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COPENHAGEN UNIVERSITY

Abstract

High Energy Particle Physics

Niels Bohr Institute

Master in Computational Physics

Observing The Universe Using The Antarctic Ice Sheet

by Peter Andresen

The IceCube Neutrino Observatory (IceCube) uses a cubic kilometre of the Antarc-
tic ice sheet to detect neutrinos. The IceCube neutrino oscillation measurements
and potential contributions to multimessenger astronomy heavily depends on accu-
rate and fast classification and reconstruction of neutrinos in real data. GraphNeT, a
Graph Neural Network (GNN) open-source Python framework founded at the Niels
Bohr Institute, has been shown to improve both classification and reconstruction of
low-energy simulated neutrinos, while speeding the process up by orders of mag-
nitude. This work shows that the method works in actual data as well. The first
large neutrino sample is classified using a GNN from "raw" lvl 2 data and compared
to a Monte Carlo neutrino selection across a range of reconstructed and calculated
variables. The comparison indicates that the sample has a high neutrino purity. The
amount of neutrinos in the clean GNN selection is compared to that of existing meth-
ods in the IceCube Oscillation work group using simulated data, suggesting that the
GNN method can generate a 50-70% larger sample at a similar purity. Implement-
ing the GNN in IceCube and increasing the neutrino rate would improve existing
analyses and potentially open up the possibility of creating early warnings for elec-
tromagnetic telescopes using low-energy neutrinos. This work also contributes to
a benchmark study trying to improve the GNN performance for high energy track
neutrinos. No significant improvements were obtained.

HTTP://WWW.UNIVERSITY.COM
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Chapter 1

Introduction

Suppose sometime in the future, intelligent aliens were to visit and explore the Earth.
In that case, the IceCube Neutrino Observatory (IceCube) in the Antarctic Ice Sheet
stands as one of the pinnacles of human achievement. Instrumenting a cubic kilo-
meter of ice in one of the most inaccessible and remote areas of Earth, simply to
explore the properties of an invisible particle is almost beyond understanding. But
the neutrino and multimessenger astronomy are interesting research topics as will
hopefully be clear in this thesis. Neutrinos are incredibly hard to measure since they
rarely interact with anything. Even with a detector the size of IceCube, very few
neutrinos are measured and they are buried in a vastly larger background of noise
and atmospheric muons. Therefore it is of utmost importance for the IceCube collab-
oration to classify and reconstruct the neutrinos as well as possible. The properties
of the neutrinos, for instance the phenomenon of neutrino oscillations, can then be
investigated. And the neutrinos can be used in multimessenger astronomy to point
to fascinating events in the universe.
This work aims to show that the Graph Neural Network (GNN), DynEdge, from the
GraphNeT framework performs classification and reconstruction tasks successfully
in a raw selection of actual data. The GNN has been shown to beat existing methods
for low energy in Monte Carlo[1], and as will be evident, it seems to successfully
classify a substantially larger neutrino selection from raw data than existing meth-
ods.

The first part of the thesis, chapter 2, contains a readers guide to be used while
reading.

The second part outlines the theory required to understand the remainder of the
chapters. It begins with chapter 3 on particle physics and neutrinos in particular.
Then follows chapter 4, dedicated to explain the purpose and workings of IceCube,
after which machine learning is introduced in chapter 5 with a focus on the methods
applied in the analysis presented in this work.

The third part of the thesis consists of two self contained result chapters. In chapter
6 contributions to a high energy northern track benchmark is presented. In chapter
7 the classification and reconstruction of neutrinos in raw IceCube data is available.
Furthermore, a comparison of data and Monte Carlo neutrinos are presented, and
the rate (amount) of pure neutrinos are compared to existing classification methods.

The final part of the thesis, chapter 8, contains a conclusion of the results and pro-
posed extensions of the analysis.
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Chapter 2

Readers Guide

2.1 How To Use This Readers Guide?

This section should not necessarily be read in full to begin with. Instead it repre-
sents an outline of some of the more important things to understand when reading
through this thesis. The reader is advised to return to it whenever he/she does not
remember what is going on. Most of the content in the readers guide will also be
introduced in the thesis itself.

2.2 What Is IceCube?

IceCube is a neutrino telescope at the South Pole, which mainly consist of a cubic-
kilometer of instrumented ice, as illustrated in figure 2.1

FIGURE 2.1: Overview of the IceCube Neutrino Telescope detector.
kindly borrowed from [2].
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2.3 What Is The Purpose Of IceCube And What Are The Chal-
lenges?

The purpose of IceCube is to observe neutrinos. These observations are for instance
used to analyse neutrino oscillation and carry out neutrino astronomy1. One of the
main challenges is that the majority of recorded events in IceCube are not caused
by neutrinos. Instead there is a substantial background caused by noise and atmo-
spheric muon.

As seen in figure 2.2, Muons cannot penetrate the Earth, which means they only
arrive from the Southern sky (down-going).

Noise has no direction, but appears as a diffuse triggering of individual detectors,
which in some cases resemble low energy neutrinos.

Neutrinos are able to travel through the Earth, thus arriving from all directions.
Finally, there are both atmospheric neutrinos and cosmic neutrinos. Atmospheric
neutrinos are generated when cosmic rays hit our atmosphere, whereas cosmic neu-
trinos are from elsewhere in the universe. At low energies atmospheric neutrinos
dominate over cosmic neutrinos, but at very high energies, the reverse is true.

FIGURE 2.2: Overview of which particles can be detected in IceCube.
Atmospheric neutrinos are created when cosmic rays hit the atmo-
sphere. Cosmic neutrinos originate elsewhere. Atmospheric muons
are the main background in IceCube, but are only down-going since
they cannot penetrate the Earth. Neutrinos arrive from all directions
and can be detected when they interact (black star) close to or in the

IceCube detector. kindly borrowed from [3].

1IceCube has a variety of other purposes, but these two are the important ones in relation to this
thesis.
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2.4 What Do Events In IceCube Look Like?

The IceCube collaboration has both simulated (Monte Carlo) and real data. Each
event in data consists of a number of DOM (individual light detector) hits, as illus-
trated in figure 2.3. It shows a high energy event in actual data, which is classified
as a neutrino in section 7.6.

FIGURE 2.3: Event signature for the event with the highest predicted
energy in the data track neutrino selection, event number 90278349.
Size of spheres represent deposited charge and color represents rela-
tive time, with dark colors as the earliest hits and light colors as the
latest hits. The noise-cleaned pulsemap SRTInIcePulses is used. If
this caption is not clear, just read ahead and everything should be ex-

plained in due time.

Although the simulated data does not match real data perfectly, it is used in this
work to train the GNN models. Two data sources are used. Low energy neutrinos,
muons and noise events from the oscillation workgroup, OscNext. And high energy
Northern track neutrinos from what is called the Snowstorm dataset.

2.5 What Does This Work Try To Improve On?

The analyses in this work is twofold, but both are related to using GNNs from the
open source framework GraphNeT, which has been shown to improve the classifi-
cation and reconstruction of low-energy Monte Carlo neutrinos[1].

The main part of this thesis is an attempt to investigate if the performance of Graph-
NeT carries over to actual data from the oscillation workgroup. An attempt is made
to classify neutrinos directly from lvl2 + DC2 "raw" data, and investigate whether
or not the selection consists of a pure neutrino sample or not. The selection is also
compared to current methods to see if GraphNeT can generate a larger neutrino
sample. Finally, the additional neutrinos that GraphNeT selects in Monte Carlo data
are analysed to see if they are of a similar quality to those from the existing method.

The other part of this thesis seeks to improve the reconstruction performance of
GraphNeT on high energy Monte Carlo track neutrinos, where the current recon-
struction is still substantially better.

2What this means will clear once you have read chapter 5.
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2.6 Why Use GraphNeT and GNNs To Do So?

GNNS are used because they are perfectly suited to the irregular geometry of Ice-
Cube and varying number of input variables. Other attempts at utilizing more com-
plex machine learning techniques include using a CNN (Convolutional Neural Net-
work), which requires you to decompose the detector into sections and rearrange
DOMs to get the input to fit the quite restricted format of a CNN.

GraphNeT is an open-source Python framework for using GNNs in neutrino tele-
scopes, which was founded at NBI and is very well made. The first GNN model,
which was implemented by Rasmus Ørsøe[1] is called DynEdge. In the analysis
sections of the thesis, the terms GraphNeT, GNN and DynEdge is used interchange-
ably, although DynEdge is an specific GNN model, which is now integrated into the
GraphNeT framework.

Recently, in an IceCube kaggle competition it was shown that combining GNNs with
Transformers3 leads to an even better performance [4]. Thus for future students, this
might be interesting to try.

2.7 Which Variables Are Important?

In this work, various reconstructed variables are of interest. The energy is naturally
important and quite self explanatory. On the other hand, the two angles that define
the incoming direction of the particles, zenith and azimuth, needs an introduction.
The zenith (polar) angle is defined as being 0 directly above IceCube, and π at the
North Pole, as seen in figure 2.4. The azimuth angle is defined from the x coordinate
in a counter-clockwise fashion as seen from the positive z direction. The z coordinate
axis points towards the surface and the y coordinate towards Greenwich.

FIGURE 2.4: Overview of the IceCube coordinate system, including
the x,y,z position and zenith and azimuth angles. kindly borrowed

from [5].

3A new machine learning techniques that add attention to GNNs, effectively allowing them to learn
which parts of the input are important for which events.
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Finally, the variable Rho is the orthogonal distance to the interaction vertex from
string number 36, which is located at (x,y) = (46.29, 34.88), approximately at the
center of the IceCube detector.

2.8 How Can The Analyses In This Work Be Replicated?

In general, if anything is unclear, feel free to reach out to the author at
peterandresen@hotmail.dk.

2.8.1 Classification And Reconstruction Of Neutrinos In Real Data

The analysis presented in chapter 7 of this work should be easy to replicate for peo-
ple with access to the HEP (High Energy Physics) server at the Niels Bohr Institute.
Python scripts for training and utilizing the GNN models can be found in this loca-
tion Analysis On GitHub. All plotting scripts are located there as well.

To be able to run the scripts that require using or training GNNs, this branch of
GraphNeT should be compatible: Compatible GraphNeT Branch.

The internal IceCube wiki page that explains the analysis presented in this work is
available here: Internal Wiki Page With This Analysis.

For the locations and details of the data used and the actual trained models, see
appendix F.

2.8.2 Northern Track Benchmark

To get started with the Northern track benchmark (Chapter 6 in this work), this
Github page contains the ongoing and finished improvement attempts: Northern
Track Benchmark Project On Github.

Otherwise, Rasmus F. Ørsøe is the main person to talk to.

https://github.com/graphnet-team/analyses/tree/main/multi_classification_on_stop_and_track_muons
https://github.com/Peterandresen12/graphnet/tree/multiclassification
https://wiki.icecube.wisc.edu/index.php/LowEnergyNeutrinoSelectionAndReconstructionWithGraphNet
https://github.com/graphnet-team/graphnet/projects/8
https://github.com/graphnet-team/graphnet/projects/8


7

Chapter 3

The Standard Model of Particle
Physics

3.1 The Standard Model Of Particle Physics

Imagine every single thing you have ever interacted with. Would it not be amazing
if these were all essentially combinations of 17 fundamental particles (not including
the antiparticles of quarks and leptons). Well that is exactly how physicists perceive
things. The standard model of elementary particles, as can be seen in figure 3.1,
contains all constituents of matter along with the particles that allow them to interact
via the weak, strong and electromagnetic force. While the gravitational force is not
included yet, the achievement is remarkable.

FIGURE 3.1: Overview of the standard model of particle physics
taken from [6] & [7]. Includes all fundamental particles, their mass,

electromagnetic charge and spin.
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3.1.1 Fermions

There are three generations of fermions, where the particles from one family (e.g
up, charm and top) exhibits much the same characteristic across generations, but
with increasing mass. The fermions are all spin 1/2 and each have a corresponding
antiparticle. The fermions are further divided into quarks and leptons.

The quarks are particles with an electromagnetic charge of either -1/3 or 2/3 and
they carry isospin. As such they interact via the electromagnetic (EM) and the weak
force. The quarks also have color charge, meaning that they also interact via the
strong force. The strong force grows with distance above a certain threshold, which
keeps the quarks contained in color neutral combinations. Thus quarks never appear
unbound naturally, a phenomenon called color confinement.

Leptons in contrast do not carry color charge and do not interact via the strong force.
They consist of the electron, muon and tau particles as well as their corresponding
neutrinos. The neutrinos are neutral particles, in contrast to the electron, muon and
tau lepton, which have an EM charge of -1. This means that neutrinos do not even
interact via the electromagnetic force, only with the weak force1, making them very
difficult to detect.

3.1.2 Bosons

If fermions are the building blocks of the universe, then bosons are what allow them
to interact. There are four vector bosons (with spin 1) and a single scalar boson (with
spin 0). The lone wolf is the higgs boson, which gives rise to the mass of all fermions,
with the exception of the neutrinos. This happens through spontaneous symmetry
breaking and is quite a complicated process, which is beyond the scope of this thesis.

The scalar bosons act as force mediators. The gluon for the strong force, the photon
for the electromagnetic force and the Z and W bosons for the weak force. All bosons
are electrically neutral except for the W boson, which can have either -1 or 1 in EM
charge. The gluon and photon are massless, whereas the W and Z boson along with
the higgs are massive.

Out of all the standard model particles, neutrinos are amongst the most interesting
and they lie at the center of this thesis.

3.2 Neutrinos

Neutrinos are some of the most sought after and lesser known particles in the stan-
dard model. This naturally arises from the fact that neutrinos only interact via the
weak force, which means that neutrino interactions are incredibly rare compared to
those of other particles. About 100 trillion pass through a human body every second
without interacting in any way whatsoever [8]. Neutrinos also behave in a man-
ner which goes beyond the standard model, making them prime candidates for new
exciting physics. They were first predicted by Wolfgang Pauli in 1930.

1Neutrinos are also expected to interact with gravity, since they have been shown to have masses.
Yet the gravitational interactions can be disregarded in comparison to the weak interactions given the
small neutrino masses.
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3.2.1 Neutrino Prediction And Discovery

The existence of the neutrino was predicted by Wolfgang Pauli in a famous letter.
It came as a solution to experimental results which were contrary to the theories of
the time. Beta decay was believed to arise from nuclear transitions, which should
emit an electron at a very precise energy. However, measurements showed that the
emitted electrons had energies across a range that only terminated at the energy they
were all expected to have. Allowing another neutral particle (the neutrino) to carry
away part of the energy was Pauli’s solution to the problem [9].

Once the solution was proposed it became a question of how to experimentally test
the idea. Since neutrinos can’t be detected directly, another method was required. C.
L. Cowan and F. Reines [10] used the process

ν̄ + p → e+ + n

and the Savannah River nuclear reactor. The experiment was carried out by letting
the reaction happen within a scintillation2 tank containing CdCl2. The neutrons slow
down and are captured by Cd, which produce a photon. The positron also slows
down and annihilates with an electron, producing a pair of photons. The light was
then captured by photo multiplier tubes (PMTs) [9], in much the same way as we
will see happens in the IceCube detector.

In order to detect neutrinos more generally, one must understand the type of inter-
actions they can participate in.

3.2.2 Neutrino Interaction Types

Given that neutrinos only interact via the weak force3, they necessarily do so through
either a Z or a W boson. Since the W boson is charged, this is called the charged
current (CC) interaction, leaving the Z boson to mediate the neutral current (NC) in-
teraction. Both interactions are illustrated in the Feynman diagram vertices in figure
3.2. Depending on the energy of the neutrino, the reactions with nucleons can be
"elastic, quasielastic, inelastic or deep inelastic scattering"[11], which determines if
the neutrino interact with the overall nucleus, a particular proton/neutron or a sin-
gle quark. The interactions produce secondary particles, which are then detectable
in the IceCube detector4.

2Scintillation is when a luminescent substance is hit by a particle and re-emits the energy as light.
3Their masses are so small that gravity in essence does not play a role for neutrinos.
4See section 4.5 for details on detector signatures for each interaction type and neutrino flavor.
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FIGURE 3.2: Schematic representations of the CC (a) and NC (b) weak
force interaction vertices for neutrinos. l is a lepton and ν is an neu-
trino. α represents the flavor, which can be electron, muon or tau
(e, µ, τ). The processes can also happen with antiparticles, in which

case (a) is mediated by W+. Kindly borrowed from [12].

Neutrinos are quite fascinating particles. Even when they do not interact with other
matter, they exhibit an interesting behavior called neutrino flavor oscillation.

3.2.3 Neutrino Flavor Oscillation

Neutrinos were at first thought to be mass-less, but this has since been disproved by
the observation of neutrino flavor oscillation. Neutrinos are measured in their weak
force flavor eigenstates, electron (e), muon (µ) and tau (τ). However, these eigen-
states do not have definite mass and are instead combinations of the mass eigen-
states (1), (2) and (3).

The unitary matrix that relates the two bases of eigenstates are called the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix, which contains three mixing angles (θ12, θ13
& θ23) and a single complex phase δCP. CP refers to the fact that the phase violates
charge-parity symmetry, which is very important5, but beyond the scope of this the-
sis.

The PMNS matrix can be written in the following form6 [14]:

U =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e−iδCP

0 1 0
−s13eiδCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1


Which resembles three rotation matrices. Note that cij = cos(θij), sij = sin(θij).

The PMNS matrix relates the flavor eigenstates to the mass eigenstates as[14]:νe(x)
νµ(x)
ντ(x)

 = U∗

ν1(x)
ν2(x)
ν3(x)


5"The observed imbalance or asymmetry in the matter-antimatter ratio may have been produced by

the occurrence of CP violation in the first seconds after the big bang(...)"[13].
6It should be mentioned that in the case of the neutrino being considered a Majorana particle, two

additional complex phases are involved. However, they do not change the oscillation probabilities
[14].
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Where the * refers to the complex conjugate transpose of the matrix. Once a neutrino
is produced in a weak interaction, it is a in a flavor eigenstate. However, it propa-
gates through vacuum in terms of its Hamiltonian mass eigenstates, since these have
definite mass and as such energy [14]. Given that each mass term is different, the
configuration of mass states changes, allowing the probability of observing the neu-
trino in a particular flavor eigenstate to oscillate. Mathematically it can be written
as[14]:

|ν(t)⟩ = ∑
i

U∗
αie

−iEit|νi⟩

Deriving the full probability of observing the flavor states for the three state system
becomes a bit involved 7, but the resulting formula in the case of a two-state neutrino
system is quite illuminating. There is only a single mixing angle θ, and it is written
as[14]:

P(να → νβ) = sin2(2θ)sin2
(

∆m2L
4E

)
As can be seen, there would be no neutrino oscillations, if their masses were identical
(which would definitely be the case if they were mass-less). The oscillation probabil-
ity depends on the energy of the neutrino, as well as the length it has travelled. These
relations are important in the oscillation experiment in the IceCube group, where the
appearance of the tau neutrinos from the northern atmosphere is investigated.

The amount of each flavor eigenstate there is in the mass eigenstates, is visualized in
figure 3.3. It shows that the electron neutrino is mainly in the first and second mass
eigenstate, while the muon and tau are composed of quite even distributions, being
more predominant in the third mass state.

FIGURE 3.3: (left) The distribution of neutrino flavor eigenstates in
each of the mass eigenstates. (right) schematic overview of the nor-
mal and inverted neutrino mass schemes. Both are kindly borrowed

from [14].

Somehow it would be intuitive to assume that the electron neutrino is the lightest
(like the electron is lighter than the muon and tau), and as such that the first neutrino
mass eigenstate has the lower mass. But given that the mass difference is squared,
we cannot know for certain. There are two distinct mass schemes that give rise to the
same oscillations. They are called normal and inverted ordering, and are represented

7It can be found here [14].
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graphically in figure 3.3. The exact values of the oscillation angles as well as the
squared mass differences are reported in table 3.1.

Normal Ordering Inverted Ordering

θ12[
◦] 33.44+0.78

−0.75 33.45+0.78
−0.75

θ23[◦] 49.0+1.1
−1.4 49.3+1.0

−1.2

θ13[
◦] 8.57+0.13

−0.12 8.61+0.12
−0.12

∆m2
12[10−3eV2] 7.42+0.21

−0.20 7.42+0.21
−0.20

∆m2
3l [10−3eV2] 2.514+0.028

−0.027 −2.497+0.028
−0.028

TABLE 3.1: Current best fit oscillation parameters. Note that ∆m2
3l

= ∆m2
31 for normal ordering and ∆m2

3l = ∆m2
32 for inverted ordering.

Kindly borrowed from [15].

To carry out the experiments that measure the oscillation parameters, one must be
able to detect neutrinos in the first place.

3.2.4 How To Spot A Neutrino In the Wild? - Cherenkov Radiation

Cherenkov radiation was, as the name suggest, discovered by P. A Čerenkov in 1934
[16]. When charged particles move in a polarizable medium, they excite the station-
ary molecules, which then radiates energy in the form of light in spherical waves
(seen from the stationary medium) as they relax back into their ground states. If the
particle moves faster than the phase speed of light in the medium, these spherical
waves experience constructive interference along a cone shape with the pointy end
in the particles path as illustrated in figure 3.4 [17].

FIGURE 3.4: Illustration of Cherenkov Radiation, where constructive
interference of spherical waves give rise to a cone-shape of light in
the path of a charged particle moving faster than the speed of light in

a medium. Kindly borrowed from [17].

The angle with which this happens, θ on the figure, depends on the speed of the
particle (vp) as well as the speed of light in the medium: vc = c

n , where n is the
refractive index of the material. If we consider it in classical terms (disregarding
special relativity), after time t, the wave has a radius of t ∗ vc, whereas the particles
has moved t ∗ vp. From the illustration and simple trigonometric relations, the angle
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θ is given by

θ = ArcCos
( t ∗ vc

t ∗ vp

)
= ArcCos

( vc

vp

)
= ArcCos

( c
vp ∗ n

)
This formula becomes slightly more complex with special relativity effects. Fur-
thermore, the formula only holds when the particle propagates faster than the light
phase speed, since otherwise cos(θ) > 1, which is not feasible. Or said without
math, if the particle does not move fast enough, the spherical waves do not exhibit
constructive interference in a coordinated manner [17].

It is most fortunate that the phenomenon of cherenkov radiation exists, since the
IceCube and other large-scale neutrino experiments rely on it to observe neutrinos.
They are not directly observable, but the charged daughter particles from neutrino
interactions send out cherenkov radiation, which can be detected. Unfortunately
there are quite a lot of other charged particles in the detector, besides daughter par-
ticles from neutrino interactions. Most of them originate in air showers caused by
cosmic rays.

3.3 Cosmic Rays And Air Showers

Now one might be left thinking that the task of finding neutrinos using the cherenkov
radiation from the charged leptons, they create or set in motion should be relatively
straight forward. However, the wast majority of cherenkov radiation in the detector
comes from air showers that are caused by cosmic rays.

Cosmic rays are high energy charged particles (90% protons, 9% alpha particles &
1% heavier nuclei). Their origin is a field of active research, which the IceCube col-
laboration contributes too, as will be detailed in section 4.1.2.

Once the cosmic rays hit the atmosphere, they interact with the air molecules (mainly
nitrogen and oxygen) and cause a cascade of daughter particles called an air shower.
These air showers have different components, which are illustrated in figure 3.5.

FIGURE 3.5: Illustration of the different components that make up
air showers, which are caused by high energy cosmic rays. Kindly

borrowed from [18].
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The electromagnetic component is caused by photons and electrons, which multiply
by pair production (i.e photon creating an electron positron pair) and slow down due
to bremsstrahlung (radiation of energy when a particle is accelerated/decelerated)
[18]. This component is not very important in IceCube, since the particles do not
reach the detector. At best, they can signal that an air shower took place if they are
detected at the surface.

The hadronic component mostly consist of mesons (bound states of two quarks),
where the pions are predominant; π+, π−, π0. They interact with each other and
the nucleus’s and nucleons in the atmosphere. The neutral pions quickly decay and
contribute to the electromagnetic component in the following two ways [18]:

π0 → γ + γ (98.8%)

π0 → e+ + e− + γ (1.2%)

The charged pions survive for longer, interacting with the atmosphere and generate
more pions before finally decaying once the energy is low enough in this manner
[18]:

π± → µ± + νµ/νµ

As such, the charged pions contribute to the muon/neutrino part of the air showers,
which are crucial to understand the background in the IceCube detector. The muons
travel quite far in ice, allowing those with enough energy to penetrate to the actual
detector. Similarly these atmospheric neutrinos can be detected in IceCube, which is
interesting for neutrino oscillation measurements. On the other hand they serve as
a background over cosmic neutrinos up until very high energies.

Having understood what neutrinos are and how they can be observed, lets turn to
the purpose and properties of the IceCube Neutrino Telescope.
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Chapter 4

The IceCube Neutrino Observatory

4.1 The Purpose Of IceCube

IceCube was designed with several purposes in mind. In part it explores the prop-
erties of neutrinos, contributing to e.g oscillation measurements [19][20][21]. But
perhaps as importantly it observes the universe using neutrinos. The weakly inter-
acting nature of neutrinos makes them appropriate for directional pointing, trav-
elling straight from the source, unobstructed and without scattering until they in-
teract in the detector [19][22][23][24]. In addition to this, the IceCube Experiment
also searches for exotic physics beyong the standard model, such as sterile neutrinos
and dark matter [25][26][27][28][29]. Below follows an introduction to a selection of
interesting research areas IceCube contributes to.

