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Abstract

Hole spin-qubits in Germanium are an emerging new platform for developing

robust and scalable quantum computers. Main advantages of this platform include

fast and accurate addressing of the spins using electrostatic gates, as well as the

possibility of interactions of the spin qubits with superconductors. In this project,

we develop a computational method for accurately modeling spin-qubits in Germa-

nium and their coupling via a superconductor. Based on the k · p model and the

theory of invariants, we construct an envelope-function Hamiltonian for describing

hole states in Germanium heterostructures. Using the finite element method, we

determine eigenstates of this Hamiltonian, and using these we show that it is pos-

sible to make the qubit robust towards gate noise by selecting specific directions of

the external magnetic field. We also demonstrate how to determine the coupling

strength of two quantum dots connected via a superconductor, and how to tune

this coupling strength via the chemical potential in the superconductor. Lastly, we

study the minimal Kitaev chain and how to tune the system such that it can host

poor man’s Majorana states.
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1 Introduction and Motivation

Quantum computers is a category of devices which utilize quantum mechanical phenom-

ena to perform complex computations. Algorithms such as Grover Search [1], Shor’s

algorithm [2], and the HHL algorithm [3] have been shown to perform certain computa-

tional tasks exponentially faster than known classical algorithms. Quantum computing

also has the potential to speed up machine learning algorithms in both the training phase,

where the model is built using training data, as wells as the inference phase, where the

trained model is used on new data [4]. If this potential is realized, it will greatly benefit

the already rapidly expanding usage of machine learning in both scientific and commercial

applications. However, these fast quantum algorithms need to run on large fault-tolerant

quantum computers and we still lack the knowledge of how to build such devices. Current

quantum computers are classified as noisy intermediate-scale quantum (NISQ) devices

and they vary considerably in their physical implementation. Trapped ions, supercon-

ductors, optical lattices, Bose-Einstein Condensates, and quantum dots are just a few

examples of the many different platforms for building quantum computers that are ac-

tively being researched [5]. Two obstacles which these platforms have yet to overcome

are noise and scalability. Noise collectively refers to unwanted processes in the device

which alter its state in an unpredictable fashion and potentially changes the outcome of

the computation. Scalability describes how easily the computational capability of the

device can be increased.

Spin qubits are a certain type of quantum computing platform where the logical qubit

is encoded in the spin degree of freedom of some localized state in a solid-state device. The

group-IV semiconductors Si and Ge lend themselves particularly well for implementation

of spin-qubits as common isotopes of these have no nuclear spin and can be fabricated to

an incredible high purity, making spin qubits in these materials capable of reaching very

long coherence times and high fidelity [6]. For the case of Germanium, hole spin-qubits

seem especially promising since the hole mobility within Germanium is the highest of

all known semiconductors and the strong spin-orbit coupling of the holes allows for fast

electrical addressing of the spin as a method for implementing one-qubit gates [7]. Two-

qubit operations in such spin-qubit devices often rely on exchange correlations between

qubits which are local, so the use of superconductivity to facilitate long-range interaction

of qubits is being studied [6, 8]. If it is possible to implement such long-range interactions

in a planar device, this type of quantum devices could pave the way for a scalable, noise-

robust, and easily addressable platform that can be manufactured using existing methods

from the Silicon chip industry.

Motivated by the potential of spin-qubits in Germanium heterostructures as a scal-

able, noise-robust platform for building quantum computers, the goal of this project is
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to develop a method for detailed modeling of such devices. This method shall assist the

design of devices that are robust towards noise and allow for accurate two-qubit interac-

tions. The strong spin-orbit coupling in Germanium suggests that the method must be

capable of describing the spatial part of the problem in considerable detail. On the ba-

sis of this, we start from symmetry-considerations and build an envelope-function model

which is then extended to include superconductivity using the Bogoliubov-de Gennes

technique. The resulting set of coupled linear partial differential equations are then cast

to a weak formulation for numerical solving using a finite-element approach to efficiently

obtain eigenstates and eigenvectors close to the Fermi surface. Using the g-matrix for-

malism, it is demonstrated how the method can be used to determine ’sweet-spots’ where

the qubits will be robust towards noise in the confinement potential. Lastly, we show

how to apply the method to determine coupling coefficients describing the coupling of

two quantum dots via a superconductor and study how to tune a physically implemented

minimal Kitaev chain to host poor man’s Majorana states.
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2 k·p and Envelope Function Models

Our first task is to determine which physical model we want to use to describe our system.

Here we will use the semi-empirical approach of modeling band structures known as the

k · p method [9] and subsequently use the envelope function approximation to describe

the behaviour of the electrons in the presence of external fields [10].

Our physical system consists of a crystal of Germanium atoms and external magnetic

and electric fields. The regular structure of the Germanium crystal means that the system

possesses some symmetry if there are no external fields. This invites us to ignore these

added fields to begin with so that we can make use of this symmetry and then add the

symmetry-breaking fields once we have a model for the pure Germanium crystal. We are

interested in studying the behaviour of electrons in Germanium, so we seek a model for

the electronic band structure of the material. Our first assumption is that the interaction

between electrons can be ignored and that the Germanium nuclei are stationary, so that

we can treat it as a one-particle problem. The Hamiltonian describing a single electron

moving in a periodic potential V0 is,

H =
p2

2m2
0

+ V0 (r) +
h̄2

4m0c2
p · σ × (∇V0). (1)

Here, m0 is the mass of the free electron, c is the speed of light and σ is a vector of

Pauli spin matrices. The last term in this expression is the spin-orbit coupling term

which originates from the Dirac equation when expanded in the classical limit. The

potential V0 (r) is unchanged under discrete Translation of the coordinate system which

is represented as the map TR mapping wave-functions Ψ (r) to Ψ (r +R), where R is

an element of some discrete set of vectors {R} ⊂ R3 defining the lattice of the system.

From this it follows that H is unchanged under the action of TR for any R, which means

that we can express eigenstates of H in terms of eigenstates of TR. This is the essence

of Bloch’s theorem. The eigenstates of TR are of the form Ψnk (r) = eik·r |nk⟩ where

ki ∈ (−π/a, π/a)) labels the irreps of TR, and the |nk⟩ are periodic i.e. ⟨r +R | nk⟩ =
⟨r | nk⟩. The quantum number n indexes both the spin of the electron and orbital motion

as the SO interaction makes spin not a conserved quantity. In terms of this basis, the

Schrödinger equation becomes[
p2

2m0

+ V0 +
h̄2k2

2m0

+
h̄

m0

k · π +
h̄

4m2
0c

2
p · σ × (∇V0)

]
|nk⟩ = En (k) |nk⟩ , (2)

were π = p + h̄
4m0c2

σ × ∇V0 and we have divided out a factor eik·r from both sides. In

the classical limit (c→ ∞) spin becomes a good quantum number and we can write the

states |nk⟩ → |νk⟩ ⊗ |σ⟩ where uνk = ⟨r|νk⟩ are the Bloch functions. Note that Bloch’s
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theorem for the case k = 0 implies that the uν0 form a complete orthonormal set of all

functions with the same periodicity as the lattice, and therefore we can express all Bloch

functions uνk(r) for any k in terms of uν0: uνk (r) =
∑

ν′ cν′ν (k)uν′0.
1 Using this, we

define the following basis:

|nk⟩ =
∑
σ′ν′

cnσ′ν′ (k) |ν ′σ′⟩ , (3)

where |ν ′σ′⟩ = |ν ′0⟩ ⊗ |σ′⟩. Plugging this into eq. (2) and multiplying both sides by ⟨νσ|
we obtain the k · p Hamiltonian:∑

ν′σ′

{[
Eν′(0) +

h̄2k2

2m0

]
δσσ′δνν′ +

h̄

m0

k · P νν′
σσ′

+∆νν′
σσ′

}
cnν′σ′(k) = En(k)cnνσ(k), (4)

where

P νν′
σσ′

=

〈
ν ′σ′

∣∣∣∣ [p+
h̄

4m0c2
σ × (∇V0)

] ∣∣∣∣ νσ〉 , (5a)

∆νν′
σσ′

=
h̄

4m2
0c

2
⟨ν ′σ′ | [p · σ × (∇V0)] | νσ⟩ , (5b)

and Eν′ is the dispersion relation of the band indexed by ν ′ with respect to the Hamilto-

nian in the classical limit. Our choice of basis is independent of the SO interaction, which

allows us to treat the SO contributions to P νν′
σσ′

and ∆νν′
σσ′

perturbatively. When we apply

this method to the specific case of Germanium, the band-edge of the top-most valence

bands are at the Γ-point which is the reason why we picked the basis in eq. (3) to be

expanded around k = 0 as the relevant states will be close to this point in the Brillouin

zone and we can expand in orders of k.

2.1 Envelope Function Approximation

The derivation of the k · p Hamiltonian was based on the translational invariance of

the system but a model describing a spin-qubit as a quantum dot in a Germanium het-

erostructure will have confinement potentials that break discrete translational invariance.

The envelope function approximation (EFA) is based on the k ·p Hamiltonian and allows

for the inclusion of terms in the Hamiltonian that do not possess discrete translational

invariance. The source of these terms can be either internal to the material, like e.g. de-

fects, or external, like electrostatic gates or magnetic fields. The central requirement for

the applicability of the envelope function approximation is that there is a separation of

length scales, in that the additional fields vary appreciably only over length scales much

larger than the lattice constant.

1In fact, it is possible to show that for any fixed k, the set {uνk}ν forms an orthonormal basis of the

set of periodic functions [11])
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Let us consider the Hamiltonian describing an electron in a lattice in the presence of

an electromagnetic field by adding a minimal coupling to eq. (1) as well as a Zeemann

term:

H =
(−ih̄∇+ eA)2

2m0

+ V +
h̄

4m2
0c

2
(−ih̄∇+ eA) · σ × (∇V ) +

g0
2
µσ ·B. (6)

Here, g0 and e are the g-factor and electric charge of the free electron and µB = eh̄/(2m0)

is the Bohr magneton. We decompose the electrostatic potential V = V0 + V1 into the

crystal potential V0 and the slowly varying additional potential V1. The gradient of the

potential is dominated by the crystal potential so we write ∇V ≈ ∇V0. We also assume

that the vector potential, A, and the magnetic field, B = ∇×A, are slowly varying.

Just as in the k · p model, we express the Schrödinger Equation in terms of Bloch

functions uν′0 (r) |σ′⟩, but instead of the plane-wave phase modulation of these Bloch

functions we have a more general envelope function:

Ψ(r) =
∑
ν′,σ′

ψν′σ′ (r)uν′0 (r) |σ′⟩ . (7)

In this basis, the Schrödinger equation reads:

(8)

∑
ν′σ′

[
(−ih̄∇+ eA)2

2m0

+ V0(r) +
h̄

4m2
0c

2
(−ih̄∇+ eA) · σ × (∇V0) + V1(r)

+
g0
2
µBσ ·B

]
ψν′σ′ (r)uν′0 (r) |σ′⟩ = E

∑
ν′σ′

ψν′σ′ (r)uν′0 (r) |σ′⟩ .

Periodicity and orthonormality of the Bloch functions imply that∫
unit cell

dr u∗ν0 (r)uν′0 (r) = δνν′ . (9)

Upon multiplying both sides of Equation (8) with ⟨σ|u∗ν0 (r) and integrating over a

single unit cell, we treat A (r) ,B (r) and V1 (r) as constants within the integral so that

we obtain the following system of partial differential equations in the envelope-functions

ψν′σ′(r):

(10)

∑
ν′σ′

{[
Eν′(0) +

(−ih̄∇+ eA)2

2m0

+ V (r)

]
δνν′δσσ′

+
1

m0

(−ih̄∇+ eA) · P νν′
σσ′

+∆νν′
σσ′

+
g0
2
µBσ ·Bδνν′

}
ψν′σ′(r) = Eψνσ(r).

Here P νν′
σσ′

and ∆νν′
σσ′

are given by Equations (5a) and (5b) and Eν′(0) is the energy of

the Bloch functions with respect to the Hamiltonian in the absence of external fields or
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spin-orbit coupling. This infinitely large system of coupled PDEs describes the motion of

electrons in our quantum devices, and our next task will be solve this system in order to

gain insight into the behavior of our system. In order to make this problem numerically

solvable, we first must choose an appropriate finite set of bands ν that are most relevant

for the system we are interested in. This is discussed in Section 4.1. Afterwards we can

solve the system numerically using the finite element method which we will discuss in

Section 5.

2.2 Quasi-2D Systems and the Subband k · p Method

Semiconductor heterostructures are devices where materials with different properties are

combined in a non-homogeneous fashion. Such physical systems exhibit interfaces, where

the environment changes rapidly as one crosses from one material to another, as well as

strain in the materials caused by potentially mismatching lattice structures of the two

materials. As the interface contributions are not varying over length scales far longer than

the lattice constants of the materials, we would not expect the envelope function approx-

imation to accurately describe such systems. However, it turns out that it is possible to

describe electron and hole states in quantum well using the envelope function approxi-

mation in good agreement with experiment [12]. In fact, the EFA can be generalized to

also apply in situations where the external fields are not slowly varying [13]. A common

approach to modeling an interface between two materials in the EFA context is to have

the bulk band parameters in the Hamiltonian vary discontinuously at the interface.

The heterostructures we will be looking closer at have a layered structure consisting

of a thin layer (∼ 25nm) of Ge sandwiched in between layers of SiGe. If we denote the

direction normal to the surface defining the layers (usually called the growth direction)

as z, the usual size of the system in the xy-plane is of the order of 102nm to 103nm. This

suggests that the z-direction will not be as important for describing most phenomena

within our system. Instead of treating the z-direction in a Finite-element picture, we

instead choose to do an approximate diagonalization of the Hamiltonian in what is known

as the subband k · p method [10] to save on computational complexity. As in the regular

k · p theory and EFA, the underlying trick in the subband k · p method is to pick a

clever basis {|m⟩}∞m=1, to express the Hamiltonian H in, such that the relevant physics

is accurately described by a subspace spanned by a finite subset basis vectors {|m⟩}Nm=1.

