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A B S T R A C T

In this thesis, we review the process of translating the classification of non-interacting
Topological Quantum Systems to the interacting case, by working with the Kitaev
model for a 1D p-wave superconducting wire as an example. The model is intro-
duced, the existence of boundary Majorana zero modes is demonstrated, and their
properties are analysed using both the Hamiltonian and the Green’s function. This
analysis is performed analytically both at the symmetric point µ = 0, ∆ = t, and with
general parameters in an infinitely long wire. These findings were compared to the
numerically computed results for a finite sized system. The concepts of symmetry
classes, Topological Invariants and the Bulk-Boundary correspondence, are trans-
lated to interacting systems, where the full many-body Green’s function is the key
ingredient. The inclusion of two kinds of interactions is presented, namely bosonic
charge fluctuations and a nearest neighbour repulsive electron-electron interaction.
The bosonic interactions, resultant from coupling the wire to a capacitive gate, are
included via a Perturbation Theory calculation, and a low order self-energy diagram
is computed. The characteristics of the full local spectral function are investigated,
where the imaginary part of the self-energy resulted in a broadening of the zero bias
peaks, but the decay rate of the zero mode coherence into the bulk was unaffected.
Motivated by recent literature, we consider a local two-body interaction between
the electrons controlled by the interaction strength W. By a Jordan-Wigner transfor-
mation, the system is then mapped to an XYZ spin chain model, and parts of the
phase diagram is explored for ∆ = t. The specific region of parameter space given by

µ =
√
(W + t)2 − ∆2 defines an exactly solvable case, where the many-body ground

state is calculated. For small chain sizes the ground state energies are compared
with results from an Exact Diagonalization procedure, and they are shown to be a
perfect match. A self-energy term in the perturbation theory is also calculated for
this kind of interaction, and the local spectral function is determined numerically
for various temperatures and interaction strengths. To make a connection with
preceding calculations, the symmetry properties of the Green’s function are shown
to be preserved when adding interactions.
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1
I N T R O D U C T I O N

In the recent decades of condensed matter research there has been a great effort to
consolidate all knowledge about topological quantum phase transitions into a gen-
eral classification scheme. This has resulted in a description of topological systems
called the ten-fold way, where all non-interacting Hamiltonians fall into ten symmetry
classes. This, together with the dimensionality of the system, determines the topolog-
ical classification [28]. An example of such exotic phases is the Integer Quantum Hall
Effect, where the transverse electrical conductance σxy = ν e2

h is quantized in integer
steps, ν being a topological invariant that cannot change by adiabatically changing
the parameters of the system. In more recent studies the attention has been focused
on generalising the free classification of topological quantum systems to cases where
interactions and disorder are present [10][11][12][15]. The main difficulties and
advances in such a mission will be the topic of this thesis. As a preamble to this
analysis, some facts about topological systems, superconductivity and Interacting
topological phases will be introduced.

The Landau theory of phase transitions is one of the hallmarks of condensed matter
physics in the 20th century. It turned out that all phase transitions observed in
nature, like water freezing to ice and metals acquiring magnetic ordering, could
be described using one simple framework of spontaneous symmetry breaking [3].
What separates the different phases in these classical systems is a transition point
in temperature Tc, below which the symmetries of the system are spontaneously
broken and a corresponding order parameter acquires a non-zero value.

In addition to these normal phases of matter, there also exists quantum phases
that are ordered states at zero temperature. For these systems the transition point
is not at a critical temperature, but is instead determined by critical values of the
parameters in the Hamiltonian. Topological phases cannot be described by any
local order parameter, but are instead characterised by non-trivial bulk topological
invariants, i.e. integer numbers that cannot be changed by continuously varying
the parameters of the theory[17]. A topological phase is in this sense a phase that
cannot be connected adiabatically to the trivial phase. Every phase will have its
own topological number, and they are separated by topological phase transitions, at
which the energy spectrum becomes gapless.

If one introduces a boundary in a system with non-trivial topology, there will
be a state which lives on the boundary. The properties of this state is dependant on
which system we consider, but they can include exotic attributes, such as fractional
charges, non-Abelian exchange statistics etc., the existence of which has not been
observed outside of condensed matter [1][21]. This is one of the reasons why the
study of topological phases has become a focal point for modern research. The
one-to-one relation between bulk topology and boundary excitations is called the
Bulk-Boundary correspondence. Recent research suggests that this is one of the facts
that will have to be modified in the presence of interactions [10]. A visualization of
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introduction 2

a topological phase transition is shown in figure 1 together with an example of an
imagined consequence when adding interactions.

α αTopological Trivial

Distinct phases Single phase

U

Figure 1: Illustration of some aspects of the topological phase transitions. A
parameter of the system α is varied smoothly, but at the point shown as a red
circle, the energy gap closes which marks the topological phase transition. The
topological phase is thus different from the trivial phase. An imagined effect of
adding interactions (shown on the right) by the adding new axis U, is that the
two different phases can now be connected adiabatically, by changing the values
along the green line in parameter space. Along this curve, there is no gap closing,
and we then conclude that the two phases now become topologically equivalent.

In some condensed matter systems like superfluid or superconducting states,
it is possible for fermions to condense and develop long-range correlations. In a
Hamiltonian describing such a circumstance with bosonic or fermionic degrees of
freedom, we can have anomalous quadratic terms in creation/annihilation operators
of the form c†c† and cc, which stem from a mean-field analysis. There, a quartic
interaction (4 electron operators) has been reduced to a quadratic term by coupling
the electrons to an auxiliary bosonic pairing field ∆[2]. Under the transition tempera-
ture Tc, this field will then condense to a non-zero value, where ∆ is associated with
the density of superconducting electrons and the size of the gap in the density of
states. Electrons in this superconducting phase will form Cooper pairs, consisting of
two time-reversed electrons that attract each other via quantum fluctuations of the
crystal lattice called Phonons.

To solve the resulting system, assuming translational invariance, one introduces a
quasi-particle momentum space operator αk↑ = ukck↑ + vkc†

−k↓ defining the annihi-
lation operator for the Bogoliubon particle, which is a superposition of an electron
and a hole. Written in terms of these operators, the Hamiltonian is diagonal, and the
many-body ground state is the vacuum of Bogoliubons αk↑|ψ0〉 = 0. Now, one may
ask, what happens if we combine the notions of topological quantum systems, with
the theory of superconductivity?

A prime example of a topological superconductor, was proposed by Kitaev [19].
He considered a simple toy model for a 1D p-wave superconductor with spinless
electrons, where the boundary excitations exhibit novel phenomena that are interest-
ing from both theoretical and practical perspectives. The edge states in this system



introduction 3

are Bogoliubov type quasi-particles called Majorana zero modes, which are equal
weight electron and hole γ = c† + c. In this sense, they are their own antiparticles,
i.e. their 2nd quantized operators are Hermitian γ = γ†. The ground-state of the
system spans a degenerate subspace, resulting in the Majoranas obeying non-Abelian
exchange statistics. This means that the Berry phases picked up by exchange is not
described by a number, but instead a matrix, thereby changing the wave-functions.
This is a property that is hoped to be utilized in building a fault tolerant quantum
computer, since a system of 4 or more Majoranas can define a Quantum bit [21].
The fact that the Majoranas are localized on the edges of a wire means that the
information stored in both ends will be protected from local fluctuations.

Adding interactions may have several effects on these topological systems. They
might enlarge a range in the phase diagram where topological order exists, or
they might change the topological classification altogether as shown in figure 1.
An important result in the research of topological quantum systems, where the
effect of interactions was included, was shown by Fidkowski and Kitaev [11]. They
showed that a system consisting of 8 Kitaev chains, with one Majorana per edge, all
interacting with each other, exists in a phase that is connected to the trivial state.
Thereby exhibiting a reduction of the topological classification from Z (integer)
to Z8 (integers modulo 8). In order to tackle the problem of generalising results
from non-interacting systems to the interacting counterparts, work must be done
to translate concepts from one to the other. The description of symmetry classes,
topological invariants, bulk-boundary correspondence etc. must consistently be
translated from non-interacting to interacting cases, and this will be the main focus
of this thesis. To make matters more concrete, we will work with the Kitaev model
as a reference point in this inquiry.

The outline of this thesis is as follows. Chapter 2 introduces the non-interacting
Kitaev chain with open boundary conditions and shows the existence of Majorana
zero modes. Then concepts of momentum space topology of the closed translational
invariant system is analysed, the symmetry class is determined and the Topological
Invariant (TI) is calculated. After this, the exact zero modes will be found in the limit
of an infinitely long wire, and then the full system will be diagonalized numerically.
The Green’s function (GF) of the Kitaev model is found, and used to show the
relation between the Bogoliubov-De Gennes wavefunction and the local spectral
function. Symmetry classes and TI’s are then generalized to include interacting
systems. Chapter 3 covers the inclusion of bosonic interactions in the Hamiltonian,
motivated by an experimental realisation where the wire is coupled to a capacitive
gate. Details of the development of a perturbation series is shown, and the full
spectral function is then found using a low order self-energy diagram. In chapter
4 we instead include a nearest neighbour electron-electron interaction, and explore
the phase-diagram described in recent literature[18][22][24]. Again, a self-energy
diagram is calculated and inserted in the full spectral function, allowing us to see
how the interactions affect the Majorana zero modes, and to compare symmetries of
the GF with those found in chapter 2.



2
T H E N O N - I N T E R A C T I N G K I TA E V C H A I N

2.1 hamiltonian description

In this chapter we will investigate the Kitaev chain in the non-interacting case,
and show that majorana zero modes exist on the edges of a 1D wire, when the
system is in the topologically non-trivial phase [21]. The model describes spinless
fermions, subject to nearest-neighbour hopping t and superconducting pairing ∆.
The system has N sites, and is assumed to have open boundary conditions, for which
the Hamiltonian is

H = −µ
N

∑
n=1

c†
ncn −

t
2

N−1

∑
n=1

(
c†

ncn+1 + c†
n+1cn

)
+
|∆|
2

N−1

∑
n=1

(
eiϕcncn+1 + e−iϕc†

n+1c†
n

)
(2.1)

where c†
n creates an electron at site n, µ is the chemical potential, t the hopping

amplitude and |∆|eiϕ is the superconducting pairing function. This can be assumed
real, since the phase factor can be removed by the global gauge transformation
cn → cne−i ϕ

2 , so the notation for the pairing function |∆| → ∆ will be used in
further calculations. Interestingly, this Hamiltonian does not conserve the total
particle number F = ∑n c†

ncn due to the anomalous pairing term,
[
H, c†

ncn
]
6= 0, but

parity, defined as total particle number F modulo 2, is a conserved quantity, i.e.[
H, (−1)F] = 0.

2.1.1 Zero energy edge states

To analyze the model described by the Hamiltonian in eq. (2.1) one can introduce
the Majorana operators

γA,n =
(

c†
n + cn

)
cn =

1
2
(γA,n + iγB,n)

γB,n = i
(

c†
n − cn

)
c†

n =
1
2
(γA,n − iγB,n) (2.2)

which is essentially a division of the electronic operators into their real and imag-
inary part. The γ operators obey the Majorana condition γα,n = γ†

α,n and the anti-

4



2.1 hamiltonian description 5

commutator relation {γα,n, γα′,n′} = 2δα,α′δn,n′ . Inserting these into the Hamiltonian
in eq. (2.1) yields

H =− µ

4

N

∑
n=1

(γA,n − iγB,n) (γA,n + iγB,n)

− t
8

N−1

∑
n=1

[(γA,n − iγB,n) (γA,n+1 + iγB,n+1) + (γA,n+1 − iγB,n+1) (γA,n + iγB,n)]

+
∆
8

N−1

∑
n=1

[(γA,n + iγB,n) (γA,n+1 + iγB,n+1) + (γA,n+1 − iγB,n+1) (γA,n − iγB,n)]

=− µ

2

N

∑
n=1

(1 + iγA,nγB,n)−
i
4

N−1

∑
n=1

[(t + ∆) γA,n+1γB,n + (t− ∆) γA,nγB,n+1] (2.3)

Were the anti-commutation relation is used to commute Majorana operators, and
to conclude γ2

α,n = 1. In the case µ < 0, ∆ = t = 0, there is only coupling between
Majoranas on the same site, so the system is fully dimerized as depicted in the top
of figure 2. In this case, the many-body ground state (GS) will just be the vacuum
of fermions |ψ〉 = |0〉. The system is in the trivial phase, and has a gap of size |µ|
corresponding to the energy cost of adding an electron. Another simple case, though
more interesting, is the symmetric point with µ = 0, ∆ = t, where the Hamiltonian
greatly reduces to

H =
it
2

N−1

∑
n=1

γB,nγA,n+1 (2.4)

Which indicates that γB,n is coupled to γA,n+1 as shown in figure 2.

c1 c2 c3 cN

f1 f2 fN−1

γA,1 γB,1 γA,N γB,N

Figure 2: Sketch of the two different couplings for the Majorana operators
cn = 1

2 (γA,n + iγB,n) where Majoranas on the same site are combined and
fn = 1

2 (γB,n + iγA,n+1) where adjacent Majoranas are combined. In the last
case, two uncoupled Majoranas γA,1 and γB,N live at each edge.

Before in eq. (2.2), fermions were split into Majorana operators on the same site.
If one now combines fermions on adjacent sites by writing new electron annihilation
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operators as fn = 1
2 (γB,n + iγA,n+1) = i

2

(
c†

n − cn + c†
n+1 + cn+1

)
the Hamiltonian

then becomes

H =
it
2

N−1

∑
n=1

( f †
n + fn)i( f †

n − fn)

= t
N−1

∑
n=1

(
f †
n fn −

1
2

)
(2.5)

Which is diagonal in this basis, and shows the bulk gap of the system. The GS of
the system |ψ〉 is the vacuum determined by the fn operators, i.e. the state obeying
fn|ψ〉 = 0. Two wavefunctions obey this criteria, and they can be written as [14]

|ψ±〉 =
1√
2N

N

∏
n

(
1± c†

n

)
|0〉 = 1√

2N

(
1± c†

1

) (
1± c†

2

)
· · ·
(

1± c†
N

)
|0〉 (2.6)

Where |0〉 defines the vacuum of the original fermion operators, cn|0〉 = 0. These
states are degenerate E+ = 〈ψ+|H|ψ+〉 = E− = 〈ψ−|H|ψ−〉 for open boundary con-
ditions. Exited states are then obtained by applying the creation operator repeatedly
f †
n |ψ±〉. We can combine |ψ+〉 and |ψ−〉 to new GSs of even and odd parity, i.e. even

and odd number of fermionic operators

|ψeven〉 =
1√
2
(|ψ+〉+ |ψ−〉)

|ψodd〉 =
1√
2
(|ψ+〉 − |ψ−〉)

(2.7)

These states describe the degenerate ground-state, with two states of opposite parity,
which is unique to the topological phase. What is interesting about the Hamiltonian
(2.5) is that the last link f †

N fN does not appear due to the boundary conditions (had
they been periodic, for example by considering a Kitaev ring, this term would enter
the Hamiltonian). Looking at eq. 2.4 one finds that γA,1 and γB,N are nowhere
to be seen, so these describe zero energy Majorana modes situated at the end of
the chain. These highly non-local MFs combine to give the fermionic operator
fN = 1

2 (γA,1 + iγB,N) =
1
2

(
c†

1 + c1 + cN − c†
N
)
, which can be occupied at zero energy

cost, resulting in a double degeneracy of all states. The fN and f †
N transform between

the states in the degenerate subspace spanned by the GSs

fN |ψeven〉 = 0 f †
N |ψeven〉 = |ψodd〉 (2.8)

And the occupancy of the fermion defined by the edge Majoranas has eigenvalues

f †
N fN |ψeven〉 = 0

f †
N fN |ψodd〉 = f †

N fN f †
N |ψeven〉 = f †

N

(
1− f †

N fN

)
|ψeven〉 = f †

N |ψeven〉 = |ψodd〉 (2.9)

So 0 ∨ 1 if the state is unoccupied or occupied respectively. The Majorana modes
commute with the Hamiltonian [H, γA,1] = [H, γB,N ] = 0, which ensures they have
trivial dynamics, since γ̇ = i [H, γ]. Having a system of many MFs further increases
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the degeneracy of the ground-state, and as previously mentioned, these Majoranas
obey non-Abelian exchange statistics. A multitude of these Majorana pairs can
ideally be used as topologically protected qubits. In a more realistic model with
µ 6= 0 and t 6= ∆ the MFs still exist, but have an exponential overlap into the bulk,
so if two MFs come into close proximity they will combine and form an ordinary
fermion. The real space wavefunction of the zero energy edge modes is found in
section 2.1.4.

2.1.2 The Kitaev model in momentum space

We can examine some further properties of the 1D chain by transforming the
Hamiltonian in eq. (2.1) to a momentum space representation. Here, a translational
invariant system without edges is examined (and therefore no localized zero modes),
but one can still investigate the bulk behaviour of the system, and discuss the concept
of bulk TIs. The transformation to k-space is performed by using

cn =
1√
N

∑
k

eiknck c†
n =

1√
N

∑
k

e−iknc†
k

1
N

N

∑
n=1

ei(k′−k)n = δk′k (2.10)

Where the interatomic distance a = 1 is used throughout this thesis, for notational
convenience. Performing the transformation gives the Kitaev Hamiltonian on follow-
ing form

H = −µ ∑
k

c†
k ck −∑

k
t cos k c†

k ck +
∆
2 ∑

k

(
c−kckeik + c†

k c†
−ke−ik

)
(2.11)

Which can be written in the usual Bogoliubov-de Gennes (BDG) form

H =
1
2 ∑

k
(C†)α

kHαβ(k) Cβ
k , Hαβ(k) = ξkτ

αβ
z + ∆ sin k τ

αβ
y

.
=

(
ξk ∆k
∆∗k −ξk

)
(2.12)

Where α, β are Nambu space indices, which throughout this thesis will be
summed when repeated. The symbol .

= will be used for when an expression is
represented by a matrix. We have the energy ξk = −t cos k− µ, the pairing function
∆k = −i∆ sin k, the annihilation Nambu spinor Cα

k
.
=
(
ck c†

−k
)T, and the τ operators

are Pauli matrices that act on particle-hole space. The factor 1
2 is due to double

counting. The sine functions in the off-diagonal terms come from the fact that c−kck
is anti-symmetric under k→ −k, so only the anti-symmetric part of eik remains when
summing over all momenta k. This Hamiltonian is in a quadratic form and can be
diagonalized by a Bogoliubov transformation. This is essentially a change of basis of
the creation and annihilation operators, which preserves anti-commutation relations,
λk = ukck + vkc†

−k, and can be constructed so as to diagonalize the Hamiltonian. The
physical meaning is that this new basis describes creation (annihilation) of so-called
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quasi-particle Bogoliubons. A choice can now be made that uk = u−k together with
v−k = −vk. We introduce the unitary transformation matrix U, with property

(U†)αβ .
=

(
uk vk

v∗−k u∗−k

)
=

(
uk vk
−v∗k u∗k

)
Uαβ (U†)βλ .

=

(
u∗k −vk
v∗k uk

)(
uk vk
−v∗k u∗k

)
=

(|uk|2 + |vk|2 0
0 |uk|2 + |vk|2

)
(2.13)

So the unitarity condition Uαβ (U†)βλ = δαλ, translates to the condition |uk|2 +
|vk|2 = 1. The uk and vk obey the BDG equation(

ξk ∆k
∆∗k −ξk

)(
u∗k
v∗k

)
= Ek

(
u∗k
v∗k

)
(2.14)

Allowing us to determine relations for the coherence functions uk and vk. The bulk-
momentum space Hamiltonian H(k) obeys a Particle-Hole symmetry expressed
as

ΞH(k)Ξ−1 = −H(−k) Ξ = τxK (2.15)

With K being the operation of complex conjugation. This essentially means that for
every state |ψ(k)〉 with energy Ek there exists another state Ξ|ψ(−k)〉 with −Ek since

H(k)Ξ|ψ(−k)〉 = −ΞH(−k)|ψ(−k)〉 = −E−kΞ|ψ(−k)〉 = −EkΞ|ψ(−k)〉 (2.16)

Where the symmetry of the quasi-particle spectrum Ek = E−k is used. Inserting the
eigenstate from (2.14), the BDG equation for the PH transformed state is

H(k)τxK
(

u∗−k
v∗−k

)
=

(
ξk ∆k
∆∗k −ξk

)(−vk
uk

)
= −Ek

(−vk
uk

)
(2.17)

Which shows the relation

vk = −
(

Ek − ξk

∆k

)
uk (2.18)

With the properties u∗k = uk and v∗k = −vk. Inserting a unit matrix in the Hamiltonian
written in terms of U and U† allows us then to bring Hαβ(k) into diagonal form

H =
1
2 ∑

k
(C†)α

k Uαβ︸ ︷︷ ︸
(Λ†)

β
k

(U†)βλ Hλρ(k) Uρσ︸ ︷︷ ︸
H̃βσ(k)

(U†)σνCν
k︸ ︷︷ ︸

Λσ
k

, H̃αβ(k) .
=

(
Ek 0
0 −Ek

)
(2.19)

Where the new particle-hole spinors are

Λσ
k

.
=

(
λk

λ†
−k

)
=

(
uk vk
vk uk

)(
ck

c†
−k

)
=

(
ukck + vkc†

−k
vkck + ukc†

−k

)
(2.20)

And Ek is the energy spectrum of H(k), found to be
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Ek = ±
√

ξ2
k + |∆k|2 (2.21)

This spectrum is plotted in figure 3 for various values of µ with fixed t, ∆. At
|t| = µ the spectrum becomes gapless at |k| = π, and in section 2.1.3 we will see
that this topological phase transition point separates two phases with different
topological indices. Parameters will be measured in units of the hopping parameter
t throughout this thesis.

Out[80]=

- π 0 π

- 2

- 1
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1

2
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μ=0.2

μ=0.5

μ=0.8

μ=1.0

μ =1.2
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= 0.0
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= 1.0

= 1.2
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t = 1.0, ∆ = 1.5

µ/t

µ/t

µ/t

µ/t

µ/t

µ/t

∆/t = 1.5

Ek

t

k

Figure 3: Plot of the quasi-particle energy spectrum Ek found in (2.21), in units
of t, for fixed t, ∆ and varying µ. As µ increases one observes a gap closing at
k = ±π, and µ = t marks the existence of a topological phase transition at this
point in parameter space.

We can rewrite the equation for the transformed bulk momentum space Hamilto-
nian, to get expressions relating the Bogoliubon energies Ek, the energies ξk, and the
functions uk and vk. This is done by using the unitarity of Uαβ

Uαβ H̃βλ(k) (U†)λρ = Hαρ(k) (2.22)

Calculating the left side of the equation yields(
Ek
(
u2

k − |vk|2
)

2Ekukvk
−2Ekukvk −Ek

(
u2

k − |vk|2
)) =

(
ξk ∆k
∆∗k −ξk

)
(2.23)

Giving us the equations

ξk = Ek
(
u2

k − |vk|2
)

∆k = 2Ekukvk (2.24)
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Which together with the unitarity condition u2
k + |vk|2 = 1, allows us to calculate uk

from the first equation

ξk = Ek
(
2u2

k − 1
)
↔ uk =

√
Ek + ξk

2Ek
(2.25)

Combining this with (2.18) one can check that the 2nd equation in (2.24) is also
solved

2Ekukvk = −2Eku2
k

(
Ek − ξk

∆k

)
= −2Ek

(
Ek − ξk

2Ek

)(
Ek + ξk

∆k

)
= −E2

k − ξ2
k

∆k
= −|∆k|2

∆k
= − ∆2 sin2 k
−i∆ sin k

= ∆k X (2.26)

vk can now be calculated

vk = −
(

Ek − ξk

∆k

)
uk = −

|∆k|
∆k

(
Ek − ξk

|∆k|

)√
Ek + ξk

2Ek
= −|∆k|

∆k

√(
Ek − ξk

|∆k|

)2 Ek + ξk

2Ek

= − ∆ sin k
−i∆ sin k

√
E2

k − ξ2
k

|∆k|2
· Ek − ξk

2Ek
=

∆k

|∆k|

√
Ek − ξk

2Ek
(2.27)

Where the prefactor on vk ensures that v−k = −vk since ∆k = −∆−k. In conclu-
sion

uk =

√
Ek + ξk

2Ek
, vk =

∆k

|∆k|

√
Ek − ξk

2Ek
(2.28)

These two functions are plotted in figure 26 in Appendix A.1 for various values of µ.
In this form the Hamiltonian becomes

H =
1
2 ∑

k
(Λ†)α

k H̃αβ(k) Λβ
k =

1
2 ∑

k

(
λ†

k λ−k
) (Ek 0

0 −Ek

)(
λk

λ†
−k

)
= ∑

k
Ekλ†

k λk + const. (2.29)

Completing the diagonalization. In Appendix A.2 the normalised many-body
GS wavefunction is found, corresponding to the vacuum of Bogoliubons

λk|Ψ〉 = 0 , |Ψ〉 = ∏
k>0

(
uk + vkc†

−kc†
k

)
|0〉 (2.30)

2.1.3 Topological invariant

The Kitaev Hamiltonian in eq. (2.12) possesses symmetries that enable us to find the
Altland-Zirnbauer or Cartan symmetry class. The three symmetries of interest are time-
reversal (TR) Θ, particle-hole (PH) Ξ and the combination of the two, known as chiral
symmetry (C) Π = ΞΘ. The squares of these operators determine the symmetry
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class of the system. This information, together with the dimensionality of the system,
allows one to find the topological classification [28]. The three symmetries act on the
bulk-momentum-space Hamiltonian as

ΘH(k)Θ−1 = H(−k)

ΞH(k)Ξ−1 = −H(−k)

ΠH(k)Π−1 = −H(k) (2.31)

In this case, the Hamiltonian (2.12), has generalised TR symmetry Θ = K, PH
symmetry Ξ = τxK and C symmetry Π = ΞΘ = τx, where again K is the complex
conjugation operation. We can check if the Kitaev Hamiltonian obeys (2.31)

ΘH(k)Θ−1 = K
(
ξkτz + ∆ sin k τy

)
K =

(
ξkτz − ∆ sin k τy

)
= H(−k)

ΞH(k)Ξ−1 = τxK
(
ξkτz + ∆ sin k τy

)
τxK

= τx
(
ξkτz − ∆ sin k τy

)
τx =

(
−ξkτz + ∆ sin k τy

)
= −H(−k)

ΠH(k)Π−1 = τx
(
ξkτz + ∆ sin k τy

)
τx =

(
−ξkτz − ∆ sin k τy

)
= −H(k) (2.32)

Where the properties ξ−k = ξk, and τiτjτi = −τj if i 6= j has been used. Since Θ2 = 1,
Ξ2 = 1, Π2 = 1, this model belongs to symmetry class BDI, which in 1D has a
topological classification described by a Z TI. The value of the TI determines the
number of boundary excitations, and since a Z invariant can be any integer, there
can exist any number of Majoranas on the boundaries between topological and trivial
phases. If one allowed ∆ to be complex, one would instead have

Hαβ(k) .
=

(
ξk −i|∆| sin k e−iϕ

i|∆| sin k eiϕ −ξk

)
= ξkτ

αβ
z + |∆| sin k cos ϕ τ

αβ
y − |∆| sin k sin ϕ τ

αβ
x (2.33)

The addition of a τx term odd in k in the bulk-momentum-space Hamiltonian has
the result of breaking generalised time-reversal Θ and chiral symmetry Π, but not
PH symmetry Ξ

ΞH(k)Ξ−1 = τxK
(
ξkτz + |∆| sin k cos ϕ τy − |∆| sin k sin ϕ τx

)
τxK

= τx
(
ξkτz − |∆| sin k cos ϕ τy − |∆| sin k sin ϕ τx

)
τx

=
(
−ξkτz + |∆| sin k cos ϕ τy − |∆| sin k sin ϕ τx

)
= −H(−k) (2.34)

Which corresponds to symmetry class D with a Z2 index for 1D systems. A Z2 index
is binary, resulting in only one Majorana on each boundary, which is what happens
in realistic systems.

We now want to define a TI for our system from the bulk Hamiltonian, which
for a non-trivial case will exhibit Zero modes on the boundary to other phases. To
define this invariant number, the Hamiltonian H(k) can be transformed into the
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Majorana basis. In real space, the Majorana condition is γx = γ†
x, and one can find

the momentum space version of this by evaluating

γx =
1√
N

∑
k

γkeikx

γ†
x =

1√
N

∑
k

γ†
k e−ikx =

k→−k

1√
N

∑
k

γ†
−keikx (2.35)

by comparison one sees that the Majorana condition in k-space is γk = γ†
−k. The

following k-space Majorana operators are now introduced

γA,k = c†
−k + ck ck =

1
2
(γA,k + iγB,k)

γB,k = i
(

c†
−k − ck

)
c†
−k =

1
2
(γA,k − iγB,k) (2.36)

From which we see that the particle-hole spinors Cα
k and (C†)α

k transform as

Cα
k

.
=

(
ck

c†
−k

)
=

1
2

(
1 i
1 −i

)
︸ ︷︷ ︸

Ũαβ

(
γA,k
γB,k

)
︸ ︷︷ ︸

Γβ
k

(C†)α
k

.
=
(
c†

k c−k
)
=
(
γA,−k γB,−k

)︸ ︷︷ ︸
Γβ
−k

1
2

(
1 1
−i i

)
︸ ︷︷ ︸

(Ũ†)βα

(2.37)

Where ΓT
−k = Γ†

k is seen from the Majorana condition for γ. In this basis, the
Hamiltonian becomes

H =
1
2 ∑

k
(C†)α

k Hαβ(k) Cβ
k =

i
2 ∑

k
Γσ
−k χσρ(k) Γρ

k , iχσρ(k) = (Ũ†)σα Hαβ(k) Ũβρ

(2.38)

So the Majorana basis Hamiltonian is described by the skew-symmetric matrix χ(k)

χσρ(k) .
= (−i)

1
2

(
1 1
−i i

)(
ξk ∆k
∆∗k −ξk

)
1
2

(
1 i
1 −i

)
=

1
2

(
0 ξk − ∆k

− (ξk + ∆k) 0

)
(2.39)

Kitaev showed that one can assign a TI to this model, described by the Pfaffian of
χ(k) at the time-reversal invariant momenta points k = 0, π, given by [7]

W = sgn (Pf [χ(0)]Pf [χ(π)]) (2.40)

If one uses the fact that

A =

(
0 a
−a 0

)
, Pf [A] = a (2.41)
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And

χ(0) =
1
2

(
0 −(t + µ)

t + µ 0

)
χ(π) =

1
2

(
0 t− µ

−(t− µ) 0

)
(2.42)

One obtains

W = sgn
(
−1

4
(t + µ) (t− µ)

)
=

{
−1 |t| > |µ|

1 |t| < |µ| (2.43)

Where W = −1 marks the topological phase [7]. An example of this phase was the
symmetric point discussed in section 2.1.1, where µ = 0 and t = ∆. Here we saw that
isolated Majorana zero modes existed on the edges of the wire. The edges separate
the topologically trivial phase of the vacuum with the topological phase of the wire.
Another example of being in the topological phase is calculated in Appendix B, for a
slightly more general case with parameters µ = 0, t 6= ∆. The next section contains a
calculation of the exact zero modes wave function in the limit of an infinite sized
wire, the form of which was mentioned in Kitaev’s original paper [19]. The similarity
between this analytically determined wavefunction and the one found numerically
for a finite wire, is striking and will be shown in section 2.1.5.

