟨ϕ⟩ = g
(
⟨∆2

X⟩ − ⟨∆2
Y ⟩
)

(7.52b)

From Eq.7.51a, it is evident that the quantity ⟨ψ⟩ always possesses a finite expectation
value. Therefore, it cannot serve as an order parameter. On the other hand, the value
of ⟨ϕ⟩ is zero when the fluctuations along the X and Y directions are equal. However,
when these fluctuations differ, ⟨ϕ⟩ can assume a finite value. This characteristic enables
⟨ϕ⟩ to be used as an order parameter for characterizing the nematic phase.

Rewriting Eq.7.50 as:

S[∆X ,∆Y , ψ, ϕ] =
(
∆X ∆Y

)(r0 + ψ − ϕ 0
0 r0 + ψ + ϕ

)(
∆X

∆Y

)
− ψ2

2u + ϕ2

2g (7.53)

Integrate out the quadratic terms using Gaussian integral to get an effective action
for ψ and ϕ:

SE [ψ, ϕ] = 1
2ln
[
(r0 + ψ)2 − ϕ2

]
− ψ2

2u + ϕ2

2g (7.54)

For later convenient, here we choose to rename r0 + ψ as r so that we have:

SE [r, ϕ] = 1
2ln
(
r2 − ϕ2

)
− (r − r0)2

2u + ϕ2

2g (7.55)
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We can apply saddle point approximation once again to ψ and ϕ:

∂SE
∂r

= r0 − r

u
+ r

r2 − ϕ2 = 0 (7.56a)

∂SE
∂ϕ

= ϕ

g
− ϕ

r2 − ϕ2 = 0 (7.56b)

We can eliminate the variable r in Eq.7.55 and solve for the solutions for ϕ and we
find:

ϕ1,2,3 = 0,±
i

√
g
[
(u− g)2 − gr2

0

]
u− g

(7.57)

From Eq.7.56 we find when r0 >
√
g(ug − 1) or r0 <

√
g(1 − u

g ), a finite expectation
value of ϕ is found, meaning the system is in the nematic phase. If we neglect all the
fluctuations we can use the expression of r0, u and g described in Eq.7.49 and find
when: T > 1.9J2 or T < 0.1J2, we find a finite expectation value for the nematic order
parameter. But apparently and unfortunately, we find such result does not suggest the
Tc for the nematic transition in a right way qualitatively.

In conclusion, we stressed the conflict between the computational and analytical re-
sults, which are related for the behavior of the nematic Tc in strong frustration regime. A
toy model based on [14] for capturing the features of the critical temperature for nematic
phase transition is mentioned. Nevertheless we conducted an analysis using Feynman
diagram expansion up to fourth order in order to understand the characteristics of the
nematic phase transition. Building upon the work of [17], we explored a similar approach
to formulate the nematic order parameter for our J1 − J2 Heisenberg model in order to
compute the critical temperature (Tc) for the nematic order. However, our analytical
treatment gave results that deviated from those reported in previous studies, indicating
the need for a more thorough investigation into the calculations and the validity of the
approximations employed.
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Chapter 8

Conclusion and Outlook

In conclusion, with the help of the pseudofermion representation of quantum spin, we
successfully included the J1-J2 quantum Heisenberg model within the framework of
the path integral formalism. This adaptation provides a solid platform for conducting
comprehensive investigations into the ground state properties and low-energy excitations
of our many-body quantum system. Explictly, we achieved the following key results:

1. In the mean field level, we found two magnetic states when tuning the ratio between
J1 and J2: when J2

J1
< 0.5, the system develops a Néel state, while for J2

J1
> 0.5, a

Collinear state is favoured.

2. The role played by the quantum fluctuations in lower dimensions is studied: Long
range magnetic orders are suppressed when the quantum fluctuations are taken
into the consideration upon the saddle point approximation. Furthermore, by
showing these magnetic orders can be totally destroyed by the fluctuations in the
thermodynamic limit, enables us to reestablish the Mermin-Wagner theorem.

3. The dispersion relation of the spin wave is obtained and the corresponding Gold-
stone modes for both the Néel and Collinear states are found. The relation between
the rate of frustration and the low-energy excitations is partially revealed.

4. We established the general framework of the effective theory in terms of pesud-
ofermions, in order to capture the feature of nematic Tc for our J1-J2 model.

To improve or continue with the aforementioned results, one may consider the following
aspects:

1. To obtain a more realistic connection between the nematic Tc and J2
J1

, it is essential
to conduct a thorough investigation into potential adjustments to the prefactor (r0)
in Eq.7.43, when extending ∆Q1 to ∆Q1(δq).

2. It could be worth (fun) to check the critical behavior of Kab and Kaa when: J2
J1

→
0.5. In Appendix.E, we found the different critical behaviors of those two may lead
to a change in the sign of the prefactor (g) in Eq.7.43 which may lead to phase
transition of long range magnetic order from Collinear to Spin density wave phase,
as described by Eq.7.47-48.
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Appendix A

Derivation of the Eq.6.16

In the beginning we have:∑
α

(Π−1
i )ταχαβij =

∑
α

(Π−1
i )ταΠαβ

i δij −
∑
α

(Π−1
i )τα

∑
γ,φ

Παγ
i (J)γφij Πφβ

j , (A.1)

which can be reduced as:∑
α

(Π−1
i )ταχαβij = δτβδij −

∑
φ

(J)τφij Πφβ
j . (A.2)