A common approach to coming up with a clever basis is to take |m⟩ to be eigenstates

of some part H0 of H. Motivated by a desire to describe the growth direction in an

analytical fashion we proceed as follows: Let {|η⟩} be the solutions to Equation (4) for

the case for bulk Germanium (i.e. no interfaces). Expressing Equation (4) in this basis,

we can combine all the terms on the left independent of k into Eη(0), and the terms

proportional to k2 are combined into h̄2k2/(2m∗
η) where m

∗
η is the effective mass of the
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bulk band η. Usually, Eη (0) and m
∗
η are obtained approximately either via a Schrieffer-

Wolff transformation [10], or simply by treating the k · P νν′
σσ′

and ∆νν′
σσ′

as perturbations.

Based on this, we define our Hamiltonian H0 as:

(H)ηη′ = δηη′

[
− h̄

2 ∂2z
2m∗

η

+ V (z) + Eη (0)

]
, (11)

where V (z) is a potential that models the confinement in the growth direction due to

the change in material. The parameters m∗
η and Eη (0) are material specific so in theory

they should have a z-dependence and vary discontinuously when passing through the

interface between materials. It is possible to include these discontinuous changes in the

band parameters but then H0 will no longer be hermitian. Even though hermiticity can

be restored by imposing matching conditions of envelope functions and their derivatives

at the boundary, a hermitian formulation of the problem would still neglect microscopic

effects of the interface itself, since the band parameters m∗
η and Eη(0) are determined

based on the bulk models of the materials. We therefore avoid this complication altogether

and stick to using Equation (11), while noting that this simplification neglects weak

couplings between the in-plane and perpendicular motion. The eigenstates of H0 we

denote as |ηm⟩ where m denotes the subband index. The confinement potential V (z) are

sometimes chosen to be either parabolic or that of an infinitely deep quantum well, in

which case H0 becomes analytically solvable. In this work we chose the latter option, in

which case the quantum number m takes on integer values, m ∈ N \ {0}, and the basis

becomes:

⟨r | ηα⟩ =
√

2

Lz

sin

(
mπ

[
z

Lz

+
1

2

])
⟨r | η⟩ , (12)

where Lz is the width of the well. Using this basis to express our problem, we argue

that, since ⟨ηm | H0 | ηm⟩ = O (m2L−2
z ), we can use a Schrieffer-Wolff transformation

to reduce the problem to only the lowest values of m. Note that for an infinitely deep

well, the shape of the bound states only depends on Lz, which means that the subband

index m decouples from the bulk band index η and |ηm⟩ = |η⟩ ⊗ |m⟩. This allows us to
express the problem in a basis that is not necessarily the eigenbasis |η⟩ of Equation (4)

but instead apply the EFA in the in-plane direction.
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3 Bogoliubov-de Gennes Theory

The envelope function approximation in Section 2 describes the behavior of regular parti-

cles and holes, but does not involve superconductivity. As one of our goals is to model the

superconductive coupling between two spin-qubits, we must extend our model to include

superconductivity. The methodology used to achieve this is known as the Bogoliubov-de

Gennes method [14] and the main idea is to extend the set of basis functions to also

include time-reversed states. The derivation presented here follows that of de Gennes

[15], albeit slightly more general.

In second quantization, we will denote the envelope-function Hamiltonian in Equation (10)

without superconductivity as

Ĥ =

∫ ∫
drdr′ψ†

µ(r)Hµν (r, r
′)ψν (r

′) , (13)

where ψµ are fermionic field operators which obey the canonical anti-commutation rela-

tions,

{ψµ (r) , ψν (r
′)} = 0 = {ψ†

µ (r) , ψ
†
ν (r

′)}, {ψ†
µ (r) , ψν (r

′)} = δµνδ (r − r′) . (14)

The indices µ and ν denote the Bloch functions and spin, and when two identical indices

appear in the same term we implicitly sum over them. The matrix Hµν(r, r
′) has func-

tions as its elements and can in general contain non-local interactions, which is why it

depends on both r and r′. To the non-interacting Hamiltonian we now add a two-particle

interaction, so that the total Hamiltonian becomes:

H =

∫
drdr′

{
ψ†
µ(r)Hµν (r, r

′)ψν (r
′) +

1

2
Vµνρσ (r − r′)ψ†

µ (r)ψ
†
ν (r

′)ψρ (r
′)ψσ (r)

}
.

(15)

In the superconducting state, the electrons of opposite spin can combine into quasi-

particles known as Cooper pairs, which means that the operator ψµ (r)ψν (r
′) obtains

a non-vanishing expectation value. We assume that the coupling V between electrons

is weak enough, and that the temperature is not close to the critical temperature, such

that we can neglect fluctuations in the density of the quasi-particles and perform the

mean-field approximation,

(16)

ψ†
µ (r)ψ

†
ν (r

′)ψρ (r)ψσ (r
′) →

〈
ψ†
µ (r)ψ

†
ν (r

′)
〉
⟨ψρ (r)ψσ (r

′)⟩
+ ψ†

µ (r)ψ
†
ν (r

′) ⟨ψρ (r)ψσ (r
′)⟩

+
〈
ψ†
µ (r)ψ

†
ν (r

′)
〉
ψρ (r)ψσ (r

′)

+ higher order terms.
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If we define the matrix ∆ (r, r′) with elements,

∆µν (r, r
′) = Vµνρσ (r − r′) ⟨ψρ (r)ψσ (r

′)⟩ , (17)

the mean-field effective Hamiltonian becomes,

H =

∫
drdr′

{
ψ†
µ(r)Hµν (r, r

′)ψν (r) +
1

2

[
∆µν (r, r

′)ψ†
µ (r)ψ

†
ν (r

′) + H.c.
]}

+ const.

(18)

This Hamiltonian can be diagonalized using a Bogoliubov transformation, which trans-

forms the fermionic field operators ψ†
µ, ψµ representing electrons into another set of

fermionic field operators γ†n, γn representing quasi-particles. We denote the Bogoliubov

transformation as:

ψµ (r) =
∑
n

unµ (r) γn + vnµ(r)γ
†
n. (19)

The functions unµ, vnµ must be chosen such that the quasi-particle fields obey the canon-

ical anti-commutation relations and diagonalize H :

H = E0 +
∑
n

Enγ
†
nγn. (20)

Using the canonical anti-commutation relations, hermiticity ofH (Hµν(r, r
′) = H∗

νµ(r
′, r)),

and ∆µν(r, r
′) = −∆νµ(r

′, r), which comes from anti-commutativity of the electronic field

operators, we can compute the following commutation relations:

[ψλ (r) ,H ] =

∫
dr′ {Hλµ(r, r

′)ψµ (r
′) + ∆λµ (r, r

′)ψ†
µ (r

′)
}
, (21)[

ψ†
λ (r) ,H

]
=

∫
dr′
{
−H∗

λµ(r, r
′)ψ†

µ (r
′) + ∆†

λµ (r, r
′)ψµ (r

′)
}
, (22)

and similarly for the quasi-particle fields:

[γn,H ] = Enγn, (23)[
γ†n,H

]
= −Enγ

†
n. (24)

Expressing the fermionic fields in Equation (21) in terms of the quasi-particle fields and

using Equation (23), we get two new equations in terms of γ†n, γn and comparing the

coefficients in front of these, we find that:

Enunλ (r) =

∫
dr′ {Hλµ(r, r

′)unµ (r
′) + ∆λµ (r, r

′) vnµ (r)} , (25)

Envnλ (r) =

∫
dr′
{
−H∗

λµ(r, r
′)vnµ (r

′) + ∆†
λµ (r, r

′)unµ (r)
}
. (26)
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Defining the vector un (r) with components unµ (r) (and similarly for vn (r)), these equa-

tions can be written as a matrix equation:∫
dr′

(
H (r, r′) ∆ (r, r′)

∆† (r, r′) −H∗ (r, r′)

)(
un (r

′)

vn (r
′)

)
= En

(
un (r)

vn (r)

)
. (27)

These are the Bogoliubov-de Gennes equations, and in the absence of the two-particle

interaction (V µνρσ = 0) this system of PDEs decouples into the regular Schrödinger

equation and its time-reversed counterpart:∫
dr′H(r, r′)un(r

′) = Enun(r
′), (28)∫

dr′H(r, r′)v∗
n(r

′) = −Env
∗
n(r

′). (29)

The time-reversal operator is an anti-unitary operator and can be expressed as the com-

bination Θ = UK where U is a unitary operator and K is the complex conjugation oper-

ator acting on functions as: Kf(r) = f ∗(r). It is common to transform the Bogolibov-de

Gennes equations using the unitary transformation 1⊕ U , so that it becomes∫
dr′

(
H (r, r′) ∆ (r, r′)U †

U∆† (r, r′) −ΘH (r, r′)Θ−1

)(
un (r

′)

vn (r
′)

)
= En

(
un (r)

vn (r)

)
, (30)

where we have used that H∗ = KHK. These equations reproduce the usual BCS descrip-

tion of superconductivity when un and vn are regular two-component spinors and the

superconductive coupling ∆(r, r′) = ∆(r)δ(r − r′)iσy with σy being the Pauli y-matrix

[16]. The time-reversal operator in this case becomes iσyK.

3.1 Proximitized Superconductivity

In the BdG Equation (30) superconductivity emerges when the order parameter ∆ is

present, which in turn implies an attractive interaction between the particles in the ma-

terial, V ̸= 0. In regular Germanium, superconductivity does not manifest, but if the

material is brought into contact with a superconductor it is possible for an effective ∆

to emerge in the Germanium [17, 18]. This effect is known as the proximity effect, and a

heuristic argument for this effect is that Cooper pairs can ”leak” out of the superconduc-

tor such that the operator ψµ (r)ψν (r
′) obtains a non-vanishing expectation value in the

Germanium. This intuition can be made more rigorous by considering the combined in-

teracting system of Germanium and superconductor studying how the propagator in the

Germanium system is renormalized due to the presence of the superconductor. Studying

the Green’s function for superconductive systems is elegantly done in the Nambu formal-

ism. Let Ψ†
µ(r),Ψµ(r) be the field operators describing fermions in the superconductor.
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The index µ denotes all relevant internal degrees of freedom such as spin, band index etc.

The Hamiltonian in the superconductor is of the form:

H SC =

∫
drΨ†

µ(r)h
SC
µν (r)Ψν(r) +

∫
drdr′∆µν(r, r

′)Ψ†
µ(r

′)Ψ†
ν(r

′) + H.c. (31)

Introducing the Nambu spinor Ψ =
(
Ψ Ψ†)T where Ψ is a vector with elements Ψµ.

Ψ† is also a vector of the same dimension as Ψ, but with time-reversed ordering of the

elements which we will label as Ψ†
µ. This ordering allows us, in full analogy to the BdG

derivation, to write:

H SC =

∫
drdr′Ψ†(r)HSC(r, r′)Ψ(r′) + const. (32)

with

HSC =
1

2

(
hSC ∆

∆† −ΘhSCΘ−1

)
, (33)

where we have absorbed a unitary matrix into ∆. The Matsubara Green’s function in

Nambu space is defined as

G(r, r′, τ) = −
〈
TτΨ(r, τ)⊗Ψ†(r′, 0)

〉
, (34)

where Tτ is the time-ordering operator and ⊗ denotes the outer product of the Nambu

spinors. If the band index µ runs over N elements, the Nambu Green’s function is a

2N × 2N matrix. The Nambu Green’s function can also be divided into four N × N

blocks,

G(r, r′, τ) =

(
Gp(r, r

′, τ) G∗
ph(r, r

′, τ)

Gph(r, r
′, τ) G∗

p(r, r
′, τ)

)
, (35)

with

Gp(r, r
′, τ) = −

〈
TτΨ(r, τ)⊗Ψ†(r′, 0)

〉
, (36)

Gph(r, r
′, τ) = −

〈
TτΨ

†(r, τ)⊗Ψ†(r′, 0)
〉
. (37)

The Hamiltonian describing the dynamics in Germanium can also be expressed in the

Nambu formalism. If we denote the creation operator of a particle in Germanium in the

state µ at position r by ψ†
µ(r), we can write

H Ge =

∫
drψ†

µ(r)h
Ge
µν (r)ψν(r) =

∫
drdr′ψ†(r)HGe(r, r′)ψ(r′) + const. (38)

with

HGe =
1

2

(
hGe 0

0 −ΘhGeΘ−1

)
. (39)
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Ge

SC

Ge

Figure 1: Irreducible Feynman diagram for the Germanium Green’s function. The solid lines

labeled ”Ge” and ”SC” represent the free Green’s function in Germanium and the

superconductor respectively and the dashed lines indicate the tunneling process t.