4.1.1 Neutrino Oscillation

Understanding the properties of neutrinos lie at the foundation of the IceCube mis-
sion. The OscNext group in IceCube carries out neutrino oscillation measurements.
The IceCube detector is suited to measure muon neutrino disappearance in atmo-
spheric neutrinos generated when cosmic rays hit the atmosphere. If there were no
oscillation, all neutrino types should appear approximate uniformly from any direc-
tion in the detector. However, for energies of 5-60GeV, the diameter of the earth
is enough to induce a significant probability for muon neutrinos to oscillate to tau
neutrinos [20]. The IceCube observatory contributes with measurements of ∆m2

32
and θ32

1, using higher energy neutrinos than more classical accelerator-based exper-
iments, where the neutrinos are generated in particle accelerators [21].

The experiment design is illustrated in figure 4.1. The zenith angle acts as a mea-
sure of the distance the neutrino travels from it is generated at the atmosphere to the
IceCube detector. This along with the energy of the neutrino determines the proba-
bility of muon neutrinos to be measured as tau neutrinos once they hit the detector.
It should be noted, that the figure 4.1 (b) is an ideal illustration, which is distorted
by matter effects in real measurements.

1∆m2
32 and θ32 were introduced in section 3.2.3.
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FIGURE 4.1: a) Illustration of the principle behind the neutrino oscil-
lation experiment in IceCube. b) The expected measurement results
shows that the probability of muon neutrinos oscillating to tau neu-
trinos depends on the travelled distance (the zenith angle) as well as
the energy of the neutrino. This is an idealised figure, whereas the ac-
tual measurements are distorted by matter effects. Kindly borrowed

from [12].

4.1.2 Neutrino Astronomy And Cosmic Alerts

Neutrinos interact so weakly that if the direction they come from is reconstructed
perfectly, it points directly back to their source. That is, if you can actually detect
them. In order to significantly "see" anything using neutrinos, a massive instrument
such as the IceCube is required, simply from the need to have enough interactions
within the detector [24]. Cosmic neutrinos (not atmospheric) can be a great con-
tribution to multi-messenger astronomy, in which astronomical events are observed
using different particle types. If neutrinos are reconstructed real-time, they can serve
as early warnings for traditional EM telescopes, which can then point in the right di-
rection. This is possible since neutrinos often arrive prior to the light emitted from
high energy events in the universe [24] [30].

The Icecube Experiment has several cosmic alerts in place. The HESE alert triggers
on single high-energy track neutrinos starting within the detector and the EHE alert
similarly triggers on single extremely high energy track neutrinos originating on the
northern hemisphere (going through the earth).

Besides from single neutrino alerts, Icecube has what is called the "Gamma-Ray, Op-
tical and X-Ray Follow-up" [30]. Here, Icecube searches for bursts of neutrinos that
are correlated in time and space, in such a manner that there is reason to believe that
they originate at an interesting source, which electromagnetic telescopes can then
point towards. The type of alert that is sent depend on the time-frame of the sig-
nal. Up to 100 seconds gives optical and x-ray alerts (OFU) and up to three weeks
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gives gamma-ray alerts (GFU) [30]. Given the background of muons from the south-
ern hemisphere and atmospheric neutrinos, only quite high energy cosmic neutrinos
are considered for these alerts. This is due to the fact that only at high energies, do
cosmic neutrinos dominate over muons and atmospheric neutrinos[30].

Finally IceCube also searches for the collapse of nearby stars, so-called supernovas.
They send out massive bursts of neutrinos with O(10MeV) energy. Although Ice-
Cube cannot detect these neutrinos individually (being 3 orders of magnitude below
its sensitivity), it can detect the general increase in DOM activity that results, if the
supernova is close enough to Earth. Furthermore, with its size and dark location,
IceCube is optimal for detecting these low energy neutrino bursts [31].

Alerts are either issued publically or privately. In the case of the high energy HESE
and ESE alerts, the Astrophysical Multimessenger Observatory Network (AMON)
is used to access the Gamma-ray Coordinates Network (GCN) to share the alerts
publicly [30]. Gamma-Ray, Optical and X-Ray Follow-up alerts are sent privately
through the same channels to other telescopes that have an agreement with IceCube.
The search for supernovas are the oldest alert and is broadcast trough the Supernova
Early Warning System (SNEWS), in which other neutrino detectors participate as
well[31].

Understanding the sources of extra-galactic and galactic neutrinos as well as cosmic
rays are of importance in itself. In figure 4.2, an overview of the current neutrino flux
spectrum (measured or theorized) along with their estimated sources is available.

FIGURE 4.2: Overview of the flux (measured or theorized) of neutri-
nos and their estimated origin as a function of energy. Kindly bor-

rowed from [32].

Currently it is believed by some that galactic rays could be originating in supernova
remnants, whereas extragalactic cosmic rays come from supernovas or active galac-
tic nuclei (AGN) [24]. The Icecube is sensitive to Supernova bursts, atmospheric and
cosmogenic neutrinos as well as those from AGN.
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The IceCube experiment has already published astronomic results. In 2017 IceCube
made the first measurement that suggested high-energy neutrinos could originate
in flaring blazers. A blazer is an AGN which happens to have its ray of relativistic
particles pointed towards earth [33]. A single neutrino with an energy of ∼270 TeV
was observed and its direction pointed towards the known gamma-ray blazar TXS
0506+056. IceCube sent out an alert and more than 20 observatories witnessed that
the blazer was in a flaring state [33]. The actual event in the IceCube detector can be
seen in figure 4.3 and is a perfect example of a high energy track event. Prompted
by the discovery, IceCube analysed all its prior data and found a significant excess
of neutrinos from the direction of the blazer. This makes it even more probable that
blazers are the first detected source of high energy neutrinos besides the sun and
supernovas [34].

FIGURE 4.3: View of the event that pointed towards the TXS 0506+056
blazer. The colors indicate the time of DOM hits and the size of
spheres represents the charge deposited. The event is estimated to
have had an energy of ∼270 TeV and passes completely through the

detector. Kindly borrowed from [33].

More recently in 2022, IceCube published results indicating that the active galaxy
NGC 1068 is a source of neutrinos, having found an excess of TeV range neutrinos
of approximately 79. This direct observation through a large number of neutrinos
further establishes AGNs as a source of high energy neutrinos [23].

Improving the astronomic properties of IceCube can be achieved through a better,
faster reconstruction. A better angular resolution would improve detection signifi-
cance and expand the search range. Furthermore, accurate high speed low energy
reconstructions could allow for early warnings from low energy neutrinos. This the-
sis attempts to contribute to a better reconstruction for high energy track-like neu-
trinos (Chapter 6) as well as fast accurate classification and reconstruction for low
energy neutrinos (Chapter 7).

4.1.3 Exotic Physics Beyond The Standard Model

The IceCube detector is able to search for more exotic things than neutrino oscillation
and point sources. Two examples are dark matter and sterile neutrinos.

It is generally agreed that a large proportion of the matter in the universe is com-
posed of dark matter, the nature of which we poorly understand. There are various
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models that try to explain the phenomenon, one of which the IceCube experiment
can contribute to testing. Namely the Weakly Interacting Massive Particles (WIMPs),
which is predicted by "supersymmetric extensions of the Standard Model" [27]. How
and where does one look for WIMPs then? They do not interact in a way that allows
us to measure them directly. Instead, we look for decay or annihilation products
(especially neutrinos) from places in which there is a surmount of dark matter [26].

It is theorized that WIMPs can become gravitationally trapped within the core of
heavy astronomic objects. Therefore the IceCube detector was used to search for
them within the core of the sun [25]. Another study searched for a neutrino excess
from the core of the earth [26], while a third investigated the dark matter halo in
the milky way [28]. None of the studies resulted in a detection of a significant ex-
cess hinting at WIMPS. But they successfully set upper limits on the self-annihilation
cross-section and the WIMP-nucleon cross-section. There are still hopes for detect-
ing WIMPs, when the planned IceCube upgrade is installed and the search can be
extended downwards in energy [26].

For reasons that are beyond this thesis, so called sterile neutrinos have been theo-
rised. Interacting only via gravity, they are even less participating than their normal
companions, which at least also interact via the weak force. IceCube participates in
the search for sterile neutrinos of eV scale energy, which could "manifest itself as a
resonant, matter-enhanced flavor transition for either muon antineutrinos or muon
neutrinos traversing the core of the Earth" [29]. If they exist, IceCube should detect
fewer muon antineutrinos at an energy magnitude of TeV. IceCube cannot distin-
guish neutrinos from antineutrinos, and has to look for an overall deficit in muon
neutrinos [29]. Recent published results suggest that there are no such sterile neutri-
nos within the energy range IceCube investigates [35].

Having understood some areas of IceCube research, lets turn towards the practical-
ities of searching for neutrinos in the South Pole ice sheet.

4.2 The IceCube Detector

Since neutrinos are inherently difficult to observe, creating a detector with that pur-
pose was never going to be an easy task. Yet that is exactly what the IceCube Col-
laboration, which includes hundreds of physicists from 14 countries, have achieved.
But where does one go about making such an apparatus. It turns out that the clear
ice properties on the South Pole are perfectly suited [22].

4.2.1 Geometry Of The Detector

The Icecube detector is made up of a part on the surface (IceTop) and one within
the ice that consists of DOMs (Digital Optical Modules), which are distributed on
strings throughout approximately one cubic kilometer of ice as illustrated in figure
4.4.
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FIGURE 4.4: Overview of the IceCube detector. The green dots rep-
resent normal IceCube strings whereas the red strings represent the
additional DeepCore strings that are more densely instrumented.

kindly borrowed from [19].

The original part of the IceCube detector (green strings in fig. 4.4) are made up of 80
strings on a 125 meter grid. Each string has 60 DOMs with a vertical spacing of about
17 meters located at a depth of 1450-2450m. These strings allow IceCube to detect
neutrinos of about 100 GeV and above [24]. To extend the energy sensitivity down
to about 10 GeV, eight DeepCore strings were added (red strings in fig. 4.4). They
are about 55 meters apart and have 50 DOMs below the dust layer2 with a vertical
spacing of about 7 meters as seen in figure 4.5. They also have 10 veto DOMs above
the dust layer with a vertical spacing of 10 meters. Six of the DeepCore strings have
special high quantum efficiency (HQE) DOMs [36].

2A section of Ice where the optic properties are worse than the rest, due to a higher concentration
of dust.
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FIGURE 4.5: Overview of the IceCube detector from [36]. Photo
shows the vertical spacing of DeepCore and traditional strings in-

cluding the DOM positions above and below the dust layer.

IceTop

The IceTop array is an extensive air shower detector. It consists of 81 stations, each of
which has two tanks spaced 10 meters apart. Each IceTop station is placed "on top"
of one of the strings that are connected to the deep array, as can be seen in figure 4.6
[37].
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FIGURE 4.6: Overview of the IceTop array. Each IceTop station con-
sists of two tanks, A and B, which contains two classic DOMS for

detecting air showers. Kindly borrowed from [37].

The IceTop tanks contain two classical DOMs, suspended in clear ice, which is used
to detect the Cherenkow radiation from charged particles in air showers, as illus-
trated in figure 4.7.

FIGURE 4.7: Illustration of the two DOMs that are inside each IceTop
tank. Kindly borrowed from [37].

The IceTop array is mainly used to study the atmospheric air showers. But interest-
ingly it can also act as a veto for the deep detector array. As was seen in section 3.3,
muons are created by cosmic ray air showers and can travel all the way into the deep
IceCube detector, causing a massive muon background. Some of the muons can be
filtered away, since they are also detected in IceTop or their timing is consistent with
an air shower [18].

4.2.2 Digital Optical Modules

The DOMs are designed to measure the Cherenkov radiation (light) emitted by the
charged particles that pass through the detecter at relativistic speeds. DOMs are
sperical glass containers whose main measurement device is a photomultiplier tube
(PMT) that detect the incoming photons. The DeepCore HQE DOMs have a more
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sensitive PMT, which increases the likelihood of triggering on lower neutrino ener-
gies [36]. The DOMs also contain an LED which is used for calibration, as well as a
power supply and mechanics to store signals. The DOMs are connected on strings,
which are essentially caples that allow the DOMs to communicate with the IceCube
Laboratory (ICL) on the surface [38].

4.2.3 Planned Upgrade of IceCube

A plan exists to upgrade the current detector with 700 new DOMs on seven new
strings withing the current DeepCore array. The upgrade will expand downwards
the energy sensitivity to a few GeV, and allow for more precise measurements of
the tau neutrino appearance. Furthermore, it will improve the calibration and un-
derstanding of the ice properties through new calibration devices [39]. Instead of
deploying more of the classical DOMs, the existing model has been improved and
two new types have been developed. All three are visualized in figure 4.8.

FIGURE 4.8: Illustration of the planned DOMs in IceCube upgrade.
Image kindly borrowed from [40].

The pDOM is very similar to the current IceCube DOM, but features upgraded elec-
tronics. In contrast, the D-EGG has two slightly smaller, but high QE PMTs, pointing
upwards and downwards, effectively allowing the D-EGG to detect particles from
both directions [41]. Perhaps more importantly, it features a calibration LED, which
will be used to probe the properties of the "hole ice". When the ice was melted and
strings were inserted for the detector, the re-frozen ice properties became different
from the surrounding ice, with for instance a higher concentration of air bubbles.
This has been shown to have a large systematic effect, which can be reduced using
the calibration system of the D-EGGs [42].

The other new DOM type is the multi-PMT DOM (mDOM), which features 24 PMTs
uniformly distributed on a sphere. This allows for a single mDOM to obtain infor-
mation on which direction the particle was propagating, simple from detecting the
same signal using multiple PMTs [43].

The three DOM types will also be used in the future IceCube Gen2, which will ex-
pand the detector volume to 8km3, improving the detection and increasing the sen-
sitivity for high energy neutrinos [44].
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4.2.4 Detector Triggering, Noise Cleaning and Pulsemaps

How then, does an event in IceCube actually get recorded. To understand this, one
must know how a single DOM is triggered. Each DOM is calibrated every year and
a voltage threshold is established, which has to be exceeded for a single multiplicity
trigger (or a hit) to be recorded. Furthermore, once a DOM is triggered, it communi-
cates with its nearest neighbours, to check if any of them were also hit within ±1µs.
If that was the case, the hit is recorded as a hard local coincidence (HLC) and other-
wise as a soft local coincidence (SLC). Depending on the type, different waveforms
(voltage as a function of time) are recorded3 [12]. The waveforms are also converted
into a pulse-series, which contains a discrete number of pulses (each carrying a spe-
cific time and charge).

Filters are then applied to select events of relevance to the IceCube working groups.
For instance, a typical high energy filter is requiring more than 8 hits, either SLC or
HLC. For the oscillation group, the DeepCore filter is used. This requires more than
three hits. The filter then applies a Seeded Radius-Timing (SRT) and a Time Window
(TW) cleaning. The SRT cleaning starts with the HLC hits and includes SLC hits that
are within a radius and time around the hit, such that it could be causally related.
These hits are then included in the post-cleaned selection and the process repeats
up to three times [45]. The TW cleaning simple removes pulses outside a specific
interval around the event trigger time. Finally in the DeepCore filter, another veto
is applied, which checks to see if any of the hits near DeepCore could be causally
related to those nearer to the edges (thus potentially coming from a muon crossing
the detector)[45].

The event information is recorded in so-called pulsemaps, which contain informa-
tion about the DOM hits. For each event, there are several pulsemaps that corre-
sponds to different methods of removing noise. Further details on the IceCube data
is presented in section 4.3.

4.3 IceCube Data

The data from IceCube is written in a format called I3 files. Each event in the de-
tector, i.e a single instance of connected DOM triggers is saved individually and
contains a variable number of hits (when a DOM detects a photon). For each hit, the
seven variables in table 4.1 are recorded and will be used as inputs to the machine
learning in this project.

3More information on the waveforms can be found here: [12].
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Variables Description

Dom_x X position of the DOM relative to the center of the IceCube detector array

Dom_y Y position of the DOM relative to the center of the IceCube detector array

Dom_z Z position of the DOM relative to the center of the IceCube detector array

Dom_time The time the DOM was hit relative to the first hit in the event

Charge
The charge that was recorded by the PMT in the DOM, which is related
to the number of photons it was hit by

rde
A measure of the relative quantum efficiency of the DOM, which is the
sensitivity to photons. Two possible values, one for normal DOMs and
a higher for specific HQE DOMs on some DeepCore strings

PMT_area The area of the Photomultiplier tube

TABLE 4.1

In order to understand IceCube data, detailed simulations are run to create Monte
Carlo data.

4.4 IceCube Simulation Methods

4.4.1 GENIE (Neutrinos)

GENIE is a neutrino event generator which is used in a multitude of neutrino ex-
periments, including IceCube. It relies on Monte Carlo simulations to generate neu-
trino events across a wide range of energies from MeV to PeV [46]. The GENIE
simulation is object-based and separates the mechanics of the simulation from the
physics models. It incorporates nuclear physics (relativistic fermi gas model), cross
section models (which determines what interactions take place and the kinematics)
and neutrino-induced hadronic multiparticle production modeling (which models
the hadronic showers that are produced from interactions) [46]. The GENIE simula-
tion is used in the oscillation analysis of the IceCube experiment and it is the basis
of all neutrino events used in this work.

4.4.2 MuonGun (Muons)

Muongun [47] is an efficient muon simulation tool, which relies on the more ad-
vanced Corsika [48] air shower simulation. Using a cylinder generator volume,
which is illustrated in figure 4.9, each muon from a Corsika simulation that passes
the boundaries of the volume are investigated. They are then only simulated if they
pass through DeepCore. Afterwards the muon distributions are weighted such that
they match those of Corsika as closely as possible [47].

There are two caveats of using muons from MuonGun. First, they are only kept if
they point towards DeepCore. This makes sense if the analysis is neutrino oscilla-
tion, which requires deepcore precision, but it might not be optimal for other aims.
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Furthermore, the muons are simulated individually, which means that it is not pos-
sible to have multiple muons hitting the detector in a single event. This occurs in
about 10% of real events, which could make the comparison between real data and
our simulated events problematic. MuonGun is used in this work, since the events
were already available from the OscNext analysis.

FIGURE 4.9: Illustration of the MuonGun simulation method, which
only simulates single muons from Corsika that pass through the gen-

erator and aims towards Deepcore. Image taken from [47].

4.4.3 Vuvuzela (Noise)

The noise simulations used in this thesis comes from the tool Vuvuzela. It was de-
veloped in response to the need for better noise modelling after the installment of
DeepCore, given its higher sensitivity and less energetic events [49]. Noise had pre-
viously been estimated as a uncorrelated Poisson process, which turned out to be in-
sufficient. It was evident that sometimes noise hits would happen in "bursts" within
the same DOM [49] and that there was a temperature-dependent part of the noise,
both of which could not be captured by existing models [49].

The Vuvuzela noise model tries to capture these effects. It consists of three parts. "the
uncorrelated thermal noise, the uncorrelated radioactive noise, and the correlated
scintillation noise" [49]. The first part is the classical Poisson process but temperature
dependent. The second part is another Poisson process, but for radioactive decay
in the glass of the DOM and PMT. These decays give rise to particles, which then
trigger the scintillation process in the glass and creates light. The number of hits
is characterized by another Poisson distribution independently estimated for each
DOM and the time between hits come from log-normal distributions which are also
evaluated from data. In the end, using the vuvuzela noise model improved the
agreement between simulated and real data [49].

4.5 Types of Events - Tracks Vs Cascades

All neutrinos are not created alike. Therefore they also do not leave the same im-
pression on the IceCube detector. In general there are two types of event signatures,
called tracks and cascades. Depending on the flavor and interaction type (CC vs
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NC), the neutrino interactions produce either of the two signatures as specified in
figure 4.10.

FIGURE 4.10: Overview of the types of detector signals each interac-
tion type generates, depending on the neutrino flavor. Kindly bor-

rowed from [50].

In neutral current interactions the neutrino generally transfers a third of its energy to
a quark in the ice, "producing a short (∼5m) shower of relativistic charged particles"
[51], which results in a cascade-like shape of light which is detectable in IceCube.

Charged current interactions are different in nature. They produce an initial hadronic
cascade of particles, along with a lepton of the same flavor as the incoming neutrino
[51]. CC muon neutrino interactions generate a long lived muon, which can traverse
up to kilometers of ice [52]. Given that the muon propagates faster than the speed
of light, it can outrun the cherenkov radiation of the initial hadronic cascade which
is also produced in the interaction, resulting in the characteristic track-like pattern
[53].

The CC electron neutrino interaction creates an electron which results in an elec-
tromagnetic cascade, since the electron is easily scattered and loses energy quickly.
Finally the tau neutrino CC interaction creates a tau, which would in principle leave
a track, but simply does not live long enough to travel far enough in ice to be ob-
servable4. Instead the tau decays to either an electron (83%) creating an EM cascade,
or a muon (17%) which then leaves a track if it has enough energy[51].

In principle if the tau neutrino has enough energy, it could generate a so-called
double-bang signature, where the first bang is the initial hadronic cascade, and the
second is the EM cascade that is produced when the tau has travelled a distance and
decays to an electron. This has not yet been observed in IceCube[54]. The event
signatures are visible in figure 4.11.

4At least for energies below a few tens of PeV.
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FIGURE 4.11: Example of the types of event signatures that are ob-
servable in the IceCube detector. (left): track. (middle): cascade.
(right): double-bang. The double-bang is a simulated event, whereas

the others are real data events. Kindly borrowed from [54].

To arrive at a pure neutrino sample that can be analysed, the IceCube data goes
through a series of cleaning steps in the OscNext group.

4.6 Oscnext Selection Levels

The oscillation group at IceCube, OscNext, relies on a data cleaning process which
are ordered in levels to get a pure neutrino selection. The rate of each particle type
at each cleaning level can be seen in figure 4.12.

FIGURE 4.12: Survival rate for each particle type in the event selection
levels used by OscNext. From the left, the names are also referred to
as lvl2 + DC, lvl3, lvl4, lvl5, lvl6 and lvl7. Kindly borrowed from [12]

The selection levels are presented below and further information is available here:
[12][45]

2. Level 2 is the IceCube wide initial event selection, which is used as a basis
across the collaboration. In the OscNext group, a DeepCore filter is added,
which seeks to remove atmospheric muons, by investigating if hits in the veto
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region of the detector (everything that is not around DeepCore), is likely to
have caused any hits in the fiducial region (around DeepCore).

3. Level 3 uses a selection of simple cuts to improve the similarity between sim-
ulated data and actual data. The cuts remove the obvious muon and noise
events which are easily identified. It relies on variables such as the number of
cleaned DOM hits, z-coordinate of first cleaned DOM hit, number of hits, time
duration of events etc. The level 3 selection also seeks to remove coincident5

events, which are not present in the simulated data. The level 3 cuts will turn
out to be important to the results in this work and we will return to it in section
7.5.

4. Level 4 consist of simple machine learning algorithms called Boosted Decision
Trees (BDTs)6, more specifically LightGBM’s version. At this level, it is thought
that data/MC agreement is sufficient to yield good results. Two individual
classifiers are trained, one selecting noise and one selecting muons.

5. Level 5 uses another two sets of cuts. One of which tries to remove events that
happen at the edge of the fiducial volume. The other is a corridor cut, which
removes events where muons could have passed through one of the "channels"
with few detectors in IceCube as illustrated in figure 4.13.

6. Level 6 is where the first real reconstruction happens. RetroReco (described
in section 4.7.1) is applied as well as two BDT classifiers, one to identify the
remaining muons and one to identify tracks (CC µnu) from other neutrino in-
teractions. At this level only a few events are removed, due to a bad recon-
struction.

7. Level 7 uses the level 6 reconstruction to try and remove the sneaky muons,
using the reconstructed variables and another BDT. Finally the flavors of the
remaining neutrinos are classified and the event selection is finished.

FIGURE 4.13: Example of corridors with thinly instrumented ice
where muons can enter DeepCore without being detected before.

Kindly borrowed from [12].

IceCube also relies on precise reconstruction methods to specify event properties
such as energy and direction.

5More than one particle hitting the detector simultaneously.
6See section 5.2.1.
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4.7 IceCube Reconstruction

IceCube has multiple reconstruction and classification algorithms, two of which
are used as benchmark to compare this work against. RetroReco (low energy) and
SplineMPE (high energy).

4.7.1 RetroReco (Low Energy)

RetroReco is a low energy likelihood table-based reconstruction algorithm, used by
the oscNext group. It is computationally intensive, taking about ∼ 40s per event7,
which is why it is not used prior to level 6 in the selection process [55].

RetroReco relies on four main parts: "light survival probability tables, event hypoth-
esis, likelihood function and optimizer"[55]. Firstly, for each DOM, there are large
tables that contain the survival probability of photons, as a function of e.g the angles
of the direction they are emitted in. Having a single table for each DOM is too mem-
ory intensive, which means that they are grouped in clusters with similar properties.

The hypothesis of the events are constructed using eight variables, the vertex posi-
tion and time, the potential track length and cascade energy as well as the incoming
zenith and azimuth angles. Finally Retro relies on a likelihood function that accounts
for the probability of observing said charge in the DOMs at the specific times and an
optimizer to maximize said likelihood[55].

4.7.2 SplineMPE (High Energy)

SplineMPE is another reconstruction method specifically designed for muon tracks
at high energies. It uses GPUs to produce "very fine binned Cherenkov light distribu-
tions [...] for all muon configurations."[56]. To reduce memory, a multidimensional
spline was fit to the distributions, which is basically a tool to smooth out curves
or surfaces between points. These splines are then used in likelihood optimisation
as the probability density function [56]. SplineMPE is e.g used to reconstruct high
energy nothern tracks (CC muon neutrinos coming from the northern sky).

In chapter 6, GraphNets performance against SplineMPE on these tracks are inves-
tigated and sought optimised. But before that is possible, an understanding of ma-
chine learning in general and our model in particular is required.