Then we multiply the
∑

J−1 to both sides:∑
i,α,τ

(J−1)ητpi (Π−1
i )ταχαβij = (J−1)ηβpj −

∑
i,φ,τ

(J−1)ητpi (J)τφij Πφβ
j , (A.3)

which can be reduced as:∑
i,α,τ

(J−1)ητpi (Π−1
i )ταχαβij = (J−1)ηβpj − Πηβ

j δpj = (J −1)pjδηβ. (A.4)

Inserting the expression of J−1 into Eq.A.4 we can get:

∑
i,α,τ

(
Πητ
p δpi + (J −1)piδητ

)
(Π−1

i )ταχαβij = (J −1)pjδηβ. (A.5)

Further reduced as:∑
α,τ

Πητ
p (Π−1

p )ταχαβpj +
∑
i,α

(J −1)pi(Π−1
i )ηαχαβij = (J −1)pjδηβ, (A.6)

which is:
χηβpj +

∑
i,α

(J −1)pi(Π−1
i )ηαχαβij = (J −1)pjδηβ. (A.7)

Then we multiply the
∑

J to both sides:∑
p

(J )zpχηβpj +
∑
i,p,α

(J )zp(J −1)pi(Π−1
i )ηαχαβij =

∑
p

(J )zp(J −1)pjδηβ, (A.8)
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Which is reduced as: ∑
p

(J )zpχηβpj +
∑
α

(Π−1
z )ηαχαβzj = δzjδηβ. (A.9)

Then we multiply the
∑

Π to both sides:∑
p,η

Πξη
z (J )zpχηβpj +

∑
α,η

Πξη
z (Π−1

z )ηαχαβzj = Πξβ
z δzj , (A.10)

which is reduced as: ∑
p,η

Πξη
z (J )zpχηβpj + χξβzj = Πξβ

z δzj . (A.11)

From A.11 we can easily get the expression shown in the Eq.6.16 in the Chpater 6.
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Appendix B

Third order static correction to the action

Like we did in the case of second order:

−1
3

∑
n,n′,n′′,k,k′,k′′

G0(n,k)Vn−n′,k−k′G0(n′,k′)Vn′−n′′,k′−k′′G0(n′′,k′′)Vn′′−n,k′′−k.

(B.1)
Which explicitly is:

− 1
3N3

∑
n,n′,n′′,k,k′,k′′,i,j,l,a,b,c

G0(n, k)J>k′−k∆(i)
n−n′,k−k′σ

(i)
abG0(n′,k′)

J>k′−k′′∆(j)
n′−n′′,k′−k′′σ

(j)
bc G0(n′′,k′′)J>k′′−k∆(l)

n′′−n,k′′−kσ
(l)
ca .

(B.2)

By using the properties of the Pauli matrix: Tr(σ(i)σ(j)σ(l)) = 2iϵijl we can further
get:

− 2i
3N3

∑
n,n′,n′′,k,k′,k′′,i,j,l

ϵijkG0(n,k)J>k′−k∆(i)
n−n′,k−k′G0(n′,k′)

J>k′−k′′∆(j)
n′−n′′,k′−k′′G0(n′′,k′′)J>k′′−k∆(l)

n′′−n,k′′−k.

(B.3)

Then we can turn it into a contour integration:

− 2iβ
3N2

∑
m1,m2,q1,q2,i,j,l

∮
dz

2πi
f(z)

z(z − iνm1)(z − iνm1 − iνm2)

J>q1J
>
q2J

>
−q1−q2ϵijl∆

(i)
m1,q1∆(j)

m2,q2∆(l)
−m1−m2,−q1−q2 .

(B.4)

Consider that: iνm1 = iνm2 = 0, or so to speak consider only the static configuration
of the white-noise field, and we can carry out the contour integration:

− 2iβ
3N2

∑
m1,m2,q1,q2,i,j,l

[
J>q1J

>
q2J

>
−q1−q2

(3 − 1)!
d2f(x)
dz2

∣∣∣
z→0

]
ϵijl∆(i)

m1,q1∆(j)
m2,q2∆(l)

−m1−m2,−q1−q2 = 0.

(B.5)
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Fourth order static correction to the action

For the fourth order term we find:

−1
4
∑
i···r

(G0ijVjkG0klVlpG0pqVqhG0hrVriδijδklδpqδhr), (C.1)

which is simplified as:

−1
4
∑
i,l,p,h

(G0iVilG0lVlpG0pVphG0hVhi). (C.2)

By using the properties of the Pauli matrix: Tr(τiτjτkτl) = 2(δijδkl − δikδjl + δilδjk)
we can further get:

− 1
2N4

∑
k···k′′′,n···n′′′,i,j

[
+G0(n,k)J>k−k′∆(i)

n−n′,k−k′G0(n′,k′)J>k′−k′′∆(i)
n′−n′′,k′−k′′

G0(n′′,k′′)J>k′′−k′′′∆(j)
n′′−n′′′,k′′−k′′′G0(n′′′,k′′′)J>k′′′−k∆(j)

n′′′−n,k′′′−k

−G0(n,k)J>k−k′∆(i)
n−n′,k−k′G0(n′,k′)J>k′−k′′∆(j)

n′−n′′,k′−k′′

G0(n′′,k′′)J>k′′−k′′′∆(i)
n′′−n′′′,k′′−k′′′G0(n′′′,k′′′)J>k′′′−k∆(j)

n′′′−n,k′′′−k

+G0(n,k)J>k−k′∆(i)
n−n′,k−k′G0(n′,k′)J>k′−k′′∆(j)

n′−n′′,k′−k′′

G0(n′′,k′′)J>k′′−k′′′∆(j)
n′′−n′′′,k′′−k′′′G0(n′′′,k′′′)J>k′′′−k∆(i)

n′′′−n,k′′′−k

]
.