For this system we can also define a Matsubara Green’s function in Nambu space in

exact analogy with Equations (34) and (35). The coupling of the superconductor H SC

and the Germanium system H Ge is described by in a tunneling picture, where a particle

tunnels from the Germanium system to the superconductor. The general expression for

this tunnel process can be written as:

H t =

∫
drdr′ψ†

µ(r)tµν(r, r
′)Ψν(r

′) + H.c. (40)

Our goal is to integrate out the degrees of freedom in the superconductor to obtain an

effective model of the Germanium system. We therefore want to compute the renor-

malized propagator in the Germanium system. In the absence of interactions with the

superconductor, the particle number in the Germanium is conserved and the anomalous

Green’s function, G(Ge)
ph , vanishes. In the presence of interactions, however, a particle in

the Germanium can tunnel into the superconductor, combine with another particle and

condense into a Cooper pair, leaving an anti-particle, which can then tunnel back out

into the Germanium. The Feynman diagram corresponding to this is given in Figure 1,

and this process is the only irreducible diagram possible. Hence, the self-energy becomes:

Σ(r, τ, r′, τ ′) =

SC

=

∫
dr1dr2t(r, r2)GSC(r2, r1, τ − τ ′)t†(r1, r

′), (41)

where t = t ⊕ Θt†Θ−1 is the Nambu-space representation of the tunneling process. In-

cluding this to all orders in t in the renormalized propagator in Germanium using the

Dyson equation, the renormalized propagator in Germanium, becomes:

G(r, r′, iω) =
1

(G(0))−1(r, r′, iω)− Σ(r, r′, iω)
=

1

iω −HGe(r)δ(r − r′)− Σ(r, r′, iω)
.

(42)

From this we can obtain an effective Hamiltonian if we can treat the self-energy as

frequency independent, so that the Hamiltonian

HGe
eff (r, r

′) = HGe(r)δ(r − r′) + Σ(r, r′), (43)
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reproduces the same dynamics as described by Equation (42), in the sense that the

spectrum of HGe
eff matches the poles of Equation (42).

Single Band s-wave Superconductor

In order to make the above description of how to obtain an effective Hamiltonian capturing

the proximity effect in Germanium more concrete, we consider a simple model for the

superconductor, in a generalization of [19] (see also [20]). The superconductor is modeled

as a single band in the effective mass approximation. The superconductive coupling

pairs electrons of opposite spin and momentum, and we assume that ∆ is independent of

momentum. In momentum space, we have:

H SC =
∑
k,σ

Ψ†
kσξkΨkσ −

∑
k

[
∆Ψ†

k↑Ψ
†
−k↓ +∆∗Ψ−k↓Ψk↑

]
, (44)

with ξk = h̄2 ∥k∥2 /(2m∗
SC) − µ and m∗

SC and µ being the effective mass and chemical

potential in the superconductor. For the Germanium system we expand in terms of

Bloch functions in the limit of vanishing spin-orbit just as in the k · p-model in Section 2.

We therefore index the field operator in Germanium ψµσ by a Bloch function index µ and

a spin index σ. We also assume that the system is two-dimensional and fix the z-direction

perpendicular to the plane where the Germanium heterostructure is. For the tunneling

between the Germanium structure and the superconductor we assume it to be local and

spin-preserving:

tµσ,σ′(r, r′) = t̃δ(x− x′)δ(y − y′)δ(z′)δσσ′ . (45)

In this expression for the tunnel coupling we have also placed the Germanium heterostruc-

ture at z = 0. If we define r∥ = (rx, ry, 0)
T and assume that the volume of the super-

conductor V = LzA with A being the area of the Germanium heterostructure, we can

compute the momentum space representation of the interaction term:

H t = t̃
∑
µ,σ

∫
dr∥dr

′ 1

A
√
Lz

∑
k∥,k

′

eik∥·r∥−ik′·r′
c†k∥µσ

dk′σδ(x− x′)δ(y − y′)δ(z′) + H.c.

=
t̃

A
√
Lz

∑
µ,σ

∫
dxdy

∑
k∥,k

′

ei(k∥−k′)·r∥c†k∥µσ
dk′σ +H.c.

= t
∑
µ,σ

∑
k

[
c†k∥µσ

dkσ + d†kσck∥µσ

]
(46)

Here, t = t̃/(A
√
Lz), and

ck∥µσ = A− 1
2

∫
dr∥ψµσ(r∥)e

ik∥·r∥ , (47)

dkσ = V − 1
2

∫
drΨσ(r)e

ik·r. (48)

17



When tunneling into the superconductor, the particle ”forgets” which Bloch function it

was and the spin-index is the only internal degree of freedom. When the particle tunnels

back out of the superconductor it can become any Bloch function as well. This means

that the effective superconductive order parameter in the Germanium system will couple

states to more than just their time-reversed counterparts. Evaluating the self-energy

Equation (41) for these descriptions of the superconductor and tunnel coupling we get,

Σ
µν
(k∥, τ − τ ′) =

∑
kz

(
GSC
p (k, τ − τ ′)|t|2|µ⟩⟨ν| GSC∗

ph (k, τ − τ ′)t2|µ⟩⟨ν|
GSC
ph (k, τ − τ ′)(t∗)2|µ⟩⟨ν| GSC∗

p (k, τ − τ ′)|t|2|µ⟩⟨ν|

)
. (49)

In order to simplify notation we define the operators Tp and Tph, acting on the Bloch-

function subspace, with elements:

(Tp)µν = |t|2|µ⟩⟨ν|, (Tph)µν = t2|µ⟩⟨ν|, (50)

and combine these into the matrix

T =

(
Tp Tph
T †
ph ΘTpΘ

−1

)
. (51)

With this, the expression for the self-energy simplifies to

Σ(k∥, τ − τ ′) =
∑
kz

GSC(k, τ − τ ′) ◦ T , (52)

where ◦ denotes the Hadamard product which multiplies matrices of the same shape

element-wise i.e. A = B ◦ C has elements Aij = BijCij. We can express the self-energy

in terms of Matsubara frequencies using a Fourier transform of the imaginary time:

Σ(k∥, iω) =

∫ β

0

dτeiωτΣ(k∥, iω) =

∫ β

0

dτeiωτ
∑
kz

GSC(k, τ) ◦ T

=
1

β

∑
iω′

∫ β

0

dτei(ω−ω′)τ
∑
kz

GSC(k, iω′) ◦ T

=
1

β

∑
iω′

βδ(ω − ω′)
∑
kz

GSC(k, iω′) ◦ T =
∑
kz

GSC(k, iω) ◦ T . (53)

The sum over z-momenta can be replaced by a sum over energies using the density of

states ν(ϵ,k) :=
∑

kz
δ(ϵ− ϵk) where ϵk = ξk + µ is the dispersion in the superconductor.

Σ(k∥, iω) =

∫
dϵ ν(ϵ,k∥)GSC(ϵ, iω) ◦ T . (54)

The Green’s function in the superconductor is [21]:

GSC(ϵ, iω) =
1

ω2 + ϵ2 + |∆0|2

(
−iω − ϵ ∆0iσy
−i∆∗

0σy −iω + ϵ

)
, (55)
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and σy is the Pauli y-matrix acting in the spin-space for the superconductor. If ∆0, ω ≪
ϵF , only the states close the Fermi surface are relevant, and we can treat the density of

states ν as constant. If we assume this to be the case, the integral over the energy in

eq. (54) can readily be evaluated, giving

Σ(k∥, iω) =
πν√

|∆0|2+ω2

(
−iω ∆0iσy

−i∆∗
0σy −iω

)
◦ T . (56)

With this expression of the self-energy, we can determine the renormalized propagator

for the particles in Germanium. Defining γ(iω) = πν√
|∆0|2+ω2

, we have

G−1(k∥, iω) = G(0)
(
k∥, iω

)
− Σ(k∥, iω)

= iω −

(
hGe(k∥) 0

0 −ΘhGe(k∥)Θ
−1

)
− γ(iω)

(
−iω ∆0iσy

−i∆∗
0σy −iω

)
◦ T (57)

= iω

(
1 + γ(iω)Tp 0

0 1 + γ(iω)ΘTpΘ
−1

)
−

(
hGe(k∥) γ(iω)∆0iσyTph

−γ(iω)∆∗
0iσyT

†
ph −ΘhGe(k∥)Θ

−1

)
.

In order to obtain an effective Hamiltonian describing the low-energy behaviour, we

assume that dynamical effects are negligible for energies below the gap ω < ∆0 which

allows us to expand the self-energy to first order in ω. Doing so, we find

(58)G−1(k∥, iω) ≈
[
iω −HGe

eff

]
(τ0 ◦ (1 + γT )),

where γ = γ(0) = πν/|∆0| and the effective Hamiltonian

HGe
eff =

(
hGe(k∥)(1 + γTp)

−1 iσy∆0Tph(γ
−1 +ΘTpΘ

−1)−1

−iσy∆∗
0T

†
ph(γ

−1 + Tp)
−1 −ΘhGe(k∥)(1 + γTp)

−1Θ−1

)
. (59)

The term τ0 ◦ (1 + γT ) is independent of ω and always invertible since T is positive

semi-definite, so we identify it as the renormalization constant. The poles are entirely

determined by
[
iω −HGe

eff

]
, meaning that the effective Hamiltonian describes the same

dynamics as the renormalized Green’s function eq. (58). Inspecting the diagonal blocks

in the effective Hamiltonian, we see that the presence of the superconductor introduces

new coupling terms between the Bloch functions which become more dominant as |∆0|
decreases. The intuition for these terms is that the particles can enter the superconductor

as one Bloch function and come back out as another but still remain a particle. For the

same reason, the off-diagonal elements couple Bloch functions that are not necessarily

time-reversals of each other.

There are multiple ways to generalize this description of the proximity effect. For

example, one could make the tunnel coupling be different for the Bloch functions in

Germanium by replacing the scalars t and t∗ in Equation (50) with matrices that depend
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on µ and ν. One could also study different types of superconductors by altering the

superconductive Green’s function in the self-energy eq. (54) or even add more bands

to the superconductor by extending the superconductive Nambu-Green’s function from

a 4 × 4 matrix structure to a 4n × 4n matrix as well as extending the T matrix with

a 2n × 2n matrix and tracing out these added bands in the Hadamard product in the

self-energy.

With the effective Hamiltonian Equation (59) expressed in the basis of Bloch func-

tions in the limit of vanishing spin-orbit interaction, we can use the envelope-function

approximation from Section 2.1 to also describe systems where the tunnel process is spa-

tially dependent. This will be relevant when we look closer at the coupling of quantum

dots (which are not connected to a superconductor) and (proximitized) superconductors

in Section 7. In this work, we will not use this tunneling approach to determine the

effective Hamiltonian describing the proximity effect, but rather argue based on sym-

metry considerations how the effective superconductive order parameter in the effective

Hamiltonian can look. The magnitude of this order parameter we will set to match the

measured coupling strength in experimental devices, and we will assume that this mag-

nitude is large enough so that we can ignore the factor (1+γTp)
−1 in the diagonal blocks

of the effective Hamiltonian.
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4 Theory of Invariants

Bloch’s theorem, which we used to derive the k · p Hamiltonian in Section 2 uses only

discrete translational invariance of the system, but many crystals will also be invariant

under certain improper rotations. This additional symmetry provides a convenient way

of determining how the Hamiltonian in Equation (4) can couple different Bloch functions

based on symmetry considerations alone without knowing the explicit form of the uνk.

This approach is known as the theory of invariants, and we will use this to determine

the general form of not only the regular Hamiltonian describing holes in Germanium

heterostructures but also the superconductive coupling ∆ in the BdG extension. The

additional symmetry of the problem can be phrased as the invariance of the crystal

potential V0 under a unitary representation of a given point group which is a subgroup of

the set of improper rotations (the set of all spatial rotations and inversions: SU(2)×C2).

For the case k = 0 this means that the Hamiltonian on the left-hand side of Equation (2)

commutes with the representation of the point group. In the following, we will derive

the theory of invariants in a general context to keep the notation simple. The approach

follows that of [22].

Let G be a group, and denote the representation of G on real space (R3) as Gx where

x ∈ R3. Let {ψi}ni=1 be an orthogonal family of n wavefunctions defined on R3 which

transforms in the following way under the action of the group:

ψi(G
−1x) =

∑
j

Dij(G)ψj(x)

for any G ∈ G. This expression implies that D is an n-dimensional unitary representation

of G. LetH(K) be a Hamiltonian described as a matrix which acts on the ψis and depends

on a tensor K describing e.g. the electric field, the wave-vector or other operators. Under

the action of G, H will then transform as:

H(K) → D−1(G)H(K)D(G). (60)

If the system we are modeling is invariant with respect to the action of G, this means

that

D(G)H(G−1K)D−1(G) = H(K). (61)

We can view H as a vector in the space Cn×n which has the canonical basis X lk ∈ Cn×n

given by:

(X lk)l′k′ = δll′δkk′ . (62)

In this new vector space, the representation of G induced by D transforms the basis

vectors X lk in the following way:

G−1X lk = D(G)X lkD−1(G) (63)
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It is straight-forward to show that this transformation is linear and unitary, so we conclude

that this is an n2-dimensional representation of G. We can express this representation as

unitary matrices D(X) ∈ Cn2×n2
acting on the basis vectors X lk:

G−1X lk =
∑
l′k′

X l′k′D
(X)
ll′kk′(G) (64)

Using Equation (63), we can express the matrix elements of D(X) in terms of the original

representation D:

(G−1X lk)l′k′ =
∑
ij

Dl′i(G)(X
lk)ijD

−1
jk′(G) = Dl′l(G)D

−1
kk′(G) = Dl′l(G)D

†
kk′(G) (65)

where we have used unitarity of D in the last step. From this we see that D(X) is

simply the tensor product D ⊗D∗ where D∗ is the adjoint representation of D given by

G ∋ G 7→ D†(G). A central concept in the field of representation theory is the invariant

subspace. An invariant subspace of D(X) is a subspace V ⊂ Cn×n which is closed under

D(X) i.e. for all G ∈ G and any M ∈ V

D(X)(G)M ∈ V. (66)

If there a non-trivial invariant subspace V ̸= 0 or Cn×n exists, then we say that the

representation D(X) is reducible. If no non-trivial invariant subspace exists, D(X) is an

irreducible representation (irrep). Even if D may be irreducible, D(X) = D ⊗ D∗ will

in general be reducible. By Schur’s lemma [23], this means that we can express D(X) in

block diagonal form with respect to some basis consisting of n2 matrices {Xλ
i } ⊂ Cn×n.