2.1.4 Exact edge state wavefunctions in continuous real space

We can find the exact zero mode WF for an infinite chain by starting with the
bulk-momentum space Hamiltonian

H(k) = (−µ− t cos k)τz + ∆ sin k τy (2.44)

We assume that the zero energy edge state WF will be of the form of a constant PH
spinor multiplied by a decaying exponential function

ψ0(x) ∝
(

u
v

)
e−qx (2.45)

corresponding to a plane wave ψ(x) = e−ikx with imaginary momentum k = −iq.
We can now replace k→ −iq in the Hamiltonian and solve for the q-value that leads
to zero energy

H(q) = (−µ− t cosh q)τz − i∆ sinh q τy (2.46)
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This amounts to solving the equation for the quasi-particle spectrum 2.21 for q at
zero energy, i.e. Eq = 0

Eq = ±
√
(−µ− t cosh q)2 + (−i∆ sinh q)2 = 0

l
(−µ− t cosh q)2 + (−i∆ sinh q)2 = 0
l
(t cosh q + µ)2 = (∆ sinh q)2

l
t cosh q + µ = ±∆ sinh q (2.47)

So there are two different solutions, one for q and one for −q. Starting with the
positive solution, one gets

t
2
(
eq + e−q)+ µ =

∆
2
(
eq − e−q)

l
t
(
1 + e−2q)+ 2µe−q = ∆

(
1− e−2q)

l
(t + ∆) e−2q + 2µe−q + t− ∆ = 0
l

e−q =
−µ±

√
µ2 − t2 + ∆2

t + ∆
= ρ± (2.48)

So the exponential function becomes e−qx = ρx
±. Now the spinor corresponding to

this solution makes τz − iτy vanish(
1 −1
1 −1

)(
u
v

)
= 0→

(
u
v

)
=

(
1
1

)
(2.49)

So one solution for the edgestate WF is

ψ′0(x) = N ′
(

1
1

) (
α′+ρx

+ + α′−ρx
−
)

(2.50)

with boundary condition ψ′0(0) = 0 → α′+ + α′− = 0, and normalisation N ′. The
normalisation using α′+ = 1, α′− = −1 is found1 to be

∞

∑
x=0

ψ′†0 (x)ψ′0(x) =
∞

∑
x=0

2N ′2 (ρx
+ − ρx

−)
2 = 1

l

N ′ =
√

∆ (t2 − µ2)

2t (µ2 − t2 + ∆2)
(2.51)

So the complete WF becomes

1 using MathematicaTM
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ψ′0(x) =

√
∆ (t2 − µ2)

2t (µ2 − t2 + ∆2)

(
1
1

)
(ρx

+ − ρx
−) (2.52)

And the norm squared of this WF is plotted in figure 4.

0 1 2 3 4 5 6 7 8 9 10
x

0.0

0.2

0.4

0.6

0.8

1.0

µ/t=0.5 and ∆/t=1.5

|ψ ′0 (x)|2
Left edge state

Figure 4: Plot of norm squared for the continuous zero energy mode in (2.52), for
parameters inside of the topological phase. We see, as expected, that the state is
exponentially localised on the edge.

The second solution (for −q) has instead a spinor which makes τz + iτy vanish
(the sign difference on τy comes from the Hamiltonian, setting q → −q). This
solution becomes

ψ′′0 (x) = N ′′
(−i

i

) (
α′′+ρ−x

+ + α′′−ρ−x
−
)

(2.53)

With boundary condition ψ′′0 (N + 1) = 0 → α′′+ρ
−(N+1)
+ + α′′−ρ

−(N+1)
− = 0. I have

multiplied with a factor i for later convenience. It should be mentioned that the
exactness of these results imply taking the N → ∞ limit for which N ′′ = N ′ 2. These
two wavefunctions can be used to create the zero mode Majorana operators (which
are the same found in [19])

γ′ = ∑
x
(ψ′†0 )

α(x)Cα
x =

√
∆ (t2 − µ2)

2t (µ2 − t2 + ∆2) ∑
x
(ρx

+ − ρx
−)
(
1 1

) (cx
c†

x

)

=

√
∆ (t2 − µ2)

2t (µ2 − t2 + ∆2) ∑
x
(ρx

+ − ρx
−)
(

c†
x + cx

)
︸ ︷︷ ︸

γA,x

(2.54)

2 This limit was performed in Mathematica
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Imposing the boundary conditions, the second solution becomes

γ′′ = ∑
x
(ψ′′†0 )α(x)Cα

x =

√
∆ (t2 − µ2)

2t (µ2 − t2 + ∆2) ∑
x

(
ρN+1
+ ρ−x

+ − ρN+1
− ρ−x

−
) (
−i i

) (cx
c†

x

)

=

√
∆ (t2 − µ2)

2t (µ2 − t2 + ∆2) ∑
x

(
ρN+1
+ ρ−x

+ − ρN+1
− ρ−x

−
)

i
(

c†
x − cx

)
︸ ︷︷ ︸

γB,x

(2.55)

Which can be combined into the fermionic operator for the zero energy state f0 =
1
2 (γ

′ + iγ′′). The topological criteria |t| > |µ| is also encoded in these states, which
can be seen by analysing the coefficients ρ+ and ρ− and see where in parameter
space the boundary conditions can be satisfied. Figure 5 contains a region plot of
where one obtains |ρ±| < 1 which is necessary for the edge states to exist (to ensure
they do not diverge at large x). In the last sub-figure it is shown that the only region
where both |ρ+|, |ρ−| < 1 is when |t| > |µ| which is the topological phase W = −1,
found in 2.1.3. The first Majorana γ′ resides on the left side, i.e has a WF with
maximum at x = 1, while γ′′ lives on the right hand side with a maximum value at
x = N.

+

=

Figure 5: Subfigure a and b are region plots of parameter space where |ρ±| < 1,
with µ/∆ on the x-axis and t/∆ on the y-axis. These regions are therefore
independent of ∆ as long as ∆ 6= 0. The combined regions are plotted in c, and to
be able to satisfy the boundary conditions, both |ρ+|, |ρ−| < 1 are needed, so it
is only in this overlapped region (purple) that the edge state exists. This region
has |t| > |µ| which was shown to be the topological phase, with a TI of value
W = −1.
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The characteristic length scale for these states ξ is defined as the distance at
which the wavefunction decreases by a factor e, i.e. where ψ0(x + ξ) = e−1ψ0(x), so
one chooses the largest of |ρ+| or |ρ−| (and denote it ρ), since this is the factor that
extends the most into the bulk. One can then define

|ρ|x+ξ = e−1|ρ|x ↔ |ρ|ξ = e−1 ↔ ξ =
1

ln 1
|ρ|

=
1

| ln |ρ|| (2.56)

Which diverges right at the topological transition point |µ| = |t| ⇒ |ρ| = 1⇒ ξ → ∞.
For the symmetric case discussed earlier with µ = 0, ∆ = t 6= 0, one finds ρ→ 0 and
then ξ → 0 which fits with the previous results of having two un-paired Majoranas
at each end of the chain, which do not decay into the bulk. In the general case
considered in this section, the two zero modes at each end of the wire will have a
small exponential overlap, so there will be a small energy splitting described by the
Hamiltonian [19]

He f f =
i
2

Γγ′γ′′ Γ ∝ e−N/ξ (2.57)

In order for the preferred degeneracy of the GSs to be realized, one needs to ensure
N
ξ >> 1 so that Γ → 0. If this is not achievable, then there will be finite size effects,

which is the topic of the next section. Later in this thesis we will examine the real
space characteristics of the edge states, in the presence of interactions.

2.1.5 Numerical solution to the finite Kitaev Chain

In section 2.1.1 we discovered that the Hamiltonian takes a very simple form in the
majorana basis at the symmetric point µ = 0, ∆ = t. In section 2.1.4 the zero energy
states were found for an infinite wire, for general parameters. In this section we
want to find all the eigenstates and the energy spectrum for this discrete model away
from the symmetric point, which will be done numerically. It is then possible to
detect a change in the zero modes localized behaviour, and see how a finite sized
system can affect the energy splitting of the degenerate ground-state. It is convenient
to again recast the real space Kitaev Hamiltonian in eq. (2.1) in particle-hole form,
such that it becomes

H =
1
2 ∑

ij

(
c†

i ci
) (−tij − µδij ∆ij

∆†
ij tT

ij + µδij

)(
cj
c†

j

)
=

1
2 ∑

ij
(C†)α

iH
αβ
ij Cβ

j (2.58)

Where Hαβ
ij is the first-quantization Nambu space Hamiltonian matrix (sandwiched

between creation and annihilation operators to give the second quantization version).
The "hopping matrix" is Hermitian t = t†, and the "pairing matrix" anti-hermitian
∆† = −∆. For nearest neighbour coupling they are
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tij =
t
2
(
δi,j+1 + δi+1,j

) .
=

t
2


0 1 0 0
1 0 1 0

0 1 0
. . .

0 0
. . . 0



∆ij =
∆
2
(
δi,j+1 − δi+1,j

) .
=

∆
2


0 −1 0 0
1 0 −1 0

0 1 0
. . .

0 0
. . . 0

 (2.59)

For a translational invariant system, one can define the momentum space functions

t(k) = ∑
ij

tije−ik(i−j) = ∑
ij

t
2
(
δi,j+1 + δi+1,j

)
e−ik(i−j) = t cos k

∆(k) = ∑
ij

∆ije−ik(i−j) = ∑
ij

∆
2
(
δi,j+1 − δi+1,j

)
e−ik(i−j) = −i∆ sin k

µ(k) = µ (2.60)

Such that we end up with the bulk-momentum space Hamiltonian from (2.12). The
Hamiltonian can be diagonalized by introducing new operators(

fn
f †
n

)
= ∑

i

(
u∗in v∗in
vin uin

)(
ci
c†

i

)
(2.61)

with the inverse transformation(
ci
c†

i

)
= ∑

n

(
uin v∗in
vin u∗in

)(
fn
f †
n

)
(2.62)

So, the f -operators will be a complicated superposition of the electron creation
and annihilation operators. This means that eigenstates for the Hamiltonian will
in general be superpositions of occupied and unoccupied states. As previously
mentioned, a state where the occupied (electron) and unoccupied (hole) coefficient
are equal is a Majorana mode. The transformation defined by (2.61) and (2.62)
should be thought of as a huge matrix multiplication

f1
...

fN
f †
1
...

f †
N


=

(
u† v†

vT uT

)
︸ ︷︷ ︸

U†



c1
...

cN
c†

1
...

c†
N





c1
...

cN
c†

1
...

c†
N


=

(
u v∗

v u∗

)
︸ ︷︷ ︸

U



f1
...

fN
f †
1
...

f †
N


(2.63)

Where u and v is N × N matrices, and U is 2N × 2N. This transformation is unitary
if U† U = I2N×2N which requires that u†u + v†v = IN×N and u†v∗ + v†u∗ = 0. Now,
as usual it is desirable to construct U such that the Hamiltonian is diagonalized,



2.1 hamiltonian description 19

which means that this transformation matrix must consist of the eigenvectors of the
Hamiltonian, in other words, u and v must solve the BDG equations

∑
j
Hαβ

ij

(
ujn
vjn

)β

= ∑
j

(−tij − µδij ∆ij
−∆ij tij + µδij

)(
ujn
vjn

)
= εn

(
uin
vin

)
(2.64)

and by complex conjugation and switching u and v (PH transformation) one also
has the negative energy solution

∑
j
Hαβ

ij

(
v∗jn
u∗jn

)β

= ∑
j

(−tij − µδij ∆ij
−∆ij tij + µδij

)(
v∗jn
u∗jn

)
= −εn

(
v∗in
u∗in

)
(2.65)

We can show that the Hamiltonian is diagonal by explicit calculation

H =
1
2 ∑

ij
(C†)α

iH
αβ
ij Cβ

j =
1
2 ∑

ijnm

(
f †
m fm

) (u∗im v∗im
vim uim

)
Hαβ

ij

(
ujn v∗jn
vjn u∗jn

)(
fn
f †
n

)
=

1
2 ∑

inm

(
f †
m fm

) (u∗im v∗im
vim uim

)(
εnuin −εnv∗in
εnvin −εnu∗in

)(
fn
f †
n

)
=

1
2 ∑

nm

(
f †
m fm

) (εnδnm 0
0 −εnδnm

)(
fn
f †
n

)
=

1
2 ∑

n

(
f †
n fn

) (εn 0
0 −εn

)
︸ ︷︷ ︸

H̃σσ
nn

(
fn
f †
n

)

=∑
n

εn

(
f †
n fn −

1
2

)
(2.66)

Where H̃σσ
nn is Hαβ

ij in the diagonal basis. The wave functions are given by Ψβ
jn

.
=(

ujn
vjn

)
and the norm squared of these are plotted in figure 6. One can observe that

for |t| > |µ| zero energy modes Ψβ
jL and Ψβ

jR exist (L =left side, R =right side), and
these have wavefunctions that decay into the chain. The electron and hole part of the
edge states (Ψ1

jL and Ψ2
jL) are equal, which is necessary for the Majorana condition.

One can also notice the similarity between the numerically found edge state for this
finite system, and the analytically found state in section 2.1.4, which is not surprising
since the system size is fairly large N = 200. It should be noted that the continuous
WF is found by making the discrete Kitaev model continuous, so the comparison of
the two is valid at integer points in real space.
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Figure 6: a-b) Plot of the norm squared of the zero modes for specific values of
the parameters in the model (green). c) Zoom in of the edge state, where one
notices the exponential decay into the bulk, and the similarity to the analytical
result for the edge state (red) from (2.52). d) The two edge states are clearly visible
in the energy spectrum, being two states with zero energy. The energy spectrum
is sorted to have εn followed by −εn.

In figure 7 it is shown what happens if the system is in the topologically trivial
state |µ| > |t|. Here the zero energy edge states vanish into the bulk, as seen in the
spectrum. In the first sub-plot, the eigenstate of the lowest eigenvalue is plotted,
which now is just a bulk WF. The continuous WF is also plotted, and for parameters
corresponding to the trivial phase, the edge state WF grows indefinitely and is
therefore not valid, since it cannot satisfy boundary conditions or be normalised.
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Figure 7: Plots for the trivial case, where no zero energy states exist in the
spectrum. a) We see that the state with lowest eigenvalue εm is now a bulk state.
b) No zero modes exist in the energy epctrum. c) For these parameter values, the
exact edge state found for the continuous model diverges.

The energy spectrum as a function of the chemical potential µ is plotted in figure
8. For µ < t there are clear zero energy states, but for µ > t the two states enter the
gapped bulk spectrum. The transition is not exactly at µ = t due to the finite size of
the system, but for a large system this marks the topological phase transition.
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Figure 8: Energy spectrum εn for the general Kitaev Hamiltonian in (2.58) as a
function of µ . The zero energy states split from each other at the topological
phase transition at the critical value µ = t. This point is not exact since the states
have an exponential overlap in a finite system.

This concludes the analysis of the Hamiltonian formulation of the non-interacting
Kitaev chain. The next sections will instead be using the GFs of the system. The
goal is in the end to make sense of the classification of topological phases when
interactions are added, and for this we seek a formulation of symmetry classes,
topology and boundary states using many-body GFs instead of non-interacting
eigenfunctions found in single-particle Quantum Mechanics.

2.2 green’s function description

We can analyse the Kitaev model further by finding the GFs for the Hamiltonian, and
from this, extract information about the density of states, and real space coherence
of the zero modes. A GF description is preferred, since we later in this thesis
add interactions to the model, and want to formalise a perturbation theory using
Feynman diagrams. In addition, as mentioned, research has found that the effects of
interactions in topological states of matter can be captured by generalizing TIs to
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using GFs rather than the Bloch eigenstates [15]. The essential object is the Matsubara
imaginary time Gorkov-Nambu GF which is a matrix in Nambu space

Gαβ
0 (ν, τ ; ν′, τ′) = −〈Tτ

(
Cα

ν (τ)(C
†)

β
ν′(τ

′)
)
〉0 .

=

(Gee
0 (ν, τ; ν′, τ′) Geh

0 (ν, τ; ν′, τ′)
Ghe

0 (ν, τ; ν′, τ′) Ghh
0 (ν, τ; ν′, τ′)

)
=

(−〈Tτ

(
cν(τ)c†

ν′(τ
′)
)
〉0 −〈Tτ (cν(τ)cν′(τ

′))〉0
−〈Tτ

(
c†

ν(τ)c†
ν′(τ

′)
)
〉0 −〈Tτ

(
c†

ν(τ)cν′(τ
′)
)
〉0

)
(2.67)

Here, the subscript zero refers to an average taken wrt. the non-interacting Kitaev
Hamiltonian denoted by H0. Imaginary times are denoted by τ and generic quantum
numbers by ν. The τ dependence of the operators is determined in the Heisenberg
picture for imaginary times, c(τ) = eHτc e−Hτ. Tτ is the time-ordering operator,
which orders operators with largest τ to the left, giving a sign for every odd
permutation of fermionic operators. The Greek superscripts are Nambu indices,
and help discern between the various kinds of GFs, with e for electrons and h
for holes. The off-diagonal terms are usually called the Anomalous GFs. If the
system is at equilibrium, the Matsubara GF depends only on the difference τ − τ′,
as the Hamiltonian will then commute with itself at different times, and the trace is
invariant to cyclic permutations [4]

G(τ, τ′) = − 1
Z

Tr
(

e−βHeHτc e−HτeHτ′c† e−Hτ′
)

= − 1
Z

Tr
(

e−βHeH(τ−τ′)c e−H(τ−τ′)c†
)

= G(τ − τ′) (2.68)

Where Z = Tr
[
e−βH] is the partition function, with β = 1

kBT . Thus, the GF can be
described using only one time variable τ − τ′ → τ. We now want to explore this in
discrete real space, so we can analyse the behaviour of the zero modes, and compare
with what was observed in section 2.1.5. Equation (2.67) then becomes

Gαβ
0 (i, τ ; j, 0) = −〈Tτ

(
Cα

i (τ)(C
†)

β
j (0)

)
〉0 .

=

(Gee
0 (i, τ ; j, 0) Geh

0 (i, τ ; j, 0)
Ghe

0 (i, τ ; j, 0) Ghh
0 (i, τ ; j, 0)

)

=

−〈Tτ

(
ci(τ)c†

j (0)
)
〉0 −〈Tτ

(
ci(τ)cj(0)

)
〉0

−〈Tτ

(
c†

i (τ)c
†
j (0)

)
〉0 −〈Tτ

(
c†

i (τ)cj(0)
)
〉0

 (2.69)

2.2.1 GF from the Euclidean path integral

The GF in (2.69) can be found using various methods, one is shown in Appendix C.1
called the Equation of motion method. The procedure is to take a τ-derivative of the GF,
and then use Heisenbergs EOM ∂τ A(τ) = [H, A] (τ) to create a system of coupled
equations for the different Nambu GFs. Here it will be found in a neat way using the
fermionic euclidean path integral, with basics described in Appendix C.2. The idea
is to construct a generating functional from the quantum partition function, which
has been made into a path integral by the usual insertion of identities, in this case
written in terms of fermionic coherent states. We start with the Kitaev Hamiltonian
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(2.58), which has both Nambu and site structure, so there is one fermionic field for
each value of Nambu and site index. The free action can in this case be written as

S0
[
Ψ, Ψ

]
=
∫ β

0
dτ ∑

ij
∑
σρ

Ψσ
i

(
δσρδij ∂τ +Hσρ

ij

)
Ψρ

j , Ψρ
j =

(
ψj
ψj

)
(2.70)

With Hσρ
ij from (2.58). To calculate the GF, one introduces the generating functional,

which is the partition function with added source fields η and η

Z0[η, η] =
∫
DΨDΨ e−S0[Ψ,Ψ]+ησ

i Ψσ
i +Ψσ

i ησ
i (2.71)

And by performing the Gaussian integration of the fermionic fields using (C.27), this
becomes

Z0[η, η] = det (∂τ −H) e
∫

dτndτm ∑nm ∑σρ ησ
n(τn)[(∂τ+H)−1]

σρ

(n,τn ;m,τm)
η

ρ
m(τm) (2.72)

The GF can now be calculated (where creation/annihilation operators C and C† are
now replaced with the coherent state eigenvalues Ψ and Ψ respectively)

Gαβ
0 (i, τi; j, τj) = −〈Ψα

i (τi)Ψ
β
j (τj)〉0 =

∫
DΨDΨ

(
Ψα

i (τi)Ψ
β
j (τj)

)
e−S0[Ψ,Ψ]∫

DΨDΨ e−S0[Ψ,Ψ]
(2.73)

This can be done by using the generating functional

Gαβ
0 (i, τi; j, τj) =

1
Z0 [0, 0]

δ

δηα
i (τi)

δ

δη
β
j (τj)

Z0 [η, η] |η=η=0 (2.74)

Where the functional derivative is defined as

δ

δη
β
j (τj)

η
ρ
m(τm) = δ(τj − τm)δjmδβρ (2.75)

Using this yields

Gαβ
0 (i, τi; j, τj)

=
1

Z0 [0, 0]
δ

δηα
i (τi)

(
−
∫

dτn ∑
n

∑
σ

ησ
n(τn)

[
(∂τ +H)−1

]σβ

(n,τn;j,τj)

)
Z0 [η, η] |η=η=0

=
1

Z0 [0, 0]

[
(−∂τ −H)−1

]αβ

(i,τi ;j,τj)
Z0 [η, η] |η=η=0

=
[
(−∂τ −H)−1

]αβ

(i,τi ;j,τj)
(2.76)

Using the product rule in the first line, only the term with the functional derivative
of the parentheses is kept, since the other term vanishes when setting η = η = 0 in
the end. Transforming this GF to Matsubara frequencies can be written as

Gαβ
0 (i, τi; j, τj) = 〈τi|Gαβ

0 (i, j)|τj〉 = ∑
ikn,ipn

〈τi|ikn〉〈ikn|Gαβ
0 (i, j)|ipn〉〈ipn|τj〉 (2.77)
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Where one can now use

〈τ|ikn〉 =
1√

β
e−iknτ (2.78)

But since the system is in equilibrium, the GF only depends on the difference τi − τj,
and the Matsubara frequency basis is diagonal

Gαβ
0 (i, τi; j, τj) = ∑

ikn,ipn

〈τi|ikn〉Gαβ
0 (i, j; ikn)δikn,ipn〈ipn|τj〉

=
1
β ∑

ikn

Gαβ
0 (i, j; ikn)e−ikn(τi−τj) (2.79)

With

Gαβ
0 (i, j; ikn) =

[
(ikn −H)−1

]αβ

ij
(2.80)

Which is the same result as from the EOM method. Here we have transformed to
Matsubara frequency, but kept the real space dependency intact. If the system is
translational invariant, in addition to being in equilibrium, then

Gαβ
0 (x, τ; x′, τ′) = 〈x, τx|Gαβ

0 |x′, τ′〉 = 1
βV ∑

k,ikn

Gαβ
0 (k; ikn)eik(x−x′)−ikn(τ−τ′) (2.81)

With

Gαβ
0 (k; ikn) =

[
(ikn −H(k))−1

]αβ
(2.82)

Where it was applied that

〈x, τ|k, ikn〉 =
1√
βV eikx−iknτ (2.83)

One can introduce an immaculate notation where a 4D space-imaginary time is
introduced x̃ = (τ, x, y, z) together with a four momentum k̃ = (ikn, kx, ky, kz).
Letting the indices run from α = 0, 1, 2, 3 one can then write

〈x̃|k̃〉 = 1√
βV eik̃·x̃, k̃ · x̃ = ηαβkαxβ, ηαβ = diag(−1, 1, 1, 1) (2.84)

Where ηαβ is the Minkowski metric. Using the Path integral formalism, one can
then add interactions to the free action, expand the exponential in the generating
functional, and then take functional derivatives to get the correlation functions.
Wick’s theorem and the Feynman rules then emerge from the calculations. In the
following sections this will be done in the operator formalism following [4]. In
Appendix C.4 the analysis of this section has been performed for the bare GF in the
Majorana basis. Depending on what calculation one wants to perform, it can be
advantageous to use this form instead. Similarly, in Appendix C.5 the specific forms
of the electron and Majorana GFs are found in momentum space, and can be used
in a translational invariant system, where k is a good quantum number.
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2.2.2 Diagonalizing the Green’s function

One can diagonalize the GF in a similar fashion as with the Hamiltonian in section
2.1.5. Inserting the transformed Nambu spinors into the definition of the free
Matsubara GF

Gαβ
0 (i, τ ; j, 0) = −〈Tτ

(
Cα

i (τ)(C
†)

β
j (0)

)
〉0

.
= −∑

nm

(
uin v∗in
vin u∗in

)
〈Tτ

((
fn(τ)
f †
n (τ)

) (
f †
m fm

))
〉0
(

u∗jm v∗jm
vjm ujm

)
= ∑

nm

(
uin v∗in
vin u∗in

)(−〈Tτ

(
fn(τ) f †

m
)
〉0 −〈Tτ ( fn(τ) fm)〉0

−〈Tτ

(
f †
n (τ) f †

m
)
〉0 −〈Tτ

(
f †
n (τ) fm

)
〉0

)(
u∗jm v∗jm
vjm ujm

)
(2.85)

Calculating one of the terms in the matrix

−〈Tτ

(
fn(τ) f †

m

)
〉0 = −θ(τ)〈 fn(τ) f †

m〉0 + θ(−τ)〈 f †
m fn(τ)〉0 (2.86)

Now, the τ-dependence of the operators is found using Heisenberg’s EOM for
imaginary time

∂τ f †
n (τ) =

[
H0, f †

n

]
(τ)

∂τ fn(τ) = [H0, fn] (τ) (2.87)

Using the relation

[AB, C] = A{B, C} − {A, C}B (2.88)

An by inserting this, one obtains

∂τ f †
n (τ) = εn f †

n (τ) ↔ f †
n (τ) = f †

n eεnτ

∂τ fn(τ) = −εn fn(τ) ↔ fn(τ) = fn e−εnτ (2.89)

So the matrix element in question becomes

−〈Tτ

(
fn(τ) f †

m

)
〉0 = −θ(τ)〈 fn f †

m〉0 e−εnτ + θ(−τ)〈 f †
m fn〉0 e−εnτ

= −θ(τ) [1− nF(εn)] δnm e−εnτ + θ(−τ)nF(εn)δnm e−εnτ (2.90)

Where nF(εn) =
1

eβεn+1 . The off-diagonal terms vanish

−〈Tτ ( fn(τ) fm)〉0 = −θ(τ)〈 fn fm〉0 e−εnτ + θ(−τ)〈 fm fn〉0 e−εnτ = 0 (2.91)

If one transforms to Matsubara frequencies

Gαβ
0 (i, j; ikn) =

∫ β

0
dτ Gαβ

0 (i, τ ; j, 0) eiknτ, kn =
2n + 1

β
π (2.92)
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One gets

Gαβ
0 (i, j; ikn)

.
=

∑
n

(
uin v∗in
vin u∗in

)(∫ β
0 dτ [nF(εn)− 1] e(ikn−εn)τ 0

0 −
∫ β

0 dτ nF(εn)e(ikn+εn)τ

)(
u∗jn v∗jn
vjn ujn

)
(2.93)

The first matrix element is∫ β

0
dτ [nF(εn)− 1] e(ikn−εn)τ =

[nF(εn)− 1]
ikn − εn

[
e(ikn−εn)τ

]β

0

=
[nF(εn)− 1]

ikn − εn

[
eiknβe−βε − 1

]
=

[1− nF(εn)]

ikn − εn

[
e−βε + 1

]
=

[
eβεn+1
eβεn+1 −

1
eβεn+1

]
ikn − εn

[
eβε + 1

eβεn

]
=

1
ikn − εn

(2.94)

Where eikn β = ei 2n+1
β πβ = −1 has been used. Similarly for the other entry

−
∫ β

0
dτnF(εn)e(ikn+εn)τ =

−nF(εn)

ikn + εn

[
e(ikn+εn)τ

]β

0
=
−nF(εn)

ikn + εn

[
eiknβeβε − 1

]
=

nF(εn)

ikn + εn

[
eβε + 1

]
=

1
ikn + εn

(2.95)

(2.96)

So the GF becomes

Gαβ
0 (i, j; ikn)

.
= ∑

n

(
uin v∗in
vin u∗in

)( 1
ikn−εn

0
0 1

ikn+εn

)
︸ ︷︷ ︸

G̃σσ
0 (n;ikn)

(
u∗jn v∗jn
vjn ujn

)

= ∑
n

Uασ
in G̃σσ

0 (n; ikn)(U†)
σβ
nj (2.97)

Alternatively, this can be written as a matrix equation in Nambu and site space

G0(ikn) = U G̃0(ikn) U† (2.98)

Where G̃0(ikn) is now a diagonal matrix in both site and Nambu space. This can also
be seen from

G0
−1 G0 = I ↔ U† G0

−1 U U† G0 U = U† U = I (2.99)

showing that the GF transforms as the Hamiltonian. This can be rewritten as

U† G0 U =
(

U† (iknI−H
)

U
)−1

=
(
iknI− H̃

)−1
=

=

((
ikn 0
0 ikn

)
−
(

εn 0
0 −εn

))−1

=

(
1

ikn−εn
0

0 1
ikn+εn

)
= G̃0 (2.100)
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This allows us to write the non-diagonal GF in terms of the coherence matrices uin
and vin, which were introduced in the context of diagonalising the Hamiltonian

Gαβ
0 (i, j; ikn)

.
= ∑

n

(
uin v∗in
vin u∗in

)( 1
ikn−εn

0
0 1

ikn+εn

)(
u∗jn v∗jn
vjn ujn

)

= ∑
n

(
uin v∗in
vin u∗in

)( 1
ikn−εn

u∗jn
1

ikn−εn
v∗jn

1
ikn+εn

vjn
1

ikn+εn
ujn

)

= ∑
n

(
uin

1
ikn−εn

u∗jn + v∗in
1

ikn+εn
vjn uin

1
ikn−εn

v∗jn + v∗in
1

ikn+εn
ujn

vin
1

ikn−εn
u∗jn + u∗in

1
ikn+εn

vjn vin
1

ikn−εn
v∗jn + u∗in

1
ikn+εn

ujn

)
(2.101)

In our case, u and v are real matrices, and we can perform analytical continuation
(ikn → ω + iη) with η = 0+, to find the frequency dependent retarded GF

(GR
0 )

αβ(i, j; ω)
.
=

∑
n

(
uin

1
ω+iη−εn

ujn + vin
1

ω+iη+εn
vjn uin

1
ω+iη−εn

vjn + vin
1

ω+iη+εn
ujn

vin
1

ω+iη−εn
ujn + uin

1
ω+iη+εn

vjn vin
1

ω+iη−εn
vjn + uin

1
ω+iη+εn

ujn

)
(2.102)

Which can then be used for further calculations when setting up a perturbation
series for the interacting GF.