(C.3)

By renaming the labels we can rewrite it as:

− 1
2N4

∑
q1,q2,q3,n,m1,m2,m3,i,j

J>q1J
>
q2J

>
q3J

>
−q1−q2−q3

(iωn)(iωn − iνm1)(iωn − iνm1 − iνm2)(iωn − iνm1 − iνm2 − iνm3)

(∆(i)
m1,q1∆(i)

m2,q2∆(j)
m3,q3∆(j)

−m1−m2−m3,−q1−q2−q3 − ∆(i)
m1,q1∆(j)

m2,q2∆(i)
m3,q3∆(j)

−m1−m2−m3,−q1−q2−q3

+ ∆(i)
m1,q1∆(j)

m2,q2∆(j)
m3,q3∆(i)

−m1−m2−m3,−q1−q2−q3).
(C.4)
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By applying the contour integral method to Eq.7.40 we can get:

− 1
2N3β

∑
q1,q2,q3,m1,m2,m3,i,j

∮
dz

2πi
f(z)

z(z − iνm1)(z − iνm1 − iνm2)(z − iνm1 − iνm2 − iνm3)

J>q1J
>
q2J

>
q3J

>
−q1−q2−q3(∆(i)

m1,q1∆(i)
m2,q2∆(j)

m3,q3∆(j)
−m1−m2−m3,−q1−q2−q3

− ∆(i)
m1,q1∆(j)

m2,q2∆(i)
m3,q3∆(j)

−m1−m2−m3,−q1−q2−q3 + ∆(i)
m1,q1∆(j)

m2,q2∆(j)
m3,q3∆(i)

−m1−m2−m3,−q1−q2−q3).
(C.5)

Now we should carefully evaluate the contour integral in Eq.C.6, first consider that
iνm1 = iνm2 = iνm3 = 0 and we can get:

− 1
2N3β

∑
q1,q2,q3,i,j

∮
dz

2πi
f(z)
z4 J>q1J

>
q2J

>
q3J

>
−q1−q2−q3(∆(i)

0,q1∆(i)
0,q2∆(j)

0,q3∆(j)
0,−q1−q2−q3

− ∆(i)
0,q1∆(j)

0,q2∆(i)
0,q3∆(j)

0,−q1−q2−q3
+ ∆(i)

0,q1∆(j)
0,q2∆(j)

0,q3∆(i)
0,−q1−q2−q3

).
(C.6)

And if we rename q2 to q3 and q3 to q2 in the first term, we can further eliminate
the first term and the second with each other and only left with:

− 1
2N3β

∑
q1,q2,q3,i,j

∮
dz

2πi
f(z)
z4 J>q1J

>
q2J

>
q3J

>
−q1−q2−q3∆(i)

0,q1∆(j)
0,q2∆(j)

0,q3∆(i)
0,−q1−q2−q3

.

(C.7)
Then we can carry out the contour integration to get:

− 1
2N3β

∑
q1,q2,q3,i,j

J>q1J
>
q2J

>
q3J

>
−q1−q2−q3

(4 − 1)!

[
d3f(z)
dz3

∣∣∣
z→0

]
∆(i)

0,q1∆(j)
0,q2∆(j)

0,q3∆(i)
0,−q1−q2−q3

.

(C.8)
From which we get:

− β4

96N3

∑
q1,q2,q3,i,j

J>q1J
>
q2J

>
q3J

>
−q1−q2−q3∆(i)

0,q1∆(j)
0,q2∆(j)

0,q3∆(i)
0,−q1−q2−q3

. (C.9)
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Appendix D

Non-static corrections to the action

For the Non static correction up to third order gives:
When iνm1 = 0, iνm2 ̸= 0 we have:

−2iβ
3

∑
m,q1,q2,i,j,l

∮
dz

2πi
f(z)

z2(z − iνm)J
>
q1J

>
q2J

>
−q1−q2ϵijl∆

(i)
0,q1∆(j)

m,q2∆(l)
−m,−q1−q2 (D.1)

Which compute as:

− iβ2

6
∑

m,q1,q2,i,j,l

1
iνm

J>q1J
>
q2J

>
−q1−q2ϵijl∆

(i)
0,q1∆(j)

m,q2∆(l)
−m,−q1−q2(iνm ̸= 0) (D.2)

When iνm1 ̸= 0, iνm2 = 0 we have:

−2iβ
3

∑
m,q1,q2,i,j,l

∮
dz

2πi
f(z)

z(z − iνm)2J
>
q1J

>
q2J

>
−q1−q2ϵijl∆

(i)
m,q1∆(j)

0,q2∆(l)
−m,−q1−q2 (D.3)

Which compute as:

+ iβ2

6
∑

m,q1,q2,i,j,l

1
iνm

J>q1J
>
q2J

>
−q1−q2ϵijl∆

(i)
m,q1∆(j)

0,q2∆(l)
−m,−q1−q2(iνm ̸= 0) (D.4)

When iνm1 ̸= 0, iνm2 ̸= 0, iνm1 + iνm2 = 0 we have:

−2iβ
3

∑
m,q1,q2,i,j,l

∮
dz

2πi
f(z)

z2(z − iνm)J
>
q1J

>
q2J

>
−q1−q2ϵijl∆

(i)
m,q1∆(j)

−m,q2∆(l)
0,−q1−q2

(D.5)

Which compute as:

− iβ2

6
∑

m,q1,q2,i,j,l

1
iνm

J>q1J
>
q2J

>
−q1−q2ϵijl∆

(i)
m,q1∆(j)

−m,q2∆(l)
0,−q1−q2

(iνm ̸= 0) (D.6)