7As people who do machine learning are wont to point out, this can be sped up by several orders
of magnitude, while hopefully achieving as good a reconstruction. Stay tuned for section 7.4.
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Chapter 5

Machine Learning

Machine learning is a discipline in which computers are "taught" to perform specific
tasks, which they can often do with greater success than humans. Machine learning
has greatly developed in recent decades to a point where it is now applicable within
fields as varied as medicine, physics and finance. Here follows a quick introduction
to machine learning in general and a deep dive into the particular methods applied
in this work.

5.1 Supervised Vs Unsupervised

Machine learning can generally be classified as either of two categories1, supervised
and unsupervised learning. The main difference between the two are whether the
computer is trained on data where the truth is known or not [57].

In supervised learning, the computer is trained on data with a truth value and the
goal is to predict as accurately as possible while remaining general enough to work
on new data2. Supervised Learning consists of two main categories, regression and
classification, both of which are applied in this thesis[57].

Regression is using the input data to try to predict a numeric value, such as the en-
ergy or incoming angles of a neutrino hitting the IceCube detector. The continuous
output is what distinguishes it from the other type of supervised learning; classifi-
cation. Classification is used to try to predict into which category a sample falls. A
classical example in IceCube is determining if an event in the detector is noise, an
atmospheric muon or a neutrino interaction[57].

Unsupervised Learning is quite different. It deals with topics such as clustering and
dimensionality reductions. It is less useful within IceCube and not used in this work,
which is why no further details are provided.

5.2 Supervised Machine Learning Techniques

The methods introduced in this section are used in this work or required to under-
stand existing methods in IceCube.

1Although some semi-supervised methods lie between the two. Also reinforcement learning is
perhaps a third category in which the computers is trained in iterations by e.g playing chess.

2More about this in section 5.3.3, where the importance of dividing the data into a training, valida-
tion and test set is explained.
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5.2.1 Boosted Decision Trees

Boosted decision trees (BDTs) is a machine learning technique that works on spread-
sheet like data. It starts with a simple decision tree, which takes any number of
inputs and depending on a "tree" of cuts, it outputs either a classification label or a
regression value as illustrated in figure 5.1. The figure contains a decision tree, which
determines if a golfer ends above or below par, depending on a few variables. The
amount of splits, nodes and leaves is flexible and the optimal cuts are determined
by gradient boosting3. In this case it makes yes/no splits, but they could also be cuts
based on continuous variables[58].

FIGURE 5.1: Overview of how a decision tree arrives at its predic-
tions. Kindly borrowed from [59].

A boosted decision tree is a weighted average of individual decision trees that have
been trained on only parts of the training data. In each iteration, the parts of the
training data that is difficult to predict is assigned a larger importance in the loss
function of the next decision tree in the ensemble. This method resolves some of the
limitations of decision trees, namely that they are only able to make linear cuts and
have issues with generalization[58].

The BDT algorithm that is used in the level 4 selection in the OscNext analysis is
LightGBM, which is a relatively new algorithm. It has become very popular since it
handles large data sizes well, keeping almost the same precision as other software
while being approximately 20 times faster [60]. BDTs are easy to set up and train, but
for complex data they do not perform as well as certain types of neural networks.

3See section 5.3.2
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5.2.2 Neural Networks

When trying to teach a machine to "think", it was perhaps natural to turn to the
human brain for inspiration. This inspiration lead to the Neural Network (NN) al-
gorithms, of which the first working version, the Perceptron was demonstrated in
1957 [61].

Just as a brain is made up by neurons, so is a neural network. Each neuron has a set
of inputs and a single output as is illustrated in figure 5.2 in the case of two inputs.

FIGURE 5.2: Schematic illustration of a neuron in a neural network.
Kindly borrowed from [62].

The neuron works by applying the following formula[62]:

y = f (x1 ∗ ω1 + x2 ∗ ω2 + b)

ω1 and ω2 are weights that are applied to the inputs, and b is a bias that is added to
their sum. This is then passed to an activation function, f, kind of like when a neuron
in a brain triggers, making the whole network non-linear [62]. There is a variety of
activation functions, but the one used in the models in this thesis is the leaky relu,
flr:

flr(x) =
{

x, if x > 0
ax if x < 0

}
Where a is a small positive number.

To get from a neuron to a neural network is as simple as grouping neurons together.
In the network, the output of the first layer of neurons acts as input to the second
layer. The neurons can be connected in various ways, but a typical fully connected4

example is available in figure 5.3. A deep neural network simply refers to having
multiple hidden layers.

4In a fully connected neural network, all neurons in a layer are connected to all neurons in the next
layer.
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FIGURE 5.3: Schematic illustration of a fully connected deep neural
network. Kindly borrowed from [63].

So essentially a neural network takes a number of inputs and uses clever weights
and biases to turn them into outputs or predictions of certain quantities. As such,
it is basically fitting a complex5 non-linear function in the high-dimensional input
parameter space.

Training a neural network requires splitting the dataset into sets, specifying a loss
function and using a method called stochastic gradient descent to adapt the weights
and biasses, all of which will be explained in section 5.3. Before that we have to
understand the specific type of neural network that lies at the foundation of this
work: Graph Neural Networks.

5.2.3 Graph Neural Networks

Graph Neural Networks (GNNs), invented in 2007, are a quite recent contribution
to machine learning [64]. As hinted at by the name, GNNs take graphs as input.
Graphs are collections of nodes that are connected by edges, as illustrated in figure
5.4. Information can reside in the nodes, in the edges or in the overall graph [64].

FIGURE 5.4: Illustration of a graph with nodes and edges. Each
node in the graph is connected to its two nearest neighbours by one-
directional edges. If one imagines the nodes as DOMs and the dashed
lines as strings, it could represent a small event in the IceCube detec-

tor.

For instance, in social media, the nodes would be users (all their private information
resides in the node), the edges would be their connections (with information on

5The complexity depends on the number of weights and biases, also called learnable parameters.
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how they are connected, directly or through others) and overall network information
could e.g be the total number of users in the network.

The purpose of GNNs can be to predict something about the overall graph, in the
case of IceCube, which event took place in the detector. Or it could be to predict
on the node level, for instance which of the DOM hits were actual information and
which were noise triggers. To arrive at the predictions, the input graph are processed
through what is called convolutions, in which the graph is updated. Convolutions
are similar to those of a CNN, but more general in nature. They work on each node
individually and takes its own information as well as that of the nodes it is connected
to. This information is then passed through some form of multi-layer perceptron
(MLP), which outputs the updated node in the new graph. This node could contain
a larger amount of information variables than it had in the input graph.

Once the graph has undergone a specific number of convolutions, a pooling scheme
is used to aggregate the information across all nodes, ensuring the dimensionality is
similar regardless of the size of the input graph. This aggregated information is used
as inputs in a final MLP, which then outputs the predictions. As such a GNN can
be trained on / applied to data containing a variable number of nodes. A particular
example of a GNN model, the one used in this work, is introduced in section 5.4.
But first an understanding of how to train a machine learning model is required.

5.3 How To Train Your Machine Learning Model

This sections explains some of the details in the actual training of machine learning
models, including how to avoid overtraining and optimising learnable parameters
and hyperparameters.

5.3.1 Loss Function

Having set up an entire machine learning model, a good way to evaluate its perfor-
mance is required. To do so, one applies a loss function to quantify the difference
between the model predictions and the truth values. There are a variety of loss func-
tion optimised for particular types of data and models. Specific examples used in
GraphNeT will be explained in section 5.4.3.

5.3.2 Stochastic Gradient Descent, Learning Rates & Backpropagation

Equipped with the machine learning model and a way to evaluate how well it per-
forms (the loss function), we are ready to explore the process in which one optimises
said performance. This section will not include many equations, since the methods
are mostly intuitive and including the math becomes more confusing than illumi-
nating.

To minimize the overall loss, an optimizer is used to adapt the learnable parameters
(weights and biases) of the model, until its predictions are as close to the truth as
possible. Most optimizers, including the one used in this work, builds upon the
simple concept of gradient descent. The model is essentially build of functions upon
functions, which means that there exists a gradient,6 which if it can be approximated,
can be used as a guideline to change the learnable parameters [65].

6A direction in the high-dimensional space of the learnable parameters in which the overall loss
increases the most. Moving in the opposite direction will then decrease the total loss.
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This naturally leads to the question of how large a step to take once a desired direc-
tion is determined. The answer lies in the learning rate, which is a hyper parameter7

that can be adjusted. The learning rate essentially determines how much along the
opposite direction of the approximated gradient we move. As illustrated in fig-
ure 5.5, too large a learning rate will prevent the model from converging in a mini-
mum, while too small a learning rate will substantially increase the time it takes to
reach said minimum. A common approach is to use a learning rate scheduler, which
adapts the learning rate throughout the training. For instance, in the beginning, one
might want to explore the parameters space, before settling into a local minimum.
This requires having a large learning rate initially, but decreasing it in some fashion,
to allow it to actually get stuck and descent into a specific minimum[65]. Learning
rate schedulers can be fashioned in a multitude of ways, but the standard GraphNeT
one is explained in section 5.4.4.

FIGURE 5.5: Illustration of the problems with having too large or
small a learning rate. It is of course greatly simplified in two di-
mensions and with a single minimum. The actual loss landscape is
high-dimensional and contains a multitude of local minima. Kindly

borrowed from [66].

Understanding the optimizer used in this work, ADAM[67], requires understanding
two additional concepts. First, stochasticity is added by approximating the gradient
using only parts of the data (a batch) in each step. This is smart for two reasons. It
is a lot faster to compute the gradient using batches of say 512 data points than the
entire training data. Furthermore, it avoids the problem with simply ending in the
first best local minimum, which is what the classical gradient descent method does.
The parameter spaces are incredibly complex, which means that one might need to
explore wide volumes before converging. During training, a single batch of training
data is used at at time, until all data has been through the model. At that point
one training epoch is said to be finished. The number of training epochs is another
hyperparameter, which is closely related to the concept of early stopping, which is
introduced in section 5.3.3.

The second thing ADAM adds is "momentum". This simply means that the gradient
is not calculated from scratch each time, but the one from the prior step is adjusted
towards the newly calculated one. This means that the gradient is a moving average,
which avoids too drastic changes. Finally, ADAM also approximates the second

7A variable that influences the training and performance of a machine learning model, but is not
itself adjusted by the optimizer in the training process.
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order gradient, which allows it to use different step sizes for the different learnable
parameters. This is efficient, since the loss space might be flat in one direction, but
changing drastically in another[65].

The gradients required in the stochastic gradient descent are calculated using a
method called backpropagation. It relies on the chain rule of differentiation to carry
out the derivative estimations for each learnable parameter with respect to the loss
function. In essense one first applies the neural network to the input parameters,
after which one propagates the result backwards in the model, and uses the result to
get the gradients[65]. The specifics of back propagation is beyond this thesis.8

Knowing how to train a model, lets see when to stop the training.

5.3.3 Train, Validation, Test Split

It is not difficult to imagine that if one uses a large machine learning model, with
enough learnable parameters, one can perfectly predict the data that is being used
to train the model. In some ways it is similar to the fact that all functions in one
dimension can be fit with a polynomial of large enough order. Just as with fitting a
function, one wants the model to learn as much as possible from the data, while still
being general enough to perform similarly on data the model has never seen before.

The way to avoid this issue, is to split up your data set in three parts. A training
set, which is used for training. A validation set, which is used to decide when to
stop training. And finally a test set, which the model has never seen before to test
the final performance. As illustrated in figure 5.6, during the training epochs9 the
training and validation loss is monitored. Once the validation loss stops decreasing
and starts increasing, the model has reached a point where further adapting the
weights, results in a worse performance on data which is not a part of the training
set. In essence it is learning to predict the exact data, more than the general trends.
Thus one uses what is called early stopping and simply quit training and use the
model as it was, when the validation loss was at its minimum.

Since the validation loss is in essence what we minimize in training, a test set is used
to gauge how the model performs, once we use it on unknown data.

8More information about back propagation, including equations and implementation can be found
in [65], section IX C.

9An epoch is one entire passing of the training data during the training procedure.
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FIGURE 5.6: Illustration of the idea of early stopping. At some point
during the training of a neural network the loss of the validation set
stops decreasing and even increases. At this point the training should

be stopped. Kindly borrowed from [68].

5.3.4 Hyperparameter Optimisation

As mentioned in a previous footnote, hyperparameters are not learnable parameters.
They include things such as the learning rate, number of neurons per layer, which
loss function to use etc. If the machine learning model is fast to train, one can do a
grid search, where all combinations of hyperparameters are compared against each
other, in terms of some objective performance evaluation. However, this is often
not possible, since models can take days to train and there are easily thousands of
reasonable hyperparameter combinations.

More sophisticated approaches exist, but are often difficult to implement on large
machine learning models. The content of chapter 6 is essentially a hyperparameter
optimisation of DynEdge in regards to reconstructing a specific type of event. In this
case we start with a model that already performs well on low energy, and simply
adjust a single hyperparameter at a time, to see if we can improve its performance
on high energy northern track events. But before we jump to the results, lets have a
look at the specific GNN used in this work.

5.4 GraphNet & DynEdge

IceCube data with its irregular geometry and variable number of hits per event is
perfectly suited for GNNs in theory. Recently it was shown that it works in practice
as well. A GNN was applied to classifying and reconstructing IceCube events in the
energy range 1-100 GeV, where it beat the best-in-class algorithm that is currently
being used. In particular it improved the signal efficiency by 18% for classification
at a fixed false positive rate (FFR) and the resolution of energy and angular recon-
struction by 13-20% for energies of 1-30 GeV [1]. These performance measures will
be explained further in a later section.

If one wants to apply GNNs to IceCube data, it is difficult to find a better frame-
work than GraphNeT (Graph neural networks for Neutrino telescope event recon-
struction) [69] [70]. It is an open-source git-based python repository which aims at
becoming the standard out of the box method for using GNNs to reconstruct and
classify events in neutrino telescopes. It allows for an easy setup of complex GNN
machine learning models and easy implementation of additional functionality. It is
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also optimised for speed, reconstructing and classifying events orders of magnitudes
faster than classical methods [69]. All machine learning in this thesis is based on the
GraphNet framework and builds upon the work of previous master students at NBI.

5.4.1 Benchmark Model Architecture

The benchmark model architecture, which is primarily used in this thesis is called
DynEdge and was developed by a former master student at NBI, Rasmus F. Ørsøe,
and applied in [1]. The model architecture is illustrated in figure 5.7.

DynEdge takes a graph of hits in the IceCube detector as input. Each hit represents
a node and contains all of the variables in table 4.1 as information. Each node is then
connected by a one-sided edge to its k10 nearest neighbours, calculated using the
euclidean distance in the first three variables (This represents actual spacial distance
in the input graph, but becomes more abstract for subsequent graphs). The graph
then undergoes four iterations of the EdgeConv operator [71].

xj =
k

∑
i

mlp(xj, xj − xi)

Each node is updated in the following way. For each of its k neighbours, the infor-
mation of the node itself, along with the difference in information between it and
its neightbours are fed to a fully trainable MLP. The MLP contains a single hidden
layer, and it is identical for all nodes in a single instance of the EdgeConv. It outputs
a new information vector with a dimension of 256. The eight vectors, one for each
neighbour are then added and this new vector constitutes the node in the updated
graph. Once all nodes have been updated, a new graph is created by connecting the
updated notes to their 8 nearest neighbours. Since the MLP are free to combine the
variables as it sees fit, the nearest no longer represent only spacial information, but
a more abstract combination of variables.

The four instances of the EdgeConv each outputs a new graph. Each of the graphs,
the first 6-dimensional and the subsequent four 256-dimensional are concatenated,
such that each node now contains 1030 variables. These are now run through an-
other MLP. Finally, node aggregation is used to get rid of the number of nodes, by
only using the min, max, mean and sum of each of the variables that each node has.
This means that it can now be fed to a final MLP, which can be standardised to ac-
cept the resulting 1030 variables and five additional global statistic variables and use
them to output the actual predictions.

The global statistics are the homophily rate for DOM_(x,y,z,t) and the total number
of nodes [1]. The homophily rate is calculated as follows[72]:

β =
1
|V| ∑

v∈V

Number of v’s neighbors who have the same label as v
Number of v’s neighbors

In our case, for instance the homophily rate of DOM_x runs over all nodes and asks
how many of its k nearest neighbours have the same DOM_x value as itself. So
lets say we use eight neighbours and all the DOMs that are hit, are hit eight times.
Then each term in the sum would be 1, meaning β would be 1 in total. On the other
hand, if each DOM is only hit once, and each of the DOMs which are hit is located at

10k=8 is used in all applications in this work.
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different x positions, then each term is simply zero (no neighbours are located at the
same Dom_x value), and so would β be. The homophily rate is a measure of how
locally connected versus interconnected the nodes are [72].

EdgeConv

State Graph 1

State Graph 2

[n, 256]

[n, 256]

Min Max
Mean Sum

[n,6]
MLP Prediction

[1,n_outputs]

MLP

[1,1035]

Node Aggregation

EdgeConv

Global
Statistics

EdgeConv

State Graph 3

EdgeConv

[n, 256]

State Graph 4

[n, 256]

[1,5]

k-nn 

for j in range(num_nodes):

[n,256][n,h]

EdgeConv

[n, 1030]

Input Graph

FIGURE 5.7: Overview of the DYNEDGE architecture taken from [1].
The model is based on the EdgeConv [71] convolution, classical Mul-
tilayer Perceptrons as well as node aggregation. See text for more

information.

Understanding the architecture, lets turn to the preprocessing of the input data.

5.4.2 Benchmark Preprocessing

The standard preprocessing of the model is as follows

domscaled
x =

domx

100

domscaled
y =

domy

100

domscaled
z =

domz + 350m
100

domscaled
time = (

domtime

1.05 ∗ 104 − 1) ∗ 20

chargescaled = charge

rdescaled =
rde − 1.25

0.25

pmtscaled =
pmt
0.05

which is supposed to center the variables around 0 and constrain them in size.
Ideally the preprocessed variables should each have the distribution of a standard
Gaussian with a mean of zero and a standard deviation of 1[73]. This is one of
the attempted improvements in section 6.5, where the distributions prior and after
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the preprocessing can also be viewed. Another important factor to consider is the
benchmark loss functions.

5.4.3 Benchmark Loss Functions

The loss function used in the benchmark model depends on the purpose of the GNN.

Angular Reconstruction - Von Mises-Fisher Loss

For a single angular reconstruction (either azimuth or zenith), the 2D Von Mises-
Fisher loss function was found to lead to the best angular resolution by former NBI
student Rasmus F. Ørsøe [1].

The Von Mises-Fisher loss is "considered the directional equivalent of Gaussian dis-
tribution[s]" [74]. The loss function accepts two vectors of the same dimension and
a concentration parameter κ, which is an estimate of the inverse variance.
In the 2D case, take zenith (ϕ) for example, the target vector µ is constructed as
µ = (cos(ϕ),sin(ϕ)). DYNEDGE predicts the estimated angle ϕest and the estimated
inverse covariance κest =

1
σ2

est
. Using the predicted angle, an estimated vector is con-

structed as µest = (cos(ϕest),sin(ϕest)).
The Von Mises-Fisher distribution then yields the probability as:

p(µ, µest, κest) = Cm(κ)eκµ∗µest

Where Cm(κ) is a normalization term that relies on a modified Bessel function of first
order. Since µ and µest are unit vectors, the dot product in the exponential can be
rewritten: p(µ, µest, κest) = Cm(κ)eκ cos(∆ϕ), with ∆ϕ = ϕest - ϕ. The negative logarithm
is taken to create a loss function that can be minimized. In the end the loss function
looks like this:

NLLvMF(µ, µest, κ) = −log(Cm(κ))− κ cos ∆ϕ

Now to reconstruct the actual direction of IceCube events, the zenith and azimuth
angles are reconstructed individually along with their uncertainty estimates. While
it is possible to directly estimate both angles using a 3D Von Mises-Fisher loss, it is
generally found to be less accurate.

Energy Regression - Log-Cosh Loss

The loss function that is used to train the model that carries out the energy regression
is the log-cosh [1]:.

losslogcosh = log(cosh(RE))

Where RE is the residual of the energy prediction defined as RE = log(Epred/GeV)−
log(Etrue/GeV) [1]. The LogCosh loss has been used a lot in regression problems
to smooth out the loss function around zero [75], compared to other classical loss
functions, such as the mean squared error. Furthermore, it does not diverge as fast
when the energy residual grows [1].
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Classification And Multiclassification - Cross Entropy Loss

For binary classification, the traditional Binary Cross Entropy loss is used[1]. It looks
as follows:

lossBCE = −(p(x) ∗ y + (1 − p(x)) ∗ (1 − y))

Where p(x) is the predicted probability of being the type 1, and y is the label, which
is either 1 or 0. As such, if we correctly predict the class, we get a contribution of
-1 to the overall loss. Either from the first term if p(x) and y are one, or from the
second term if p(x) and y are zero. On the other hand, if p(x) and y are 0 and 1 or
wise versa, then the contribution to the loss is 0. Since we are trying to minimize the
loss function, the model tries to correctly predict the probabilities.

For multiclassification, the Cross Entropy Loss is used. It is a generalisation of the
binary case that looks like this:

lossCE = −
n

∑
i=1

pi(x) ∗ yi

Where n are the number of classes we are trying to predict, pi is the probability of
class i as predicted by the GNN and yi is the label, which is one if the event is of the
i’th type and zero otherwise.

Interaction Vertex Position - Euclidean Loss

For the interaction vertex position, the Euclidian distance loss function is used. It is
the classical length between the predicted (x̂, ŷ, ẑ) and actual (x,y,z) point of interac-
tion:

lossEuclid =
√
(x̂ − x)2 + (ŷ − y)2 + (ẑ − z)2

5.4.4 Benchmark Learning Rate Scheduler

The learning rate scheduler used in the benchmark GraphNeT model, is a piecewise
linear scheduler. If a learning rate of LR= 10−4 is specified, it ramps linearly up
from 0.01*LR to the LR over the first half epoch. It then linearly declines from the
LR to 0.01*LR from the first half epoch, until the number of epochs specified in the
training. As such, it is a slightly arbitrary learning rate scheduler, since it depends
on the number of epochs one wishes to train. It is possible that other schedulers,
such as having the learning rate decline exponentially, or decreasing it a step each
time the validation loss reaches a plateau, would give better results. One attempted
change in chapter 6, is to simply have a constant learning rate, instead of changing
it throughout the training.

Equipped with a fundamental understanding of machine learning, it is time to in-
vestigate the results obtained by its application in this work.
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Chapter 6

Improving the Reconstruction of
High Energy Northern Tracks

Observing the universe using neutrinos and contributing to multi messenger astron-
omy is a main objective for IceCube1. High energy northern (through the earth) track
neutrinos have the lowest pointing uncertainty and therefore play an important role
in identifying sources of cosmic neutrinos.

Improving the angular reconstruction for this type of events in the IceCube detector
would greatly enhance its ability to function as a neutrino telescope. The pointing
accuracy improves with the square of the angular resolution (precision) and small
improvements allow us to observe weaker signals and astrophysical events that are
beyond the current frontier.

The baseline DynEdge model2 was optimised to perform on low energy neutrinos
below 104 GeV. The developer of the DynEdge model, Rasmus F. Ørsøe orchestrated
a project to try to tune DynEdge to a dataset containing Northern tracks events with
energies in the range of 102 GeV - 109 GeV. He came up with suggested adaptations
of the model and its hyperparameters. The suggestions were then carried out by the
author and Andreas Mosgaard Jørgensen, another Master student at NBI. Each of
us worked on different improvement attempts, meaning that the implementations
presented in this chapter are entirely my own work. However, the ideas mainly stem
from Rasmus F. Ørsøe, as does the original code.

The DynEdge performance is compared to the high energy reconstruction algorithm,
SplineMPE, which was introduced in section 4.7.2. So far, none of the optimisa-
tion attempts have improved the performance of DynEdge significantly. As such,
DynEdge is not yet able to perform as well as SplineMPE. However, documenting
the attempted changes is still important for future development of the DynEdge
model.

6.1 General Method

To benchmark the improvements, only a single aspect of the baseline model is changed
at a time. While this could be what prevents a significantly improved performance,
it makes it easy to see if any single feature has an impact. The training, validation
and test samples are exactly identical for each attempt, as are the number of epochs

1See section 4.1.2.
2See section 5.4.
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and any hyperparameters that are not the focus of the specific attempt. The only ex-
ception is that if a training did not converge during the first training, it was retrained
with a larger number of epochs. The cases in which this happened, is indicated in
the label with a star in the following figures.

The performance indicator used in the project, is the angular resolution, which is
calculated as:

w =
p84(R)− p16(R)

2
, R = angletrue − anglepredicted

Where p84 and p16 are the 84th and 16th percentile. The resolution corresponds to
a standard deviation for a gaussian distribution, but it is a measure which is robust
to outliers. The resolution is illustrated in the case of the Benchmark DynEdge and
SplineMPE zenith residuals in figure 6.13.

FIGURE 6.1: Distribution of zenith residuals for the baseline DynEdge
model and SplineMPE. Overlaid are calculated resolutions illustrated
from the medians of the distributions. The resolutions are robust
measures of how well the model predicts the zenith angle. If they
had a Gaussian shape, the resolution would correspond to a standard

distribution. Outlier bins are used in the figure.

This figure shows that SplineMPE performs better than the DynEdge baseline over-
all, with a resolution of 1.02 compared to 1.2. SplineMPE’s lower resolution results
from the more narrow distribution and it’s median is closer to zero than the me-
dian of DynEdge. However, this is not the entire story, since the pointing accuracy
depends strongly on energy.