Here, λ labels the invariant subspace that Xλ
i belongs to. In this basis, the Hamiltonian

H takes the form:

H =
∑
λ

∑
i

αλ,i(K)Xλ
i . (67)

We can apply exactly the same approach to the tensor K, and determine a basis of

tensors {Kλ
i } belonging to the different invariant subspaces. Doing so, we get that the

Hamiltonian becomes,

H =
∑
λ

αλ

∑
i

X
(λ)
l K(λ)

i . (68)

If the representation D is reducible, we can express the matrices Xλ
i in the basis {ψλ′

i }λ,i
where D is block diagonal D =

⊕
λ′ Dλ′ . Doing so, the Hamiltonian can be split up into

blocks

H(K) =


H11 H12 . . .

H21
. . .

...

 (69)
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where Hλλ′ maps states ψλ′
from the invariant subspace Vλ′ ⊂ Cn to states ψλ from the

invariant subspace Vλ. In this basis, the symmetry condition eq. (60) is equivalent to

∀λ, λ′ : Dλ(G)Hλλ′(G−1K)D−1
λ (G) = Hλλ′(K). (70)

Starting from this symmetry condition for each block Hλλ′ we can compute the matrix

elements of the corresponding induced representation and we will find that the induced

representation is a representation of Dλ ⊗ D∗
λ′ acting on the space Cnλ×nλ′ where nλ

is the dimension of the invariant subspace labeled by λ. If we label the irreps in the

decomposition of Dλ ⊗D∗
λ′ by the index γ we can write the blocks of H as:

Hλλ′ =
∑
γ

αγ

∑
i

X
(λ)
i K(λ′)∗

l

where the X
(λ)
i transform amongst themselves under the action of D(X) and the K(λ′)

i

transform amongst themselves under the action of the irrep λ′. This decomposition

fixes the Xis and Kis entirely based on the symmetry of the problem. The only freedom

remaining is the choice of the values of the coefficients αγ which are unconstrained except

for the requirement that H must be Hermitian. In practice, these coefficients can be

determined using perturbation theory.

With the theory in place, we are ready to apply it to describe holes in Germanium

heterostructures. The Hamiltonian we will be working with is known as the Luttinger-

Kohn Hamiltonian. We will describe the motivation behind the choice of basis states as

well as the set of invariant matrices used to determine it in Section 4.1, but not show

the invariant expansion itself, as it essentially is the same methodology as the invariant

expansion of the superconductive parameter ∆ which we will show in Section 4.2. For a

full derivation of the Luttinger Kohn Hamiltonian we refer to [9].

4.1 Luttinger Kohn Model

So far, the subband and regular k · p methods and the envelope function approximation

have expressed the Schrödinger equation in terms of the Bloch functions at zero momen-

tum in the absence of SO interactions uν′0. The band index ν ′ runs over a discrete but

infinite set, so in order to evaluate the systems of PDEs numerically we have to restrict to

a finite subset of Bloch functions. The lattice of Germanium is a diamond lattice which

possess the point group symmetry Oh. Consider a tight-binding picture of the lattice

where we include an s-orbital, denoted S, and three p-like orbitals (X, Y, Z). The names

s, p reference the angular momenta of these (l = 0 for s and l = 1 for p) and the angular

momenta themselves a reference to which irreducible representation of SU(2)× C2 they

transform under when considering a single, spherically symmetric, atom. When including

the spin of the electron, the eigenstates transform according to irreducible representations
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of the double group which are labeled by the total angular momentum j of spin and orbital

motion. In the presence of other atoms in a diamond lattice, the states hybridize into

bonding and anti-bonding states which are even or odd with respect to spatial inversion.

Furthermore, the overall symmetry is reduced from SU(2)×C2 down to Oh. The result of

this is that the subspaces labeled by j break down into invariant subspaces transforming

according to the irreducible representations of subgroup Oh of SU(2) × C2. Following

the notation in [24], the s-like anti-bonding states originating from a j = 1
2
invariant

subspace transform under the Γ−
6 irrep of Oh, where the superscript − implies that these

are odd under spatial inversion. The p-like anti-bonding states corresponding to j = 3
2

and j = 1
2
subspaces will transform under Γ−

8 and Γ−
7 respectively. Likewise for the p-like

bonding states we get invariant subspaces Γ+
8 and Γ+

7 . These invariant subspaces describe

the lowest four conduction bands (Γ−
8 ,Γ

−
7 and Γ−

6 ) and the top three valence bands (Γ+
8

and Γ+
7 ). Choosing our basis to be these 14 Bloch functions will give us the extended

Kane model, which exactly accounts for the SO and k ·p interactions between the lowest

four conduction bands and the top three valence bands. k · p contributions from remote

bands not included in the basis are usually accounted for using second-order perturbation

theory. By performing a Schrieffer-Wolff transformation, we can reduce the size of the

basis down to only include the bottom conduction band and the top three valence bands

( known as the 8 × 8 Kane model) or even further down to the Luttinger-Kohn model

which includes only the top two valence bands. We will focus on the Luttinger-Kohn

Hamiltoninan in this work, so we will briefly review how to obtain the relevant invariant

matrices needed in the invariant expansion of this Hamiltonian.

The 4 Bloch functions describing the top two degenerate valence bands at the Γ point

form a basis for an invariant subspace V which transforms under the irrep Γ+
8 . We can

express these 4 states as eigenstates of the Jz angular momentum matrix for j = 3/2.

Let HLK : V → V be the Luttinger-Kohn Hamiltonian. HLK is an element of a Hilbert

space which is isomorphic to V ⊗V ∗, which transforms under the product representation

Γ+
8 × (Γ+

8 )
∗. Upon inspection of the multiplication table of the irrpes for the group Oh

(see e.g. [24]) we find that:

V ⊗ V ∗ ≃ VΓ1 ⊕ VΓ2 ⊕ VΓ3 ⊕ (VΓ4 ⊗ 12×2)⊕ (VΓ5 ⊗ 12×2). (71)

For each invariant subspace of V ⊗ V ∗ we can find a basis expressed in terms of the

Jx, Jy, Jz. These bases are shown in Table 1. Using these bases, we can combine them with

operators such as k, B and the electric field E (see [10] for a full list of all combinations

up to fourth order in k and which irreps they belong to) such that the overall expression

24



Irrep Bases
Time

reversal

Γ1: 14×4 or J2 even

Γ2: JxJyJz + JzJyJx, odd

Γ3:
1√
3
(2J2

z − J2
x − J2

y ), J
2
x − J2

y, (even)

Γ4: Jx, Jy, Jz or J3
x , J

3
y , J

3
z odd

Γ5: {Jy, Jz}, {Jz, Jx}, {Jx, Jy} or even

{Jx, J2
y − J2

z }, {Jy, J2
z − J2

x}, {Jz, J2
x − J2

y} odd

Table 1: Bases for the 4× 4 matrix representation of irreducible representations of Oh. Here,

{A,B} = 1
2(AB +BA). Adopted from [10].

will be invariant under the action of Oh. To second order in k we get:

(72)
HLK =− h̄2

2m0

(
γ1k

2− γ2

[
1

3

(
2J2

z −J2
x −J2

y

) (
2k2z − k2x− k2z

)
+
(
J2
x −J2

y

) (
k2x− k2y

)]
− 4γ3 [{Jx, Jy} {kx, ky}+ c.p.]

)
.

Here, the coordinate directions are aligned with the main crystallographic directions in

Germanium, x∥[100], y∥[010], z∥[001] and can be transformed to an arbitrary different

coordinate system using an isometry. The dimensionless coefficients γ1, γ2 and γ3 are

referred to as Luttinger parameters and are given in [10]. The two valence bands described

in this Hamiltonian are known as the heavy-hole (HH) and light-hole (LH) bands on

account of their different effective masses in the crystallographic z-direction, which (if

neglecting off-diagonal terms) are :

mHH
z = (γ1 − 2γ2)m0, mLH

z = (γ1 + 2γ2)m0

mHH
∥ = (γ1 + γ2)m0, mLH

z = (γ1 − γ2)m0

Note that the HH-states have larger in-plane effective mass than the LH-states.

Symmetry Reduction in Quasi 2D Systems

The quantum devices we aim to model in this work are Germanium heterostructures,

where one direction is severely constrained compared to the other two. This added

confinement inherently breaks the symmetry of the system. In the Subband k ·p method

we ignored this, and simply set the effective parameters in the Hamiltoninan to be the

effective parameters of the bulk material but let them vary discontinuously across the

interface between different materials. In terms of the theory of invariants the symmetry
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Growth

direction
[001] [111] [100] [mmn] [0mn] [lmn]

inversion

asymmetric

z-confinement

Bz = 0

Bz > 0

C4v

C4

C3v

C3

C2v

C2

Cs

C1

Cs

C1

C1

C1

inversion

symmetric

z-confinement

Bz = 0

Bz > 0

D4h

C4h

D3d

C3i

D2h

C2h

C2h

Ci

C2h

Ci

Ci

Ci

Table 2: Point group for Germanium heterostructures depending on the growth direction and

inversion symmetry of the confinement as well as the presence of magnetic fields in

the growth direction. Adopted from [10].

condition Equation (60) is no longer obeyed for the point group Oh but rather some

subgroup of Oh. Determining which subgroup becomes the new symmetry of the system

can be done by treating the confinement as a projection onto a two-dimensional subspace

of R3 for which the confinement direction is normal to the surface. In practice, where the

quantum devices are crystallographically grown, the confinement direction is such that

the two-dimensional subspace is a lattice plane. If the confinement is symmetric under

inversion, the point group of the lattice plane becomes the new symmetry of the system.

On the other hand, if the confinement has inversion asymmetry (if the materials above

and below the quasi 2D plane are not the same for example) or the confinement potential

involves a magnetic field, then the symmetry may be further reduced. The point group

of a Germanium heterostructure for different growth directions is given in Table 2. If a

vector space is invariant under Oh, then it is also invariant under any subgroup of Oh,

and therefore, all the terms in the Luttinger-Kohn Hamiltonian, can still appear in the

Hamiltonian describing the confined system. The Hamiltonian of the confined system

will, however, have additional terms, and the form of these can be determined using the

theory of invariants. We can use the same invariant matrices as in the Bulk case, but

when combining the matrices with tensors, the combined expression does not have to

transform according to Γ1 of Oh but can transform according to different irreps of Oh

as long as the expression transforms according to the Γ1 representation of the reduced

symmetry. We will focus on the case where the growth direction and the crystallographic

z-direction are parallel, the z-has no magnetic field and the confinement potential is

inversion symmetric. We therefore include the reduction table for the case where Oh

reduces to D4h in Table 3.
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Oh Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8

D4h Γ1 Γ3 Γ1 ⊕ Γ2 Γ2 ⊕ Γ5 Γ4 ⊕ Γ5 Γ6 Γ7 Γ6 ⊕ Γ7

Table 3: Conversion of the irreducible representations of the point group Oh upon confining in

the crystallographic z-direction with an inversion symmetry potential and no mag-

netic field. Adopted from [24].

4.2 Theory of Invariants for ∆

In Section 3.1 we showed how one can determine the effective Hamiltonian describ-

ing proximitized superconductivity in the Germanium heterostructure of our system by

studying the renormalized Green’s function in the Germanium. If we impose symmetry

constraints on the BdG Hamiltonian, we can apply the theory of invariants to obtain

the allowed form of the superconductive term ∆. Imposing this symmetry constraint

implicitly implies that of all the coupling terms that appear due to the presence of the

superconductor, the ones that obey the impose symmetry constraint are the most dom-

inant ones. This assumption is reminiscent of the effective mass approximation, where

one assumes that the terms of highest possible (spherical) symmetry dominate over terms

of lower symmetry. If one assumes that higher symmetry terms in the BdG Hamiltonian

are more dominant than lower symmetry ones, then one can establish a symmetry hi-

erarchy of Hamiltonians by gradually reducing the symmetry constraint from spherical

symmetry down to the actual symmetry of the system. In this process, new terms will be

added to the effective mass Hamiltonian at each reduction step. Although the underlying

assumption behind this hieracical structure may not fundamentally be true, it provides

a systematical and elegant way of characterizing the terms in the BdG Hamiltonian and

their dependence on external fields and the wave-vector k.

In our case we use the Luttinger-Kohn Hamiltonian, HLK to describe the Germanium

system without superconductivity, which arose from imposing invariance under the action

of Oh. We therefore impose invariance of the corresponding BdG Hamiltonian(
HLK ∆

∆† −ΘHLKΘ
−1

)
(73)

under the action of Oh as well. Since the basis states of the Luttinger-Kohn Hamiltonian

form an invariant subspace transforming according to the Γ8 irrep and the set of these

basis states is closed under time-reversal (i.e. if ψ is in the subspace then so is Θψ), we

see that the action of Oh on the subspace on which the BdG Hamiltonian acts is the a

representation of Γ8⊕Γ8. From this we immediately see that ∆ must also transform under

Γ8 × Γ∗
8. This means that the set of invariant matrices which we can use to construct

an expression for ∆ is the same as the matrices used to construct the Luttinger-Kohn
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(a) ∆ = 0 (b) ∆ = 1 · 1meV

Figure 2: Constant energy surfaces of the lowest energy particle band of Equation (73) with

chemical potential µ = 1.83meV with and without superconductive coupling ∆.

Hamiltonian. Since every term in the Hamiltonian must be invariant under the action of

the symmetry (i.e. transform according to Γ1) we must combine the matrices in Table 1

with appropriately chosen tensors K to achieve this. We will demonstrate this for a

couple of examples and show the resulting matrix form of ∆ for these as well as illustrate

the dispersion relation of the extended Hamiltonian eq. (73) for different versions of ∆.