When iνm1 ̸= 0, iνm2 ̸= 0, iνm1 + iνm2 ̸= 0 we have:

−2iβ
3

∑
m1,m2,q1,q2,i,j,l

∮
dz

2πi
f(z)

z(z − iνm1)(z − iνm1 − iνm2)

J>q1J
>
q2J

>
−q1−q2ϵijl∆

(i)
m1,q1∆(j)

m2,q2∆(l)
−m1−m2,−q1−q2

(D.7)
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Appendix D Non-static corrections to the action

Which compute as:

−16iβ
3

∑
m1,m2,q1,q2,i,j,l

f(0)
(iνm1)(iνm1 + iνm2) + f(0)

(iνm2)(iνm1 + iνm2) − f(0)
(iνm1iνm2)

J>q1J
>
q2J

>
−q1−q2ϵijl∆

(i)
m1,q1∆(j)

m2,q2∆(l)
−m1−m2,−q1−q2 = 0

(D.8)

By combining above equations the third order term reads:

− iβ2

2
∑

m,q1,q2,i,j,l

1
iνm

J>q1J
>
q2J

>
−q1−q2ϵijl∆

(i)
m,q1∆(j)

−m,q2∆(l)
0,−q1−q2

(iνm ̸= 0) (D.9)

For the Non static correction up to fourth order gives:
For iνm1 = iνm2 = 0, iνm3 ̸= 0,by renaming m3 as m we can get:

−1
2β

∑
q1,q2,q3,m,i,j

∮
dz

2πi
f(z)

z3(z − iνm)J
>
q1J

>
q2J

>
q3J

>
−q1−q2−q3(∆(i)

0,q1∆(i)
0,q2∆(j)

m,q3∆(j)
−m,−q1−q2−q3

− ∆(i)
0,q1∆(j)

0,q2∆(i)
m,q3∆(j)

−m,−q1−q2−q3 + ∆(i)
0,q1∆(j)

0,q2∆(j)
m,q3∆(i)

−m,−q1−q2−q3)
(D.10)

Similarly we can eliminate second term and third with each other by changing the labels:

−1
2β

∑
q1,q2,q3,m,i,j

∮
dz

2πi
f(z)

z3(z − iνm)J
>
q1J

>
q2J

>
q3J

>
−q1−q2−q3∆(i)

0,q1∆(i)
0,q2∆(j)

m,q3∆(j)
−m,−q1−q2−q3

(D.11)

And we can further carry out the contour integration to get:

−1
2β

∑
q1,q2,q3,m,i,j

( 1
(3 − 1)! [

d2

dz2
f(z)

(z − iνm) ]|z→0 + f(iνm)
(iνm)3 )

J>q1J
>
q2J

>
q3J

>
−q1−q2−q3∆(i)

0,q1∆(i)
0,q2∆(j)

m,q3∆(j)
−m,−q1−q2−q3

(D.12)

Which compute as:

−1
8β

2 ∑
q1,q2,q3,m,i,j

1
(iνm)2J

>
q1J

>
q2J

>
q3J

>
−q1−q2−q3∆(i)

0,q1∆(i)
0,q2∆(j)

m,q3∆(j)
−m,−q1−q2−q3(iνm ̸= 0)

(D.13)
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Appendix D Non-static corrections to the action

For iνm1 = iνm3 = 0, iνm2 ̸= 0:

−1
2β

∑
q1,q2,q3,m,i,j

∮
dz

2πi
f(z)

z2(z − iνm)2J
>
q1J

>
q2J

>
q3J

>
−q1−q2−q3(∆(i)

0,q1∆(i)
m,q2∆(j)

0,q3∆(j)
−m,−q1−q2−q3

− ∆(i)
0,q1∆(j)

m,q2∆(i)
0,q3∆(j)

−m,−q1−q2−q3 + ∆(i)
0,q1∆(j)

m,q2∆(j)
0,q3∆(i)

−m,−q1−q2−q3)
(D.14)

carry out the contour integration to get:

+1
4β

2 ∑
q1,q2,q3,m,i,j

1
(iνm)2J

>
q1J

>
q2J

>
q3J

>
−q1−q2−q3(∆(i)

0,q1∆(i)
m,q2∆(j)

0,q3∆(j)
−m,−q1−q2−q3

− ∆(i)
0,q1∆(j)

m,q2∆(i)
0,q3∆(j)

−m,−q1−q2−q3 + ∆(i)
0,q1∆(j)

m,q2∆(j)
0,q3∆(i)

−m,−q1−q2−q3)
(D.15)

Which we can put together the first term and the third term to get:

+ 1
2β

2 ∑
q1,q2,q3,m,i,j

1
(iνm)2J

>
q1J

>
q2J

>
q3J

>
−q1−q2−q3∆(i)

0,q1∆(i)
m,q2∆(j)

0,q3∆(j)
−m,−q1−q2−q3

− 1
4β

2 ∑
q1,q2,q3,m,i,j

1
(iνm)2J

>
q1J

>
q2J

>
q3J

>
−q1−q2−q3∆(i)

0,q1∆(j)
m,q2∆(i)

0,q3∆(j)
−m,−q1−q2−q3

(D.16)

For iνm2 = iνm3 = 0, iνm1 ̸= 0 follow the same procedure we get:

−1
8β

2 ∑
q1,q2,q3,m,i,j

1
(iνm)2J

>
q1J

>
q2J

>
q3J

>
−q1−q2−q3∆(i)

m,q1∆(j)
0,q2∆(j)

0,q3∆(i)
−m,−q1−q2−q3 (D.17)