The angular resolution is therefore calculated as a function of energy. For each en-
ergy bin, a bootstrap method is used to obtain a measure of the uncertainty. The
events in a given bin are sampled with replacement a hundred times. Each sample

3See Appendix A for a similar plot for the azimuth residuals.
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has a slightly different angular resolution. The standard deviation of these samples
is a measure of the uncertainty of the angular resolution, which if the test set is rep-
resentative of the underlying population, should correspond to the actual standard
deviation.

A relative improvement to the baseline model is also calculated as follows:

relative improvement =
(

1 − resolutionmodified

resolutionbaseline

)
∗ 100

The method is illustrated in figure 6.2. It is clear that SplineMPE not only per-
forms better than the DynEdge baseline overall, but does so at all energies. At
the same time, it is clear that DynEdge’s performance lacks especially for energies
above 103 GeV, where the relative improvement in zenith resolution from DynEdge
to SplineMPE oscillates around 40%. This is a strong motivation for trying to im-
prove the performance of DynEdge at high energies.

FIGURE 6.2: (top) Zenith resolution with bootstrap std as a function
of energy for the baseline DynEdge model and SplineMPE. (bottom)

Relative improvement of SplineMPE to Dynedge baseline.

The performance is benchmarked individually for zenith and azimuth. The zenith
results are presented below, but given that the azimuth results are quite similar, they
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can be found in Appendix A. In the following plots, the relative improvement of
SplineMPE compared to the DynEdge baseline is not included, since it makes it dif-
ficult to see the slight variation in performance of the attempted improvements of
DynEdge.

6.2 Learning Rate Adjustments

The learning rate in the baseline model is based on a step-wise linear learning rate
scheduler4. To test if this was the hindering factor, three different constant learning
rates were tested: 10−3, 10−4, and 10−5. However, as can be seen in figure 6.3, the
models with fixed learning rates have a worse (higher) resolution than the baseline.
As such, a fixed learning rate does not improve the angular reconstruction for high
energy neutrinos. It is possible that improvements could result from changing the
learning rate scheduler to a more sophisticated version, such as exponential decay
or one which drops the learning rate as the validation loss plateaus. This is some-
thing that should be tested in future attempts to optimize DynEdge to high energy
neutrinos.

4See section 5.4.4.
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FIGURE 6.3: (top) Zenith resolution with bootstrap std as a function
of energy for the baseline DynEdge model, SplineMPE, and the base-
line DynEdge model with fixed learning rates. (bottom) relative im-

provement of the adjusted DynEdge models to the baseline.

6.3 Changing The Pulsemap

There are a number of pulsemaps in the Northern Track I3 files, where different
degrees and methods of cleaning is applied. The TWSRTHCInIcePulsesIC is used
in the baseline and is the cleanest available. However, DynEdge has previously
been shown to disregard noise to a large extent5. Therefore, a model was trained on
each available pulsemap, to see if this would improve the angular resolution. The
following pulsemaps were tested:

• InIceDSTPulses

• HWInIcePulses

• SRTHVInIcePulses

• InIcePulses
5In the whole of Chapter 7, the models are trained on an uncleaned pulsemaps, since it gave better

performance than a Seeded-Radius-time cleaned one for multiclassification.
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As can be seen in figure 6.4, some of the pulsemaps actually seem to consistently
improve on the performance at lower energies, especially HWInIcePulses is quite
good. However, at higher energies, the uncertainty becomes too large to say any-
thing with confidence, and the slight improvement is far from good enough to reach
the level of SplineMPE. However, for future testing, it would make sense to test the
HWInIcePulses pulsemap along with other adaptations of DynEdge.

FIGURE 6.4: (top) Zenith resolution with bootstrap std as a function
of energy for the baseline DynEdge model, SplineMPE, and the base-
line DynEdge model trained on different pulsemaps. The * in the
labels indicates extended training. (bottom) Relative improvement of

the adjusted DynEdge models to the baseline.

6.4 Focus On Highest Energy Range

DynEdge was optimised on events with energies below 104 GeV. This is evident
in the figures above, where the resolution is much closer to that of SplineMPE for
energies below 103 GeV, but becomes worse as the energy increases. This could
be because there are far more events with energies below 104 GeV than above in
the training set, as can be seen in figure 6.4. This might result in a model that focus
mostly on the low energy range, thus not learning enough about high energy events.
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To check if this was the case, a model was trained only on events with energies above
104 GeV. The results are visible in figure 6.5. Unfortunately excluding the majority of
events from the training does not lead to a better performance for high energies. On
the contrary, it results in a much worse resolution, which is probably just a result of
lower statistics. This also suggest that for angular reconstruction, DynEdge is able to
generalize across energies, learning trends at low energies, which are also applicable
for high energies. Unfortunately, this means that restricting the energy range is not
the right method to beat SplineMPE. However, in a future attempt, it would be in-
teresting to simply weigh the high energy events more in the loss function, instead
of completely disregarding the low energy events.

FIGURE 6.5: (top) Zenith resolution with bootstrap std as a function
of energy for the baseline DynEdge model, SplineMPE, and the base-
line DynEdge model trained on neutrinos with energy above 104 Gev.
(bottom) Relative improvement of the adjusted DynEdge models to
the baseline. Note that the energy range is limited to above 104 GeV,

since the adjusted model has no predictions for lower energies.

6.5 Gaussian Prescaling Of Input

The stochastic gradient descent method of optimising learnable parameters works
best if the distributions of input parameters are smoothly distributed around 0, with-
out too wide tails[73]. The benchmark DynEdge prescaling was explained in section
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5.4.2, and can be seen in figure 6.6. In the same figure, are distributions of input pa-
rameters using a Gaussian prescaling, which is an attempt at improving the angular
resolution of DynEdge.

The Gaussian scaling is carried out with the sklearn quantile transformer[76] that
was fitted using 50.000 events from the training set. The gaussian scaling succeeds in
smoothing out the distributions of the parameters as well as centering them around
0. The standard DynEdge scaling mainly reduces the range of the parameters and
only in some cases center them around 0. The outlier bins in the gaussian scaled
histograms of dom_x and dom_y has not been understood, but is probably due to
some quirk in the scaling algorithm.

FIGURE 6.6: Histograms of the five input parameters for which the
scaling is changed. Un-scaled histogram in the top row. Standard
DynEdge scaling in the middle row. Gaussian scaling using a quantile
transformer with a standard distribution output in the bottom. 50.000
events with a total of 2.946.429 pulses from the training sample was

used to fit the transformer.

Different combinations of Gaussian prescaling was attempted. Including all 5 vari-
ables in figure 6.6 or excluding either the three positions (dom_x, dom_y & dom_z)
or the time and charge. In the case where some variables are not transformed using
Gaussian scaling, they are transformed using the benchmark DynEdge method.

The results are available in figure 6.7 and unfortunately shows that there is no sig-
nificant improvement to be gained from a Gaussian prescaling of all or some of the



Chapter 6. Improving the Reconstruction of High Energy Northern Tracks 51

input variables. However, it does seem as it the Gaussian scaling of only the posi-
tion variables result in a slight improvement, which could be tested along with other
adaptations of the DynEdge baseline.

FIGURE 6.7: (top) Zenith resolution with bootstrap std as a function
of energy for the baseline DynEdge model, SplineMPE, and the base-
line DynEdge model trained on gaussian scaled features. "All std
Scaled" means that all five input features from figure 6.6 are scaled
using new transformer. "Positions Std Scaled" means only dom posi-
tions are scaled using new transformer. "Time and Charge Std Scaled"
means only dom time and charge are scaled using new transformer.
The * in the labels indicates extended training. (bottom) Relative im-

provement of the adjusted DynEdge models to the baseline.

6.6 Going Forward

SplineMPE turned out to be a hard nut to crack. Despite a number of attempts,
DynEdge was not able to produce competitive angular resolutions. However, there
are many adaptations that can still be tested. So far in the project, only a single
parameter or aspect of DynEdge was changed at a time. While this makes sense
to begin with, it is possible that performance can be improved by simultaneously
changing several aspects of the model. Furthermore, more complex changes might
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also be needed. For instance another message passing scheme in the graph convolu-
tions, a new learning rate scheduler, a different type of optimiser or perhaps simply
a much larger training sample. The current effort to implement the winning model
from the recent Kaggle IceCube competition is also very interesting. The competi-
tion showed that transformers in combination with GNNs are very effective[4].

Thus concludes the first result chapter with less than optimal results. Luckily we
now turn to the second result chapter, which should brighten the mood a bit.
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Chapter 7

Classification And Evaluation Of
Neutrino Sample In Real Data

7.1 Motivation And Outline

Essential to most of the research IceCube is engaged with, is the reliable and efficient
classification of neutrino events in data. GraphNet has been shown to outperform
the classical methods of classification and reconstruction in low energy (1-100 GeV)
Monte Carlo data, while speeding the process up by orders of magnitude [1].

It is easy to test the performance in simulated data, whereas it is a slightly more diffi-
cult task to show that the results carry over to actual data from the detector. Yet that
is exactly the goal of this chapter. The proposed method is to compare GNN neu-
trino selections in simulated and actual data. If their distributions in reconstructed
and calculated variables are similar, it indicates that the neutrino selection in data
consists mainly of neutrinos.

To determine if GraphNet, and particularly the DynEdge model, can classify and
reconstruct a clean neutrino sample in data, the following sections will be covered
in this chapter:

• The foundation of this work is presented and those who have part in the results
are credited.

• The data selection and Monte Carlo train/val/test splits for each model are
explained.

• The classification and reconstruction results in Monte Carlo data are presented
and discussed, with and without a comparison to the OscNext reconstruction
algorithm Retro.

• The necessary data cleaning to ensure Monte Carlo - real data agreement is
presented.

• A selection of clean track and cascade neutrino samples in Monte Carlo and
real data is selected using a multiclassification and track/cascade classifier.
The distributions of the neutrino selections are compared across reconstructed
and calculated variables to ensure that the neutrinos in data resemble those in
Monte Carlo.

• The rate/amount of events we get in the clean Monte Carlo neutrino sample is
compared to the OscNext selection process.
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• The quality of the neutrinos in the GraphNeT selection are compared to those
in the OscNext selection.

• Examples of detector signatures from the actual neutrinos in real data are pre-
sented along with the sneaky muons that make it into the Monte Carlo sample.

7.2 Foundation Of The Results Presented In This Chapter

The results in this chapter is a direct extension of work Morten Holm and I did
together, which was presented in his master thesis. Therefore the methods and ideas
should be as much credited to him, and naturally Troels Christian Petersen who
supervised us both. The GNN models that are used in this section were trained
by Morten and I together, except for the multiclassification and interaction vertex
reconstruction models. The results presented in this chapter expands and details
many of our initial results. The analysis presented is thus my own work, but built
upon a foundation Morten Holm and I established together with Troels Christian
Petersen and the entire GraphNeT team.

7.3 Data Selection And Train, Validation, Test Split

7.3.1 Data Selection And New Muon Sample

The data used in this chapter comes from the OscNext workgroup in IceCube. The
simulated noise, muons and neutrinos are from the simulations vuvuzela, muongun
and Genie respectively1. The real data is approx. 1% of the OscNext burnsample, 62
million events. More precisely, all subruns2 ending on 00 from 2011-2021 are used.
The exact data samples and locations are available in table 7.1.

Sample Nr Particle Type Data Type Cobalt Location Amount
120000 Electron neutrinos Simulation: Genie /data/ana/LE/oscNext/pass2/genie/level3_v02.00 8,301,908
140000 Muon neutrinos Simulation: Genie /data/ana/LE/oscNext/pass2/genie/level3_v02.00 20,106,952
160000 Tau neutrinos Simulation: Genie /data/ana/LE/oscNext/pass2/genie/level3_v02.00 8,886,081
130000 Muons Simulation: MuonGun /data/ana/LE/oscNext/pass2/muongun/level3_v02.00 15,990,173
139008 Muons Simulation: MuonGun /data/ana/LE/oscNext/pass2/muongun/level3_v02.00 719,737
888003 Noise Simulation: Vuvuzela /data/ana/LE/oscNext/pass2/noise/level3_v02.00 15,186,239
1% Burnsample All Data (2011-2021) /data/ana/LE/oscNext/pass2/data/level3_v02.00 61,739,862

TABLE 7.1: Overview of all data used in this chapter, both simulated
and actual data. Includes the data type, number of events as well as
the location on the IceCube Cobalt Server at NBI for the reference of

future students.

As written in table 7.1, two separate muon samples have been used. Initially Morten
and I used the muon sample nr: 130000, which contains muons aimed mainly at
DeepCore. However, plenty of high energy muons contaminated the track neutrino
sample we classified in real data. Upon discussion with members of the OscNext
group, it was determined that the muon sample nr: 139008 would be more suitable
for training the GNN.

In figure 7.1, the distributions of the Monte Carlo neutrinos and the two muon sam-
ples in energy, zenith, azimuth and interaction vertex position are presented. The

1These simulations were explained in section 4.4.
2The data in IceCube are divided into runs and subruns.
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139008 sample contains higher energy muons than sample 130000, whereas their an-
gular distributions are relatively similar. The 139008 sample also has muons which
interact in the entirety of the detector, instead of mainly around DeepCore. Given
that the muon sample nr: 130000 did not contain muons with energies as high as the
neutrinos in the Monte Carlo data, it was thought that perhaps this was the reason
why muons were classified as neutrinos. Therefore the multiclassification was re-
trained, replacing the muon sample nr. 130000 with sample nr. 139008. While this
actually alleviated much of the muon contamination, it was not enough to get a truly
clean neutrino sample. In section 7.5, the additional step required to get a high pu-
rity neutrino sample is explained. Is is also worth noting that the old sample 130000
contains a much larger amount of muons than the new sample 139008. Therefore
the large muon sample 130000 is used in the analysis, while the model was trained
on the muon sample 139008.

FIGURE 7.1: Distribution of energy, azimuth, zenith, and xyz position
for MC neutrinos and MC muon sample nr: 130000 and 139008. Note
that outlier bins are used for the position histograms. Normalised
counts refer to the fact that the distributions are normalised such that

their integral are 1. Finally it is the truth values that are plotted.
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7.3.2 Training, Validation, Test Split For Each Model

Various considerations are taken into account in deciding the training/validation/test
splits and how many of each particle type to use to train each GNN model.

For the multiclassification model (see table 7.2), it was decided to use equal amounts
of noise, muons and neutrinos, to ensure that the model learns to classify each type
equally well. Furthermore, each neutrino flavor make up a third of the total neutrino
sample. The total amount of each particle type was restricted by the relatively low
statistics in the muon sample nr. 139008. Therefore, the multiclassification model
was trained on 1.65 million events. Training on a larger sample would probably
result in a slightly better model, but as we will see, it seems to work very well as it
is.

Multiclassification Total Noise Muons (139008)
Total
neutrinos

Electron
neutrinos

Muon
neutrinos

Tau
neutrinos

Training 1.65 mill 33.3% 33.3% 33.3% 11.1% 11.1% 11.1%
Validation 300.000 33.3% 33.3% 33.3% 11.1% 11.1% 11.1%
Test 509.211 33.3% 33.3% 33.3% 11.1% 11.1% 11.1%
Total in database 38.9 mill 871.103 719.737 37.3 mill 8.3 mill 20.1 mill 8.9 mill

TABLE 7.2: Multiclassification training, validation test split. There is
an equal amount of noise, muons and neutrinos, and an even distri-
bution in neutrino flavors. The training:val:test split is 62.5% : 13.9%

: 23.6%.

The interaction vertex position model (see table 7.3) is only trained on neutrinos,
since it is to be applied to a clean selection of neutrinos. The training and validation
sets are the exact neutrinos from the multiclassification training and validation sets.
The test set contains all remaining neutrinos.

Vertex Position Total
Total
neutrinos

Electron
neutrinos

Muon
neutrinos

Tau
neutrinos

Training 450.000 100% 33.3% 33.3% 33.3%
Validation 100.000 100% 33.3% 33.3% 33.3%
Test 36.7 mill 100% 22.0% 54.3% 23.7%
Total in database 37.3 mill 37.3 mill 8.3 mill 20.1 mill 8.9 mill

TABLE 7.3: Vertex Position training, validation, test split. There is an
even distribution in neutrino flavors.

The track/cascade classification model (see table 7.4) does not have an optimal split
of neutrino interaction types and flavors in the training and validation sets. They
do contain 50% tracks (CC νµ) and 50% cascades (all remaining types), which makes
sense. Furthermore, no CC ντ events are present in the training sample, since they
create tracks with a 17% branching ratio. This is a choice that has also been imple-
mented by others: [1]. The minor flaw in the sets, is that the CC ντ should be present
in the validation set, and that there should be an even split between cascade types.
However, this should not make a large difference, and as we shall see, the model
performs well.
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Track/Cascade Classification Total NC νe CC νe NC νµ CC νµ NC ντ CC ντ

Training 1 mill 4% 28% 9% 50% 9% 0%
Validation 100,000 4% 28% 9% 50% 9% 0%
Test 4,112,510 10% 10% 10% 50% 10% 10%

TABLE 7.4: Training, validation, test split for track/cascade classifi-
cation model. There is an even split between tracks (CC nuµ) and

cascade events (others).

The energy, azimuth and zenith reconstruction models were trained and validated
on the same sets as those from the track/cascade classification model. This is not
exactly ideal, given that they do not have equal neutrino flavors. On the other hand,
the main difference is whether an event is track or cascade-like, which the model
should prioritise equally, given the equal training split between tracks and cascade
neutrinos.

Energy, Azimuth
and Zenith
Reconstruction

Total
Total
neutrinos

Electron
neutrinos

Muon
neutrinos

Tau
neutrinos

Training 1,000,000 100% 32% 59% 9%
Validation 100,000 100% 32% 59% 9%
Test 36.7 mill 100% 22.0% 54.3% 23.7%
Total in database 37.3 mill 37.3 mill 8.3 mill 20.1 mill 8.9 mill

TABLE 7.5: Energy, azimuth and zenith reconstruction model. Train-
ing, validation, test split.

The test sets presented above are those used to test the models performance in Monte
Carlo. When it comes to comparing the neutrino selections in Monte Carlo and
actual data, all Monte Carlo data that the multiclassification has not been trained
or validated on are used. This is 15.99 million muons (from sample 130000), 14.80
million noise events and 36.75 million neutrinos.

There is a general caveat of this chapter, which pertains to the use of training data.
One million of the neutrino sample, which is used in the general test set of the fol-
lowing analysis (36.7 million neutrino events), was used in the training of the models
Morten and I trained together (track/cascade, energy, zenith and azimuth). While
this could skew the results slightly, it is less than 3% of the test neutrinos. Further-
more, it would only cause the results for these neutrinos to be minutely better, given
that the training loss of the models were comparable to the validation loss when
early stopping ended the training. However, given more time, I would retrain the
models using the same training/validation/test splits that was used in the interac-
tion vertex position model. The reason why the one million neutrinos are not simply
removed, has to do with the way Monte Carlo particles are re-weighted to estimated
rates (how many hit the detector per second). Simply removing them would unfor-
tunately skew this re-weighting.

Understanding the data the models were trained on, lets turn to analysing their per-
formance in Monte Carlo data.
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7.4 Monte Carlo Classification And Reconstruction Results -
Including Benchmark Against Retro Reconstructions

In this section the Monte Carlo results of the DynEdge models will be presented.
The reconstruction models (energy, zenith, azimuth & interaction vertex position)
can be directly compared against the OscNext reconstruction algorithm Retro, on
the subset of events that make it far enough in the OscNext selection process to be
reconstructed (lvl 6). As such the reconstruction comparison against retro only in-
cludes events that are actually reconstructed by retro. It is important to bear in mind
that the GNN reconstruction models have not been subject to hyperparameter opti-
mization beyond what’s presented in [1]. Furthermore, the models in this work are
only trained on relatively few events (450,000 - 1 mill). Thus they are not necessarily
an attempt to beat Retro, since this was already achieved in a published paper on
DynEdge (GraphNeT) [1]. Instead the reconstructions are essentially what allow us
to compare the distributions of the neutrino selections in Monte Carlo and real data.
Despite this, the reconstruction models perform surprisingly well when considered
that they are trained on lvl2+DC3 neutrinos and a relatively uncleaned pulsemap4.

The multiclassification and track/cascade classification models are not benchmarked
against other methods in this section, since there exist no comparable methods this
early in the event selection. Instead the rate of clean neutrinos our models achieve
are compared to OscNext in section 7.7.

Before we jump to the results, a brief explanation of performance measurers is re-
quired.

7.4.1 Performance Measurement Tools

ROC Curve

A Receiver Operating Characteristics (ROC) curve is a classical measurement of the
performance of binary classifiers in Machine Learning, but it can also be applied
to Multiclassification models. An example is available in figure 7.4. A traditional
binary classifier, for instance the track/cascade model, outputs a probability of the
event being a track neutrino. The ROC curve is simply a scan across that probability
from 0 to 1. For each value, the events that have higher probabilities are predicted to
be track neutrinos and the others are predicted to be cascade neutrinos. The percent
of actual track neutrinos that are correctly classified as track neutrinos using the
threshold is called the True Positive Rate (TPR). The percent of cascade-like events
that are wrongly classified as track neutrinos is called the False Positive Rate (FPR).
The ROC curve is simply a plot of the TPR as a function of FPR. The optimal result
is to have a TPR of 1, while having a FPR of 0, since this corresponds to correctly
predicting all the events. This point lies in the top left corner of the plot, whereas
randomly guessing would correspond to a diagonal line from 0 to 1. In addition to
visually inspecting the ROC curve, one can also calculate the Area Under the Curve
(AUC), which is then a measure of how well the model works. It is as the name
suggest, simply the area below the ROC curve. The closer the AUC is to 1, the better.

3See sections 4.6. Lvl2 + DC is the rawest form of data that OscNext receives from the detector.
4All the models are trained on the uncleaned pulsemap SplitInIcePulses, since the multiclassifica-

tion model worked better on it than the cleaned SRTInIcePulses. It was not tested if this is also the case
for the reconstruction models.
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For a multiclassifier (which outputs one probability for each class), the approach
"all versus one" is used to give a ROC curve for each class. For instance, the ROC
curve for the neutrino probability, is calculated by considering it to be a binary clas-
sification of neutrinos vs the rest (in this case muons and noise), using the neutrino
probability [77]. ROC curves can be very misleading if they are calculated on an un-
balanced dataset. If for instance 99% of the data are muons, simply classifying all
events as muons would result in a very good ROC curve. Therefore, all ROC curves
in the work are calculated using balanced test sets.

Residuals And Resolutions

For reconstruction models, it is typical to consider the residual distributions. In table
7.6, the definitions of the residuals of the reconstruction targets are listed.

Target Residual Definition
Energy Log10(Ereco) - Log10(Etrue)
Zenith/Azimuth Anglereco - Angletrue
Vertex Position for resolution |P⃗reco-P⃗true|
Vertex Position individual Pα

reco-pα
true where α can be (x,y,z)

TABLE 7.6: Residual definitions for reconstruction targets.

Furthermore, to gauge the width of the residual distributions, the resolution is cal-
culated and visualized as a function of energy. This is done exactly as in chapter 6
for the angles and energy:

w =
p84(R)− p16(R)

2

However, for the interaction vertex position, the resolutions is calculated as:

w = p50(R)

This is a more appropriate measure for distributions that are bounded in one direc-
tion, such as the vertex position residuals, which cannot be negative.

Chi Square Test

To test statistically if the distributions in data match those in Monte Carlo, χ2 tests are
applied. In general the uncertainties of the amount in each bin are calculated using
the assumption that the number of events in a single bin is Poisson distributed. As
such, the uncertainty in a data bin is equal to the square root of the number of events
in the bin. The uncertainty in the rate5 is then the count uncertainty multiplied by
the rate of the bin divided by the count of the bin.

With the uncertainties, the χ2 value can be calculated as:

χ2 = Σ
( rdata − rMC

sigma(rdata)

)
5The rate is the amount of particles hitting the detector per second. In Monte Carlo, the OscNext

groups theoretical weights are used to convert the number of events to rates. In data, an estimate of
the number of seconds in which the data was taken, is use to calculate an approximate rate. The rate
will be used in most plots comparing data to Monte Carlo. It is also used in section 7.7 to determine
the rate of our neutrino selection vs that of the OscNext selection.
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Where r is the rate and sigma(r) is the Poisson uncertainty of the rate.

The number of degrees of freedom is the number of non-empty bins minus potential
scale factors that are used to normalise Monte Carlo to data. Finally a p-value is
calculated, which represents the probability of obtaining an identical χ2 or worse if
the real data was drawn from the Monte Carlo distribution. This means that a high
(low) p-value suggest a good (bad) data/MC correspondence.

7.4.2 Multiclassification - Noise, Muons Or Neutrinos?

Previously the method for classifying neutrinos using GraphNet consisted of apply-
ing two separate binary classification models. First separating particles from noise,
then selecting neutrinos from muons in the clean particle sample. The problem with
this approach is that the noise that inevitable ends up being classified as particles,
could resemble the neutrinos more than the muons. As such, it is possible that the
noise events which are wrongly classified, ends up in the "clean" neutrino sample6.

A potential solution and simultaneously simpler method is to use multiclassification
to directly divide events into either noise, muons or neutrinos, as illustrated on the
overview in figure 7.2. This method was implemented by Morten Holm and myself.

FIGURE 7.2: Graphic overview of event classification methods. (Left)
Using two separate binary classifiers. (Right) Using a single multi-

classification classifier.

The multiclassification model outputs three probabilities, one for each of the particle
types, which sum to one. Histograms of the neutrino probability for each particle
type in the equal sized7 test set can be seen in figure 7.3a. It is evident that the model
works quite well, with the actual neutrinos distributed much further to the right
than the muons and noise events. Similar plots for the muon and noise probabilities
can be found in appendix B.1.