However, since we will apply this theory to a Germanium heterostructure, we will mainly

focus on the situation, where the symmetry is reduced from the bulk Germanium case.

Constant ∆

If we want the coupling ∆ to be independent of momentum k electric field E , and magnetic

field B, ∆ must be spanned by matrices in Γ1, which means that

∆ = α1,

for some α ∈ C. To illustrate that this choice of ∆ indeed does not violate the symmetry

of the Luttinger Kohn Hamiltonian, we can study the dispersion relation E(kx, ky, kz) for

the case with ∆ = 0 and ∆ ∝ 1. In Figure 2 we have plotted surfaces on which the LH /

lowest positive-energy band of E is equal to some constant Ev. For both figures the values

of Ev are the same. In a heterostructure with confinement along the crystallographic z-

direction, inspection of Table 3 reveals that the two-dimensional invariant subspace Γ3

decomposes to two one-dimensional subspaces which transform according to Γ1 and Γ2

respectively. The point group D4 has 3 axes with twofold symmetry and two planes of

mirror symmetry. The elements can be generated by rotations of π around each x, y and

z axis and mirroring through the planes perpendicular to x + y and x − y respectively.
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Up to a sign, these two reflections effectively swap x and y. With this, we see that one

of the basis matrices of the Γ3 subspace of Oh, J
2
x − J2

y , cannot be in the Γ1 subspace

of D4 as it is odd under these reflections. Sine there is only one other basis vector in

the Γ3 subspace of Oh, we conclude that 2J2
z − J2

x − J2
y can appear in the expression for

∆. Writing out the matrix expression for a ∆ which is a linear combination of 1 and

2J2
z − J2

x − J2
y in the basis of HH and LH states we find that ∆ is of the form

∆ =


α 0 0 0

0 β 0 0

0 0 β 0

0 0 0 α

 (74)

where the constants α, β ∈ C are not restricted based on symmetry. This tells us that,

for the case where ∆ is constant, the heavy-hole and light-hole states can have different

superconductive parameters in heterostructures but not in the bulk material. Addition-

ally, we also see that a constant ∆ cannot couple LH states with HH time-reversed states

in neither the bulk case nor the quasi 2D case where the confinement is along the [001]

direction. Such a coupling has to involve tensor components such as k, E or B. In Fig-

ure 3 we illustrate constant energy surfaces of the lowest particle band for a ∆ which

is invariant under the action of D4 but not all of Oh. The energies defining the energy

surface are the same as in Figure 2, so we can directly compare them and observe that

the z-direction differs from the x and y directions in Figure 3 but not in Figure 2b.

k-dependent ∆

In the following we will look at k dependent couplings, but still keep the coupling in-

dependent of electric field and magnetic field. We start with the case where ∆ is linear

in k. The components kx, ky, kz are odd under spatial inversion, but spatial inversion

is part of the Oh symmetry, so they can only appear in terms alongside quantities that

are also odd under spatial inversion. Since the basis matrices or our invariant expansion

are constructed from angular momentum matrices which are even under inversion, k can

only appear to linear order in the expression for ∆ in conjunction with either an electric

of magnetic field which is inversion asymmetric. Systems which such external fields that

break inversion symmetry are said to have structural inversion asymmetry (SIA), and the

fact that k must appear together with an external field is a consequence of the missing

bulk inversion asymmetry (BIA) in Germanium since the diamond lattice of the material

has a center of inversion. A table of all SIA-type terms involving an electric field E up

to second order in k is given in Table 4

We now move on to study the case where ∆ is second order in k but independent

external fields. Since terms proportional to kikj are even under time reversal, we only
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Figure 3: Constant energy surfaces of the lowest energy particle band of Equation (73) with

chemical potential µ = 1.83meV and ∆ =
(
1+

(
2J2

z − J2
x − J2

y

))
· 1mev

Γ1 × Γ1
∇ · E 14×4

(Ex{ky, kz}+ c.p.) 14×4

Γ3 × Γ3

1
3
(2{kx, ky}Ez − {ky, kz}Ex − {kz, kx}Ey)

(
2J2

z − J2
x − J2

y

)
+

({ky, kz}Ex − {kz, kx}Ey)
(
J2
x − J2

y

)
Γ4 × Γ4

(k× E) · J
(k× E) · J (J = (J3

x , J
3
y , J

3
z ))

Γ5 × Γ5

Ex{Jy, Jz}+ c.p.

(kyEz + kzEy){Jx, J2
y − J2

z }+ c.p.

({kx, ky}Ez + {kx, kz}Ey){Jy, Jz}+ c.p.

(k2y + k2x)Ez{Jy, Jz}+ c.p.

k2xEx{Jy, Jz}+ c.p.

Table 4: Invariant expansion terms involving an external electric field E up to second order in k.

”c.p.” means cyclic permutation of the coordinates x, y, z and {A,B} = 1
2(AB+BA).

Note that some terms have been discarded as they were not time-reversal invariant

even though they did obey the spatial symmetry.
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have to consider the invariant matrices that are even with respect to time-reversal:

Γ1 : 14×4, (75)

Γ3 :
1√
3

(
2J2

z − J2
x − J2

y

)
, J2

x − J2
y , (76)

Γ5 : {Jy, Jz} , {Jz, Jx} , {Jx, Jy} (77)

(78)

The Γ1 case is the simplest, since it must be multiplied with a tensor which also transforms

according to Γ1 of which k2 is the only one. For Γ3 we have to multiply it with tensors

which transform according to Γ3 and are second order in k. The following two expressions

form a basis for such tensors:

K1 :=
1√
3

(
2k2z − k2x − k2y

)
, K2 := k2x − k2y. (79)

There are a total of 4 possible combinations of the basis matrices and the tensor terms, but

the Γ1 subspace is only one-dimensional, so we have to find the right linear combination

of matrices and tensor terms. Based on how we know that the elements of Oh act on the

spatial coordinates and the kis, we can deduce how the representation of Oh transforms

K1 and K2. We can therefore determine an explicit matrix form of the two-dimensional

irreducible representation D(3), given by

D(3)(g) =

(
K1

K2

)
D(g)

(
K†

1 K†
2

)
, (80)

where g ∈ Oh and D is a representation of Oh which act on the tensors. Doing the same

for the two basis matrices 1√
3

(
2J2

z − J2
x − J2

y

)
, J2

x − J2
y in place of K1 and K2 we will get

exactly the same matrix expression, and by taking the tensor product D̃(g) := D(3)(g)⊗
D(3)(g) we obtain the explicit matrix expression of the 4-dimensional representation of

Γ3 × Γ3 in the basis JiKj where Ji ∈ { 1√
3

(
2J2

z − J2
x − J2

y

)
, J2

x − J2
y}, i = 1, 2. In this

vector space we can then pick any vector v =
∑

i,j∈1,2 αi,jJiKj and compute:

u =
1

48

∑
g∈Oh

D̃(g)v. (81)

This u is invariant under any action of Oh since ∀g ∈ Oh:

D̃(g)u =
1

48

∑
g′∈Oh

D̃(g)D̃(g′)v =
1

48

∑
g′′∈Oh

D̃(g′′)v = u, (82)

where in the last step we used that D̃ is a group homomorphism and relabeled the sum-

mation index g′′ = gg′. We therefore conclude that u lies in the Γ1 subspace. Performing

this computation, we find that

u =
1

3

(
2k2z − k2x − k2y

) (
2J2

z − J2
x − J2

y

)
+
(
k2x − k2y

) (
J2
x − J2

y

)
. (83)
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This expression is invariant under all actions of Oh, and can therefore appear in the

superconductive coupling ∆. In terms of the HH and LH states, this u takes the form
K1 0 K2 0

0 −K1 0 K2

K2 0 −K1 0

0 K2 0 K1

 , (84)

where K1 =
1
3
(2k2z−k2x−k2y) and K2 =

√
3(k2x−k2y). We can take the exact same approach

for the Γ5 case, where the corresponding tensors of second order in k are

{ky, kz} , {kz, kx} , {kx, ky} , (85)

which transform according to Γ5. We find that the Γ1 subspace in the Γ5 × Γ5 represen-

tation is spanned by

{kx, ky}{Jx, Jy}+ {ky, kz}{Jy, Jz}+ {kz, kx}{Jz, Jx}, (86)

with matrix representation: 
0 kzk− −ikxky 0

kzk+ 0 0 −ikxky
ikxky 0 0 −kzk−
0 ikxky −kzk+ 0

 , (87)

where k± = kx ± iky.
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5 The Finite Element Method

With a way of constructing systems of finitely many coupled partial differential equations

which can describe holes in Germanium in the presence of superconductivty, we proceed

to solving these systems numerically using the finite element method. This method is

used extensively in engineering to solve partial differential equations related to structural

analysis, heat transfer, fluid flow, electromagnetism, and many more. One of the main

advantages of the finite element method is that it is very capable of handling complex

irregular meshes, which allows us to obtain more accurate solutions to our problem with-

out the computational complexity becoming too great. In this section we will describe

the fundamentals of the finite element method based on [25] and how we use it to obtain

a (sparse) matrix representing the Hamiltonian of our problem. In Section 5.1 we then

describe how to efficiently obtain a few eigenvalues and eigenstates of this Hamiltonian.

In order to keep the notation simple, we denote the system of PDEs in the following

way:

Hu = Eu, (88)

where H is the Hamiltonian, an N × N hermitian matrix of differential operators, u is

an N -component spinor with L2 (Ω) functions defined on a bounded set Ω ⊂ R3 as its

entries, and E ∈ R is the energy. We want to only consider local solutions, so we impose

that the solution must vanish on the boundary, u(∂ Ω) = 0. The goal is to numerically

obtain the eigenvectors u and eigenvalues E. In order to do this numerically, we have to

reduce the space of functions we are working with from an infinite-dimensional Hilbert

space down to a finite-dimensional one. This is done by meshing the domain Ω i.e.

dividing into small but finite elements. On each of these cells we then pick a simple class

of functions (in our case we choose Lagrange polynomials of order 1) and combine these

into piecewise smooth functions defined on all of Ω. The set of all such functions we

will call V and these functions are not differentiable at the intersection between cells, so

strictly speaking they cannot be solutions to Equation (88). To overcome this, we can

rephrase Equation (88) in a weaker form which allows for the possible solutions to not

necessarily be differentiable everywhere. In order to do this we introduce a trial function

v ∈ C∞
c (Ω), which is a smooth function with compact support inside the domain Ω. Let

⟨·, ·⟩ be the inner product on the N -component Hilbert space given by

⟨v, u⟩ =
∫
Ω

dr
N∑
i=1

v∗i (r)ui (r) . (89)

Equation (88) implies that:

⟨v,Hu⟩ = E ⟨v, u⟩ ∀v ∈ C∞
c (Ω). (90)
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In this form, since we are working inside an integral, we can see that this equation will

still make sense if u and v are not differentiable on a set of measure zero. The space of

functions with this property is known as a Sobolev space, H1 (Ω) (for details we refer to

[26]) and V ⊂ H1(Ω). The weak formulation of Equation (88) is that u ∈ H1(Ω) obeys

⟨v,Hu⟩ = E ⟨v, u⟩ , (91)

for all v ∈ H1(Ω). In this form, we can approximate the Sobolev space by the finite-

dimensional subspace V , that is, we search for a function ũ ∈ V which solves Equa-

tion (91) for all v ∈ V . since V is finite-dimensional we have a basis of finitely many

orthonormal vectors ϕj ∈ V with j = 1, ..., Ndim (V), so we can express ũ in this basis:

ũ =
∑
j

ξjϕj. (92)

Inserting this into Equation (90) and picking v = ϕk we obtain NdimV equations in the

coefficients ξj which we can write as:

Aξ = Eξ (93)

where Ajk = ⟨ϕj, Hϕk⟩, is hermitian because H is. For certain PDEs it is possible to

prove the existence of a unique weak solution u ∈ H1 (U) using the Lax-Milgram theorem

[26] and more importantly, it is possible to show that ũ will converge towards u when we

make the mesh finer [25].

We have now reduced the task of approximately solving the system of PDEs as a

finite-dimensional eigenvalue problem. The numerical implementation of construting the

finite-element version of the PDEs is based on the FEniCSx platform [27–29] which is

an open-source computing platform for solving partial-differential equation that can also

run on high-performance clusters.

5.1 Efficient Partial Matrix Diagonalization

In the Finite-element method, the resulting matrix to diagonalize is sparse, and can

therefore be stored efficiently, even if the size of the matrix grows very large. Furthermore,

we are not interested in recovering the full spectrum but only a few states close to the

Fermi surface. We therefore do not have to perform a full diagonalization, but can

use iterative methods to obtain a small part of the spectrum and the corresponding

eigenvectors. We will utilize the Krylov-Schur method [30] which is able to efficiently

obtain the largest eigenvalues of a matrix. The method can also be used to determine

any other part of the spectrum if it is combined with the shift-invert, where eigenvalues

of a matrix A in the vicinity of some σ ∈ R are obtained by applying the Krylov-Schur

method to the matrix (A− 1σ)−1.
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The main idea in the Krylov-Schur method is to project the matrix n-dimensional

matrix A down to a much smaller m-dimensional Krylov subspace associated with A and

some arbitrarily chosen vector v:

Km (A,v) = span{v, Av, A2v, . . . , Am−1v}. (94)

Let H = V T
mAVm be the projection of A onto the Krylov subspace via an isomtery

Vm ∈ Cn×m. Since H is m-dimensional, we can diagonalize it in the usual way giving us

eigenvectors and eigenvalues Hvi = λivi. λi is then approximately an eigenvalue of A

and V T
mvi is the corresponding approximate eigenvector. A measure of the accuracy of

this approximation is given by the norm
∥∥AV T

mvi − λiV
T
mvi

∥∥. The approximation is best,

when Vm projects down to a subspace containing vectors which are close to eigenvectors

of A. This is the motivation for projecting down to the Krylov subspace; due to the

construction of K(m) (A,v), it is very likely that the eigenvector corresponding to the

largest eigenvalue will be close to this subspace, provided the initial vector v is not

adversarially chosen. This approach allows us to determine some k ≤ m eigenvalues

and eigenvectors to a certain accuracy. In order to improve the results, on can increase

m, but this will increase the memory requirement of the algorithm, which potentially

can lead to the algorithm failing to converge before the available memory is used up.