For iνm1 = 0, iνm2 ̸= 0, iνm3 ̸= 0, from Eq.51 and rename m2 as m1 and m3 as m2 we
can get:

−1
2β

∑
q1,q2,q3,m1,m2,i,j

∮
dz

2πi
f(z)

z2(z − iνm1)(z − iνm1 − iνm2)J
>
q1J

>
q2J

>
q3J

>
−q1−q2−q3

(∆(i)
0,q1∆(i)

m1,q2∆(j)
m2,q3∆(j)

−m1−m2,−q1−q2−q3 − ∆(i)
0,q1∆(j)

m1,q2∆(i)
m2,q3∆(j)

−m1−m2,−q1−q2−q3

+ ∆(i)
0,q1∆(j)

m1,q2∆(j)
m2,q3∆(i)

−m1−m2,−q1−q2−q3)
(D.18)

When iνm1 + iνm2 = 0 we get:

−1
2β

∑
q1,q2,q3,m,i,j

∮
dz

2πi
f(z)

z3(z − iνm)J
>
q1J

>
q2J

>
q3J

>
−q1−q2−q3(∆(i)

0,q1∆(i)
m,q2∆(j)

−m,q3∆(j)
0,−q1−q2−q3

− ∆(i)
0,q1∆(j)

m,q2∆(i)
−m,q3∆(j)

0,−q1−q2−q3
+ ∆(i)

0,q1∆(j)
m,q2∆(j)

−m,q3∆(i)
0,−q1−q2−q3

)
(D.19)
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Following similar procedure we get:

−1
8β

2 ∑
q1,q2,q3,m,i,j

1
(iνm)2J

>
q1J

>
q2J

>
q3J

>
−q1−q2−q3∆(i)

0,q1∆(j)
m,q2∆(j)

−m,q3∆(i)
0,−q1−q2−q3

(iνm ̸= 0)

(D.20)
When iνm1 + iνm2 ̸= 0. Similarly we get:

−1
8β

2 ∑
q1,q2,q3,m1,m2,i,j

J>q1J
>
q2J

>
q3J

>
−q1−q2−q3

(iνm1)(iνm1 + iνm2) (∆(i)
0,q1∆(i)

m1,q2∆(j)
m2,q3∆(j)

−m1−m2,−q1−q2−q3

− ∆(i)
0,q1∆(j)

m1,q2∆(i)
m2,q3∆(j)

−m1−m2,−q1−q2−q3 + ∆(i)
0,q1∆(j)

m1,q2∆(j)
m2,q3∆(i)

−m1−m2,−q1−q2−q3)
(iνm1 ̸= 0, iνm2 ̸= 0, iνm1 + iνm2 ̸= 0)

(D.21)

For iνm2 = 0, iνm1 ̸= 0, iνm3 ̸= 0, rename m3 as m2 we can get:

−1
2β

∑
q1,q2,q3,m1,m2,i,j

∮
dz

2πi
f(z)

z(z − iνm1)2(z − iνm1 − iνm2)J
>
q1J

>
q2J

>
q3J

>
−q1−q2−q3

(∆(i)
m1,q1∆(i)

0,q2∆(j)
m2,q3∆(j)

−m1−m2,−q1−q2−q3 − ∆(i)
m1,q1∆(j)

0,q2∆(i)
m2,q3∆(j)

−m1−m2,−q1−q2−q3

+ ∆(i)
m1,q1∆(j)

0,q2∆(j)
m2,q3∆(i)

−m1−m2,−q1−q2−q3)
(D.22)

When iνm1 + iνm2 = 0:

−1
2β

∑
q1,q2,q3,m,i,j

∮
dz

2πi
f(z)

z2(z − iνm)2J
>
q1J

>
q2J

>
q3J

>
−q1−q2−q3(∆(i)

m,q1∆(i)
0,q2∆(j)

−m,q3∆(j)
0,−q1−q2−q3

− ∆(i)
m,q1∆(j)

0,q2∆(i)
−m,q3∆(j)

0,−q1−q2−q3
+ ∆(i)

m,q1∆(j)
0,q2∆(j)

−m,q3∆(i)
0,−q1−q2−q3

)
(D.23)

Following same procedure we can get:

+ 1
2β

2 ∑
q1,q2,q3,m,i,j

1
(iνm)2J

>
q1J

>
q2J

>
q3J

>
−q1−q2−q3∆(i)

m,q1∆(i)
0,q2∆(j)

0,q3∆(j)
−m,−q1−q2−q3(iνm ̸= 0)

− 1
4β

2 ∑
q1,q2,q3,m,i,j

1
(iνm)2J

>
q1J

>
q2J

>
q3J

>
−q1−q2−q3∆(i)

m,q1∆(j)
0,q2∆(i)

−m,q3∆(j)
0,−q1−q2−q3

(iνm ̸= 0)

(D.24)
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When iνm1 + iνm2 ̸= 0. Similarly we can get:

− 1
4β

2 ∑
q1,q2,q3,m1,m2,i,j

1
iνm1iνm2

J>q1J
>
q2J

>
q3J

>
−q1−q2−q3∆(i)

m1,q1∆(i)
0,q2∆(j)

m2,q3∆(j)
−m1−m2,−q1−q2−q3

(iνm1 ̸= 0, iνm2 ̸= 0, iνm1 + iνm2 ̸= 0)

+ 1
8β

2 ∑
q1,q2,q3,m1,m2,i,j

1
iνm1iνm2

J>q1J
>
q2J

>
q3J

>
−q1−q2−q3∆(i)

m1,q1∆(j)
0,q2∆(i)

m2,q3∆(j)
−m1−m2,−q1−q2−q3

(iνm1 ̸= 0, iνm2 ̸= 0, iνm1 + iνm2 ̸= 0)
(D.25)