6It has unfortunately not been tested if the multiclassification model outperforms two separate
binary classifiers. The multiclassification is still used due to its simplicity and the good results it gives
in Monte Carlo.

7Equal sized, or even split test set refers to one where there are equally many of each particle type.
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(A) (B)

FIGURE 7.3: (A) Histograms of all test events as a function of their
predicted probability of being neutrinos. Colored by actual particle
type. (B) Confusion matrix for multiclassification test set, with equal
fractions of noise, muons and neutrinos. Shows the number and per-
cent of each particle type that is classified as either neutrino, muon or
noise. In the confusion matrix, an event is classified based on which

probability is the highest.

The confusion matrix of the multiclassification is available in figure 7.3b. It shows
the number of each particle type that is classified as noise, muons or neutrinos. For
each particle, the prediction is simply taken to be the highest probability of the three
particle types.

From the confusion matrix, we see that about 95% - 98% of events are classified
correctly in an even split test set, which seems quite good. However, once the data
has been weighted to the expected, physical rates, there are orders of magnitudes
more muons and noise than neutrinos. Therefore, using the highest probability to
determine the prediction, would still result in the predicted neutrino sample being
dominated by wrongly classified muons and noise. Therefore it is also interesting
to look at the ROC curves, which were explained in section 7.4.1 and can be seen in
figure 7.4.
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FIGURE 7.4: ROC Curves for the multiclassification test set. Shows
the true positive rate (TPR) as a function of the false positive rate
(FPR) depending on where in the neutrino, muon and noise proba-

bilities the cut is made.

The ROC curves also show that the multiclassification works well. The AUC scores
are almost 1 and depending on the cut in probabilities, one can obtain a particle sam-
ple of high purity. For instance, we could get a TPR of about 0.5 for neutrinos, while
only having a FPR of 10−5 − 10−6. Thus we could select half the actual neutrinos,
while only classifying 1

100,000 to 1
1mill of the muons and noise as neutrinos. This is

exactly the type of consideration that is required when classifying neutrinos in ac-
tual data, where they are outnumbered by muons and noise. We will return to the
question of selection a clean neutrino sample in section 7.6.

7.4.3 Track/Cascade Classification

The track/cascade classifier is a traditional binary classification model. It outputs a
single probability, that of being a track neutrino (CC νµ). The resulting histograms
of track and cascade neutrinos in the equal split test set is available in figure 7.5a.
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(A) (B)

FIGURE 7.5: (A) Histograms of predicted track probability for all
events in the test set. Separate histograms for actual track and cas-
cade neutrinos. Colored by actual particle type. (B) Confusion matrix
for track cascade test set, with equal fractions of track and cascade
neutrinos. Shows the number and percent of each type that is classi-
fied as either a track or cascade neutrino. In the confusion matrix, an
event is classified as a track neutrino is the track probability is above

0.5 and otherwise as a cascade neutrino.

The track/cascade classifier is not able to distinguish as well between the two types
of events as were the multiclassification model. However, the track distribution is
still skewed to the right and the cascade distribution to the left, while they share a
peak in the uncertain center. A detail to note, is that the cascade events also have a
small peak around 1 in the track probability, which we shall see is caused by the 17%
of CC ντ that also produce track signatures in the detector8.

The confusion matrix in figure 7.5b gives a similar picture of the classifier perfor-
mance. If we just predict based on a cut of 0.5 in the track probability, 76.52% of
cascade neutrinos are correctly predicted, while the same is only true for 53.75% of
the track neutrinos.

Track neutrinos are not difficult to predict because the model cannot tell the dif-
ference between track-like and cascade-like signatures in the detector. Instead it is
highly dependent on the energy, since the track neutrinos also produce an initial
cascade, which the resulting muon only outruns if it is energetic enough9. Put dif-
ferently, if the CC νµ is low-energetic, it looks exactly like a cascade neutrino. This
argument is based on figure 7.6, which shows a 2D histogram of energy and track
probability for the CC νµ particles. It can be seen that at energies below 101 − 101.5

GeV, the probabilities are mainly around 0.4-0.5, the uncertainty bump in the his-
tograms in figure 7.5a. When the energy is higher, the vast majority of track neutri-
nos have a track probability of practically 1. Those that do not, could be interacting
near the edge of the detector and thus not depositing a track signature.

8See section 4.5.
9This was also explained in section 4.5.
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FIGURE 7.6: 2D histogram of predicted track probability vs energy
for all track (CC µτ) events in an extended test set. Shows that the
probability of a track event being classified correctly is highly depen-
dant on the energy, since the resulting muon has to outrun the initial

cascade.

As can be seen in figure 7.7, which shows normalised track probability histograms
for each combination of neutrino interaction type and flavor, the cascade neutrino
peak near a track probability of 1 comes from the CC ντ. A simple check to see if the
distribution of CC ντ match the theoretic branching ratio can be carried out using the
rightmost bin in figure 7.7. The ratio CCντ/NCντ

CCνµ/NCνµ
for the rightmost bin is an estimate

of how large a percentage of CC ντ behaves as a CC νµ in the track probability. The
ratio is calculated to be 0.19, or 19% which is quite close to the expected 17% from
section 4.5. An even better estimate could be calculated by scaling the CC νµ and NC
νµ distributions to the CC ντ distribution. The scaling factors would then give away
the percent of CC ντ events that behaves as CC νµ events. This was not explored
further due to time constraints.



Chapter 7. Classification And Evaluation Of Neutrino Sample In Real Data 65

FIGURE 7.7: histograms of predicted track probability for all events
in an extended test set. Separate histograms for each combination of
neutrino interaction type and flavor. It is clearly visible from the peak
at high track probabilities for CC µτ that it is capable of producing

track event signatures.

The ROC curves in figure 7.8 also shows the difficulty in predicting track neutrinos.
The AUC is 0.7346 for all events. This is comparable to the published result in [1],
which had a AUC of 0.713. Their model was trained on OscNext lvl 7 Data and a
cleaned pulsemap, which just shows that the track-cascade classifier works well on
lvl 2 + DC events and a noisy pulsemap. The ROC curves also show that the higher
energy neutrinos, the better the track/cascade classifier works. This is evident from
the increasing AUC scores, as a function of the energy of the neutrinos used to pro-
duce the ROC curves.

FIGURE 7.8: ROC Curves for the track/cascade test set. Shows the
true positive rate (TPR) as a function of the false positive rate (FPR)
depending on where in the track probability the cut is made. Seperate
ROC curves are plotted for all events and for specific energy ranges
as well. It is evident that the higher energy neutrinos, the better the

track/cascade classifier works.
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7.4.4 Energy Reconstruction

The performance of the reconstruction models are shown first for all events, then in
comparison to OscNext reconstruction algorithm Retro (on the subset of the neutri-
nos that make it to OscNext lvl 6).

As can be seen to the left in figure 7.9, the distribution of DynEdge predicted en-
ergies follow the true energy distribution decently, except for low energies, which
DynEdge has difficulty predicting. In the same figure to the right, a 2D histogram of
predicted vs true energy is visible. It shows a clear diagonal trend, which is good,
but it has a natural blur since the model does not predict perfectly.

FIGURE 7.9: (Left) Predicted and True energy distributions for all
neutrinos in test set. (Right) 2D histogram of true vs predicted en-
ergy. It can be seen that DynEdge is not likely to predict very low

energies, but otherwise match the distribution decently.

For the events in the reconstruction test set that makes it far enough in the OscNext
selection, a direct comparison to Retro is possible. The results are visible in figure
7.10. Especially the right plot shows that DynEdge generally has lower residuals
than does Retro. This is dispite the fact that Retro is only used on lvl 6 events specif-
ically, whereas DynEdge is trained on all lvl 2 + DC events.

FIGURE 7.10: (Left) DynEdge predicted, Retro predicted and true en-
ergy distributions for all neutrinos in test set that make it to OscNext

lvl 6. (Right) DynEdge and Retro residual distributions.

While DynEdge is better at energy reconstruction overall, the resolution depends
strongly on energy, which can be seen in figure 7.11a. Here it is clear that DynEdge
is best for energies below 102 GeV, whereas Retro is better at higher energies. The
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results match those published in [1] decently, but are perhaps slightly worse. This
could be because we did not use any hyperparameter optimisation, or trained on too
few events. Otherwise it might be because the model in the paper is trained solely
on lvl 7 events and a clean pulsemap, whereas ours is trained on lvl2 + DC and a
noisy pulsemap.

(A) (B)

FIGURE 7.11: (A) (Top) DynEdge and Retro energy resolution di-
vided into track vs cascade events. The track/cascade division is
based on the actual flavor and interaction type, since this is Monte
Carlo data. (Bottom) Relative improvement in energy resolution from
Retro to DynEdge. (B) Identical to (A) but for vertex position resolu-

tion.

7.4.5 Interaction Vertex Position Reconstruction

The interaction vertex position is the location at which the neutrino interacts with
the ice. The results are shown primarily for the z position in this section, except
for the resolution, which is a mixture of all three coordinates. The x and y position
results are available in appendix B.3.

In figure 7.12 the true and predicted vertex z position distributions are shown to the
left and a 2D histogram of true vs predicted values to the right. The distributions
match well and the diagonal trend in the 2D histogram is quite strong.
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FIGURE 7.12: (Left) Predicted and True vertex position z distributions
for all neutrinos in test set. (Right) 2D histogram of true vs predicted

vertex position z.

Comparing against Retro in figure 7.13 shows a good agreement in distributions
between DynEdge and Retro. On the other hand, Retro generally performs better,
with a more narrow resolution distribution.

FIGURE 7.13: (Left) DynEdge predicted, Retro predicted and true ver-
tex position z distributions for all neutrinos in test set that make it to

OscNext lvl 6. (Right) DynEdge and Retro residual distributions.

A resolution plot is available for the vertex position in figure 7.11b. The Retro reso-
lution is mostly better across the energy spectrum for track neutrinos, and DynEdge
is practically only better for cascade neutrinos below 102 GeV. The results are worse
than in [1], which could be due to the fact that the vertex position model is only
trained on 450,000 events, instead of the 1 million used in the energy and angular
reconstruction models.

7.4.6 Zenith Reconstruction

The zenith reconstruction results are along the same lines as the energy reconstruc-
tion results. In figure 7.14 the distributions and 2D histogram for all test events are
visible. It can be seen to the left that the model has a hard time predicting events
near directly south (zenith = 0) or near directly north (zenith = π). This is because
the actual area a small deviation of the zenith angle traces out, is very small near the
poles. This means that few events should come from those zenith ranges. However,
the model exaggerates this. To the right in the figure, one can see a diagonal trend,
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with quite substantial blur. Luckily the model also outputs an estimated standard
deviation, which can be used to select events with good angular resolution.

FIGURE 7.14: (Left) Predicted and True zenith distributions for all
neutrinos in test set. (Right) 2D histogram of true vs predicted zenith

angle.

In addition to the zenith angle, the model outputs an inverse variance called kappa:

κ =
1

std2
κ

It is used to calculate an estimated standard deviation. A pull plot, as seen in fig-
ure 7.15 is a way to estimate how correct the stdκ is. It shows the z-score of the
zenith predictions, which is simple the residual divided by the estimated standard
deviation:

Z − score =
anglereco − angletrue

stdκ

If the estimated std’s were perfect, the pull plot would resemble a unit Gaussian. In
the figure, a Gaussian has been fitted to the z-scores. It can be seen that the mean
is practically zero, whereas the standard deviation of the Gaussian is 1.1 instead of
1. This means that the model standard deviation estimates are slightly too low. As
such, the model can be said to be a little overconfident. On the other hand, the pull
distribution does not follow the fitted Gaussian exactly, as can be seen in the p-value
of 0. Instead the z-score distributions has a higher peak in the center, which means
that the overconfidence is not as bad as the fit suggests.
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FIGURE 7.15: Pull plot. Histogram of number of predicted standard
deviations the predicted zenith angle falls from the truth. Overlaid
is a gaussian fit, since this should correspond to a unit gaussian, if
the std is estimated correctly. A is the normalisation, mu is the mean,
sigma is the standard deviation, Chi2 is the χ2 value of the fit, Ndof
is the degrees of freedom and p-value is the probability of obtaining
a worse χ2 if the data distributions is consistent with the fit. One can
see that the mean is practically 0, while the sigma is 1.10 instead of
1. This means the model slightly underestimates the zenith standard

deviations.

The zenith angle can also be compared against Retro. In figure 7.16, the zenith
distributions are shown to the left and the residual distributions to the right. The
distributions show that Retro follows the truth distribution better, but the residual
distributions are quite similar, and difficult to distinguish.

FIGURE 7.16: (Left) DynEdge predicted, Retro predicted and true
zenith angular distributions for all neutrinos in test set that make it to

OscNext lvl 6. (Right) DynEdge and Retro residual distributions.

A more clear picture emerges if we investigate the zenith resolution as function of
energy. As can be seen in figure 7.17a, DynEdge generally has a better resolution,
except for the energy range of 0.7 ∗ 102 − 2 ∗ 103 GeV for track events. These results
again agree quite closely with those of [1].
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(A) (B)

FIGURE 7.17: (A) (Top) DynEdge and Retro zenith resolution divided
into track vs cascade events. The track/cascade division is based
on the actual flavor and interaction type, since this is Monte Carlo
data. (Bottom) Relative improvement in zenith resolution from Retro

to DynEdge. (B) Identical to (A) but for azimuth.

7.4.7 Azimuth Reconstruction

The results of the azimuth reconstruction are quite similar to those of the zenith
reconstruction. In figure 7.18 the distribution and 2D histogram for all test events are
visible. It can be seen to the left that the model does not output a uniform azimuth
distribution, but predicts too many events in the center and edges. To the right in the
figure, one can see a diagonal trend, with a very substantial blur. As with the zenith
reconstruction, the model also outputs an estimated standard deviation, which can
be used to select events with good angular resolution.

FIGURE 7.18: (Left) Predicted and True azimuth distributions for all
neutrinos in test set. (Right) 2D histogram of true vs predicted az-

imuth angle.
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A pull plot for the azimuth angle is available in figure B.3 in appendix B.2. In essence
the conclusion regarding the azimuth pull plot is identical to that of the zenith pull
plot.

The azimuth angle can also be compared against Retro. In figure 7.19, the azimuth
distributions are shown to the left and the residual distributions to the right. The
distributions show that Retro follows the truth distribution better, but the DynEdge
distribution looks better for this subset of events, than overall. The residual distri-
butions are quite similar, and difficult to distinguish.

FIGURE 7.19: (Left) DynEdge predicted, Retro predicted and true az-
imuth angular distributions for all neutrinos in test set that make it to

OscNext lvl 6. (Right) DynEdge and Retro residual distributions.

As for zenith a clearer picture emerges if we investigate the azimuth resolution as
function of energy. As can be seen in figure 7.17b, DynEdge generally has a better
resolution than Retro across the energy spectrum.

7.4.8 Multiclass Neutrino Selection Efficiency

The performance of the multiclass neutrino classification can be tested in Monte
Carlo. In figure 7.20, the neutrino selection efficiency is plotted as a function of
energy, zenith, azimuth, vertex position z and rho. The efficiency is defined as the
fraction of neutrinos that end up in our final neutrino selection, which will be intro-
duced in section 7.6.

Rho is the orthogonal distance to the interaction vertex from string number 36, which
is located at (x,y) = (46.29, 34.88), approximately at the center of the IceCube detector.
Thus it is a measure of the distance from the center of the detector. It can be seen
that the efficiency is higher for neutrinos passing through the earth with zenith > π

2 .
Also, the efficiency is generally higher for high energies, except for a drop around 10
- 102.2 GeV. The events that fall close to the center of the detector is also more likely
to be classified as a neutrino, which can be seen in the efficiency as a function of rho.
Finally the efficiency does not depend on the azimuth angle, but generally increases
the lower in the detector the events interact as seen in the z position figure.
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FIGURE 7.20: Multiclass neutrino selection efficiency in Monte Carlo
as a function of energy, zenith, azimuth, vertex position z coordinate

and rho. Also plotted is the total neutrino rate.

The rate that is presented in figure 7.20 represents the estimate of how many neu-
trinos hit the detector per second. Many of the figures in this chapter are plotted as
rates instead of number of particles. In Monte Carlo data, the events are weighted
to match the theoretical expected rate of particles as functions of energy and angles.
This is done using weights calculated by the OscNext group. In real data, the rate
is estimated from the total detector runtime of events used in this analysis10. The
weight of each event in the actual data is then simply the inverse of the total run-
time.

7.5 Necessary Data Cleaning Required To Ensure Good Enough
Monte Carlo / Data Agreement To Apply GraphNet

The analysis that follows was first carried out directly on all lvl2 + DC events. It
was quickly discovered that there was a large muon contamination in the supposed
clean track neutrino sample. Furthermore, there also seemed to be some noise left.

10Thanks to Thomas Simon Stuttard for providing me with the runtime for each subrun of data used.
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The new muon sample helped alleviate the issue with muons, but the Monte Carlo -
data agreement in the neutrino selections were still not encouraging.

It turned out that at lvl2 + DC the data - Monte Carlo agreement is simply too poor
for machine learning to yield the same results in data as in Monte Carlo. For in-
stance, coincident and very high energy muon events were classified as neutrinos,
simply because the model had not been trained on such events. One solution would
be to obtain simulations of said events, which turned out to be difficult. Instead the
cuts used by OscNext in going from lvl2 + DC to lvl 3 were used. These are exactly
implemented to improve data - Monte Carlo agreement. The variables along with
the cuts are available in appendix C.1. There plots of the lvl 3 variable distributions
of neutrinos, muons and noise, in both Monte Carlo and data are also available.

There are several indications that the lvl 3 cuts are necessary for our method to work
in actual data. First of all, the neutrino selection in actual data has a rate which is 60%
higher than the Monte Carlo rate, when using lvl2 + DC data. With the lvl 3 cuts, the
neutrino selection in data is 0.7% smaller than in Monte Carlo. This suggests that
the neutrino sample in data without the lvl 3 cuts contains a lot of muons and/or
noise. This can also be seen in figures C.8, C.9, C.10, C.11 and C.12 in appendix C.2.
When compared to the plots in section 7.6, they clearly show that the data - Monte
Carlo agreement for the neutrino selections are much worse, when the lvl 3 cuts are
not applied.

7.6 Clean Track/Cascade Neutrino Selection and Compari-
son Between Monte Carlo and Real Data

Selecting a clean neutrino sample in data requires understanding approximately
what the data contains. Therefore, the data distribution of neutrino probabilities
are compared to the neutrino probabilities for Monte Carlo noise, muons and neu-
trinos. The rate of the data is plotted and the distributions for MC noise, muons and
neutrinos are scaled individually such that they together match the data distribution
as well as possible. The resulting plot is available in figure 7.21. To get a relatively
pure neutrino sample, the cut has to be somewhere above 0.9999, which means that
it is easier to visualize in a logit transformed probability space. Thus the following
transformation is applied to the probabilities:

logit(p) = log
(

pϵ

1 − pϵ

)
pϵ = p ∗ (1 − 2 ∗ ϵ) + ϵ

ϵ = 10−7

(7.1)

Furthermore, the noise, muon and neutrino distributions are scaled by 0.118, 1.308
& 1.085 using χ2 minimization. The scaling is applied, since the data has a total rate
that is 20% higher than in Monte Carlo, and the noise, muon and neutrino rates in
Monte Carlo might not match those in data exactly11. The error bars are calculated
as Poisson errors (square root of number of data points, then multiplied by the total
rate those data points represent, divided by the count of data points) for the data

11In the OscNext analysis it is completely normal to scale Monte Carlo to data, since the estimated
Monte Carlo rates are not perfect and it is their distributions that are compared, not the overall scale.
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only, since they by far outweigh the Monte Carlo errors. In the bottom of the figure,
the ratio of data to Monte Carlo rates are available.

The data is generally decently described by the scaled Monte Carlo distributions,
but there are some areas in which the ratio of Data/MC is quite high. A χ2 test,
with null-hypothesis that the distributions are identical, results in a p-value of 0,
which suggest that the data/Monte Carlo agreement is not perfect, especially when
considering the Poisson errors.

This might perhaps be expected since the simulations aren’t perfect. Overall the
distributions agree well enough to assume that there are no substantial deviations.
To select a relatively clean neutrino sample, a cut is made at 12 in the neutrino logit
probability. This corresponds to 0.999994 in normal probability space.

This cut corresponds to a neutrino purity of 98.84% neutrinos with 1.16% muons
and no noise in Monte Carlo. In data this cut yields a sample of 875312 events, which
hopefully have approximately the same purity as in the Monte Carlo selection. To
test if that is the case, we now split the neutrino samples from data and Monte Carlo
in cascade and track neutrinos. We then investigate if the data and Monte Carlo dis-
tributions agree for track and cascade selections separately across reconstructed and
calculated variables. It is the 130000 muon sample that is used in figure 7.21 and in
the following analyses. This is partly due to the fact that only 3 muons in the low
statistic muon sample 139008 makes it past the neutrino selection cut, which makes
them difficult to include in the analysis. The much larger muon sample 130000 re-
sults in 347 muon passing the cut. Furthermore, the OscNext group uses the 130000
sample, which makes comparisons with their results more appropriate.

In appendix D.2, figure 7.21 is available without scaling of the MC distributions as
well as only for track-like events, cascade-like events, upgoing events and downgo-
ing events.

12Out of the approx. 62 million events we started out with.
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FIGURE 7.21: (Top) Stacked histogram of neutrino probabilities in
logit space for the Monte Carlo distributions of noise, muons and neu-
trinos, scaled using χ2 minimization to match the data points which
are overlaid. See text for more information. (Bottom) Ratio of data
to Monte Carlo total rate. The plot shows that the data is decently
described by the Monte Carlo distributions, although there are places
where they deviate as seen in the ratio plot. The P-value of 0 also

shows that the distributions are not identical.

The track and cascade neutrino selections are illustrated in figure 7.22, which is quite
similar to that for neutrino probabilities in logit space. Here the Monte Carlo cascade
and track neutrino distributions in track probability are scaled to match the distri-
bution in data. The Monte Carlo track neutrinos are scaled by 1.057 and the Monte
Carlo cascade neutrinos are scaled by 0.863. The muons that make it into the neu-
trino selection are also plotted, but are not scaled or included in the data/MC ratio,
due to the relatively low statistics. As can be seen in the ratio plot, the distributions
are very similar, although the ratio are generally above one in the first part, then
generally a bit below in the second part, whereas the remainder looks very good.

A χ2 test with null-hypothesis that the distributions are identical, results in a p-
value of 0.03, which also suggest that the data/Monte Carlo agreement is quite good,
although not perfect.
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The track neutrino selection is set to be above 0.9 in track probability, whereas the
cascade neutrinos selection is below 0.5 in track probability. This is not a rigor-
ous choice, but the cuts were chosen to ensure that the track selection mainly con-
sists of very track-like events, whereas the cascade selection contains events that are
cascade-like. The comparisons for the neutrinos between 0.5 and 0.9 in track prob-
ability are also interested, but not included in this work due to time constraints. In
appendix D.2, figure 7.22 is available without scaling of the MC distributions.

In figure D.19 in appendix D.3, the predicted track probabilities for noise and muon
events in Monte Carlo and data is available. It shows that a general muon contami-
nation would most likely show up in around 1 in track probability and noise would
appear around 0-0.1 and 0.4-0.6 in track probability. That there are no major dis-
agreements particularly in these areas, suggest that there are no dominating muon
or noise contamination in the data neutrino selection. However, as can be seen in
figure 7.22, the sneaky muons (those that make it into the neutrino selection) do not
follow the general muon distributions exactly. Instead, a lot of the sneaky muons
are more cascade like than muons in general. We will return to the properties of the
sneaky muons in section 7.9.
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FIGURE 7.22: (Top) Stacked histogram of track neutrino probabili-
ties for the Monte Carlo distributions of track and cascade neutri-
nos, scaled using χ2 minimization to match the data points which
are overlaid. The surviving sneaky muons are also plotted, but not
scaled or included in the ratio plot. (Bottom) Ratio of data to Monte
Carlo total rate. The plot shows that the data is very well described
by the Monte Carlo distributions, although there are areas where the
ratio generally fall above or below, as seen in the ratio plot. The P-

value of 0.03 also shows that the distributions are relative similar.

Having selected the events which are probable track and cascade neutrinos in Monte
Carlo and data, it is time to determine if their distributions are similar across the
following variables in table 7.7:
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Variable Explanation
Energy Reconstructed energy
Zenith Reconstructed zenith angle
Zenith std Reconstructed zenith angle std
Azimuth Reconstructed azimuth angle
Azimuth std Reconstructed azimuth angle std
Position x,y,z Reconstructed interaction vertex position x,y,z coordinate
Rho Orthogonal distance to the 36th string which is located at (x,y) = (46.29,34.88)
Pulses Number of total DOM hits in the event (from SplitInIcePulses pulsemap)
Unique DOMs Number of unique DOMs being hit in the event (from SplitInIcePulses pulsemap)
Unique string Number of unique strings being hit in the event (from SplitInIcePulses pulsemap)

TABLE 7.7: Variables used in comparison of track and cascade neu-
trino selection between data and Monte Carlo. Energy, zenith, az-
imuth, position z and rho are presented below, while the remainder

can be found in appendix D.1.