The Krylov-Schur method therefore deflates the subspace K(m) (A,v) down to a p < m

dimensional space keeping only certain eigenpairs and then extends the space by adding

the Krylov subspace K(m−p) (A,Am+1v). This way, the size of the projected matrix H

remains constant for each iteration, and the process of deflating and extending the space

can be repeated until the desired number of eigenstates have converged to a sufficient

accuracy.

The numerical implementation used to perform this partial diagonalization efficiently

using the Krylov-Shur method is based on the Scalable Library for Eigenvalue Problem

Computations (SLEPc) [31] which is built on the Portable, Extensible Toolkit for Sci-

entific Computation (PETSc) [32, 33]. SLEPc is designed to solve large sparse matrix

eigenvalue problems in a parallel computing setting, and therefore makes it possible to

solve the diagonalization task even when the finite-element mesh is very fine.
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6 Noise Sweet-Spots for

Quantum Wells

In this section we will determine noise sweet spots in a gate-defined quantum dot in a

Germanium heterostructure by solving the envelope function equations numerically using

the finite element method. The motivation for this is that the gates defining a quantum

dot are prone to noise, either as a result of cross-talk between gate electrodes or some

other external factor. Due to the spin-orbit coupling, this fluctuation affects the spin

degree of freedom of the hole state confined in the quantum well. Such gate noise will

therefore result in dephasing of the qubit. In order to avoid this, we show that we can

choose our magnetic field direction and shape of the confinement potential such that

fluctuations in the confinement potential will not affect the spin. In Section 6.1 we will

review the general theory of qubit dephasing and a computationally efficient method

for determining the effective g-tensor known as the g-matrix formalism. In Section 6.2

we then discuss the details of modeling the quantum dot system using the methodology

established in the previous sections and show the numerical results.

6.1 Qubit Dephasing and g-Matrix Formalism

In order to understand how noise in the gates defining the quantum dot can lead to a loss

of information in the logical qubit, we first review the relevant theoretical aspects of qubit

dephasing. We follow mainly the exposition of [34] and [35]. Since qubit dephasing is a

form of loss of information, it cannot be modeled as a unitary process because unitarity

implies invertibility. In the context of quantum information theory, such a process would

be described by a quantum channel (a completely positive, trace-preserving map acting on

the density matrices of the system) which, after ”going to the church of the larger Hilbert

space”, can be modeled as a unitary operation on a larger Hilbert space describing both

the qubit and the environment that it interacts with (This is a special case of Stinespring’s

dilation theorem [36]). The final mixed state of the qubit is then determined by summing

over all degrees of freedom in the environment using a partial trace. Instead of fixing a

specific model for the environment and its interactions with the qubit, we will simply treat

the bath as a classical noise process which is sufficient for our purposes. The magnetic

field applied to the quantum well splits the spin degree of freedom of the hole state which

encodes our qubit. The Hamiltonian describing the time-evolution of our two-level system

can be written as:

H =
h̄

2
ω0σz
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where σz is the Pauli z-matrix. ω0 describes the energy splitting of the two spin states as

a result of the B field so it depends on the effective g-factor. Due to fluctuations in the

confinement potential, the effective g-factor fluctuates over time, which in turn affects

the level splitting by altering ω0. We can model this fluctuation by replacing ω0 by a

classical random variable that fluctuates by δω(t) in time around ω0. We will assume

that this random variable is such that it averages to the zero-function i.e. ⟨δω(t)⟩ =

0. Experimentally, this averaging over different noise functions would correspond to

averaging the noise over different devices or, if the noise is time-dependent, averaging

over multiple runs. Plugging this into the Hamiltonian we have,

H =
h̄

2
(ω0 + δω(t))σz. (95)

Due to the difference in energy, time-evolution of the quantum states adds different

phase factors:

U(t) =

(
eiϕ(t)/2 0

0 e−iϕ(t)/2

)
, (96)

with ϕ(t) = ω0t +
∫ t

0
dt′δω(t′). The density matrix of the system as a function of time

then becomes:

ρ(t) = U(t)ρ(0)U †(t) =

(
ρ11 ρ10e

iϕ(t)

ρ01e
−iϕ(t) ρ00

)
, (97)

where ρij are the components of the initial density matrix at time t = 0. Assuming

now that the phase ϕ(t) is distributed according to a Gaussian distribution with mean

⟨ϕ(t)⟩ = ω0 (since ⟨δω⟩ = 0 ) and variance ⟨ϕ2(t)⟩ =
〈(∫ t

0
dt′δω(t′)

)2〉
we can compute

the expectation value of the density matrix (with expectation taken over all possible noise

functions δω )

⟨ρ(t)⟩ =

(
ρ11 ρ10

〈
eiϕ(t)

〉
ρ01
〈
e−iϕ(t)

〉
ρ00

)
=

(
ρ11 ρ10e

iω0te−⟨ϕ2(t)⟩/2

e−iω0te−⟨ϕ2(t)⟩/2 ρ00

)
. (98)

Since noise tends to not cancel itself over time, ⟨ϕ2(t)⟩ will be an increasing function in

time, which implies an exponential decay in the off-diagonal terms. Hence, if the initial

state was pure it will tend to a mixed state over time.

This shows that fluctuations in the confinement potential lead to qubit dephasing by

varying the effective g-factor which results in fluctuations of the energy splitting of the

qubit states. We therefore study the effects of the gate noise on g-factor as a function of

the parameters defining the gate, in order to determine how to eliminate this source of

dephasing. In Germanium the g-factor is anisotropic, and we therefore need to describe

it as a tensor. If we can determine the g-tensor and how it behaves when the potentials

are varied, we can use this to determine which magnetic field directions and confinement
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configurations give the lowest possible fluctuations of the energies when the confinement

potential fluctuates. The entire g-tensor can be efficiently computed from the eigenstates

at zero magnetic field using the g-matrix formalism [37], which we will briefly describe

here.

The EFA Hamiltonian with added magnetic field B and confinement potential V can

be written as:

H = H0 +M ·B +O
(
B2
)
, (99)

where H0 is an operator and M is a vector with operators as entries, all of which are

independent of B. We will ignore the higher order contributions of B and write the

lowest eigenstates to H0 as |⇑⟩ and |⇓⟩:

H0 |⇑⟩ = E0 |⇑⟩ , H0 |⇓⟩ = E0 |⇓⟩ . (100)

In the subspace spanned by this Kramer’s pair, we find that the matrix expression for H

is:

⟨σ | H | σ′⟩ = δσσ′E0 + ⟨σ | M | σ′⟩ ·B, (101)

where σ, σ′ ∈ {⇑,⇓}. In the second term, the matrix expressions for Mx,My and Mz can

be expressed as a linear combination of Pauli-matrices σx, σy and σz (The magnetic field

term must split the Kramer’s degeneracy, so a term involving 1 in the expression for the

Mis cannot appear). Specifically, the general form of the second term can be written as:

1

2
µBσ

T ĝB, (102)

where ĝ is the g-matrix, a 3 × 3 matrix of real entries. Comparing this expression with

Equation (101) we see that the elements of ĝ are:

ĝ =
2

µB

ℜ (⟨⇓|Mx |⇑⟩) ℜ (⟨⇓|My |⇑⟩) ℜ (⟨⇓|Mz |⇑⟩)
ℑ (⟨⇓|Mx |⇑⟩) ℑ (⟨⇓|My |⇑⟩) ℑ (⟨⇓|My |⇑⟩)
⟨⇑|Mx |⇑⟩ ⟨⇑|My |⇑⟩ ⟨⇑|Mz |⇑⟩

 . (103)

This ĝ-matrix can be transformed to the conventional symmetric form of the g-tensor

upon a change of basis of the x,y and z directions as well as a unitary transformation

of the ground state Kramer’s pairs |⇑⟩ and |⇓⟩. From a single evaluation of the ground

state of the H0 we can determine the Zeeman splitting of these for any magnetic field:

HZeeman =
1

2
µBg

∗ ∥B∥u · σ, (104)

where the effective g-factor g∗ = ∥ĝB∥ /∥B∥ and u = ĝB/∥ĝB∥ is a unit vector. The

dependence of the confinement potential V is implicit in the states |⇑⟩ , |⇓⟩ as they are

solutions to H0 which depends on V . The g-matrix formalism therefore allows us to study

the dependence of g∗ as a function of the confinement potential V efficiently using very

few numerical evaluations of the eigenstates of the envelope function Hamiltonian.
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6.2 Implementation and Numerical Results

Our envelope function Hamiltonian is the Luttinger-Kohn Hamiltonian described in Sec-

tion 4.1,

(105)
HLK =

h̄2

2m0

(
γ1k

2 − γ2

[
1

3

(
2J2

z − J2
x − J2

y

) (
2k2z − k2x − k2z

)
+
(
J2
x − J2

y

) (
k2x − k2y

)]
− 4γ3 [{Jx, Jy} {kx, ky}+ c.p.]

)
.

Note that we have removed a minus sign to make the dispersion particle-like, which will

make discussion easier when we add time-reversed states later. We will set the growth

direction of the heterostructure to be the z-direction (crystallographic axis [001]) and the

total width of the infinitely deep well potential is set to Lz := 25nm in accordance with

recent experiments [6, 7] as wells as the Germanium heterostructures constructed at the

Center for Quantum Devices at the University of Copenhagen.

Performing the subband k · p method amounts to evaluating the kz and k2z for the

plane-wave solutions Equation (12), for which we get:

⟨n | kz | m⟩ = −i nm

(n2 −m2)Lz

((−1)n+m − 1),
〈
n | k2z | m

〉
= δnm

π2

L2
z

. (106)

The most dominant contribution of this comes from the diagonal elements of k2z which,

because of the strong confinement, removes the degeneracy of the HH and LH-states

at k∥ = 0, due to the different effective masses of these bands. This observation is also

consistent with the fact that the added potential breaks the Oh symmetry of the problem,

so the 4-dimensional Γ8 subspace decomposes into two lower-dimensional subspaces (In

this case the symmetry is reduced to the point group D4h and Γ8 decomposes to the

invariant subspaces Γ6 and Γ7). Furthermore, the strong confinement means that the

energy difference between the lowest z-mode and any excited mode n scales as O (n2L−2
z ).

This suggests that not very many modesm need to be considered in order to obtain a good

approximation of the lowest HH band. In fact, judging from the dispersion in Figure 4, it

is already a reasonable approximation to only consider the lowest energy z-mode, which

effectively just shifts the HH and LH bands upwards by h̄2π2/(2L2
zmz) which evaluates

to 2.95meV for the HH band and 13meV for the LH band.

We assume that the magnetic field applied to the system is weak enough so that we

can neglect its effect on the orbital motion, so we ignore the vector potential A and only

add a B field. In terms of the Luttinger Kohn Hamiltonian, terms involving B must be

invariant under the symmetry operations of the system. Since B transforms like an axial

vector and is odd under time-reversal, it follows that B transforms according to Γ4, and

must therefore be multiplied with matrices transforming according to Γ4 as well. The

resulting terms are:
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Figure 4: In-plane dispersion of the Luttinger-Kohn Hamiltonian for Germanium both with

and without a 25nm wide infinite well potential in the [001] direction. The dispersion

with z-confinement is shown for different numbers of z modes included in the matrix.

HB = µB [κJ ·B + q′J ·B] (107)

where J is a vector of the j = 3
2
angular momentum matrices, Ji and (J )i = J3

i . The

dimensionless coefficients κ and q are given in [10]. The confinement potential chosen

is a simple harmonic oscillator V (r) = 1
2
m0(ω

2
xx

2 + ω2
yy

2). In order to investigate the

variation of the effective g-factor when the shape of this potential changes, we fix ωy and

vary ωx. For each cell in the finite-element mesh, we choose to express the functions as

Lagrange polynomials of order 1, which essentially means that the resulting eigenstates

will be piecewise linear functions. Figure 5 shows one of the states of the ground state

Kramers pair for a few specific configurations of the potentials and Figure 6 shows how

the changes in the confinement potential shape affect the singular values of the g-matrix

which correspond to the principal g-factors. The corresponding principal magnetic field

directions are the the z-axis for the g3 component, the x-axis for the component which

increases as a function of ωx and the y axis for the remaining component. This shows that

increasing the confinement in the x-direction also increases the g-factor in that direction

while decreasing the g-factor in the other directions. This difference in the behaviour

of the tensor components means that there exist B-fields for which ∥ĝB∥ is unchanged

under fluctuations of the confinement potential. To leading order, the fluctuation can be
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Figure 5: Positional probability distributions of the ground state wave function for different

confinement potentials.

expressed by replacing ĝ → ĝ + δĝ. Doing so, the effective g-factor becomes

1

∥B∥
∥ĝB∥ → 1

∥B∥
∥ĝB∥+ 1

∥B∥ ∥ĝB∥
(ĝB)T δĝB +O

(
δg2
)
. (108)

From this we see that the fluctuation in the effective g-factor vanishes if we choose B

such that ĝB and δĝB are orthogonal. The qualitative trend of g-tensor components

when changing ωx does not appear to be an artifact of the discretization of the PDEs,

since Figure 6 also shows that making the mesh finer results in insignificant changes to

the values. The big difference between the in-plane and out of plane g-factors are a result

of the strong confinement in the z-direction and the values are similar to what has been

observed in experiments [6]. As an extra confirmation that the assumptions used in the g-

matrix formalism are valid for this system, we compare the predicted Zeeman splitting of

the ground state Kramers pair, ∆E = µB ∥ĝB∥ to the actual computed energy splitting

for some randomly chosen confinement potentials ωx, ωy and magnetic fieldsB of strength

100mT. The relative error between the results was around 10−6 so we conclude that the

g-matrix formalism is valid for this system. While modeling the confinement potential as

a harmonic oscillator potential is by no means the most accurate description of a quantum

dot, we believe that it still establishes the existence of a sweet spot where quantum dots

can be made resistant towards gate noise fluctuations. The numerical implementation

used to produce these results is capable of handling more involved descriptions of the

confinement potential, and can therefore potentially be used to look for sweet spots for

a specific device architecture, and be used to aid the design of noise robust devices. The

code used in this project is built to allow for parallel computing, both when assembling

the Hamiltonian and when performing the partial matrix diagonalization afterwards. The

code is therefore capable of modeling systems to a level of detail beyond what would be

feasible on a single computer.
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Figure 6: Bottom: Singular values of the g-tensor as function of confinement in the x-direction

for three different y confinements.