For iνm3 = 0, iνm1 ̸= 0, iνm2 ̸= 0,we can get:

−1
2β

∑
q1,q2,q3,m1,m2,i,j

∮
dz

2πi
f(z)

z(z − iνm1)(z − iνm1 − iνm2)2J
>
q1J

>
q2J

>
q3J

>
−q1−q2−q3

(∆(i)
m1,q1∆(i)

m2,q2∆(j)
0,q3∆(j)

−m1−m2,−q1−q2−q3 − ∆(i)
m1,q1∆(j)

m2,q2∆(i)
0,q3∆(j)

−m1−m2,−q1−q2−q3

+ ∆(i)
m1,q1∆(j)

m2,q2∆(j)
0,q3∆(i)

−m1−m2,−q1−q2−q3)
(D.26)

When iνm1 + iνm2 = 0:

−1
2β

∑
q1,q2,q3,m,i,j

∮
dz

2πi
f(z)

z3(z − iνm)J
>
q1J

>
q2J

>
q3J

>
−q1−q2−q3∆(i)

m,q1∆(i)
−m,q2∆(j)

0,q3∆(j)
0,−q1−q2−q3

(D.27)
Which compute as:

−1
8β

2 ∑
q1,q2,q3,m,i,j

J>q1J
>
q2J

>
q3J

>
−q1−q2−q3

(iνm)2 ∆(i)
m,q1∆(i)

−m,q2∆(j)
0,q3∆(j)

0,−q1−q2−q3
(iνm ̸= 0)

(D.28)
When iνm1 + iνm2 ̸= 0. Similarly we can get:

+1
8β

2 ∑
q1,q2,q3,m1,m2,i,j

J>q1J
>
q2J

>
q3J

>
−q1−q2−q3

(iνm2)(iνm1 + iνm2) (∆(i)
m1,q1∆(i)

m2,q2∆(j)
0,q3∆(j)

−m1−m2,−q1−q2−q3

− ∆(i)
m1,q1∆(j)

m2,q2∆(i)
0,q3∆(j)

−m1−m2,−q1−q2−q3 + ∆(i)
m1,q1∆(j)

m2,q2∆(j)
0,q3∆(i)

−m1−m2,−q1−q2−q3)
(iνm1 ̸= 0, iνm2 ̸= 0, iνm1 + iνm2 ̸= 0)

(D.29)
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For iνm1 ̸= 0, iνm2 ̸= 0, iνm3 ̸= 0, we can get:

−1
2β

∑
q1,q2,q3,m1,m2,m3,i,j

∮
dz

2πi
J>q1J

>
q2J

>
q3J

>
−q1−q2−q3f(z)

z(z − iνm1)(z − iνm1 − iνm2)(z − iνm1 − iνm2 − iνm3)

(∆(i)
m1,q1∆(i)

m2,q2∆(j)
m3,q3∆(j)

−m1−m2−m3,−q1−q2−q3 − ∆(i)
m1,q1∆(j)

m2,q2∆(i)
m3,q3∆(j)

−m1−m2−m3,−q1−q2−q3

+ ∆(i)
m1,q1∆(j)

m2,q2∆(j)
m3,q3∆(i)

−m1−m2−m3,−q1−q2−q3)
(D.30)

When iνm1 + iνm2 = 0 we get:

−1
2β

∑
q1,q2,q3,m1,m3,i,j

∮
dz

2πi
f(z)

z2(z − iνm1)(z − iνm3)J
>
q1J

>
q2J

>
q3J

>
−q1−q2−q3

(∆(i)
m1,q1∆(i)

−m1,q2∆(j)
m3,q3∆(j)

−m3,−q1−q2−q3 − ∆(i)
m1,q1∆(j)

−m1,q2∆(i)
m3,q3∆(j)

−m3,−q1−q2−q3

+ ∆(i)
m1,q1∆(j)

−m1,q2∆(j)
m3,q3∆(i)

−m3,−q1−q2−q3)
(D.31)

When iνm1 = iνm3 we further get:

−1
2β

∑
q1,q2,q3,m,i,j

∮
dz

2πi
f(z)

z2(z − iνm)2J
>
q1J

>
q2J

>
q3J

>
−q1−q2−q3

(∆(i)
m,q1∆(i)

−m,q2∆(j)
m,q3∆(j)

−m,−q1−q2−q3 − ∆(i)
m,q1∆(j)

−m,q2∆(i)
m,q3∆(j)

−m,−q1−q2−q3

+ ∆(i)
m,q1∆(j)

−m,q2∆(j)
m,q3∆(i)

−m,−q1−q2−q3)

(D.32)

Which compute as:

+1
2β

2 ∑
q1,q2,q3,m,i,j

1
(iνm)2J

>
q1J

>
q2J

>
q3J

>
−q1−q2−q3∆(i)

m,q1∆(i)
−m,q2∆(j)

m,q3∆(j)
−m,−q1−q2−q3(iνm ̸= 0)

−1
4β

2 ∑
q1,q2,q3,m,i,j

1
(iνm)2J

>
q1J

>
q2J

>
q3J

>
−q1−q2−q3∆(i)

m,q1∆(j)
−m,q2∆(i)

m,q3∆(j)
−m,−q1−q2−q3(iνm ̸= 0)

(D.33)

When iνm1 ̸= iνm3 . We get:

+1
8β

2 ∑
q1,q2,q3,m1,m2,i,j

1
(iνm1)(iνm2)J

>
q1J

>
q2J

>
q3J

>
−q1−q2−q3(∆(i)

m1,q1∆(i)
−m1,q2∆(j)

m2,q3∆(j)
−m2,−q1−q2−q3

− ∆(i)
m1,q1∆(j)