In the following figures, 7.23, 7.24, 7.25, 7.26 and 7.27 there are four plots. The left
two have to do with the track neutrino selections and the right two contain events
from the cascade neutrino selections. The top plots are data and Monte Carlo distri-
butions of the variable in consideration (including the truth for Monte Carlo when
possible). The bottom contains a ratio of data to Monte Carlo. The rate of track
neutrinos in Monte Carlo is normalised to the data track neutrino rate, being scaled
by 1.099. Similarly the cascade neutrino rate in Monte Carlo are scaled by 0.966. A
χ2 test determines if the distributions for Monte Carlo and data are similar. A large
p-value suggest that they are, whereas a low p-value corresponds to a disagreement
between the distributions. The errors are again Poisson and only calculated for data.
The number of degrees of freedom are the number of non-empty bins minus one
from the scaling factor.

It is important to understand that these "neutrino" selections are not exclusively neu-
trinos. In Monte Carlo, they include those of the 347 muons that are track or cascade
like. In data, it is the hope that there are mainly neutrinos in the sample, which is
exactly what the following plots indicate.

In figure D.18 in appendix D.3 histograms of Monte Carlo and data noise and muons
for most of the variables in table 7.7 are available. This could help determine if
there are obvious muon or noise contamination in the data neutrino selection. For
instance if there is an excess in the data neutrino selection with a zenith angle below
π (coming from the southern sky), this would suggest that muons contaminate the
sample. While the plot could help determine where contamination might show up,
it should be kept in mind that the muons and noise that would enter the neutrino
selections probably have different distributions than the typical muons and noise.

In figure 7.23 the reconstructed energy distributions for track and cascade neutrinos
in Monte Carlo and data are shown. As can be seen, the ratio plots in log space
have linear slopes, which corresponds to an additive offset in energy. This means
that the data events have a very similar shape to the Monce Carlo events, but shifted
slightly in energy. This would be worrisome, were it not because the same trend has
been observed in data - Monte Carlo agreement analyses in IceCube. As such, it is
encouraging that the shape is similar, despite the fact that the distributions are not
identical. However, the muon distribution in real data tends to have higher ener-
gies than the neutrinos, which means that the problem could also result from muon
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contamination, although it is unlikely to be the main cause, since a corresponding
disagreement is not seen in the zenith distributions.

FIGURE 7.23: Energy distributions for track neutrino selections in
Monte Carlo and data (top left). Similarly for cascade neutrinos se-
lections (top right). In the bottom is shown the ratio of data to Monte
Carlo. A χ2 test with 0 hypothesis that the distributions match are
shown as well in each top plot. The distributions do not match per-
fectly and a linear relationship is visible in the ratio plots. For more

information, see text.

In figure 7.24 the reconstructed zenith distributions for track and cascade neutrinos
in Monte Carlo and data are shown. As can be seen, the distributions are visually
very similar. Furthermore, for the track neutrino selections the χ2 test even suggest
that the fit is good with a p-value of 0.07. The Cascade ratio plots does seem to slope
gently downwards, but overall looks pretty good too. Especially considering muons
mainly come from a zenith angle below π/2, and there is no large excess in this
range.
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FIGURE 7.24: Zenith distributions for track neutrino selections in
Monte Carlo and data (top left). Similarly for cascade neutrinos se-
lections (top right). In the bottom is shown the ratio of data to Monte
Carlo. A χ2 test with 0 hypothesis that the distributions match are
shown as well in each top plot. The track distributions match well.
The cascade distributions match well visually, but not statistically

with a p-value of 0. For more information, see text.

In figure 7.25 the reconstructed azimuth distributions for track and cascade neutrino
selections in Monte Carlo and data are shown. As can be seen, the distributions are
visually very similar and for both selections the χ2 test suggest that the agreements
are excellent with p-values of 0.19 and 0.46. This is perhaps also to be expected,
given that potential muon contamination is expected to be more or less uniform in
azimuth as well. A large noise contamination would tend to show up as an excess
in data for azimuth in the range of 2-3.5, and a shortage around 4-2π, which is not
evident. The exact distributions of noise and muons can be seen in figure D.18 in
appendix D.3.



Chapter 7. Classification And Evaluation Of Neutrino Sample In Real Data 82

FIGURE 7.25: Azimuth distributions for track neutrino selections in
Monte Carlo and data (top left). Similarly for cascade neutrinos se-
lections (top right). In the bottom is shown the ratio of data to Monte
Carlo. A χ2 test with 0 hypothesis that the distributions match are
shown as well in each top plot. Both track and cascade distributions

match very well. For more information, see text.

In figure 7.26 the distributions of reconstructed z coordinates for the interaction ver-
tex for track and cascade neutrinos in Monte Carlo and data are shown. As can be
seen, the distributions are visually very similar. For the track neutrino selection, the
χ2 test suggest that the distributions do not match exactly, with a p-value of 0. The
χ2 test for the cascade neutrino selection suggest that the distributions match with a
p-value of 0.60.
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FIGURE 7.26: Z coordinate of interaction vertex position distributions
for track neutrino selections in Monte Carlo and data (top left). Sim-
ilarly for cascade neutrinos selections (top right). In the bottom is
shown the ratio of data to Monte Carlo. A χ2 test with 0 hypothesis
that the distributions match are shown as well in each top plot. Track
distributions do not match statistically, but the cascade distributions

match very well. For more information, see text.

In figure 7.27 the distributions of rho for track and cascade neutrinos in Monte Carlo
and data are shown. As can be seen, the distributions are visually very similar. For
the track neutrino selection, the χ2 test suggest that the distributions match well,
with a p-value of 0.22. The χ2 test for the cascade neutrino selection suggest that the
distributions do not match perfectly, with a p-value of 0.01.
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FIGURE 7.27: rho (orthogonal distance to string 36, approximately
center of detector) distributions for track neutrino selections in Monte
Carlo and data (top left). Similarly for cascade neutrinos selections
(top right). In the bottom is shown the ratio of data to Monte Carlo.
A χ2 test with 0 hypothesis that the distributions match are shown as
well in each top plot. Track distributions match decently and cascade

distributions match very well. For more information, see text.

Having seen that the neutrino selections look very similar in energy, angles and
vertex positions, we investigate the energy further in the following three plots. To
make the comparison easier to visualize, the energies of events in the Monte Carlo
track neutrino selection are scaled by 1.249 and those in the Monte Carlo cascade
neutrino selection are scaled by 1.247. This ensures that for each selection the overall
mean energy of Monte Carlo and data is the same, allowing us to look for differences
in the energies as a function of zenith, azimuth and z position.

The errorbars are calculated using the error on the mean function: stdmean = stdindividual√
N

,
where N is the number of events contributing to the mean. For each bin in zenith,
azimuth and z position, the mean of the energies for the events in the bin is taken.
The stdindividual is estimated by taking the standard deviation of the energies of the
same events. This method is only valid for bins with reasonably many events. For
instance it gives an std of 0 if only a single event falls in a bin.

The mean energy as function of zenith distributions agree quite well between Monte
Carlo and data, except for a few very low statistic bins on the edges.
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FIGURE 7.28: Distributions of mean energy as a function of zenith for
track neutrino selections in Monte Carlo and data (top left). Similarly
for cascade neutrinos selections (top right). In the bottom is shown

the ratio of data to Monte Carlo. For more information, see text.

The mean energy as function of azimuth distributions also agree quite well between
Monte Carlo and data.

FIGURE 7.29: Distributions of mean energy as a function of azimuth
for track neutrino selections in Monte Carlo and data (top left). Sim-
ilarly for cascade neutrinos selections (top right). In the bottom is
shown the ratio of data to Monte Carlo. For more information, see

text.

The mean energy as function of z position distributions also agree quite well be-
tween Monte Carlo and data, except for the low statistics bins.
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FIGURE 7.30: Distributions of mean energy as a function of z posi-
tion for track neutrino selections in Monte Carlo and data (top left).
Similarly for cascade neutrinos selections (top right). In the bottom
is shown the ratio of data to Monte Carlo. For more information, see

text.

Thus also when investigating the energy dependence on a few of the other key vari-
ables, it seems as if the events in data are similarly distributed as those in Monte
Carlo. This is further argument that the data events are mainly neutrinos.

Considering the agreement between data and Monte Carlo for the track and cascade
neutrino selections across the reconstructed and calculated variables, it does indeed
seem as if the data selection is composed mainly of neutrinos. There is naturally not
always a complete statistical agreement, but this is not necessarily to be expected,
given that Monte Carlo simulations are not perfect. Another way to investigate if the
data neutrino selection is reasonable, it is compare the neutrino rate to the expected
in Monte Carlo and to the one obtained by the existing methods in the OscNext
group. That will be the topic of the next section.

7.7 Comparison Of GraphNet Neutrino Selection With The
OscNext Selection In Monte Carlo Data

7.7.1 How Many Additional Neutrinos Do We Select In Comparison To
OscNext In Monte Carlo data?

The previous section suggests that DynEdge is able to select a clean neutrino sample,
not only in Monte Carlo, but also in data. As such, it becomes interesting to investi-
gate the amount or rate of neutrinos in the DynEdge selection in comparison to the
existing OscNext neutrino selection. In figure 7.31, a replication of the OscNext par-
ticle rates as function of level in the cleaning process is available. It generally agrees
well with figure 4.12. The additional step beyond level 7 comes from a final muon
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cut13, which is actually a part of the level 7 cut. Finally, there are additional analysis
specific cuts applied afterwards, but these are not specifically targeted at removing
muons or noise. As such, one appropriate place to compare our neutrino selection is
after the OscNext final muon cut.

FIGURE 7.31: Monte Carlo rates for each particle type individually at
each level in OscNext selection process. Remake of figure 4.12 to be

compared against GraphNeT selection.

The DynEdge version of the rate as function of cleaning level plot is available in
figure 7.32. It shows the rate of each particle type that survives a particular cut in the
neutrino probability logit space. Note that the muons in this figure is from sample
nr: 130000, which is the one OscNext uses in their analysis, making the comparison
more appropriate than using the muon sample nr: 139008. In appendix E.1 identical
plots for track-like events with track probability above 0.9, and cascade-like events
with track probability below 0.5 in can be found in figures E.2 and E.1. Furthermore,
similar figures using only up or downgoing events is available in figures: E.3 and
E.4.

It is evident in the figure that the rate of particles being sorted away as function
of the cut, is different in data than Monte Carlo. The cut is stricter in data than in
Monte Carlo, which is a good sign in terms of ensuring a clean neutrino sample
in data. Furthermore, as mentioned earlier, before any neutrino selection is made,
the data rate is 20% above the Monte Carlo rate. This plots illustrates that the rate
difference arises mainly from noise and muons. Around the point where neutrinos
begin to dominate in Monte Carlo (4-10 in logit space), the ratio of data to Monte
Carlo quickly drops to around 1.

13It is a cut in the neutrino probability of a BDT model, which is illustrated in figure E.5 in appendix
E.1.
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FIGURE 7.32: (Top) Survival rate of each particle type in Monte Carlo
depending on where the cut is made in logit neutrino probability
space. Also plotted are the survival data rate. Note that the muons
are from sample nr: 130000. (Bottom) ratio plot of total data rate to

Monte Carlo rate.

It can be difficult to compare the two above figures. Instead table 7.8 shows the rates
and percent of each particle types for the DynEdge and OscNext selections. Green
is when there should be mainly neutrinos in the selections, yellow is after most of
the analysis cuts and red represents the stated final selection from OscNext. The
table shows that DynEdge improves the total rate by 79% (from 1.257 mHz to 2.250
mHz) in comparison to the OscNext selection after their lvl 7 classifier. At the same
time the purity increases from 96.48% neutrinos in OscNext selection to 98.84% in
the DynEdge selection. DynEdge also manages to remove all noise events, whereas
OscNext has 1.44% noise.

The uncolored rows illustrate the rates of particles in a DynEdge selection based on a
cut in logit space of either 8 or 10. They indicate that 12 is a decent place to make the
cut, since there are a substantially higher percent of muons in the looser selections14.

14It is possible that the looser selections are interesting for other analyses where muon contamination
matters less. For instance in early warnings.



Chapter 7. Classification And Evaluation Of Neutrino Sample In Real Data 89

Rate comparison in mHz Total Muons Noise All Neutrinos Real Data Data/MC ratio
DYNEDGE: Logit 8 cut. 4.359 0.801 (11.01%) 0.024 (0.54%) 3.855 (88.44%) 4.607 1.057
DYNEDGE: Logit 10 cut. 3.217 0.122 (3.78%) 0.004 (0.13%) 3.091 (96.09%) 3.240 1.007
DYNEDGE: Logit 12 cut. 2.250 0.026 (1.16%) 0 (0%) 2.224 (98.84%) 2.235 0.993
OSCNEXT: After lvl 7 classifier. 1.257 0.026 (2.07%) 0.018 (1.44%) 1.212 (96.48%) ? ?
DYNEDGE: Logit 12 cut and
zenith, energy, containment cuts.

1.382 0.010 (0.70 %) 0 (0%) 1.373 (99.30%) 1.289 0.932

OSCNEXT: After lvl 7 classifier and
zenith, energy, containment cuts.

0.818 0.014 (1.70%) 0.011 (1.29%) 0.794 (97.0%) ? ?

OSCNEXT: Stated final selection. 0.715 0.005 (0.7%) 0 (0%) 0.705 (99.3%) ? ?

TABLE 7.8: Table showing the rate of each particle type in differ-
ent DynEdge and OscNext neutrino selections. White rows indi-
cate looser DynEdge selections, which are more polluted by muons.
Green rows indicate a comparison at a point where the selections
should contain mostly neutrinos. Yellow rows are the green selec-
tions but after most of the analysis cuts, which are introduced further
down. Red is the final stated selection of OscNext. At both green and
yellow comparisons, DynEdge gives a larger rate (approx 70-80%) at
a higher purity. All rates are in mHz and the percentages are of the

total rate in the particular selection.

While DynEdge is able to select a much larger sample of clean neutrinos, it is pos-
sible that the additional neutrinos are of "poor quality". This means that they for
instance interact in the edges of the detector, or mainly come from the Southern sky.
To check that this is not the case, a comparison after the majority of analysis cuts are
also available in table 7.8. The cuts remove events where:

Cos(zenith) < 0.3

Energy < 5GeV

Energy > 300GeV

Positionz > −200m

Positionz < −500m

Rho > 300m

At this point, the Dynedge selection still improves the overall rate from OscNext’s
0.818 mHz to 1.382 mHz (an increase of 68.9%). Simoultaneously the purity of the
DynEdge selection is 99.30% neutrinos, in comparison to OscNext’s 97.0% neutri-
nos. The cuts are made in the OscNext selection using their retro reconstructions,
whereas it is made in the DynEdge selection using the GNN reconstructions. This
makes the comparison slightly less valid, since it might introduce biases from the re-
construction techniques. Besides from this, it is still encouraging that DynEdge can
select a much larger rate of neutrinos with a higher purity than the OscNext method.
There is a final pulse quality cut applied in OscNext, which was not replicated in this
work. When it is included, the OscNext purity increases to 99.3%, the same as the
DynEdge purity before the final pulse quality cut.

In table 7.8, it can also be seen that the DynEdge neutrino selections in Monte Carlo
and data have approximately matching rates. In the green selections, the data to
Monte Carlo ratio is 0.993 and in the yellow selections it is 0.932. These ratios also
suggest that the neutrino selection in data is reasonable and could contain a pure
neutrino sample.



Chapter 7. Classification And Evaluation Of Neutrino Sample In Real Data 90

7.7.2 How Are the GraphNeT And OscNext Monte Carlo Neutrinos Dis-
tributed?

To visualize the DynEdge and OscNext Monte Carlo neutrino selections, below is a
comparison of their distributions in energy, zenith, azimuth, vertex z position, rho
and neutrino logit probability. The comparison is made before the analysis cuts are
applied (green selections in table 7.8) and it is the truth values that are plotted, NOT
the predictions. The illustration in figure 7.33a visualizes the neutrino selections and
their overlap.

Figure 7.33b shows that all shared and DynEdge Monte Carlo neutrinos are above
neutrino logit probability of 12, whereas the neutrinos OscNext manages to capture,
which DynEdge does not, naturally all have neutrino logit probabilities below 12.

(A) (B)

FIGURE 7.33: (A) Illustration of Monte Carlo neutrino selections for
DynEdge and OscNext. (B) Histograms comparing OscNext neu-
trinos with GraphNeT neutrinos in Monte Carlo. GraphNet recon-
structed Logit neutrino probability histograms of shared events and

of the two selections are plotted.

In figure 7.34 the energy distributions are shown. It can be seen that the excess
DynEdge neutrinos outnumber the OscNext neutrinos everywhere, but especially at
high energies. However, most of the excess DynEdge neutrinos are in the OscNext
range, which is good.
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FIGURE 7.34: Histograms comparing OscNext neutrinos with Graph-
NeT neutrinos in Monte Carlo. Energy histograms of shared events

and events in the two selections are plotted.

In figure 7.35a the zenith distributions are shown. The thing to notice is that most of
the excess DynEdge neutrinos comes from the Northern sky, which is good. How-
ever, some of these neutrinos are removed by containment cuts ensuring that the
neutrinos interact around DeepCore and not below the detector for instance. How-
ever, it is still encouraging that the DynEdge additional neutrinos are not mainly
from the Southern sky, where OscNext implements the cut of cos(zenith)<0.3.

In figure 7.35b the azimuth distributions are shown. There is not really any interest-
ing takeaways here.

(A) (B)

FIGURE 7.35: Histograms comparing OscNext neutrinos with Graph-
NeT neutrinos in Monte Carlo. Zenith (A) and azimuth (B) his-
tograms of shared events and events in the two selections are plotted.

In figure 7.36a, the vertex position z coordinate distributions are shown. It shows
that the GNN selection is higher at all places. While the GNN selection has more
events below the detector, it also has more in the critical region around DeepCore.

In figure 7.36b, the rho distributions are shown. The GNN selection is quite a lot
higher in the edges of the detector (high rho), but also substantially higher in the
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center region (low rho). Distributions for the vertex position x and y coordinates
give similar results and can be seen in appendix E.215.

(A) (B)

FIGURE 7.36: Histograms comparing OscNext neutrinos with Graph-
NeT neutrinos in Monte Carlo. Interaction vertex z position (A) and
rho (B) histograms of shared events and events in the two selections

are plotted.

Thus it seems that the improvement in neutrino rates in Monte Carlo data using the
DynEdge selection survives most of the analysis cuts, but how easy are the addi-
tional neutrinos to reconstruct?

7.7.3 What Are The Quality Of The Neutrinos In The GraphNeT Selec-
tion Compared To The OscNext Selection?

The additional neutrinos in the GNN selection could potentially be much harder to
reconstruct. This can be tested by plotting the distributions of the energy and angu-
lar residuals, for the GNN selection, the OscNext selection and the shared selection
in Monte Carlo, since this can not be done in real data. The three resulting plots
are available in figures 7.37 and 7.38. Importantly the residual distributions are all
calculated using the GNN predictions (Not the retro prediction for OscNext). There-
fore the quality comparison only investigates how well the neutrino selections are
to reconstruct. If the OscNext predictions were used to calculate the residuals in the
OscNext selection, the difference in reconstruction performance between retro and
the GNN would make the results harder to interpret. The neutrino selections plotted
are before the analysis cuts introduced before (green selection in table 7.8), but iden-
tical figures with the distributions after the analysis cuts (yellow selection in table
7.8) are available in figures E.10 and E.11 in appendix E.2. The figures of the distri-
butions after the analysis cuts in appendix show more or less the same behavior as
the figures of the distributions without the analysis cuts below.

In figure 7.37, the GNN and OscNext energy residual distributions are available
along with the ratio between the GNN and OscNext rates. It can be seen that the
GNN selection also has a lot more events with a low energy residual than the Osc-
Next selection.

15In the same place there are also plots that show the neutrino selections differently for energy and
vertex position coordinate z. They have a shared distribution and the exclusive OscNext and GNN dis-
tributions. There are no new information, but it is easier to see exactly where the additional neutrinos
in the GNN selection are distributed.
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FIGURE 7.37: Histograms comparing OscNext neutrinos with Graph-
NeT neutrinos in Monte Carlo. (Top) Energy residual histograms of
shared events and events in the two selections are plotted. (Bottom)
Ratio of GraphNeT rate to OscNext rate is plotted. For more informa-

tion, see text.

In figure 7.38, the GNN and OscNext zenith and azimuth residual distributions are
available along with the ratio between the two. It can be seen that the GNN selection
has an even larger improvement over OscNext for events with low angular resolu-
tion than in general. This bodes positively for the impact of the additional neutrinos
in the GNN selection on the oscillation analysis.
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(A) (B)

FIGURE 7.38: Histograms comparing OscNext neutrinos with Graph-
NeT neutrinos in Monte Carlo. Zenith residual (A) and azimuth
residual (B) histograms of shared events and events in the two selec-
tions are plotted. (Bottom) Ratio of GraphNeT rate to OscNext rate is

plotted. For more information, see text.

High energy neutrinos are generally easier to reconstruct accurately. Thus it is pos-
sible that our additional neutrinos have lower residuals, simply because they have
higher energies. To investigate this, the above figures of the residuals are also plot-
ted with the analysis cuts and an even stricter energy cut. From investigating the
oscillation plot in figure 4.1, the strict energy cut removes neutrinos with an energy
higher than 101.75 GeV = 56.23 GeV. The figures showing the residuals of these dis-
tributions are available in figures E.12 and E.13 in appendix E.2. They support the
argument that the lower residuals in our neutrino selection compared to the OscNext
selection come mainly from the high energy neutrinos. The quality in zenith and en-
ergy reconstruction are approximately the same in the additional neutrinos as in the
OscNext, but the quality of the azimuth reconstruction is lower for the additional
neutrinos. Furthermore the overall rate improvement in Monte Carlo is reduced to
47.8% with the stricter energy cut.

Having investigated the rate and quality of neutrinos in the DynEdge selection com-
pared to OscNext, lets have a look at the actual data neutrino signatures in the de-
tector.

7.8 Real Neutrino Events In Real Data

One thing is to show that the neutrino selections in data and Monte Carlo have
the same distribution in reconstructed and calculated variables. However this does
not prove that the data events are actually real neutrinos. To make this even more
probable, one can investigate the actual detector signals and see if they appear to
behave as neutrinos would (a track or cascade shape appearing within the detec-
tor, or potentially from outside the detector). Most muons should appear from the
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top or edge of the detector and make a track shape downwards. However, some
muons pass through corridors of thinly instrumented Ice, meaning their signal ap-
pears inside the detector like neutrinos. These sneaky muons are illustrated in the
next section, section 7.9. Noise would appear as a diffuse scattering of DOM hits,
which can sometimes resemble a low energy neutrino event.

In figure 7.39, the detector readout is presented for one of the events with the highest
predicted energy (2883 GeV) in the data track neutrino selection. It clearly appears
to be a real track neutrino, since it has an elongated shape, with the earlier DOM hits
below the later DOM hits. This indicates that it is travelling upwards, and rules out
the possibility that it is a muon.

FIGURE 7.39: Event signature for the event with the highest predicted
energy in the data track neutrino selection, event number 90278349.
Size of spheres represent deposited charge and color represents rela-
tive time, with dark colors as the earliest hits and light colors as the

latest hits. The noise-cleaned pulsemap SRTInIcePulses is used.

In figure 7.40, the detector readout is presented for one of the events with the highest
predicted energy (2796 GeV) in the data cascade neutrino selection. It clearly appears
to be a real cascade neutrino, since it has a sphere shape. Furthermore at this energy
level, it is very unlikely that a muon could make such a signature, since even if
it travelled through a corridor, it would emit light in amounts that would still be
detected. This is supported by the fact that most "sneaky" muons have predicted
energies below 300 GeV, although a few have predicted energies as high as 800 GeV.



Chapter 7. Classification And Evaluation Of Neutrino Sample In Real Data 96

FIGURE 7.40: Event signature for the event with the highest pre-
dicted energy in the data cascade neutrino selection, event number
34882051. Size of spheres represent deposited charge and color rep-
resents relative time, with dark colors as the earliest hits and light
colors as the latest hits. The noise-cleaned pulsemap SRTInIcePulses

is used.

Additional detector signature plots are available in appendix E.3. There the three
most energetic and least energetic events in the data track neutrino selection are
presented along with three random ones as well. Similarly for the data cascade
neutrino selection. There are no obvious muons or noise in said event signatures
either.

7.9 Sneaky Muons That Make It Though To The Neutrino
Selection In Monte Carlo

Three muons from the muon sample 139008 make it into the Monte Carlo cascade
neutrino selection. These are what I refer to as "sneaky" muons. They are also called
corridor muons because they travel through corridors of thinly instrumented ice,
which can be seen in figures 7.41c, 7.42c and 7.43c. As such they only deposit light
in the center of the detector around DeepCore, similar to neutrinos. This can be seen
in figures 7.41a, 7.42a and 7.43a. The properties of the three muons are available in
table 7.9. They have energies in the range of 200-300 GeV, but are predicted to have
energies around 40-80 GeV, which is possibly because they only hit DOMs in the
center bottom part of the detector.

The three sneaky muons are all naturally all coming from the south with zenith
angles below π/2. They have low track probabilities, which sounds odd since they
are muons and should produce track signatures in the detector. But this happens
because once the muon light start hitting DOMs, they only hit those in a small sphere
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around DeepCore. Finally, only a single of the three muons make it past the analysis
cuts. The two others are cut away in the cos(zenith) < 0.3 requirement.

Sneaky Muons 1 2 3
Event Number 9236982 36628082 37560539
Make it pas analysis cuts? No No Yes
Rate (mHz) 0.022 0.022 0.007
Energy (GeV) 219.17 291.45 221.86
Energy Prediction (GeV) 40.19 76.57 78.91
Track Probability 0.35 0.19 0.16
Zenith (rad) 0.90 1.11 1.25
Zenith Prediction (rad) 0.92 0.97 1.42
Azimuth (rad) 0.124 5.86 2.29
Azimuth Prediction (rad) 0.148 5.35 1.65
Neutrino Probability 1.0 0.999999 0.999995
Neutrino Probability Logit 14.9 14.2 12.28

TABLE 7.9: Sneaky Muon properties.