2.2.3 Spectral function and local density of states

To see explicitly how states are distributed, one defines the spectral function

(A0)
αβ(i, j; ω) = −2Im

[
(GR

0 )
αβ(i, j; ω)

]
(2.103)

And uses the Sokhotski–Plemelj theorem

lim
η→0+

1
x± iη

= P 1
x
∓ iπδ(x) (2.104)

Where P refers to the Cauchy principal value. The spectral function becomes

(A0)
αβ(i, j; ω)

.
=

2π ∑
n

(
uinδ(ω− εn)ujn + vinδ(ω + εn)vjn uinδ(ω− εn)vjn + vinδ(ω + εn)ujn
vinδ(ω− εn)ujn + uinδ(ω + εn)vjn vinδ(ω− εn)vjn + uinδ(ω + εn)ujn

)
(2.105)

Looking at the local spectral function (i = j),

(A0)
αβ(i, i; ω)

.
=

2π ∑
n

(
u2

inδ(ω− εn) + v2
inδ(ω + εn) uinvin [δ(ω− εn) + δ(ω + εn)]

uinvin [δ(ω− εn) + δ(ω + εn)] v2
inδ(ω− εn) + u2

inδ(ω + εn)

)
(2.106)
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one observes that it has Dirac peaks at each εn and −εn. If the energy of a specific
eigenstate ω = εm ∈ εn is inserted, then the diagonal of this local spectral function
contains the square of the wavefunction corresponding to the state εm. This means
that the wavefunctions are encoded in this local spectral function, which is a more
convenient measure when interactions are added. There is a subtlety in that these
Dirac peaks are infinite in magnitude, so they only make sense inside an integral.
If this analysis is to be performed on a computer, one must insert a small value for
η, since delta functions are not handled in a proper way numerically. This has the
effect that the delta functions instead become broadened Lorentzian functions of the
form

−2Im
(

1
ω + iη − εm

)
=

2η

(ω− εn)2 + η2 (2.107)

With a width determined by η. This is an N×N diagonal matrix, and when inserting
ω = εm this function "picks out" εm from the diagonal matrix, and multiplies it by
2η
η2 = 2

η , which is a very large number since η is small. In principle, η should be
as small as possible, to make sure we only get contributions from εm which is the
wavefunction we want to analyse. If this is done, the wavefunction will be scaled by
2
η , so we need to take this into account when comparing (if we divide by this factor
we find the weight of the delta function). In figure 9 we see the electronic part of the
local spectral function as it decays into the chain. This is compared with |u|2 from
the wave-function corresponding to the zero mode.

The local spectral function is a probability distribution which obeys the sum rule∫ ∞

−∞

dω

2π
(A0)

αβ(i, i; ω) = δαβ (2.108)

Which is also true for the full spectral function when interactions are added [4].
We saw that the bare spectral function is given by delta functions in the excitation
spectrum for the non-interacting Hamiltonian (εn). When adding interactions, these
will differ from delta function peaks, but will in general still be highly peaked, and
one can then discuss when the single quasi-particle description is still valid.
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Figure 9: Comparison of the electronic (ee or 11 Nambu space index) of the bare
local spectral function at the edge state energy ω = ε0, with the WF of the edge
state. The relation between these is given by eq. (2.106). The spectral function has
units of inverse energy, and can be made dimensionless by multiplication of t.

2.2.4 Numerical calculation of the real space Green’s function

In this section we cover the results of a numerical calculation of eq. (2.103), which is
plotted in figure 10 and 11. Here we see the local spectral function at the edge of the
wire, as a function of energy ω, and the zero energy mode peaks are clearly visible.
The local spectral function is also the local density of states, i.e. the occupation nν of
some quantum state ν is [4]

nν = 〈c†
νcν〉 =

∫ ∞

−∞

dω

2π
A(ν, ω)nF(ω) (2.109)

So we can investigate how the spectral function depends on energy at the edge of the
wire, which is relevant if one wishes to find the current in a tunnelling experiment.
In the bottom of the plots we see the energy spectrum εn at which the spectral
function is highly peaked. The apparent asymmetry in the strength of the peaks is
due to the fact that the values of |v|2 are a lot larger than |u|2 for the bulk states, and
this value is visible when including the artificial broadening η. Looking at (2.106)
one should then expect for the (A0)11 component that the negative energies are more
visible in the plot, which is the case. Conversely, for the (A0)22 component it should
be the opposite case, which is observed to be correct.
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Figure 10: Plot of the components of the non-interacting spectral function for
the Kitaev chain and energy spectrum for comparison, with parameters in the
topological phase. Here, zero energy states are seen as peaks at ω = 0. The width
is controlled by the inserted imaginary part iη = i0+. The asymmetry between
positive and negative energy is due to the fact that |v|2 > |u|2 in the bulk, which
is seen from the fact that the asymmetry in (A0)22 is the reverse of (A0)11.

In figure 11 with parameters corresponding to the trivial phase of the system, no
zero energy states exists, both in the spectrum and in the spectral function.
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Figure 11: Components of the spectral function and energy spectrum in the trivial
phase, where no edge states are observed.

We have now described the Kitaev chain in terms of GFs, and looked at the
characteristics of the zero modes, giving us the necessary tools to investigate what
happens when interactions are present. The same can be done for the topological
aspects of the theory, where we look at symmetry classes and TIs. The next section
will explore how to generalise the topological classification of free electrons, to one
that includes interactions.

2.3 topological classification of interacting systems

2.3.1 Generalization of symmetries to Green’s functions

As mentioned during the introduction, the recent decades of research in Topological
quantum systems have, among other things, resulted in a description of topological
phases by their symmetry classes (Altland-Zirnbauer), determined by Time-reversal,
Particle-hole and Chiral symmetry. This was briefly discussed in section 2.1.3.
These systems are characterized by TIs, which in non-interacting systems, are given
by winding numbers or integrals of Berry-curvature, calculated from the Bloch-
eigenfunctions to the non-interacting Hamiltonian. In an interacting system however,
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these single-particle states cannot be obtained. These two concepts, the concept of
symmetry classes and the corresponding TI for the system, need to be generalised to
interacting systems. A way to do this, is to use the GF for the system, translate the
symmetry properties to GFs, and cast the TIs in a form in which the GF enters. This
section follows the work done in [15].
Now, we want to see how the symmetries of TR→ Θ, PH→ Ξ and C→ Π, translate
from the Hamiltonian to the GF. To summarize, the symmetry conditions for the
bulk-momentum space Hamiltonian is

ΘH(k)Θ−1 = H(−k)

ΞH(k)Ξ−1 = −H(−k)

ΠH(k)Π−1 = −H(k) (2.110)

With a non-interacting GF defined by

G0(k, ω) = [ω−H(k)]−1 (2.111)

Where ω is a complex frequency. In principle one could just replace H(k) with
−G0(k, 0)−1 in the equations for the TIs, then everything would be written in terms of
the GF. This is, however, not the correct procedure, since one cannot be sure that the
symmetries are preserved once interactions are turned on G0(k, ω)→ G(k, ω). We
need to translate the symmetry properties of the GFs to ones that include interactions,
which will be done in the following. To do this, we find out how the symmetry
transformations affect the second quantized operators, since these enter the full GF.
The second quantized Hamiltonian (2nd quant. objects now carry a hat) can be
written in terms of the real space Hamiltonian

Ĥ = ĉ†
iHij ĉj (2.112)

Where i, j are summed. The three symmetries require Hij to obey the following
equations

T†H∗T = H
P†H∗P = −H
Q†HQ = −H

(2.113)

With T, P and Q = P∗T are the unitary matrix part of Θ, Ξ, Π. As before, time-
reversal and particle-hole symmetry can square to 1 or −1, i.e. P∗P = ±1, T∗T = ±1
giving us the 10 symmetry classes needed to describe all non-interacting topological
systems. Using these properties, and that H is Hermitian, the three symmetry
conditions can be written on a form similar to before

THT−1 = HT

PHP−1 = −HT

QHQ−1 = −H (2.114)
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Let us now see how a non-interacting GF G0(ω) = [ω−H]−1, which contains a
Hamiltonian with these symmetries, will transform under these operations.

TG0(ω)T−1 =
[

T (ω−H) T−1
]−1

=
[
ω−HT

]−1
= G0(ω)T

PG0(ω)P−1 =
[

P (ω−H) P−1
]−1

=
[
ω +HT

]−1
= −G0(−ω)T

QG0(ω)Q−1 =
[

Q (ω−H) Q−1
]−1

= [ω +H]−1 = −G0(−ω) (2.115)

Where (A−1)T = (AT)−1 for any matrix A has been used. The goal is now to
generalize the symmetries in (2.114) so that the interacting GF G(ω) obeys (2.115).
To do this, we utilize how the unitary symmetry transformations affect the second
quantized Hamiltonian, consisting of creation and annihilation operators (now
denoted as T̂, P̂, Q̂ to show that they work on the second quantized operators,
instead of T, P, Q which are matrices). From analysing how H transforms in (2.114),
the symmetry transformation of an interacting many-body Hamiltonian is defined
to be [15]3

T̂ĤT̂† = Ĥ∗

P̂ĤP̂† = Ĥ

Q̂ĤQ̂† = Ĥ∗ (2.116)

Where the complex conjugation operation does not affect creation/annihilation
operators. Let us check these for the non-interacting case where one has Ĥ = c†

iHijcj.
In this case Ĥ∗ = c†

iH∗ijcj = c†
iHT

ijcj. Writing these symmetries out will show how ĉ
and ĉ† transform, e.g. for TR

T̂ĤT̂† = T̂ĉ†
iHij ĉjT̂† =

(
T̂ĉ†

i T̂†
)
Hij

(
T̂ĉjT̂†

)
=
(

ĉ†
nTni

)
Hij

(
T†

jm ĉm

)
= ĉ†

nHT
nm ĉm = Ĥ∗ (2.117)

For PH

P̂ĤP̂† = P̂ĉ†
iHij ĉjP̂† =

(
P̂ĉ†

i P̂†
)
Hij

(
P̂ĉjP̂†

)
= (Pin ĉn)Hij

(
ĉ†

mP†
mj

)
= ĉ†

m

(
−PinHijP†

mj

)
ĉn = ĉ†

m

(
−P†

mjHT
ji Pin

)
ĉn = ĉ†

mHmn ĉn = Ĥ (2.118)

Where a general assumption of TrH has been made. For Q symmetry

Q̂ĤQ̂† = Q̂ ĉ†
iHij ĉj Q̂† =

(
Q̂ĉ†

i Q̂†
)
Hij

(
Q̂ĉjQ̂†

)
= (ĉnQni)Hij

(
Q†

jm ĉ†
m

)
= ĉ†

m

(
−QniHijQ†

jm

)
ĉn = ĉ†

mHT
mn ĉn = Ĥ∗ (2.119)

3 According to [15] this definition is not unique, since there is an alternative way to define the chiral
symmetry. They mention that the one shown here is the most natural definition for application, so
therefore we will proceed using (2.116).
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So to sum up, the transformations that entail (2.116) are for the 2nd quantized
operators

T̂ĉ†
i T̂† = ∑

n
ĉ†

nTni T̂ĉiT̂† = ∑
n

T†
in ĉn

P̂ĉ†
i P̂† = ∑

n
Pin ĉn P̂ĉi P̂† = ∑

n
ĉ†

nP†
ni

Q̂ĉ†
i Q̂† = ∑

n
ĉnQni Q̂ĉiQ̂† = ∑

n
Q†

in ĉ†
n (2.120)

Where Q̂ = P̂†T̂ can be derived from the properties of the matrices Q = P∗T. Now
we have the necessities to check if the interacting GF obeys the symmetries in (2.115),
when the many-body Hamiltonian has the symmetries in (2.116). First we define the
so-called Greater and Lesser GFs as

G>
ij (t) = −i〈ĉi(t)ĉ†

j (0)〉
G<

ij (t) = i〈ĉ†
j (0)ĉi(t)〉 (2.121)

From these one can determine the Retarded and Advanced GFs

GR
ij (t) = θ(t)

(
G>

ij (t)− G<
ij (t)

)
GA

ij (t) = −θ(−t)
(

G>
ij (t)− G<

ij (t)
)

(2.122)

The Fourier transforms of these define the GF Gij(ω) in the full complex plane (GR

on the upper half-plane and GA on the lower). It is thus enough to show that G>
ij (t)

and G<
ij (t) transform under the symmetry operations (2.115) for us to conclude that

Gij(ω) does as well. Some of the symmetries in (2.115) send ω → −ω for complex
ω. To get the retarded GF we analytically continue GR

ij (ω) = Gij(ω + iη), so the
symmetries transform the retarded GF to the advanced GF Gij(−ω− iη) = GA

ij (−ω).
All results will be shown for t > 0 for G>

ij (t), but are also valid for t < 0, and
G<

ij (t). First, let us examine Time Reversal symmetry, which implies that for every
many-body state |n〉 there exist a time-reversed state T̂†|n∗〉 with the same energy,
since ĤT̂†|n∗〉 = T̂†T̂ĤT̂†|n∗〉 = T̂†Ĥ∗|n∗〉 = EnT̂†|n∗〉. Specifically, one can assume
the GS to be TR invariant

T̂†|0∗〉 = |0〉 T̂|0〉 = |0∗〉 (2.123)

And also, we will need the identity

〈n|Â|m〉 = 〈m∗|ÂT|n∗〉 (2.124)
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The zero temperature GF is determined from the GS, and under TR this is then given
as

T iG>(t) T† = Tij iG>
jk (t) T†

kl = Tij T†
kl〈0|eiĤt ĉje−iĤt ĉ†

k |0〉
= Tij T†

kl〈0|T̂†eiĤ∗tT̂ĉjT̂†e−iĤ∗tT̂ĉ†
k T̂†T̂|0〉

= Tij T†
kl T†

js Tpk〈0∗|eiĤ∗t ĉse−iĤ∗t ĉ†
p|0∗〉

= Tij T†
js Tpk T†

kl〈0|ĉpe−iĤt ĉ†
s eiĤt|0〉

= δis δpl iG>
ps(t) = iG>

li (t) = iG>
il (t)

T = iG>(t)T (2.125)

Which is exactly the symmetry transformation property from (2.115). For particle-
hole symmetry the GS satisfies

P̂|0〉 = P̂†|0〉 = |0〉 (2.126)

Transforming the GF yields

P iG>(t) P† = Pij iG>
jk (t) P†

kl = Pij P†
kl〈0|eiĤt ĉje−iĤt ĉ†

k |0〉
= Pij P†

kl〈0|P̂†eiĤtP̂ĉjP̂†e−iĤtP̂ĉ†
k P̂†P̂|0〉 (2.127)

Now, this expression will become simpler later if P̂† and P̂ are commuted such that

= Pij P†
kl〈0|P̂eiĤtP̂† ĉjP̂†e−iĤtP̂ĉ†

k P̂P̂†|0〉
= Pij P†

kl〈0|eiĤtP̂† ĉjP̂†e−iĤtP̂ĉ†
k P̂|0〉 (2.128)

The P̂† ĉjP̂† and P̂ĉ†
k P̂ transformation rule is found by

P̂ĤP̂† =
(

P̂ĉ†
i P̂
)
Hij

(
P̂† ĉjP̂†

)
= ĉsPsi Hij P†

jm ĉ†
m

= ĉ†
m

(
−Psi Hij P†

jm

)
ĉs = ĉ†

mHms ĉs = Ĥ (2.129)

So the transformation is

P̂ĉ†
i P̂ = ∑

n
ĉnPni P̂† ĉi P̂† = ∑

n
P†

in ĉ†
n (2.130)

Inserting this gives us

P iG>(t) P† = Pij P†
kl P†

jm Pnk〈0|eiĤt ĉ†
me−iĤt ĉn|0〉

= −Pij P†
jm Pnk P†

kl〈0|Tt ĉneiĤt ĉ†
me−iĤt|0〉

= −δim δnl iG>
nm(−t) = −iG>

il (−t)T = −iG>(−t)T (2.131)

With Tt being the time-ordering operator, and again, t is assumed positive, but
results hold for negative times as well. This confirms the expected PH symmetry
transformation rule. For chiral symmetry the GS can be taken to be invariant, i.e.

Q̂†|0∗〉 = |0〉 Q̂|0〉 = |0∗〉 (2.132)
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Using this, the chiral symmetry transforms the GF as

Q iG>(t) Q† = Qij iG>
jk (t) Q†

kl = Qij Q†
kl〈0|eiĤt ĉje−iĤt ĉ†

k |0〉
= Qij Q†

kl〈0|Q̂†eiĤ∗tQ̂ĉjQ̂†e−iĤtQ̂ĉ†
k Q̂†Q̂|0〉

= Qij Q†
kl Q†

js Qpk〈0∗|eiĤ∗t ĉ†
s e−iĤ∗t ĉp|0∗〉

= Qij Q†
js Qpk Q†

kl〈0|ĉ†
pe−iĤt ĉseiĤt|0〉

= −Qij Q†
js Qpk Q†

kl〈0|Tte−iĤt ĉseiĤt ĉ†
p|0〉

= −δis δpl iG>
sp(−t) = −iG>

il (−t) = −iG>(−t) (2.133)

Showing the final symmetry operation of (2.115). We can then conclude that the inter-
acting GF transforms under the symmetry transformations like the non-interacting
case. For the Kitaev chain, the Hamiltonian is (2.58), where Hαβ

ij is a Nambu and site
space matrix. We can determine the symmetry matrices T ,P and Q (instead of T, P
and Q since the matrices now has Nambu structure)

T †H∗T = T † [(−tij − µδij
)

τz + iτy∆ij
]
T = H

P†H∗P = P† [(−tij − µδij
)

τz + iτy∆ij
]
P = −H

Q†HQ = Q† [(−tij − µδij
)

τz + iτy∆ij
]
Q = −H

(2.134)

From which one can conclude the simple form of the matrices

T αβ
ij = δijδ

αβ Pαβ
ij = τ

αβ
x δij Qαβ

ij = τ
αβ
x δij (2.135)

With α, β as Nambu indices. We can cast the transformation of the 2nd quantized
creation and annihilation operators from (2.120) in Nambu space as well

T̂
(

Ĉ†
)α

i
T̂ † = ∑

n

(
Ĉ†
)β

n
T βα

ni T̂ Ĉα
i T̂ † = ∑

n

(
T †
)αβ

in
Ĉβ

n

P̂
(

Ĉ†
)α

i
P̂† = ∑

n
Pαβ

in Ĉβ
n P̂ Ĉα

i P̂† = ∑
n

(
Ĉ†
)β

n

(
P†
)βα

ni

Q̂
(

Ĉ†
)α

i
Q̂† = ∑

n
Ĉβ

nQβα
ni Q̂Ĉα

i Q̂† = ∑
n

(
Q†
)αβ

in

(
Ĉ†
)β

n
(2.136)

Which means

T̂ ĤT̂ † = Ĥ∗

P̂ ĤP̂† = Ĥ

Q̂ĤQ̂† = Ĥ∗ (2.137)
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For this specific model the symmetries are (2.135), so one can conclude

T̂ ĉ†
i T̂ † = ĉ†

i T̂ ĉiT̂ † = ĉi

P̂ ĉ†
i P̂† = ĉ†

i P̂ ĉiP̂† = ĉi

Q̂ĉ†
i Q̂† = ĉ†

i Q̂ĉiQ̂† = ĉi (2.138)

So the non-Nambu operators do not change under the symmetries. The Nambu
operators change in a way that obeys the rules for the 2nd quantized Hamiltonian
(2.137), with (2.135) as well. Thus the Nambu-Gorkov GF will also obey the GF
symmetries (2.115), a fact we have shown also holds when including interactions.
As a sanity check, let us see if the non-interacting Hamiltonian, written as

Ĥ0 = ∑
ij

(
−tij − µδij

)
ĉ†

i ĉj +
∆ij

2

(
ĉ†

i ĉ†
j − ĉi ĉj

)
(2.139)

obeys the symmetries in (2.116) using the transformations (2.138). These are satisfied
if Ĥ = Ĥ∗ which is true if tij = t∗ij and ∆ij = ∆∗ij. This is true for our case
(remember that complex conjugation does not affect creation/annihilation operators),
so everything is consistent.

2.3.2 TI for interacting systems

As mentioned in the beginning of the section, we want to describe the momentum
space topology of these systems, and this is mainly done by determining TIs. For
non-interacting systems these can only change when closing the bulk gap, and
on boundaries there will be zero energy excitations. For interacting systems, this
correspondence between bulk and boundary might change. As a simple example, to
illustrate how the GF contains information about the momentum space topology, let
us look at a TI for interacting 0D systems is given by [15]

N0 = Tr
∫ ∞

−∞

dΩ
2πi
G−1∂ΩG (2.140)

Where G(iΩ) = G(ω → iΩ) for Ω ∈ R is the Matsubara GF and iΩ is the Matsubara
frequency, which is a continuous variable at zero temperature. An important thing
to notice is that both the Matsubara GF and its inverse enter the expression, so they
both contribute to the value of the TI. Rewriting this one can conclude

N0 = Tr
∫ ∞

−∞

dΩ
2πi

∂ΩlnG =
∫ ∞

−∞

dΩ
2πi

∂Ωln detG (2.141)

Where the identity Tr ln = ln det is used. For the non-interacting case with G0(iΩ) =

[iΩ−H]−1, one can use that the determinant is invariant under a unitary transfor-
mation, detG0 = det UG̃0U† = det U det G̃0 det U† = det UU† det G̃0 = det G̃0 where
G̃0 is diagonal, concluding

detG0 = ∏
n

1
iΩ− εn

(2.142)
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By inserting this in the TI and using the property for the logarithm function
ln ∏n f (n) = ∑n ln f (n)

N0 = ∑
n

∫ ∞

−∞

dΩ
2πi

∂Ωln
1

iΩ− εn
= ∑

n

1
2π

arg
[

1
iΩ− εn

]∣∣∣∣∣
∞

−∞

= ∑
n

1
2π

arg
[−iΩ− εn

Ω2 + ε2
n

]∣∣∣∣∣
∞

−∞

= ∑
n

1
2π

ArcTan
[

Ω
εn

]∣∣∣∣∣
∞

−∞

=
1
2 ∑

n
sign εn (2.143)

This contains the characteristics one expects, since the only way for N0 to change
by an integer, is by one state moving from positive to negative or vice versa, thus
closing the gap. The integer changes when the system undergoes a topological phase
transition. In the non-interacting case, the TI is a sum of all positive energy states
minus all the negative, and these are signalled by poles in the single-particle GF.
In [15] they show that the interacting GF not only contains poles, but also zeroes,
which are also picked up by (2.141). The form of the determinant of the interacting
GF is shown to be

det G =
∏

Dh−D f
s (ω− rs)

∏Dh
n (ω− εn)

(2.144)

Where rs marks the position of a zero, while εn are the energies leading to poles in
the determinant. Dh is the size of the combined Hilbert space of one extra electron
or hole above the GS, and D f is the number of degrees of freedom, which is just
the number of creation and annihilation operators. Generally there are more states
than operators D f ≤ Dh but for a non-interacting system this inequality is saturated
D f = Dh, and all zeroes disappear. Zeroes disappear by merging with poles, and
conversely, poles and zeroes emerge in pairs. The TI for the interacting case becomes

N0 =
1
2 ∑

n
sign εn −

1
2 ∑

s
sign rs (2.145)

So zeroes crossing from positive to negative or the other way around is a way for
the interacting system to change TI, without closing the bulk gap, so the simple
picture of the classification of Topological systems becomes more complicated when
adding interactions, which is perhaps not a surprise. The fact that zeroes also can
change the TI means that there is no generally valid bulk-boundary correspondence
in interacting systems. The consequence of this analysis is that a boundary between
two different topological phases need not have zero energy excitations, but instead
have a zero energy zero of the GF, giving rise to the differing TI [10]. In [23] they
have shown that this mechanism is behind the conclusion in Kitaev-Fidkowski
[11], where it was shown that the system of interacting Majoranas in 8 chains
could be adiabatically changed to the topologically trivial case, i.e. a reduction of
the classification Z → Z8. The zeroes appearing in the interacting case signals a
vanishing single-particle coherence, and is thus inherently a result of many-body
interactions. A zero in the GF can be attributed to a pole in the self-energy, so it is an
interesting quest to analyse the pole structure of Σ(ω) and see how a dynamical part
of a self-energy can change the TI. We will se later that the TI for 1D chiral systems
can be cast using the zero energy GF, so the dynamical contribution of Σ(ω) can in
principle be inferred from Σ(0). Up to now, the TI has only been calculated using
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DMRG and other methods, which was done in [22] for electron-electron interactions
in the Kitaev chain (discussed in chapter 4) and in [23] for the Peierls-Hubbard
model. The hope was to analyse the TI including interactions, but it ended up being
beyond the scope of this thesis for reasons of numerical complexity. In [23] they have
a model similar to Fidkowski and Kitaev, and show that when they have 4 chains (4
and not 8 since they consider fermions instead of Majoranas), the zero energy poles
are replaced by zeroes, showing that the zeroes in the GF are of great importance
and call for further analysis.

2.3.3 1D topological invariant with chiral symmetry

In this section we want to investigate how to define a TI for the Kitaev chain that
still works in the presence of interactions. It turns out to be possible for a 1D system
with Chiral symmetry. This TI can be defined in the following way (due to [15] [23]
[32]). The Kitaev Hamiltonian obeys

∑
jk
(Π†)ασ

il H
σρ
lk Πρβ

kj = −Hαβ
ij Παβ

ij = δijτ
αβ
x (2.146)

Written in the basis of the chiral operator τx such that Π = U†ΠU and H = U†HU

with U = 1√
2

(
1 1
1 −1

)
= 1√

2
(τz + τx) one gets

Παβ
ij = δijτ

αβ
z Hαβ

ij
.
=

(
0 Vij

V†
ij 0

)
Vij = −tij − µδij − ∆ij (2.147)

Or in momentum space

Hαβ(k) .
=

(
0 V(k)

V†(k) 0

)
V(k) = −t cos k− µ + i∆ sin k (2.148)

The energy spectrum (the same found in (2.21)) and Bloch eigenfunctions are easily
found to be

Ek = ±|V(k)| = ±
√
(−t cos k− µ)2 + (∆ sin k)2 , |uk,±〉 =

1√
2

(
eiϕ(k)

±1

)
(2.149)

With ϕ(k) = arg[V(k)]. The Bloch WF in the old basis is just |ũk,±〉 = U|uk,±〉.
Now, a TI has been found by the procedure described in [8][26]. The TI is found
as a coefficient in a low energy effective field theory of the system, describing a
Topological Quantum Field Theory (TQFT). This is topological in the sense that
the action is independent of the metric describing the space-time geometry [20].
The effective theory is found by coupling free fermions to an external gauge field
A, then integrating out the fermions, resulting in an effective action for the gauge
field Se f f [A]. The TI will be a coefficient to this effective action, which has the
form of a Chern-Simons theory, a term that is only defined in 2d + 1 dimensions.
By dimensional reduction, a TI can be defined for odd dimensions with a chiral
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symmetry [6] (our case), which for the GFs mean (For now, the matrix notation will
be suppressed , i.e. Παβ → Π)

G(k, ω) = −ΠG(k,−ω)Π (2.150)

This TI uses the GFs at zero energy [23] [10] .

Nd =
Cd−1

2
εk1...kd Tr

∫
BZ

ddk Π g−1∂k1 g . . . g−1∂kd g , g(k) = G(k, 0) (2.151)

Where d is an odd dimension, and

Cd = (2πi)−
d
2−1(

d
2
)!/(d + 1)! (2.152)

So for the 1D case, the TI is

N1 = Tr
∫

BZ

dk
4πi

Π g−1∂kg , g(k) = G(k, 0) (2.153)

Which is again exactly what we are interested in, since having a TI expressed in
terms of the GFs allows us describe interacting systems. The fact that N1 is TI can be
seen by taking the derivative wrt. some parameter α of the Hamiltonian (α could be
hopping, chemical potential, pairing strength, interactions strength etc.)

dN1

dα
= Tr

∫
BZ

dk
4πi

∂α

(
Π g−1∂kg

)
= Tr

∫
BZ

dk
4πi

(
Π ∂αg−1∂kg + Π g−1∂α∂kg

)
= Tr

∫
BZ

dk
4πi

(
−Π g−1∂αg g−1∂kg + Π g−1∂k∂αg

)
(2.154)

Where the derivative of an inverse matrix d
dk A−1 = −A−1

[
d
dk A

]
A−1 is used. Using

that g and Π anti-commute (gΠ = −Πg), and the cyclic properties of the trace

dN1

dα
= Tr

∫
BZ

dk
4πi

(
−Π g−1∂kg g−1∂αg + Π g−1∂k∂αg

)
= Tr

∫
BZ

dk
4πi

(
Π ∂kg−1∂αg + Π g−1∂k∂αg

)
= Tr

∫
BZ

dk
4πi

Π∂k

(
g−1∂αg

)
= 0 (2.155)

Since the integral of a total derivative over the entire BZ is zero. N1 does not change
by varying the parameter α continuously, and is thus a TI. For now, we consider the
non-interacting GF G0. One can determine the TI by utilizing the property that the
trace is basis independent, so that it is possible to write the GF in the basis of the
chiral operator Π such that

Π = τz , g(k) = (−H(k))−1 =

(
0 −V†(k)−1

−V(k)−1 0

)
(2.156)
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We could also just have written the zero energy GF (C.52) in the chiral basis directly,
giving the same result. The TI then becomes

N1 = Tr
∫

BZ

dk
4πi

τz

(
0 −V(k)

−V†(k) 0

)(
0 −∂kV†(k)−1

−∂kV(k)−1 0

)
= Tr

∫
BZ

dk
4πi

τz

(
V(k)∂kV(k)−1 0

0 V†(k)∂kV†(k)−1

)
=
∫

BZ

dk
4πi

(
V(k)∂kV(k)−1 −V†(k)∂kV†(k)−1

)
= −

∫
BZ

dk
2πi

V(k)−1∂kV(k) (2.157)

Where both V†(k) = V(−k) and partial integration was used. This TI describes
the winding of the function V(k) around the origin as k sweeps the Brillouin zone,
a process we will examine in detail in the following. In figure 12 the real and
imaginary parts of the function V(k) are plotted in the top row, as k covers the
interval [−π, π] for fixed t, ∆ and different µ. The TI in (2.157) is the form of a
contour integral, and the integrand ∂kV(k)

V(k) has a simple pole at V(z0) = 0 located at
the origin of the Argand diagram. If the contour integral does not include this pole,
then Cauchy’s theorem tells us that the integral is zero. If the pole is included, then
the Residue Theorem dictates the result of the integral [27], and for simple poles with
integrands of the form f (z) = g(z)

h(z) with h(z0) = 0 we then have Res( f , z0) =
g(z0)
h′(z0)

.
For this case the TI thus becomes

N1 = −
∮ dk

2πi
∂kV(k)
V(k)

= 2πi ∑ Residues = −2πi
2πi

∂kV(k)|k=z0

∂kV(k)|k=z0

= −1 (2.158)

And from the function V(k) = −t cos k − µ + i∆ sin k, one sees that the pole is
included when |t| > |µ|, giving

N1 =

{
0 |t| < |µ| trivial
−1 |t| > |µ| topological

(2.159)

In figure 12 the energy spectrum 2.21 is also plotted. The gap is present for both the
trivial and the topological phase, but exactly where they cross defines a topological
phase transition, signified by the gap closing.
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Figure 12: In the first column of plots |t| > |µ| so N1 = −1 corresponding to a
system in the topological phase (the contour winds around the origin). In the
middle column |t| = |µ| which is exactly at the transition point, where the gap
in the spectrum at {−π, π} closes. In the last column, the origin is not included
in the contour, so N1 = 0 and no edge states exists at the boundary. For the
symmetric case t = ∆, the contour of V(k) is a circle instead of an ellipse.