−m1,q2∆(i)
m2,q3∆(j)

−m2,−q1−q2−q3 + ∆(i)
m1,q1∆(j)

−m1,q2∆(j)
m2,q3∆(i)

−m2,−q1−q2−q3)
(iνm1 ̸= iνm2 , iνm1 ̸= 0, iνm2 ̸= 0)

(D.34)
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When iνm1 + iνm2 ̸= 0 while iνm1 + iνm2 + iνm3 = 0 we get:

−1
2β

∑
q1,q2,q3,m1,m2,i,j

∮
dz

2πi
f(z)

z2(z − iνm1)(z − iνm1 − iνm2)J
>
q1J

>
q2J

>
q3J

>
−q1−q2−q3

(∆(i)
m1,q1∆(i)

m2,q2∆(j)
−m1−m2,q3∆(j)

0,−q1−q2−q3
− ∆(i)

m1,q1∆(j)
m2,q2∆(i)

−m1−m2,q3∆(j)
0,−q1−q2−q3

+ ∆(i)
m1,q1∆(j)

m2,q2∆(j)
−m1−m2,q3∆(i)

0,−q1−q2−q3
)

(D.35)

Which compute as:

+1
8β

2 ∑
q1,q2,q3,m1,m2,i,j

J>q1J
>
q2J

>
q3J

>
−q1−q2−q3

(iνm1)(iνm1 + iνm2) (∆(i)
m1,q1∆(i)

m2,q2∆(j)
−m1−m2,q3∆(j)

0,−q1−q2−q3

− ∆(i)
m1,q1∆(j)

m2,q2∆(i)
−m1−m2,q3∆(j)

0,−q1−q2−q3
+ ∆(i)

m1,q1∆(j)
m2,q2∆(j)

−m1−m2,q3∆(i)
0,−q1−q2−q3

)
(iνm1 + iνm2 ̸= 0, iνm1 ̸= 0, iνm2 ̸= 0)

(D.36)

NblueWhen iνm1 + iνm2 ̸= 0 , iνm1 + iνm2 + iνm3 ̸= 0 while iνm2 + iνm3 = 0 we get:

−1
2β

∑
q1,q2,q3,m1,m2,i,j

∮
dz

2πi
f(z)

z(z − iνm1)2(z − iνm1 − iνm2)J
>
q1J

>
q2J

>
q3J

>
−q1−q2−q3

(∆(i)
m1,q1∆(i)

m2,q2∆(j)
−m2,q3∆(j)

−m1,−q1−q2−q3 − ∆(i)
m1,q1∆(j)

m2,q2∆(i)
−m2,q3∆(j)

−m1,−q1−q2−q3

+ ∆(i)
m1,q1∆(j)

m2,q2∆(j)
−m2,q3∆(i)

−m1,−q1−q2−q3)
(D.37)

Which compute as:

−1
8β

2 ∑
q1,q2,q3,m1,m2,i,j

1
(iνm1)(iνm2)J

>
q1J

>
q2J

>
q3J

>
−q1−q2−q3(∆(i)

m1,q1∆(i)
m2,q2∆(j)

−m2,q3∆(j)
−m1,−q1−q2−q3

− ∆(i)
m1,q1∆(j)

m2,q2∆(i)
−m2,q3∆(j)

−m1,−q1−q2−q3 + ∆(i)
m1,q1∆(j)

m2,q2∆(j)
−m2,q3∆(i)

−m1,−q1−q2−q3)
(iνm1 + iνm2 ̸= 0, iνm1 ̸= 0, iνm2 ̸= 0)

(D.38)

When iνm1 + iνm2 ̸= 0 , iνm1 + iνm2 + iνm3 ̸= 0 while iνm2 + iνm3 ̸= 0 we get:

− f(0)
iνm1(iνm1 + iνm2)(iνm1 + iνm2 + iνm3) + f(iνm1)

iνm1iνm2(iνm2 + iνm3)

+ f(iνm1 + iνm2 + iνm3)
iνm3(iνm2 + iνm3)(iνm1 + iνm2 + iνm3) − f(iνm1 + iνm2)

iνm2iνm3(iνm1 + iνm2)
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Using the periodicity of the fermi-function: f(iνn) = f(0) so that we can have:

− f(0)
iνm1(iνm1 + iνm2)(iνm1 + iνm2 + iνm3) + f(0)

iνm1iνm2(iνm2 + iνm3)

+ f(0)
iνm3(iνm2 + iνm3)(iνm1 + iνm2 + iνm3) − f(0)

iνm2iνm3(iνm1 + iνm2) = 0

(iνm1 + iνm2 ̸= 0, iνm2 + iνm3 ̸= 0, iνm1 + iνm2 + iνm3 ̸= 0, iνm1 ̸= 0, iνm2 ̸= 0, iνm3 ̸= 0)
(D.39)

While the non-static part up to fourth order reads:

+ 1
4Nsiβ

2 ∑
m,q1,q2,i,j,l

1
iνm

J>q1J
>
q2J

>
−q1−q2ϵijl∆

(i)
m,q1∆(j)

−m,q2∆(l)
0,−q1−q2

(iνm ̸= 0)

+ 1
4Nsβ

2 ∑
q1,q2,q3,m1,m2,i,j

1
iνm1iνm2

J>q1J
>
q2J

>
q3J

>
−q1−q2−q3∆(i)

m1,q1∆(i)
0,q2∆(j)

m2,q3∆(j)
−m1−m2,−q1−q2−q3

(iνm1 ̸= 0, iνm2 ̸= 0, iνm1 + iνm2 ̸= 0)