Top: Average difference of singular values of the g-tensor for different resolutions of

the finite element mesh. The meshes studied were generated by partitioning each of

the in-plane directions into 100,200 and 300 cells.
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7 Superconductor Mediated

Coupling of Quantum Dots

We now shift our attention to studying the coupling of quantum dots through a supercon-

ductor. The goal is to investigate how the regular tunnel coupling and the cross Andreev

reflection (CAR) depend on parameters of the system such as the chemical potential in

the superconductor and length of the superconductor. In addition, we study how spin

orbit contributes to the coupling. In a simple, illustrative model of the system we can

think of the two quantum dots as two coupled two-level systems. The Hamiltonian for

such a system is:

H =



εL +B 0 0 0 t tSO ∆SO ∆

0 εL −B 0 0 tSO t ∆ ∆SO

0 0 −εL −B 0 −∆SO −∆ −t −tSO
0 0 0 −εL +B −∆ −∆SO −tSO −t
t tSO −∆SO −∆ εR +B 0 0 0

tSO t −∆ −∆SO 0 εR −B 0 0

∆SO ∆ −t −tSO 0 0 −εR −B 0

∆ ∆SO −tSO −t 0 0 0 −εR +B


. (109)

In this matrix, the top left 4× 4 block describes the on-site energies of the left dot where

both the particle states and time-reversed states are included. B (in units of energy) is an

external magnetic field splitting the spin-states into non-degenerate states. Similarly, the

lower 4× 4 block describes the on-site energies in the right dot. The off-diagonal blocks

describe the coupling between two dots. The coupling terms denoted by t are related

to the tunneling process where a particle / anti-particle can tunnel from one dot to the

other. In the presence of spin-orbit coupling, it is possible that the spin is flipped during

this process, which is why we have included coupling coefficients tSO in the Hamiltonian.

The other coupling mechanism of the dots is related to the superconductor’s coupling of

particles and anti-particles. These terms are labeled with ∆ and correspond to the process

where a particle from one dot enters the superconductor, combines with another particle

of opposite spin to form a Cooper pair and the extra ’hole’ created in the process exits

into the other dot. Spin-orbit coupling during this process allows the spin to flip during

this process as well so we also include ∆SO. In practice, the on-site energies and B will be

so that all these 8 states lie closer to the chemical potential than the superconductive gap.

When numerically solving the envelope function model of this system, we therefore simply

need to compute the eigenenergies closest to the chemical potential to effectively obtain

the eigenvalues of Equation (109). Based on these eigenvalues, we want to determine the
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coupling coefficients ∆ and t. One way to approach this, is to look for avoided crossings

when varying εL and εR. If we ignore the magnetic field and set εL and εR to be some

E0 > 0 which is larger than |t| and |∆| (with the energy scale set so that µ = 0), then the

left and right particle states will hybridize into bonding and antibonding states split by

2|t|. The same thing occurs for the anti-particle states. If we, on the other hand, fix εL
to E0 and εR to −E0 the particle states of the right dot hybridize with the anti-particle

states in the right dot to form bonding and antibonding states which are split by 2|∆|.
In Figure 7 these avoided crossings are illustrated by using a 1D tight-binding model of

the dot-superconductor-dot. In this model, each site comprises simply a particle state and

an anti-particle state (so the spin degree of freedom is ignored). The left and right ends of

the chain are the left and right dots with on-site energy εL and εR respectively. There is a

regular hopping term from the dot-sites to the closest neighboring site which adds coupling

terms between particle states on the neighboring sites and similarly for anti-particle states.

For all states except the dot states, there is also a superconductive term coupling particle

states at one site to the anti-particle states at the same site. The on-site energy of

the states describing the superconductor (which provides a description of the chemical

potential in the superconductor) is chosen such that there is a mixing of particle and anti-

particle states (i.e. the band is partially filled). Fixing some E0 such that there will be 4

in-gap states when (εR, εL) = (E0, E0), we can see the avoided crossings when we vary εL
and εR a little around the points (εL, εR) ∈ {(E0, E0) , (E0,−E0) , (−E0,−E0) (−E0, E0)}.

Figure 7: Positive energy in-gap states for the 1D tight-binding model for the dot-

superconductor-dot system as a function of detuning. The arrows in the inset indi-

cate the direction of increasing detuning.
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Finite-Element Model Construction

Similarly to the 1D case, this methodology for determining t and ∆ can be applied to the

finite-element system as well. First we must define the model for the dot-superconductor-

dot system. Just as in Section 6 the z-confinement is chosen to be 25nm and we can

therefore also in this case neglect higher orbital excitations in the z-direction. As for

the form of the superconductive parameter ∆, we chose it simply proportional to the

identity; although we could in principle choose different superconductive couplings for

the heavy-hole and light-hole states without violating the symmetry of the quasi-2D

system as discussed in Section 4.2. Due to the large energy splitting of the HH and LH

bands caused by the z-confinement, the chemical potential in the superconductor has

to be chosen significantly larger than in the dots in order for the HH-band to become

populated. We therefore argue that the details of the superconductive coupling of the LH

states is not important and we are free to choose it to be the same as to superconductive

coupling of the HH states.

The potential surface defining the quantum dots and the superconductor is con-

structed by a piecewise combination of potentials constructing the individual components.

Each dot is modeled as a potential of the form ṼL (r) =
1
2
meω

2
0(r−rL)

2+ C
4
(r−rL)

4+VL
where rL is the center of the left dot and the constant VL is added to allow for adjusting

the energy of the states localised in the left dot. The potential defining the right dot

is defined analogously, and the constants ω0 and C are the same for both dots. The

superconductor is simply a rectangular region with constant potential VSC and non-zero

superconductive coupling ∆. At the interface between the superconductor and a dot,

there is a region of constant potential VB and no superconductive coupling acting as a

barrier potential. For the eigenstates of the system, initial runs with a coarse, uniform

mesh show that the wave function in the dots appears Gaussian and oscillates rapidly

in the superconductor. Based on this observation we chose to construct a mesh which is

finer inside the superconductor than in the dots. Around the barrier between the dots as

well as in the center of the dots the resolution is also increased, as we expect the gradi-

ent of the eigenstates to vary more in these areas. The mesh and an example potential

surface is shown in Figure 8a and Figure 8b shows two eigenstates of system defined by

the example potential.

In the finite-element model, we can vary the energy in the dots using a constant

potential in each dot, VL and VR. When the potential in both dots is the same (VL =

V0 = VR), their energy will be equal, and we can determine the t-coupling by letting

VL = V0 + ϵ and VR = V0 − ϵ for some small ϵ and minimizing the energy difference

between the lowest energy hole states (ignoring spin degeneracy) as a function of ϵ. When

varying VL the coupling to the superconductor changes, and as a result, it is difficult to

determine the point where the hole states in the right and left dot have exactly the same
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(a)

(b)

Figure 8: (a) Example potential describing the dot-superconductor-dot system. The potential

is interpolated on the mesh shown, which is the same mesh used in the finite element

computation.

(b) Two of the 8 in-gap eigenstates of the system described by the potential shown

in (a). The z axis represents the norm ∥ψ(x, y)∥2 scaled such that it takes values

from 0 to 1. The coloring also illustrates ∥ψ(x, y)∥2 but on a log scale to better

illustrate the wave function in the superconductor where the amplitude is orders of

magnitude lower than the amplitude in the dots.
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distance to the Fermi surface, but are on different sides. Therefore, we determine ∆ in

the following way: let VL = V0 = VR and determine the ground state hole energy, EGS.

Set VL = V0 − EGS + ϵ and minimize energy difference between the lowest energy states

(again ignoring spin degeneracy) as a function of ϵ. These minimization tasks can be

computed efficiently in terms of the number of times the envelope function model has

to be solved since our initial guesses for VL and VR put us close enough the the global

minimum so that minimization will not get stuck in a local minimum. In practice, we

find that it takes around 15 evaluations of the envelope function model to determine the

minima within numerical precision. In fact, for the case where the left and the right dots

are identical, the minimum determining the t coupling will always be when VL = VR so

in this case, it is not necessary to perform the minimization. This minimization only

determines the magnitude of the couplings, but gives no information about the sign. The

sign can be deduced from inspecting the ground state wave-function. For the case where

t is to be determined, The wave-function is either symmetric or anti-symmetric when

reflecting through the middle of the superconductor. If the ground state is symmetric,

the tunnel coupling is attractive, i.e. t > 0, and if the ground state changes sign under

reflection the tunnel coupling is repulsive (t < 0). For the CAR coupling, the sign of

∆ can be determined in a similar fashion, but the symmetry operation in this case is a

reflection through the middle of the superconductor and an interchange of the particle

and anti-particle components.

Figure 9 shows the tunnel and CAR couplings of two identical dots as a function of the

chemical potential in the superconductor as well as the strength of the superconductive

coupling. t and ∆ change sign at the points where they go to 0, and the points where both

couplings become large are roughly where the Fermi wave-vector in the superconductor

obeys: kfLSC = π. We see the same behaviour for different lengths of the superconductor,

but the couplings generally increase as the length of the superconducutor is reduced. This

method provides a computationally inexpensive way of determining the couplings of the

two dots, and if an external magnetic field is applied to split the degeneracy of the spin-

states in the dots, one could also gain insight into how spin-orbit interaction affects these

couplings. In experimental settings, the energy levels in the dots will be somewhat close

to the Fermi surface. As our methodology relies on having only two states being close

in energy, we expect that this method will not work well when the states are very close

to the Fermi surface. In the regime where the dots are close to the Fermi surface, more

of the wave-function for the in-gap states will also leak into the superconductor. As

a result of this, one can no longer ignore what is going on inside the superconductor,

so the fundamental assumption behind the effective Hamiltonian eq. (109) of describing

the system as two coupled dots breaks down. One way of illustrating this, is to let

VL = VR =: V and plot the in-gap energies as a function of V . This is done in Figure 10.
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Figure 9: Coupling coefficients t and ∆ as functions of the chemical potential and the strength

of the superconductive coupling in the superconductor. Determined using the finite-

element model.

When the potential is small, the 4 negative energy states are particle-like and are grouped

into two two-fold degenerate eigenspaces corresponding to symmetric and anti-symmetric

orbital wave-functions. The 4 positive energy eigenstates are anti-particle-like and also

group into symmetric and anti-symmetric states. The splitting of the symmetric and

anti-symmetric particle states matches the t coupling coefficient, so in this regime, the

model Hamiltonian eq. (109) is accurate. As the potential in the dots increases and the

eigenstates approach the Fermi surface the symmetric and anti-symmetric states exhibit

different avoided crossings. For large V the negative energy states are anti-particle-like

and the positive energy states are particle-like. In this limit, the t coupling between the

symmetric and anti-symmetric states is smaller. These phenomena do not fit with the

model Hamiltonian eq. (109). The simplest way to see this, is to notice that the spectrum

σ(H) is unchanged when switching the sign of the dot energies εL, εR → −εL,−εR. This

48



Figure 10: All 8 in-gap eigenenergies of the FE-modeled dot-superconductor-dot system as a

function of the potential in the dots. Shown for two specific values of the chemical

potential in the superconductor.

model therefore implies that the spectrum must be symmetric around some specific value

of the dot potential, which is not the case. The apparent asymmetry that we observe when

’flipping the sign’ of the dot energies by increasing the potential comes from the interaction

between the dots and the superconductor. Since we keep the parameters specifying the

superconductor constant throughout, the coupling between the superconductor and the

dots does not stay the same when increasing the dot potential. If we were to also ’flip’ the

spectrum of the superconductor, then we would reestablish the symmetry. We can directly

verify this argument using the 1D tight-binding model, where we can easily change the

sign of the on-site energy in the superconductor. Figure 11 shows that the spectrum

is unchanged when flipping the on-site energy both in the superconductor as well as in

the dots. This symmetry is essentially the particle-hole symmetry of the Bogoliubov-de

Gennes equations.

The second phenomenon which is not captured by the simple model, is the differ-

ent coupling of the symmetric and anti-symmetric particle / anti particle states. Fur-

ther inspection of the wave functions reveals that the state with higher coupling to its

time-reversed counterpart it the one which also has more weight within the supercon-

ductor. Whether the state with higher weight in the superconductor is symmetric or

anti-symmetric depends on the chemical potential in the superconductor, or more specif-

ically, the fermi-wave vector. We can demonstrate this behaviour analytically for the
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Figure 11: Top: Dispersion relation inside the 1D superconductor for the case with positive

and negative on-site energy. The dispersion relation in the absence of supercon-

ductivity is also plotted for reference.