In this non-interacting case, one was able to determine the Bloch functions, so let
us calculate the Zak phase [9], which is the Berry phase accumulated for the Bloch
eigenfunctions when k varies over the entire Brillouin zone

Z = i
∮

dk 〈uk|∂k|uk〉 = i
∮ dk

2
(
e−iϕ(k) ±1

)
∂k

(
eiϕ(k)

±1

)
=

i
∮ dk

2
(
e−iϕ(k) ±1

) (ieiϕ(k)∂k ϕ(k)
0

)
= −1

2

∮
dk

dϕ(k)
dk

= −∆ϕ

2
(2.160)

Where ∆ϕ is the total accumulated phase. In figure 12 it is shown how the phase
ϕ(k), which here is the angle that V(k) makes in the Argand diagram, changes with
varying k. If the origin is not contained in the circle, then there is no difference in
phase, i.e. ∆ϕ = 0. If, however, the origin is included, the phase will have changed
∆ϕ = 2π (the vector V(k) has wound an entire circle around the origin). We can
thus conclude that the Zak phase is related to the TI by πN1. A similar analysis of
the topological criteria for the SSH model is performed in Appendix D.1. Also, the
relation between this Berry phase TI and the Pfaffian TI from before was shown in
[5].
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T H E I N T E R A C T I N G K I TA E V C H A I N - E L E C T R O N - B O S O N

3.1 electron-boson interactions

In this section we will investigate how the characteristics of the Majorana zero modes
change, when the system contains bosonic modes that the electrons can interact with.
The Hamiltonian we want to investigate is

H = HK + Hb + Hel−b (3.1)

Where HK is the normal Kitaev Hamiltonian, Hb is the Hamiltonian for the free
bosons and Hel−b describes the coupling between electrons and bosons. The latter
two Hamiltonians are chosen to be

Hb = ∑
λ

ωλ

(
a†

λaλ +
1
2

)
(3.2)

Hel−b = ∑
νν′λ

gνν′λ c†
νcν′

(
aλ + a†

λ

)
︸ ︷︷ ︸

ϕλ

(3.3)

Where ωλ is the energy spectrum for the free phonons, and gνν′λ is the interaction
strength. These are written using arbitrary quantum numbers (ν, ν′, λ), since we want
to derive the Feynman rules for the general case, and then afterwards inspect the real
space version where the quantum numbers becomes lattice sites (ν, ν′, λ)→ (i, j, l).

3.1.1 Nambu-Gorkov GF

We want to find the propagator that describes a particle going from state νa at τa to
state νb at τb, interacting along the way. This is described by the full Nambu-Gorkov
GF

Gβα(νb, τb ; νa, τa) = −〈Tτ

(
Cβ

νb(τb)(C†)α
νa
(τa)

)
〉

.
=

(Gee(νb, τb ; νa, τa) Geh(νb, τb ; νa, τa)
Ghe(νb, τb ; νa, τa) Ghh(νb, τb ; νa, τa)

)
.
=

(−〈Tτ

(
cνb(τb)c†

νa
(τa)

)
〉 −〈Tτ (cνb(τb)cνa(τa))〉

−〈Tτ

(
c†

νb
(τb)c†

νa
(τa)

)
〉 −〈Tτ

(
c†

νb
(τb)cνa(τa)

)
〉
)

(3.4)

Where again α and β are Nambu indices, and the C operators are Nambu spinors

Cβ
νb =

(
cνb

c†
νb

)
. The average is now wrt. the full Hamiltonian, which includes electron-

boson interactions. Calculating this GF will be done by creating a perturbation series
in the interaction coefficient gνν′λ, and then use Feynman diagrams to represent
terms of a given order. The GF in equation (3.4) will be viewed diagrammatically as

44
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Gβα(νb, τb ; νa, τa) =
νaτaανbτbβ

.
=



νaτaνbτb Gee νaτaνbτb Geh

νaτaνbτb Ghe νaτaνbτb Ghh


Where the dashed line denotes the Nambu matrix GF structure (the matrix

indices are denoted by β, α being e or h), and the plain arrows are specific entrances
in this matrix, referring to the various kinds of GFs (ee, eh, he, hh). To differentiate
between them, look from right to left, and if the arrow points along this direction it
is an electronic component otherwise it is a hole component. The bare version is

Gβα
0 (νb, τb ; νa, τa) =

νaτaανbτbβ

.
=



νaτaνbτb Gee
0

νaτaνbτb Geh
0

νaτaνbτb Ghe
0

νaτaνbτb Ghh
0


We have already calculated the free GF for the electrons using the Kitaev model

Hamiltonian, both in real space in section 2.2.4, which was done numerically, and
for momentum space in Appendix C.5. We will also need the bosonic Matsubara GF
for the free phonons

D0(λb, τb; λa, τa) ≡ −〈Tτ

(
ϕ̂λb(τb)ϕ̂†

λa
(τa)

)
〉0 (3.5)

Where the subscript zero refers to the non-interacting part of the Hamiltonian,
which in this case is Hb. The hat over the operators ϕ̂λ(τ) declares the usage of the
imaginary time interaction picture ϕ̂λ(τ) = eHbτ ϕλe−Hbτ. Usually the τ evolution is
in the Heisenberg picture, but these two pictures coincide since Hb does not depend
on time. This GF is calculated in Appendix C.3 and is given by

D0(λb, λa; iqn) =
λaλb

= δλbλa

2 ωλa

(iqn)2 −ω2
λa

(3.6)
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3.2 perturbation theory for electron-phonon interactions

In this section we set up a perturbation theory for calculating the full GFs in equation
(3.4). The small parameter is the interaction strength gνν′λ. The basic interaction
vertex is

Hel−b =
λ

ν′

ν

gνν′λ

Which, together with the bare GFs for both the bosons and the electrons, constitute
our basic ingredients in the diagrams. First, let us write the basic interaction in
Nambu space (using that gνν′λ = g∗ν′νλ since the Hamiltonian is Hermitian)

Hel−b = ∑
νν′λ

gνν′λ c†
νcν′ϕλ =

1
2 ∑

νν′λ

(
gνν′λ c†

νcν′ + g∗ν′νλc†
νcν′
)

ϕλ

=
1
2 ∑

νν′λ

(
gνν′λ c†

νcν′ + g∗ν′νλ

[
δνν′ − cν′c†

ν

])
ϕλ

=
1
2 ∑

νν′λ

(
gνν′λ c†

νcν′ − g∗νν′λcνc†
ν′

)
ϕλ

=
1
2 ∑

νν′λ

(
c†

ν cν

) (gνν′λ 0
0 −g∗νν′λ

)(
cν′

c†
ν′

)
ϕλ =

1
2 ∑

νν′λ
gνν′λ (C†)σ

ν τσσ′
z Cσ′

ν′ ϕλ

(3.7)

Assuming gνν′λ is real matrix (which it will be for our purpose). If this is not the case,

then one should use the matrix
(

gνν′λ 0
0 −g∗νν′λ

)
at each vertex. Summation over

repeated Nambu indices σ and σ′ is implied. The constant term δνν′ is discarded,
and the factor 1

2 is due to the usual double counting of particle-hole contributions,
which is included only when writing out the full occupation number Hamiltonian
with creation and annihilation operators, but ignored when calculating everything
in Nambu matrices. Now let us look at Gβα(νb, τb ; νa, τa) describing the dressed
Nambu space propagator for going from imaginary time and quantum number a to
b.

Gβα(νb, τb ; νa, τa) = −〈Tτ

(
Cβ

νb(τb)(C†)α
νa
(τa)

)
〉

=
−Tr

[
e−βH Tτ

(
Cβ

νb(τb)(C†)α
νa
(τa)

)]
Tr
[
e−βH

] (3.8)

This GF is written in the Heisenberg picture, but a systematic way of expanding the
average in powers of the interaction is best done in the interaction picture, which
is shown in detail in Appendix E.1. The definition of the interaction picture is that
operators are chosen to follow τ evolution wrt. the bare Hamiltonian H0 = HK + Hb
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and states wrt. to the perturbation V = Hel−b [4]. Doing this one can exchange the
Boltzmann weight with a unitary operator Û via e−βH = e−βH0Û(β, 0) where

Û(τ, τ0) =
∞

∑
n=0

(−1)n

n!

∫ τ

τ0

dτ1· · ·
∫ τ

τ0

dτnTτ

(
V̂(τ1) . . . V̂(τn)

)
= Tτe−

∫ τ
τ0

dτ1V̂(τ1) (3.9)

Allowing us to write the full GF as

Gβα(νb, τb ; νa, τa) =
−〈Tτ

(
Û(β, 0)Ĉβ

νb(τb)(Ĉ†)α
νa
(τa)

)
〉0

〈Û(β, 0)〉0
(3.10)

This form of the GF is easier to work with, compared to (3.8), since the averaging
is done wrt. to the bare Hamiltonian. One expands Û(β, 0) to the desired order in
the interaction, write multi-particle averages as products of single-electron averages,
which then yields an approximate value for the full GF. Using the interaction
Hamiltonian from equation (3.3) gives

Gβα(νb, τb ; νa, τa) =

−∑∞
n=1

(−1)n

n!

∫ β
0 dτ1· · ·

∫ β
0 dτn〈Tτ

(
V̂(τ1) . . . V̂(τn)Ĉ

β
νb(τb)(Ĉ†)α

νa
(τa)

)
〉0

∑∞
n=1

(−1)n

n!

∫ β
0 dτ1· · ·

∫ β
0 dτn〈Tτ

(
V̂(τ1) . . . V̂(τn)

)
〉0

(3.11)

With

V̂(τ) = ∑
νν′λ

gνν′λ(Ĉ†)σ
ν(τ)τ

σσ′
z Ĉσ′

ν′ (τ)ϕ̂λ(τ) (3.12)

Since the average is wrt. the bare Hamiltonian, the electronic and bosonic degrees
of freedom decouple, and one gets a product between an average containing only
electron spinor operators and one with only boson operators. Inserting the interaction
terms, one encounters terms like

〈Tτ

(
ϕ̂λ1(τ1) . . . ϕ̂λn(τn) (Ĉ†)σ1

ν1
(τ1)τ

σ1σ′1
z Ĉσ′1

ν′1
(τ1)

. . . (Ĉ†)σn
νn
(τn)τ

σnσ′n
z Ĉσ′n

ν′n
(τn) Ĉβ

νb(τb)(Ĉ†)α
νa
(τa)

)
〉0

=〈Tτ (ϕ̂λ1(τ1) . . . ϕ̂λn(τn))〉0 〈Tτ

(
(Ĉ†)σ1

ν1
(τ1)τ

σ1σ′1
z Ĉσ′1

ν′1
(τ1)

. . . (Ĉ†)σn
νn
(τn)τ

σnσ′n
z Ĉσ′n

ν′n
(τn) Ĉβ

νb(τb)(Ĉ†)α
νa
(τa)

)
〉0 (3.13)

The thermal average for the bosons is non-zero only for an even number of ϕλ

operators. Using Wick’s theorem allows us to write the many-particle GF as a
product of single particle functions of the form

〈Tτ

(
ϕ̂λi(τi)ϕ̂λj(τj)

)
〉0 = −D0(λi, λj; τi − τj) (3.14)

The averages containing multiple electron spinor operators can also be expanded
in products of singe-particle Nambu-Gorkov GFs by Wick’s theorem. The calculation
is detailed in Appendix E, where the full GF is calculated to 2nd order, and by
looking at the diagrams and the terms they represent, one can conclude the following
Feynman Rules
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λ

2 1
= −D0(λ; τ2 − τ1)

ν′2σ′2 ν1σ1

2 1
= Gσ′2σ1

0 (ν′2, ν1; τ2 − τ1)

ν′1σ′1ν1σ1

λ

1 =
∫ β

0
dτ1 ∑

ν1ν′1λ
σ1σ′1

gν1ν′1λτ
σ1σ′1
z

For F fermion loops, multiply by (−1)F

∑ topologically different diagrams (3.15)

As an example, lets write out the following diagram

b a1

2
=
∫

dτ1

∫
dτ2 ∑

σ1σ′1
σ2σ′2

∑
ν1ν′1λ
ν2ν′2

gν1ν′1λgν2ν′2λD0(λ; τ2 − τ1)

× Gβσ1
0 (νb, ν1; τb − τ1)τ

σ1σ′1
z Gσ′1α

0 (ν′1, νa; τ1 − τa)τ
σ2σ′2
z Gσ′2σ2

0 (ν′2, ν2; 0)

=
∫

dτ1

∫
dτ2 ∑

ν1ν′1λ
ν2ν′2

gν1ν′1λgν2ν′2λD0(λ; τ2 − τ1)

× G0(νb, ν1; τb − τ1)τzG0(ν
′
1, νa; τ1 − τa)Tr

[
τzG0(ν

′
2, ν2; 0)

]
(3.16)

Where the minus sign for the fermion loop has cancelled with the one attached to
the bosonic propagator, and the Nambu structure is written as matrix multiplication.
Notice the tadpole part of the diagram becomes a trace in Nambu space. This
notation compactifies a lot of the information, since it contains all the diagrams
(ee, eh, he, hh) for a given process. This perturbation expansion has been performed
using general quantum numbers, but in the following, we will assume a specific form
of the interaction Hamiltonian. The goal is to compare the GF including interactions
with the non-interacting case, and see how these change the behaviour of the GF.

3.3 effects of charge fluctuations by coupling to a voltage gate

A specific example if this bosonic interaction in question, is the system depicted in
figure 13, which describes a topological nanowire coupled to a capacitative gate,
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which has fluctuations in the potential due to some impedance in the system, which
can be modelled by bosonic modes ϕ. The interaction we consider is now 1

Hel−b = ∑
im

gic†
i ci(Vmam + V∗ma†

m) =
1
2 ∑

i
gi(C†)σ

i τσσ′
z Cσ′

i ϕ + const.

ϕ = ∑
m
(Vmam + V∗ma†

m) (3.17)

Where in the Nambu description, we again ignore the constant term and the double
counting factor. It is assumed gi only depends on the position of the electron density,
and that this couples to all the bosonic modes (ϕ is a sum over all m). In addition,
one has the condition gi = g∗i and Vm = V∗m, in order for this interaction term to still
obey the symmetries in (2.137).

SC
NW

Gate

Z

∆V

Figure 13: Sketch of the system, where a Kitaev chain is coupled to a gate. The
potential difference from the superconductor to the gate leads to an effective
potential in the NW which fluctuates. The power sources should be placed so as
to ensure the capacitor with the NW is coupled in parallel with the impedance Z .
We have here considered a constant gi coupling all sites, but this could in principle
be made so that the gate only couples to part of the wire (as considered in [29]).

The new Matsubara GF for the boson is related to the old, by

D̃0(iqn) = ∑
m
|Vm|2D0(m, iqn) (3.18)

In Appendix E.3 some examples of calculations of diagrams are shown, and these
are transformed into Matsubara frequency space, from which we can now write the
Feynman rules in Real space - Matsubara frequency

1 Similar to the one considered in [29]
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iqn

m m
= −∑

m
|Vm|2D0(m; iqn)

β ikn α

i j
= Gβα

0 (i, j; ikn)

σ′1σ1

m

i = ∑
i

giτ
σ1σ′1
z

For F fermion loops, multiply by (−1)F

∑ topologically different diagrams

Conserve the Matsubara frequency at each vertex
Sum over repeated Nambu indices

Multiply by
1
β

for each internal frequency ipn and perform the sum ∑
ipn

(3.19)

3.4 fock self-energy term

If one wants to compute the full GF, one needs to sum all the diagrams

G = = + +

+

+ + + . . . (3.20)
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Which can be simplified by introducing the self energy, defined as the sum of all
irreducible diagrams, without external lines

Σ =

= + + + + . . .

(3.21)

The full GF can then be written as [4].

G(i, j; ikn) =
i j

=
i j

+
i jlk

+
i jlk

+ . . .

=
i j

+
i lk

×


l j

+
l j

+ . . .


=

i j
+

i jlk

= G0(i, j; ikn) + ∑
kl
G0(i, k; ikn)Σ(k, l; ikn)G(l, j; ikn) (3.22)

Which is the Dyson’s equation for G(i, j; ikn). In finite discrete real space, which
is relevant for the numerical calculations, this will be 2N × 2N matrices with the
solution

G(ikn) = G0(ikn) + G0(ikn)Σ(ikn)G(ikn) =
(

1− G0(ikn)Σ(ikn)
)−1
G0(ikn)

=
(
G0(ikn)

−1
[
1− G0(ikn)Σ(ikn)

])−1
=
(
G0(ikn)

−1 − Σ(ikn)
)−1

(3.23)

Where I have used the fact that (A B)−1 = B−1 A−1. This expression for the full GF
will be used extensively throughout the rest of this thesis. We now want to calculate
the full GF using the Fock self-energy from eq. (E.25) 2, and then rewrite the GF in

2 Since this is the lowest order diagram that could be interesting. The tadpole diagram is of the form of
a trace, so it will just be a constant shift in energy
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diagonal form which was seen in eq. (2.101), in order for us to perform the sum over
Matsubara frequencies. The self-energy diagram we want to use is

ΣF(i, j; ikn) =
ji

= − ∑
m,iqn

gigj

β
|Vm|2D0(m; iqn)τzG0(i, j; ikn − iqn)τz

= − ∑
m,n,iqn

gigj

β
|Vm|2D0(m; iqn)τz

(
uin v∗in
vin u∗in

)( 1
ikn−iqn−εn

0
0 1

ikn−iqn+εn

)(
u∗jn v∗jn
vjn ujn

)
τz

= ∑
n

(
uin v∗in
−vin −u∗in

)(
Σ+(ikn) 0

0 Σ−(ikn)

)(
u∗jn −v∗jn
vjn −ujn

)
(3.24)

Where

Σ± = − ∑
m,iqn

gigj

β
|Vm|2D0(m; iqn)

1
ikn − iqn ∓ εn

= − ∑
m,iqn

gigj

β
|Vm|2

2ωm

(iqn)2 −ω2
m

1
ikn − iqn ∓ εn

(3.25)

Where the bosonic GF from equation (3.6) has been inserted.

3.4.1 Matsubara summation

One can now perform the sum of the bosonic Matsubara frequencies iqn, by the
method of contour integration (as described in [4]). We write Σ+(ikn) as

Σ+(ikn) =
1
β ∑

iqn

g0(iqn) , g0(iqn) = −∑
m

gigj|Vm|2
2ωm

(iqn)2 −ω2
m

1
ikn − iqn − εn

The method is now to use complex analysis to write the sum as a contour integral over
a complex variable z, and then use a function with poles at the bosonic Matsubara
frequencies to pick out these from g0(z). The required function is the Bose-Einstein
distribution function

nB(z) =
1

eβz − 1
poles for z = iqn = i

2n
β

π (3.26)

With residues

Res
z→iqn

[nB(z)] = lim
z→iqn

z− iqn

eβz − 1

= lim
δ→0

δ

eβ(δ+iqn) − 1
= lim

δ→0

δ

eβδ − 1
L’Hôpital’s rule→ lim

δ→0

1
βeβδ

=
1
β

(3.27)
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Where L’Hôpital’s rule is used, lim
x→0

f (x)
h(x) = lim

x→0

f ′(x)
h′(x) if f (0) = h(0) = 0. If one now

creates a closed contour which encloses one of these Matsubara frequencies, then
the Cauchy residue theorem gives∮ dz

2πi
nB(z)g0(z) = Res

z→iqn
[nB(z)g0(z)] =

1
β

g0(iqn) (3.28)

Comparing with the expression for Σ+(ikn) confirms that if a contour C is chosen to
enclose all frequencies iqn, i.e. all poles of nB(z) and where g0(z) is analytic, then
one can conclude

Σ+(ikn) =
∫

C

dz
2πi

nB(z)g0(z) (3.29)

Up until now, this derivation would also hold for a Matsubara summation of
expressions containing the full GF. In that case one denotes it as g(z), and for this
function the poles are not known, but will have the form of branch cuts along the real
axis (case treated in [4]). Continuing, one can use the fact that g0(z) only contains
simple poles zl , so it is analytic everywhere else. By choosing the contour C∞ to
include the entire complex plane, then one includes all poles from nB(z) and those
from g0(z). The contour shown in blue in figure 14 is defined by z = Reiθ with
R→ ∞. The contour integral gives zero since the integrand goes to zero for z ∈ C∞

nB(z)g0(z) ∝
1

eβz − 1
1

z2 −ω2
m

1
ikn − z− εn

z→C∞∝

{
e−βRe(z)Re(z)−3 Re(z) > 0
Re(z)−3 Re(z) < 0

(3.30)

So the contour integral gives zero, which is then equal to the contribution from
nB(z) and g0(z)

0 =
∫

C∞

dz
2πi

nB(z)g0(z) =
1
β ∑

iqn

g0(iqn) + ∑
l

Res
z=zl

[g0(z)] nB(zl) (3.31)

Where the different contributions are denoted with their corresponding graphical
notation from figure 14. One can thus conclude that

Σ+(ikn) = −∑
l

Res
z=zl

[g0(z)] nB(zl)

= ∑
l

Res
z=zl

[
∑
m

gigj|Vm|2
2ωm

z2 −ω2
m

1
ikn − z− εn

]
nB(zl)

= ∑
m

gigj|Vm|2 ∑
l

Res
z=zl

[
2ωm

(z−ωm) (z + ωm)

1
ikn − z− εn

]
nB(zl)

= ∑
m

gigj|Vm|2
[

nB(ωm)

ikn −ωm − εn
− nB(−ωm)

ikn + ωm − εn
− 2ωm nB(ikn − εn)

(ikn − εn −ωm) (ikn − εn + ωm)

]
(3.32)
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Im(z)

Re(z)

ikn

iqn

z1 = ωmz2 = −ωm

z3 = ikn − εn

C : |z| → ∞

Figure 14: Figure illustrating the use of contour integration to determine the
Matsubara sum Σ+(ikn). The blue curve shows the contour C∞, the green dots
show the bosonic Matsubara frequencies iqn = i 2n

β π, the small black dots show
the fermionic frequencies ikn, and the red dots show the poles of g0(z) which
occur at z = zl .

Using −nB(−ω) = nB(ω) + 1 and nB(ikn − εn) = −nF(−εn) this yields

Σ+(ikn)

= ∑
m

gigj|Vm|2
[

nB(ωm)

ikn −ωm − εn
+

nB(ωm) + 1
ikn + ωm − εn

+
2ωm nF(−εn)

(ikn − εn −ωm) (ikn − εn + ωm)

]
= ∑

m
gigj|Vm|2

[
nB(ωm)

ikn −ωm − εn
+

nB(ωm) + 1
ikn + ωm − εn

+
nF(−εn)

ikn − εn −ωm
− nF(−εn)

ikn − εn + ωm

]
= ∑

m
gigj|Vm|2

[
nB(ωm) + nF(−εn)

ikn −ωm − εn
+

nB(ωm) + 1− nF(−εn)

ikn + ωm − εn

]
(3.33)

With a similar calculation for Σ−(ikn) showing that

Σ±(ikn) = ∑
m

gigj|Vm|2
[

nB(ωm) + nF(∓εn)

ikn −ωm ∓ εn
+

nB(ωm) + 1− nF(∓εn)

ikn + ωm ∓ εn

]
(3.34)

As an interlude to this calculation, and before proceeding to perform the sum over
bosonic energies, one can check if this self-energy still preserves the symmetries
from (2.115) after the Matsubara frequency sum has been performed. The unitary
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symmetry matrices were found in (2.135), and written out explicitly they affect the
diagonal self-energy according to

Σ(ω)
αβ
nn = Σ(ω)

βα
nn

τσα
x Σ(ω)

αβ
nnτ

βρ
x = −Σ(−ω)

σρ
nn

(3.35)

With ω complex, so we set ω = ikn. One now can write the following symmetry for
specific Nambu entries, extracted from the second equation

Σ(ikn)
11
nn = −Σ(−ikn)

22
nn

l
Σ+(ikn) = −Σ−(−ikn) (3.36)

Where the consequence this symmetry has on (3.34) has also been noted. Checking
if this is the case

− Σ−(−ikn) = −∑
m

gigj|Vm|2
[

nB(ωm) + nF(εn)

−ikn −ωm + εn
+

nB(ωm) + 1− nF(εn)

−ikn + ωm + εn

]
= ∑

m
gigj|Vm|2

[
nB(ωm) + nF(εn)

ikn + ωm − εn
+

nB(ωm) + 1− nF(εn)

ikn −ωm − εn

]
= ∑

m
gigj|Vm|2

[
nB(ωm) + 1− nF(−εn)

ikn + ωm − εn
+

nB(ωm) + nF(−εn)

ikn −ωm − εn

]
= Σ+(ikn) (3.37)

Where nF(εn) = 1− nF(−εn) was used. It is now sufficient to calculate Σ+(ikn)
and infer Σ−(ikn) from the relation above. Now we are ready to continue with the
equation (3.34), which left us with a sum over bosonic energies ωm. This can be
performed by converting the sum to an integral by introducing the spectral density

J (ωb) = π ∑
m
|Vm|2δ(ωb −ωm) (3.38)

This function tells us how the bosonic levels are distributed, and is determined by
the specifics of the system 3. By insertion

Σ±(ikn) =
1
π

∫
dωbJ (ωb)gigj

[
nB(ωb) + nF(∓εn)

ikn −ωb ∓ εn
+

nB(ωb) + 1− nF(∓εn)

ikn + ωb ∓ εn

]
(3.39)

Now, the actual form of J (ωb) can be determined from physical principles. The
system is effectively an RC-circuit, and assuming the fluctuations are small, one can
use results from Linear Response theory. First, one can relate J (ωb) to the retarded

3 This idea is credited to Morten Munk-Nielsen, as it was used in his Thesis https://cmt.nbi.ku.dk/
student_projects/master_theses/Master_Thesis_Morten_Munk-Nielsen.pdf

https://cmt.nbi.ku.dk/student_projects/master_theses/Master_Thesis_Morten_Munk-Nielsen.pdf
https://cmt.nbi.ku.dk/student_projects/master_theses/Master_Thesis_Morten_Munk-Nielsen.pdf
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bosonic GF D̃0(iqn)⇒ D̃R
0 (ωb + iη) where analytical continuation is performed on

(3.18). We can write this correlation function in terms of J (ωb)

D̃R
0 (ωb) = ∑

m

( |Vm|2
ωb + iη −ωm

− |Vm|2
ωb + iη + ωm

)
= ∑

m
|Vm|2

(
P 1

ωb −ωm
−P 1

ωb + ωm
− iπδ(ωb −ωm) + iπδ(ωb + ωm)

)
(3.40)

So one can conclude

Im
[
D̃R

0 (ωb)
]
= π ∑

m
|Vm|2 (δ(ωb + ωm)− δ(ωb −ωm))

= J (−ωb)−J (ωb) = −J (ωb) (3.41)

Where it is used that J (ωb) = 0 for ωb < 0 since ωm is positive. From Linear
Response theory, one has the relation [4]

Re
[

1
Ztot(ωb)

]
= Re

[
ie2

ωb
CR

II(ωb)

]
= −Im

[
e2

ωb
CR

II(ωb)

]
l

Im
[
CR

II(ωb)
]
= −ωb

e2 Re
[

1
Ztot(ωb)

]
(3.42)

where Ztot(ωb) is the frequency dependant total impedance, and CR
II(ωb) is the

retarded current-current correlation function. Since the system is a frequency in-
dependent impedance Z0 coupled in parallel to a capacitor, the total impedance
is

Ztot(ωb) =

(
iωbC +

1
Z0

)−1

(3.43)

In the classical limit, the current-current correlation function CR
II(ωb) is related to

the 〈ϕϕ〉 correlation function D̃R
0 (ωb) by Ohm’s law, and with this assumption one

can write

CR
II(ωb) = |Ztot(ωb)|−2D̃R

0 (ωb) (3.44)

So by collecting (3.42) and (3.44) one gets

Im
[
D̃R

0 (ωb)
]
= −ωb

e2 |Ztot(ωb)|2Re
[

1
Ztot(ωb)

]
= −ωb

e2
1

ω2
bC2 + Z−2

0

1
Z0

= −ωb

e2
1

ω2
bC2Z0 + Z−1

0

= − ωb

e2C
1

ω2
bCZ0 + (CZ0)−1

= − 1
e2C

ωbω0

ω2
b + ω2

0
(3.45)
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Where ω0 = 1
CZ0

is the characteristic frequency of the RC-circuit. By using (3.41) one
can then conclude

J (ωb) =
θ(ωb)

e2C
ωbω0

ω2
b + ω2

0
(3.46)

Using this spectral function for the bosonic modes, Σ±(ikn) can now be calculated

Σ±(ikn) =

ω0

πe2C
gigj

∫ ∞

−∞
dωb

θ(ωb)ωb

ω2
b + ω2

0

[
nB(ωb) + nF(∓εn)

ikn −ωb ∓ εn
+

nB(ωb) + 1− nF(∓εn)

ikn + ωb ∓ εn

]
(3.47)

After analytical continuation the retarded Fock self-energy then becomes

ΣR
F (i, j; ωe + iη) = ∑

n

(
uin v∗in
−vin −u∗in

)(
Σ+(ωe + iη) 0

0 Σ−(ωe + iη)

)(
u∗jn −v∗jn
vjn −ujn

)
(3.48)

To perform the integral over bosonic energies ωb in Σ± it is advantageous to use the
identity in (2.104) to split the integral into a real and an imaginary part. The strategy
is now to calculate as much of the integral as possible analytically, before letting a
computer do the rest.