(A) (B) (C)

FIGURE 7.41: Detector signature for sneaky muon with event number
9236982. (A) From side without DOMs and track. (B) From side with
DOMs and track. (C) from top with DOMs and track. Size of spheres
represent deposited charge and color represents relative time, with
dark colors as the earliest hits and light colors as the latest hits. The

un-cleaned pulsemap InIcePulses is used.
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(A) (B) (C)

FIGURE 7.42: Detector signature for sneaky muon with event number
36628082. (A) From side without DOMs and track. (B) From side with
DOMs and track. (C) from top with DOMs and track. Size of spheres
represent deposited charge and color represents relative time, with
dark colors as the earliest hits and light colors as the latest hits. The

un-cleaned pulsemap InIcePulses is used.

(A) (B) (C)

FIGURE 7.43: Detector signature for sneaky muon with event number
37560539. (A) From side without DOMs and track. (B) From side with
DOMs and track. (C) from top with DOMs and track. Size of spheres
represent deposited charge and color represents relative time, with
dark colors as the earliest hits and light colors as the latest hits. The

un-cleaned pulsemap InIcePulses is used.

An analysis of the 347 muons from muon sample 130000 that are included in the neu-
trino selection give similar results. Their distribution in various reconstructed vari-
ables are plotted in figure 7.44. The truth distributions are shown as well. Obviously
the muons all come from the Southern sky, but about half of them are reconstructed
to arrive from through the earth. Their energy is also generally reconstructed to be
much lower than the truth. It also appears as if there are two specific azimuth angles
that are particular good to sneak through, as seen from the two substantial peaks in
the azimuth distributions. The sneaky muons are of interest in the OscNext group,
given that they are the most difficult muons to get rid of and they have a negative
impact on the oscillation analysis.
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FIGURE 7.44: Histograms of the muons from sample 130000 that
make it into the neutrino selection are plotted for various variables.

The truth values are also plotted.

The investigation of the sneaky muons concludes this chapter and the analysis of
classifying neutrinos using GraphNeT in actual data.
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Chapter 8

Conclusion and Potential For
Future Work

8.1 Improving The Reconstruction Of High Energy Northern
Tracks

DynEdge is optimised for low energy reconstruction, where it outperforms the Retro
reconstructions. Unfortunately the simple attempts at improving its performance on
high energy northern tracks presented in this work failed. DynEdge simply is unable
to compete with SplineMPE as is. While these are slightly disappointing results, they
do pave the way for further optimisation, since future master students do not need
to start from scratch.

Having tried adjusting simple parameters such as the Pulsemap, learning rate and
prescaling, it is my belief that more complex, larger changes are required. These
could be combinations of the attempted adjustments or for instance a better learning
rate scheduler, another message passing scheme, larger dimensionality in the layers
or a much larger training sample. Another promising avenue is the current effort to
implement the winning model from the recent Kaggle IceCube competition, which
showed that a combination of a transformer and a GNN is very effective[4].

While the first part of the results could have been better, the second part is more
uplifting.

8.2 Classification And Evaluation Of Neutrino Sample In Real
Data Using GraphNeT

8.2.1 Conclusion

The application of GraphNeT using the DynEdge model to classify and reconstruct
the first clean low energy neutrino sample from actual raw lvl 2 data using a GNN
seems to be successful.

The DynEdge reconstruction models perform very well in Monte Carlo, even when
trained on lvl2 + DC events and the uncleaned pulsemap SplitInICEPulses. Further-
more, no hyperparameter optimisation was applied beyond those presented in [1]
and the reconstructions still performed nicely when compared to Retro on the sub-
sample of events Retro reconstructs. It was already shown in the published paper
that GraphNeT outperforms Retro [1], which means that the comparison on recon-
structions are secondary in this work.
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The DynEdge multiclassification model works excellently in Monte Carlo data. It
also represents a simpler method of selecting neutrinos, relying on a single model
and neutrino probability, in contrast to using two separate binary classifiers. The
track cascade classifier also does well, when the AUC from the ROC curve is com-
pared to that of the GraphNeT paper[1].

It turns out that in order for the classification results to generalize to actual data, the
OscNext lvl3 cuts are required. They ensure that the Monte Carlo - data agreement
is good enough for GraphNeT to work on data. They achieve this by cutting away
high energy muons, coincident events and obvious noise events using 12 variables.

Relying on the lvl3 cuts, it has been demonstrated that DynEdge seems to be able to
classify a clean low energy neutrino selection in data. A total of 8753 events from an
approx. 1% burnsample of OscNext data were classified as neutrinos, representing
a rate of 2.235 mHz. This corresponds to approximately 875,300 neutrinos in all Os-
cNext data, which if correct could be the largest clean low energy neutrino selection
to date. The track and cascade neutrino selections in data and Monte Carlo are gen-
erally very similar across reconstructed and calculated variables. Even when consid-
ering the energy as function of zenith, azimuth and vertex z position, the agreement
is very good. As such, there are strong reasons to believe that the classified neutrino
selection in data is approximately as clean as the one in Monte Carlo.

In Monte Carlo, the DynEdge neutrino selection is about 70% larger than that of the
OscNext selection, both when compared after their final lvl7 neutrino classifier and
when compared after the majority of the analysis cuts (energy, zenith and contain-
ment). Is is simultaneously of a higher purity. It remains to be seen if the improve-
ment consists after the final direct pulse cleaning, but it is quite likely. Given that
IceCube has been collecting data for about 12 years, the 70% additional neutrinos
would correspond to approx. 8.4 years of runtime. The rate in the DynEdge data
neutrino selections also match the theoretical rates from the DynEdge Monte Carlo
neutrino selections quite well, with data/Monte Carlo rate ratios of 0.993 and 0.932
before and after the analysis cuts. This suggests that the improvement in neutrino
statistics carry over to actual data as well.

The additional Monte Carlo neutrinos in the DynEdge selection are also of a similar
"quality" (if not higher) than those in the OscNext selection when compared before
and after the analysis cuts. They have a similar energy residual distribution, but a
more narrow angular residual distribution. However, once a stricter cut in energy
(removing events with energy above 101.75 GeV) is enforced, the additional rate of
neutrinos drops to 47.8% and the quality is then similar in zenith and energy, but
worse in azimuth than the existing neutrinos.

Overall is seems likely that the additional neutrinos would have an impact on the
oscillation analysis, hopefully lowering the uncertainties on the oscillation parame-
ters IceCube measures. Furthermore, a number of additional IceCube analyses use
the OscNext neutrino selection and would also benefit from the improved statistics.

As such, it has been successfully demonstrated that DynEdge is a reliable method
of selecting and classifying low energy neutrinos, not only in Monte Carlo, but also
in actual IceCube data. Perhaps one could argue that slight improvements in the
classification and reconstruction is not groundbreaking, but one should remember
that DynEdge is also very fast. It is fast enough to run live at the South Pole on a
single GPU [1]. The speed allows, for instance, to quickly test calibrations and new
simulations. It also opens the door for low energy early warnings.
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Thus the results are overall very promising. They can also easily be expanded upon.

8.2.2 Simple Additional Analysis Possibilities And Improvements

The analyses and results presented in this thesis can easily be extended. The follow-
ing points are what I would have investigated given a few more months.

• In Monte Carlo, it is possible to test the effect of the additional neutrinos on the
oscillation analysis. One can generate the 90% significance contour of the two
oscillation parameters Θ2,3 and ∆m2

2,3, measured in IceCube. This can be done
for the OscNext Monte Carlo neutrinos, and the DynEdge Monte Carlo neu-
trinos, which would illustrate the extra precision obtained from the additional
neutrinos in the DynEdge selection. Unfortunately this was not attempted due
to time constraints.

• In the comparison of neutrino selections between Monte Carlo and data, a split
into track and cascade neutrinos were made (track prob. > 0.9 for tracks and
track prob. < 0.5 for cascades). This means that neutrinos that are in-between
these selection in track probability have not been compared. This is quite a
simple additional analysis, which would hopefully further demonstrate that
the classification works in data.

• Another idea that was only briefly investigated is that of splitting the analysis
into up and down-going events, using the zenith reconstruction. This would
allow the cut in neutrino probability in logit space to depend on whether the
zenith reconstruction predicts that the event comes from the southern sky or
through the earth. By loosening the cut for those that are predicted to pass
through the earth, a larger neutrino sample could possibly be achieved.

• A further check that our neutrino selection in data makes sense, would be to
compare directly with the real data events that OscNext classifies as neutrinos.
If the majority of the OscNext neutrinos in data are also in our selection, it
would be a point in our favor. If on the other hand, there was no overlap in
the data neutrino selections, it would suggest that our method does not work
as well as has been argued.

• In the neutrino selection rate comparison in Monte Carlo, it would make sense
to replicate their pulse quality cut to ensure that our additional neutrinos are
not all removed by it. It should be relatively straight forward.

• The motivation for using a multiclassification method was partly the simplicity
of only having to make a single cut. But partly it was also from a belief that
with two binary classifiers (particle vs noise & neutrino vs muon), the noise
that passed the first would resemble neutrinos more than muons and hence
also end up in the final neutrino selection. However, this claim has not been
tested directly. As such, it would be interesting to train two binary classifiers
on the same training set used in this work and with similar hyperparameters.
Then an analysis of which method produces the cleanest and largest neutrino
selection could be carried out.

• In figure 7.32, showing the rate of each particle that survives depending on the
cut in neutrino probability in logit space, the data / Monte Carlo ratio is not
constant. While this has to do with the data - Monte Carlo agreement, it is not
well understood. One could try to scale each particle and perhaps smear the
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neutrino probabilities of the Monte Carlo muons to get it to match. This would
help us to understand in what way the simulations differ from the actual data.

• Recently we were made aware that the energy bias between neutrinos in data
and Monte Carlo might be related to the energy deposited in the tracks of CC
νµ. Therefore it would be interesting to make a new model, which predicts the
amount of energy deposited in the track part of the events, as contrasted to the
initial cascade and investigate this further.

• In the analysis, the neutrino selection was based on a cut of 12 in the neutrino
probability in logit space. This was not based on solid analysis, but was chosen
from investigating figure 7.21, which shows the Monte Carlo particle distribu-
tions in logit neutrino probability scaled to data. It would be interesting to
carry out an analysis of varying the cut and seeing what happens to the com-
parisons. In general if DynEdge were to be used directly in IceCube, the initial
cut would be much looser, and then for each seperate analysis, additional cuts
in neutrino probability and reconstructed variables should be determined.

• As Andreas Mosgaard Jørgensen is currently investigating, it is interesting to
see if we can get away with loser lvl3 cuts to get Monte Carlo to match data,
given that we are using DynEdge instead of the OscNext classification meth-
ods. Depending on what cuts are eventually chosen, it might make sense to
retrain the models only on the Monte Carlo events that make it past the cuts.
Retraining the models, one should make sure that no neutrinos in the multi-
classification test sets are used to train the reconstruction models.

• It was chosen to use the uncleaned pulsemap SplitInICEPulses, since it re-
sulted in a better multiclassification model than the cleaned SRTInICEPulses.
I present no particular evidence, but the validation loss was quite a lot better
when we trained on SplitInICEPulses. However, this might not be the case
for the reconstruction models. Therefore it would also be interesting to see if
for reconstruction, the SRTInICEPulses leads to better results. However, given
the limited difference in using various pulsemaps in the high energy northern
track benchmark, I do not expect a large improvement.
However, work is being carried out to allow DynEdge to construct a clean
pulsemap, which has been shown to improve the current reconstruction meth-
ods a lot. At the moment it requires IceCube Upgrade data, since there is no
truth flags for whether a DOM hit is noise or not in the non-upgrade Monte
Carlo data. It should, however, be possible to work around this by training
only on the old doms in the IceCube upgrade simulated data. It would be in-
teresting to see how a GraphNeT cleaned pulsemap improves the reconstruc-
tion models.

The above things are what I would look into given a few more months. In the next
section a longer outlook is presented.

8.2.3 Long Term Potential

The potential of DynEdge is excellent in low energy Monte Carlo data and seems to
generalize to actual data.

The quality of the models and the data - Monte Carlo agreement is at a level where
it would make sense to test on a larger scale. Given the speed of the models, it
should be possible to relatively quickly run through the entirety of IceCube data.
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Given the 8753 neutrinos in the approx. 1% sample, one would expect around 800
thousand neutrino candidates from the entire data. This would be excellent statistics
to confirm that the method works. Furthermore, by being able to quickly run on all
data, small configurations and calibrations can be tested fast and on a large scale,
compared to the existing reconstruction methods. Running on all data would require
being able to run on the GPUs in the IceCube Hub in Madison, given the size of the
data.

The above would yield a low energy - DeepCore centred neutrino selection by DynEdge.
However, it would be great if we could simultaneously classify high energy neutri-
nos and neutrinos in the entirety of the detector. This would require simulations of
high energy neutrinos and muons that are compatible with the current Monte Carlo
data. Furthermore, including coincident events in the training, could allow a loosen-
ing of the lvl3 cuts. Eventually it might even be possible to select atmospheric neu-
trinos where a muon simultaneously hits the detector. To include coincident events,
the Corsika simulation model could be useful, but otherwise merging neutrino and
muon event pulsemaps might make sense.

Currently the early warning sent out by IceCuce stem from very high energy neutri-
nos, since these are easy to distinguish from muons. Low energy neutrinos are not
used in early alerts yet, since by the time they have been classified and reconstructed,
it has been too long since the event took place. Utilizing GraphNeT to reconstruct
low energy events live at the South Pole could potentially open the window to early
warnings from low energy neutrinos. This could represent a significant contribution
to multi-messenger astronomy and is specifically suited to the fast reliable classifi-
cation and reconstruction of DynEdge.

Given the strong potential, it will be most interesting to follow the development of
GraphNeT in the future.
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Appendix A

Azimuth Results In Northern Track
Benchmark Project

A.1 DynEdge Baseline Comparison To SplineMPE

FIGURE A.1: Distribution of azimuth residuals for the baseline
DynEdge model and SplineMPE. Overlaid are calculated resolutions
illustrated from the medians of the distributions. The resolutions are
robust measures of how well the model predicts the zenith angle. If
they had a Gaussian shape, it would correspond to a standard distri-

bution. Note that outlier bins are used.
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FIGURE A.2: (top) Azimuth resolution with bootstrap std as a func-
tion of energy for the baseline DynEdge model and SplineMPE. (bot-

tom) relative improvement of SplineMPE to Dynedge baseline.
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A.2 Learning Rate Adjustment

FIGURE A.3: (top) Azimuth resolution with bootstrap std as a func-
tion of energy for the baseline DynEdge model, SplineMPE, and the
baseline DynEdge model with fixed learning rates. (bottom) relative

improvement of the adjusted DynEdge models to the baseline.
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A.3 Changing The Pulsemap

FIGURE A.4: (top) Azimuth resolution with bootstrap std as a func-
tion of energy for the baseline DynEdge model, SplineMPE, and the
baseline DynEdge model trained on different pulsemaps. (bottom)
relative improvement of the adjusted DynEdge models to the base-

line.
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A.4 Focus On Highest Energy Range

FIGURE A.5: (top) Azimuth resolution with bootstrap std as a func-
tion of energy for the baseline DynEdge model, SplineMPE, and the
baseline DynEdge model trained on neutrinos with energy above 104

Gev. (bottom) relative improvement of the adjusted DynEdge mod-
els to the baseline. Note that the energy range is limited to above 104

GeV, since the adjusted model has no predictions for lower energies.
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A.5 Better Prescaling of Input

FIGURE A.6: (top) Azimuth resolution with bootstrap std as a func-
tion of energy for the baseline DynEdge model, SplineMPE, and the
baseline DynEdge model trained on gaussian scaled features. "All std
Scaled" means that all five input features from figure 6.6 are scaled
using new transformer. "Positions Std Scaled" means only dom posi-
tions are scaled using new transformer. "Time and Charge Std Scaled"
means only dom time and charge are scaled using new transformer.
The * in the labels indicates extended training. (bottom) relative im-

provement of the adjusted DynEdge models to the baseline.
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Appendix B

Monte Carlo Classification And
Reconstruction Results - Including
Benchmark Against Retro
Reconstructions - Additional
Results

B.1 Multiclassification - Noise, Muons Or Neutrinos?

FIGURE B.1: Stacked histogram of all test events as a function of their
predicted probability of being noise. Colored by actual particle type.
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FIGURE B.2: Stacked histogram of all test events as a function of
their predicted probability of being muons. Colored by actual par-

ticle type.

B.2 Azimuth Reconstruction

A pull plot for the azimuth angle is available in figure B.3. It can be seen that the
mean is zero, whereas the standard deviation of the Gaussian is 1.09 instead of 1.
This means that the azimuth model standard deviation estimates are also slightly
too low.

FIGURE B.3: Pull plot. Histogram of number of predicted standard
deviations the predicted azimuth angle falls from the truth. Overlaid
is a gaussian fit, since this should correspond to a unit gaussian, if
the std is estimated correctly. A is the normalisation, mu is the mean,
sigma is the standard deviation, Chi2 is the χ2 value of the fit, Ndof
is the degrees of freedom and p-value is the probability of obtaining
a worse χ2 if the data distributions is consistent with the fit. One can
see that the mean is 0, while the sigma is 1.09 instead of 1. This means
the model slightly underestimates the azimuth standard deviations.
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B.3 Interaction Vertex Position Reconstruction

FIGURE B.4: (Left) Predicted and True vertex position x distributions
for all neutrinos in test set. (Right) 2D histogram of true vs predicted

vertex position z.

FIGURE B.5: (Left) DynEdge predicted, Retro predicted and True ver-
tex position x distributions for all neutrinos in test set that make it to

OscNext lvl 6. (Right) DynEdge and Retro residual distributions.

FIGURE B.6: (Left) Predicted and True vertex position y distributions
for all neutrinos in test set. (Right) 2D histogram of true vs predicted

vertex position y.
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FIGURE B.7: (Left) DynEdge predicted, Retro predicted and True ver-
tex position y distributions for all neutrinos in test set that make it to

OscNext lvl 6. (Right) DynEdge and Retro residual distributions.
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Appendix C

Necessary Data Cleaning to Ensure
Good Monte Carlo / Data
Agreement

C.1 Level 3 Variables - Cuts And Replicated Plots

The lvl3 cuts are defined and calculated as part of the OscNext selection process.
The following explanation of each variable is taken from [45].

The variables calculated are:

• Number of cleaned DOMs (NchCleaned):A number of hit DOMs in the cleaned
pulseseries.

• NoiseEngine:DeepCore Level3 uses the NoiseEngine algorithm without charge
information.

• MicroCount hits: The reconstructed pulse series withing [–4 s, +5 s ] from
DeepCore are scanned with a 300 ns sliding time window. The algorithm saves
a number and charge of the time window with the maximal observed number
of hits.

• NAbove200: A number of observed pulses in DOMs with Z > 200m before the
DeepCore trigger time.

• VertexGuess Z: Z-coordinate of the first pulse in the cleaned pulse series.

• Fiducial hits (DCFiducialHits): A number of hit fiducial DOMs in the cleaned
pulseseries.

• Veto/fiducial hit ratio: Ratio of hit numbers in veto and fiducial modules in
the cleaned pulses.

• Causal Veto Hits: A number of veto hits found by the DeepCore filter (run
at level 2). the time considered for each hit is the time of the first pulse in a
DOM’s pulseseries.

• C2HR6: A fraction of hit DOMs within the first 600 ns with the first 2 hit DOMs
ignored.

• Uncleaned time length: A time difference between the first and last pulse in
the uncleaned pulse series.
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• Cleaned time length: A time difference between the first and last pulse in the
cleaned pulse series.

• RT Veto: A number of hits found by the RTVeto algorithm. A different cut
value is selected for different ranges of hit fiducial DOM numbers as described
in the table below:

DC Fiducial DOMs RTVeto Cut
Nfid <75 RTVeto250Hits <4.0
75 <= Nfid <100 RTVeto250Hits <5.0
Nfid >= 100 no cut

TABLE C.1

The cut values and whether they target muons, noise or coincident events is avail-
able in figure C.1 adjusted from [45].

FIGURE C.1: Table with overview of the lvl3 cut values and whether
they target muons, noise or coincident events. Adjusted from [45].

In all the following figures, Monte Carlo is scaled by 1.411 to get the rate to match
data for lvl2+DC. The variables are extracted from the I3 files and have been calcu-
lated by the OscNext group. They are presented here to give a better understand-
ing of the necessary data - Monte Carlo agreement cuts. In the top of each figure
is shown the distribution of each Monte Carlo particle type in the lvl3 variable in
question. Also plotted are the data distribution for the ∼1% burnsample. In the bot-
tom the data to MC agreement ratio is plotted. The cut selection is illustrated with
dashed lines and arrows indicating which section is considered signal and kept past
lvl3 in the OscNext selection. One sees that they have removed sections where the
data/MC ratio is high, and there are simultaneously few Monte Carlo neutrinos in
the part that is cut away. The figures are replication of those found in [45].
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(A) (B)

FIGURE C.2: Figures illustrating the lvl3 variables C2HR6 (A) and
NoiseEngineNoCharge (B) and their cuts. See text for further expla-

nation.

(A) (B)

FIGURE C.3: Figures illustrating the lvl3 variables
STW9000_DTW300Hits (A) and NAbove200Hits (B) and their

cuts. See text for further explanation.



Appendix C. Necessary Data Cleaning to Ensure Good Monte Carlo / Data
Agreement

118

(A) (B)

FIGURE C.4: Figures illustrating the lvl3 variables VertexGuessZ (A)
and DCFiducialHits (B) and their cuts. See text for further explana-

tion.

(A) (B)

FIGURE C.5: Figures illustrating the lvl3 variables VetoFiducialRatio-
Hits (A) and CausalVetoHits (B) and their cuts. See text for further

explanation.
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(A) (B)

FIGURE C.6: Figures illustrating the lvl3 variables C2HR6 (A) and
UncleanedFullTimeLength (B) and their cuts. See text for further ex-

planation.

(A) (B)

FIGURE C.7: Figures illustrating the lvl3 variables CleanedFullTime-
Length (A) and RTVetoCutHit (B) and their cuts. See text for further

explanation.
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C.2 Neutrino Comparison Without Lvl 3 Cuts Applied

These figures are created using lvl 2 + DC data. When compared to the identical
figures in section 7.6, where the lvl 3 cuts are applied, they show the necessity of
including the lvl 3 cuts.

The scale factors for Monte Carlo noise, muons and neutrinos in figure C.8 are 0.1179,
2.4492 and 2.478.

FIGURE C.8: This is without lvl 3 cuts! (Top) Stacked histogram of
neutrino probabilities in logit space for the Monte Carlo distribu-
tions of noise, muons and neutrinos, scaled using χ2 minimization
to match the data points which are overlaid. See text for more infor-

mation. (Bottom) Ratio of data to Monte Carlo total rate.

The scale factors for Monte Carlo track and cascade neutrinos in figure C.9 are 1.346
and 2.025.
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FIGURE C.9: This is without lvl 3 cuts! (Top) Stacked histogram of
track neutrino probabilities for the Monte Carlo distributions of track
and cascade neutrinos, scaled using χ2 minimization to match the
data points which are overlaid. The surviving sneaky muons are also

plotted. (Bottom) Ratio of data to Monte Carlo total rate.

The Monte Carlo track neutrino rate is scaled by 1.412 and the Monte Carlo cascade
neutrino rate is scaled by 1.838 in figures C.10, C.11 and C.12.
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FIGURE C.10: This is without lvl 3 cuts! Energy distributions for track
neutrino selections in Monte Carlo and data (top left). Similarly for
cascade neutrinos selections (top right). In the bottom is shown the
ratio of data to Monte Carlo. A χ2 test with 0 hypothesis that the
distributions match are shown as well in each top plot. For more

information, see section 7.5.

FIGURE C.11: This is without lvl 3 cuts! Zenith distributions for track
neutrino selections in Monte Carlo and data (top left). Similarly for
cascade neutrinos selections (top right). In the bottom is shown the
ratio of data to Monte Carlo. A χ2 test with 0 hypothesis that the
distributions match are shown as well in each top plot. For more

information, see section 7.5.
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FIGURE C.12: This is without lvl 3 cuts! Azimuth distributions for
track neutrino selections in Monte Carlo and data (top left). Similarly
for cascade neutrinos selections (top right). In the bottom is shown
the ratio of data to Monte Carlo. A χ2 test with 0 hypothesis that
the distributions match are shown as well in each top plot. For more

information, see section 7.5.
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Appendix D

Comparison of Neutrino Selections
in Monte Carlo and Data -
Additional Plots

D.1 Additional Distribution Comparisons Between Data and
Monte Carlo Neutrino Selections

In figure D.1 the reconstructed zenith uncertainty distributions for track and cascade
neutrinos in Monte Carlo and data are shown. As can be seen, the distributions are
visually very similar, despite being very different for track vs cascade neutrinos.
Furthermore, for both selections the χ2 test suggest that the fits are excellent with
p-values of 0.95 and 0.32. It also makes sense that the track-like neutrinos have
much smaller zenith uncertainties than the cascade-like neutrinos, since they should
deposit signatures with more directional information.
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FIGURE D.1: Zenith std distributions for track neutrino selections in
Monte Carlo and data (top left). Similarly for cascade neutrinos se-
lections (top right). In the bottom is shown the ratio of data to Monte
Carlo. A χ2 test with 0 hypothesis that the distributions match are
shown as well in each top plot. Both track and cascade distributions

match very well.