Bottom: In-gap eigenstates of the 1D dot-superconductor-dot model for positive

and negative on-site energy in the superconductor. The positive on-site energy

plot has also been mirrored around εL, εR = 0 to illustrate that it is identical to

the negative energy one.

following simple 1D model: The left and right dots |L⟩ , |R⟩ are represented as a sin-

gle state each, and the superconductor is a continuous 1D system denoted |x⟩ where

x ∈ (0, lSC). Since there is only a finite barrier between the dots and the superconductor,

we make the following Ansatz for the wave function describing a particle on the left and

right dots respectively:

|ψL⟩ = α |L⟩+
∫

dx
β√
N
eikF x−x/ξ |x⟩+ γ |R⟩ , (110)

|ψR⟩ = α |R⟩+
∫

dx
β√
N
eikF (lsc−x)−(lsc−x)/ξ |x⟩+ γ |L⟩ . (111)

Here, N =
∫ lsc
0
e−2x/ξ is a normalization constant. α, β and γ are coefficients representing

the relative weight of the wave-function in the dots and in the superconductor and kF
and ξ describe the fermi-wavevector and coherence length of the superconductor. These
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two states can be combined into symmetric and anti-symmetric states:

|ψS⟩ :=
1√
2
[|ψL⟩+ |ψR⟩] , (112)

|ψA⟩ :=
1√
2
[|ψL⟩ − |ψR⟩] . (113)

The weight of these wave functions in the superconductor is then the expectation value

of the projection PSC =
∫
dx |x⟩⟨x|. We find that:

⟨ψS | PSC | ψS⟩ = 2β2(1 +
lSCe

−lSC/ξ

N
cos (kF lsc)), (114)

⟨ψA | PSC | ψA⟩ = 2β2(1− lSCe
−lSC/ξ

N
cos (kF lsc)). (115)

This shows that for some values of the fermi-wavevector the symmetric state will have

more weight within the superconductor while for other values of kF the anti-symmetric

state will have more weight.

7.1 Modeling a Minimal Kitaev Chain

The dot-superconductor-dot system has recently been discussed in great detail in the

context of topological quantum computing and the search for Majorana bound states.

For the Kitaev chain model [38], it has been theoretically predicted that Majorana bound

states exist (quasi-particle fields γn, which are their own anti-particles, γ†n = γn, anti-

commute, {γn, γm} = 2δnm and are localized on the ends of the chain) for certain choices

of the parameters defining the chain. The dot-superconductor-dot system resembles a

minimal Kitaev chain with two sites, and for this system Majorana bound states have

also been predicted [39] as well as experimentally observed [40]. These Majorana modes

appear when the tunnel and CAR amplitudes are equal and the on-site dot energies are

equal. They are robust towards fluctuations in the dot energies, but not towards noise

which makes the tunnel and CAR amplitudes different. These Majorana bound states

are therefore not topologically protected from noise in the same way as the Majorana

bound states of the full Kitaev chain.

It is possible to study the relative magnitudes of the tunnel coupling t and the CAR

coupling ∆ by looking at the number parity of the ground state. In order to do so,

we look at the system in a second-quantized framework (ignoring spin) where the basis

|00⟩ , |11⟩ , |10⟩ , |01⟩ denotes the number of particles in both the left and the right dot.

The Hamiltonian in this basis is

H =


0 ∆ 0 0

∆ εL + εR 0 0

0 0 εL t

0 0 t εR

 . (116)

51



The eigenvalues of this block diagonal matrix are readily determined to be:

Eeven =
εL + εR

2
±

√(
εL + εR

2

)2

+∆2, (117)

Eodd =
εL + εR

2
±

√(
εL − εR

2

)2

+ t2. (118)

The ’even’ and ’odd’ subscripts reference the number parity of the corresponding eigen-

states. A phase diagram of this Hamiltonian as a function of the dot energies εL, εR for

different fixed values of t and ∆ is given in Figure 12. The two phases are characterized by

whether the ground state contains an even number of particles, (i.e. lives in the subspace

spanned by |00⟩ and |11⟩) or contains an odd number of particles and is a superposition

of |01⟩ and |10⟩.
We can establish the same phase diagram in the single-particle framework used in the

finite element modeling of this system. Solving the finite element model for the in-gap

states gives us eigenenergies of the system in relation to the chemical potential, so if these

eigenenergies are negative, the state will be occupied. By the particle-hole symmetry of

the BdG equations, there will always be the same number of eigenstates with energy above

and below the chemical potential. On the black lines in Figure 12, which are the curves

for which εLεR = t2 −∆2, an even-parity state and an odd-parity state are degenerate.

This means that adding an extra particle costs zero energy, which in the single-particle

picture means that there is an eigenstate crossing E = 0. We can therefore determine

the phase transition in the single particle picture by looking for energy-level crossings at

zero energy.

A crucial detail which we have glossed over in this discussion is the fact that we have

ignored spin completely. In the presence of spin, but without magnetic fields, all energy

levels are twofold degenerate due to Kramer’s theorem [41]. This means that we can

never have an odd-parity ground state as there will always be an even number of energy

levels crossing zero. One possible way of breaking this degeneracy is by introducing

a magnetic field. However, adding a magnetic field also affects the tunnel and CAR

couplings, since the CAR couples states of opposite spin while the tunnel process couples

states of the same spin. To overcome this, there must be spin-orbit interaction present

in the system.2 In Equation (109) we have included spin as well as SOI-induced CAR

and tunnel couplings. We can project this Hamiltonian down to the subspace spanned by

|L ↓⟩ , |L ↑⟩ , |R ↓⟩ , |R ↑⟩ ,where L,R denotes the left and the right dots, ↑, ↓ denotes spin

up and down relative to the magnetic field and |L ↑⟩ is the time-reversed counterpart of

2Or the superconductor must be a p-type superconductor pairing states of the same spin.
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Figure 12: Phase diagram of the Hamiltonian Equation (116) for different values of the cou-

plings. The chemical potentials in the two dots µLD and µRD effectively alter the

dot energies εL and εR. From [40].

|L ↑⟩. doing so, we get 
εL −B 0 t ∆SO

0 −εL +B ∆SO −t
t −∆SO εR −B 0

∆SO −t 0 −εR +B

 . (119)

This matrix describes the same physics as the many-body Hamiltonian Equation (116),

which we can see by comparing the phase diagram in Figure 12 with the eigenvalues

of the matrix in Equation (119). By plotting the eigenvalue closest to zero for each

value of the dot energies εL, εR in 13 we can see that it approaches zero at the points

where (εL + B)(εR − B) = t2 − ∆2
SO. In fact, there are four subspaces of the full

8-dimensional Hilbert space, in which the Hamiltonian Equation (109) has the same

structure as Equation (119). These four-dimensional subspaces are spanned by a spin-

state and the time-reversal of the opposite spin-state on each dot. Each corresponding

projected Hamiltonian therefore contains a SOI-induced coupling term as well as a regular

coupling term. We can plot the smallest eigenvalue of the entire model Hamiltonian in

eq. (109), in order to see how the relative strengths of all the coupling terms affect the

location of the crossings at zero energy. In Figure 14 we have done so for different values

of the SOI-induced coupling terms. The top left and bottom right regions of each of the 9

plots describe the crossing of opposite-spin states in the two dots and involve ∆ and tSO
while the top right and bottom left regions of the plots describe the crossing of same-spin

states and involve t and ∆SO.

We have already seen that modifying the chemical potential in the superconductor
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Figure 13: Smallest eigenvalue of the matrix in eq. (119) as a function of εL and εR for

B = 3(a.u.). All values are given in the same arbitrary unit scale. On the lines,

there is a crossing of two eigenvalues at zero energy.

alters the tunnel and CAR couplings. For altering SOI-induced couplings, we argue that

this can be achieved by altering the direction of the applied magnetic field, since the

system is not planar symmetric. Based on this, we chose to study the lowest positive-

energy eigenstate of the Finite element model as a function of the potential in the left and

right dot for different chemical potentials in the superconductor and different directions

of the magnetic field. Results of this are shown in Figure 15.

From this we observe that for some values of µSC the magnetic field direction indeed

influences the coupling of the dots. For µSC = 3.48 rotating the magnetic field from the

x-direction to the y-direction appears to increase the difference t2 −∆
2

SO for the spin-up

states (lower left region) while decreasing t2 − ∆
2

SO for the spin-down states (top right

region). Furthermore, it appears that for some of the parameters chosen, we are very

close to the sweet-spot t2 = ∆2. However, if we compare with Figure 9, we see that

the apparent sweet-spots are likely due to the CAR coupling vanishing, so that we have

uncoupled dots tSO = ∆ = 0. This argument is further supported by the fact that for

all of the parameter choices shown in Figure 15, the corresponding phase diagrams in

Figure 14 suggest that the SOI-induced couplings are smaller than the regular ones.
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Figure 14: Smallest positive eigenvalue of Equation (109) as a function εL and εR for different

values of the SOI-induced coupling coefficients tSO and ∆SO. For all of these,

B = 3(a.u.) and t = ∆ = 1(a.u.). All values are given in the same arbitrary unit

scale.
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Figure 15: Lowest non-negative eigenvalue of the finite-element model as a function of the

two dot potentials VL and VR. The chemical potential in the superconductor is

expressed in meV . Note the different magnetic field magnitude in the z-direction

compared to the in-plane directions, which was chosen as to get approximately the

same splitting of the spin states.
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8 Conclusions and Outlook

In this project, we set out with the intention of modeling spin-qubits in Germanium

heterostructures in order to better understand these devices and how to design them. We

have described how to construct a Hamiltonian which describes the dynamics of a single

particle on a scale spanning multiple unit cells using the envelope-function approximation,

and we have discussed the application of this method for describing heterostructures

in the subband k · p method. We have also studied how Germanium, in contact with

a superconductor, obtains an effective superconductive coupling due to the proximity

effect and we have demonstrated how the nature of this coupling can be determined

based on the model of the superconductor as well as the details of the tunneling process

between superconductor and Germanium. In addition, we have reviewed the theory of

invariants and how it can be used to obtain the Luttinger-Kohn Hamiltonian and we

have directly used it to determine the form of the effective superconductive coupling in

Germanium. With this Hamiltonian describing holes in Germanium heterostructures,

we then showed how to solve the corresponding time-independent Schrödinger equation

efficiently numerically using finite element methods to obtain the desired eigenstates of

the Hamiltonian. Applying this approach to a simple model for a single spin-qubit, we

showed that it is possible to choose an in-plane magnetic field direction in such a way

that the qubit becomes robust towards gate-noise. Lastly, we studied a system consisting

of two dots coupled via a superconductor. For this system we showed how to obtain

parameters describing the tunneling and cross Andreev reflection couplings of the two

dots, as well as demonstrated how one can use our approach in the search for device

designs that are capable of hosting poor man’s Majorana modes.

The analytical work of this project surrounding proximitized superconductivity in

Section 3.1 and the determination of the superconductive parameter ∆ using the theory

of invariants in Section 4.2 raises an intriguing question about the compatibility of these

two approaches. It would be interesting to study how the imposed symmetry constraint

can be obeyed by a suitable description of the superconductor and the tunnel process

between Germanium and superconductor. The methodology for modeling spin-qubit

devices in Germanium developed in this project can readily be applied to the study of

many phenomena not investigated here.

Interesting suggestions could for instance include studying the effects of strain

in Germanium devices. The metallic contacts of the gates used to build the device

cause strain in the Germanium material [42] and the spatial dependence of the strain

can manipulate the spin [43]. It is therefore relevant to include strain in the model for it

to accurately represent real devices. Using the theory of invariants, the strain tensor is

readily added to the Luttinger-Kohn Hamiltonian (see e.g. [10]).
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One could also look further into optimizing the readout of singlet-triplet qubits.

Measuring the logical state of a singlet-triplet qubit uses Pauli spin-blockade which relies

on the fact that two electrons (or holes) occupying the same quantum dot must be in

a singlet state. Due to the differences in the shape of the quantum dots, however, the

g-tensor varies from dot to dot, which causes the spins of different dots to split along

different directions. The consequence of this is that it is possible for the two particles in a

triplet state to tunnel occupy the same dot, since the spins of the particles are not exactly

parallel. Using the model developed in this work, one could study ways of mitigating this

phenomenon e.g. by picking the magnetic field direction cleverly.

Another interesting direction one could explore, would be to increase the level of

detail of the model to better aid the design and development of Germanium devices.

To achieve this, one could solve the electrostatics for the gates defining the system and

use the resulting potential in place of the simple potential surfaces used in this project.

Additionally, one could increase the accuracy of the model by extending the number of

bands from 4 bands of the Luttinger-Kohn Hamiltonian to the 6, 8 or even 12 band

Kane models. If modeling the z-direction as an infinite well is not accurate enough,

one could also apply the subband k · p method for a different potential and basis set

in the z-direction. The code used in this project can easily be extended to also model

3-dimensional systems, so it could also be used to study systems where we cannot assume

that the motion of the z-direction decouples from the other two directions.

Lastly, one could look at how to tune the Kitaev chain by altering the dot

shapes. Using the understanding of the effective g-tensor of the dots gained in Section 6,

one could investigate if the dot-superconductor-dot system could be tuned to host poor

man’s Majorana states by altering the shapes of the quantum dots. Looking closer at the

in-plane singular values in Figure 6 shows that for certain shapes of dots, the g-factor

vanishes along one direction. Picking the two dots of the system to both have this shape

but rotated 90◦ relative to each other, would, in the presence of a homogeneous global

magnetic field, make the spins in the two dots align along orthogonal directions. For

such a system, both CAR and tunnel processes would be possible without requiring SOI-

induced spin-flipping during these processes. Initial numerical studies in this direction

suggest that this approach may be promising.
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