3.4.2 Energy integration of self-energy - Treating divergences

We want to calculate

Σ+(ωe + iη)

=
ω0

πe2C
gigj

∫ ∞

0
dωb

ωb

ω2
b + ω2

0

[
nB(ωb) + nF(−εn)

ωe + iη −ωb − εn
+

nB(ωb) + 1− nF(−εn)

ωe + iη + ωb − εn

]
= α

∫ ∞

0
dωb

1
ω2

b + ω2
0

[
F1(ωb) + F2(ωb)

ωe + iη −ωb − εn
+

F1(ωb) + ωb − F2(ωb)

ωe + iη + ωb − εn

]
(3.49)

Where

α =
ω0

πe2C
gigj

F1(ωb) = ωbnB(ωb)

F2(ωb, εn) = ωbnF(−εn) (3.50)

For the sake of simplicity, let us look exclusively at the first term I1, and define
ε ≡ ωe − εn

I1 = α
∫ ∞

0
dωb F1(ωb)

1
ω2

b + ω2
0

[
1

ε + iη −ωb

]
(3.51)

We use once more that

lim
η→0

1
ε + iη −ωb

= P 1
ε−ωb

− iπ δ(ε−ωb) (3.52)
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So I1 becomes

I1 = −iπα
∫ ∞

0
dωb F1(ωb)

δ(ε−ωb)

ω2
b + ω2

0
+ α P

∫ ∞

0
dωb F1(ωb)

1
ω2

b + ω2
0

1
ε−ωb

= −iπα
F1(ε)

ε2 + ω2
0
+ α P

∫ ∞

0
dωb F1(ωb)

1
ω2

b + ω2
0

1
ε−ωb

(3.53)

Where ε > 0 is now assumed temporarily. Here the principal value of an integral
with a pole on the real axis x = z0 is defined as [27]

P
∫ b

a
f (x)dx = lim

δ→0

∫ z0−δ

a
f (x)dx +

∫ b

z0+δ
f (x)dx (3.54)

The imaginary part was simple to calculate analytically, so now one can determine
the real part which contains the principal value integral

P
∫ ∞

0
dωb F1(ωb)

1
ω2

b + ω2
0

1
ε−ωb

(3.55)

The integrand of which is seen in the first plot in figure 15, for positive ε. This
complicated integral can be split into two parts by adding and subtracting a term

P
∫ ∞

0
dωb

F1(ωb)(
ω2

b + ω2
0

)
(ε−ωb)

=
∫ ∞

0
dωb

F1(ωb)− F1(ε)(
ω2

b + ω2
0

)
(ε−ωb)︸ ︷︷ ︸

Numerical integration≡σ1

+P
∫ ∞

0
dωb

F1(ε)(
ω2

b + ω2
0

)
(ε−ωb)︸ ︷︷ ︸

Analytical integration

(3.56)

And as seen in figure 15, the first part is complicated, but has no divergences, so
this can be handled by numerical integration (and denoted by σ1). The second part
has a divergence, but it is possible to determine this principal part of the integral
analytically.
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Plot of integrands for β/t=1.0, ε/t=2.0 and ω0/t=10.0

Figure 15: Plot of the integrands in (3.56), to show that the complicated and
uncontrolled integral can be split up into two parts. One of them, denoted by
σ1, is convergent but too complicated to calculate analytically, so will be solved
on a computer. The other can be solved analytically which is done in detail in F.
This is not based on realistic parameters, but used to illustrate the idea behind the
calculation.

This is done in detail in Appendix F, leaving us with the final result

I1 = −iπα
F1(ε)

ε2 + ω2
0︸ ︷︷ ︸

Imaginary part

+ α

[
F1(ε)

2ω0ε2 + 2ω3
0

] (
πε + ω0 ln

(
ε2

ω2
0

))
︸ ︷︷ ︸

Analytical

+ ασ1︸︷︷︸
Numerical

(3.57)

So, we succesfully calculated the imaginary part (the first term), and analytically
calculated the problematic part of the real component. The last part ασ1 is a well-
behaving numerical integration. The procedure is now to determine all the other
terms in (3.49). Since the integral is over positive ωb, and ε is assumed positive, only
the 1

ε−ωb
terms have divergences, while the 1

ε+ωb
terms have no problem (other than

being very complicated), so these can be determined numerically. If ε is negative this
picture would reverse, and the 1

ε+ωb
integrals would now have divergences. From the

symmetry of the expression (3.49), one can conclude that some terms will depend
on the sign of ε. By carefully tracking these signs, one finds

Σ+(ε) =α
F1(|ε|) + sign(ε)F2(|ε|, εn)− εθ(−ε)

ε2 + ω2
0

(
−iπ +

1
2ω0

[
πε + sign(ε)ω0 ln

ε2

ω2
0

])
+ α

[
sign(ε) (σ1 + σ2 + σ3) + θ(ε)σ4 + σ5 + θ(−ε)

π

2ω0

]
(3.58)
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Where

σ1 =
∫ ∞

0
dωb

F1(ωb)− F1(|ε|)
(ω2

b + ω2
0)(|ε| −ωb)

, σ2 =
∫ ∞

0
dωb

F2(ωb, εn)− F2(|ε|, εn)

(ω2
b + ω2

0)(|ε| −ωb)

σ3 =
∫ ∞

0
dωb

F1(ωb)

(ω2
b + ω2

0)(|ε|+ ωb)
, σ4 =

∫ ∞

0
dωb

ωb

(ω2
b + ω2

0)(|ε|+ ωb)

σ5 =
∫ ∞

0
dωb

−F2(ωb, εn)

(ω2
b + ω2

0)(|ε|+ ωb)
(3.59)

Are all determined numerically. The expression for the hole contribution Σ− is found
by using (3.36) to write it in terms of the electronic part.

3.5 the full spectral function - electron-boson interaction

We can now determine the full retarded GF

GR(ωe) =
(
GR

0 (ωe)
−1 − ΣR

F (ωe)
)−1

(3.60)

Which is a giant matrix in Nambu- and site space. We look at its properties by
analysing the spectral function A(ωe) = −2Im(GR(ωe)) on the edge of the wire as a
function of energy. This would be relevant for calculating the current in a tunnelling
experiment, where the edge is coupled to a lead. We can also, for a fixed energy, see
how the spectral function decays into the wire, to see if the broadening from the
interactions result in a change of the exponential decay of the edge states (described
in section 2.2). Broadening in the general sense can happen when interactions are
present, where the spectral weight is changed due to the electrons exchanging energy
with the bosons (here this is due to charge fluctuations). This could also be due to
phonons or electrons if we consider these kind of interactions.

We can imagine performing af tunnelling experiment on the wire, by coupling
one end to a lead, and have the other side grounded, so that a current can flow
through the nanowire. The lead is weakly coupled to the wire (controlled by
Γ ∝ 2π|T|2dN(εF), where T is the tunnel coupling strength and dN(εF) is the density
of states of the lead consisting of a normal metal). In this weak coupling limit
(Γ << kBT) the differential conductance becomes

dI
dV

= Γ
∫

dω

(
−∂nF(ω− eV)

∂ω

)
A11(1, 1; ω) (3.61)

Where A11(1, 1; ω) is the electronic part of the spectral function for the first site, and
V is the voltage bias. For low temperatures (kBT << Im(ΣR)), this becomes

dI
dV
≈ ΓA11(1, 1; eV) (3.62)

So, measuring the differential conductance as a function of bias voltage, will give
you the form of the spectral function. The results of calculating the full spectral
function numerically is shown in figure 16, comparing it with the non-interacting
case. The non-interacting GF has a small imaginary part iη added for visibility. As
one can see in the plots, the height of the zero energy peak has been diminished by
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broadening, due to the imaginary part of the self-energy Im(ΣR). To compare with
an experiment as described, one would have to insert realistic parameters.
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Figure 16: Comparison between spectral function of the non-interacting and the
interacting system. On the left, the peaks are true Dirac peaks broadened by a
small artificial imaginary part iη, for the purpose of visualization. On the right,
the broadening is due to Im(ΣR). The bottom two plots shows that the local
coherence decays into the bulk with the same rate for both cases. Here ε′0 is
the renormalised zero mode energy, which is the energy where the full spectral
function is peaked (middle right picture), which is still located at zero energy.

The full spectral function still obeys the symmetries of the system, which is
derived from (3.36)

Σ(ikn)
11
11 = −Σ(−ikn)

22
11 ⇒ G(ω + iη)11

11 = −G(−ω− iη)22
11

⇒ GR(ω)11
11 = −

[
G(−ω)22

11
]∗ ⇒ A(ω)11

11 = A(−ω)22
11 (3.63)

Which is confirmed by figure 17.
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Figure 17: Plot of the electron and hole part of the local spectral function on the
edge, as a function of energy. The symmetry A(ω)11

11 = A(−ω)22
11 is shown to be

intact for the interacting system.

In the bottom two sub-figures of figure 16 the local bare spectral function is on
the left, with two clear peaks on the edge, compared with the interacting case on
the right. The form of the functions are identical, and the decay rates into the bulk
likewise.

It is possible that the inclusion of the bosonic interactions has changed the phase
diagram of the Kitaev model. The interaction term has a τz Nambu structure similar
to the chemical potential term, so it may have led to a change in chemical poten-
tial µ → µ̃, thereby changing the range of the topological regime. To analyse the
modified phase diagram, it was at this point desirable to try and calculate the TI
for 1D interacting chiral systems using (2.153). The calculation would still involve a
high amount of numerical calculations, so it was concluded that a clear analytical
expression was unobtainable. To be able to compare the framework discussed up
until now with recent relevant literature, we move on to include nearest neighbour
electron-electron interactions, where a variety of methods will be considered. For this
type of interaction, various authors have calculated phase diagrams using numerical
methods called Density Matrix Renormalisation Group (DMRG) and Exact Diago-
nalisation. Also, for specific values of the parameters in the theory, it is possible to
calculate the many-body GS exactly. The aim is now to describe these results, and
also see if the zero modes are stable, when interactions between the electrons are
considered, by again calculating the full GF using perturbation theory.



4
T H E I N T E R A C T I N G K I TA E V C H A I N
- E L E C T R O N - E L E C T R O N

4.1 electron-electron interactions

4.1.1 Nearest neighbour interaction

We want to use the methods developed in previous chapters to investigate how
electron-electron interactions affect the zero-modes in our system. A general in-
teraction of this kind can be written as ∑ijkl Wijklc†

i c†
j ckcl , but we will consider an

interaction that couples to the density of electrons at different points. The interaction
thus becomes

He−e = ∑
ii′

Wii′ c†
i c†

i′ci′ci (4.1)

Which obeys the symmetry (2.137) if Wii′ = W∗ii′ . This condition can be checked
by commuting operators and renaming dummy variables, from which one gets

∑
ii′

Wii′ c†
i c†

i′ci′ci = ∑
ii′

Wii′ c†
i′c

†
i cici′ = ∑

ii′
Wi′i c†

i c†
i′ci′ci (4.2)

So Wii′ = Wi′i is symmetric, and together with the condition of being Hermitian
Wii′ = W∗i′i, the reality condition is true Wii′ = W∗ii′ , so the interaction term He−e will
still preserve the symmetries of the BDI class. In a translationally invariant system,
Wii′ depends only on the difference |i− i′|, but can in general be location specific (an
electron might feel more interaction depending on where in the wire it is located). In
this chapter we want to consider a nearest neighbour electron-electron interaction, as
this type has been considered frequently in recent years of research [18][22][24][25].
Thus, we begin analysing the Kitaev model subject to a short range e− e interaction
term, where Wii′ =

W
2 (δi+1,i′ + δi,i′+1). This short-range model is described by the

following Hamiltonian

H = HK + Hint

HK = −µ
N

∑
n=1

c†
ncn −

N−1

∑
n=1

[
t
2

(
c†

ncn+1 + c†
n+1cn

)
− ∆

2

(
cncn+1 + c†

n+1c†
n

)]
Hint = W

N−1

∑
n=1

c†
nc†

n+1cn+1cn (4.3)

Where HK is the normal Kitaev Hamiltonian, and Hint is a short range interaction
controlled by the interaction strength W. The two-particle term Hint prohibits us
from writing the Hamiltonian in the single-particle BDG form (2.58).
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4.2 interaction hamiltonian in majorana basis

In the following sections we will use a modified version of the Hamiltonian (4.3),
where the occupation is shifted nj = c†

j cj with an average value 〈nj〉 = 1
2 . By this

shift in reference point of the chemical potential, the Hamiltonian in the Majorana
basis becomes significantly more simple, which also happens with the Nambu space
structure. The Hamiltonian is thus

HK = −µ
N

∑
n=1

(
c†

ncn −
1
2

)
−

N−1

∑
n=1

[
t
2

(
c†

ncn+1 + c†
n+1cn

)
− ∆

2

(
cncn+1 + c†

n+1c†
n

)]
Hint = W

N−1

∑
n=1

(
c†

ncn −
1
2

)(
c†

n+1cn+1 −
1
2

)
(4.4)

In the Majorana basis (2.2) the Kitaev Hamiltonian HK becomes

HK ⇒ −
µ

2

N

∑
n=1

iγA,nγB,n −
i
4

N−1

∑
n=1

[(t + ∆) γA,n+1γB,n + (t− ∆) γA,nγB,n+1] (4.5)

And Hint becomes

Hint ⇒ −
W
4

N−1

∑
n=1

γA,nγB,nγA,n+1γB,n+1 =
W
4

N−1

∑
n=1

γA,nγA,n+1γB,nγB,n+1 (4.6)

Which is a quartic Majorana interaction term, including all four Majoranas between
two fermions.

4.3 jordan-wigner transformation

4.3.1 Non-interacting

One way to solve the interacting problem is to perform a Jordan-Wigner transforma-
tion [18][25]. This transformation maps a 1D fermionic system to a chain of spin- 1

2
particles, by viewing an occupied state as spin up | ↑〉 = |1〉, and an unoccupied
state as spin down | ↓〉 = |0〉. Creating a particle corresponds to flipping a spin from
down to up, f † → σ+, annihilating a particle is the reverse process f → σ−, and the
occupation is equivalent to the z-component of the spin, f † f → σz. Naively, one
might write the following relations

f †
n = σ+

n =
1
2
(
σx

n + iσy
n
)

fn = σ−n =
1
2
(
σx

n − iσy
n
)

(4.7)

With which one can conclude

2 f †
n fn − 1 = 2σ+

n σ−n − 1 =
1
2
(
σx

n + iσy
n
) (

σx
n − iσy

n
)
− 1

=
i
2
[
σ

y
n , σx

n
]
= σz

n (4.8)

Where
[
σα

n , σ
β
n′

]
= 2iδnn′ε

αβλσλ
n was used. This mapping preserves the same-site

anti-commutation relation { fn, f †
n} = 1 but since spins at different sites commute, we
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have
[

fn, f †
n′
]
= 0 which is an incorrect result for the exchange statistics of fermions;

different fermions anti-commute. To solve this problem one attaches a Jordan-Wigner
string to the operators f and f †, which is a phase factor determined by the number
of occupied states behind the site in question. Mathematically, one constructs new
operators c and c† as

c†
n = f †

n · e+iπ ∑n−1
j f †

j f j

cn = e−iπ ∑n−1
j f †

j f j · fn

c†
ncn = f †

n fn (4.9)

The hope is that these operators will now obey the legitimate fermion anti-commutation
relations. The phase factor can be written in terms of spin-operators as

e±iπ ∑n−1
j f †

j f j =
n−1

∏
j

e±iπ f †
j f j =

n−1

∏
j

e±i π
2

(
σz

j +1
)
=

n−1

∏
j
±ie±i π

2 σz
j

=
n−1

∏
j
±i
[
cos

(
±π

2

)
+ i σz

j sin
(
±π

2

)]
=

n−1

∏
j

(
−σz

j

)
(4.10)

Employing these results, one can write the JW transform and its inverse transform
as

c†
n = σ+

n

n−1

∏
j

(
−σz

j

)
σ+

n = c†
n · e−iπ ∑n−1

j c†
j cj

cn =
n−1

∏
j

(
−σz

j

)
σ−n σ−n = e+iπ ∑n−1

j c†
j cj · cn

c†
ncn =

1
2
(σz

n + 1) σz
n = 2c†

ncn − 1 (4.11)

We can check the anti-commutation relations (shown here for the case n ≤ n′)

{cn, c†
n′} =

n−1

∏
j

(
−σz

j

)
σ−n σ+

n′

n′−1

∏
j

(
−σz

j

)
+ σ+

n′

n′−1

∏
j

(
−σz

j

) n−1

∏
j

(
−σz

j

)
σ−n

= σ−n σ+
n′

n′−1

∏
j=n

(
−σz

j

)
+

n′−1

∏
j=n

(
−σz

j

)
σ+

n′σ
−
n (4.12)

If n 6= n′

{cn, c†
n′} = σ−n (−σz

n)
n′−1

∏
j=n+1

(
−σz

j

)
σ+

n′ + (−σz
n) σ−n

n′−1

∏
j=n+1

(
−σz

j

)
σ+

n′

= −{σ−n , σz
n}

n′−1

∏
j=n+1

(
−σz

j

)
σ+

n′ = 0 (4.13)



4.3 jordan-wigner transformation 66

Where {σα
n , σ

β
n} = 2δαβ was used. If n = n′ then the strings cancel each other

{cn, c†
n} = σ−n σ+

n + σ+
n σ−n = {σ−n , σ+

n }

=
1
4
(
{σx

n , σx
n} − i{σy

n , σx
n}+ i{σx

n , σ
y
n}+ {σy

n , σ
y
n}
)
= 1 (4.14)

So, in conclusion, {cn, c†
n′} = δnn′ which is the correct fermionic statistics. We can

also write the JW transform for the Majorana operators

γA,n =
n−1

∏
j

(
−σz

j

)
σx

n σx
n = γA,n

n−1

∏
j

(
−iγA,jγB,j

)
γB,n =

n−1

∏
j

(
−σz

j

) (
−σ

y
n
)

σ
y
n = −γB,n

n−1

∏
j

(
−iγA,jγB,j

)
σz

n = iγA,nγB,n (4.15)

Inserting these into (4.5) gives us the JW transformed Hamiltonian

HK = −µ

2

N

∑
n=1

σz
n +

i
4

N−1

∑
n=1

[
(t + ∆) σx

n+1σz
nσ

y
n + (t− ∆) σx

n σz
nσ

y
n+1

]
(4.16)

Using now that

σα
n σ

β
n =

1
2

(
{σα

n , σ
β
n}+

[
σα

n , σ
β
n

])
= δαβ + iεαβλσλ (4.17)

We get

HK = −B
N

∑
n=1

σz
n −

N−1

∑
n=1

[
Jx σx

n σx
n+1 + Jy σ

y
nσ

y
n+1

]
(4.18)

Where B = µ
2 , Jx = t+∆

4 and Jy = t−∆
4 . This is the form of a XY-model with a

constant magnetic field determined by µ, while Jx and Jy are transverse spin coupling
terms. The topological phase for the Kitaev chain is now equivalent to magnetic
order in the spin chain, so they share the same phase diagram [13]. The total number
of fermions is measured by the operator

F =
N

∑
j

c†
j cj =

1
2

N

∑
j

(
σz

j + 1
)

(4.19)

Which does not commute with the Hamiltonian [HK, F] 6= 0, so F is not a conserved
quantity (this is due to the anomalous terms cc and c†c† in the Hamiltonian, seen by
the fact that [HK, F] = 0 if ∆ = 0 ⇒ Jx = Jy). A conserved quantity is the fermion
parity P = (−1)F. This is measured by the operator

P = (−1)F = eiπF = eiπ ∑N
j c†

j cj =
N

∏
j

(
−σz

j

)
=

N

∏
j

(
−iγA,jγB,j

)
(4.20)
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Which commutes with the Hamiltonian [H, P] = 0. We can check if the Hamiltonian
(4.18) reduces to (2.4) for the symmetric point µ = 0, t = ∆. For these parameters HK
becomes

HK = − t
2

N−1

∑
n=1

σx
n σx

n+1 = − t
2

N−1

∑
n=1

n−1

∏
j

(
−σz

j

)
γA,n

n

∏
j

(
−σz

j

)
γA,n+1

= − t
2

N−1

∑
n=1

γA,n (−σz
n) γA,n+1 =

it
2

N−1

∑
n=1

γA,nγA,nγB,nγA,n+1 =
it
2

N−1

∑
n=1

γB,nγA,n+1

(4.21)

Which is what we expected. Again, the two end Majoranas commute with the
Hamiltonian [H, γA,1] = [H, γB,N ] = 0. The two degenerate GSs of this Hamiltonian
is the tensor product of either all spin up or all spin down in the x-basis

|ψ↑〉 =
N

∏
n
| ↑n〉x |ψ↓〉 =

N

∏
n
| ↓n〉x (4.22)

If we want to compare these GSs with the ones in (2.6), we need to rotate all the
spins to align with the z-axis, since it is along this axis an empty | ↓n〉z or occupied
| ↑n〉z state was defined. This is done by applying the rotation R(ϕ, n) = e−

iϕ
2 σ·n

to each spin. For example one can examine |ψ↑〉, and see that | ↑n〉x is just | ↓n〉z
rotated around the y-axis by ϕ = −π

2 . This fact allows us to write

|ψ↑〉 =
N

∏
n

ei π
4 σ

y
n | ↓n〉z =

N

∏
n

(
cos

π

4
+ i σ

y
n sin

π

4

)
| ↓n〉z =

1√
2N

N

∏
n

(
1 + i σ

y
n
)
| ↓n〉z

=
1√
2N

N

∏
n

(
1 + σ+

n − σ−n
)
| ↓n〉z =

1√
2N

N

∏
n

(
1 + σ+

n
)
| ↓n〉z (4.23)

If one now performs the inverse JW transform, ∏N
n | ↓n〉z = |0〉 is the vacuum of

fermions and using (4.11) one gets

|ψ↑〉 =
1√
2N

N

∏
n

(
1 + c†

n · e−iπ ∑n−1
j c†

j cj
)
|0〉

=
1√
2N

(
1 + c†

1

) (
1 + c†

2

)
· · ·
(

1 + c†
N

)
|0〉 = |ψ+〉 (4.24)

Where the phase factor from the JW string results in us having to write the product
in ascending order. This WF is identical to the one in (2.6). If instead calculating
|ψ↓〉 one has to instead rotate the spins with ϕ = π

2

|ψ↓〉 =
N

∏
n
−e−i π

4 σ
y
n | ↓n〉z =

(−1)N
√

2N

N

∏
n

(
1− i σ

y
n
)
| ↓n〉z

=
(−1)N
√

2N

N

∏
n

(
1− σ+

n
)
| ↓n〉z =

1√
2N

N

∏
n

(
1− c†

n · e−iπ ∑n−1
j c†

j cj
)
|0〉

=
(−1)N
√

2N

(
1− c†

1

) (
1− c†

2

)
· · ·
(

1− c†
N

)
|0〉 = (−1)N |ψ−〉 (4.25)
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The (−1)N comes from the fact that when | ↓n〉z is rotated by R(π
2 , ŷ) one gets

−| ↓n〉x. We can identify the two degenerate GSs from (2.7) as

|ψeven〉 =
1√
2

(
|ψ↑〉+ (−1)N |ψ↓〉

)
|ψodd〉 =

1√
2

(
|ψ↑〉 − (−1)N |ψ↓〉

)
(4.26)

Let us check these states for a chain of length N = 3. Here the GSs become

|ψ3
even〉 =

1√
2

(
|ψ↑〉 − |ψ↓〉

)
|ψ3

odd〉 =
1√
2

(
|ψ↑〉+ |ψ↓〉

)
(4.27)

We can annihilate |ψ3
even〉 with f3 = 1

2 (γA,1 + iγB,3) by using the JW transformation
rules

f3|ψ3
even〉 =

1
2
(γA,1 + iγB,3)

1√
2
(| ↑1〉x| ↑2〉x| ↑3〉x − | ↓1〉x| ↓2〉x| ↓3〉x)

=
1

2
√

2

(
σx

1 − iσz
1 σz

2 σ
y
3

)
(| ↑1〉x| ↑2〉x| ↑3〉x − | ↓1〉x| ↓2〉x| ↓3〉x) (4.28)

Writing the Pauli matrices in the x-basis

σx
j = | ↑j〉x〈↑j |x − | ↓j〉x〈↓j |x

σ
y
j = i| ↑j〉x〈↓j |x − i| ↓j〉x〈↑j |x

σz
j = | ↑j〉x〈↓j |x + | ↓j〉x〈↑j |x (4.29)

Allows us to calculate further

f3|ψ3
even〉 =

1
2
√

2
(| ↑1〉x| ↑2〉x| ↑3〉x + | ↓1〉x| ↓2〉x| ↓3〉x

− | ↓1〉x| ↓2〉x| ↓3〉x − | ↑1〉x| ↑2〉x| ↑3〉x) = 0 (4.30)

And

f †
3 |ψ3

even〉 =
1
2
(γA,1 − iγB,3)

1√
2
(| ↑1〉x| ↑2〉x| ↑3〉x − | ↓1〉x| ↓2〉x| ↓3〉x)

=
1

2
√

2

(
σx

1 + iσz
1 σz

2 σ
y
3

)
(| ↑1〉x| ↑2〉x| ↑3〉x − | ↓1〉x| ↓2〉x| ↓3〉x)

=
1√
2
(| ↑1〉x| ↑2〉x| ↑3〉x + | ↓1〉x| ↓2〉x| ↓3〉x) = |ψ3

odd〉 (4.31)

So everything fits nicely with section 2.1.1.
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4.3.2 Interacting

The interacting part of the Hamiltonian in (4.6) can also be JW transformed

Hint =
W
4

N−1

∑
n=1

n−1

∏
j

(
−σz

j

)
σx

n

n

∏
j

(
−σz

j

)
σx

n+1

n−1

∏
j

(
−σz

j

) (
−σ

y
n
) n

∏
j

(
−σz

j

) (
−σ

y
n+1

)
=

W
4

N−1

∑
n=1

σx
n σz

nσx
n+1σ

y
nσz

nσ
y
n+1 = −W

4

N−1

∑
n=1

σx
n σ

y
nσx

n+1σ
y
n+1 =

W
4

N−1

∑
n=1

σz
nσz

n+1 (4.32)

Which is an added coupling between z-components of spin, controlled by Jz = −W
4 .

The total Hamiltonian is then an XYZ model with constant magnetic field.

4.4 phase diagram and exact ground states at fine-tuned point

The phase diagram of the Kitaev chain with nearest neighbour interactions is known
from the mapping to a XYZ spin chain in an external magnetic field, which was
discussed in the previous section. The phase diagram is plotted in figure 18, which
is from [24], where they calculated it using DMRG and ED. Here they set ∆ = t, so
Jy = 0. Interestingly, and in direct relation to this thesis, in [22] they investigate parts
of the phase diagram by calculating the interacting TI from (2.153) using DMRG and
ED and show that the TI changes due to poles in the zero energy GF as predicted by
the considerations in section 2.3.3.

µ
t

W
t

−2 0 2 4
0

1

0.5

1.5

Figure 18: Phase diagram for ∆ = t. SC - Superconductor, TSC - Topological
Superconductor, ICDW - Incommensurate Charge Density Wave, CDW - Charge
Density Wave, CAT - Schrödinger’s cat phase. We observe that the range of
chemical potential µ in which the system is in the topological phase is extended
by adding a repulsive interaction W/t > 0, which is quite surprising. This picture
is from [18], and in their model t and ∆ does not have a factor 1

2 and U = W
4 . The

bottom line defined by µ = 0 is also found and described in [22].
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We know the line in the phase diagram corresponding to the non-interacting
case W = 0, which has a criterion for being topology non-trivial at µ

t < 1. We can
check the line in the phase diagram defined by µ = 0, for which the JW transformed
interacting Hamiltonian in (4.18) with (4.32) becomes

H =
N−1

∑
n=1

[
− t

2
σx

n σx
n+1 +

W
4

σz
nσz

n+1

]
(4.33)

Now, the interaction term was troublesome since each σz
n contains two Majorana

operators. To handle this quartic term one can perform a rotation of all the spins
around the x-axis, such that the interaction term becomes two σ

y
n operators (each

consisting of one Majorana operator), thereby reducing a quartic term to a quadratic
one [31]. This is done by rotating all spins by R(−π

2 , x̂) = e
iπ
4 σx

such that

H̃ = RHR−1 R =
N

∏
n

e
iπ
4 σx

n (4.34)

By inserting this one obtains

H̃ =
N−1

∑
n=1

[
− t

2
Rσx

n σx
n+1R−1 +

W
4

Rσz
nσz

n+1R−1
]

=
N−1

∑
n=1

[
− t

2
Rσx

n R−1Rσx
n+1R−1 +

W
4

Rσz
nR−1Rσz

n+1R−1
]

=
N−1

∑
n=1

[
− t

2
σ̃x

n σ̃x
n+1 +

W
4

σ̃
y
n σ̃

y
n+1

]
(4.35)

We can now introduce new Majorana operators γ̃A,n and γ̃B,n using the inverse JW
transformation 4.15, and write the Hamiltonian as

H̃ =
N−1

∑
n=1
− t

2
γ̃A,n

n−1

∏
j

(
−iγ̃A,jγ̃B,j

)
γ̃A,n+1

n

∏
j

(
−iγ̃A,jγ̃B,j

)
+

W
4

γ̃B,n

n−1

∏
j

(
−iγ̃A,jγ̃B,j

)
γ̃B,n+1

n

∏
j

(
−iγ̃A,jγ̃B,j

)
=

N−1

∑
n=1
− t

2
γ̃A,n (−iγ̃A,nγ̃B,n) γ̃A,n+1 +

W
4

γ̃B,n (−iγ̃A,nγ̃B,n) γ̃B,n+1

=
N−1

∑
n=1

it
2

γ̃B,nγ̃A,n+1 +
iW
4

γ̃A,nγ̃B,n+1 (4.36)
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And finally, transforming back to fermionic operators

H̃ =
N−1

∑
n=1

it
2

[
i
(

c̃†
n − c̃n

) (
c̃†

n+1 + c̃n+1

)]
+

iW
4

[(
c̃†

n + c̃n

)
i
(

c̃†
n+1 − c̃n+1

)]
=

N−1

∑
n=1

(
− t

2
+

W
4

) [
c̃†

n c̃n+1 + c̃†
n+1c̃n

]
+

(
t
2
+

W
4

) [
c̃†

n+1c̃†
n + c̃n c̃n+1

]
=

N−1

∑
n=1
− t̃

2

[
c̃†

n c̃n+1 + c̃†
n+1c̃n

]
+

∆̃
2

[
c̃†

n+1c̃†
n + c̃n c̃n+1

]
(4.37)

Which is just a non-interacting Kitaev chain without zero chemical potential, with
t̃ = t− W

2 and ∆̃ = t + W
2 . The spectrum in k-space is

Ẽk = ±
√

t̃2 cos2 k + ∆̃2 sin2 k (4.38)

Which becomes gapless at either t̃ = 0 or ∆̃ = 0, which translates to W
t = 2 and

W
t = −2 respectively. This signals two topological phase transitions separating

three different phases. The nature of the phases W
t > 2 (Charge-density wave) and

W
t < −2 (CAT - Shrödinger’s cat phase) are discussed in [18], [22] and [25]. When

in between these two boundaries, the ground-state is degenerate and the system is
in the topological phase. Here there will exist a many-body generalization of the
Majorana modes Γ, which commutes with the Hamiltonian [H, Γ].

It can been shown that the degenerate GSs can still be found exactly, if the chem-
ical potential is fine-tuned to a specific value of the other parameters (W, ∆ and
t) defining a line in the phase diagram inside the topological phase. It should be
noted that a ground-state degeneracy is not enough to conclude the existence of
Majorana modes, but it has been shown in [18] that the exact solution in question
can be adiabatically connected to the non-interacting, non-trivial Kitaev chain. In
this paper they also find operators that transform between the degenerate GSs, are
Hermitian, and are localized near the edges, which is an interacting generalisation
of the Majorana mode. It also reduces to the usual Majoranas in the non-interacting
limit.