In figure D.2 the reconstructed azimuth uncertainty distributions for track and cas-
cade neutrinos in Monte Carlo and data are shown. As can be seen, the distributions
are visually very similar, despite being quite different for track vs cascade neutrinos.
Furthermore, for the track neutrino selection the χ2 test suggest that the fit is excel-
lent with p-values of 0.39. Whereas the cascade neutrinos selection has a p-value
of 0, but visually looks quite good. As with the zenith uncertainties, it also makes
sense that the track-like neutrinos have much smaller azimuth uncertainties than the
cascade-like neutrinos, since they should deposit signatures with more directional
information.



Appendix D. Comparison of Neutrino Selections in Monte Carlo and Data -
Additional Plots

126

FIGURE D.2: Azimuth std distributions for track neutrino selections
in Monte Carlo and data (top left). Similarly for cascade neutrinos se-
lections (top right). In the bottom is shown the ratio of data to Monte
Carlo. A χ2 test with 0 hypothesis that the distributions match are
shown as well in each top plot. The track distributions match well,
whereas the cascade distributions do not in the p-value but visually

it is still decent.

In figure D.3 the distributions of reconstructed x coordinates for the interaction ver-
tex for track and cascade neutrinos in Monte Carlo and data are shown. As can
be seen, the distributions are visually very similar, especially when considering the
quite weird shape. For both selections the χ2 test suggest that the distributions are
close to being significantly different with p-values of 0.02 and 0.08. The peaked
shapes of the reconstructed position distributions in comparison to the true distri-
butions could be the result of the model preferring to predict the vertex close to the
DOMs in DeepCore that initially hit. One way to investigate this, would be to look
at the x-positions of the DOMs and see if there are specifically many DOMs with
x-coordinates near the peaks.
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FIGURE D.3: X coordinate of interaction vertex position distributions
for track neutrino selections in Monte Carlo and data (top left). Sim-
ilarly for cascade neutrinos selections (top right). In the bottom is
shown the ratio of data to Monte Carlo. A χ2 test with 0 hypothesis
that the distributions match are shown as well in each top plot. Both

track and cascade distributions match decently.

In figure D.4 the distributions of reconstructed y coordinates for the interaction ver-
tex for track and cascade neutrinos in Monte Carlo and data are shown. As can be
seen, the distributions are visually very similar. For both neutrino selection, the χ2

test suggest that the distributions match decently with a p-value of 0.04 and 0.02.
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FIGURE D.4: Y coordinate of interaction vertex position distributions
for track neutrino selections in Monte Carlo and data (top left). Sim-
ilarly for cascade neutrinos selections (top right). In the bottom is
shown the ratio of data to Monte Carlo. A χ2 test with 0 hypothesis
that the distributions match are shown as well in each top plot. Both

track and cascade distributions match decently.

In figure D.5 the distributions of number of DOM hits (pulses) for track and cascade
neutrinos in Monte Carlo and data are shown. As can be seen, the distributions
are visually quite similar. For both neutrino selections, the χ2 test suggest that the
distributions do not match completely well, with p-values of 0 and 0.02.

In general for the interaction vertex positions, there tend to be slight excesses close
to and in the outlier bins, which when looking at the muon and noise events in the
figure in appendix, could perhaps be a sign of a small contamination. However, it
could also arise from the fact that the neutrino simulations are mainly targeted at the
DeepCore part of the detector, where most of the neutrinos also end up interaction
in the neutrinos selections.
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FIGURE D.5: Distributions of number of pulses in the events for track
neutrino selections in Monte Carlo and data (top left). Similarly for
cascade neutrinos selections (top right). In the bottom is shown the
ratio of data to Monte Carlo. A χ2 test with 0 hypothesis that the
distributions match are shown as well in each top plot. Both track
and cascade distributions does not match very well according to p-

value, but decently by eye.

In figure D.6 the distributions number of unique DOMs being hit for track and cas-
cade neutrinos in Monte Carlo and data are shown. As can be seen, the distributions
are visually quite similar. For both neutrino selections, the χ2 test suggest that the
distributions match very well, with p-values of 0.36 and 0.17.
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FIGURE D.6: Distributions of unique DOMs being hit in the events for
track neutrino selections in Monte Carlo and data (top left). Similarly
for cascade neutrinos selections (top right). In the bottom is shown
the ratio of data to Monte Carlo. A χ2 test with 0 hypothesis that the
distributions match are shown as well in each top plot. Both track

and cascade distributions match very well.

In figure D.7 the distributions number of unique strings being hit for track and cas-
cade neutrinos in Monte Carlo and data are shown. As can be seen, the distributions
are visually quite similar. For both neutrino selections, the χ2 test suggest that the
distributions either very well (tracks) or decently (cascades), with p-values of 0.33
and 0.04.
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FIGURE D.7: Distributions of unique strings being hit in the events for
track neutrino selections in Monte Carlo and data (top left). Similarly
for cascade neutrinos selections (top right). In the bottom is shown
the ratio of data to Monte Carlo. A χ2 test with 0 hypothesis that the
distributions match are shown as well in each top plot. Track distri-

butions match very well and cascade distributions match decently.

It is also interesting to look at the zenith and azimuth pull plots for the Monte Carlo
track and cascade neutrino selections in figures D.8 and D.9. As can be seen, the
model generally underestimates the errors for the cascade neutrino selection in both
azimuth and zenith, where the Gaussian fits have standard deviations of 1.2 and
1.12. In comparison the uncertainties for the track selections are overestimated, and
the Gaussian fits have sigmas of 0.9 and 0.74 in azimuth and zenith.
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FIGURE D.8: Azimuth pull plot for track and cascade neutrino selec-
tion in Monte Carlo. Histogram of number of predicted standard de-
viations the predicted azimuth angle falls from the truth. Overlaid are
Gaussian fits, since they should correspond to unit Gaussians, if the
std’s is estimated correctly. A is the normalisation, mu is the mean,
sigma is the standard deviation, Chi2 is the χ2 value of the fit, Ndof
is the degrees of freedom and p-value is the probability of obtaining a
worse χ2 if the data distributions is consistent with the fit. The means
of the Gaussians are 0, while the sigma is 0.90 for the track neutrino
selection and 1.20 for the cascade neutrino selection. This means the
model slightly underestimates the azimuth standard deviations for

cascade neutrinos and overestimate it for track neutrinos.

FIGURE D.9: Zenith pull plot for track and cascade neutrino selection
in Monte Carlo. Histogram of number of predicted standard devi-
ations the predicted zenith angle falls from the truth. Overlaid are
Gaussian fits, since they should correspond to unit Gaussians, if the
std’s is estimated correctly. A is the normalisation, mu is the mean,
sigma is the standard deviation, Chi2 is the χ2 value of the fit, Ndof
is the degrees of freedom and p-value is the probability of obtaining a
worse χ2 if the data distributions is consistent with the fit. The means
of the Gaussians are almost 0, while the sigma is 0.74 for the track
neutrino selection and 1.12 for the cascade neutrino selection. This
means the model slightly underestimates the zenith standard devia-

tions for cascade neutrinos and overestimate it for track neutrinos.
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D.2 Un-scaled And Variations Of Multiclass Probability (Logit)
And Track Probability Plots

FIGURE D.10: (Top) Stacked histogram of neutrino probabilities in
logit space for the Monte Carlo distributions of noise, muons and
neutrinos. Not scaled! (Bottom) Ratio of data to Monte Carlo total

rate.
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FIGURE D.11: (Top) Stacked histogram of neutrino probabilities for
the Monte Carlo distributions of noise, muons and neutrinos, scaled
using χ2 minimization to match the data points which are overlaid.
Noise, muons and neutrinos scaled by 0, 1.318 and 1.293. (Bottom)
Ratio of data to Monte Carlo total rate. Noise is scaled to 0, since it
has a similar distribution to the muons, but much smaller. This is one

of the reasons why the logit space it better to use.
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FIGURE D.12: (Top) Stacked histogram of neutrino probabilities for
the Monte Carlo distributions of noise, muons and neutrinos. Not

scaled! (Bottom) Ratio of data to Monte Carlo total rate.
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FIGURE D.13: (Top) Stacked histogram of neutrino probabilities in
logit space for the Monte Carlo distributions of noise, muons and neu-
trinos, scaled using χ2 minimization to match the data points which
are overlaid. Only events with track probability above 0.9 included.

(Bottom) Ratio of data to Monte Carlo total rate.
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FIGURE D.14: (Top) Stacked histogram of neutrino probabilities in
logit space for the Monte Carlo distributions of noise, muons and neu-
trinos, scaled using χ2 minimization to match the data points which
are overlaid. Only events with track probability below 0.5 included.

(Bottom) Ratio of data to Monte Carlo total rate.



Appendix D. Comparison of Neutrino Selections in Monte Carlo and Data -
Additional Plots

138

FIGURE D.15: (Top) Stacked histogram of neutrino probabilities in
logit space for the Monte Carlo distributions of noise, muons and neu-
trinos, scaled using χ2 minimization to match the data points which
are overlaid. Only downgoing events with zenith prediction below

π
2 . (Bottom) Ratio of data to Monte Carlo total rate.
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FIGURE D.16: (Top) Stacked histogram of neutrino probabilities in
logit space for the Monte Carlo distributions of noise, muons and neu-
trinos, scaled using χ2 minimization to match the data points which
are overlaid. Only upgoing events with zenith prediction above π

2 .
(Bottom) Ratio of data to Monte Carlo total rate.
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FIGURE D.17: (Top) Stacked histogram of track neutrino probabilities
for the Monte Carlo distributions of track and cascade neutrinos. Not
scaled! The surviving sneaky muons are also plotted. (Bottom) Ratio
of data to Monte Carlo total rate. The plot shows that the data is
very well described by the Monte Carlo distributions, even when un-
scaled, although there are areas where the ratio generally fall above
or below, as seen in the ratio plot. The P-value of 0.01 also shows that

the distributions are relative similar.
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D.3 Real And Simulated Noise And Muons In Reconstruc-
tion and Track/Cascade Classifier Results - Where Would
Contamination Show Up?

FIGURE D.18: Histograms of energy, zenith, azimuth and vertex po-
sition for neutrinos, muons and noise in data and Monte Carlo. Noise
are events with noise probability > 0.5, muons are events with muon
probability > 0.5 and neutrinos are events with neutrino probability
> 12 in logit space. These plots show where potential muon or noise
contamination could potentially show up, although those that would
end up in the neutrino selections might not resemble the depicted dis-

tributions exactly. Note that outlier bins are used.
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FIGURE D.19: Histograms of track probability for, muons and noise
in data and Monte Carlo. Noise are events with noise probability >
0.5, muons are events with muon probability > 0.5. The plot show
where potential muon or noise contamination could potentially show
up, although those that would end up in the neutrino selections might

not resemble the depicted distributions exactly.
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Appendix E

Comparison Of GraphNeT
Neutrino Selection With OscNext
Neutrino Selection - Additional
Figures

E.1 Additional Figures Showing Neutrino Rates For Graph-
NeT And OscNext Selections

FIGURE E.1: (Top) Survival rate of each particle type in Monte Carlo
depending on where the cut is made in logit neutrino probability
space. Also plotted are the survival data rate. Note that the muons
are from sample nr: 130000 and that only events with track probabil-
ity below 0.5 are included. (Bottom) ratio plot of total RD rate to MC

rate.
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FIGURE E.2: (Top) Survival rate of each particle type in Monte Carlo
depending on where the cut is made in logit neutrino probability
space. Also plotted are the survival data rate. Note that the muons
are from sample nr: 130000 and that only events with track probabil-
ity above 0.9 are included. (Bottom) ratio plot of total RD rate to MC

rate.
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FIGURE E.3: (Top) Survival rate of each particle type in Monte Carlo
depending on where the cut is made in logit neutrino probability
space. Also plotted are the survival data rate. Note that the muons
are from sample nr: 130000 and that only upgoing events with pre-
dicted zenith above π

2 . (Bottom) ratio plot of total RD rate to MC rate.
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FIGURE E.4: (Top) Survival rate of each particle type in Monte Carlo
depending on where the cut is made in logit neutrino probability
space. Also plotted are the survival data rate. Note that the muons
are from sample nr: 130000 and that only downgoing events with pre-
dicted zenith below π

2 . (Bottom) ratio plot of total RD rate to MC rate.



Appendix E. Comparison Of GraphNeT Neutrino Selection With OscNext
Neutrino Selection - Additional Figures

148

FIGURE E.5: OscNext lvl7 Neutrino Classifier showing the rate of
particles surviving a particular cut in neutrino probability. As a part
of the OscNext cleaning level 7, only events with neutrino probability

above 0.8 is used.

E.2 Additional Figures Showing Difference In Selected Neu-
trino Properties

In figures E.6, E.7 the interaction vertex coordinate distributions are shown for the x
and y coordinates. Some of the DynEdge exclusive neutrinos fall in the edges of the
detector, but most of them fall in the same range as the OscNext neutrinos, which is
promising.

FIGURE E.6: Histograms comparing OscNext neutrinos with Graph-
NeT neutrinos in Monte Carlo. Vertex position x coordinate his-
tograms of shared events and events in the two selections are plotted.
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FIGURE E.7: Histograms comparing OscNext neutrinos with Graph-
NeT neutrinos in Monte Carlo. Vertex position y coordinate his-
tograms of shared events and events the two selections are plotted.

FIGURE E.8: Histograms comparing OscNext neutrinos with Graph-
NeT neutrinos in Monte Carlo. Energy histograms of shared events

and events exclusive to the two selections are plotted.
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FIGURE E.9: Histograms comparing OscNext neutrinos with Graph-
NeT neutrinos in Monte Carlo. Zenith histograms of shared events

and events exclusive to the two selections are plotted.

FIGURE E.10: Histograms comparing OscNext neutrinos with Graph-
NeT neutrinos in Monte Carlo after analysis cuts. (Top) Energy resid-
ual histograms of shared events and events in the two selections are
plotted. (Bottom) Ratio of GraphNeT rate to OscNext rate is plotted.



Appendix E. Comparison Of GraphNeT Neutrino Selection With OscNext
Neutrino Selection - Additional Figures

151

(A) (B)

FIGURE E.11: Histograms comparing OscNext neutrinos with Graph-
NeT neutrinos in Monte Carlo after analysis cuts. Zenith residual (A)
and azimuth residual (B) histograms of shared events and events in

the two selections are plotted.
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FIGURE E.12: Histograms comparing OscNext neutrinos with Graph-
NeT neutrinos in Monte Carlo after analysis cuts and a stricter energy
cut that removes neutrinos with an energy above 101.75 GeV = 56.23
GeV. (Top) Energy residual histograms of shared events and events
in the two selections are plotted. (Bottom) Ratio of GraphNeT rate to

OscNext rate is plotted.
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(A) (B)

FIGURE E.13: Histograms comparing OscNext neutrinos with Graph-
NeT neutrinos in Monte Carlo after analysis cuts and a stricter en-
ergy cut that removes neutrinos with an energy above 101.75 GeV =
56.23 GeV. Zenith residual (A) and azimuth residual (B) histograms

of shared events and events in the two selections are plotted.

E.3 Additional Detector Signature Plots for Data Track and
Cascade Neutrinos

(A) (B) (C)

FIGURE E.14: Detector signature for three highest energy data track
neutrinos. (A) Event number 36682470, predicted energy 3811 GeV.
(B) Event number 11788673, predicted energy 3403 GeV. (C) Event
number 90278349, predicted energy 2883 GeV. Size of spheres repre-
sent deposited charge and color represents relative time, with dark
colors as the earliest hits and light colors as the latest hits. The noise-

cleaned pulsemap SRTIcePulses is used.
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(A) (B) (C)

FIGURE E.15: Detector signature for three lowest energy data track
neutrinos. (A) Event number 88543974, predicted energy 5.1 GeV. (B)
Event number 41783681, predicted energy 11.3 GeV. (C) Event num-
ber 40753130, predicted energy 13.2 GeV. Size of spheres represent
deposited charge and color represents relative time, with dark colors
as the earliest hits and light colors as the latest hits. The noise-cleaned

pulsemap SRTIcePulses is used.

(A) (B) (C)

FIGURE E.16: Detector signature for three random data track neu-
trinos. (A) Event number 94601659, predicted energy 49.1 GeV. (B)
Event number 3738302, predicted energy 507.2 GeV. (C) Event num-
ber 55066778, predicted energy 21.3 GeV. Size of spheres represent
deposited charge and color represents relative time, with dark colors
as the earliest hits and light colors as the latest hits. The noise-cleaned

pulsemap SRTIcePulses is used.
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(A) (B) (C)

FIGURE E.17: Detector signature for three highest energy data cas-
cade neutrinos. (A) Event number 19926659, predicted energy 3434
GeV. (B) Event number 34882051, predicted energy 2796 GeV. (C)
Event number 26001415, predicted energy 2143 GeV. Size of spheres
represent deposited charge and color represents relative time, with
dark colors as the earliest hits and light colors as the latest hits. The

noise-cleaned pulsemap SRTIcePulses is used.

(A) (B) (C)

FIGURE E.18: Detector signature for three lowest energy data cascade
neutrinos. (A) Event number 57569928, predicted energy 2.1 GeV. (B)
Event number 19108109, predicted energy 2.7 GeV. (C) Event num-
ber 6870032, predicted energy 2.9 GeV. Size of spheres represent de-
posited charge and color represents relative time, with dark colors as
the earliest hits and light colors as the latest hits. The noise-cleaned

pulsemap SRTIcePulses is used.
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(A) (B) (C)

FIGURE E.19: Detector signature for three random data cascade neu-
trinos. (A) Event number 25849196, predicted energy 89.7 GeV. (B)
Event number 3361334, predicted energy 86.0 GeV. (C) Event number
37384179, predicted energy 32.7 GeV. Size of spheres represent de-
posited charge and color represents relative time, with dark colors as
the earliest hits and light colors as the latest hits. The noise-cleaned

pulsemap SRTIcePulses is used.
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Appendix F

Data sources and details

F.1 Where is everything located on the HEP server at NBI?

In order to access the databases, models, and reconstruction/classification variables
used in this work, you need access to the HEP server on NBI. There you should locate
Troels Christian Petersens folder at groups/icecube/petersen. Here you should find
a folder called GraphNetDatabaseRepository. All paths below are starting from this
location.

F.1.1 Databases And How To Match Events Between Them

It is important to understand that four main sqlite databases are used in this work.
Two of those contain OscNext low energy Monte Carlo data and are illustrated in
figure F.1. The third contains the actual data from the OscNext burnsample. The
fourth are Northern Track high energy Monte Carlo data used in the Northern Track
benchmark.

FIGURE F.1: Illustration of the Peter database and the Morten and
Peter database. Both contain all the 12/14/160000 neutrinos, but the
Morten and Peter database contains the 130000 muon set and a lot
more of the 888003 noise than the Peter database, which contains the

139008 muon set.

All four database locations are available in table F.1. Furthermore, the green row
contains the location of the most important csv files used in this work. There are
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9 files located at this location. 3 for the burnsample database (prefix: Burnsam-
ple_1_percent), 3 for the peter database (prefix: Monte_Carlo) and 3 for the peter
and morten database (prefix: Old_muon_more_noise_Monte_Carlo). Each of the
triplets have one file with all events, one with events that have a neutrino probabil-
ity in logit space above 1 and one with events with a neutrino probability in logit
space above 12. How to read in and apply these csv files can be seen in the plotting
scripts in the analysis on GitHub. Note that one should use the neutrinos from the
peter database, along with either the noise and muons from the same database OR
from the Morten and Peter database.

It is also important to be aware that the ’event_no’ column in each database aren’t
compatible across databases. In table F.1, some rows share a color, indicating that
they contain the same events, but different information about them. To merge events
from different sqlite databases, do NOT use the ’event_no’ column, but instead look
at the columns: RunID, SubRunID, EventID, and SubEventID in the truth table.
These are indeed unique across sqlite databases for the same events.

What Path from /groups/icecube/petersen/GraphNetDatabaseRepository
CSV files with all information
for both Monte Carlo and real data
in the neutrino selection analysis

multi_classification_track_cascade_neutrino/using_new_muons_Peter_database/inference/track_cascade_sets

Database Peter Muons 139008
osc_next_database_new_muons_peter/Merged_db/osc_next_level3_v2.00_genie_muongun_noise_
120000_140000_160000_139008_888003.db

Database Peter Muons 139008
Only lvl 3 variables.

osc_next_database_new_muons_peter/Merged_db_3/NOT_full_db_osc_next_level3_v2.00_genie_
muongun_noise_120000_140000_160000_139008_888003_truth_and_lvl3_variables.db

Database Peter Muons 139008
Train_validation_test split

osc_next_database_new_muons_peter/train_val_test_split

Database Morten and Peter
Muons 130000

osc_next_database_Peter_and_Morten/merged_database/osc_next_level3_v2.00_genie_muongun_
noise_120000_140000_160000_130000_888003_retro.db

Burnsample database dev_lvl3_genie_burnsample/dev_lvl3_genie_burnsample_v5.db
Burnsample database
Only lvl3 variables

osc_next_0.01_percent_burnsample_Peter/merged_db/Burnsample_lvl3_v02.00_lvl3_variables.db

Northern Track Benchmark
database and train/val/test split

/groups/icecube/petersen/GraphNetDatabaseRepository/northeren_tracks/dev_northern_tracks_full_part_1

TABLE F.1: Table containing locations to all databases used in this
work on HEP, along with the location of the CSV files that contain all

predictions and truths used in chapter 7.

F.1.2 Trained Model State Dictionaries

In table F.2, the locations of the state dictionaries for each trained model in this work
is available. Using one of the inference scripts in the analysis on GitHub, one can
then use the model on other events.

https://github.com/graphnet-team/analyses/tree/main/multi_classification_on_stop_and_track_muons
https://github.com/graphnet-team/analyses/tree/main/multi_classification_on_stop_and_track_muons
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Model Path to State dict from /groups/icecube/petersen/GraphNetDatabaseRepository

Multiclassification

multi_classification_track_cascade_neutrino/using_new_muons_Peter_database
/trained_models/osc_next_level3_v2/dynedge_pid_Peter_new_muon_db_
SplitInIcePulses_equal_frac_run_2_validation_set/dynedge_pid_Peter_new_
muon_db_SplitInIcePulses_equal_frac_run_2_validation_set_state_dict.pth

Zenith Reco

multi_classification_track_cascade_neutrino/using_MP_lvl3/trained_models/
osc_next_level3_v2/MP_data_zenith_1_mill_even_track_cascade_attempt2
_test_set/MP_data_zenith_1_mill_even_track_cascade_attempt2_test_set_
state_dict.pth

Azimuth Reco
multi_classification_track_cascade_neutrino/using_MP_lvl3/trained_models
/osc_next_level3_v2/MP_data_azimuth_test_1_mill_attempt2_test_set_equal
_track_cascade/MP_data_azimuth_test_1_mill_attempt2_test_set_state_dict.pth

Energy Reco

multi_classification_track_cascade_neutrino/using_MP_lvl3/trained_models
/osc_next_level3_v2/Peter_Morten_energy_1_mill_even_track_cascade_attempt_
2_test_set/Peter_Morten_energy_1_mill_even_track_cascade_attempt_2_test_
set_state_dict.pth

Interaction Vertex
Position Reco

multi_classification_track_cascade_neutrino/using_new_muons_Peter_database
/trained_models/osc_next_level3_v2/dynedge_[’position_x’, ’position_y’,
’position_z’]_Peter_new_muon_db_SplitInIcePulses_position_test_set/dynedge
_[’position_x’, ’position_y’, ’position_z’]_Peter_new_muon_db_SplitInIcePulses
_position_test_set_state_dict.pth

Track Cascade
Classification

multi_classification_track_cascade_neutrino/using_MP_lvl3/trained_models/
osc_next_level3_v2/dynedge_track_mu_Track_cascade_MP_data_
SplitInIcePulses_on_equal_track_cascade_neutrinos_test/dynedge_track_mu
_Track_cascade_MP_data_SplitInIcePulses_on_equal_track_cascade_neutrinos
_test_state_dict.pth

TABLE F.2: Locations of all trained model dictionaries on HEP used
in the analysis in chapter 7.

F.1.3 How To Reweight Events To Get The Estimated Rate?

In general the comparison between Monte Carlo and real data is carried out using
rates. For Monte Carlo, the osc_weight variable from Retro is used. It is located
in the retro table in sqlite databases and is a weight, which when applied to the
events, recreates the estimated rates of actual data across angles and energy. Note
that this weight is appropriate when using a single I3 file. Thus if more are used, the
osc_weight needs to be scaled down by the inverse of the number of I3 files used.
This should be done for each particle type seperately. For instance, if you have used
2000 I3 files with muon neutrinos, the osc_weight is scaled by 1

2000 . To get a good
estimate of the actual data rate, you need the run time for each of the data subruns
you use. Then you can weight each real data event by the inverse of the total run
time for all your data events. The run times for the real data approx. 1% burnsample
used in this work are available here:
osc_next_0.01_percent_burnsample_Peter/Run_times_to_get_rate. Again this path
begins from the GraphNetDatabaseRepository.

In the final CSV files (green in table F.1), the variable total_osc_weight is ready to
use. It has been scaled by the appropriate factors.

F.1.4 Final Details

As mentioned in the Readers Guide, python scripts for training and deploying the
GNN models can be found in this location Analysis on GitHub. All plotting scripts
are located there as well.

To be able to run the scripts that require using or training GNNs, this branch of
GraphNeT should be compatible: Compatible GraphNeT Branch.

https://github.com/graphnet-team/analyses/tree/main/multi_classification_on_stop_and_track_muons
https://github.com/Peterandresen12/graphnet/tree/multiclassification
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Finally, if anything is unclear, feel free to reach out to the author at
peterandresen@hotmail.dk.
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