− 1
8Nsβ

2 ∑
q1,q2,q3,m1,m2,i,j

1
iνm1iνm2

J>q1J
>
q2J

>
q3J

>
−q1−q2−q3∆(i)

m1,q1∆(j)
0,q2∆(i)

m2,q3∆(j)
−m1−m2,−q1−q2−q3

(iνm1 ̸= 0, iνm2 ̸= 0, iνm1 + iνm2 ̸= 0)

−Nsβ
2 ∑
q1,q2,q3,m,i,j

1
(iνm)2J

>
q1J

>
q2J

>
q3J

>
−q1−q2−q3∆(i)

m,q1∆(i)
0,q2∆(j)

0,q3∆(j)
−m,−q1−q2−q3(iνm ̸= 0)

+Nsβ
2 ∑
q1,q2,q3,m,i,j

1
(iνm)2J

>
q1J

>
q2J

>
q3J

>
−q1−q2−q3∆(i)

m,q1∆(j)
0,q2∆(i)

−m,q3∆(j)
0,−q1−q2−q3

(iνm ̸= 0)

− 3
8Nsβ

2 ∑
q1,q2,q3,m1,m2,i,j

J>q1J
>
q2J

>
q3J

>
−q1−q2−q3

(iνm1)(iνm1 + iνm2) (∆(i)
0,q1∆(i)

m1,q2∆(j)
m2,q3∆(j)

−m1−m2,−q1−q2−q3

− ∆(i)
0,q1∆(j)

m1,q2∆(i)
m2,q3∆(j)

−m1−m2,−q1−q2−q3 + ∆(i)
0,q1∆(j)

m1,q2∆(j)
m2,q3∆(i)

−m1−m2,−q1−q2−q3)
(iνm1 ̸= 0, iνm2 ̸= 0, iνm1 + iνm2 ̸= 0)

− 1
2Nsβ

2 ∑
q1,q2,q3,m,i,j

1
(iνm)2J

>
q1J

>
q2J

>
q3J

>
−q1−q2−q3∆(i)

m,q1∆(i)
−m,q2∆(j)

m,q3∆(j)
−m,−q1−q2−q3(iνm ̸= 0)

+ 1
4Nsβ

2 ∑
q1,q2,q3,m,i,j

1
(iνm)2J

>
q1J

>
q2J

>
q3J

>
−q1−q2−q3∆(i)

m,q1∆(j)
−m,q2∆(i)

m,q3∆(j)
−m,−q1−q2−q3(iνm ̸= 0)

+ 1
2Nsβ

2 ∑
q1,q2,q3,m1,m2,i,j

1
(iνm1)(iνm2)J

>
q1J

>
q2J

>
q3J

>
−q1−q2−q3∆(i)

m1,q1∆(j)
−m1,q2∆(i)

m2,q3∆(j)
−m2,−q1−q2−q3

(iνm1 ̸= iνm2 , iνm1 ̸= 0, iνm2 ̸= 0)
(D.40)
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Appendix E

Critical behavior of Kab compared to Kaa

Now we take the fluctuations around (π, 0) and (0, π) into consideration. These fluctua-
tions maybe come from quantum fluctuations or the thermal fluctuations. Here we only
consider fluctuations that live in a small energy window that corresponds to the 1/1000
of the peak intensity. As we shown in Table.E.1, when we tuning the ratio of J2

J1
close to

the 0.5, the coefficient Kab shrinks significantly compared to the rest of the coefficients
which roughly acquires the same value as in the case neglecting all the fluctuations. It
can be seen in the Eq.7.63, Collinear phase is less favoured when the value of Kab is
decreasing while the value of Kaa stays the same. In order to illustrated this idea more
clearly, we shall do the contour plot once again in the ratio of J2

J1
close to the 0.5.

Table E.1: A table for normalized coefficients that are described in Eq.7.59.

J2
J1

K1 K2 Kaa Kab

0.5005 0.5002 0.2502 0.0626 0.0083
0.5006 0.5003 0.2503 0.0626 0.0189
0.5007 0.5004 0.2504 0.0627 0.0243
0.5008 0.5005 0.2505 0.0627 0.0282
0.5009 0.5006 0.2506 0.0628 0.0315
0.501 0.5007 0.2507 0.0628 0.0339
0.505 0.5048 0.2548 0.0648 0.0583
0.51 0.5097 0.2598 0.0674 0.0642
0.6 0.5997 0.3596 0.1292 0.1286
1 0.9995 0.9990 0.9970 0.9962
2 1.9990 3.9960 15.9521 15.9500

Shown in the Fig.E.1, Collinear phase is not favoured when we take the effect of
fluctuations into consideration. The reason for that is the sign of g is changed from
positive to negative , so fluctuation that are equally strong in both X or Y direction is
more favoured in order to minimizing the free energy, and this kind of fluctuation can
lead to the emergency of the Spin density wave phase. From the Fig.E.2 we infer that a
phase transition from Collinear phase to Spin density wave phase may happen around
at J2

J1
= 0.5008 base on above approximation.
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(a) (b)

Figure E.1: The contour plot of SE [∆2
X ,∆2

Y ] when T = 0.1 in the regime of J2
J1

= 0.5005.
(a)Neglect all fluctuations (b)Include fluctuations.

(a) (b)

Figure E.2: The contour plot of SE [∆2
X ,∆2

Y ] when T = 0.1 (a)in the regime of J2
J1

=
0.5008. (b)in the regime of J2

J1
= 0.5009.
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