One can consider a case where the chemical potential is µ/2 on the first and last site,
but µ on all others, the Hamiltonian can be written as the sum

H =
N−1

∑
n

hn (4.39)

where

hn =− µ

2

(
c†

ncn + c†
n+1cn+1 − 1

)
− t

2

(
c†

ncn+1 + c†
n+1cn

)
+

∆
2

(
cncn+1 + c†

n+1c†
n

)
+ W

(
c†

ncn −
1
2

)(
c†

n+1cn+1 −
1
2

)
(4.40)

Since the hn does not commute with neighbouring sites, they cannot be diagonalized
simultaneously. However, for some value of µ the GSs of H minimizes all hn
separately, and this is called the frustration free condition (frustration as referring to
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the corresponding spin system) [18]. Defining the vacuum state cn|vac〉 = 0 for any n,
one can then define a basis for hn , | 〉 = |vac〉, | 〉 = c†

n|vac〉, | 〉 = c†
n+1|vac〉,

| 〉 = c†
nc†

n+1|vac〉. Written in this basis hn can be represented by the matrix

| 〉 | 〉 | 〉 | 〉

hn
.
=


W
4 + µ

2 −∆
2 0 0

−∆
2

W
4 −

µ
2 0 0

0 0 −W
4 − t

2
0 0 − t

2 −W
4

 =

(
heven

n 0
0 hodd

n

)
(4.41)

Where it is apparent that hn is block diagonal due to the parity symmetry [H, P] = 0,
i.e. it splits into an even- and odd parity space. The GS of heven

n is the lowest
eigenvalue found by the determinant equation∣∣∣∣W

4 + µ
2 − λ −∆

2
−∆

2
W
4 −

µ
2 − λ

∣∣∣∣ = 0

λ2 − W
2

λ +
W2

16
− µ2

4
− ∆2

4
= 0⇒ λ =

W
4
±
√(µ

2

)2
+

(
∆
2

)2

(4.42)

So the ground-state energy is

εeven
0 =

W
4
−
√(µ

2

)2
+

(
∆
2

)2

(4.43)

The corresponding wavefunction is found by solving the matrix equation(W
4 + µ

2 − εeven
0 −∆

2
−∆

2
W
4 −

µ
2 − εeven

0

)(
1
β

)
=

(
0
0

)
(4.44)

Leading to the equation for β

− ∆
2
+

√(µ

2

)2
+

(
∆
2

)2

− µ

2

 β = 0

⇒ β =
∆
2√( µ

2

)2
+
(∆

2

)2 − µ
2

=
∆√

µ2 + ∆2 − µ
=

∆
µ√

1 +
(

∆
µ

)2
− 1

(4.45)

using the trick

cot
θ

2
=

tan θ√
1 + tan2 θ − 1

(4.46)

We can then conclude that the un-normalized wavefunction is

|ψeven
0 〉 = | 〉+ cot

θ

2
| 〉 θ = arctan

∆
µ

(4.47)
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For the odd parity sector one has instead the equation∣∣∣∣−W
4 − λ − t

2
− t

2 −W
4 − λ

∣∣∣∣ = 0

λ2 +
W
2

λ +
W2

16
− t2

4
= 0⇒ λ = −W

4
± t

2
(4.48)

So the ground-state energy is now

εodd
0 = −

(
W
4

+
t
2

)
(4.49)

The un-normalized wavefunction is read off as

|ψodd
0 〉 = | 〉+ | 〉 (4.50)

The necessary condition for topological order is a degenerate ground-state which
happens if

W
4
−
√(µ

2

)2
+

(
∆
2

)2

= −
(

W
4

+
t
2

)
(4.51)

Or by simplifying, this becomes a condition for the chemical potential

µ = µ∗ =
√
(W + t)2 − ∆2 (4.52)

Which is the frustration free condition mentioned in [18] (this is the point where the
XYZ-model is exactly solvable). We can construct similar states as the ones in section
2.1.1 as a superposition of the two degenerate GSs (now θ = θ∗ = arctan ∆

µ∗ )

|ψ±0 〉 = |ψeven
0 〉 ± α|ψodd

0 〉

=

(
1 + cot

θ∗

2
c†

nc†
n+1 ± αc†

n ± αc†
n+1

)
|vac〉 (4.53)

If one chooses α =
√

cot θ∗
2 then this gets a nice factorized form

|ψ±0 〉 =
(

1± αc†
n

) (
1± αc†

n+1

)
|vac〉 (4.54)

These are the GSs for hn, so the GS for the entire H is the product of all these
WF’s that minimize each hn independently. The exact GSs WF and energy then
become

|Ψ±0 〉 =
1

(1 + α2)N/2

(
1± αc†

1

) (
1± αc†

2

)
· · ·
(

1± αc†
N

)
|vac〉

E0 = − (N − 1)
(

W
4

+
t
2

)
(4.55)

These energies are plotted in 19 as a function of W, for the first small chains of size
N = 2, 3, 4, together with the value of the GS energy, found by exact diagonalization
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of the many-body Hamiltonian, as described in appendix G. This is shown for ∆ = t
and µ = µ∗ =

√
W2 + 2Wt. As one can see they are in perfect agreement.
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Figure 19: Plot of the analytically found energies (4.55) (red) of the interacting
Kitaev chain at the frustration free point defined in (4.52). This function is
compared with the lowest eigenvalue of an exact diagonalisation (black rings),
and it can be concluded that they are commensurate.

4.5 perturbation theory for e-e interaction

In this section we want to look at the boundary zero modes, and how these are
affected by the interactions. For this we will develop a perturbation series like
in section 3.2, but now with the density coupled electron-electron interaction in
(4.1). The derivation is nearly identical, so explanations will be brief. We consider
the interaction where the quantum numbers i, j refer to real space sites, and that
the functional dependence of these (the distance of the interaction) is encoded in
Wij. We now employ the same trick as for bosons, and rewrite the interaction in
Nambu space, but again it is beneficial to write the Hamiltonian with reference to
the half-filled system, if one wants a simple expression for Hint. This is demonstrated
by calculating

He−e =
1
2 ∑

ii′

Wii′

2

(
(C†)σ

i τ
σρ
z Cρ

i

) (
(C†)σ′

i′ τ
σ′ρ′
z Cρ′

i′

)
=

1
2 ∑

ii′

Wii′

2

(
c†

i ci − cic†
i

) (
c†

i′ci′ − ci′c†
i′

)
= ∑

ii′
Wii′

(
c†

i ci −
1
2

) (
c†

i′ci′ −
1
2

)
(4.56)

Where repeated Nambu indices are summed. This shows that the Nambu space
interaction Hamiltonian in the first line is particularly simple. We just have to
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include a factor 1
2 on the interaction strength. We want to calculate the full GF

Gβα(b, τb ; a, τa), which is the propagator going from site a at imaginary time τa to
b at τb. As before, this is a matrix in Nambu space, with indices α and β. This GF
given by a thermal average wrt. the full Hamiltonian, and by writing all operators in
the interaction picture, one can then expand the imaginary time propagator Û(β, 0)
in powers of the interaction. We want to calculate

Gβα(b, τb ; a, τa) =
−〈Tτ

(
Û(β, 0)Ĉβ

b (τb)(Ĉ†)α
a(τa)

)
〉0

〈Û(β, 0)〉0

=
−∑∞

n=1
(−1)n

n!

∫ β
0 dτ1· · ·

∫ β
0 dτn〈Tτ

(
P̂(τ1) . . . P̂(τn)Ĉ

β
b (τb)(Ĉ†)α

a(τa)
)
〉0

∑∞
n=1

(−1)n

n!

∫ β
0 dτ1· · ·

∫ β
0 dτn〈Tτ

(
P̂(τ1) . . . P̂(τn)

)
〉0

(4.57)

As described in [4] one needs to be careful with τ-ordering, since creation operators
precede annihilation operators in the interaction, which is written as

P̂(τ1) =∫ β

0
dτ1′ ∑

i1i1′

(
(Ĉ†)σ1

i1
(τ1 + η)τ

σ1ρ1
z Ĉρ1

i1
(τ1)

)
W(i1, i1′)

(
(Ĉ†)

σ1′
i1′
(τ1′ + η)τ

σ1′ρ1′
z Ĉρ1′

i1′
(τ1′)

)
(4.58)

Where the interaction function is W(i1, i′1) =
Wi1 i1′

2 δ(τ1 − τ1′), and η = 0+ is added
to ensure that creation operators are to the left in the time ordering. From now on
this will be suppressed in the notation, but will be included in the Feynman rules.
The rest of the derivation follows the one in [4] but now with an added Nambu
structure. Everything is similar to the method in section 3.2, we now expand to a
desired order, and use Wick’s theorem to change from multiple operator averages to
products of single particle averages. For example, expanding the numerator up to
first order gives

−〈Tτ

(
Û(β, 0)Ĉβ

b (τb)(Ĉ†)α
a(τa)

)
〉0 ≈ Gβα

0 (b, τb ; a, τa) +
∫∫ β

0
dτ1dτ1′ ∑

i1i1′
W(i1, i1′)

× τ
σ1ρ1
z τ

σ1′ρ1′
z 〈Tτ

(
(Ĉ†)σ1

i1
(τ1)Ĉ

ρ1
i1
(τ1)(Ĉ†)

σ1′
i1′
(τ1′)Ĉ

ρ1′
i1′
(τ1′)Ĉ

β
b (τb)(Ĉ†)α

a(τa)
)
〉0 (4.59)

Where using Wicks theorem on the last 6-operator average result in the same type of
diagrams as seen in the second line of (E.16). The terms arising from the expansion
can again be represented by Feynman diagrams, and the Feynman rules for this
interaction in discrete real space and imaginary time are, after a careful tracking of
signs and indices, shown to be
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1 1′
= −W(i1, i1′)

i2ρ2 i1σ1

2 1
= Gρ2σ1

0 (i2, i1; τ2 − τ1), τ1 → τ1 + η

i1ρ1i1σ1

1 =
∫ β

0
dτ1 ∑

i1

τ
σ1ρ1
z

∑ topologically different diagrams

Repeated Nambu indices are summed

For F fermion loops, multiply (−1)F (4.60)

Let us look at the first relevant diagram GP (assuming that a Hartree-Fock analy-
sis has already been performed) which is second order in W

Gβα
P (b, a; τb − τa) =

b a12

1′2′

= −∑
i1i1′
i2i2′

∫∫∫∫
dτ1dτ1′dτ2dτ2′

×W(i1, i1′)W(i2, i2′)τ
σ1ρ1
z τ

σ1′ρ1′
z τ

σ2ρ2
z τ

σ2′ρ2′
z Gβσ2

0 (b, i2; τb − τ2)Gρ2σ1
0 (i2, i1; τ2 − τ1)

× Gρ1α
0 (i1, α; τ1 − τa)Gρ2′σ1′

0 (i2′ , i1′ ; τ2′ − τ1′)Gρ1′σ2′
0 (i1′ , i2′ ; τ1′ − τ2′) (4.61)

And by inserting the Matsubara frequency transformed functions one gets

Gβα
P (b, a; τb − τa) =

1
β ∑

ikn
(− 1

β2 ∑
iqnipn

∑
i1i1′
i2i2′

Wi1i1′

2
Wi2i2′

2

× τ
σ1ρ1
z τ

σ1′ρ1′
z τ

σ2ρ2
z τ

σ2′ρ2′
z Gβσ2

0 (b, i2; ikn)Gρ2σ1
0 (i2, i1; ikn − iqn)Gρ1α

0 (i1, α; ikn)

× Gρ2′σ1′
0 (i2′ , i1′ ; ipn + iqn)Gρ1′σ2′

0 (i1′ , i2′ ; ipn))e−ikn(τb−τa) (4.62)

Where Gβα
P (b, a; ikn) is isolated in the parentheses. Here, ipn is a fermionic Matsubara

frequency and iqn is bosonic. To see the Matsubara frequency conservation, this
function is diagrammatically

Gβα
P (b, a; ikn) =

iknikn − iqn

iqn

ikn

iqn

ipn + iqn

ipn (4.63)

And the Feynman rules in real space, Matsubara frequency is then
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iqn

1 1′
= −Wi1,i1′

2

i2ρ2 ikn i1σ1

2 1
= Gρ2σ1

0 (i2, i1; ikn)

i1ρ1i1σ1

1 = ∑
i1

τ
σ1ρ1
z

∑ topologically different diagrams

Repeated Nambu indices are summed
Conserve Matsubara frequency in all vertices

Multiply
1
β

for each internal frequency ikn , and sum ∑
ikn

Multiply eiknη for each "same time" diagram, where η = 0+

For F fermion loops, multiply (−1)F (4.64)

The rule with eiknη is because of the small imaginary time parameter that was added
in (4.58). The pair-bubble diagram will be calculated in the next section, and then
added as a self-energy to the full GF, to see if this changes the zero modes.

4.6 self-energy diagram calculation

We write Gβα
P (b, a; ikn) as

Gβα
P (b, a; ikn) = = ∑

i1i2

Gβσ2
0 (b, i; ikn)Σ

σ2ρ1
P (i, j; ikn)Gρ1α

0 (j, b; ikn)

(4.65)

With the self-energy, written as a matrix in Nambu space

ΣP(i, j; ikn) =

ji

lk
= − 1

4β2 ∑
iqnipn

∑
lk

WjlWik τzG0(i, j; ikn − iqn)τz

· Tr
[
G0(k, l; ipn + iqn)τzG0(l, k; ipn)τz

]
(4.66)

This self-energy is what we want to insert in the Dyson equation (3.23). This
self energy preserves all the symmetries of the original GF, since for example
ΠG(ω)Π = −G(−ω) translates directly to the self energy ΠΣ(ω)Π = −Σ(−ω),
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and by inserting Π = τxδij, this holds. We want to perform the Matsubara frequency
summation over iqn and ipn. To perform the Matsubara summation (and since we
eventually want to plug this into a numerical calculation), one can write out the
self-energy with all the messy indices (here upper indices are Nambu and lower are
site number Gβα

0 (i, j; ikn) ≡ G0(ikn)
βα
ij ). Also, we want to write the diagonal GF as

in (2.97), so we add transformation matrices U and U† at all GFs and use that τz is
diagonal in site-space. This gives

ΣP(ikn)
βα
ij = − 1

β2 ∑
iqnipn

∑
lk

mbd

WjlWik (τz)
βσ1
ii Uσ1σm

im G̃0(ikn − iqn)
σmσm
mm (U†)σmσ2

mj (τz)
σ2α
jj

·Uσ3σb
kb G̃0(ipn + iqn)

σbσb
bb (U†)σbσ4

bl (τz)
σ4σ5
ll Uσ5σd

ld G̃0(ipn)
σdσd
dd (U†)σdσ6

dk (τz)
σ6σ3
kk
(4.67)

Now one can write

P(εb, εd; iqn) = −
1
β ∑

ipn

G̃0(ipn + iqn)
σbσb
bb G̃0(ipn)

σdσd
dd = − 1

β ∑
ipn

1
ipn + iqn − εb

· 1
ipn − εd

(4.68)

Where one can now perform the Matsubara sum over ipn.
After performing all the Matsubara sums, one can insert the vector of eigenvalues
εm = (ε1, ε2, . . . , εN ,−ε1,−ε2, . . . ,−εN) and similarly with εb and εd, and then per-
form the summation over site and Nambu indices in (4.67). P(εb, εd; iqn) has only
simple poles, and can therefore be calculated by the same method described in
section 3.4, noting that this time the sum is over fermionic Matsubara frequencies.
One can now write

P(εb, εd; iqn) =
1
β ∑

ipn

g0(ipn) g0(ipn) = −
1

ipn + iqn − εb
· 1

ipn − εd
(4.69)

Again, one wants to write the sum as a contour integral over a complex variable
ipn = z, and use a function with poles at the fermionic Matsubara frequencies to
pick out the frequencies from g0(z) (in figure 14, these are the black dots on the
imaginary axis). This is now the Fermi-Dirac distribution function

nF(z) =
1

eβz + 1
poles for z = ipn = i

2n + 1
β

π (4.70)

With residues

Res
z→ipn

[nF(z)] = lim
z→ipn

z− ipn

eβz + 1
= lim

δ→0

δ

eβ(δ+ipn) + 1

= lim
δ→0

δ

−eβδ + 1
L’Hôpital’s rule→ lim

δ→0

1
−βeβδ

= − 1
β

(4.71)

Which is negative of what was achieved for bosonic frequencies. This means that
there is a sign difference in (3.31), such that

P(εb, εd; iqn) = ∑
l

Res
z=zl

[g0(z)] nF(zl) (4.72)
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Where zl are the poles of g0(z), which can be evaluated from (4.69) to be z1 = εb− iqn
and z2 = εd. Performing the calculation of residues yields

P(εb, εd; iqn) = −
nF(εb − iqn)

εb − iqn − εd
− nF(εd)

εd + iqn − εb
=

nF(εb)− nF(εd)

iqn + εd − εb
(4.73)

Where nF(εb − iqn) = nF(εb) was used since iqn is a bosonic Matsubara frequency.
The imaginary part of the retarded pair-bubble function will lead to a broadening
of the GF, but for low energies, when summing over energies, it is suppressed
exponentially in the gap size, seen from

∑
bd

Im
[
PR(εb, εd; ω)

]
= ∑

bd
Im
[

nF(εb)− nF(εd)

ω + iη + εd − εb

]
= −π ∑

bd
[nF(εb)− nF(εd)] δ(ω + εd − εb) = −π ∑

b
[nF(εb)− nF(εb −ω)] (4.74)

And now using the fact that the states lie outside of the gap εb ≈ ∆ >> T, one gets

∑
bd

Im
[
PR(εb, εd; ω)

]
= −π ∑

b

[
1

eεb/T + 1
− 1

e(εb−ω)/T + 1

]
∝ e−

∆
T

[
1− e

ω
T

]
ω≈0
=

ω

T
e−

∆
T (4.75)

Which shows that ∆
T controls how much the bubble diagram can affect the GF. ∆ is

here chosen to parametrize the gap, but in reality this should be the effective gap in
the spectrum. A quick note here, if one takes a symmetric combination

P(εb, εd; iqn) + P(εd, εb; iqn) =
nF(εb)− nF(εd)

iqn + εd − εb
+

nF(εd)− nF(εb)

iqn + εb − εd

= (nF(εb)− nF(εd))

[
1

iqn − ω̃
− 1

iqn + ω̃

]
= D̃0(iqn) (4.76)

Then it has a similar pole structure as the bosonic GF (C.38), except now ωb = ω̃ =
εb − εd. So the pair bubble can be interpreted as a bosonic excitation, i.e.

” = ” (4.77)

Now we define

Q(εm, εb, εd; ikn) =
1
β ∑

iqn

G̃0(ikn − iqn)
σmσm
mm P(εb, εd; iqn)

=
1
β ∑

iqn

1
ikn − iqn − εm

· nF(εb)− nF(εd)

iqn + εd − εb
=

1
β ∑

iqn

h0(iqn) (4.78)

Where now

Q(εm, εb, εd; ikn) = −∑
l

Res
z=zl

[h0(z)] nB(zl) (4.79)
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Which has poles at z1 = ikn − εm and z2 = εb − εd. Inserting the residues gives

Q(εm, εb, εd; ikn) =
[nF(εb)− nF(εd)] nB(ikn − εm)

ikn − εm + εd − εb
+

[nF(εb)− nF(εd)] nB(εb − εd)

εb − εd − ikn + εm

=
[nF(εd)− nF(εb)] nF(−εm)

ikn − εm + εd − εb
+

[nF(εd)− nF(εb)] nB(εb − εd)

ikn − εm + εd − εb

=
[nF(εd)− nF(εb)] [nF(−εm) + nB(εb − εd)]

ikn − εm + εd − εb
(4.80)

Which then enables us to write out the self-energy as

ΣP(ikn)
βα
ij = ∑

lk
mbd

WjlWikQ(εm, εb, εd; ikn) (τz)
βσ1
ii Uσ1σm

im (U†)σmσ2
mj (τz)

σ2α
jj

·Uσ3σb
kb (U†)σbσ4

bl (τz)
σ4σ5
ll Uσ5σd

ld (U†)σdσ6
dk (τz)

σ6σ3
kk (4.81)

First one needs to check for divergences since when summing over b and d there
will be values where they are equal, but this means that the part in Q(εm, εb, εd; ikn)
with the bose-einstein distribution approaches the limit

lim
εb→εd

[nF(εd)− nF(εb)] nB(εb − εd)

ikn − εm + εd − εb
= lim

εb→εd

[nF(εd)− nF(εb)]

ikn − εm + εd − εb

1
eβ(εb−εd) − 1

→ 0
0

(4.82)

So one should calculate the limit of these problematic parts, and then separate these
from the sum. Using L’Hôpital’s rule one can analyse the limit

lim
εb→εd

1
ikn − εm + εd − εb

[
1

eβεd + 1
− 1

eβεb + 1

]
1

eβ(εb−εd) − 1

= lim
εb→εd

1
ikn − εm + εd − εb

[
eβεd − eβεb

eβ(εd+εb) + eβεd + eβεb + 1

]
1

eβ(εb−εd) − 1

=
1

ikn − εm

[
eβεd

e2βεd + 2eβεd + 1

]
lim
c→0

1− eβc

eβc − 1

=
1

ikn − εm

[ −eβεd

e2βεd + 2eβεd + 1

]
lim
c→0

βeβc

βeβc =
1

ikn − εm

[ −eβεd

e2βεd + 2eβεd + 1

]
(4.83)

So the limit is well defined. This ensures that the numerical calculations are con-
trolled. One can now calculate (4.81) numerically, and analyse the resulting spectral
function, which will be the subject in the following section.

4.7 the full spectral function - electron-electron interactions

In this section we again look at the local spectral function for the full interacting GF.
As previously mentioned, a relevant parameter for the magnitude of the self-energy
is ∆

T , which can be calculated from an estimate of the realistic parameters in such a
system. These are chosen to be in the range of T ≈ 100mK and ∆ ≈ 200µeV. ∆ will
vary from specific material values, since the gap in our model is an effective gap
resulting from proximity to a type-s superconductor, and will therefore be lower.
We cannot check the part of the phase diagram with an attractive interaction W < 0
since our self energy is of the order W2, so an odd power diagram is needed to



4.7 the full spectral function - electron-electron interactions 81

examine this example. Also, the system size was only N = 20 due to the amount of
heavy numerical calculations.

In figure 21 one observes that for fixed values of t, µ and ∆/T but increasing
interaction strength W, the local spectral function decreases significantly, which is
most visible on the edges. The usual sum rule for the spectral function (2.108) is
for energy, and a similar rule does not exist for the site index i (summing up all i’s
just gives the total density of states at that energy). It is therefore not immediately
clear what is the primary cause of the decrease in height of the coherence function.
Broadening is due to the imaginary part of the self-energy Im(ΣR), and the reduction
of the peak is associated with a renormalisation constant Z < 1. The full spectral
function has two parts, one is the quasi-particle contribution, which has a weight
determined by Z, and one is the remaining complicated many-body interaction part
A′(ω) [4].

A(ω) = 2πZδ(ω− ε̃) +A′(ω) (4.84)

Where ε̃ is a renormalised energy due to the real part of the self-energy Re(ΣR).
The renormalisation constant Z is also related to the quasi-particle life-time by

1
τ(ω)

= −2ZIm(ΣR(ω)), so a quasi-particle with long life-time is associated with a
highly peaked spectral function.

It could be that the spectral function diminishes due to broadening, due to the
weight of the peak decreasing from the renormalisation factor Z, or the location of
the peaks changing due to ReΣ. To try and discern which of these has the most influ-
ence, we can look at figure 20, where the spectral function on the edge A11(1, 1, ω)
is plotted as a function of energy (only shown here for W/t = 0.2). The conclusion
of which factor is decisive for the energy profile of the spectral function on the edge
was not attainable due to low computing power. The comparison at different W
is more precise if one locates the zero mode peak in A11(1, 1; ω), and uses this as
the new energy ε′0 for checking the spacial decay of coherence into the bulk. We
conclude that the energy still resides very close to ε0 so this will be used as the
reference energy when comparing different interaction strengths and temperatures.

To study the decay rate of the various functions (and thus the localisation of the zero
modes), we can look at figure 22 where the functions are normalised to have the
same value on the first site. We see that for larger interaction strengths the decay rate
decreases, meaning that as interactions increase, the zero mode coherence decays
further into the bulk. In this sense, we can thus conclude that the edge modes are
more localized for low W.
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Figure 20: Plot of the local spectral function on the edge of the wire, as a function
of energy. This allows us to locate the renormalised zero mode energy, which is
found to be approximately equal to the non-interacting eigenvalue ε0. Due to the
large amount of numerical calculations, this is plotted for a couple of points and
not as a smooth function.
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Figure 21: Plot of both the non-interacting and interacting spectral functions, as a
function of site on the wire, at the zero mode energy ε0. The function decreases
greatly as W is increased, which will affect the differential conductance in an
imagined tunnelling experiment.
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Figure 22: Plot of the full spectral function at ω = ε0 as a function of site index,
where each function has been normalised such that the have the same value on
the edge. This is to see if rate of decay for the local coherence is affected by the
interactions. We see that larger values of W makes the function decay further into
the bulk.

In figure 23 the local spectral function is plotted, now for fixed W and increasing
temperature.
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Figure 23: Plot of the local spectral function with fixed W, for various tempera-
tures. We see that the local coherence on the first site diminishes with increasing
temperature.
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As before, we want to see how the rate of decay is affected by the increasing
temperatures, so the normalised results are shown in 24. The function reaches
further into the bulk of the chain for higher temperatures, so in an experiment where
a high current signal is preferred, a low temperature will benefit the coherence peak
of the zero mode.
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Figure 24: Local spectral function at different temperatures, but normalised to
have the same value on the first site, so one can see the differing decay rates.
Higher temperatures will lead to a broadening of the zero mode peak, and to the
function spilling further into the bulk of the wire.

So, from the plots of the spectral function we can conclude that interaction
strength and temperature leads to a broadening of the spectral peak located at
the zero mode energy. In the next section we will check if the symmetries of the
interacting GF presented in section 2.3 are preserved in this model.

4.8 symmetries of the full green’s function for electron-electron

interactions

We can check to see if the symmetries in (2.115) are still preserved for the full GF,
which in section 2.3 is showed should be the case. These translate to

T G(ω)
αβ
ij T † = G(ω)

βα
ji

PG(ω)
αβ
ij P† = −G(−ω)

βα
ji

QG(ω)
αβ
ij Q† = −G(−ω)

αβ
ij (4.85)

Using the symmetries for this model, found in (2.135), one can write out explicitly
how symmetry operations transform the local spectral function. The spectral function
is given as the imaginary value of the retarded GF, but under symmetry operations
it will be relevant to flip the sign on iη in the GF, which can be achieved by
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complex conjugation of the GF. We use that −2Im
[
GA(ω)

]
= −2Im

[
GR(ω)∗

]
=

2Im
[
GR(ω)

]
= −A(ω). The spectral function then has the following symmetries

A(ω)
αβ
ii = A(ω)

βα
ii

τσα
x A(ω)

αβ
ii τ

βρ
x = A(−ω)

σρ
ii (4.86)

Writing out the Nambu space matrices, one then gets(A(ω)11
ii A(ω)12

ii
A(ω)21

ii A(ω)22
ii

)
=

(A(ω)11
ii A(ω)21

ii
A(ω)12

ii A(ω)22
ii

)
(A(ω)22

ii A(ω)21
ii

A(ω)12
ii A(ω)11

ii

)
=

(A(−ω)11
ii A(−ω)21

ii
A(−ω)12

ii A(−ω)22
ii

)
(4.87)

Which is checked for A(ω)11
ii = A(−ω)22

ii and A(ω)22
ii = A(−ω)11

ii with the energy
at the zero-mode ω = ε0, and plotted in figure 25
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Figure 25: Plot of some of the components of the last line in (4.87), i.e. a survey of
the PH symmetry for the interacting GF. The plot is arranged so that A(ω)11

ii =
A(−ω)22

ii is shown in the first column and A(ω)22
ii = A(−ω)11

ii in the second. The
asymmetry between electron and hole parts of the spectral function is from having
a finite µ. The action of sending µ→ −µ will exchange electrons and holes and
these plots will swap left to right column. At µ = 0 the left and right will be
identical.

We see that the calculated symmetries are still preserved when interactions are
include, fitting with the conclusions from previous sections.



5
O U T L O O K

There are a few topics that would have been a natural extension to this thesis work,
and these will be covered in this section. It goes without saying that this list is not
exhaustive, since the area of Interacting Topological Systems is still fairly unexplored
territory, with many fascinating concepts yet to be discovered.

The framework developed for analysing the Kitaev model numerically (section
2.1.5) could be used to study effects of including next-nearest neighbour hopping or
superconducting pairing. It would be interesting to investigate the effect of these on
the zero modes and the phase diagram.

The exploration of the phase diagrams for different topological systems with in-
teractions can be done by determining the generalised TI, which at the moment
is only feasible using more advanced numerical procedures like Density Matrix
Renormalisation Group and Exact Diagonalisation. The latter was performed for
small chains in this thesis, due to the immense size of the Hilbert space (2N × 2N).
The modification of the phase diagrams due to interactions would be an especially
fascinating thing to be able to probe.

There is some very intriguing mathematical physics in describing the TIs for interact-
ing systems (discussed in 2.3.3). The TI is derived to be the coefficient of an induced
Chern-Simons term, describing an effective topological quantum field theory (TQFT).
Investigating TQFTs would be a very compelling direction to take after this analysis,
particularly delving into the work of [26], where they showed that a classification of
time-reversal invariant Topological Insulators in (3 + 1)d and (2 + 1)d is obtained
from a fundamental (4 + 1)d insulator from dimensional reduction. These exotic
systems exhibit some novel electrodynamical effects that would be interesting to
describe using the response functions attained from the effective action. In addition,
this research area has mostly focused on Topological Insulators, so it would also be
interesting to follow some of the work done in trying to discover an effective TQFT
for p-wave superconductors [16], and to study its relation to the concepts described
in this thesis.

Another fascinating inquiry for this subject, is how the momentum space topol-
ogy changes, when adding interactions. An example of this is the work done by
Kitaev and Fidkowski in [11], where they showed that the Z invariant of the Kitaev
model reduced to Z8 in the presence of interactions. In [23] they showed that this
change topological classification was triggered by the Green’s function acquiring
zeroes in the eigenvalue spectrum. It would have been very interesting to be able to
study this concrete example, as a direct application of what was described in section
2.3.
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6C O N C L U S I O N

In this thesis we have explored various facets of Interacting Topological Systems,
by studying bosonic and fermionic interactions for the concrete example of a 1D
p-wave superconductor, described by the Kitaev model. Chapter 2 introduced the
non-interacting Kitaev chain and demonstrated the existence of boundary Majorana
zero modes for various points in parameter space. The bulk-boundary correspon-
dence was examined by connecting the presence of Majoranas to the non-trivial
bulk momentum space topology. After this, the wavefunction of the exact zero
modes were found for general parameters in an infinitely long wire. In order to
describe how interactions affected the edge states in the finite wire system, a nu-
merical framework was established, and the findings were used to corroborate the
previously determined analytical results. The non-interacting Green’s function for
the Kitaev model was then determined, and analysed numerically. The relation be-
tween the zero mode wavefunction and the local spectral function was demonstrated.

Concepts from the study of topological systems, such as Altland-Zirnbauer/Cartan
symmetry classes and Topological Invariants were then generalised to include in-
teracting systems, by casting all equations in a form containing the many-body
Green’s function. It was shown that the symmetries of the Green’s function are
still present when interactions are introduced. The preservation of the symmetries
were monitored throughout the thesis. The Topological Invariant for interacting
1D chiral system was shown to be correct in the non-interacting limit and possible
consequences of adding interactions were discussed.

Electron-Boson interactions were incorporated by writing down a perturbation
series in the interaction term. The bosons were modelling charge fluctuations in a
system configuration where the nanowire is coupled to a capacitative gate, in parallel
with a resistance. A low order self energy diagram was calculated and implemented
numerically, to see how the bosonic modes change the spectral function. This lead
to broadening of the spectral peaks, but had no apparent change to the exponential
decay of the local spectral function into the bulk.

Next, we treated Electron-Electron interactions by adding a repulsive nearest neigh-
bour two-body interaction between electrons. This model could be solved by perform-
ing a Jordan-Wigner transformation, changing electron operators to spin operators.
Under this operation the Hamiltonian mapped to an XYZ spin model, with a phase
diagram that was then explored for symmetric parameter values. For a specific line
in parameter space the exact many-body ground state was found, and the ground
state energy was compared to a result obtained by exact diagonalization for small
wire lengths. These two results turned out to be identical.

Finally, a perturbation series calculation was performed for the case of Electron-
Electron interactions. The real space dependence of the local spectral function was
inspected for various temperatures and interaction strengths. It was seen that in-
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conclusion 88

creasing these latter two parameters led to a decrease of the spectral function on the
edge of the wire, as well as making the zero mode coherence extend further into
the bulk of the system. The symmetries of the bare Green’s function was showed
to still be obeyed for the full version, thus confirming the results from the previous
chapters. Lastly, some prospects of future research were discussed.
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Figure 26: Plots of the coherence functions from 2.28 for various µ in units of t, and
∆/t = 1.5. Only in the topological phase |µ| < |t| do the functions cross, which is
necessary for Majorana type edge states.

89



A.2 many-body ground state 90

a.2 many-body ground state

We can find the many-body ground state corresponding to the vacuum of Bogoli-
ubons

λk|Ψ〉 = 0(
ukck + vkc†

−k

)
|Ψ〉 = 0 (A.1)

The ground state can be assumed to be a superposition of all possible combinations
of cooper pairs multiplied by some function αk dependent on the coherence factors
uk and vk

|Ψ〉 = N exp

(
1
2 ∑

k′
αk′c†

−k′c
†
k′

)
|0〉 (A.2)

Where N is a normalisation factor, and αk′ is an odd function, since c†
−k′c

†
k′ is odd

and we want the sum over k′ to be non-zero. We can insert this function to find the
coefficients αk′ (

ukck + vkc†
−k

)
exp

(
1
2 ∑

k′
αk′c†

−k′c
†
k′

)
|0〉 = 0 (A.3)

We can pull the exponential function to the left by using that
[
c†
−k, c†

−k′c
†
k′
]
= 0 and

that the following relation holds

ck exp

(
1
2 ∑

k′
αk′c†

k′c
†
−k′

)
= exp

(
∑
k′

1
2

αk′c†
k′c

†
−k′

) (
ck − αkc†

−k

)
(A.4)

This can be shown by using the Baker-Campbell-Hausdorff relation

e−G AeG = A− [G, A] +
(−1)2

2!
[G, [G, A]] + . . . (A.5)

Which in this case means

exp

(
−1

2 ∑
k′

αk′c†
−k′c

†
k′

)
ck exp

(
1
2 ∑

k′
αk′c†

−k′c
†
k′

)
= ck −

1
2 ∑

k′
αk′
[
c†
−k′c

†
k′ , ck

]
= ck −

1
2 ∑

k′
αk′
(

c†
−k′ {c†

k′ , ck} − {c†
−k′ , ck}c†

k′

)
= ck −

1
2

αkc†
−k +

1
2

α−kc†
−k = ck − αkc†

−k (A.6)
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Where I have used that αk = −α−k. Equation (A.3) now becomes

exp

(
∑
k′

αk′c†
−k′c

†
k′

)(
uk

(
ck − αkc†

−k

)
+ vkc†

−k

)
|0〉 = 0

exp

(
∑
k′

αk′c†
−k′c

†
k′

)(
−ukαkc†

−k + vkc†
−k

)
|0〉 = 0

→ αk =
vk

uk
=

(
ξk − Ek

∆k

)
(A.7)

Thus, if we use Pauli’s exclusion principle (c†
−kc†

k)
n = 0 for n > 1, the ground state

many-body wavefunction becomes

|Ψ〉 = N ∏
k>0

(
1 +

vk

uk
c†
−kc†

k

)
|0〉 (A.8)

Notice the factor 1
2 on αk is gone since the product is changed to be only for positive

k. The normalisation factor N can be found by imposing 〈Ψ|Ψ〉 = 1

|N |2 ∏
k>0

∏
k′>0
〈0|
(

1 +
v∗k
u∗k

ckc−k

)(
1 +

vk′

uk′
c†
−k′c

†
k′

)
|0〉 = 1

|N |2 ∏
k>0
〈0|
(

1 +
|vk|2
|uk|2

ckc−kc†
k c†
−k

)
|0〉 = 1

|N |2 ∏
k>0
〈0|
(

1 +
|vk|2
|uk|2

)
|0〉 = 1 (A.9)

Where I have used the anti-commutation relations for the fermionic operators to
re-arrange the products. For the total product to give unity, we can ensure that each
factor obeys

|N |2
(

1 +
|vk|2
|uk|2

)
= 1

|N |2 =
|uk|2

|uk|2 + |vk|2
= |uk|2

(A.10)

So the normalised many-body wavefunction becomes

|Ψ〉 = ∏
k>0

(
uk + vkc†

−kc†
k

)
|0〉 (A.11)
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The diagonal Hamiltonian for the Kitaev chain obtained in equation (2.5) is very
interesting, but it assumes the fine-tuned parameters µ = 0, t = ∆. A slightly
less symmetric point can be considered if the chemical potential is zero µ = 0
and the chain has an odd number of sites. In this case, it is actually possible to
calculate eigenstates analytically, which we will see in the following calculations.
The Hamiltonian in the Majorana basis (2.3) with these parameters becomes

H = − i
4

N−1

∑
n=1

[(t + ∆) γA,n+1γB,n + (t− ∆) γA,nγB,n+1]

=
N−1

∑
n=1

[t1γA,nγB,n+1 + t2γA,n+1γB,n]

Where I have introduced the two coupling parameters t1 = − i
4 (t− ∆) and t2 =

− i
4 (t + ∆). This Hamiltonian can be written in a matrix form as

H =
1
2 ∑

nm

(
γA,n γB,n

) ( 0 Tnm
T†

nm 0

)(
γA,m
γB,m

)
=

1
2 ∑

nm
Γα

n χ
αβ
nm Γβ

m (B.1)

Where we have

T .
=


0 t1 0 0 0
t2 0 t1 0 0
0 t2 0 t1 0

0 0 t2 0
. . .

0 0 0
. . . 0

 Γα
m

.
=



γA,1
...

γA,N
γB,1

...
γB,N


(B.2)

This system can be visualized by figure 27, where one can notice the system decouples
into two sub-chains, shown in different colours.

92



analytical solutions for µ = 0, t 6= ∆ and n = odd 93

t1 t1t1 t1

t2 t2t2 t2

Figure 27: Visualisation of the various couplings included in (B.1) for a chain of
N = 5 sites. We observe that the red and blue chains are decoupled, so we can try
to write the Hamiltonian in this basis.

We will solve this system using the following procedure. As always, we would
like to diagonalise the Hamiltonian by transforming it using a matrix consisting of
eigenvectors of the Hamiltonian. The old operators are then linear combinations
of the new ones with the wavefunctions as expansion coefficients. To find the
complicated eigenstates in the electronic basis, we first find them in the Majorana
basis and then transform back to electron operators using equation (2.2). It is not
immediately clear what these Majorana eigenvectors are analytically, but if we
transform the matrix χ into a new basis via Γα

m = ∑l Uαβ
ml Γ̃

β
l , i.e.

H =
1
2

ΓT χ Γ =
1
2

ΓT U︸ ︷︷ ︸
Γ̃T

UT χ U︸ ︷︷ ︸
χ̃

UT Γ︸ ︷︷ ︸
Γ̃

(B.3)

and U UT = 1, then the Hamiltonian decouples into two seperate blocks, each
being the Hamiltonian for the famous Su-Schrieffer-Heeger (SSH) model (or some-
times called Shockley edge state model), describing chains with alternating hopping.
The matrix χ̃ is

χ̃ =

(
C1 0
0 C2

)
Γ̃ =

(
γA,1 γB,2 . . . γA,N γB,1 γA,2 . . . γB,N

)T

C1 =


0 t1 0 0 0
t∗1 0 t∗2 0 0
0 t2 0 t1 0

0 0 t∗1 0
. . .

0 0 0
. . . 0

 C2 =


0 t∗2 0 0 0
t2 0 t1 0 0
0 t∗1 0 t∗2 0

0 0 t2 0
. . .

0 0 0
. . . 0

 (B.4)

Where the colours are to to indicate which chain the Majorana operators belong to
(from figure 27). Note here that the chain C2 is just a reversed version of C1. The
eigenstates to this Hamiltonian are known, and it is diagonalised by the transforma-
tion

H =
1
2

Γ̃T χ̃ Γ̃ =
1
2

Γ̃T Ψ︸ ︷︷ ︸
˜̃ΓT

ΨT χ̃ Ψ︸ ︷︷ ︸
˜̃χ

ΨT Γ̃︸ ︷︷ ︸
˜̃Γ

(B.5)
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Where the matrix Ψ contains all the eigenvectors as columns. The new states in the
diagonal basis are

˜̃Γα
n = ∑

l
Ψβα

ln Γ̃β
l (B.6)

Where the upper index α refers to the chain and n is an arbitrary eigenstate index.
The transformation matrix obeys the following equation

∑
l

χ̃
αβ
ml Ψβλ

ln = Ẽλ
n Ψαλ

mn (B.7)

χ̃ and Ψ are diagonal in "chain" space, so these equations becomes one for each chain

˜̃Γ1
n = ∑

l
Ψ11

ln Γ̃1
l

∑
l

χ̃11
ml Ψ11

ln = Ẽ1
n Ψ11

mn

˜̃Γ2
n = ∑

l
Ψ22

ln Γ̃2
l

∑
l

χ̃22
ml Ψ22

ln = Ẽ2
n Ψ22

mn (B.8)

For simplicity we can start by only considering the first chain C1, i.e. the first two
equations, so that the upper index is 1 (and will be suppressed for the moment). For
example, let us try to find the zero mode ˜̃Γ1

0 for which Ẽ1
0 = 0.

˜̃Γ1
0 = ∑

l
Ψ11

l0 Γ̃1
l ∑

l
χ̃11

ml Ψ11
l0 = 0 (B.9)

By writing out the equations for each row (each m) in the second equation of (B.9)
we find the recursive solution

t1Ψ20 = 0 ↔ Ψ20 = 0

t∗1Ψ10 + t∗2Ψ30 = 0 ↔ Ψ30 =

(
− t∗1

t∗2

)
Ψ10

t2Ψ20 + t1Ψ40 = 0 ↔ Ψ40 =

(
− t1

t2

)
Ψ20 = 0

t∗1Ψ30 + t∗2Ψ50 = 0 ↔ Ψ50 =

(
− t∗1

t∗2

)
Ψ30 =

(
− t∗1

t∗2

)2

Ψ10 (B.10)

Setting Ψ10 = 1 and introducing a parameter z counting only the odd numbers
(l = 1→ z = 1, l = 3→ z = 2, l = 5→ z = 3 etc.), the zero mode is then

Ψ0(z) = N (− t∗1
t∗2
)z−1 = N (−

i
4 (t− ∆)
i
4 (t + ∆)

)z−1 = N δz−1 δ =
∆− t
∆ + t

(B.11)

For some normalisation constant N . Notice that δ < 1 is necessary for this function
to converge for large z, which is satisfied since t and ∆ are assumed to be positive
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numbers (this encodes the topological criteria, since µ = 0, so |t| > 0 is in the
topological regime). The normalisation constant is found by

∞

∑
z=1

Ψ0(z)∗Ψ0(z) =
∞

∑
z=1
|N |2δ2(z−1) = 1↔ N =

√
1− δ2 (B.12)

A similar solution is found for the C2 chain, which is a reversed version of C1. We
get for the zero mode wavefunction

Ψ11
l0 =

√
1− δ2

(
1 0 δ . . . δ

N−1
2

)T

Ψ22
l0 =

√
1− δ2

(
δ

N−1
2 . . . δ 0 1

)T
(B.13)

Comparing with (B.4), we can see that the first chain is only non-zero on A sites,
while the second is only non-zero on B sites. Using B.9, we get for the zero mode
Bogoliubon

f †
0 =

1
2

(
˜̃Γ1

0 − i ˜̃Γ2
0

)
=

1
2 ∑

l
Ψ11

l0 Γ̃1
l − i

(
Ψ22

l0 Γ̃2
l
)

=

√
1− δ2

2

N−1
2

∑
n=0

δn (γA,2n+1 − iγB,N−2n)

=

√
1− δ2

2

N−1
2

∑
n=0

δn
(

c†
2n+1 + c2n+1 + c†

N−2n − cN−2n

)
(B.14)

Which is the exact zero mode1

1 Daniel Loss et al. used these exact WFs in [29] to calculate the decoherence of Majoranas. To compare
the functions, notice they have a sign error in the indices.
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c.1 equations of motion for the bare gf

Let us examine the electronic Green’s function Gee
0 (i, τ ; j, 0), which can be found

using the Equations of Motion method (EOM). The procedure is to look at the
τ-derivative of the GF, and use that for operators dependent on imaginary time we
have

∂τ A(τ) = ∂τ

(
eHτ A e−Hτ

)
= eHτ HA e−Hτ − eHτ AH e−Hτ

= eHτ [H, A] e−Hτ = [H, A] (τ) (C.1)

The Kitaev chain Hamiltonian can be written as

H0 = −∑
ij

tijc†
i cj − µ ∑

i
c†

i ci +
1
2 ∑

ij
∆ij

(
c†

i c†
j − cicj

)
(C.2)

And taking the τ-derivative of the electronic GF then gives us one of the so-called
Nambu-Gorkov equations

∂τGee
0 (i, τ ; j, 0) = ∂τ

(
−θ(τ)〈ci(τ)c†

j (0)〉0 + θ(−τ)〈c†
j (0)ci(τ)〉0

)
= −δ(τ)

(
〈ci(τ)c†

j (0) + c†
j (0)ci(τ)〉0

)
− 〈Tτ

(
∂τci(τ)c†

j (0)
)
〉0

= −δ(τ)δij − 〈Tτ

(
[H0, ci] (τ) c†

j (0)
)
〉0 (C.3)

Let us first calculate the commutator using the Hamiltonian in equation (C.2)

[H0, ci] = −∑
mn

tmn

[
c†

mcn, ci

]
− µ ∑

n

[
c†

ncn, ci

]
+

1
2 ∑

mn
∆mn

([
c†

mc†
n, ci

]
− [cmcn, ci]

)
(C.4)

Where the commutators of multiple fermionic creation/annihilation operators
obey

[AB, C] = A{B, C} − {A, C}B (C.5)

giving us

[H0, ci] = ∑
mn

tmnδmicn + µ ∑
n

δincn +
1
2 ∑

mn
∆mn

(
δinc†

m − δimc†
n

)
= ∑

m
timcm + µci +

1
2 ∑

m
∆mic†

m −
1
2 ∑

n
∆inc†

n

= ∑
m

timcm + µci −∑
m

∆imc†
m (C.6)
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where I have renamed dummy indices and used that the pairing matrix is antisym-
metric ∆ij = −∆ji. Inserting the commutator into the expression we get

∂τGee
0 (i, τ ; j, 0) =

− δ(τ)δij + ∑
m

tim Gee
0 (m, τ ; j, 0) + µ Gee

0 (i, τ ; j, 0)−∑
m

∆im Ghe
0 (m, τ ; j, 0) (C.7)

So the differential equation for the electron-electron (ee) Green’s function contains
the he function, so we need to apply the same procedure to this GF, for the system
of equations to close. We get then, the second Nambu-Gorkov equation

∂τGhe
0 (i, τ ; j, 0) = ∂τ

(
−θ(τ)〈c†

i (τ)c
†
j (0)〉0 + θ(−τ)〈c†

j (0)c
†
i (τ)〉0

)
= −δ(τ)

(
〈c†

i (τ)c
†
j (0) + c†

j (0)c
†
i (τ)〉0

)
− 〈Tτ

(
∂τc†

i (τ)c
†
j (0)

)
〉0

= −〈Tτ

([
H0, c†

i

]
(τ) c†

j (0)
)
〉0 (C.8)

And the commutator is[
H0, c†

i

]
= −∑

mn
tmn

[
c†

mcn, c†
i

]
− µ ∑

n

[
c†

ncn, c†
i

]
+

1
2 ∑

mn
∆mn

([
c†

mc†
n, c†

i

]
−
[
cmcn, c†

i

])
= −∑

mn
tmnδnic†

m − µ ∑
n

δinc†
n −

1
2 ∑

mn
∆mn (δincm − δimcn)

= −∑
m

timc†
m − µc†

i −
1
2 ∑

m
∆micm +

1
2 ∑

n
∆incn

= −∑
m

timc†
m − µc†

i + ∑
m

∆imcm (C.9)

Where I also used the symmetry for the Hopping matrix tij = tji. The EOM for this
anomalous GF becomes

∂τGhe
0 (i, τ ; j, 0) =

−∑
m

tim Ghe
0 (m, τ ; j, 0)− µ Ghe

0 (i, τ ; j, 0) + ∑
m

∆im Gee
0 (m, τ ; j, 0) (C.10)

Similar equations for the eh and hh GF’s can be obtained, and then everything can
be collected into one matrix equation in Nambu space.

∂τG0(i, τ ; j, 0) = −δ(τ)δij1−∑
m

(−tim − µδim ∆im
−∆im tim + µδim

)
G0(m, τ ; j, 0)

(C.11)

Or by introducing the Nambu indices in greek letters α, β we can write this as

∂τGαβ
0 (i, τ ; j, 0) = −δ(τ)δijδ

αβ −∑
m,ρ
Hαρ

imG
ρβ
0 (m, τ ; j, 0) (C.12)
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So this is a matrix equation in both Nambu and site space, where αβ denotes the
Nambu entry (ee, eh, he, hh) and ij is the site entry, soH and G0 are 2N× 2N matrices.
If we transform the GF’s to Matsubara frequencies using

Gαβ
0 (i, τ ; j, 0) =

1
β ∑

ikn

Gαβ
0 (i, j; ikn)e−iknτ (C.13)

and rearrange the equation, it gives

∑
m,ρ

(
iknδimδαρ −Hαρ

im

)
Gρβ

0 (m, j; ikn) = δijδ
αβ (C.14)

Which means that the Green’s function becomes

Gαβ
0 (i, j; ikn) =

[(
ikn 12N×2N −H

)−1
]αβ

ij
(C.15)

with the Hamiltonian

H =
(
−t− µ 1N×N

)
τz + i∆τy (C.16)

This is a 2N× 2N matrix, for N being the length of the chain, which is hard to invert
for humans. For a computer it is easier, which is why we analyse the real space
Green’s function numerically in section 2.2.4. In section C.5, however, the hopping
and pairing matrices reduce to functions of k, and then the inverse is easier to find.

c.2 basics of the euclidean fermionic path integral

Starting from the quantum partition function

Z = tr e−βH = ∑
n
〈n|e−βH |n〉 (C.17)

Where n is the basis constituting your favourite complete set. The usual trick is now
to insert resolutions of the identity, and for the fermionic path integral, these states
will be fermionic coherent states, i.e. states that are eigenstates to the annihilation
operator c

c|ψ〉 = ψ|ψ〉 (C.18)

Acting once again with c gives us that ψ2 = 0 since c2 = 0. ψ is thus a peculiar object,
called a Grassmann variable [30]. They anti-commute with each other {ψi, ψj} = 0
and with the fermionic operators {ψi, cj} = 0. The coherent state is given by
|ψ〉 = e−ψc† |0〉 =

(
1− ψc†) |0〉 = |0〉 − ψ|1〉, since

c|ψ〉 = c|0〉 − cψ|1〉 = ψc|1〉 = ψ|0〉 = ψ (|0〉 − ψ|1〉) = ψ|ψ〉 (C.19)

We also have the state

〈ψ̄|c† = 〈ψ̄|ψ̄ (C.20)
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With 〈ψ̄| = 〈0|eψ̄c = 〈0| (1 + ψ̄c) = 〈0| − 〈1|ψ̄. The inner product of these two
coherent states is

〈ψ̄|ψ〉 = (〈0| − 〈1|ψ̄) (|0〉 − ψ|1〉) = 1 + ψ̄ψ = eψ̄ψ (C.21)

It should be noted that ψ̄ is not the complex conjugate of ψ, and they should be
treated as different objects. A few other identities for Grassmann variables are

∫
dψ = 0

∫
ψidψj = δij∫

dψ̄dψ ψψ̄ = 1
∫

dψ̄dψ ψ̄ψ = −1

∂ψi ψj = δij (C.22)

And importantly, frequently used integrals are∫
Dψ̄Dψ e−∑ij ψ̄i Aij ψj = detA, Dψ̄Dψ = ∏

i
dψ̄idψi (C.23)

And ∫
Dψ̄Dψ e∑ij(−ψ̄i Aij ψj+η̄iψi+ψ̄iηi) (C.24)

To calculate this last integral, we can shift the two fermionic fields by constants

ψ̄i → ψ̄i + ∑
k

η̄k(A−1)ki

ψi → ψi + ∑
k
(A−1)ikηk (C.25)

The exponent then becomes (using that repeated indices are summed, and that
dummy indices can be exchanged)

−
(

ψ̄i + η̄k(A−1)ki

)
Aij

(
ψj + (A−1)jmηm

)
+ η̄i

(
ψi + (A−1)imηm

)
+
(

ψ̄i + η̄k(A−1)ki

)
ηi

=− ψ̄i Aijψj − η̄jψj − ψ̄iηi − η̄k(A−1)kiηi

+ η̄iψi + η̄i(A−1)imηm + ψ̄iηi + η̄k(A−1)kiηi

=
(
−ψ̄i Aijψj + η̄i(A−1)ijηj

)
(C.26)

Using (C.23) we can then conclude∫
Dψ̄Dψ e∑ij(−ψ̄i Aij ψj+η̄iψi+ψ̄iηi) = detA · e∑ij η̄i (A−1)ijηj (C.27)
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The resolution of the identity for the fermion coherent states is∫
dψ̄dψ |ψ〉〈ψ̄|e−ψ̄ψ =

∫
dψ̄dψ (|0〉 − ψ|1〉) (〈0| − 〈1|ψ̄) (1− ψ̄ψ)

=
∫

dψ̄dψ (|0〉〈0|+ ψ|1〉〈1|ψ̄) (1− ψ̄ψ)

= |0〉〈0|
∫

dψ̄dψ (−ψ̄ψ) + |1〉〈1|
∫

dψ̄dψ (ψψ̄)

= |0〉〈0|+ |1〉〈1| = 1 (C.28)

Going back to the partition function, we split up the Boltzmann factor into N pieces

Z = tr e−βH = tr lim
N→∞

(e−
β
N H)N (C.29)

And insert the identity between each separate piece. Taking the continuum limit
results in the following path integral

Z =
∫
Dψ̄Dψ e−S[ψ̄,ψ], S [ψ̄, ψ] =

∫ β

0
dτ [ψ̄∂τψ + H(ψ̄, ψ)] (C.30)

Where ψ̄ and ψ are functions of τ, S [ψ̄, ψ] is called the Euclidean action, and

H(ψ̄, ψ) =
〈ψ̄|H(c†, c)|ψ〉
〈ψ̄ψ〉 (C.31)

c.3 bosonic gf

The free Bosonic GF can be found by the following procedure (based on [4])

D0(λb, τb; λa, τa) =

=− 〈Tτ

([
âλb(τb) + â†

λb
(τb)

] [
â†

λa
(τa) + âλa(τa)

])
〉0

=− 〈Tτ

(
âλb(τb)â†

λa
(τa)

)
〉0 − 〈Tτ

(
â†

λb
(τb)âλa(τa)

)
〉0

=

−δλbλa

(
〈âλa(τ)â†

λa
(0)〉0 + 〈â†

λa
(τ)âλa(0)〉0

)
τb − τa = τ > 0

−δλbλa

(
〈â†

λa
(0)âλa(τ)〉0 + 〈âλa(0)â†

λa
(τ)〉0

)
τb − τa = τ < 0

(C.32)

Now, the τ dependence on the operators can be found by using the Baker-Campbell-
Hausdorff relation from eq. (A.5) on âλ(τ) = eHbτaλe−Hbτ , or by evaluating the τ
evolution equations

∂τ â†
λ(τ) =

[
Hb, a†

λ

]
(τ)

∂τ âλ(τ) = [Hb, aλ] (τ) (C.33)

Using the relation

[AB, C] = A [B, C] + [A, C] B (C.34)
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So we get

∂τ â†
λ(τ) = ωλ â†

λ(τ) ↔ â†
λ(τ) = a†

λ eωλτ

∂τ âλ(τ) = −ωλ âλ(τ) ↔ âλ(τ) = aλ e−ωλτ (C.35)

Using these and the fact that the bosonic operators have the commutation rela-
tion

[
aλ, a†

λ′
]
= δλ,λ′ and follow the Bose-Einstein statistics 〈a†

λaλ〉0 = nB(ωλ) =(
eβωλ − 1

)−1, we get

D0(λb, λa; τ) =

{
−δλbλa ([nB(ωλa) + 1] e−ωλa τ + nB(ωλa) eωλa τ) τ > 0
−δλbλa (nB(ωλa) e−ωλa τ + [nB(ωλa) + 1] eωλa τ) τ < 0

(C.36)

We can transform this function to bosonic Matsubara frequencies by

D0(λb, λa, iqn) =
∫ β

0
dτ D0(λb, λa; τ)eiqnτ, qn =

2n
β

π (C.37)

Performing the integral gives us

D0(λb, λa; iqn) = −δλbλa

∫ β

0
dτ
(
[nB(ωλa) + 1] e−ωλa τ + nB(ωλa) eωλa τ

)
eiqnτ

= −δλbλa

∫ β

0
dτ

(
eβωλa e−ωλa τeiqnτ

eβωλa − 1
+

eωλa τeiqnτ

eβωλa − 1

)
= −δλbλa

[
1

iqn −ωλa

eβωλa e−ωλa τeiqnτ

eβωλa − 1
+

1
iqn + ωλa

eωλa τeiqnτ

eβωλa − 1

]β

0

= −δλbλa

(
1

iqn −ωλa

eiqn β

eβωλa − 1
+

1
iqn + ωλa

eβωλa eiqnβ

eβωλa − 1

− 1
iqn −ωλa

eβωλa

eβωλa − 1
− 1

iqn + ωλa

1
eβωλa − 1

)
= δλbλa

(
1

iqn −ωλa

[
eβωλa

eβωλa − 1
− 1

eβωλa − 1

]
+

1
iqn + ωλa

[
1

eβωλa − 1
− eβωλa

eβωλa − 1

])
= δλbλa

(
1

iqn −ωλa

− 1
iqn + ωλa

)
= δλbλa

2 ωλa

(iqn)2 −ω2
λa

(C.38)

Where I have used that for bosonic Matsubara frequencies eiqnβ = ei 2πn
β β = 1.

c.4 majorana basis green’s function

The Hamiltonian in the Majorana basis (2.3), can be written as

H =
i
2 ∑

nm
Γα

nχ
αβ
nmΓβ

m =
i
2 ∑

nm

(
γA,n γB,n

) ( 0 Lnm
−L†

nm 0

)(
γA,m
γB,m

)
(C.39)

With

Lnm = −µ

2
δn,m −

t + ∆
4

δn,m+1 −
t− ∆

4
δn+1,m (C.40)
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In k-space, this function becomes

L(k) = ∑
n,m

Lnme−ik(n−m) =
1
2
(−µ− t cos k + i∆ sin k) =

1
2
(ξk − ∆k) (C.41)

Which was found in (2.39). The non-interacting Majorana GF can be defined as

Bαβ
0 (n, m; τ) = −〈Tτ

(
Γα

n(τ)Γ
β
m

)
〉0 .

=

(Baa
0 (n, m; τ) Bab

0 (n, m; τ)
Bba

0 (n, m; τ) Bbb
0 (n, m; τ)

)
=

(−〈Tτ (γA,n(τ)γA,m)〉0 −〈Tτ (γA,n(τ)γB,m)〉0
−〈Tτ (γB,n(τ)γA,m)〉0 −〈Tτ (γB,n(τ)γB,m)〉0

)
(C.42)

By performing the EOM procedure as before, we get the differential equations for
the Majorana basis Green’s functions

∂τBaa
0 (n, m; τ) = −2δ(τ)δnm − 2i ∑

j
LnjBba

0 (j, m; τ)

∂τBba
0 (n, m; τ) = 0 + 2i ∑

j
LjnBaa

0 (j, m; τ) (C.43)

Where the factor of two in the different terms, come from the anti-commutation rela-
tion for the Majorana operators {γα,n, γα′,n′} = 2δα,α′δn,n′ . The equations of motion
closes, and again we can write similar equations for Bab

0 (n, m; τ) and Bbb
0 (n, m; τ),

and collect everything into the matrix equation

∂τBαβ
0 (n, m; τ) = −2δ(τ)δnmδαβ − 2i ∑

jσ

(
0 Lnj
−Ljn 0

)ασ

Bσβ
0 (j, m; τ) (C.44)

And by transforming to Matsubara frequencies, this equation becomes

2δnmδαβ = ∑
jσ

(
iknδασδnj − 2iχασ

nj

)
Bσβ

0 (j, m; ikn) (C.45)

With the solution

Bαβ
0 (n, m; ikn) =

[(
1
2

ikn12N×2N − iχ
)−1

]αβ

nm

(C.46)

Again, this could be worked out using a path integral formalism as well. It is possible
to write down a path integral for Majorana fields as [30]

Z =
∫
DΓ e−S[ΓT ,Γ] (C.47)

Where the free action is now

S0

[
ΓT, Γ

]
=
∫ β

0
dτ ∑

ij
∑
σρ

(ΓT)σ
i

(
1
2

δσρδij ∂τ + iχσρ
ij

)
Γρ

j , Γρ
j =

(
γA,j
γB,j

)
(C.48)
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So there is a couple of differences to the fermionic path integral. There is no Γ̄, so the
path integral is only over Γ, and there is a factor 1

2 on the imaginary time derivative.
By repeating the same procedure as the one to find the Nambu GF, one can easily
see that (C.46) is reproduced. Just set the factor 1

2 on ikn and replace H with iχ in
(2.80).

c.5 momentum space green’s function

For an infinite system, the momentum space GF is found as

G0(k, ikn) = (ikn1−H(k))−1

=
(
ikn1− ξkτz − i∆kτy

)−1 (C.49)

Where we can use the following trick for inverting matrices containing the Pauli
matrices

(
a1 + bτx + cτy + dτz

)−1
=

a1− bτx − cτy − dτz

a2 − b2 − c2 − d2 (C.50)

So the GF becomes

G0(k, ikn) =
ikn1 + ξkτz + i∆kτy

(ikn)2 − ξ2
k − (i∆k)

2 (C.51)

Performing analytical continuation ikn → ω + iη gives us

G0(k, ω) =
ω1 + ξkτz + i∆kτy

ω2 −
[
ξ2

k + |∆k|2
] (C.52)

Which, as expected, has poles at ω = Ek. We can also find the k-space Majorana GF
as

B0(k, ikn) =

(
ikn

2
1− iχ(k)

)−1

=

(
ikn

2
1 +

i
2

∆kτx +
ξk

2
τy

)−1

=
2ikn1− 2ξkτy − 2i∆kτx

(ikn)2 − ξ2
k − |∆k|2

(C.53)

Which after analytical continuation becomes

B0(k, ω) =
2ω1 + 2 (t cos k + µ) τy − 2∆ sin k τx

ω2 − E2
k

(C.54)

Also with poles at ω = Ek.



DA D D I T I O N A L M AT E R I A L O N M O M E N T U M S PA C E
T O P O L O G Y

d.1 the su-schrieffer-heeger model

The famous SSH model describes as 1D system of N atoms on a chain, which has
alternating hopping parameters t1 and t2 (which can happen if the system undergoes
a Peierls transition). The Hamiltonian describing the spinless system is

H = ∑
n

t1c†
2n−1c2n + t2c†

2nc2n+1 + h.c (D.1)

Which is depicted in figure 28 in the upper graphic. It turns out to be convenient
to convert this Hamiltonian such that the chiral properties of the system is more
prevalent, shown in the bottom part of the picture. We group the two atoms A and
B into one unit cell, and describe the electrons with a new unit cell coordinate j and
by the sublattice index A, B, such that the Hamiltonian becomes

H = ∑
j

t1c†
A,jcB,j + t2c†

B,jcA,j+1 + h.c

= ∑
ij

C†
i Hij Cj (D.2)

Where in the last line we have written the Hamiltonian as a matrix in sublattice
space with

Hij =

(
0 Tij

T†
ij 0

)
Tij = t1δij + t2δi,j+1 Cj =

(
cA,j
cB,j

)
(D.3)

This system exhibits zero energy states at the boundary for values of the hopping
parameters t1, t2 which can be found by analysing the bulk topology. This means we
want to analyse the bulk properties, which can be described in momentum space by

H = ∑
k

C†
k H(k) Ck H(k) =

(
0 T(k)

T†(k) 0

)
(D.4)

and

T(k) = ∑
ij

Tije−ik(i−j) = ∑
ij

(
t1δij + t2δi,j+1

)
e−ik(i−j) = t1 + t2e−ik (D.5)
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1 2 3 4 5 6

t1 t2

1 2 3

A B

Figure 28

Similar to section 2.3, we can define a topological invariant N1, describing the
winding of T(k) around the origin, as k sweeps the Brillouin zone. Similar analysis
allows us to conclude that

N1 =

{
0 |t1| > |t2| trivial
−1 |t1| < |t2| topological

(D.6)

So an edge states exists if the bond that is broken at the edge (in this case t2) is the
largest.

d.2 ti as a mapping between bulk-momentum space hamiltonian and

the unit sphere

The TI for the Kitaev model can also be understood from a more geometrical
perspective. This is seen from the fact that the Hamiltonian is of the form H(k) =
d(k) · τ with d(k) = (0, ∆ sin(k)

Ek
, −t cos(k)−µ

Ek
) and τ = (τx, τy, τz) [1]. The form of d̂(k)

is restricted by the symmetries discussed earlier (TR, PH and Chiral), and we have

Πdx(k)τxΠ−1 = −dx(k)τx → dx(k) = 0

Ξdy(k)τyΞ−1 = −dy(−k)τy → dy(k) = −dy(−k)

Ξdz(k)τzΞ−1 = −dz(−k)τz → dz(k) = dz(−k)
(D.7)

If k is varied without the gap closing |d̂(k)| 6= 0, in the interval [0, π], then d̂(k)
serves as a mapping between the Brillouin zone and the unit sphere. In figure 29 we
see the contour that the vector d̂(k) = d(k)

|d(k)| sweeps as k covers this interval. Due to
the restrictions on d(k), we have at the endpoints

d̂(0) = s0ẑ d̂(π) = sπ ẑ (D.8)
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Where s0, sπ = 1,−1. We can thus define a TI

ν = s0sπ =
−(t + µ)√
(t + µ)2

(t− µ)√
(t− µ)2

=

{
−1 |t| > |µ| topological

1 |t| < |µ| trivial
(D.9)

Which is ν = −1 when the contour ends up at the opposite pole of the unit circle,
and ν = 1 when it returns to the same pole. This is visualized in figure 29.

x

−1

1

y

−1

1

z

−1

1

µ=0.5, t=1.0, ∆ =1.5

x

−1

1

y

−1

1

z

−1

1

µ=1.5, t=1.0, ∆ =1.5

Figure 29: Plot of the contour d̂(k) makes on the unit sphere, when k sweeps
from 0 to π. The topological phase is when the contour ends up on the opposite
pole, and the trivial phase is when the contour goes out from the south pole, but
returns. Again, the transition between these two scenarios happens at |µ| = |t|



ED E TA I L S F R O M T H E P E RT U R B AT I O N T H E O RY O F
E L E C T R O N - B O S O N I N T E R A C T I O N S

e.1 full gf in the interaction picture

In this section we want to rewrite the full GF to the interaction picture. Quantitatively,
the evolution of states and operators obey

|ψ̂(τ)〉 = eH0τ|ψ(τ)〉 = eH0τe−Hτ|ψ0〉
Â(τ) = eH0τ A e−H0τ

|ψ̂(τ)〉 = Û(τ, τ0)|ψ̂(τ0)〉 (E.1)

Where Û(τ, τ0) is a unitary operator. If the perturbation V is independent of τ, so
the full Hamiltonian H is as well (which is true for systems in thermal equilibrium),
this operator can be found by combining the defining equations

|ψ̂(τ)〉 = Û(τ, τ0)|ψ̂(τ0)〉
l

eH0τe−Hτ|ψ0〉 = Û(τ, τ0)eH0τ0 e−Hτ0 |ψ0〉
l

Û(τ, τ0) = eH0τe−H(τ−τ0)e−H0τ0 (E.2)

Giving us the relations

Û(τ, τ′)Û(τ′, τ0) = Û(τ, τ0) Û(τ0, τ0) = 1 (E.3)

Now we can achieve an equation for Û(τ, τ0) by taking the τ-derivative on both side
of equation (E.2)

∂τÛ(τ, τ0) = eH0τ (H0 − H) e−H(τ−τ0)e−H0τ0

= eH0τ V e−H0τeH0τe−H(τ−τ0)e−H0τ0 = −V̂(τ)Û(τ, τ0) (E.4)

Which can be solved by integration∫ τ

τ0

dτ′∂τ′Û(τ′, τ0) = −
∫ τ

τ0

dτ′V̂(τ′)Û(τ′, τ0)

l

Û(τ, τ0)− Û(τ0, τ0) = −
∫ τ

τ0

dτ′V̂(τ′)Û(τ′, τ0)

l

Û(τ, τ0) = 1−
∫ τ

τ0

dτ′V̂(τ′)Û(τ′, τ0) (E.5)
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The τ-evolution operator can be solved for iteratively by inserting Û(τ, τ0) into the
integral multiple times, keeping track of the τ ordering, giving us

Û(τ, τ0) =
∞

∑
n=0

(−1)n

n!

∫ τ

τ0

dτ1· · ·
∫ τ

τ0

dτnTτ

(
V̂(τ1) . . . V̂(τn)

)
= Tτe−

∫ τ
τ0

dτ1V̂(τ1) (E.6)

This is very useful, since we can now rewrite the density operator using that

Û(β, 0) = eH0βe−Hβ ↔ e−βH = e−βH0Û(β, 0) (E.7)

We wanted to calculate the Green’s function in equation (3.8) using the interaction
picture, so we transform operators from the Heisenberg to the interaction picture by
using

Cβ
νb(τb) = eHτb Cβ

νb e−Hτb = eHτb e−H0τb︸ ︷︷ ︸
Û(0,τb)

eH0τb Cβ
νb e−H0τb︸ ︷︷ ︸

Ĉβ
νb (τb)

eH0τb e−Hτb︸ ︷︷ ︸
Û(τb,0)

(E.8)

So the Green’s function then becomes for β > τb > τa > 0 (the case with τa > τb
gives the same result [4])

Gβα(νb, τb ; νa, τa)

=
−Tr

[
e−βH0Û(β, 0)Û(0, τb)Ĉ

β
νb(τb)Û(τb, 0)Û(0, τa)(Ĉ†)α

νa
(τa)Û(τa, 0)

]
Tr
[
e−βH0Û(β, 0)

]
=
−Tr

[
e−βH0Û(β, τb)Ĉ

β
νb(τb)Û(τb, τa)(Ĉ†)α

νa
(τa)Û(τa, 0)

]
Tr
[
e−βH0Û(β, 0)

]
=
−Tr

[
e−βH0 Tτ

(
Û(β, 0)Ĉβ

νb(τb)(Ĉ†)α
νa
(τa)

)]
Tr
[
e−βH0Û(β, 0)

] =
−〈Tτ

(
Û(β, 0)Ĉβ

νb(τb)(Ĉ†)α
νa
(τa)

)
〉0

〈Û(β, 0)〉0
(E.9)

Where the τ-ordering operator has been reintroduced, and both the numerator and
denominator has been devided by Z0 = Tr

[
e−βH0

]
.

e.2 2nd order expansion - diagrammatics

To illustrate the calculation in section 3.2 we can expand the numerator of Gβα up to
second order which gives the terms

Gβα
0 (νb, τb ; νa, τa)−

1
2

∫
dτ1

∫
dτ2 ∑

ν1ν′1λ1
ν2ν′2λ2

gν1ν′1λ1
gν2ν′2λ2

〈Tτ (ϕ̂λ1(τ1)ϕ̂λ2(τ2))〉0

× 〈Tτ

(
(Ĉ†)σ1

ν1
(τ1)τ

σ1σ′1
z Ĉσ′1

ν′1
(τ1)(Ĉ†)σ2

ν2
(τ2)τ

σ2σ′2
z Ĉσ′2

ν′2
(τ2)Ĉ

β
νb(τb)(Ĉ†)α

νa
(τa)

)
〉0 (E.10)
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So the zeroth order term is just the bare Green’s function. Looking at the second
order term, we use the bosonic Green’s function to write it as

1
2

∫
dτ1

∫
dτ2 ∑

ν1ν′1λ
ν2ν′2

gν1ν′1λgν2ν′2λD0(λ; τ1 − τ2)

× τ
σ1σ′1
z τ

σ2σ′2
z 〈Tτ

(
(Ĉ†)σ1

ν1
(τ1)Ĉ

σ′1
ν′1
(τ1)(Ĉ†)σ2

ν2
(τ2)Ĉ

σ′2
ν′2
(τ2)Ĉ

β
νb(τb)(Ĉ†)α

νa
(τa)

)
〉0 (E.11)

Where the diagonality of the boson Green’s function is used, and the dummy variable
has been changed (λ1 → λ). The trick is now to use Wick’s Theorem on the electron
average, which can be stated using the concept of contractions [20] . Contractions are
c-numbers defined by

〈AB〉 = 〈Tτ (AB)〉

〈ABCD〉 = 〈Tτ (AC)〉〈Tτ (BD)〉 (E.12)

And Wick’s theorem is

〈Tτ (ABCD)〉 = 〈Tτ (sum of all possible contractions)〉

= 〈Tτ

(
ABCD

)
〉+ 〈Tτ

(
ABCD

)
〉+ 〈Tτ

(
ABCD

)
〉

= 〈Tτ (AB)〉〈Tτ (CD)〉 ± 〈Tτ (AC)〉〈Tτ (BD)〉+ 〈Tτ (AD)〉〈Tτ (BC)〉
(E.13)

Note that for fermionic spinor operators, the minus signs should be accounted for
when commuting (we have {Cα

a , (C†)
β
b} = δabδαβ with a, b quantum numbers and

α, β Nambu indices). This theorem allows us to write the 6-operator average as
a sum of products of two operator Green’s functions. Since we are calculating to
second order in the interaction vertex with one bosonic Green’s function m = 1, we
have then 2 + 4m = 6 operators in the electron average. Since each contracted pair
needs to contain one C and one C†, the number of terms in the numerator for m
boson lines will be equal to (2m + 1)!. So m = 1→ 6 terms and m = 2→ 120 terms.
As an example let us look at one of the terms in the numerator of equation (E.11)

1
2

∫
dτ1

∫
dτ2 ∑

ν1ν′1λ
ν2ν′2

gν1ν′1λgν2ν′2λD0(λ; τ1 − τ2)τ
σ1σ′1
z τ

σ2σ′2
z

× 〈Tτ

(
Ĉβ

νb(τb)(Ĉ†)σ2
ν2
(τ2)

)
〉0〈Tτ

(
Ĉσ′2

ν′2
(τ2)(Ĉ†)σ1

ν1
(τ1)

)
〉0〈Tτ

(
Ĉσ′1

ν′1
(τ1)(Ĉ†)α

νa
(τa)

)
〉0

= −1
2

∫
dτ1

∫
dτ2 ∑

ν1ν′1λ
ν2ν′2

gν1ν′1λgν2ν′2λD0(λ; τ1 − τ2)

× Gβσ2
0 (νb, ν2; τb − τ2)τ

σ2σ′2
z Gσ′2σ1

0 (ν′2, ν1; τ2 − τ1)τ
σ1σ′1
z Gσ′1α

0 (ν′1, νa; τ1 − τa)

(E.14)
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Or written out as matrix multiplication in Nambu space

− 1
2

∫
dτ1

∫
dτ2 ∑

ν1ν′1λ
ν2ν′2

gν1ν′1λgν2ν′2λD0(λ; τ1 − τ2)

× G0(νb, ν2; τb − τ2)τzG0(ν
′
2, ν1; τ2 − τ1)τzG0(ν

′
1, νa; τ1 − τa) (E.15)

The negative sign will be absorbed in the Feynman rules, and the combinatorics of
the diagrams will ensure that all the factors become unity, which we will se in a
moment. This term is represented diagrammatically as

b

a

1 2

The diagrams we get for the numerator of Gβα(νb, τb ; νa, τa) are (similar to [4])

− 〈Tτ

(
Û(β, 0)Ĉνbβ(τb)Ĉ†

νaα(τa)
)
〉0 =

b

a

+


b

a

+

b

a

+

b

a

+

b

a

+

b

a

+

b

a



+



b

a

+

b

a

+ · · ·+

b

a

+ · · ·+

b

a

+ · · ·


+ · · · (E.16)

Where we note that the 3rd and 4th of the second order diagrams (in the
interactions strength g), are topologically equivalent, which also goes for the 5th
and 6th. These diagrams are identical in the sense that a 1 ↔ 2 exchange leaves
the integrals and summations invariant (e.g τ1 and τ2 are dummy variables in the
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integrals, and can be exchanged). This takes care of the factor 1
2 in (E.15), which will

happen for all connected diagrams. Meanwhile, the denominator is

〈Û(β, 0)〉0 =

1 + + + · · ·

 (E.17)

One thing we can do to simplify the expression for Gβα(νb, τb ; νa, τa) is to
factorize the numerator into connected diagrams (going from a to b via 1 and 2) and
the disconnected, so-called vacuum diagrams like

Gβα(νb, τb ; νa, τa) =
b

a

+

b

a

+

b

a

+ · · ·


1 + + + · · ·


1 + + + · · ·


(E.18)

The denominator cancels the terms in the 2nd parenthesis in the numerator, leaving
only the connected diagrams

Gβα(νb, τb ; νa, τa) =
b a

+
b a

+
b a

+
b a

+ · · ·


(E.19)

e.3 self-energy examples and matsubara frequency transformation

With the interaction in (3.18), the diagram in (3.16) (called GH for the Hartree
contribution to G) would, using Nambu matrices, become
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i jl

k
= GH(i, j; τi − τj) =

∫
dτl

∫
dτk ∑

lkm
gl gk|Vm|2D0(m; τk − τl)G0(i, l; τi − τl)τzG0(l, j; τl − τj)Tr

[
τzG0(k, k; 0)

]
Or by tranforming the Green’s functions to Matsubara frequency

=
∫

dτl

∫
dτk ∑

lkm
iqnikn
ipnisn

gl gk

β4 |Vm|2D0(m; iqn)G0(i, l; ikn)τzG0(l, j; ipn)Tr
[
τzG0(k, k; isn)

]

× e−iqn(τk−τl)e−ikn(τi−τl)e−ipn(τl−τj)

=
∫

dτl

∫
dτk ∑

lkm
iqnikn
ipnisn

gl gk

β4 |Vm|2D0(m; iqn)G0(i, l; ikn)τzG0(l, j; ipn)Tr
[
τzG0(k, k; isn)

]

× e−iqnτk e−(ipn−ikn−iqn)τl e−iknτi eipnτj (E.20)

Now, the integral over τl and τk of the exponential functions become Kronecker delta
functions

= ∑
lkm

iqnikn
ipnisn

gl gk

β2 |Vm|2D0(m; iqn)G0(i, l; ikn)τzG0(l, j; ipn)

× Tr
[
τzG0(k, k; isn)

]
e−iknτi eipnτj δiqn,0δipn−ikn−iqn,0

=
1
β ∑

ikn

∑
lkm
isn

gl gk

β
|Vm|2D0(m; 0)G0(i, l; ikn)τzG0(l, j; ikn)Tr

[
τzG0(k, k; isn)

]
︸ ︷︷ ︸

GH(i,j;ikn)

e−ikn(τi−τj)

(E.21)

We can also calculate the diagram (called GF for the Fock contribution to G)

i jlk
= GF(i, j; τi − τj) = −

∫
dτl

∫
dτk ∑

lkm
gl gk|Vm|2

×D0(m; τk − τl)G0(i, k; τi − τk)τzG0(k, l; τk − τl)τzG0(l, j; τl − τj) (E.22)
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Similarly, the Green’s functions can be transformed to Matsubara frequency

GF(i, j; τi − τj) =
1
β ∑

ikn

e−ikn(τi−τj)

×

−∑
lkm
iqn

gl gk

β
|Vm|2D0(m; iqn)G0(i, k; ikn)τzG0(k, l; ikn − iqn)τzG0(l, j; ikn)


︸ ︷︷ ︸

GF(i,j;ikn)

These two diagrams can be written in terms of self energies Σ

GH(i, j; ikn) = ∑
lkm
isn

gl gk

β
|Vm|2D0(m; 0)G0(i, l; ikn)τzG0(l, j; ikn)Tr

[
τzG0(k, k; isn)

]
= ∑

l
G0(i, l; ikn)ΣH(l, l; ikn)G0(l, j; ikn)

(E.23)

Where

ΣH(l, l; ikn) =
l

k

= ∑
km,isn

gl gk

β
|Vm|2D0(m; 0)Tr

[
τzG0(k, k; isn)

]

And for the Fock term

GF(i, j; ikn) = −∑
lkm
iqn

gl gk

β
|Vm|2D0(m; iqn)G0(i, k; ikn)τzG0(k, l; ikn − iqn)τzG0(l, j; ikn)

= ∑
lk
G0(i, k; ikn)ΣF(k, l; ikn)G0(l, j; ikn) (E.24)

With

ΣF(k, l; ikn) =
lk

= − ∑
m,iqn

gl gk

β
|Vm|2D0(m; iqn)τzG0(k, l; ikn − iqn)τz

(E.25)
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e.4 nambu-gorkov diagrams for electron-boson interaction

The second order expansion in E.2, contains the following diagrams if one does not
collect everything in Nambu formalism

(+) (+) (−)
b a12

(+) (−) (−)

(−) (+) (+)

(−) (−) (+)

(+) (+) (−)

Where I have noted the signs required for the diagram rules. Since we are cal-
culating the second order term for the ee Green’s function, we always have to start
and end with an electron operator. Looking from right to left, these are the ones
pointing along this direction, so the first and last arrow has to point to the left.
In between these, we can have vertices where we have a hole part, i.e. arrows go
the other way from left to right. Every time we swap two operators for holes, for
example comparing diagram 4 to 7: GeeGeeGee → −GeeGehGhe, we pick up a minus
sign. This minus sign is the one absorbed into the hole component of the vertex
Nambu matrix. The two diagrams in blue are topologically equivalent, and if we
exchange the dummy variables in the integration over imaginary time τ1 ↔ τ2 and
exchange two fermionic operators in the expression for the diagram on the right,
the sign changes and it becomes the same expression as the diagram on the left.
This gives a factor 2 thereby cancelling the factor 1

2 we had in the numerator. This
happens for the red diagrams as well, since one of them can be changed into the
other by exchanging dummy variables, so we just count the diagram twice. The only
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terms that have no partner to be combined with, and thus do not cancel the factors
in front, is the disconnected diagrams, so for now, these factors will be contained in
the diagrams.



FC A L C U L AT I O N O F I N T E G R A L S I N T H E F O C K S E L F - E N E R G Y

Let us calculate the last term in (3.56)

F1(ε) P
∫ ∞

0
dωb

1(
ω2

b + ω2
0

)
(ε−ωb)

(F.1)

The indefinite integral of this is

I =
∫

dωb
1(

ω2
b + ω2

0

)
(ε−ωb)

(F.2)

First we would like to expand this using the partial fraction method

I =
∫

dωb
1(

ω2
b + ω2

0

)
(ε−ωb)

=
∫

dωb
x

ω2
b + ω2

0
+
∫

dωb
y

ε−ωb
(F.3)

Plus the condition that x (ε−ωb) + y
(
ω2

b + ω2
0
)
= 1, which is solved by x = ε+ωb

ε2+ω2
0

and y = 1
ε2+ω2

0
resulting in

I =
1

ε2 + ω2
0

(∫
dωb

ε + ωb

ω2
b + ω2

0
+
∫

dωb
1

ε−ωb

)

=
1

ε2 + ω2
0

(∫
dωb

ε

ω2
b + ω2

0
+
∫

dωb
ωb

ω2
b + ω2

0
+
∫

dωb
1

ε−ωb

)

=
1

ε2 + ω2
0

 ε

ω2
0

∫
dωb

1
ω2

b
ω2

0
+ 1

+
∫

dωb
ωb

ω2
b + ω2

0
+
∫

dωb
1

ε−ωb

 (F.4)

Now we can solve them all by substitution. We define s = ωb
ω0

, u = ω2
b + ω2

0 and
t = ωb − ε which means ds = 1

ω0
dωb, du = 2ωb dωb and dt = dωb so that I becomes

I =
1

ε2 + ω2
0

(
ε

ω0

∫
ds

1
s2 + 1

+
1
2

∫
du

1
u
−
∫

dt
1
t

)
=

1
ε2 + ω2

0

(
ε

ω0
arctan s +

1
2

ln u− ln t
)
+ c

=
1

ε2 + ω2
0

(
ε

ω0
arctan

(
ωb

ω0

)
+

1
2

ln
(
ω2

b + ω2
0
)
− ln (ωb − ε)

)
+ c (F.5)

So by simplifying a bit

I =
1

2ω0ε2 + 2ω3
0

(
2ε arctan

(
ωb

ω0

)
+ ω0 ln

(
ω2

b + ω2
0
)
− 2ω0 ln (ωb − ε)

)
+ c

(F.6)
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The definite integral can then be found using the definition of a principal value
integral (3.54)

F1(ε) P
∫ ∞

0
dωb

1(
ω2

b + ω2
0

)
(ε−ωb)

= F1(ε) lim
Λ→∞

lim
δ→0

(
I|ε−δ

0 + I|Λε+δ

)
(F.7)

Where the cut-off Λ is introduced and subsequently sent to infinity. We insert the
expression for I[

F1(ε)

2ω0ε2 + 2ω3
0

]
lim

Λ→∞
lim
δ→0

(2ε arctan
(

ε− δ

ω0

)
+ ω0 ln

(
(ε− δ)2 + ω2

0
)
− 2ω0 ln (−δ)

− 2ε arctan
(

0
ω0

)
−ω0 ln

(
ω2

0
)
+ 2ω0 ln (−ε)

2ε arctan
(

Λ
ω0

)
+ ω0 ln

(
Λ2 + ω2

0
)
− 2ω0 ln (Λ− ε)

− 2ε arctan
(

ε + δ

ω0

)
−ω0 ln

(
(ε + δ)2 + ω2

0
)
+ 2ω0 ln (δ))

(F.8)

This has to be simplified before it is safe to take the limits, so we collect terms[
F1(ε)

2ω0ε2 + 2ω3
0

]
lim

Λ→∞
lim
δ→0

(2ε

[
arctan

(
ε− δ

ω0

)
− arctan

(
ε + δ

ω0

)
+ arctan

(
Λ
ω0

)]
+ω0

[
ln
(
(ε− δ)2 + ω2

0
)
− ln

(
(ε + δ)2 + ω2

0
)
+ ln

(
Λ2 + ω2

0
)
− ln

(
ω2

0
)]

+2ω0 [ln (−ε)− ln (−δ) + ln (δ)− ln (Λ− ε)])
(F.9)

The last term can be rewritten as

2ω0 [ln (−ε)− ln (−δ) + ln (δ))− ln (Λ− ε)] = 2ω0

[
ln
(ε

δ

)
+ ln

(
δ

Λ− ε

)]
= 2ω0 ln

(
ε

Λ− ε

)
(F.10)

Now it is okay to take the δ→ 0 limit, and (F.9) then becomes[
F1(ε)

2ω0ε2 + 2ω3
0

]
lim

Λ→∞
(2ε arctan

(
Λ
ω0

)
+ ω0

[
ln
(
Λ2 + ω2

0
)
− ln

(
ω2

0
)]

+ 2ω0 ln
(

ε

Λ− ε

)
)

=

[
F1(ε)

2ω0ε2 + 2ω3
0

]
lim

Λ→∞
(2ε arctan

(
Λ
ω0

)
+ ω0 ln

([
Λ2 + ω2

0
]

ε2

ω2
0 [Λ− ε]2

)
) (F.11)

Now we can perform the limit Λ→ ∞ and use that

lim
Λ→∞

arctan
(

Λ
ω0

)
=

π

2
(F.12)
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And

lim
Λ→∞

ln

([
Λ2 + ω2

0
]

ε2

ω2
0 [Λ− ε]2

)
= lim

x→0
ln

([ 1
x2 + ω2

0
]

ε2

ω2
0

[ 1
x − ε

]2

)

= lim
x→0

ln

([
1 + x2ω2

0
]

ε2

ω2
0 [1− xε]2

)
= ln

(
ε2

ω2
0

)
(F.13)

Finally, we get

F1(ε) P
∫ ∞

0
dωb

1(
ω2

b + ω2
0

)
(ε−ωb)

=

[
F1(ε)

2ω0ε2 + 2ω3
0

]
(πε + ω0 ln

(
ε2

ω2
0

)
) (F.14)

We can now collect (3.53), (3.56) and (F.14) so that

I1 = −iπα
F1(ε)

ε2 + ω2
0
+ α

[
F1(ε)

2ω0ε2 + 2ω3
0

]
(πε + ω0 ln

(
ε2

ω2
0

)
) + ασ1 (F.15)



G
3 S I T E M A N Y- B O D Y H A M I LT O N I A N

Here we will see what physics this many-body Hamiltonian describes. Imagine a
chain comprising of three sites 1, 2, and 3. The states are denoted in the occupation
number basis as |n1n2n3〉, where n1, n2, n3 = 0 ∨ 1, since we consider fermionic
particles. For this small wire, the Hamiltonian, which is an operator in the 23 = 8
dimensional Hilbert space, becomes

HN=3 =− µ(c†
1c1 + c†

2c2 + c†
3c3)−

t
2
(c†

1c2 + c†
2c1 + c†

2c3 + c†
3c2)

+
∆
2
(c1c2 + c†

2c†
1 + c2c3 + c†

3c†
2) + W(c†

1c†
2c2c1 + c†

2c†
3c3c2) (G.1)

We can interpret the different terms, by considering the following matrix elements

〈100|HN=3|100〉 = −µ⇒ E of having one site occupied (Chemical potential)

〈100|HN=3|010〉 = − t
2
⇒ E of hopping between sites (Kinetic)

〈110|HN=3|000〉 = −∆
2
⇒ E of creating (destroying) a cooper pair (Pairing)

〈110|HN=3|110〉 = W − 2µ⇒ E of occupying two adjacent sites (Int. + Chem.)
(G.2)

Written in the basis {|000〉, |100〉, |010〉, |001〉, |110〉, |101〉, |011〉, |111〉},
HN=3 is represented by the matrix

HN=3 =



0 0 0 0 −∆
2 0 −∆

2 0

0 −µ − t
2 0 0 0 0 −∆

2

0 − t
2 −µ − t

2 0 0 0 0

0 0 − t
2 −µ 0 0 0 −∆

2

−∆
2 0 0 0 W − 2µ − t

2 0 0

0 0 0 0 − t
2 −2µ − t

2 0

−∆
2 0 0 0 0 − t

2 W − 2µ 0

0 −∆
2 0 −∆

2 0 0 0 2W − 3µ



(G.3)
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Transforming the basis to one which separates even and odd parity states is done by
a transformation matrix U

U†



000
100
010
001
110
101
011
111


=



000
110
101
011
100
010
001
111


(G.4)

In this new basis, the Hamiltonian becomes

H̃N=3 = U†HN=3U =



0 −∆
2 0 −∆

2 0 0 0 0

−∆
2 W − 2µ − t

2 0 0 0 0 0

0 − t
2 −2µ − t

2 0 0 0 0

−∆
2 0 − t

2 W − 2µ 0 0 0 0

0 0 0 0 −µ − t
2 0 −∆

2

0 0 0 0 − t
2 −µ − t

2 0

0 0 0 0 0 − t
2 −µ −∆

2

0 0 0 0 −∆
2 0 −∆

2 2W − 3µ


(G.5)

Which is block-diagonal, showing that parity is still a conserved quantity. First we
check the many-body spectrum, which is found by the eigenvalues to (G.5), in the
case W = 0, µ = 0, ∆ = t . As we saw in section 2.1.1, in this limit we can connect
Majoranas according to figure 30.
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f1 f2

f3

|ψeven〉 |ψodd〉

|ψeven〉f †
1

|ψodd〉f †
1

Figure 30: Visual description of some of the different states, where red means
unoccupied and blue means occupied. The states are divided into two sectors of
even and odd parity, determined by the occupation of the fermion f3 consisting of
the zero energy Majoranas.

The states determined by f1, f2, f3 can be either occupied or unoccupied, giving
us our 8 different states. The ground-state is degenerate since f3 is constructed
by zero energy Majoranas, so occupying this state cost no energy. From (2.5) the
Hamiltonian in the diagonal basis is

HN=3 = t( f †
1 f1 + f †

2 f2)− t (G.6)

So we can conclude there are two states with energy −t, four states with energy
0 and two with energy t. This is also what one gets from diagonalizing (G.3).
This many-body spectrum is shown in figure 31, with a dashed line separating the
even parity sector from the one with odd parity. By adding W this degeneracy is
broken for this small chain, since the boundary modes WF overlap. For a long chain
the ground states will still be degenerate and of opposite parity if we are in the
topological regime seen in figure 18.
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|ψeven〉 |ψodd〉

f †
1

f †
3

f †
2

f †
2 f †

1

f †
3

−t

t

0

Figure 31: The many-body spectrum corresponding to the 3-site Kitaev chain,
at the symmetric point without interactions. There are 8 states divided into an
even and an odd parity sector. This degeneracy is due to the presence of the zero
energy Majorana modes, and the fermion operator containing these ( f3) transforms
between even and odd parity. This spectrum will change when departing from
the highly idealised µ = W = 0, ∆ = t point.
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